
TIBCO Spotfire S+® 8.1 for
Solaris®/Linux®

User’s Guide

November 2008

TIBCO Software Inc.



IMPORTANT INFORMATION

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER
TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON
FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT
LICENSED TO BE USED OR ACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS
SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY
EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF
THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS
DISPLAYED DURING DOWNLOAD OR INSTALLATION OF
THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SPOTFIRE S+® INSTALLATION AND ADMINISTRATION
GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO THOSE
TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to
U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO Software Inc., TIBCO, Spotfire, TIBCO Spotfire S+,
Insightful, the Insightful logo, the tagline "the Knowledge to Act,"
Insightful Miner, S+, S-PLUS, TIBCO Spotfire Axum,
S+ArrayAnalyzer, S+EnvironmentalStats, S+FinMetrics, S+NuOpt,
S+SeqTrial, S+SpatialStats, S+Wavelets, S-PLUS Graphlets,
Graphlet, Spotfire S+ FlexBayes, Spotfire S+ Resample, TIBCO
Spotfire Miner, TIBCO Spotfire S+ Server, and TIBCO Spotfire
Clinical Graphics are either registered trademarks or trademarks of
TIBCO Software Inc. and/or subsidiaries of TIBCO Software Inc. in
the United States and/or other countries. All other product and
company names and marks mentioned in this document are the
property of their respective owners and are mentioned for
ii



Important Information
identification purposes only. This software may be available on
multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time.
Please see the readme.txt file for the availability of this software
version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
DOCUMENT COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT.
TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS
AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY
TIME.

Copyright © 1996-2008 TIBCO Software Inc. ALL RIGHTS
RESERVED. THE CONTENTS OF THIS DOCUMENT MAY
BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH
ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT
LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

TIBCO Software Inc. Confidential Information

Reference The correct bibliographic reference for this document is as follows:

TIBCO Spotfire S+® 8.1 for Solaris®/UNIX® User’s Guide  TIBCO 
Software Inc.

Technical 
Support

For technical support, please visit http://spotfire.tibco.com/support
and register for a support account.
iii



ACKNOWLEDGMENTS

TIBCO Spotfire S+ would not exist without the pioneering research
of the Bell Labs S team at AT&T (now Lucent Technologies): John
Chambers, Richard A. Becker (now at AT&T Laboratories), Allan R.
Wilks (now at AT&T Laboratories), Duncan Temple Lang, and their
colleagues in the statistics research departments at Lucent: William S.
Cleveland, Trevor Hastie (now at Stanford University), Linda Clark,
Anne Freeny, Eric Grosse, David James, José Pinheiro, Daryl
Pregibon, and Ming Shyu.

TIBCO Software Inc. thanks the following individuals for their
contributions to this and earlier releases of TIBCO Spotfire S+:
Douglas M. Bates, Leo Breiman, Dan Carr, Steve Dubnoff, Don
Edwards, Jerome Friedman, Kevin Goodman, Perry Haaland, David
Hardesty, Frank Harrell, Richard Heiberger, Mia Hubert, Richard
Jones, Jennifer Lasecki, W.Q. Meeker, Adrian Raftery, Brian Ripley,
Peter Rousseeuw, J.D. Spurrier, Anja Struyf, Terry Therneau, Rob
Tibshirani, Katrien Van Driessen, William Venables, and Judy Zeh.
iv



TIBCO Spotfire S+ Books
TIBCO SPOTFIRE S+ BOOKS

The TIBCO Spotfire S+® documentation includes books to address
your focus and knowledge level. Review the following table to help
you choose the Spotfire S+ book that meets your needs. These books
are available in PDF format in the following locations:

• In your Spotfire S+ installation directory (SHOME\help on
Windows, SHOME/doc on UNIX/Linux).

• In the Spotfire S+ Workbench, from the Help � Spotfire S+
Manuals menu item.

• In Microsoft® Windows®, in the Spotfire S+ GUI, from the 
Help � Online Manuals menu item. 

Spotfire S+ documentation.

Information you need if you... See the...

Are new to the S language and the Spotfire S+
GUI, and you want an introduction to importing
data, producing simple graphs, applying statistical

models, and viewing data in Microsoft Excel®. 

Getting Started
 Guide

Are a new Spotfire S+ user and need how to use
Spotfire S+, primarily through the GUI.

User’s Guide

Are familiar with the S language and Spotfire S+,
and you want to use the Spotfire S+ plug-in, or
customization, of the Eclipse Integrated
Development Environment (IDE).

Spotfire S+ Workbench 
User’s Guide

Have used the S language and Spotfire S+, and
you want to know how to write, debug, and
program functions from the Commands window.

Programmer’s Guide

Are familiar with the S language and Spotfire S+,
and you want to extend its functionality in your
own application or within Spotfire S+.

Application 
Developer’s Guide
v



Are familiar with the S language and Spotfire S+,
and you are looking for information about creating
or editing graphics, either from a Commands
window or the Windows GUI, or using Spotfire
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+,
and you want to use the Big Data library to import
and manipulate very large data sets. 

Big Data 
User’s Guide

Want to download or create Spotfire S+ packages
for submission to the Comprehensive S-PLUS
Archive Network (CSAN) site, and need to know
the steps.

Guide to Packages

Are looking for categorized information about
individual Spotfire S+ functions.

Function Guide

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 1 includes
information on specifying models in Spotfire S+,
on probability, on estimation and inference, on
regression and smoothing, and on analysis of
variance.

Guide to Statistics, 
Vol. 1

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 2 includes
information on multivariate techniques, time series
analysis, survival analysis, resampling techniques,
and mathematical computing in Spotfire S+.

Guide to Statistics, 
Vol. 2

Spotfire S+ documentation. (Continued)

Information you need if you... See the...
vi



Chapter 1   Introduction 1

Welcome to Spotfire S+! 2

Installation 3

Creating Spotfire S+ Launchers 7

Help, Support, and Learning Resources 13

Typographic Conventions 20

Chapter 2   Getting Started 21

Introduction 23

Running Spotfire S+ 24

Command Line Editing 31

Getting Help in Spotfire S+ 34

Spotfire S+ Language Basics 40

Importing and Editing Data 57

Graphics in Spotfire S+ 66

Statistics 71

Chapter 3   Working with the Graphical 
   User Interface 77

The User Interface 78

Using Menus, Dialog Boxes, and Toolbars 79

Spotfire S+ Windows 87

CONTENTS
vii



Contents
Chapter 4   Importing and Exporting Data 93

Introduction 94

Dialogs 95

Supported File Types for Importing and Exporting 108

Examples 112

Chapter 5   Menu Graphics 119

Introduction 121

Scatter Plots 127

Visualizing One-Dimensional Data 152

Visualizing Two-Dimensional Data 169

Visualizing Three-Dimensional Data 178

Visualizing Multidimensional Data 186

Time Series 195

References 205

Chapter 6   Statistics 207

Introduction 210

Summary Statistics 216

Compare Samples 223

Power and Sample Size 269

Experimental Design 274

Regression 281

Analysis of Variance 308

Mixed Effects 314

Generalized Least Squares 318

Survival 322

Tree 328

Compare Models 333
viii



Contents
Cluster Analysis 336

Multivariate 348

Quality Control Charts 355

Resample 360

Smoothing 365

Time Series 369

References 376

Chapter 7   Customizing Your Spotfire S+ Session 377

Introduction 378

Setting Spotfire S+ Options 379

Setting Environment Variables 381

Customizing Your Session at Start-up and Closing 383

Using Personal Function Libraries 387

Specifying Your Working Directory 389

Specifying a Pager 390

Environment Variables and printgraph 391

Setting Up Your Window System 393
ix



Contents
x



Welcome to Spotfire S+! 2

Installation 3
Supported Platforms 3
Installation Instructions 4
Running Spotfire S+ 5

Creating Spotfire S+ Launchers 7

Help, Support, and Learning Resources 12
Online Help 12
Online Manuals 15
Spotfire S+ on the Web 16
Training Courses 16
Books Using Spotfire S+ 17

Typographic Conventions 19

INTRODUCTION 1
1



Chapter 1  Introduction
WELCOME TO SPOTFIRE S+!

Spotfire S+ 8 is a significant new release of Spotfire S+ based on the 
latest version of the powerful, object-oriented S language developed 
at Lucent Technologies. S is a rich environment designed for 
interactive data discovery and is the only language created 
specifically for data visualization and exploration, statistical 
modeling, and programming with data.

Spotfire S+ continues to be the premier solution for your data 
analysis and technical graphing needs. The user interface provided in 
the GUI version gives you point-and-click access to data 
manipulation, graphing, and statistics. With Spotfire S+, you can 
program interactively using the Spotfire S+ programming language.

In a typical Spotfire S+ session, you can:

• Import data from virtually any source.

• Create plots easily from the command line or with the click of 
a button (in the GUI-enabled version).

• Control every detail of your graphics and produce stunning, 
professional-looking output for export to your report 
document.

• Perform statistical analyses from convenient dialogs in the 
menu system.

• Run analysis functions one at a time at the command line or 
in batches.

• Create your own functions.

• Completely customize your user interface.

Note

As of Spotfire S+ 8.1, the Spotfire S+ Jave GUI is deprecated. If you want to use a GUI with 
Spotfire S+, use the Spotfire S+ Workbench.
2



Installation
INSTALLATION

Supported 
Platforms

The 32-bit version of  TIBCO Spotfire S+ for Solaris®/Linux® is 
supported on the following platforms and operating systems. The 
minimum recommended disk space for installing and running 
Spotfire S+ is also included:  

The 64-bit version of Spotfire S+ for Linux is supported on the 
following platform (but will not be released for the beta):  

Note that previous versions of the listed operating systems may 
function with Spotfire S+, but they are not supported.

You will need a minimum of 60 MB RAM to run Spotfire S+ from 
the command line, and the Java GUI requires an additional 100 MB 
to run. Note that these values are minima; if you work with moderate-
sized data sets, these numbers may be insufficient for your needs.

Java Runtime 
Environment 
(JRE)

The Java runtime environment (JRE) version 1.6.0 is included in 
Spotfire S+. Your operating system must support JRE 1.6.0 to run the 
Java-enabled version of Spotfire S+. The JRE provided by Spotfire 
S+ is installed as part of the Spotfire S+ distribution, and under 
normal circumstances it is used only by Spotfire S+. If you have a 
different version of the JRE on your system, the JRE used by Spotfire 
S+ should not interfere with your other JRE applications, which will 
continue to use the version you’ve previously installed.

Table 1.1: Supported 32-bit platforms for Solaris/Linux systems.

Platform Operating System Disk Space

Sun SPARC Solaris 2.8, 2.9, 2.10 on SPARC processors 475 MB

Intel/AMD x86 Red Hat Enterprise Linux WS 4.0 and 5.0 475 MB

Table 1.2: Supported 64-bit platform for Solaris/Linux systems.

Platform Operating System Disk Space

Intel/AMD x86 Red Hat Enterprise Linux WS 4.0 and 5.0 500 MB
3



Chapter 1  Introduction
See the Spotfire S+ release notes for specific information regarding 
the JRE on your platform. In particular, Solaris operating 
environments require various patches from Sun to run Java 1.6.0. The 
release notes contain pointers to Web site where you can download 
these patches.

Installation 
Instructions

To install the software, follow these steps:

1. Unpack and copy the files from the distribution CD to an 
appropriate file on your system.

2. Run the CONFIGURE script to customize your installation.

3. Run the INSTALL script to copy the customization from the 
previous step to your system.

4. Run Spotfire S+.

Do not install this release over any existing version of Spotfire S+. 
Instead, designate a clean installation directory for Spotfire S+ and 
proceed with the installation as described in INSTALL.TXT located 
at the top level of your CD.
4



Installation
Running 
Spotfire S+

Before starting Spotfire S+, you must do the following:

1. Set your DISPLAY environment variable to your local 
machine.

2. Create a Spotfire S+ chapter to hold your work.

Setting your DISPLAY environment variable is necessary for the 
Java features in Spotfire S+. To set your display from a C-like shell 
(csh, tcsh, etc.), use the setenv command from the UNIX prompt:

setenv DISPLAY <display_name>

where <display_name> is the name of your local machine. From the 
Bourne- and Korn-like shells (including sh, ksh, bash, etc.), use the 
following commands:

DISPLAY=<display_name>;export DISPLAY

Creating a Spotfire S+ chapter is necessary for storing the data objects 
and external files you create in Spotfire S+. The following commands 
create a Spotfire S+ chapter named mysplus for you to work in (be 
sure you don’t have a mysplus directory in your home directory 
before typing these commands).

cd
mkdir mysplus
cd mysplus
Splus CHAPTER

You are now ready to start Spotfire S+. Spotfire S+ may be launched 
in a variety of modes. The following lists each mode and the 
corresponding UNIX command-line expression for launching it. In 
all of the commands below, Splus refers to the script you use to 
launch Spotfire S+ on your system.

• Spotfire S+ command line without Java:

Splus

• Spotfire S+ graphical user interface:

Splus -g

or

Splus -g &
5



Chapter 1  Introduction
• Spotfire S+ command line supporting Java calls, Java 
graphics, and the Java help interface:

Splus -j

The -e flag may be added to the Java enabled version to 
enable command-line editing. The Commands window in 
the graphical user interface always allows basic editing.

• Spotfire S+ command line supporting the Big Data library:

Splus -bigdata

Note that the Big Data library is not loaded by default in the 
command line version.

• Spotfire S+ command line supporting the Eclipse 
Workbench:

Splus -w | -workbench

Spotfire S+ includes two additional flags, -jit and -helpoff:

• The -jit flag works with the -g, -j, and -userapp flags and 
allows you to turn on the Java just-in-time compiler. This 
makes the graphical user interface and help system run faster 
but introduces instabilities that often lead to crashes. In 
particular, the just-in-time compiler often crashes while 
repainting graphical user interface elements such as the 
JavaHelp window and the Data window.

• The -helpoff flag is useful only with the -g flag. It turns off the 
automatic invisible startup of the help system. The invisible 
startup improves initial responsiveness of the help system but 
adds a significant memory footprint to the current session. If 
you want to optimize your available memory, this flag may 
prove useful.
6



Creating Spotfire S+ Launchers
CREATING SPOTFIRE S+ LAUNCHERS 

Using the GNOME on LINUX or Solaris 10, or KDE window
managers on LINUX, you can create custom application launchers
for Spotfire S+, complete with a Spotfire S+ icon. This makes it
possible to start Spotfire S+ by clicking the appropriate icon in the
GNOME or KDE panel.

You can create multiple Spotfire S+ launchers to launch Spotfire S+
with different options. For example, you can create separate
launchers for running the Spotfire S+ Workbench, for running the
Spotfire S+ GUI, or for running the command-line version in an
xterm. In fact, you could create task launchers for each Spotfire S+
CHAPTER in which you wish to run.

The following two sections describe:

• Creating LINUX or Solaris 10 application managers for 
GNOME.

• Creating LINUX application managers for KDE. 

These instructions begin assuming that the Spotfire S+ command is
installed in /usr/local/bin, and that Spotfire S+ is installed in
[SHOME]. If these are not your installation locations, substitute the
actual locations for your installation. See Figure 1.1 for an example of
specifying selections for the GNOME application launcher
properties.

Creating a 
Spotfire S+ 
Application 
Launcher under 
GNOME

1. Right-click the GNOME panel (by default located at the top 
of the screen), and from the pop-up context menu, select Add 
to Panel.

2. From the menu, select Launcher.

3. In the Create Launcher dialog, set options as follows:

Note

Menu selections and dialog box titles might vary according to the version of LINUX you are 
running. 
7



Chapter 1  Introduction
To set command-line Spotfire S+ to start with Java and cled, but not 
the Big Data library.

Set the following options in the Create Launcher dialog:

• Name: Splus

• Generic Name: Spotfire S+ command line

• Comment: Spotfire S+ with Java and cled, without Big Data.

• Command: /usr/local/bin/Splus -ej

• Type: Application

• Run in terminal: selected

To set Spotfire S+ Workbench with the Big Data library.

Set the following options in the Create Launcher dialog:

• Name: Splus Workbench

• Generic Name: Spotfire S+ Workbench

• Comment: Spotfire S+ Workbench with Big Data.

• Command: /usr/local/bin/Splus -workbench -bigdata

• Type: Application

• Run in terminal: cleared

To set Spotfire S+ GUI to start without the Big Data library.

Set the following options in the Create Launcher dialog:

• Name: Splus GUI

• Generic Name: Spotfire S+ GUI

• Comment: Spotfire S+ GUI without Big Data.

• Command: /usr/local/bin/Splus -g

• Type: Application

Note

As of Spotfire S+ 8.1, the Spotfire S+ Jave GUI is deprecated. If you want to use a GUI with 
Spotfire S+, use the Spotfire S+ Workbench.
8



Creating Spotfire S+ Launchers
• Run in terminal: cleared

Do not close the dialog.

4. While the Launcher Properties dialog is still open, click 
Icon. You are presented with a Browse icons dialog. Browse 
to [SHOME]/splus/lib/icons and select an appropriate icon. 
Click OK. 

5. Close the Launcher Properties dialog. You should see the 
Spotfire S+ icon that you selected in the GNOME panel. 
Clicking it starts Spotfire S+ with the options you selected.

Figure 1.1: Create Launcher dialog with icon.

Figure 1.2: GNOME panel with Spotfire S+ icon.
9



Chapter 1  Introduction
Creating a 
Spotfire S+ 
Application 
Launcher under 
KDE:

1. Right-click the KDE panel (by default located at the bottom of 
the screen) and select Add � Special Button � Non-KDE 
Application.

2. Browse to the location of the Spotfire S+ executable.

Figure 1.3: Non-KDE Application Configuration dialog.

Figure 1.4: Select Executable dialog for KDE Panel.
10



Creating Spotfire S+ Launchers
3. Select Splus, and then click OK to display the Non-KDE 
Application Configuration dialog.

4. In the Non-KDE Application Configuration dialog, set the 
options as follows:

To set command-line Spotfire S+ with cled.

Set the following options:

• Executable: /usr/local/bin/Splus

• Optional command line arguments: -e

• Run in terminal: selected

To set the Spotfire S+ Workbench to start with the Big Data library.

Set the following options:

• Executable: /usr/local/bin/Splus

• Optional command line arguments: -w -bigdata

• Run in terminal: cleared.

To set Spotfire S+ GUI to start without the Big Data library.

Set the following options:

• Executable: /usr/local/bin/Splus

• Optional command line arguments: -g

• Run in terminal: cleared

Figure 1.5: Non-KDE Application Configuration dialog set to run the Spotfire 
S+ GUI without the Big Data library.
11



Chapter 1  Introduction
5. Do not close the dialog yet.To the right of the Executable 
box appears a generic icon. Select this icon to display the 
Select Icon - KDE Panel dialog. Select the Other icons 
option, and then browse to [SHOME]/splus/lib/icons and 
select the desired icon. Click Open, and then click OK. The 
Spotfire S+ icon you selected in the KDE panel appears. 
Clicking the icon starts Spotfire S+ with the selected options.

Figure 1.6: Kicker panel with Spotfire S+ icon.
12



Help, Support, and Learning Resources
HELP, SUPPORT, AND LEARNING RESOURCES

There are a variety of ways to accelerate your progress with Spotfire 
S+. This section describes the learning and support resources 
available to Spotfire S+ users.

Online Help Spotfire S+ offers an online JavaHelp system to make learning and 
using Spotfire S+ easier. Under the Help menu in the Spotfire S+ 
GUI, you will find detailed help on each function in the Spotfire S+ 
language. You can access the help system from the Spotfire S+ 
prompt or the Commands window in the GUI by typing 
help.start().

JavaHelp in Spotfire S+ uses Java to display the help files. To access 
JavaHelp, do one of the following:

• From the main menu in the Spotfire S+ GUI, choose Help � 
Contents, Help � Index, or Help � Search to view the 
help system’s table of contents, index, and search pages, 
respectively.

• From the Spotfire S+ prompt or the Commands window in 
the GUI, type help.start().

To turn the help system off, type help.off() at the Spotfire S+ 
prompt.

As shown in Figure 1.7, the JavaHelp window has three main areas: 
the toolbar, the navigation pane, and the topic pane.
13



Chapter 1  Introduction
Using the toolbar

Table 1.3 lists the four buttons on the help window toolbar.

Figure 1.7: The Spotfire S+ JavaHelp window.

Table 1.3: Toolbar buttons in the JavaHelp window.

Button Description

Previous 
Returns to previously viewed help topic.

Next 
Moves to next help topic in a previously-
displayed sequence of topics.

Print 
Prints the current help topic.
14



Help, Support, and Learning Resources
Using the navigation pane

The navigation pane appears on the left side of the JavaHelp window. 
Like the help window itself, the left pane is divided into three parts: 

the Table of Contents , Index , and Search  pages:

• The Table of Contents page organizes help topics by 
category so related help files can be found easily. These 
categories appear as small folder icons, labeled with the name 
of the category. To open a category, double-click the icon or 
label. To select a topic within the category, double-click its 
page icon or the topic title.

• The Index page lists available help topics by keyword. 
Keywords are typically function names for Spotfire S+ 
language functions. Type a word in the text box and press 
ENTER to find the keywords that most closely match it.

• The Search tab provides a full-text search for the entire help 
system. Type the word or phrase you want to find in the text 
box and press ENTER. JavaHelp displays in the list box all 
help files containing that keyword. Double-click a title to 
display the desired help topic.

Using the topic pane

The topic pane appears on the right side of the help window and 
displays the help topics you choose. It usually appears with both 
vertical and horizontal scroll bars, but you can expand the JavaHelp 
window to increase the width of the right pane. Many help files are 
too long to be fully displayed in a single screen, so choose a 
convenient height for your JavaHelp window and then use the 
vertical scroll bars to scroll through the text.

Page Setup 
Determines the orientation of the page for 
printing purposes.

Table 1.3: Toolbar buttons in the JavaHelp window. (Continued)

Button Description
15



Chapter 1  Introduction
Help at the 
Command Line

When working from the Spotfire S+ command line, you can obtain 
help for any Spotfire S+ function using the help or ? functions. For 
example, to open the help file for anova, simply type:

> help(anova)

or

> ?anova

Online Manuals For a description of the contents of available manuals, see the section 
TIBCO Spotfire S+ Books on page v.

To view a manual online, go to your SHOME/doc directory and 
select the desired title. These manuals are stored as pdf; they require 
the free Acrobat Reader to view them. 
Table 1.4: Online manuals and associated pdf file names.

Manual File Name

Application Developer’s Guide adg.pdf

Big Data User’s Guide                        bigdata.pdf

Function Guide functionguide.pdf

Getting Started with Spotfire S+ getstart.pdf

Guide to Graphics graphics.pdf

Guide to Packages spluspackages.pdf

Guide to Statistics, Volume 1 statman1.pdf

Guide to Statistics, Volume 2 statman2.pdf
16



Help, Support, and Learning Resources
Spotfire S+ on 
the Web

You can find Spotfire S+ on the TIBCO Web site at www.tibco.com. 
In these pages, you will find a variety of information, including:

• FAQ pages.

• The most recent service packs.

• Training course information.

• Product information.

• Information on classroom use and related educational 
materials.

Training 
Courses

TIBCO Spotfire Educational Services offers a number of courses 
designed to quickly make you efficient and effective at analyzing data 
with Spotfire S+. The courses are taught by professional statisticians 
and leaders in statistical fields. Courses feature a hands-on approach 
to learning, dividing class time between lecture and online exercises. 
All participants receive the educational materials used in the course, 
including lecture notes, supplementary materials, and exercise data 
on diskette.

Technical 
Support

For technical support, please visit http://spotfire.tibco.com/support 
and register for a support account.

Programmer’s Guide pg.pdf

User’s Guide uguide.pdf

Workbench User’s Guide workbench.pdf

Table 1.4: Online manuals and associated pdf file names.

Manual File Name
17



Chapter 1  Introduction
Books Using 
Spotfire S+

General

Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988). The New S 
Language. Wadsworth & Brooks/Cole, Pacific Grove, CA.

Burns, Patrick (1998). S Poetry. Download for free from http://
www.seanet.com/~pburns/Spoetry.

Chambers, John (1998). Programming with Data. Springer-Verlag.

Krause, A. and Olson, M. (1997). The Basics of S and S-PLUS. 
Springer-Verlag, New York.

Lam, Longhow (1999). An Introduction to S-PLUS. for Windows. 
CANdiensten, Amsterdam.

Spector, P. (1994). An Introduction to S and S-PLUS. Duxbury Press, 
Belmont, CA.

Data analysis

Bowman, Adrian and Azzalini, Adelchi (1997). Smoothing Methods. 
Oxford University Press.

Bruce, A. and Gao, H.-Y. (1996). Applied Wavelet Analysis with 
S-PLUS. Springer-Verlag, New York.

Chambers, J.M. and Hastie, T.J. (1992). Statistical Models in S. 
Wadsworth & Brooks/Cole, Pacific Grove, CA.

Efron, Bradley and Tibshirani, Robert J. (1994). An Introduction to the 
Bootstrap. Chapman & Hall.

Everitt, B. (1994). A Handbook of Statistical Analyses Using S-PLUS. 
Chapman & Hall, London.

Härdle, W. (1991). Smoothing Techniques with Implementation in S. 
Springer-Verlag, New York.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. 
Chapman & Hall.

Huet, Sylvie, et al. (1997). Statistical Tools for Nonlinear Regression: with 
S-PLUS. Springer-Verlag.

Kaluzny, S.P., Vega, S.C., Cardoso, T.P., and Shelly, A.A. (1997). 
S+SpatialStats User’s Manual. Springer-Verlag, New York. 

Marazzi, A. (1992). Algorithms, Routines and S Functions for Robust 
Statistics. Wadsworth & Brooks/Cole, Pacific Grove, CA.
18



Help, Support, and Learning Resources
Millard, Steven (1998). User’s Manual for Environmental Statistics. 
Companion book to the S+Environmental Stats module. (The 
S+Environmental Stats module is available through Dr. Millard.)

Selvin, S. (1998). Modern Applied Biostatistical Methods: Using S-PLUS. 
Oxford University Press.

Venables, W.N. and Ripley, B.D. (1999). Modern Applied Statistics with 
S-PLUS, Third Edition. Springer-Verlag, New York.

Graphical techniques

Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. 
(1983). Graphical Techniques for Data Analysis. Duxbury Press, Belmont, 
CA.

Cleveland, W.S. (1993). Visualizing Data. Hobart Press, Summit, NJ.

Cleveland, W.S. (1994). The Elements of Graphing Data, revised edition. 
Hobart Press, Summit, NJ.
19



Chapter 1  Introduction
TYPOGRAPHIC CONVENTIONS

Throughout this User’s Guide, the following typographic conventions 
are used:

• This font is used for Spotfire S+ expressions and code 
samples.

• This font is used for elements of the Spotfire S+ user 
interface, for operating system files and commands, and for 
user input in dialog fields.

• This font is used for emphasis and book titles.

• CAP/SMALLCAP letters are used for key names. For example, 
the Shift key appears as SHIFT.

• When more than one key must be pressed simultaneously, the 
two key names appear with a hyphen (-) between them. For 
example, the key combination of SHIFT and F1 appears as 
SHIFT-F1.

• Menu selections are shown in an abbreviated form using the 
arrow symbol (�) to indicate a selection within a menu, as in 
File � New.
20



Introduction 23

Running Spotfire S+ 24
Creating a Working Directory 24
Starting Spotfire S+ 24
Entering Expressions 28
Quitting Spotfire S+ 29
Basic Syntax and Conventions 29

Command Line Editing 32

Getting Help in Spotfire S+ 35
Starting and Stopping the Help System 35
Using the Help Window 35
Getting Help at the Spotfire S+ Prompt 37
Displaying Help in a Separate Window 39
Printing Help Files 40
Documen-tation Objects 40

Spotfire S+ Language Basics 41
Data Objects 41
Managing Data Objects 47
Functions 49
Operators 50
Expressions 52
Precedence Hierarchy 53
Optional Arguments to Functions 55
Access to Solaris and Linux 56

Importing and Editing Data 57
Reading a Data File 57
Editing Data 59
Built-in Data Sets 59
Quick Hard Copy 60
Adding Row And Column Names 60

GETTING STARTED 2
21



Chapter 2  Getting Started
Extracting Subsets of Data 62

Graphics in Spotfire S+ 66
Making Plots 66
Quick Hard Copy 69
Using the Graphics Window 69
Multiple Plot Layout 69

Statistics 71
Summary Statistics 71
Hypothesis Testing 72
Statistical Models 73
22



Introduction
INTRODUCTION

This chapter provides basic information that everyone needs to use
Spotfire S+ effectively. It describes the following tasks:

• Starting and quitting Spotfire S+

• Getting help

• Using fundamental elements of the Spotfire S+ language

• Creating and manipulating basic data objects 

• Opening graphics windows and creating basic graphics
23



Chapter 2  Getting Started
RUNNING Spotfire S+

This section covers the basics of starting Spotfire S+, opening
windows for graphics and help, and constructing Spotfire S+
expressions.

Creating a 
Working 
Directory

Before running Spotfire S+ the first time, you should create a working
directory specifically for Spotfire S+. This directory will contain any
files you want to read into or export from Spotfire S+, as well as a
.Data directory to hold your SPOTFIRE S+ data objects, metadata
objects, and help files. These working directories are called chapters,
and are created with the Spotfire S+ CHAPTER utility. The first time
you run SPOTFIRE S+, it creates a chapter called MySwork which can
function as a default working directory; however, it will also store
more general user information. It is recommended that you create at
least one chapter separate from MySwork, and using that for your
day-to-day Spotfire S+ work.

To create a working directory named myproj in your home directory,
type the following sequence of commands at the shell prompt and
press RETURN after each command:

cd
mkdir myproj
cd myproj
Splus CHAPTER 

The CHAPTER utility creates a .Data directory, which in turn
contains three other directories at start-up: __Meta, __Shelp, and
__Hhelp. The .Data directory contains your normal data sets and
functions, the __Meta directory contains Spotfire S+ metadata such as
method definitions, and the two __*help directories contain SGML
and HTML versions of help files you create for your functions. All of
these databases are initially empty, except for some possible marker
files.

Starting 
Spotfire S+

There are five basic ways to launch a Spotfire S+ session:

1. As a simple terminal-based application.

2. As a Java-controlled terminal-based application.
24



Running Spotfire S+
3. As a terminal-based application with command-line editing.

4. As a Java-based application with a graphical user interface.

5. As a batch operation.

Spotfire S+ as a 
Simple Terminal-
Based Application

To start Spotfire S+, type the following at the shell prompt and press
the RETURN key:

Splus

Note that only the ‘‘S’’ is capitalized.

When you press RETURN, a copyright message appears in your
Spotfire S+ window. The first time you that you start Spotfire S+, you
may also receive a message about initializing a new Spotfire S+
working directory. These messages are followed by the Spotfire S+
prompt.

Spotfire S+ as a 
Java-Controlled 
Terminal-Based 
Application

To start Spotfire S+ as a terminal-based Java application, type the
following at the shell prompt and press the RETURN key:

Splus -j

Note that only the ‘‘S’’ is capitalized.

When you press RETURN, a copyright message appears in your
Spotfire S+ window. The first time you that you start Spotfire S+, you
may also receive a message about initializing a new Spotfire S+
working directory. These messages are followed by the Spotfire S+
prompt.

Spotfire S+ as a 
Terminal-Based 
Application with 
Command-Line 
Editing

To start Spotfire S+ with command-line editing, add the -e flag to
your normal start-up command. Thus, for the standard terminal-
based Spotfire S+, start the command-line editor as follows:

Splus -e

Note that only the ‘‘S’’ is capitalized.

For the Java-controlled terminal, start the command-line editor as
follows:
25



Chapter 2  Getting Started
Splus -j -e

When you press RETURN, a copyright message appears in your
Spotfire S+ window. The first time you that you start Spotfire S+, you
may also receive a message about initializing a new Spotfire S+
working directory. These messages are followed by the Spotfire S+
prompt

For information on editing with the command-line editor, see the
section Command Line Editing on page 32.

Spotfire S+ with 
a Graphical User 
Interface

To start Spotfire S+ with a graphical user interface, type the following
at the shell prompt and press the RETURN key:

Splus -g &

Note that only the ‘‘S’’ is capitalized. The & indicates to the shell that
the graphical user interface will run in the background; this simply
allows the interface to start as a separate X window while returning
the prompt to your shell window.

When you press RETURN, you will see the Spotfire S+ splash screen.
Shortly thereafter, the graphical user interface appears, with menus, a
toolbar, and a Commands window.

A copyright message appears in the Commands window. The first
time you that you start Spotfire S+, you may also receive a message
about your specific environment and initializing a new Spotfire S+
working directory. These messages are followed by the Spotfire S+
prompt.

You can begin typing expressions in the Commands window, or you
can use the menus and dialogs to perform Spotfire S+ tasks. Entering
expressions is described in the section Spotfire S+ as a Batch Process;
using the menus and dialogs is introduced in the chapter Working
with the Graphical User Interface.

Note

In TIBCO Spotfire S+ 8.1, the graphical user interface is deprecated. Users should consider
using the Spotfire S+ Workbench instead.
26



Running Spotfire S+
Spotfire S+ as a 
Batch Process

Once you’ve created a function and verified that it works, you may
want to use it with a large data set. Complicated analyses on large
data sets can take some time, however, and your session is locked
while Spotfire S+ performs its calculations. Batch mode provides one
method for working around this. To run a set of commands in batch
mode, simply create a file containing the Spotfire S+ expressions you
want evaluated, and then type the following at the Solaris/Linux
prompt:

Splus SBATCH -help

The -help option displays all the possible arguments, including input,
output, log file name, working directory, etc. See the chapter on
Verbose Logging in the Application Developer’s Guide for information
on running batch mode for Solaris/Linux processes.

When you run a Spotfire S+ process in batch mode, it begins
immediately but is at a lower priority than interactive tasks. You can
also run batch jobs from within a Spotfire S+ session by using the !
shell escape:

> !Splus SBATCH 

Loading 
Libraries

All data sets in Spotfire S+ are stored in libraries. When we speak of
“Spotfire S+,” however, we usually mean the executable program and
the objects in the libraries that are attached automatically at startup.
The Spotfire S+ distribution contains additional libraries. To see a list
and a description of each, at the command prompt, type

library()

Your default text editor opens and displays the information. 

Warning

When you run batch processes from within Spotfire S+, the results are invisible to your current
session; your working database is not updated with the results of the batch job. To see the results
of a batch process in your current session, you must synchronize the databases. See the chapter on
Verbose Logging in the Application Developer’s Guide for more details.
27



Chapter 2  Getting Started
You can attach a library by using the library() function. 

Entering 
Expressions

You can use Spotfire S+ by typing expressions after the prompt and
pressing the RETURN key. You type an expression at the Spotfire S+
command prompt, and Spotfire S+ responds. 

Among the simplest Spotfire S+ expressions are arithmetic
expressions such as the following: 

> 3+7
[1] 10

> 3*21
[1] 63

The symbols ‘‘+’’ and ‘‘*’’ represent Spotfire S+ operators for addition
and multiplication, respectively. In addition to the usual arithmetic
and logical operators, Spotfire S+ has operators for special purposes.
For example, the colon operator ‘‘:’’ is used to obtain sequences:

> 1:7
[1] 1 2 3 4 5 6 7

The [1] in each of the output lines is the index of the first Spotfire S+
response on the line of Spotfire S+ output. If Spotfire S+ is
responding with a long vector of results, each line is preceded by the
index of the first response of that line. 

The most common Spotfire S+ expression is the function call. An
example of a function in Spotfire S+ is c, which is used for
‘‘combining’’ comma-separated lists of items into a single object.
Function calls are always followed by a pair of parentheses, with or
without any arguments in the parentheses: 

> c(3,4,1,6)
[1] 3 4 1 6

Note

In addition to loading libraries, you can find and download packages. See the Guide to Packages 
for more information about using packages.
28



Running Spotfire S+
In all of our examples to this point, Spotfire S+ has simply returned a
value. To reuse the value of a Spotfire S+ expression, you must assign
it with the <- operator. For example, to assign the above expression
to a Spotfire S+ object named newvec, type the following:

> newvec <- c(3, 4, 1, 6)

Spotfire S+ creates the object newvec and returns a Spotfire S+
prompt. To view the contents of the newly created object, just type its
name:

> newvec
[1] 3 4 1 6

Quitting 
Spotfire S+

To quit Spotfire S+ and get back to your shell prompt, use the q
function:

 > q()

The () are required with the q command to quit Spotfire S+ because
q is a Spotfire S+ function, and parentheses are required with all
Spotfire S+ functions. In the Spotfire S+ graphical user interface, you
can also select File � Exit to exit Spotfire S+.

Basic Syntax 
and 
Conventions

This section introduces basic typing syntax and conventions in
Spotfire S+. 

Spaces Spotfire S+ ignores most spaces. For example:

> 3+     7
[1] 10

However, do not put spaces in the middle of numbers or names, or an
error will result. For example, if you wish to add 321 and 1, the
expression 32 1+1 causes an error. Also, you should always put
spaces around the two-character assignment operator <-; otherwise,
you may perform a comparison instead of an assignment.
29



Chapter 2  Getting Started
Upper And Lower 
Case

Spotfire S+ is case sensitive, just like Solaris and Linux. All Spotfire S+
objects, arguments, and names are case sensitive. Hence, ‘‘QWERT’’
is different from ‘‘qwert’’. In the following example, the object SeX is
defined as ‘‘M’’. You get an error message if you do not type ‘‘SeX’’
with the capitalization.

> SeX
[1] "M"

> sex
Problem: Object "sex" not found

Continuation When you press the RETURN key and it is clear to Spotfire S+ that an
expression is incomplete (for example, the last character is an
operator, or there is a missing parenthesis), Spotfire S+ provides a
continuation prompt to remind you to complete the expression. The
default continuation prompt is ‘‘+’’.

Here are two examples of incomplete expressions that cause Spotfire
S+ to respond with a continuation prompt:

> 3*
+ 21
[1] 63

> c(3,4,1,6
+)
[1] 3 4 1 6 

In the first command, Spotfire S+ determined that the expression was
not complete because the multiplication operator * must be followed
by a data object. In the second example, Spotfire S+ determined that
c(3,4,1,6 was not complete because a right parenthesis is needed. In
each of these cases, the user completed the expression after the
continuation prompt (+), and then Spotfire S+ responded with the
result of the complete evaluation.

Interrupting 
Evaluation Of An 
Expression

Sometimes you may want to stop the evaluation of a Spotfire S+
expression. For example, you may suddenly realize you want to use a
different command, or the output display of data on the screen is
extremely long and you don’t want to look at all of it.
30



Running Spotfire S+
To interrupt Spotfire S+ from a terminal-based window, use the
Solaris/Linux interrupt command, which consists of either CTRL-C
(pressing the C key while holding down the CONTROL key) or the
DELETE key on most systems. If neither CTRL-C nor DELETE stop the
scrolling, consult your Solaris or Linux manual for use of the stty
command to see what key performs the interrupt function, or consult
your local system administrator.

To interrupt Spotfire S+ from the graphical user interface, press the
ESC key on your keyboard.

Error Messages Do not be afraid of making mistakes when using Spotfire S+! You will
not break anything by making a mistake. Usually you get some sort of
error message, after which you can try again.

Here are two examples of mistakes made by typing ‘‘improper’’
expressions:

>  32  1+1
Problem: Syntax error: illegal literal ("1") on input line
1

> .5(2,4)
Problem: Invalid object supplied as function

In the second command, we typed something that Spotfire S+ tried to
interpret as a function because of the parentheses. However, there is
no function named ".5".
31



Chapter 2  Getting Started
COMMAND LINE EDITING

Included with Spotfire S+ is a command line editor that can help
improve your productivity. The Spotfire S+ command line editor
enables you to recall and edit previously issued Spotfire S+
commands. The editor can do either emacs- or vi-style editing, and
uses the first valid value in the following list of environment variables:

S_CLEDITOR
VISUAL 
EDITOR 

To be valid, the value for the environment variable must end in ‘‘vi’’
or ‘‘emacs.’’ If none of the listed variables has a valid value, the
command line editor defaults to vi style.

For example, issue the following command from the C shell to set
your S_CLEDITOR to emacs:

setenv S_CLEDITOR emacs

To use the command line editor within Spotfire S+, start Spotfire S+
with a -e option:

Splus -e 

Table 2.1 summarizes the most useful editing commands for both
emacs- and vi-style editing. With vi, the Spotfire S+ command line
editor puts you in insert mode automatically. Thus, any editing
commands must be preceded by an ESC. 

Table 2.1:  Spotfire S+Command line editing in Spotfire S+.

Action emacs keystrokes vi keystrokes*

backward character CTRL-B H

forward character CTRL-F L

previous line CTRL-P K

next line CTRL-N J
32



Command Line Editing
As an example of using the command line editor, suppose you’ve
started Spotfire S+ with the emacs option for the EDITOR
environment variable. Attempt to create a plot by typing the
following:

> plto(x,y)
Problem: Couldn't find a function definition for "plto" 

Type CTRL-P to recall the previous line, then use CTRL-B to return to
the ‘‘t’’ in ‘‘plto.’’ Finally, type CTRL-T to transpose the ‘‘t’’ and the
‘‘o.’’ Press RETURN to issue the edited command. 

beginning of line CTRL-A SHIFT-6

end of line CTRL-E SHIFT-4

forward word ESC,F W

backward word ESC,B B

kill char CTRL-D X

kill line CTRL-K SHIFT-D

delete word ESC,D D,W

search backward CTRL-R /

yank CTRL-Y SHIFT-Y

transpose chars CTRL-T X,P

*In command mode. You must press ESC to enter command mode.

Table 2.1:  Spotfire S+Command line editing in Spotfire S+.

Action emacs keystrokes vi keystrokes*
33



Chapter 2  Getting Started
To recall earlier commands, use backward search (CTRL-R in emacs
mode, / in vi mode) followed by the command or first portion of
command. For example, suppose you’ve recently issued the following
command:

> plot(xdata, ydata, xlab="Predictor", ylab="Response")

To recall this command, type CTRL-R plot. The complete command
is restored to your command line. You can then use other editing
commands to edit it if desired, or you can press RETURN to issue the
command again. 
34



Getting Help in Spotfire S+
GETTING HELP IN SPOTFIRE S+

If you need help at any time during a Spotfire S+ session, you can
obtain it easily with the menu-driven help system, which uses Sun
Microsystems’ JavaHelpTM. The Spotfire S+ window-driven help
system lets you select from broad categories of help topics. Within
each category you can choose from a list of Spotfire S+ functions
pertaining to that category. 

Starting and 
Stopping the 
Help System

The easiest way to access the help system is through the help window.
To call up the help system, type help.start() at the > prompt. The
help.start function no longer supports the gui argument, so don’t
type help.start(gui=”motif”) as you might have done in S-PLUS
3.4. A JavaHelp window appears, with a Table of Contents in the
left pane. You will also see additional tabs for the Index and the
Search capabilities. 

To turn off the help system, type help.off() at the > prompt, and the
JavaHelp window closes. To hide the help system temporarily, simply
minimize or close the window (depending on your window manager).

In the Spotfire S+ graphical user interface, you can also select Help
� Contents, Help � Index, or Help � Search to view the help
system’s Table of Contents, Index, and Search lists, respectively.
To close the GUI help window, click the Close button in the upper
right corner of the interface. To turn the help system off, type
help.off() in the Commands window.

Using the Help 
Window

The Spotfire S+ help window contains two panes. At start-up, the left-
hand pane contains the Table of Contents while the right-hand pane
is empty. The right pane is used to display help text. The left pane is
tabbed, and contains pages for the help system’s Table of Contents,
Index, and Search lists. You can replace the Table of Contents
with an Index, which is a listing of all the topics currently available,
or with the Search pane, which allows you to perform a full-text
search on the current help set.
35



Chapter 2  Getting Started
Use the following steps to get help on a topic with the Table of
Contents:

1. Scan the Table of Contents on the left side of the help
window until you find the desired category. Use the scroll
bars and the mouse buttons to scroll through the list.

2. To select the category, double-click on the category name, or
single-click on the lever next to the folder icon for the
category. Once you select a category, a list of Spotfire S+
functions and data sets pertaining to that category appears
below the category name. 

3. Scroll through the list of objects under the category name
until you find the desired function. 

4. To select the function, click on the function name. Once you
select a function, Spotfire S+ formats the help file for that
function and brings it up in the text pane. 

5. Scroll through the help file using the scroll bars and the
mouse buttons. 

6. To print the formatted file, click the Print button on the
JavaHelp toolbar.

Use the following steps to get help on a topic with the Index:

1. To select the help Index, click the middle tab in the left pane
of the help window.

2. Move the pointer inside the Find text field.

3. Type the function name you wish to search for. 

4. Press the RETURN key. In the text pane of the help window,
Spotfire S+ displays the first help file in the Index list that
matches the name of your function. To see help files for the
remaining matches, continue to press the RETURN key.

Alternatively, you can scroll through the Index list until you find the
function name that you want.
36



Getting Help in Spotfire S+
Use the following steps to get help on a topic with the full-text
Search:

1.  To select the help Search, click the right-most tab in the left
pane of the help window.

2. Move the pointer inside the Find text field.

3. Type the word you wish to search for. 

4. Press the RETURN key. A list of help topics matching your
search criterion is displayed in the left pane. The topics are
sorted in order of importance: the help files that contain your
search criterion most often are displayed at the top of the list,
along with the number of occurrences.

5. To select a function, double-click on the topic in the left pane
of the help window. Once you select a topic, Spotfire S+
formats the help file for that function, brings it up in the text
pane, and highlights your search criterion.

Getting Help 
at the Spotfire 
S+ Prompt

You can access help easily at the Spotfire S+ prompt with the ? and
help functions. The ? function has simpler syntax and requires no
parentheses in most instances:

> ?lm
                                                                      
(p1 of 6)
 
                   Fit Linear Regression Model
 
DESCRIPTION:
 
   Returns an object of class "lm" or "mlm" that represents
   a linear model fit.
 
USAGE:
 
lm(formula, data=<<see below>>, weights=<<see below>>,
    subset=<<see below>>, na.action=na.fail, method="qr",
    model=F, x=F, y=F, contrasts=NULL, ...)
 

37



Chapter 2  Getting Started
REQUIRED ARGUMENTS:
 
   formula
          a formula object, with the response on the left of
          a `~' operator and the terms, separated by +
          operators, on the right. The response may be a
          single numeric variable or a matrix.
 
OPTIONAL ARGUMENTS:
 
   data
          data frame in which to interpret the variables
          named in the formula, subset, and weights
          arguments. This may also be a single number to
          handle some special cases -- see below for
          details. If data is missing, the variables in the
          model formula should be in the search path.
. . .

If the JavaHelp system is running in your session, all requests for help 
files are sent to the help window.  Otherwise, the help file is displayed 
in an available Help application such as  'lynx', 'links', 'less', or 'more'. 
You can specify a different help pager by using, for example, 
options(help.pager="vi"). Because vi is just a text editor, it displays  
the HTML formatting codes if you use vi to view your help files. To 
try another text-based HTML browser, set 
options(help.pager="yourBrowser") where yourBrowser specifies 
your particular HTML browser (such as the slynx program).

The text in the Spotfire S+ help files is formatted for display using
HTML. You can use the arrow keys to page through a help file; use
the "q" key to exit a help file and return to the Spotfire S+ prompt. 

Note

The slynx program is not distributed with Spotfire S+; however, if you want to use it as a Help 
browser, you can  download it it separately as part of the 'pkgutils' package (using the 
install.pkgutils() function), and then help() will use it. 
38



Getting Help in Spotfire S+
The ? command is particularly useful for obtaining information on
classes of objects. If you use the syntax class ? with the name of a
class, Spotfire S+ offers documentation on the class. For example, 

> class ? timeSeries

                  Calendar Time Series Class

DESCRIPTION:

   The timeSeries class represents calendar time series
   objects in Spotfire S+.

SLOTS:

   All of the slots except the last two, fiscal.year.start
   and type, are inherited from the base series class.

ARGUMENTS:
. . .

You can call help with the name of a Spotfire S+ function, operator,
or data set as argument. For instance, the following command
displays the help file for the c function: 

> help("c")

The quotation marks are optional for most functions, but are required
for functions and operators containing special characters, such as <-.
Quotation marks are also required for Spotfire S+ reserved words,
such as for, in, and TRUE.

Displaying 
Help in a 
Separate 
Window

The help function has an argument, window=T, that you can use to
display your help files in a separate window from your Spotfire S+
session window. This allows you to view a help file while continuing
to do work in your Spotfire S+ session. By default, the help window is
a terminal window displaying the slynx browser, as determined by the
setting of options()$help.pager. If you want to change your browser
settings, save the old options with the syntax oldopts <-
options(help.pager="whatever"). To restore the slynx browser, call
options(oldopts).
39



Chapter 2  Getting Started
The window=T argument applies only to terminal-based sessions of
Spotfire S+. In the graphical user interface, the ? and help functions
always display help files in a window that is separate from the
Commands window. By default, the help window displays the slynx
browser, as determined by the setting of options()$help.pager.

Printing Help 
Files

To print a help file, use the Print button in the JavaHelp window. For
a more plainly formatted printed version, use the help  function with
the argument offline=T.

Documen-
tation Objects

Spotfire S+ does not support creating documentation objects, although
you can still dump existing documentation objects and create help
files used by the new Spotfire S+ help system. The sourceDoc
function is defunct.
40



Spotfire S+ Language Basics
Spotfire S+ LANGUAGE BASICS

This section introduces the most basic concepts you need to use the
S-PLUS language: expressions, operators, assignments, data objects,
and function calls.

Data Objects When using Spotfire S+, you should think of your data sets as data
objects belonging to a certain class. Each class has a particular
representation, often defined as a named list of slots. Each slot, in turn,
contains an object of some other class. Among the most common
classes are "numeric", "character", "factor", "list", and
"data.frame". This chapter introduces the most fundamental data
objects; see the chapter Data Objects in the Programmer’s Guide for a
more detailed treatment. 

The simplest type of data object is a one-way array of values, all of
which are numbers, logical values, or character strings, but not a
combination of those. For example, you can have an array of
numbers: -2.0 3.1 5.7 7.3. Or you can have an array of logical
values: T T F T F T F F, where T stands for TRUE and F stands for
FALSE. Or you can have an ordered set of character strings: "sharp
claws", "COLD PAWS". These simple one-way arrays are called vectors
when stored in Spotfire S+. The class "vector" is a virtual class
encompassing all basic classes whose objects can be characterized as
one-way arrays. In a vector, any individual value can be extracted
and replaced by referring to its index, or position in the array. The
length of a vector is the number of values in the array; valid indices for
a vector object x are in the range 1:length(x). Most vectors belong to
one of the following classes: numeric, integer, logical, or
character. For example, the vectors described above have length 4,
8, and 2 and class numeric, logical, and character, respectively. 

Spotfire S+ assigns the class of a vector containing different kinds of
values in a way that preserves the maximum amount of information:
character strings contain the most information, numbers contain
somewhat less, and logical values contain still less. Spotfire S+
coerces less informative values to equivalent values of the more
informative type:

> c(17, TRUE, FALSE)
[1] 17  1  0
41



Chapter 2  Getting Started
> c(17, TRUE, "hello")
[1] "17"    "TRUE"  "hello"

Data Object 
Names

Object names must begin with a letter and may include any
combinations of upper and lower case letters, numbers, and periods.
For example, the following are all valid object names:

mydata
data.ozone
RandomNumbers
lottery.ohio.1.28.90  

The use of periods often enhances the readability of similar data set
names, as in the following:

data.1
data.2
data.3

Warning 

If you create Spotfire S+ data objects on a file system with more restrictive naming conventions
than those your version of Spotfire S+ was compiled for, you may lose data if you violate the
restrictive naming conventions. For example, if you are running Spotfire S+ on a machine
allowing 255 character names and create Spotfire S+ objects on a machine restricting file names
to 14 characters, object names greater than 14 characters will be truncated to the 14 character
limit. If two objects share the same initial 14 characters, the latest object overwrites the earlier
object. Spotfire S+ warns you whenever you attach a directory with more restrictive naming
conventions than it is expecting. 

Hint 

You will not lose data if, when creating data objects on a file system with more restrictive naming
conventions than your version of Spotfire S+ was compiled for, you restrict yourself to names
that are unique under the more restrictive conventions. However, your file system may truncate
or otherwise modify the object name. To recall the object, you must refer to it by its modified
name. For example, if you create the object aov.devel.small on a file system with a 14
character limit, you should look for it in subsequent Spotfire S+ sessions with the 14 character
name aov.devel.smal. 
42



Spotfire S+ Language Basics
Objects and methods created with S-PLUS 5.0 and later often follow
a naming scheme that omits periods, but adds capital letters to
enhance readability:

setMethod
signalSeries

Vector Data 
Objects

By now you are familiar with the most basic object in Spotfire S+, the
vector, which is a set of numbers, character values, logical values, etc.
Vectors must be of a single mode: you cannot have a vector consisting of
the values T, -2.3. If you try to create such a vector, Spotfire S+
coerces the elements to a common mode. For example:

> c(T,-2.3)
[1]  1.0 -2.3

Vectors are characterized by their length and mode. Length can be
displayed with the length function, and mode can be displayed with
the mode function.

Matrix Data 
Objects

An important data object type in Spotfire S+ is the two-way array, or
matrix object. For example:

-3.0    2.1    7.6
 2.5    -.5   -2.6
 7.0   10.0   16.1
 5.3  -21.0   -6.5

Warning

You should not choose names that coincide with the names of Spotfire S+ functions. If you store
a function with the same name as a built-in Spotfire S+ function, access to the Spotfire S+
function is temporarily prevented until you remove or rename the object you created. Spotfire
S+ warns you when you have masked access to a function with a newly created function. To
obtain a list of objects that mask other objects, use the masked function.

At least seven Spotfire S+ functions have single-character names: C, D, c, I, q, s, and t. You
should be especially careful not to name one of your own functions c or t, as these are functions
used frequently in Spotfire S+.
43



Chapter 2  Getting Started
Matrices and their higher-dimensional analogues, arrays, are related
to vectors, but have an extra structure imposed on them. Spotfire S+
treats these objects similarly by having the matrix and array classes
inherit from another virtual class, the structure class. 

To create a matrix, use the matrix function. The matrix function
takes as arguments a vector and two numbers which specify the
number of rows and columns. For example:

> matrix(1:12, nrow=3, ncol=4)

     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

In this example, the first argument to matrix is a vector of integers
from 1 through 12. The second and third arguments are the number
of rows and columns, respectively. Each row and column is labeled:
the row labels are [1,], [2,], [3,] and the column labels are [,1],
[,2], [,3], [,4]. This notation for row and column numbers is
derived from mathematical matrix notation.

In the above example, the vector 1:12 fills the first column first, then
the second column, and so on. This is called filling the matrix ‘‘by
columns.’’ If you want to fill the matrix ‘‘by rows’’, use the optional
argument byrow=T to matrix.

For a vector of given length used to fill the matrix, the number of
rows determines the number of columns and vice versa. Thus, you
need not provide both the number of rows and the number of
columns as arguments to matrix; it is sufficient that you provide only
one or the other. The following command produces the same matrix
as above:

> matrix(1:12, 3)

You can also create this matrix by specifying the number of columns
only. To do this, type:

> matrix(1:12, ncol=4)

You have to provide the optional argument ncol=4 in name=value
form because, by default, the second argument is taken to be the
number of rows. When you use the ‘‘by name’’ form ncol=4 as the
44



Spotfire S+ Language Basics
second argument, you override the default. See the section Optional
Arguments to Functions on page 55 for further information on using
optional arguments in function calls.

The array classes generally have three slots: a .Data slot to hold the
actual values, a .Dim slot to hold the dimensions vector, and an
optional .Dimnames slot to hold the row and column names. The most
important slot for a matrix data object is the dimension slot .Dim. You
can use the dim function to display the dimensions of an object:

> my.mat <- matrix(1:8,4,2)
> dim(my.mat)
[1] 4 2

This shows that the dimension of the matrix my.mat is 4 rows by 2
columns. Matrix objects also have length and mode, which
correspond to the length and mode of the vector in the .Data slot.
You can use the length and mode functions to view these
characteristics of a matrix. Like vectors, a matrix object has a single
mode. This means that you cannot create, for example, a two column
matrix with one column of numeric data and one column of character
data. For that, you must use a data frame.

Data Frame 
Objects

Spotfire S+ contains an object called a data frame which is very similar
to a matrix object. A data frame object consists of rows and columns
of data, just like a matrix object, except that the columns can be of
different modes. The following object, baseball.df, is a data frame
consisting of some baseball data from the 1988 season. The first two
columns are factor objects (codes for names of players), the next two
columns are numeric, and the last column is logical.

> baseball.df

      bat.ID pitch.ID event.typ outs.play err.play
 r1 pettg001 clemr001         2         1        F
 r2 whitl001 clemr001        14         0        F
 r3 evand001 clemr001         3         1        F
 r4 trama001 clemr001         2         1        F
 r5 andeb001 morrj001         3         1        F
 r6 barrm001 morrj001         2         1        F
 r7 boggw001 morrj001        21         0        F
 r8 ricej001 morrj001         3         1        F
45



Chapter 2  Getting Started
See the chapter Data Objects in the Programmer’s Manual for further
information on data frames. The chapter Chapter 4, Importing and
Exporting Data discusses how to read in data frame objects from
ASCII files.

List Objects The list object is the most general and most flexible object for holding
data in Spotfire S+. A list is an ordered collection of components. Each
list component can be any data object, and different components can
be of different modes. For example, a list might have three
components consisting of a vector of character strings, a matrix of
numbers, and another list. Hence, lists are more general than vectors
or matrices because they can have components of different types or
modes, and they are more general than data frames because they are
not restricted to having a rectangular (row by column) nature.

You can create lists with the list function. To create a list with two
components, one a vector of mode "numeric" and one a vector of
character strings, type the following:

> list(101:119,c("char string 1","char string 2"))

[[1]]:
 [1] 101 102 103 104 105 106 107 108 109 110 111 112 113 
[14] 114 115 116 117 118 119

[[2]]:
[1] "char string 1" "char string 2"

The components of the list are labeled by double square-bracketed
numbers, here [[1]] and [[2]]. This notation distinguishes the
numbering of list components from vector and matrix numbering.
After each component label, Spotfire S+ displays the contents of that
component.

For greater ease in referring to list components, it is often useful to
name the components. You do this by giving each argument in the
list function its own name. For instance, you can create the same list
as above, but name the components ‘‘a’’ and ‘‘b’’ and save the list data
object with the name xyz:

> xyz <- list(a = 101:119,
+ b = c("char string 1", "char string 2"))
46



Spotfire S+ Language Basics
To take advantage of the component names from the list command,
use the name of the list, followed by a $ sign, followed by the name of
the component. For example, the following two commands display
components a and b, respectively, of the list xyz.

> xyz$a
 [1] 101 102 103 104 105 106 107 108 109 110 111 112 113 
[14] 114 115 116 117 118 119

> xyz$b
[1] "char string 1" "char string 2"

Managing Data 
Objects

In Spotfire S+, any object you create at the command line is
permanently stored on disk until you remove it. This section
describes how to name, store, list, and remove your data objects.

Assigning Data 
Objects

To name and store data in Spotfire S+, use one of the assignment
operators <- or =. For example, to create a vector consisting of the
numbers 4, 3, 2, and 1 and store it with the name x, use the c function
as follows:

> x <- c(4,3,2,1)

You type <- by with two keys on your keyboard: the ‘‘less than’’ key
(<) followed by the minus (-) character, with no intervening space. 

To store the vector containing the integers 1 through 10 in y, type:

> y <- 1:10

The following assignment expressions use the operator =, are
identical to the two assignments above:

> x = c(4,3,2,1)
> y=1:10

The <- form of the assignment operator is highly suggestive and
readable, so the examples in this manual use the arrow. The = is
easier to type and matches the assignment operator in C, so many
users prefer it. However, the S language also uses the = operator
inside function calls for argument matching; if you want assign the
value of an argument inside a function call, you must use the <-
operator.
47



Chapter 2  Getting Started
Storing Data 
Objects

Data objects in your working directory are permanent. They remain
even if you quit Spotfire S+ and start a new session later. 

You can change the location where Spotfire S+ objects are stored by
using the attach function. See the attach help file for further
information. You can also change where your Spotfire S+ objects are
located by explicitly specifying a new working directory. To do this,
define the environment variable S_WORK, which can specify one
directory or a colon-separated list of directories. The first valid
directory in the list is used as your working directory. For more
information on working directories, see the section Creating a
Working Directory on page 24. 

Listing Data 
Objects

To display a list of the data objects in your working directory, use the
objects function as follows:

> objects()

If you created the vectors x and y in the section Assigning Data
Objects on page 47, you see these listed in your working directory.

The Spotfire S+ function objects also searches for objects whose
names match a character string given to it as an argument. The
pattern search may include wildcard characters. For instance, the
following expression displays all objects that start with the letter d:

> objects("d*")

For information on wildcards and how they work, see the help file for
grep. 

Removing Data 
Objects

Because Spotfire S+ objects are permanent, you should remove
objects you no longer need from time to time. You can use the rm
function to remove objects. The rm function takes any number of
objects as its arguments, and removes each one from your working
database. For instance, to remove two objects named a and b, use the
following expression:

> rm(a,b)

Displaying Data 
Objects

To look at the contents of a stored data object, just type its name:

> x
[1] 4 3 2 1
48



Spotfire S+ Language Basics
> y
[1] 1 2 3 4 5 6 7 8 9 10

Functions A function is a Spotfire S+ expression that returns a value, usually after
performing some operation on one or more arguments. For example,
the c function returns a vector formed by combining its arguments.
You call a function by typing an expression consisting of the name of
the function followed by a pair of parentheses, which may enclose
some arguments separated by commas. For example, runif is a
function which produces random numbers uniformly distributed
between 0 and 1. To have Spotfire S+ compute 10 such numbers,
type runif(10):

> runif(10)
 [1] 0.6033770 0.4216952 0.7445955 0.9896273 0.6072029
 [6] 0.1293078 0.2624331 0.3428861 0.2866012 0.6368730

Spotfire S+ displays the results computed by the function, followed
by a new prompt. In this case, the result is a vector object consisting
of 10 random numbers generated by a uniform random number
generator. The square-bracketed numbers, here [1] and [6], help
you keep track of how many numbers are displayed on each line of
the output, and help you locate particular numbers.

One of the functions in Spotfire S+ that you will use frequently is the
function c which allows you to combine data values into a vector. For
example: 

> c(3, 7, 100, 103)
[1] 3 7 100 103

> c(T, F, F, T, T)
[1] T F F F T T

> c("sharp teeth", "COLD PAWS")
[1] "sharp teeth" "COLD PAWS"

> c("sharp teeth", ’COLD PAWS’)
[1] "sharp teeth" "COLD PAWS"

The last example illustrates that either double quotes (") or single
quotes (’) can be used to delimit character strings.
49



Chapter 2  Getting Started
Usually, you want to assign the result of a function to an object with
another name that is permanently saved (until you choose to remove
it). For example:

> weather <- c("hot day","COLD NIGHT")
> weather
[1] "hot day" "COLD NIGHT"

Some functions in Spotfire S+ are commonly used with no
arguments. For example, recall that you quit Spotfire S+ by typing
q(). The parentheses are still required so that Spotfire S+ can
recognize that the expression is a function. 

When you leave the parentheses out of a function call, the function
text is displayed on the screen. Typing any object’s name causes
Spotfire S+ to print that object; a function object is simply the
definition of the function. To call the function, simply retype the
function name with parentheses. For instance, if you accidentally type
q instead of q() when you wish to quit Spotfire S+, the body of the
function q is displayed. In this case the body of the function is only
two lines long:

> q
function(...)
.Internal(q(...), "S_dummy", T, 33)
>

No harm has been done. All you need to do now is correctly type
q(), and Spotfire S+ returns to your system prompt. 

> q()
%

Operators An operator is a function that has at most two arguments, and can be
represented by one or more special symbols which appear between
the two arguments. For example, the usual arithmetic operations of
addition, subtraction, multiplication and division are represented by
the operators +, -, *, and /, respectively. Some simple calculations
using the arithmetic operators are given in the examples below.
50



Spotfire S+ Language Basics
> 3+71
[1] 74

> 3*121
[1] 363

> (6.5 - 4)/5
[1] .5

The exponentiation operator is ^, which can be used as follows:

> 2 ^ 3
[1] 8

Some operators work with only one argument, and hence are called
unary operators. For example, the subtraction operator - can act as a
unary operator:

> -3
[1] -3

The colon (:) is an important operator for generating sequences of
integers:

> 1:10
 [1]  1  2  3  4  5  6  7  8  9 10

Table 2.2lists the Spotfire S+ operators for comparison and logic.
Comparisons are among the most common sources for logical data:

> (1:10) > 5
 [1] F F F F F T T T T T

Comparisons and logical operations are frequently convenient for
extracting subsets of data, and conditionals using logical comparisons
play an important role in flow of control in functions. 
51



Chapter 2  Getting Started
Expressions An expression is any combination of functions, operators, and data
objects. Thus x <- c(4,3,2,1) is an expression that involves an
operator (the assignment operator) and a function (the c function).
Here are a few examples to give you an indication of the variety of
expressions you will be using in Spotfire S+:

> 3 * runif(10)
 [1] 1.6006757 2.2312820 0.8554818 2.4478138 2.3561580 
 [6] 1.1359854 2.4615688 1.0220507 2.8043721 2.5683608

> 3*c(2,11)-1
[1]  5 32

> c(2*runif(5),10,20)
[1]  0.6010921  0.3322045  1.0886723  0.3510106  
[5]  0.9838003 10.0000000 20.0000000

> 3*c(2*x,5)-1
[1] 41 14

The last two examples illustrate a general feature of Spotfire S+
functions: arguments to functions can themselves be Spotfire S+
expressions. 

Table 2.2:  Logical and comparison operators.

Operator Explanation Operator Explanation

== equal to != not equal to

> greater than < less than

>= greater than or equal to <= less than or equal to

& vectorized And | vectorized Or

&& control And || control Or

! not
52



Spotfire S+ Language Basics
Here are three examples of expressions which are important because
they show how arithmetic works in Spotfire S+ when you use
expressions involving both vectors and numbers. If x consists of the
numbers 4, 3, 2, and 1, then the following operations work on each
element of x:

> x-1
[1] 3 2 1 0

> 2*(x-1)
[1] 6 4 2 0

> x ^ 2
[1] 16 9 4 1

Any time you use an operator with a vector as one argument and a
number as the other argument, the operation is performed on each
component of the vector.

Precedence 
Hierarchy

The evaluation of Spotfire S+ expressions has a precedence hierarchy,
shown in Table 2.3. Operators appearing higher in the table have
higher precedence than those appearing lower; operators on the same
line have equal precedence.

Among operators of equal precedence, evaluation proceeds from left
to right within an expression. Whenever you are uncertain about the
precedence hierarchy for evaluation of an expression, you should use
parentheses to make the hierarchy explicit. Spotfire S+ shares a
common feature of many computer languages that the innermost
parentheses are evaluated first, and so on until the outermost
parentheses are evaluated. In the following example, we assign the
value 5 to a vector (of length 1) called x. We then use the sequence
operator : and show the difference between how the expression is
evaluated with and without parentheses. 

Hint

If you are familiar with the APL programming language, this treatment of vectors will be familiar
to you.
53



Chapter 2  Getting Started
 

For example, in the expression 1:(x-1), (x-1) is evaluated first, and
Spotfire S+ displays the integers from 1 to 4 as a result:

> x <- 5
> 1:(x-1)

[1] 1 2 3 4

Table 2.3:  Precedence of operators.

Operator Use

$ component selection

[  [[ subscripts, elements

^ exponentiation

- unary minus

: sequence operator

%%  %/%  %*% modulus, integer divide, matrix multiply

*  / multiply, divide

+  - add, subtract

<>  <=  >=  ==  != comparison

! not

&  |  &&  || and, or

~ formulas

<<-  ->  <- _ assignments

Note

When using the ^ operator, the exponent must be an integer if the base is a negative number.
54



Spotfire S+ Language Basics
However, when the parentheses are left off, the : operator has greater
precedence than the - operator. The expression 1:x-1 is interpreted
by Spotfire S+ to mean ‘‘take the integers from 1 to 5, and then
subtract one from each integer’’. Hence, the output is of length 5
instead of length 4, and starts at 0 instead of 1:

> 1:x-1
[1] 0 1 2 3 4

When using Spotfire S+, keep in mind the effect of parentheses and
the default operator hierarchy. 

Optional 
Arguments to 
Functions

One powerful feature of Spotfire S+ functions is considerable
flexibility through the use of optional arguments. At the same time,
simplicity is maintained because sensible defaults for optional
arguments have been built in, and the number of required arguments
is kept to a minimum. You can determine which arguments are
required and which are optional by looking in the help file under the
REQUIRED ARGUMENTS and OPTIONAL ARGUMENTS
sections.

For example, to produce 50 normal random numbers with mean 0
and standard deviation 1, use the following command:

> rnorm(50)

If you want to produce 50 normal random numbers with mean 3 and
standard deviation 5, you can use any of the following:

> rnorm(50, 3, 5)
> rnorm(50, sd=5, mean=3)
> rnorm(50, m=3, s=5)
> rnorm(m=3, s=5, 50)

In the first expression, you supply the optional arguments by value.
When supplying optional arguments by value, you must supply the
arguments in the order they are given in the help file USAGE
statement. In the second through fourth expressions, you supply the
optional arguments by name. When supplying arguments by name,
order is not important. However, we recommend that you supply
optional arguments after required arguments for consistency of style.
The third and fourth expressions above illustrate that you may
55



Chapter 2  Getting Started
abbreviate the formal names of optional arguments for convenience,
so long as the abbreviations uniquely correspond to their respective
argument names. 

You will find that supplying arguments by name is convenient
because you can supply them in any order. Of course, you do not
need to specify all of the optional arguments. For instance, the
following are two equivalent ways to produce 50 random normal
numbers with mean 0 (the default), and standard deviation of 5:

> rnorm(50, m=0, s=5)
> rnorm(50, s=5)

Access to 
Solaris and 
Linux

One important feature of Spotfire S+ is easy access to and use of
Solaris and Linux tools. Spotfire S+ provides a simple shell escape
character for issuing a single command from within Spotfire S+:

> !date
Mon Apr 15 17:46:25 PDT 1991

Here, date is a command which passes its result to Spotfire S+ for
display as shown. You can use any  command in place of date. Of
course, if you have separate Solaris or Linux windows open on your
workstation screen, you can simply move into another window to
issue a command.

In addition to the escape function !, Spotfire S+ provides a unix
function that is a more powerful way to execute commands. The unix
function allows you to capture and manipulate output produced by
Solaris or Linux within a Spotfire S+ session. 
56



Importing and Editing Data
IMPORTING AND EDITING DATA

There are many kinds and sizes of data sets that you may want to
work on in Spotfire S+. The first step is to get your data into Spotfire
S+ in appropriate data object form. In this section, we show you how
to import data sets that exist as files and how to enter small data sets
from your keyboard. For details on the Import Data dialog, see the
chapter Importing and Exporting Data.

Reading a Data 
File

The data you are interested in may have been created in Spotfire S+,
but more likely it came to you in some other form. Perhaps your data
is an ASCII file or is from someone else’s work in another software
package, such as SAS. You can read data from a variety of sources
using the Spotfire S+ function importData.

For example, suppose you have a SAS file named Exenvirn.ssd01. To
import that file using the importData function, you must supply the
file’s name as the file argument:

> Exenvirn <- importData(file = "Exenvirn.ssd01")

After Spotfire S+ reads the data file, it assigns the data to the Exenvirn
data frame.

Entering Data 
From Your 
Keyboard

To get a small data set into Spotfire S+, create a Spotfire S+ data
object using the scan() function as follows: 

> mydata <- scan()

where mydata is any legal data object name. Spotfire S+ prompts you
for input, as described in the following example. We enter 14 data
values and assign them to the object diff.hs. At the Spotfire S+
prompt, type in the name diff.hs and assign to it the results of the
scan command. Spotfire S+ responds with the prompt 1:, which
means that you should enter the first value. 

You can enter as many values per line as you like, separated by
spaces. When you press RETURN, Spotfire S+ prompts with the index
of the next value it is waiting for. In our example, Spotfire S+
responds with 6: because you entered 5 values on the first line. When
you finish entering data, press RETURN in response to the : prompt,
and Spotfire S+ returns to the Spotfire S+ command prompt (>).
57



Chapter 2  Getting Started
The complete example appears on your screen as follows:

> diff.hs <- scan()
1: .06 .13 .14 -.07 -.05
6: -.31 .12 .23 -.05 -.03
11: .62 .29 -.32 -.71
15:
>

Reading An ASCII 
File

Entering data from the keyboard is a relatively uncommon task in
Spotfire S+. More typically, you have a data set stored as an ASCII
file that you want to read into Spotfire S+. An ASCII file usually
consists of numbers separated by spaces, tabs, newlines, or other
delimiters.

Suppose you have a text file called vec.data in the same directory
from which you started Spotfire S+, and suppose vec.data contains the
following data:

62 60 63 59
63 67 71 64 65 66
88 66 71 67 68 68
56 62 60 61 63 64 63 59

You read the vec.data file into Spotfire S+ by using the scan
command with "vec.data" as an argument:

> x <- scan("vec.data")

The quotation marks around the vec.data argument to scan are
required. You can now type x to display the data object you have
read into Spotfire S+.

If the file you want to read is not in the same directory from which
you started Spotfire S+, you must use the entire path name. If the text
file vec.data is in a subdirectory with path name /usr/mabel/test/
vec.data, then type: 
58



Importing and Editing Data
> x <- scan ("/usr/mabel/test/vec.data")

Editing Data After you have created a Spotfire S+ data object, you may want to
change some of the data you have entered. The easiest way to modify
simple vectors and Spotfire S+ functions is to use the fix function,
which uses the editor specified in your Spotfire S+ session options. By
default, the editor used is vi.

With fix, you create a copy of the original data object, edit it, then
reassign the result under its original name. If you have a favorite
editor, you can use it by specifying it with the options function. For
example, if you prefer to use the emacs editor, you can set this up
easily as follows:

> options(editor="emacs")

To create a new data object by modifying an existing object, use the
vi function, assigning the result to a new name. For example, if you
want to create your own version of a system function such as lm, you
can use vi as follows:

> my.lm <- vi(lm)

Built-in Data 
Sets

Spotfire S+ comes with a large number of built-in data sets. These
data sets provide examples for illustrating the capabilities of Spotfire
S+ without requiring you to enter your own data. When Spotfire S+ is
used as a teaching aid, the built-in data sets provide a foundation for
problem assignments in data analysis.

Warning 

If you do not assign the output from the vi function, the changes you make are simply scrolled
across the screen, and are not incorporated into any function definition. The value is also stored
in the object .Last.value until a new value is returned by Spotfire S+. You can therefore
recover the changes by immediately typing the following:

> myfunction <- .Last.value
59



Chapter 2  Getting Started
To have Spotfire S+ display any of the built-in data sets, just type its
name at the > prompt. The built-in data sets include data objects of
various types, and are stored in a data directory of your search path.
To see the databases that are attached to your search path by default,
type search() at the Spotfire S+ command prompt:

> search()
[1] "MySwork"             "splus"                 "stat"                 
[4] "data"                  "trellis"               "nlme3"                
[7] "main"

Your working directory is attached in the first position of your search
path, and the data directory is attached in the fourth position. To see a
listing of the built-in objects in the data directory, use the objects
function as follows:

> objects("data")
 [1] "\001"           "..min.script.id"     ".Copyright"
 [4] ".Original"      ".PostScript.Options" ".Program"
 [7] ".Random.seed"        "CHAR"           "Defunct.funs"
[10] "Deprecated.funs"     "INT"            "LGL"
[13] "Lubricant"           "Puromycin"      "REAL"
[16] . . .

Quick Hard 
Copy

To obtain a quick hard copy of your Spotfire S+ objects, use the lpr
function. For example, to print the object diff.hs, use the following
command:

 > lpr(diff.hs)

A copy of your data will be sent to your standard printer.

Adding Row 
And Column 
Names

Names can be added to a number of different types of Spotfire S+
objects. In this section we discuss adding labels to vectors and
matrices.

Adding Names To 
Vectors

To add names to a vector of data, use the names function. You assign
a character vector of length equal to the length of the data vector as
the names attribute for the vector. For example, the following
commands assign the integers 1 through 5 to a vector x, and assign
the spelled out words for those integers to the names attribute of the
vector:
60



Importing and Editing Data
> x <- 1:5
> names(x) <- c("one", "two", "three", "four", "five")
> x
 one two three four five
   1   2     3    4    5

You also use names to display the names associated with a vector:

> names(x)
 one two three four five

You should note that the class of simple data objects such as vectors
may be changed when names are added. If a vector does not include
names, Spotfire S+ recognizes it as a simple "numeric" object. When
names are added, however, the class of the object changes to "named":

> data.class(x)
[1] "named"

Adding Names To 
Matrices

In a matrix, both the rows and columns can be named. Often the
columns have meaningful alphabetic word names because the
columns represent different variables, while the row names are either
integer values indicating the observation number or character strings
identifying ‘‘case’’ labels. Lists are useful for adding row names and
column names to a matrix, as we now illustrate.

The dimnames argument to the matrix function is used to name the
rows and columns of the matrix. The dimnames argument must be a
list with exactly 2 components. The first component gives the labels
for the matrix rows, and the second component gives the names for
the matrix columns. The length of the first component in the
dimnames list is equal to the number of rows, and the length of the
second component is equal to the number of columns. 

For example, if we add a dimnames argument to the matrix command,
the resulting matrix will have the row and column labels specified: 

> matrix(1:12, nrow=3, dimnames=list(c(’I’,’II’,’III’),
+ c(’x1’,’x2’,’x3’,’x4’)))

    x1 x2 x3 x4
  I  1  4  7 10
 II  2  5  8 11
III  3  6  9 12
61



Chapter 2  Getting Started
You can assign row and column names to existing matrices using the
dimnames function, which works much like the names function for
vectors:

> y <- matrix(1:12, nrow=3)
> dimnames(y) <- list(c(’I’,’II’,’III’),
+ c(’x1’,’x2’,’x3’,’x4’))

> y
    x1 x2 x3 x4
  I  1  4  7 10
 II  2  5  8 11
III  3  6  9 12

Extracting 
Subsets of 
Data

Another powerful feature of the Spotfire S+ language is the ability to
extract subsets of data for viewing or further manipulation. The
examples in this section illustrate subset extraction for vectors and
matrices only. However, similar techniques can be used to extract
subsets of data from other Spotfire S+ data objects.

Subsetting From 
Vectors

Suppose you create a vector of length 5, consisting of the integers 5,
14, 8, 9, 5:

> x <- c(5, 14, 8, 9, 5)
> x
[1]  5 14  8  9  5

To display a single element of this vector, just type the vector’s name
followed by the element’s index within square brackets. For example,
type x[1] to display the first element and x[4] to display the fourth
element:

> x[1]
[1] 5

> x[4]
[1] 9

To display more than one element at a time, use the c function within
the square brackets. The following command displays the second and
fifth elements of x:

> x[c(2,5)]
[1] 14  5
62



Importing and Editing Data
Use negation to display all elements except a a specified element or list
of elements. For instance, x[-4] displays all elements except the
fourth:

> x[-4]
[1]  5 14  8  5

Similarly, x[-c(1,3)] displays all elements except the first and third:

> x[-c(1,3)]
[1] 14  9  5

A more advanced use of subsetting uses a logical expression within
the [] characters. Logical expressions divide a vector into two
subsets: one for which a given condition is true, and one for which the
condition is false. When used as a subscript, the expression returns
the subset for which the condition is true.

For instance, the following expression selects all elements with values
greater than 8:

> x[x>8]
[1] 14  9

In this case, the second and fourth elements of x, with values 14 and
9, meet the requirements of the logical expression x > 8, and are
therefore displayed. As usual in Spotfire S+, you can assign the result
of the subsetting operation to another object. For example, you could
assign the subset in the above expression to an object named y, and
then display y or use it in subsequent calculations:

> y <- x[x>8]
> y
[1] 14  9

In the next section you will see that the same subsetting principles
apply to matrix data objects, although the syntax is a little more
complicated to account for both dimensions in a matrix.

Subsetting From 
Matrix Data 
Objects

A single element of a matrix can be selected by typing its coordinates
inside the square brackets as an ordered pair, separated by commas.
We use the built-in data set state.x77 to illustrate. The first number
inside the [] operator is the row index, and the second number is the
column index. The following command displays the value in the third
row, eighth column of state.x77:
63



Chapter 2  Getting Started
> state.x77[3,8]
[1] 113417

You can also display an element, using row and column dimnames, if
such labels have been defined. To display the above value, which
happens to be in the row named ‘‘Arizona’’ and the column named
‘‘Area’’, use the following command:

> state.x77["Arizona", "Area"]
[1] 113417

To select sequential rows and/or columns from a matrix object, use
the : operator. The following expression selects the first 4 rows and
columns 3 through 5 and assigns the result to the object x:

> x <- state.x77[1:4, 3:5]
> x
         Illiteracy Life Exp Murder
 Alabama        2.1    69.05   15.1
  Alaska        1.5    69.31   11.3
 Arizona        1.8    70.55    7.8
Arkansas        1.9    70.66   10.1

The c function can be used to select non-sequential rows and/or
columns of matrices, just as it was used for vectors. For instance, the
following expression chooses rows 5, 22, and 44, and columns 1, 4,
and 7 of state.x77:

> state.x77[c(5,22,44), c(1,4,7)]
           Population Life Exp Frost
California      21198    71.71    20
  Michigan       9111    70.63   125
      Utah       1203    72.90   137

As before, if row or column names have been defined, they can be
used in place of the index numbers:

> state.x77[c("California","Michigan","Utah"),
+ c("Population","Life Exp","Frost")]

           Population Life Exp Frost
California      21198    71.71    20
  Michigan       9111    70.63   125
      Utah       1203    72.90   137
64



Importing and Editing Data
Selecting All 
Rows or All 
Columns From a 
Matrix Object

To select all of the rows in a matrix, leave the expression before the
comma (in the square brackets) blank. To select all columns in a
matrix, leave the expression after the comma blank. The following
command chooses all columns in state.x77 for the rows
corresponding to California, Michigan, and Utah. In the expression,
the closing bracket appears immediately after the comma; this means
that all columns are selected.

> state.x77[c("California","Michigan","Utah"), ]
           Population Income Illiteracy Life Exp Murder
California      21198   5114        1.1    71.71   10.3
  Michigan       9111   4751        0.9    70.63   11.1
      Utah       1203   4022        0.6    72.90    4.5

           HS Grad Frost   Area
California    62.6    20 156361
  Michigan    52.8   125  56817
      Utah    67.3   137  82096
65



Chapter 2  Getting Started
GRAPHICS IN Spotfire S+

Graphics are central to the Spotfire S+ philosophy of looking at your
data visually as a first and last step in any data analysis. With its broad
range of built-in graphics functions and its programmability, Spotfire
S+ lets you look at your data from many angles. This section
describes how to use Spotfire S+ to create simple command-line
plots. To put Spotfire S+ to work creating the many other types of
plots, see the chapters Traditional Graphics and Traditional Trellis
Graphics in the Spotfire S+ documentation. 

This section is geared specifically to graphics that are created by
Spotfire S+ functions and displayed in motif windows. For
information on manipulating Graph windows in the GUI, see the
chapter Working with the Graphical User Interface. For information
on creating plots from the Graph menu options in the GUI, see the
chapter Menu Graphics.

Making Plots Plotting engineering, scientific, financial or marketing data, including
the preparation of camera-ready copy on a laser printer, is one of the
most powerful and frequently used features of Spotfire S+. Spotfire
S+ has a wide variety of plotting and graphics functions for you to
use.

The most frequently used Spotfire S+ plotting function is plot. When
you call a plotting function, a Spotfire S+ graphics window displays
the requested plot:

> plot(car.miles)

The argument car.miles is a Spotfire S+ built-in vector data object.
Since there is no other argument to plot, the data are plotted against
their natural index or observation numbers, 1 through 120. Since you
may be interested in gas mileage, you can plot car.miles against
car.gals. This is also easy to do with plot:

> plot(car.gals, car.miles)

The result is shown in Figure 2.1.
66



Graphics in Spotfire S+
 

You can use many Spotfire S+ functions besides plot to display
graphical results in the Spotfire S+ graphics window. Many of these
functions are listed in Table 2.4 and Table 2.5, which display,
respectively, high-level and low-level plotting functions. High-level
plotting functions create new plots and axes, while low-level plotting
functions typically add to an existing plot.

Figure 2.1:  A Spotfire S+ plot.

Table 2.4:  Common high-level plotting functions.

barplot, hist Bar graph, histogram

boxplot Boxplot

brush Brush pair-wise scatter plots; spin 3D axes

contour, image,
persp, symbols

3D plots

coplot Conditioning plot

dotchart Dot chart

faces, stars Display multivariate data
67



Chapter 2  Getting Started
map Plot all or part of the U.S. (this function is part of
the maps library)

pairs Plot all pair-wise scatter plots

pie Pie chart

plot Generic plotting

qqnorm, qqplot Normal and general QQ-plots

scatter.smooth Scatter plot with a smooth curve

tsplot Plot a time series

usa Plot the boundary of the U.S.

Table 2.5:  Common low-level plotting functions.

abline Add line in intercept-slope form

axis Add axis

box Add a box around plot

contour, image,
persp, symbols

Add 3D information to plot

identify Use mouse to identify points on a graph

legend Add a legend to the plot

lines, points Add lines or points to a plot

mtext, text Add text in the margin or in the plot

stamp Add date and time information to the plot

title Add title, x-axis labels, y-axis labels, and/or
subtitle to plot

Table 2.4:  Common high-level plotting functions. (Continued)
68



Graphics in Spotfire S+
Quick Hard 
Copy

Each graphics window offers a simple, straightforward way to obtain
a hard copy of the picture you have composed on the screen: the
Print option under the Graph pull-down menu. You can exercise
more control over your instant hard copy, by specifying whether the
copy is in landscape or portrait orientation, which printer the hard
copy is sent to, and for HP-Laserjet systems, the dpi (dots per inch)
resolution of the printout. 

Using the 
Graphics 
Window

You can use a mouse to perform basic functions in a graphics
window, such as redrawing or copying a graph. The standard
graphics window, also known as the motif device (Figure 2.2) has a
set of pull-down menus providing a mouse-based point and click
capability for copying, redrawing and printing hard copy on a printer.

In general, you select actions by pulling down the appropriate menu,
and clicking the left mouse button. 

Copying A Graph Each graphics window provides a mechanism to copy a graph on the
screen.   This option allows you to ‘‘freeze’’ a picture in one state, but
continue to modify the original. The motif device has a Copy choice
under the Graph pull-down menu.

Redrawing A 
Graph

Each graphics window provides a mechanism for ‘‘redrawing’’ a
graph. This option can be used to refresh the picture if your screen
has become cluttered. The motif device offers the Redraw option as
a selection from the Graph pull-down menu.

Multiple Plot 
Layout

It is often desirable to display more than one plot in a window or on a
single page of hard copy. To do so, you use the Spotfire S+ function
par to control the layout of the plots. The following example shows

Figure 2.2:  The motif window.
69



Chapter 2  Getting Started
how to use par for this purpose. The par command is used to control
and customize many aspects of Spotfire S+ plots. See the chapter
Traditional Graphics for further information on the par command.

In this example, we use par to set up a a window or a page that has
four plots in two rows of two each. Following the par command, we
issue four plotting commands. Each command creates a simple plot
with a main title. 

> par(mfrow=c(2,2))
> plot(1:10,1:10,main="Straight Line")
> hist(rnorm(50),main="Histogram of Normal")
> qqnorm(rt(100,5),main="Samples from t(5)")
> plot(density(rnorm(50)),main="Normal Density")

The result is shown in Figure 2.3.  

Figure 2.3:  A multiple plot layout.

•
•

•
•

•
•

•
•

•
•

Straight Line

1:10

1:
10

2 4 6 8 10

2
4

6
8

-3 -1 1 2 3

0
5

10
Histogram of Normal

rnorm(50)

•
••

••
•

•
•

••
•

• ••• •• ••
• ••

• •
• •• • •

•
•• •

•

•

•

•

•• •••

•
•

•
• ••

••• ••

•

•
•

• • ••

•

•• •• •
•

• ••
•

•
•

•

•
••

• • •••••

•

•

• •
•

•
•• •

••• •
•

•

•

samples from t(5)

Quantiles of Standard Normal

rt
(1

00
, 5

)

-2 0 1 2

-4
0

4

••
••••

•••
••••

•
•
•

••
•
•
•
•

•
•

•
•
•

•

•

••••

••••••
••
•
••••

••••

Normal Density

density(rnorm(50))$x

de
ns

ity
(r

no
rm

(5
0)

)$
y

-2 -1 0 1 2

0.
0

0.
3

70



Statistics
STATISTICS

Spotfire S+ includes functions for doing all kinds of statistical analysis,
including hypothesis testing, linear regression, analysis of variance,
contingency tables, factor analysis, survival analysis, and time series
analysis. Estimation techniques for all these branches of statistics are
described in detail in the manual Guide to Statistics.

This section gives overviews of the functions that produce summary
statistics, perform hypothesis tests, and fit statistical models. This
section is geared specifically to statistical analyses that are generated
by Spotfire S+ command-line functions. For information on the
options available under the Statistics menu in the GUI, see the
Statistics chapter.

Summary 
Statistics

Spotfire S+ includes functions for calculating all of the standard
summary statistics for a data set, together with a variety of robust and/
or resistant estimators of location and scale. Table 2.6 lists of the most
common functions for summary statistics.

The summary function is a generic function that provides appropriate
summaries for different types of data. For example, an object of class
lm created by fitting a linear model has a summary that includes the
table of estimated coefficients, their standard errors, and t-values,
along with other information. The summary for a standard vector is a
six-number table of the minimum, maximum, mean, median, and
first and third quartiles:

> summary(stack.loss)
 Min. 1st Qu. Median  Mean 3rd Qu. Max.
    7      11     15 17.52      19   42 

Table 2.6:  Common functions for summary statistics.

cor Correlation coefficient

cummax, cummin,
cumprod, cumsum

Cumulative maximum, minimum, product,
and sum

diff Create sequential differences

max, min Maximum and minimum
71



Chapter 2  Getting Started
Hypothesis 
Testing

Spotfire S+ contains a number of functions for doing classical
hypothesis testing, as shown in Table 2.7. The following example
illustrates how to use t.test to perform a two-sample t-test to detect a
difference in means. This example uses two random samples
generated from N(0,1) and N(1,1) distributions. We set the random
number seed with the function set.seed so this example is
reproducible:

> set.seed(19)
> x <- rnorm(10)
> y <- rnorm(5, mean=1)
> t.test(x,y)
  Standard Two-Sample t-Test

data:  x and y
t = -1.4312, df = 13, p-value = 0.176
alternative hypothesis: true difference in means is not

equal to 0
95 percent confidence interval:
 -1.7254080  0.3502894
sample estimates:
  mean of x mean of y

pmax, pmin Maxima and minima of several vectors

mean Arithmetic mean

median 50th percentile

prod Product of elements of a vector

quantile Compute empirical quantiles

range Returns minimum and maximum of a vector

sample Random sample or permutation of a vector

sum Sum elements of a vector

summary Summarize an object

var Variance and covariance

Table 2.6:  Common functions for summary statistics. (Continued)
72



Statistics
 -0.4269014 0.2606579

 

Statistical 
Models

Most of the statistical modeling functions in Spotfire S+ follow a
unified modeling paradigm in which the input data are represented as
a data frame and the model to be fit is represented as a formula.
Formulas can be saved as separate Spotfire S+ objects and supplied as
arguments to the modeling functions. A partial listing of Spotfire S+
modeling functions is given in Table 2.8.

In a formula, you specify the response variable first, followed by a
tilde (~) and the terms to be included in the model. Variables in
formulas can be any expression that evaluates to a numeric vector, a
factor or ordered factor, or a matrix. Table 2.9 gives a summary of the
formula syntax.

Table 2.7:  Spotfire S+ functions for hypothesis testing.

Test Description

t.test Student’s one- or two-sample t-test

wilcox.test Wilcoxon rank sum and signed-rank sum tests

chisq.test Pearson’s chi square test for 2D contingency table

var.test F test to compare two variances

kruskal.test Kruskal-Wallis rank sum test

fisher.test Fisher’s exact test for 2D contingency table

binom.test Exact binomial test

friedman.test Friedman rank sum test

mcnemar.test McNemar’s chi square test

prop.test Proportions test

cor.test Test for zero correlation

mantelhaen.test Mantel-Haenszel chi square test
73



Chapter 2  Getting Started
    

Table 2.8:  Spotfire S+ modeling functions.

Function Description

aov, manova Analysis of variance models

lm Linear model (regression)

glm Generalized linear model (including logistic and
Poisson regression)

gam Generalized additive model

loess Local regression model

tree Classification and regression tree models

nls, ms Nonlinear models

lme, nlme Mixed-effects models

factanal Factor analysis

princomp Principal components analysis

pam, fanny,
diana, agnes,
daisy, clara

Cluster analysis 

Table 2.9:  Summary of the Spotfire S+ formula Spotfire S+syntax.

Expression Meaning

A ~ B A is modeled as B

B + C Include both B and C in the model

B - C Include all of B except what is in C in the model

B:C The interaction between B and C

B*C Include B, C, and their interaction in the model

C %in% B C is nested within B

B/C Include B and C %in% B in the model
74



Statistics
The following sample Spotfire S+ session illustrates some steps to fit a
regression model to the fuel.frame data containing five variables for
60 cars. We do not show the output; type these commands at your
Spotfire S+ prompt and you’ll get a good feel for doing data analysis
with the Spotfire S+ language.

> names(fuel.frame)
> par(mfrow=c(3,2))
> plot(fuel.frame)
> pairs(fuel.frame)
> attach(fuel.frame)
> par(mfrow=c(2,1))
> scatter.smooth(Mileage ~ Weight)
> scatter.smooth(Fuel ~ Weight)
> lm.fit1 <- lm(Fuel ~ Weight)
> lm.fit1
> names(lm.fit1)
> summary(lm.fit1)
> qqnorm(residuals(lm.fit1))
> plot(lm.influence(lm.fit1)$hat, type="h",
+ xlab = "Case Number", ylab = "Hat Matrix Diagonal")
> o.type <- ordered(Type, c("Small", "Sporty", "Compact",
+ "Medium", "Large", "Van"))
> par(mfrow=c(1,1))
> coplot(Fuel ~ Weight | o.type,
+ given.values=sort(unique(o.type)))
> lm.fit2 <- update(lm.fit1, . ~ . + Type)
> lm.fit3 <- update(lm.fit2, . ~ . + Weight:Type)
> anova(lm.fit1, lm.fit2, lm.fit3)
> summary(lm.fit3)
75



Chapter 2  Getting Started
76



The User Interface 78

Using Menus, Dialog Boxes, and Toolbars 79
Using the Mouse 79
Using the Keyboard 80
Using Windows 80
Using Main Menus 84
Specifying Options in Dialogs 84
Using Toolbar Buttons 86

Spotfire S+ Windows 87
Objects Summary 87
Data Viewer 87
Graph Window 88
Commands Window 89
Report Window 89
Spotfire S+ Menus 90
Spotfire S+ Dialogs 91

WORKING WITH THE 
GRAPHICAL USER INTERFACE 3
77



Chapter 3  Working with the Graphical User Interface
THE USER INTERFACE

Spotfire S+ is a full-featured statistics and graphics application
designed for easy, intuitive analysis and visualization of data. The
Java-based graphical user interface makes this work even easier. This
chapter gives an overview of its menus, windows, and toolbars. 

Note

As of Spotfire S+ 8.1, the Spotfire S+ Jave GUI is deprecated. If you want to use a GUI with
Spotfire S+, use the Spotfire S+ Workbench.

 

Figure 3.1:  Spotfire S+ in action; showing both the JavaHelp window (top left) and the SPOTFIRE S+ 
graphical user interface (below right). Within the Spotfire S+ window, note the Graph window (top right), the 
Data Viewer (below left), and Report window (below right). 
78



Using Menus, Dialog Boxes, and Toolbars
USING MENUS, DIALOG BOXES, AND TOOLBARS

Spotfire S+ menus, dialogs and toolbars contain all the options you
need to view data, create graphs, and perform statistical analyses. You
can use your mouse or your keyboard to access Spotfire S+ menus.
Dialogs can be accessed by selecting menu options. Mouse, keyboard
and window terms used throughout this document are defined below.

Using the 
Mouse

Throughout this document, the following conventions are used to
describe mouse operations.

• Pointing: moving the mouse to position the pointer over an
object.

• Clicking: pointing at an object and quickly pressing and
releasing the left mouse button. Some tasks in Spotfire S+
require a double-click, which is achieved by quickly pressing
and releasing the left mouse button twice. 

• Right-Clicking: pointing at a selected object and quickly
pressing and releasing the right mouse button.

• Dragging: pointing at the object, then holding down the left
mouse button while moving the mouse. Releasing the left
mouse button "drops" the object in the new location.

The mouse pointer changes shape to indicate what action is taking
place. The following table shows the different mouse pointer shapes
and the significance of each. 
79



Chapter 3  Working with the Graphical User Interface
 

Using the 
Keyboard

Throughout this document, the following conventions are used to
reference keys. 

• Key names appear in SMALLCAPS letters. For example, the
Shift key appears as SHIFT. 

• When more than one key must be pressed simultaneously, the
two key names appear with a plus (+) between them. For
example, the key combination of SHIFT and F1 appears as
SHIFT+F1.

• The up, down, left, and right direction keys (represented on
the keyboard by arrows) are useful for moving objects around
the page. They are referred to as the UP direction key, the
DOWN direction key, the LEFT direction key, and the RIGHT
direction key.

Using Windows In Spotfire S+ you can operate on multiple windows, making it easy
to view different data sets and display multiple graphs. The graphical
user interface is contained within a single main window, and has
multiple subwindows.

Table 3.1:  Different shapes of the mouse pointer.

Pointer Mouse Action

Selection mouse pointer.

Text indicator, slanted pointer indicates italic text.

Displayed when Move or Size is selected from the Control
menu; allows the window to be moved or resized.

  

Change the size of the window vertically or horizontally when
positioned on a window border.
Change the size of two sides of the window when positioned on
the corner of a window border.
Indicates that a command is being processed; you should wait
for a different mouse pointer before going on to other tasks.
80



Using Menus, Dialog Boxes, and Toolbars
The Control-menu box is always in the upper-left corner of the main
Spotfire S+ window. Click once on the Control-menu box for a list of
commands that control the size, shape, and attributes of the window.
Click twice on the Control-menu box to quit Spotfire S+.

The title bar displays the name of the window. If more than one
window is open, the title bar of the current (or active) window is a
different color or intensity than other title bars.

The Minimize button is represented in the main Spotfire S+ window
by a small box, and in the subwindows by a small box with an arrow
pointing into it. When this button is clicked, the window is reduced to
an icon.

The Maximize button is represented in the main Spotfire S+ window
by a large box, and in the subwindows by a large box with an arrow
pointing out of it. When this button is clicked, the main Spotfire S+
window enlarges to fill the entire desktop, or the subwindow enlarges
to fill the entire Spotfire S+ window.

The Restore button replaces the Maximize button when the window is
maximized. The Restore button contains a large square with an arrow
pointing into it, and it returns the window to its previous size.

The Close button is available only in the subwindows, and is not
included as part of the main Spotfire S+ window. The Close button is
represented by a square with an “X” in it, and it is used to close the
Commands window, the Report window, Graph windows, etc.

The menu bar is a list of the available menus. Each menu contains a
list of commands or actions. 

The scroll bars let you scroll up and down through a window.

The window border surrounds the entire window. You can lengthen or
shorten any side of the border by dragging it with the mouse.

The window corner can be used to drag any two sides of the window.

The mouse pointer is displayed if you have a mouse installed. The
mouse is usually in the form of an arrow, an I, or a crosshair (+). For
more information, see the section Using the Mouse on page 79.
81



Chapter 3  Working with the Graphical User Interface
Switching to a 
Different Window

At any time you can have many windows open simultaneously in
Spotfire S+. The number of windows is limited only by your system's
memory resources. To switch from one window to another window,
click on any portion of the preferred window that is visible.
Alternatively, you can select the preferred window from the list at the
bottom of the Window menu.

  

Figure 3.2:  The opening main window of Spotfire S+ includes a Commands window. Notice that the main 
window has a Control-menu and Minimize and Maximize buttons, while the contained window has 
Minimize, Maximize and Close buttons (top right). Subwindows can be sized and moved, but only within the 
confines of the main Spotfire S+ window.
82



Using Menus, Dialog Boxes, and Toolbars
Moving and 
Sizing Windows

A maximized window cannot be moved or resized. A smaller window
can be moved or resized within the confines of the application
window. Note that not all windows can be resized.

To move a window or dialog

1. Click in the window or dialog to make it active.

2. Click and drag the title bar until the window or dialog is in the
desired location.

To resize a window

1. Click in the window to make it active.

2. Position the mouse over one of the four window borders.

3. The mouse changes to a double-headed arrow when it is over
the border.

4. Click and drag the border to the desired size.

To expand a window to maximum size

1. Click in the window to make it active.

2. Click the Maximize button on the title bar, or double-click
the title bar. Note that the Maximize button changes to the
Restore button.

Viewing Multiple 
Windows

In Spotfire S+, each type of object, such as a graph or data set, is
displayed in a separate window. You can also have multiple windows
of the same graph or data set open at the same time. You have several
options for viewing multiple windows.

To view the windows tiled

  • From the Window menu, choose Tile.

To view the windows layered, with only the title bars visible

  • From the Window menu, choose Cascade.
83



Chapter 3  Working with the Graphical User Interface
Closing Windows To close a window

  • Click the Close button on the title bar of the window. 

To close all open windows

  • Double-click the Control-menu box, or choose Exit from the
File menu. This closes all open windows and quits Spotfire
S+.

Using Main 
Menus

When you choose one of the main menu options, a list of additional
options drops down. You can choose any of the options in the list.
Menu options with a � symbol at the end of the line display a
submenu when selected. Menu commands with an ellipsis (...) after
the command display a dialog box when selected.

To choose a menu option

 Point to the desired menu option and click the left mouse button

or

 Press the ALT key to access the menu bar, and then press the 
underlined key in the desired menu option.

To cancel a menu, click outside the menu or press ESC.

Specifying 
Options in 
Dialogs

Choosing a menu option often displays a dialog. You can use dialogs
to specify information about a particular action. In Spotfire S+ there
are two types of dialogs: action dialogs and property dialogs. Action
dialogs carry out commands such as creating a graph. Property
dialogs display and allow you to modify the properties and
characteristics in your Spotfire S+ session.

Dialogs can contain multiple, tabbed pages of options. To see the
options on a different page of the dialog, click the page name. When
you choose OK or Apply (or press CTRL+ENTER), any changes made
on any of the tabbed pages are applied to the selected object.

Most of Spotfire S+ dialogs are modeless. They can be moved around
on the screen and they remain open until you choose to close them.
This means you can make changes in a dialog and see the effect
84



Using Menus, Dialog Boxes, and Toolbars
without closing the dialog. This is useful when you are experimenting
with changes to an object and want to see the effect of each change.
The Apply button can be used to apply changes without closing the
dialog. When you are ready to close the dialog, you can either choose
Cancel or click the Close box on the dialog. 

The OK, Cancel, 
and Apply 
Buttons

When you are finished setting options in a dialog box, you can click
on the OK, Cancel or Apply buttons.

• OK: choose the OK button or press CTRL+ENTER to close the
dialog box and carry out the action. 

• Cancel: choose the Cancel button to close the dialog box and
discard any of the changes you have made in the dialog.
Sometimes changes cannot be canceled (for example, when
changes have made with Apply, or when changes have been
made outside of the dialog with the mouse). 

• Apply: choose the Apply button to carry out the action
without closing the dialog. Most of the Spotfire S+ dialogs
have an Apply button, which acts much like an OK button
except it does not close the dialog box. You can specify
changes in the dialog box and then choose the Apply button
to see your changes, keeping the dialog open so that you can
make more changes without having to re-select the dialog.

Typing and 
Editing in Dialog 
Boxes

Table 3.2 lists special keys for navigating through and performing
tasks in dialog boxes. In addition, many dialogs contain text edit
boxes, which allow you to type in information such as file names and
graph titles.

Note

Choosing OK closes the dialog and executes the command specified by it. If you do not wish the command 
to execute after the dialog closes, perhaps because you have already clicked on Apply, choose Cancel 
instead of OK.
85



Chapter 3  Working with the Graphical User Interface
 

To replace text in a dialog

1. Select the existing text with the mouse, or press
ALT+underlined letter in the option name.

2. Type the new text. Any highlighted text is immediately
overwritten when you begin typing the new text.

To edit text in a text box

1. Position the insertion point in the text box. If text is
highlighted, it will be replaced when you begin typing.

2. Edit the text. 

Using Toolbar 
Buttons

Toolbars contain buttons that are shortcuts to menu selections. You
can use toolbar buttons to perform file operations such as opening a
new Graph window or printing a window. To select a toolbar button,
position the mouse pointer over the desired button and click. For
example, you can print your current Graph window by clicking on
the Print button.

Table 3.2:  Shortcut keys in dialog boxes.

Action Special Keys

Move to the next option in the dialog TAB

Move to a specific option and select it ALT+underlined letter in the option 
name. Press again to move to 
additional options with the same 
underlined letter.

Display a drop-down list DOWN direction key

Select an item from a list UP or DOWN direction keys to move, 
ENTER key to close the list
86



Spotfire S+ Windows
SPOTFIRE S+ WINDOWS

The Spotfire S+ user interface contains five types of windows: the
Objects Summary, Data Viewer, Graph window, Commands
window, and Report window. These windows allow you to easily
organize your work session, work with data and graphs
simultaneously, and automate repetitive tasks.

Objects 
Summary

The Objects Summary window, shown in Figure 3.3, gives a brief
overview of the objects in your working database. To open an
Objects Summary window in your Spotfire S+ session, select View �
Objects Summary.

Data Viewer The Data Viewer, shown in Figure 3.4, displays data sets in a non-
editable tabular format. To view a data set, select View � New Data
Viewer from the main menu. A dialog appears that prompts you for
the name of a Spotfire S+ data set. If the data set is in your working
database, you can select its name from the pull-down list; otherwise,
type the name directly in the Data Set field and click OK.

  

Figure 3.3:  An Objects Summary window: several can be open simultaneously.
87



Chapter 3  Working with the Graphical User Interface
.

It is important to note that only objects of class "data.frame" are
recognized by the dialogs in the Spotfire S+ graphical user interface.
This means that the Data Viewer cannot find or display matrices,
vectors, or time series objects; to display objects of these types, you
must first convert them to class "data.frame".

Graph Window By default, Spotfire S+ displays graphics in a Java graphics window,
as shown in Figure 3.5. Each Graph window can contain one or more
graphs, and you can work with multiple graph windows in your
Spotfire S+ session. 

There are four different ways to create a graphics window:

1. Generate plots from the dialogs in the Graph menu.

2. Generate plots from functions called in the Commands
window.

3. Select View � New Graph Window, or click on the New
Graph Window toolbar button. This opens a blank graphics
window.

4. Explicitly call the java.graph() device in the Commands
window, which also opens a blank graphics window.

  

Figure 3.4:  The Data Viewer.
88



Spotfire S+ Windows
 

Commands 
Window

The Commands window allows you to access the powerful Spotfire
S+ programming language. You can modify existing functions or
create new ones tailored to your specific analysis needs by using the
Commands window. By default, the Commands window is open
when you start Spotfire S+. See the chapter Getting Started for
examples of typing expressions and working from the Commands
window.

Report 
Window

When a dialog is launched, output is directed to the Report window,
shown in Figure 3.6. Text in the Report window can be formatted
before cutting and pasting it into another application. The Report
window is a place-holder for the text output resulting from any
operation in Spotfire S+. For example, error messages and warnings
are sometimes placed in a Report window. 

Figure 3.5:  A Graph window displaying a Trellis graph.
89



Chapter 3  Working with the Graphical User Interface
Spotfire S+ 
Menus

When you choose one of the main menu options, a list of additional
options drops down. You can choose from any of the active options
in the list. Menu options with a � symbol at the end of the line
display submenus when selected. Menu items with an ellipsis (...) after
the command display a dialog when selected. Table 3.3 gives brief
descriptions of each of the main Spotfire S+ menus.

 

Figure 3.6:  A Report window is an option for holding textual output.

Table 3.3:  The main Spotfire S+ menus.

Main menu Notes

File Importing, exporting, saving, and printing files.

View Standard options such as whether the Commands and Report windows are open.

Statistics See the Statistics chapter.

Graph See the Menu Graphics chapter.

Options General settings for options, styles, and color schemes.

Window Standard windows controls such as Cascade and Tile.

Help Gives on-line access to the Spotfire S+ help system.
90



Spotfire S+ Windows
Spotfire S+ 
Dialogs

Dialogs can contain multiple tabbed pages of options, as shown in
Figure 3.7. To see the options on a different page of the dialog, check
the page name. When you choose OK or Apply, any changes made
on any of the tabbed pages are applied to the selected objects.    

 

Figure 3.7:  A Spotfire S+ dialog for performing multiple comparisons.
91



Chapter 3  Working with the Graphical User Interface
92



Introduction 94

Dialogs 95
The Import Data Dialog 95
Filtering Rows 101
Format Strings 103
The Export Data Dialog 104

Supported File Types for Importing and Exporting 108

Examples 112
Importing and Exporting Subsets of Data 112
Importing and Exporting Character Data 115

IMPORTING AND EXPORTING 
DATA 4
93



Chapter 4  Importing and Exporting Data
INTRODUCTION

Spotfire S+ can read a wide variety of data formats, which makes
importing data straightforward. Spotfire S+ also allows you to export
data sets for use in other applications. The primary tools for
importing and exporting data are command-line functions named
importData and exportData, respectively. In the graphical user
interface, these functions are implemented in the Import Data and
Export Data dialogs. We discuss the dialogs and their options in this
chapter; for detailed discussions on the functions themselves, see the
online help files or the Programmer’s Guide.
94



Dialogs
DIALOGS

The Import 
Data Dialog

To import data from the graphical user interface, select File �

Import Data. The Import Data dialog appears, as shown in Figure
4.1. 

The Data page The Data page, shown in Figure 4.1, allows you to navigate to a
particular directory, choose the file to be imported, specify a
particular file format, and name the Spotfire S+ object in which the
data should be stored. Descriptions of the individual fields are:

• File Name: Select or type the name of the file to import. To
navigate to the directory that contains your data file, click on
the Browse button.

• File Format: Select the format of the file to import. See the
section Supported File Types for Importing and Exporting for
details on the selections in this list.

Figure 4.1:  The Data page of the Import Data dialog.

Note

As of Spotfire S+ 8.1, the Spotfire S+ Jave GUI is deprecated. If you want to use a GUI with 
Spotfire S+, use the Spotfire S+ Workbench.
95



Chapter 4  Importing and Exporting Data
• Save As: Enter a valid name for the Spotfire S+ object in
which the data should be stored. If an object with this name
already exists, its contents are overwritten. A valid name is
any combination of alphanumeric characters (including the
period character “.”) that does not start with a number. Names
are case-sensitive, so X and x refer to different objects. 

The Filter page The Filter page, shown in Figure 4.2, allows you to subset the data to
be imported. By specifying a query, or filter expression, you gain
additional functionality; it is possible to import random samples of
your data using a filter, for example. By default, the import filter is
blank and thus imports all of the data. Descriptions of the individual
fields are given below.

Note

By default, the Import Data dialog looks for files in your current working directory, which is
one level up from your .Data directory. If the file you wish to import is located in another
directory, either click on the Browse button to search for it, or explicitly type the path to the file
in the File Name field.

Figure 4.2:  The Filter page of the Import Data dialog.
96



Dialogs
• Keep Columns: Specify a character vector of column names
or numeric vector of column numbers that should be
imported from the data file. Only one of Keep Columns and
Drop Columns can be specified. 

• Drop Columns: Specify a character vector of column names
or numeric vector of column numbers that should not be
imported from the data file. Only one of Keep Columns and
Drop Columns can be specified. 

• Filter Rows: Specify a logical expression for selecting the
rows that should be imported from the data file. See the
section Filtering Rows for a description of the syntax accepted
by this field.

The Format page The Format page, shown in Figure 4.3, contains options specific to
ASCII, SAS, and SPSS data files. In addition, the Format page allows
you to specify the data types of imported character expressions.
Descriptions of the individual fields are given below.

• Import Strings as Factors: If this option is selected, then all
character strings are converted to factor variables when the
data file is imported. Otherwise, they are imported with the
data class "character".

Figure 4.3:  The Format page of the Import Data dialog.
97



Chapter 4  Importing and Exporting Data
• Sort Factor Levels: If this option is selected, then Spotfire S+
(alphabetically) sorts the levels for all factor variables that are
created from character strings. Otherwise, the levels are
defined in the order they are read in from the data file.

• Labeled Values as Numbers: If this option is selected, then
SAS and SPSS variables that have labels are imported as
numbers. Otherwise, the value labels are imported.

• Column Delimiter: When importing an ASCII text file, this
field specifies the character delimiters to use. The expressions
\n and \t are the only multi-character delimiters allowed,
and denote a newline and a tab, respectively. Double quotes
are reserved characters, and therefore cannot be used as
standard delimiters. If a delimiter is not supplied, Spotfire S+
searches the file automatically for the following, in the order
given: tabs, commas, semicolons, and vertical bars. If none of
these are detected, blank spaces are treated as delimiters.

• Format String: This field is required when importing a
formatted ASCII text file (FASCII). A format string specifies
the data types and formats of the imported columns. For more
details on the syntax accepted by this field, see the section
Format Strings.

• Century Cutoff: When importing an ASCII text file, this
field specifies the origin for two-digit dates. Dates with two-
digit years are assigned to the 100-year span that starts with
this numeric value. The default value of 1930 thus reads the
date 6/15/30 as June 15, 1930, while the date 12/29/29 is
interpreted as December 29, 2029.
98



Dialogs
The Range page The Range page, shown in Figure 4.4, contains options that allow
you to filter rows and columns when importing data from a
spreadsheet (Excel and Lotus files, etc.). Descriptions of the
individual fields are given below. 

• Start Column: Specify an integer that corresponds to the first
column to be imported from the spreadsheet. For example, a
value of 5 causes Spotfire S+ to begin reading data from the
file at column 5. By default, the first column in the
spreadsheet is used.

• End Column: Specify an integer that corresponds to the final
column to be imported from the spreadsheet. By default, the
final column in the spreadsheet is used, and Spotfire S+
imports everything that follows the Start Column.

• Start Row: Specify an integer that corresponds to the first
row to be imported from the spreadsheet. For example, a
value of 10 causes Spotfire S+ to begin reading data from the
file at row 10. By default, the first row in the spreadsheet is
used.

• End Row: Specify an integer that corresponds to the final
row to be imported from the spreadsheet. By default, the final
row in the spreadsheet is used, and Spotfire S+ imports
everything that follows the Start Row.

Figure 4.4:  The Range page of the Import Data dialog.
99



Chapter 4  Importing and Exporting Data
• Col of Row Names: Specify an integer denoting the column
of the data file that should be used for row names. The chosen
column is not included in the Spotfire S+ data set that gets
created. You can use this option with ASCII text files as well
as with spreadsheets.

• Row of Col Names: Specify an integer denoting the row of
the data file that should be used for column names. The
chosen row is not included in the Spotfire S+ data set that gets
created. By default, Spotfire S+ attempts to formulate sensible
column names from the first imported row.

• Page Number: Specify the page number of the spreadsheet
that should be imported. 

Note

Because the underscore “_” is a reserved character in Spotfire S+, the Import Data dialog
converts all column names that have underscores in them so that they contain periods “.”
instead.
100



Dialogs
Filtering Rows The Filter Rows field in the Import Data dialog accepts logical
expressions that specify the rows to be imported from the data file.
The filter must be written in terms of the original column names in
the file, and not in terms of the variable names specified by the Row
of Col Names field. Note that the filter is not evaluated by Spotfire
S+. This means that expressions containing built-in Spotfire S+
functions (such as mean) are not allowed. One special exception to
this rule deals with missing values: you can use NA to denote missing
values in the logical expressions, though you cannot use NA-specific
functions such as is.na and na.exclude.

Table 4.1 lists the logical operators that are accepted by the Filter
Rows field. Thus, to select all rows that do not have missing values in
the id column, type id != NA. To import all rows corresponding to
10-year-old children who weigh less than 150 pounds, type
Age==10 & Weight<150. In the filter expression, the variable name
should be on the left side of the logical operator; i.e., type Age > 12
instead of 12 < Age. 

Table 4.1:  Logical operators accepted by 
the Filter Rows field.

Operator Description

== equal to

!= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

& logical and

| logical or

! negation
101



Chapter 4  Importing and Exporting Data
The wildcard characters ? (for single characters) and * (for strings of
arbitrary length) can be used to select subgroups of character
variables. For example, the logical expression account == ????22
selects all rows for which the account variable is six characters long
and ends in 22. The expression id == 3* selects all rows for which
id starts with 3, regardless of the length of the string. 

You can use the built-in variable @rownum to import specific row
numbers. For example, the expression @rownum < 200 imports the
first 199 rows of the data file. 

Sampling functions

Three functions that permit random sampling of your data are
available to use in a Filter Rows expression: 

• samp.rand: accepts a single numeric argument prop, where
. Rows are selected randomly from the data file

with a probability of prop. 

• samp.fixed: accepts two numeric arguments, sample.size
and total.observations. The first row is drawn from the
data file with a probability of sample.size/
total.observations. The ith row is drawn with a
probability of (sample.size - i)/(total.observations - i),
where .

• samp.syst: accepts a single numeric argument n. Every nth
row is selected systematically from the data file after a random
start.

Expressions are evaluated from left to right, so you can sample a
subset of the rows in your data file by first subsetting, and then
sampling. For example, to import a random sample of half the rows
corresponding to high school graduates, use the expression
schooling>=12 & samp.rand(0.5).

The sampling functions use the Spotfire S+ random number
generator to create random samples. You can therefore use the
set.seed function in the Commands window to produce the same
data sample repeatedly. For more details, see the help files for
set.seed and .Random.seed.

0 prop 1≤ ≤

i 1 2 … sample.size, , ,=
102



Dialogs
Format Strings Format strings are used when importing data from, or exporting data
to, fixed-format text files (FASCII). With a format string, you specify
how each character in the imported file should be treated. You must
use a format string, together with the FASCII file type, if the columns
in your data file are not separated by delimiters.

The Import Data dialog

In the Import Data dialog, a valid format string includes a percent %
sign followed by the data type, for each column in the data file.
Available data types are: s, which denotes a character string; f, which
denotes a numeric value; and the asterisk *, which denotes a skipped
column. One of the characters specified in the Column Delimiters
field must separate each specification in the string. For example, the
format string

%s, %f, %*, %f

imports the first column of the data file as type "character", the
second and fourth columns as "numeric", and skips the third column
altogether. 

If a variable is designated as "numeric" and the value of a cell cannot
be interpreted as a number, the cell is filled in with a missing value.
Incomplete rows are also filled in with missing values. 

Note that format strings and field width specifications are irrelevant
for regular ASCII files, and are therefore ignored. For fixed-format
ASCII text files, however, you can specify an integer that defines the
width of each field. For example, the format string 

%4f, %6s, %3*, %6f

imports the first four entries in each row as a numeric column. The
next six entries in each row are read as characters, the next three are
skipped, and then six more entries are imported as another character
column.

Note

Some dates in text files may be imported automatically as numbers. After importing data that
contain dates, you should check the class of each column in Spotfire S+, and change them to the
appropriate data types if necessary.
103



Chapter 4  Importing and Exporting Data
The Export Data dialog

When exporting to a fixed-format ASCII text file, the syntax accepted
by the Format String field is similar to the Import Data option. In
addition to the data type, however, the precision of numeric values
can also be specified. For example, the format string

%3, %7.2, %4, %5.2

exports the first and third columns as whole numbers with 3 and 4
digits, respectively. The second and fourth columns each have two
decimal digits of precision. The precision value is ignored if it is given
for a character column; if the precision is not specified, is assumed to
be zero. If you export row names for your data set, the first entry in
the format string is reserved for the row names. 

Specifying a format string can potentially speed up the export of data
sets that have many character columns. If a format string is not
specified, Spotfire S+ must check the width of every entry in a
character or factor column, and determine a width large enough for
all values in the column. Since many of the supported file types use
fixed widths, considerable space can be saved by specifying a narrow
width for character columns that have many short values and only a
few long values; with this approach, the few long values are truncated.

The Export 
Data Dialog

To export data from the graphical user interface, select File �

Export Data. The Export Data dialog appears, as shown in Figure
4.5.

Figure 4.5:  The Data page of the Export Data dialog.
104



Dialogs
The Data page The Data page, shown in Figure 4.5, allows you to name the Spotfire
S+ object to be exported, navigate to the directory in which the file
should be stored, and specify a particular file format. Descriptions of
the individual fields are given below.

• Data Set: Enter the name of the Spotfire S+ object to be
exported. Names are case-sensitive, so X and x refer to
different objects.

• File Name: Select or type the name of the file that should
contain the contents of the data set. Spotfire S+ notifies you if
the file already exists, and then gives you the opportunity to
either overwrite the file’s contents or cancel the export. To
navigate to a particular directory, click on the Browse button. 

• File Format: Select the format of the exported data file. See
the section Supported File Types for Importing and Exporting
for details on the selections in this list.

The Filter page The Filter page, shown in Figure 4.6, allows you to subset the data to
be exported. By specifying a filter expression, you gain additional
functionality; it is possible to export random samples of your data
using a filter, for example. By default, the export filter is blank and
thus exports all of the data. Descriptions of the individual fields are
given below. 

• Keep Columns: Specify a character vector of column names
or numeric vector of column numbers that should be
exported from the data set. Only one of Keep Columns and
Drop Columns can be specified. 

• Drop Columns: Specify a character vector of column names
or numeric vector of column numbers that should not be
exported from the data set. Only one of Keep Columns and
Drop Columns can be specified. 

Note

By default, the Export Data dialog saves files in your current working directory, which is one
level up from your .Data directory. If you wish to export a file to another directory, either click
on the Browse button to search for it, or explicitly type the path to the file in the File Name
field.
105



Chapter 4  Importing and Exporting Data
• Filter Rows: Specify a logical expression for selecting the
rows that should be exported from the data set. See the
section Filtering Rows for a description of the syntax accepted
by this field. Although the discussion in that section is specific
to the Import Data dialog, the descriptions are analogous for
the Export Data dialog. 

The Format page The Format page, shown in Figure 4.7, contains options specific to
ASCII text files and factor variables. In addition, the Format page
allows you to specify whether row names and column names should
be exported from your data set. Descriptions of the individual fields
are given below.

• Export Column Names: If this option is selected, then
Spotfire S+ includes the column names of the data set as the
first row in the file. 

• Export Row Names: If this option is selected, then Spotfire
S+ includes the row names of the data set as the first column
in the file.

• Quote Character Strings: If this option is selected, then all
factors and character variables in the data set are exported
with quotation marks, so that they are recognized as strings.

Figure 4.6:  The Filter page of the Export Data dialog.
106



Dialogs
• Column Delimiter: When exporting to an ASCII text file,
this field specifies the character delimiters to use. The
expressions \n and \t are the only multi-character delimiters
allowed, and denote a newline and a tab, respectively. Double
quotes are reserved characters, and therefore cannot be used
as standard delimiters. By default, Spotfire S+ uses commas as
delimiters.

• Format String: When exporting to an ASCII text file, this
field specifies the data types and formats of the exported
columns. For more details on the syntax accepted by this
field, see the section Format Strings. 

Figure 4.7:  The Format page of the Export Data dialog.
107



Chapter 4  Importing and Exporting Data
SUPPORTED FILE TYPES FOR IMPORTING AND 
EXPORTING

Table 4.2 lists all the supported file formats for importing and
exporting data. Note that Spotfire S+ both imports from and exports
to all the listed types with two exceptions:  SigmaPlot (.jnb) files are
import only and HTML (.htm*) tables are export only.

Table 4.2:  Supported file types for importing and exporting data.

Format Type
Default 
Extension Notes

ASCII File "ASCII" .csv

.asc, .csv, .txt,

.prn

.asc, .dat, .txt,

.prn

Comma delimited.

Delimited.

Whitespace delimited; space
delimited; tab delimited; user-
defined delimiter.

dBASE File "DBASE" .dbf II, II+, III, IV files.

DIRECT-DB2 "DIRECT-DB2" DB2 database connection. No file
argument should be specified.

DIRECT-ORACLE "DIRECT-
ORACLE"

.ora Oracle database connection. No
file argument should be specified.

DIRECT-SQL "DIRECT-SQL" Microsoft SQL Server database
connection. No file argument
should be specified. This option
is available only in Spotfire S+
for Windows. 

DIRECT-SYBASE "DIRECT-
SYBASE"

Sybase database connection. No
file argument should be specified. 

Epi Info File "EPI" .rec
108



Supported File Types for Importing and Exporting
Fixed Format ASCII 
File

"FASCII" .fix, .fsc

FoxPro File "FOXPRO" .dbf

Gauss Data File "GAUSS",
"GAUSS96"

.dat Automatically reads the related
DHT file, if any, as GAUSS 89. If
no DHT file is found, reads the
.DAT file as GAUSS96. GAUSS96 is
available in Solaris/Linux only.

HTML Table "HTML" .htm* Export only.

Lotus 1-2-3 
Worksheet

"LOTUS" .wk*, .wr*

MATLAB Matrix "MATLAB"

“MATLAB7”
(export
only)

.mat File must contain a single matrix.
Spotfire S+ recognizes the file's
platform of origin on import. On
export, specify type="MATLAB" to
create a pre-MATLAB 7 version
file; otherwise, specify
type="MATLAB7" to export the
MATLAB 7 file format.

Minitab Workbook “MINITAB” .mtw Versions 8 through 12.

Microsoft Access File "ACCESS" .mdb Microsoft Access file. This file
type is available only in Spotfire
S+ for Windows. 

Microsoft Excel 
Worksheet

"EXCEL"
"EXCELX"

.xl?

.xlsx
Versions 2.1 through 2007. Note
that "EXCELX" and the new file
extension, ".xlsx" are for files
imported from or exported to
Excel 2007.

Table 4.2:  Supported file types for importing and exporting data. (Continued)

Format Type
Default 
Extension Notes
109



Chapter 4  Importing and Exporting Data
ODBC "ODBC" Not applicable For Informix (.ifx), Oracle (.ora),
and Sybase (.syb) databases.  This
file type is available only in
Spotfire S+ for Windows. 

Oracle "Oracle" .ora Same as "DIRECT-ORACLE". Oracle
database connection. No file
argument should be specified. 

Paradox Data File "PARADOX" .db

QuattroPro 
Worksheet

"QUATTRO" .wq?, .wb?

Spotfire S+ File "SPLUS" .sdd Windows, DEC Solaris/Linux.
Uses data.restore() to import
file.

STATA “STATA”

“STATASE” 
(export 
only)

.dta Portable across platforms  
(UNIX, Windows, and Mac).  
Can import STATA files and 
export STATA or STATASE. 

When exporting a STATA 
dataset, you are limited to 2,047 
characters. For larger STATA 
datasets (up to 32,767 variables), 
specify type="STATASE" .

Table 4.2:  Supported file types for importing and exporting data. (Continued)

Format Type
Default 
Extension Notes
110



Supported File Types for Importing and Exporting
SAS File "SAS",
"SASV6"

.sd2 SAS version 6 files, Windows.

"SAS1",
"SAS6UX32"

.ssd01 SAS version 6 files, HP, IBM,
Sun Solaris.

"SAS4",
"SAS6UX64"

.ssd04 SAS version 6 files, Digital
UNIX.

"SAS7" .sas7bdat, .sd7 SAS version 7 or 8 files, current
platform.

"SAS7WIN" .sas7bdat, .sd7 SAS version 7 or later data files,
Windows.

"SAS7UX32" .sas7bdat, .sd7 SAS version 7 or later data files,
Solaris (SPARC), HP-UX, IBM
AIX.

"SAS7UX64" .sas7bdat, .sd7 SAS version 7 or later data files,
Digital/Compaq UNIX.

SAS Transport File "SAS_TPT" .xpt, .tpt Version 6.x. Some special export
options may need to be specified
in your SAS program. We suggest
using the SAS Xport engine (not
PROC CPORT) to read and
write these files.

“SAS_CPORT” .stc, .cpt CPORT files created by SAS
versions 7.01 through 9.01 can be
imported.

SigmaPlot File "SIGMAPLOT" .jnb Import only.

Table 4.2:  Supported file types for importing and exporting data. (Continued)

Format Type
Default 
Extension Notes
111



Chapter 4  Importing and Exporting Data
SPSS Data File "SPSS" .sav OS/2; Windows; HP, IBM, Sun,
DEC UNIX.

SPSS Portable File "SPSSP" .por

Stata Data File "STATA" .dta Versions 2.0 and higher.

Sybase "SYBASE" Same as "DIRECT-SYBASE". Sybase
database connection. No file
argument should be specified.

SYSTAT File "SYSTAT" .syd, .sys Double- or single-precision .sys
files.

Table 4.2:  Supported file types for importing and exporting data. (Continued)

Format Type
Default 
Extension Notes
112



Examples
EXAMPLES

Importing and 
Exporting 
Subsets of 
Data

In the following examples, we import and export subsets of the built-
in data set car.test.frame, using the options in the Filter page of
the Import Data and Export Data dialogs. The car.test.frame
data is taken from the April 1990 issue of Consumer Reports, and
contains 60 observations (rows) and 8 variables (columns).
Observations of price, manufacturing country, reliability, mileage,
type, weight, engine displacement, and horsepower were taken for
each of sixty cars. This data set is shown in Figure 4.8.

Figure 4.8:  The car.test.frame data in a Data Viewer.
113



Chapter 4  Importing and Exporting Data
Using the Keep Columns and Drop Columns options

1. Open the Export Data dialog.

2. Type car.test.frame in the Data Set field. Type
car.keep.txt in the File Name field, and choose ASCII
file – tab delimited from the File Format list.

3. Click on the Filter tab and type 2,3,5 in the Keep Columns
field.

4. Click on the Format tab and check the Export Row Names
box.

5. Click OK.

Spotfire S+ creates a tab-delimited text file named car.keep.txt in
your working directory. The file contains the row names in
car.test.frame in addition to the three specified columns: Price,
Country, and Mileage. Because we checked the Export Row
Names box, the row names are considered the first column in the
exported data set. This is why a Keep Columns value of 2,3,5
actually exports the first, second, and fourth variables in the data set.

The syntax for the Drop Columns field is similar, as the following
example shows.

1. Open the Import Data dialog.

2. Type car.keep.txt in the File Name field, and choose ASCII
file – tab delimited from the File Format list. Type
car.drop in the Save As field.

3. Click on the Filter tab and type Country, Mileage in the
Drop Columns field. This imports all columns from the text
file except those named Country and Mileage.

4. Click on the Range tab and type 1 in the Col of Row Names
field. This forces Spotfire S+ to use the first column in the text
file as the row names in the data frame.

5. Click OK.

The car.drop data set, shown in Figure 4.9, contains only the pricing
data from car.test.frame. Whether used in the Import Data or
Export Data dialog, the Keep Columns and Drop Columns fields
can be specified as either a list of column numbers or a list of variable
names.
114



Examples
Using the Filter Rows option

1. Open the Export Data dialog.

2. Type car.test.frame in the Data Set field. Type
car.filter.xls in the File Name field, and choose Excel
Worksheet from the File Format list.

3. Click on the Filter tab and type Price < 10000 &
Mileage > 27 in the Filter Rows field.

4. Click on the Format tab and check the Export Row Names
box.

5. Click OK.

Spotfire S+ creates an Excel file named car.filter.xls in your working
directory. The file contains the 11 observations from
car.test.frame for which the Price variable is less than $10,000
and the Mileage variable is greater than 27 miles per gallon. 

Figure 4.9:  The car.drop data set in a Data Viewer.
115



Chapter 4  Importing and Exporting Data
Importing and 
Exporting 
Character Data

To illustrate the options relating to character data in the Import Data
and Export Data dialogs, we create a simple data set named animal.
The following Spotfire S+ command generates a data frame that has
five entries: dog, cat, bird, hyena, and goat:

> animal <- data.frame(c("dog", "cat", "bird", "hyena",
+ "goat"))
> animal

     X1
1   dog
2   cat
3  bird
4 hyena
5  goat

We can export the text file with the following steps:

1. Open the Export Data dialog.

2. Type animal in the Data Set field and animal.txt in the File
Name field. Select ASCII file – space delimited from the
File Format list.

3. Click on the Format tab and deselect the Export Column
Names option.

4. Click OK.

Spotfire S+ creates a text file named animal.txt in your working
directory that contains the five entries from animal, each with a set of
surrounding quotes. The following steps import the data into Spotfire
S+ as character strings:

1. Open the Import Data dialog.

2. Type animal.txt in the File Name field, and select ASCII
file – space delimited from the File Format list. Type
animal.char in the Data Set field.

3. Click on the Format tab, and deselect the Import Strings as
Factors and Sort Factor Levels options.

4. Click Apply.
116



Examples
Spotfire S+ recognizes animal.char as having data class "AsIs":

> animal.char

   Col1
1   dog
2   cat
3  bird
4 hyena
5  goat

> data.class(animal.char$Col1)

[1] "AsIs"

To formally convert the animal.char column, we can use the
character or as.character functions.

The steps below import the animal.txt data as a factor variable:

1. Click on the Data tab in the open Import Data dialog, and
type animal.fac in the Data Set field.

2. Click on the Format tab. Select the Import Strings as
Factors option, but leave Sort Factor Levels box
unchecked.

3. Click Apply.

The animal.fac object is identical to animal.char, but Spotfire S+
now interprets the data as a factor variable:

> data.class(animal.fac$Col1)

[1] "factor"

> levels(animal.fac$Col1)

[1] "dog"   "cat"   "bird"  "hyena" "goat"

Note that the levels of the factor appear in the same order as they do
in the text file. The steps given below sort the levels alphabetically
instead.
117



Chapter 4  Importing and Exporting Data
1. Click on the Data tab in the open Import Data dialog, and
type animal.fac2 in the Data Set field.

2. Click on the Format tab and select the Sort Factor Levels
option.

3. Click OK.

The levels of the factor variable are now sorted alphabetically:

> data.class(animal.fac2$Col1)

[1] "factor"

> levels(animal.fac2$Col1)

[1] "bird"  "cat"   "dog"   "goat"  "hyena"
118



Introduction 121
Overview 122
General Procedure 124
Dialogs 125
Dialog Fields 125
Graph Options 126

Scatter Plots 127
A Basic Example 128
Line Plots 131
Grouping Variables 133
Line Fits 134
Nonparametric Curve Fits 138
Multipanel Conditioning 147

Visualizing One-Dimensional Data 152
Density Plots 153
Histograms 157
QQ Math Plots 159
Bar Charts 161
Dot Plots 164
Pie Charts 166

Visualizing Two-Dimensional Data 169
Box Plots 169
Strip Plots 173
QQ Plots 175

Visualizing Three-Dimensional Data 178
Contour Plots 178
Level Plots 180
Surface Plots 182
Cloud Plots 184

MENU GRAPHICS 5
119



Chapter 5  Menu Graphics
Visualizing Multidimensional Data 186
Scatterplot Matrices 186
Parallel Plots 189
Multipanel Trellis Graphics 191

Time Series 195
Line Plots 195
High-Low Plots 199
Stacked Bar Plots 202

References 205
120



Introduction
INTRODUCTION

The power of Spotfire S+ comes from the integration of its graphics
capabilities with its statistical analysis routines. In the Statistics
chapter, we show how statistical procedures are performed in Spotfire
S+. In this chapter, we introduce the Spotfire S+ graphics that are
built into the menu options. It is not necessary to read this entire
chapter before you begin generating graphics. Once you’ve acquired
a basic understanding of the way the Graph dialogs are organized,
you can refer directly to a section of interest. 

The dialogs under the Graph menu give you access to nearly all of
the Trellis functions in Spotfire S+: xyplot, densityplot,
histogram, qqmath, barchart, dotplot, piechart, bwplot,
stripplot, qq, contourplot, levelplot, wireframe, splom, and
parallel. Due to the complicated syntax that these functions
require, Trellis graphics usually have the steepest learning curve
among users. With the graphical user interface, however, you can
create highly involved Trellis graphics as easily as you create scatter
plots and histograms.

We begin this chapter by presenting general information about the
graphics dialogs, and devote the remaining sections to descriptions
and examples for each of them. The presentation of the Scatter Plot
dialog contains the most detail of all the graphics in this chapter. If
you are interested in the basic options under the Titles, Axes, and
Multipanel Conditioning tabs of the graphics dialogs, see the
section Scatter Plots. For all other graphs, we focus on the dialog
options specific to particular plot types.

The Spotfire S+ graphical user interface is designed to create
complicated graphs easily and quickly for exploratory data analysis.
Not all of the Spotfire S+ functionality has been built into the menu
options, however, and it is therefore necessary to use command line
functions in some sections throughout this chapter. For completely
customized graphics, you will likely need to resort to the command
line functions as well.
121



Chapter 5  Menu Graphics
Overview Figure 5.1 displays many elements of the Spotfire S+ interface.

  • Graph menu: The Graph menu gives you access to nearly
all of the Trellis functions available in Spotfire S+. The
procedures are logically grouped, with submenus that allow
you to precisely specify the procedure you want to use. For
example, Figure 5.1 displays the menu tree for density plots.
It is selected by choosing Graph �  One Variable �

Density Plot.

  • Graph dialogs: The open dialog in Figure 5.1 is entitled
Density Plot and is used to display a density estimate for a
data set.

Figure 5.1:  Graphics-related menus and windows.

Note

As of Spotfire S+ 8.1, the Spotfire S+ Jave GUI is deprecated. If you want to use a GUI with 
Spotfire S+, use the Spotfire S+ Workbench.
122



Introduction
  • Data Viewer: The open window on the left in Figure 5.1 is a
Data viewer, which you can use to see a data set in its
entirety. The Data viewer is not a data editor, however, and
you cannot use it to modify or create a new data set.
123



Chapter 5  Menu Graphics
  • Graph Window: A Graph window displays the graphics
you create. Figure 5.1 shows the density estimate for a
variable in a data set.

  • Commands Window (not shown): The Commands window
contains the Spotfire S+ command line prompt, which you
can use to call Spotfire S+ functions that are not yet
implemented in the menu options.

  • Report Window (not shown): Any error, warning, or
informational message generated by a graphics dialog is
printed in the Report window. 

General 
Procedure

The basic procedure for creating graphs is the same regardless of the
type of graph chosen.

1. Choose the graph you want to create from the Graph menu.
The dialog corresponding to that procedure opens.

2. Select the data set, variables, and options for the procedure
you have chosen. (These are slightly different for each dialog.)
Click the OK or Apply button to generate the graph. If you
click OK, the dialog closes when the graph is generated; if
you click Apply, the dialog remains open. We use the Apply
button extensively in the examples throughout this chapter, as
it allows us to experiment with dialog options and build
graphs incrementally.

3. Check for messages. If a message is generated, it appears in
the Report window.

4. Check the result. If everything went well, your graph is
displayed in a Graph window.

If you want, you can change the variables, parameters, or options in
the dialog and click Apply to generate new results. Spotfire S+ makes
it easy to experiment with options and to try variations on your
analysis.
124



Introduction
Dialogs Much of the graphics functionality in Spotfire S+ can be accessed
through the Graph menu. The Graph menu includes dialogs for
creating one-, two-, and three-dimensional plots, as well as Trellis
graphics and time series plots. Many of the dialogs consist of tabbed
pages that allow for some formatting, so that you can include legends,
titles, and axis labels in your plots. Each dialog has a corresponding
function that is executed using dialog inputs as values for function
arguments. Usually, it is only necessary to fill in a few fields on the
first page of a tabbed dialog to launch the function call.

Dialog Fields Many dialogs include a Data Set field. To specify a data set, you can
either type its name directly in the Data Set field, or make a selection
from the dropdown list. Note that the Data Set field recognizes
objects of class "data.frame" only, and does not accept matrices,
vectors, or time series. For this reason, we periodically drop to the
Commands window in this chapter to create objects that are
accepted by the menu options. 

Most dialogs that fit statistical models include a Subset Rows field
that you can use to specify only a portion of a data set. To use a subset
of your data in an analysis, enter a Spotfire S+ expression in the
Subset Rows field that identifies the rows to use. The expression can
evaluate to a vector of logical values: true values indicate which rows
to include in the analysis, and false values indicate which rows to
drop. Alternatively, the expression can specify a vector of row
indices. For example:

• The expression Species=="bear" includes only rows for
which the Species column contains bear.

• The expression Age>=13 & Age<20 includes only rows that
correspond to teenage values of the Age variable.

• The expression 1:20 includes the first 20 rows of the data.

To use all rows in a data set, leave the Subset Rows field blank. 

Note that the Data Set field recognizes objects of class
"data.frame" only, and does not accept matrices or vectors. One
exception to this is the Time Series graphics dialogs, which
recognize objects of class "timeSeries" only. For this reason, we
periodically drop to the Commands window in this chapter to create
objects that are accepted by the menu options.
125



Chapter 5  Menu Graphics
Graph Options The Options menu contains a few options that affect the graphics
you create from the interface. In particular:

• The Options �  Dialog Options window includes a Create
New Graph Window check box. If this box is selected, as it
is by default, then a new Graph window is created each time
you click OK or Apply.

• The Options � Set Graph Colors window allows you to
select a color scheme for your graphics. 

• The Options �  Graph Options window governs whether
tabbed pages in Graph windows are deleted, preserved, or
written over when a new plot is generated.
126



Scatter Plots
SCATTER PLOTS

The scatter plot is the fundamental visual technique for viewing and
exploring relationships in two-dimensional data. In this section, we
discuss many of the options available in the Scatter Plot dialog,
including grouping variables, smoothing, and conditioning. In
addition, we also show how you can use the Scatter Plot dialog to
create one-dimensional line plots of each of your variables. For details
on creating line plots specifically for time series data, see the section
Time Series.

Creating a scatter plot

From the main menu, choose Graph � Scatter Plot. The Scatter
Plot dialog opens, as shown in Figure 5.2.

Figure 5.2:  The Scatter Plot dialog.
127



Chapter 5  Menu Graphics
A Basic 
Example

The “main gain” data in Table 5.1  present the relationship between
the number of housing starts and the number of new main telephone
extensions. The observations were recorded once per year on the first
of January, for a total of fourteen years beginning in 1971. The first
column, “New Housing Starts,” is the change in new housing starts
from one year to the next in a geographic area around New York
City; the units are “sanitized” for confidentiality. The second column,
“Gain in Main Residential Telephone Extensions,” is the increase in
main residential telephone extensions for the same geographic area,
again in sanitized units. In this example, we explore the relationship
between these two variables using scatter plots.

Table 5.1:  Main gain data.

New Housing Starts
Gain in Main Residential

Telephone Extensions

0.06 1.135

0.13 1.075

0.14 1.496

-0.07 1.611

-0.05 1.654

-0.31 1.573

0.12 1.689

0.23 1.850

-0.05 1.587

-0.03 1.493

0.62 2.049

0.29 1.942

-0.32 1.482

-0.71 1.382
128



Scatter Plots
Setting up the data

The data in Table 5.1  are best represented as a data set with two
variables. To create this data set, type the following in the
Commands window:

> exmain <- data.frame(
+ diff.hstart = c(0.06, 0.13, 0.14, -0.07, -0.05, -0.31,
+ 0.12, 0.23, -0.05, -0.03, 0.62, 0.29, -0.32, -0.71),
+ tel.gain = c(1.135, 1.075, 1.496, 1.611, 1.654, 1.573,
+ 1.689, 1.850, 1.587, 1.493, 2.049, 1.942, 1.482, 1.382))
> exmain

   diff.hstart tel.gain 
 1        0.06    1.135
 2        0.13    1.075
 3        0.14    1.496
 4       -0.07    1.611
 5       -0.05    1.654
 6       -0.31    1.573
 7        0.12    1.689
 8        0.23    1.850
 9       -0.05    1.587
10       -0.03    1.493
11        0.62    2.049
12        0.29    1.942
13       -0.32    1.482
14       -0.71    1.382

Exploratory data analysis

If you are responsible for planning the number of new residence
extensions that should be installed, you might be interested in
whether there is a strong relationship between diff.hstart and
tel.gain. If there is, you can use diff.hstart to predict
tel.gain. As a first step in assessing whether there appears to be a
strong relationship between the two variables, make a scatter plot:

1. Open the Scatter Plot dialog.

2. Type exmain in the Data Set field.

3. Select diff.hstart as the x Axis Value and tel.gain as
the y Axis Value.
129



Chapter 5  Menu Graphics
4. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

5. Click Apply to leave the dialog open.

The plot is shown in Figure 5.3. 

The plot immediately reveals two important features in the data. With
the exception of two of the data points, there is a positive and roughly
linear relationship between new housing starts and the increase in
residential telephone extensions. The two exceptional data points are
well detached from the remainder of the data; such data points are
called outliers. In the exmain data, the two outliers correspond to the
first two observations.

Figure 5.3:  Scatter plot of tel.gain versus diff.hstart.

1.2

1.4

1.6

1.8

2.0

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

diff.hstart

te
l.g

a
in
130



Scatter Plots
Formatting the graph

You can format a graph with the options in the Plot, Titles, and Axes
tabs of the Scatter Plot dialog. In the Plot tab, you can change the
color, style, or size of the plotting symbols and lines. In the Titles tab,
you can modify axes labels and place a main title on the graph. In the
Axes tab, you can change the aspect ratio, scale, relation, limits, and
tick-label orientation of your axes. For example:

1. Click on the Plot tab in the open Scatter Plot dialog. Select
Diamond, Solid as the Plotting Style.

2. Click on the Titles tab. Type The Main Gain Data for the
Main Title, New Housing Starts for the x Axis Label, and
Gain in Residential Telephone Extensions for the y Axis
Label.

3. Click on the Axes tab. Type -0.9, 0.7 in the X Limits field
and 0.9, 2.1 in the Y Limits field.

4. Click OK to close the dialog. 

A new Graph window appears displaying the changes you made.

Line Plots Scatter plots are useful tools for visualizing the relationship between
any two variables, regardless of whether there is any particular
ordering of the x axis variable. On the other hand, one of the two
variables you want to visualize may be ordered, so that the order in
which the observations were taken is as important to the analysis as
the values themselves. A line plot, or index plot, is a helpful tool for
displaying one-dimensional ordered data. In a line plot, the ordered
data are plotted along the y axis and their corresponding indices are
plotted on the x axis. This kind of plot arises often in time series data;
for details on the line plots available under the Time Series graphics
menu, see the section Time Series.
131



Chapter 5  Menu Graphics
Example

In the section A Basic Example on page 128, we created a scatter plot
of the variables in the exmain data set. In this example, we create a
line plot of the tel.gain variable.

1. If you have not done so already, create the exmain data set
with the instructions given on page 129.

2. Open the Scatter Plot dialog.

3. Type exmain in the Data Set field.

4. Select tel.gain as the y Axis Value. This plots the values in
tel.gain against a vector of indices that is the same length as
tel.gain.

5. Click on the Plot tab and select Both Points & Lines from
the Type list.

6. Click on the Titles tab. Type index for the x Axis Label and
Gain in Residential Telephone Extensions for the y Axis
Label.

7. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

8. Click OK.

The result is shown in Figure 5.4. The fourteen values in tel.gain,
representing observations made in the years 1971-1984, are plotted
sequentially using both points and lines. The observation from 1971
corresponds to the point with the smallest x coordinate, and the
observation from 1984 corresponds to the point with the largest x
coordinate. From the plot, we can easily see that gains in new
residential telephone extensions were at their lowest during the first
two years of the study, rose rapidly in the third year, and then
oscillated up and down starting in year 6 of the study.
132



Scatter Plots
 

Grouping 
Variables

It is often useful to plot multiple two-dimensional scatter plots on the
same set of axes according to the value of a third factor (categorical)
variable. In the Scatter Plot dialog, you can choose to vary such
scatter plots by symbol color, style, or size. In addition, legends can
be included, and are placed on the right side of the graphics area.

Example

The data set Puromycin has 23 rows representing the measurement
of initial velocity (vel) of a biochemical reaction for 6 different
concentrations of substrate (conc) and two different cell treatments
(state). In this example, we plot velocity versus concentration with
different symbols for the two treatment groups, treated and
untreated.

1. Open the Scatter Plot dialog.

2. Type Puromycin in the Data Set field.

3. Select conc as the x Axis Value and vel as the y Axis
Value.

Figure 5.4:  Line plot of tel.gain.

1.2

1.4

1.6

1.8

2.0

2 4 6 8 10 12 14

index

G
ai

n 
in

 R
es

id
en

tia
l T

el
ep

ho
ne

 E
xt

en
si

on
s

133



Chapter 5  Menu Graphics
4. Click on the Plot tab and select state as the Group
Variable. Check the boxes for Vary Symbol Style and
Include Legend.

5. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

6. Click OK.

The result is displayed in Figure 5.5. 

Line Fits You can fit a straight line to your scatter plot data and superpose the
fit with the data. Such a fit helps you visually assess how well the data
conforms to a linear relationship between two variables. When the
linear fit seems adequate, the fitted straight line plot provides a good
visual indication of both the slope of bivariate data, and the variation
of the data about the straight line fit. The Scatter Plot dialog includes
two kinds of line fits in the Fit tab, as described below.

Figure 5.5:  Scatter plot of the Puromycin data.

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

conc

ve
l untreated

treated
134



Scatter Plots
• Linear Least Squares: computes a line fit via a least squares
algorithm.

• Robust MM: computes a line fit via a robust fitting criterion.
Robust line fits are useful for fitting linear relationships when
the random variation in the data is not Gaussian (normal), or
when the data contain significant outliers.

Linear Least 
Squares

The method of least squares fits a line to data so that the sum of the
squared residuals is minimized. Suppose a set of  observations of the

response variable  correspond to a set of values of the predictor 

according to the model , where  and

. The ith residual  is defined as the difference

between the ith observation  and the ith fitted value :

that is, . The method of least squares finds a set of fitted

values that minimizes the sum .

Example

In the section A Basic Example on page 128, we created a scatter plot
of the exmain data. You can fit a straight line to the data by the
method of least squares and display the result superposed on a scatter
plot of the data. The following steps illustrate how to do this.

1. If you have not done so already, create the exmain data set
with the instructions given on page 129.

2. Open the Scatter Plot dialog.

3. Type exmain in the Data Set field.

4. Select diff.hstart as the x Axis Value and tel.gain as
the y Axis Value.

5. Click on the Fit tab and select Least Squares as the
Regression Type.

n
yi xi

ŷ f x̂( )= ŷ y1 y2 … yn, , ,( )=

x̂ x1 x2 … xn, , ,( )= ri

yi yi
ˆ f̂ xi( )=

ri yi ŷi–=

ri
2

i 1=

n

∑

135



Chapter 5  Menu Graphics
6. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

7. Click OK.

The result is shown in Figure 5.6. 

Notice that the two outliers in the data appear to influence the least
squares fit by pulling the line downward. This reduces the slope of the
line relative to the remainder of the data.

Robust MM The least squares fit of a straight line is not robust, and outliers can
have a large influence on the location of the line. A robust method is
one that is not significantly influenced by outliers, no matter how
large. Robust fitting methods are useful when the random variation in
the data is not normal (Gaussian), or when the data contain significant
outliers. In such situations, standard least squares may return inaccu-
rate fits. Robust MM is one robust fitting method used to guard against
outlying observations. The MM method is the robust procedure cur-
rently recommended by TIBCO Software Inc.

Figure 5.6:  Scatter plot of tel.gain versus diff.hstart with a least squares 
line fit.

1.2

1.4

1.6

1.8

2.0

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

diff.hstart

te
l.g

a
in
136



Scatter Plots
Example

In this example, we fit a robust line to the exmain data.

1. If you have not done so already, create the exmain data set
with the instructions given on page 129.

2. Open the Scatter Plot dialog.

3. Type exmain in the Data Set field.

4. Select diff.hstart as the x Axis Value and tel.gain as
the y Axis Value.

5. Click on the Fit tab and select Robust as the Regression
Type.

6. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

7. Click OK.

The result is shown in Figure 5.7.  

Compare Figure 5.6 to Figure 5.7 and note how much the two outliers
influence the least squares line.

Figure 5.7:  Scatter plot of tel.gain versus diff.hstart with robust MM line.

1.2

1.4

1.6

1.8

2.0

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

diff.hstart

te
l.g

ai
n

137



Chapter 5  Menu Graphics
Nonparametric 
Curve Fits

In the previous section, we fit linear parametric functions to scatter
plot data. Frequently, you do not have enough prior information to
determine what kind of parametric function to use. In such cases, you
can fit a nonparametric curve, which does not assume a particular type
of relationship.

Nonparametric curve fits are also called smoothers since they attempt
to create a smooth curve showing the general trend in the data. The
simplest smoothers use a running average, where the fit at a particular x
value is calculated as a weighted average of the y values for nearby
points. The weight given to each point decreases as the distance
between its x value and the x value of interest increases. In the
simplest kind of running average smoother, all points within a certain
distance (or window) from the point of interest are weighted equally
in the average for that point. The window width is called the
bandwidth of the smoother, and is usually given as a percentage of the
total number of data points. Increasing the bandwidth results in a
smoother curve fit but may miss rapidly changing features.
Decreasing the bandwidth allows the smoother to track rapidly
changing features more accurately, but results in a rougher curve fit.

More sophisticated smoothers add variations to the running average
approach. For example, smoothly decreasing weights or local linear
fits may be used. However, all smoothers have some type of
smoothness parameter (bandwidth) controlling the smoothness of the
curve. The issue of good bandwidth selection is complicated and has
been treated in many statistical research papers. You can, however,
gain a good feeling for the practical consequences of varying the
bandwidth by experimenting with smoothers on real data.

This section describes how to use four different types of smoothers.

• Kernel Smoother: a generalization of running averages in
which different weight functions, or kernels, may be used. The
weight functions provide transitions between points that are
smoother than those in the simple running average approach. 

• Loess Smoother: a noise-reduction approach that is based on
local linear or quadratic fits to the data.
138



Scatter Plots
• Spline Smoother: a technique in which a sequence of
polynomials is pieced together to obtain a smooth curve.

• Supersmoother: a highly automated variable span smoother.
It obtains fitted values by taking weighted combinations of
smoothers with varying bandwidths.

In particular, we illustrate how a smoother’s bandwidth can be used
to control the degree of smoothness in a curve fit. 

Kernel Smoothers A kernel smoother is a generalization of running averages in which
different weight functions, or kernels, may be used. The weight
functions provide transitions between points that are smoother than
those in the simple running average approach. The default kernel is
the normal or Gaussian kernel, in which the weights decrease with a
Gaussian distribution away from the point of interest. Other choices
include a triangle, a box, and the Parzen kernel. In a triangle kernel,
the weights decrease linearly as the distance from the point of interest
increases, so that the points on the edge of the smoothing window
have a weight near zero. A box or boxcar smoother weighs each point
within the smoothing window equally, and a Parzen kernel is a box
convolved with a triangle.

Example

The sensors data set contains the responses of eight different
semiconductor element sensors to varying levels of nitrous oxide
(NOx) in a container of air. The engineers who designed these
sensors study the relationship between the responses of these eight
sensors to determine whether using two sensors, instead of one,
allows a more precise measurement of the concentration of NOx.
Prior investigation has revealed that there may be a nonlinear
relationship between the responses of the two sensors, but not much
is known about the details of the relationship. In the examples below,
we use kernel smoothers to graphically explore the relationship
between the fifth and sixth sensors.

First, create a scatter plot of sensor 5 versus sensor 6 with a box
kernel:

1. Open the Scatter Plot dialog.

2. Type sensors in the Data Set field.

3. Select V5 as the x Axis Value and V6 as the y Axis Value.
139



Chapter 5  Menu Graphics
4. Click on the Fit tab. Select Kernel as the Smoothing Type
and Box as the Kernel.

5. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

6. Click Apply to leave the dialog open.

This results are shown in Figure 5.8.  

You can experiment with the smoothing parameter by varying the
value in the Bandwidth field. For example, click on the Fit tab in the
open Scatter Plot dialog. By default, no bandwidth value is specified.
Instead, the standard deviation of the x variable is used to compute a
good estimate for the bandwidth; this allows the default bandwidth to
scale with the magnitude of the data. Type various values between 0.1
and 0.6 in the Bandwidth field, clicking Apply each time you choose
a new value. Each time you click Apply, a new Graph window
appears that displays the updated curve. Note how the smoothness of
the fit is affected. Which bandwidth produces the best “eyeball” curve
fit? The box kernel smoother with a bandwidth choice of 0.3 is shown
in Figure 5.9.

Figure 5.8:  Sensor 5 versus sensor 6 with a box kernel smoother line.

0.2

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9

V5

V
6

140



Scatter Plots
 

To obtain a smoother curve, we can experiment with the remaining
three kernels. For example, click on the Fit tab in the open Scatter
Plot dialog, choose Parzen as the Kernel, and click Apply. Again,
you can also vary the bandwidth choice to see how the smoothness of
the fit is affected. Type various values in the Bandwidth field, clicking
Apply each time you choose a new value. Each time you click
Apply, a new Graph window appears that displays the updated
curve. The Parzen kernel smoother with a bandwidth choice of 0.15 is
shown in Figure 5.10.

When you are finished experimenting, click OK to close the dialog. 

Figure 5.9:  Sensor 5 versus sensor 6 with a box kernel smoother line using a 
bandwidth of 0.3.

0.2

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9

V5

V
6

141



Chapter 5  Menu Graphics
Loess Smoothers The loess smoother, developed by W.S. Cleveland and others at Bell
Laboratories (1979), is a clever approach to smoothing that is
essentially a noise-reduction algorithm. It is based on local linear or
quadratic fits to the data: at each point, a line or parabola is fit to the
points within the smoothing window, and the predicted value is taken
as the y value for the point of interest. Weighted least squares is used
to compute the line or parabola in each window. Connecting the
computed y values results in a smooth curve.

For loess smoothers, the bandwidth is referred to as the span of the
smoother. The span is a number between 0 and 1, representing the
percentage of points that should be included in the fit for a particular
smoothing window. Smaller values result in less smoothing, and very
small values close to 0 are not recommended. If the span is not
specified, an appropriate value is computed using cross-validation.
For small samples ( ), or if there are substantial serial
correlations between observations close in x value, a prespecified
fixed span smoother should be used.

Figure 5.10:  Sensor 5 versus sensor 6 with a Parzen kernel smoother line using a 
bandwidth of 0.15.

0.2

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9

V5

V
6

n 50<
142



Scatter Plots
Example

In this example, we use loess smoothers to graphically explore the
relationship between the fifth and sixth sensors in the sensors data
set. 

1. Open the Scatter Plot dialog.

2. Type sensors in the Data Set field.

3. Select V5 as the x Axis Value and V6 as the y Axis Value.

4. Click on the Fit tab and select Loess as the Smoothing
Type.

5. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

6. Click Apply to leave the dialog open.

The result is shown in Figure 5.11. 

You can experiment with the smoothing parameter by varying the
value in the Span field. For example, click on the Fit tab in the open
Scatter Plot dialog. The bandwidth used to create Figure 5.11 is the

Figure 5.11:  Sensor 5 versus sensor 6 with a loess smoother line.

0.2

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9

V5

V
6

143



Chapter 5  Menu Graphics
default value of 0.75. Since the sensors data set has eighty
observations, this means that  values are included in
the calculation at each point. Type various values between 0.1 and 1
in the Span field, clicking Apply each time you choose a new value.
Each time you click Apply, a new Graph window appears that
displays the updated curve. Note how the smoothness of the fit is
affected.

You can also experiment with the degree of the polynomial that is
used in the local fit at each point. If you select Two as the Degree in
the Fit tab, local quadratic fits are used instead of local linear fits. The
Family field in the Fit tab governs the assumed distribution of the
errors in the smoothed curve. The default family is Symmetric,
which combines local fitting with a robustness feature that guards
against distortion by outliers. The Gaussian option employs strictly
local fitting methods, and can be affected by large outliers. When you
are finished experimenting, click OK to close the dialog.

Spline Smoothers Spline smoothers are computed by piecing together a sequence of
polynomials. Cubic splines are the most widely used in this class of
smoothers, and involve locally cubic polynomials. The local
polynomials are computed by minimizing a penalized residual sum of
squares. Smoothness is assured by having the value, slope, and
curvature of neighboring polynomials match at the points where they
meet. Connecting the polynomials results in a smooth fit to the data.
The more accurately a smoothing spline fits the data values, the
rougher the curve, and vice versa.

The smoothing parameter for splines is called the degrees of freedom.
The degrees of freedom controls the amount of curvature in the fit,
and corresponds to the degree of the local polynomials. The lower
the degrees of freedom, the smoother the curve. The degrees of
freedom automatically determines the smoothing window, by
governing the trade-off between smoothness of the fit and fidelity to
the data values. For  data points, the degrees of freedom should be

between 1 and . Specifying  degrees of freedom results in
a curve that passes through each of the data points exactly.

0.75 80× 60=

n
n 1– n 1–
144



Scatter Plots
Example

In this example, we use spline smoothers to graphically explore the
relationship between the fifth and sixth sensors in the sensor data
set. 

1. Open the Scatter Plot dialog.

2. Type sensors in the Data Set field.

3. Select V5 as the x Axis Value and V6 as the y Axis Value.

4. Click on the Fit tab and select Smoothing Spline as the
Smoothing Type.

5. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

6. Click Apply to leave the dialog open.

You can experiment with the smoothing parameter by varying the
value in the Degrees of Freedom field. For example, click on the Fit
tab in the open Scatter Plot dialog. The degrees of freedom is set to 3
by default, which corresponds to cubic splines. The sensors data set
has eighty observations, so type various integer values between 1 and
79 in the Degrees of Freedom field (or select values from the drop-
down list). If Crossvalidate is selected as the Degrees of Freedom,
the smoothing parameter is computed internally by cross-validation.
Click Apply each time you choose a new value, and a new Graph
window appears that displays the updated curve. Note how the
smoothness of the fit is affected. When you are finished
experimenting, click OK to close the dialog.

The spline smoother with 6 degrees of freedom is shown in Figure
5.12.
145



Chapter 5  Menu Graphics
  

Friedman’s 
Supersmoother

The supersmoother is a highly automated variable span smoother. It
obtains fitted values by taking a weighted combination of smoothers
with varying bandwidths. Like loess smoothers, the main parameter
for supersmoothers is called the span. The span is a number between
0 and 1, representing the percentage of points that should be included
in the fit for a particular smoothing window. Smaller values result in
less smoothing, and very small values close to 0 are not
recommended. If the span is not specified, an appropriate value is
computed using cross-validation. For small samples ( ), or if
there are substantial serial correlations between observations close in
x value, a prespecified fixed span smoother should be used.

Figure 5.12:  Sensor 5 versus sensor 6 with a spline smoother line using 6 degrees of 
freedom.

0.2

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9

V5

V
6

n 50<
146



Scatter Plots
Example

In this example, we use a supersmoother to graphically explore the
relationship between the fifth and sixth sensors in the sensors data
set.

1. Open the Scatter Plot dialog.

2. Type sensors in the Data Set field.

3. Select V5 as the x Axis Value and V6 as the y Axis Value.

4. Click on the Fit tab and select Supersmoother as the
Smoothing Type.

5. Click Apply to leave the dialog open.

A Graph window is created containing a plot. As in the previous
examples, you can experiment with the smoothing parameter by
varying the value in the Span field. For example, click on the Fit tab
in the open Scatter Plot dialog. By default, no span value is specified,
so it is computed internally by cross-validation. Type various values
between 0.1 and 1 in the Span field, clicking Apply each time you
choose a new value. Each time you click Apply, a new Graph
window appears that displays the updated curve. Note how the
smoothness of the fit is affected. When you are finished
experimenting, click OK to close the dialog.

Multipanel 
Conditioning

In the section Grouping Variables, we plotted multiple two-
dimensional scatter plots on the same set of axes according to the
value of a third factor (categorical) variable. It is also possible to place
multiple scatter plots on separate axes, conditioned on the value of a
third variable. When a conditioning variable is categorical, Spotfire
S+ generates plots for each level. When a conditioning variable is
numeric, conditioning is automatically carried out on the sorted
unique values; each plot represents either an equal number of
observations or an equal range of values. 

The Scatter Plot dialog, as well as many other dialogs in the Graph
menu, includes options for specifying conditioning variables,
arranging the plots, and labeling the panels. For additional detailed
examples on conditioning in the Graph dialogs, see the section
Visualizing Multidimensional Data.
147



Chapter 5  Menu Graphics
Example 1

The ethanol data set records 88 measurements from an experiment
in which ethanol was burned in a single cylinder automobile test
engine. The three variables in the experiment are the concentration
of nitric oxide and nitrogen dioxide in the engine’s exhaust (NOx), the
compression ratio of the engine (C), and the equivalence ratio at
which the engine was run (E). In this example, we examine the
relationship between NOx and E for various values of C.

The conditioning variable C is numeric and has 6 unique values: 7.5,
9.0, 12.0, 15.0, and 18.0. We create scatter plots of NOx versus E for
each value of these values. Spotfire S+ displays the conditioned plots,
or panels, in the same order that the levels function returns the
values of the conditioning variable. The effect is the same if we
declare the conditioning variable to be a factor directly:

> ethanol.fac <- factor(ethanol$C)
> levels(ethanol.fac)

[1] "7.5" "9"   "12"  "15"  "18"

In the multipanel graph, the individual scatter plots are therefore
placed in order from C=7.5 to C=18.

By default, Spotfire S+ displays the individual scatter plots in
succession from the bottom left corner of the Graph window to the
top right corner. Figure 5.13 displays the plots generated by the steps
below. The scatter plot for C=7.5 is in the lower left corner of the
window, the plot for C=9.0 is to the right of it, etc. 

1. Open the Scatter Plot dialog.

2. Type ethanol in the Data Set field.

3. Select E as the x Axis Value and NOx as the y Axis Value.
Highlight C in the Conditioning box.

4. Click on the Axes tab. Set the Aspect Ratio to be a
Specified Value and type 0.5 for the Ratio Value. 

5. Select Horizontal for the Tick Marks Label Orientation.
This option places horizontal tick labels on both the x and y
axes. By default, labels are parallel to the axes, so that x axis
tick labels are horizontal and y axis labels are vertical.

6. Click on the Multipanel tab. Select Unique Values as the
Interval Type, and click Apply to leave the dialog open. 
148



Scatter Plots
You can change the layout of the plots in the Graph window with the
options in the Multipanel tab of the open Scatter Plot dialog. For
example, to start the individual plots in the upper left corner of the
window instead of the lower left corner, select Table Order from the
Panel Order list. This places the plot for C=7.5 in the upper left
corner, the plot for C=9.0 to the right of it, and so on. You can also
specify the number of rows and columns in the layout, and the
number of pages is computed accordingly. Conversely, you can
specify the number of pages, and the panels are placed in appropriate
rows and columns. When you are finished experimenting, click OK
to close the dialog.

Figure 5.13:  Scatter plots of NOx versus E for various values of C.

1

2

3

4

0.6 0.8 1.0 1.2

7.5 9

12

1

2

3

4
15

1

2

3

4
18

E

N
O

x

149



Chapter 5  Menu Graphics
Example 2

In this example, we examine the relationship between NOx and C for
various values of E. However, E varies in a nearly continuous way:
there are 83 unique values out of 88 observations. Since E is a
continuous variable, each panel represents either an equal number of
observations or an equal range of values.

1. Open the Scatter Plot dialog.

2. Type ethanol in the Data Set field.

3. Select C as the x Axis Value and NOx as the y Axis Value.
Highlight E in the Conditioning box.

4. Click on the Axes tab. Set the Aspect Ratio to be Bank to
45 Degree.

5. Select Horizontal for the Tick Marks Label Orientation.
This option places horizontal tick labels on both the x and y
axes. By default, labels are parallel to the axes, so that x axis
tick labels are horizontal and y axis labels are vertical.

6. Suppose we want to generate a  grid containing 9 scatter
plots, with an equal number of observations in each panel.
Click on the Multipanel tab. Type 5 for the # of Columns
and 2 for the # of Rows. Type 9 in the # of Panels field and
0.25 as the Overlap Fraction.

7. Click Apply to leave the dialog open.

The result is displayed in Figure 5.14. Since the Panel Order is set to
Graph Order by default, the minimum values of E are in the lower
left panel and the maximum values are in the upper right panel. To
place the plot with the minimum values in the upper left corner of the
window instead, click on the Multipanel tab in the open Scatter Plot
dialog and select Table Order as the Panel Order. To generate plots
according to equal-length intervals of the values in E, select Equal
Ranges as the Interval Type.

2 5×
150



Scatter Plots
The Overlap Fraction in the Multipanel Conditioning tab
governs the amount of points that are shared by successive intervals
of the conditioning variable. The endpoints of the intervals are
chosen to make either the number of points (if Equal Counts is
chosen) or the length of the intervals (if Equal Ranges is chosen) as
nearly equal as possible. At the same time, the amount of points
shared by successive intervals is kept as close to the Overlap
Fraction as possible. If the Overlap Fraction is between 0 and 1, it
is the fraction of points shared between adjacent intervals. If the
Overlap Fraction is greater than or equal to 1, it is the number of
points shared between adjacent intervals. 

When you are finished experimenting, click OK to close the dialog.

Figure 5.14:  Scatter plots of NOx versus C for various values of E.

1

2

3

4

8 10 12 14 16 18

E E

8 10 12 14 16 18

E E

8 10 12 14 16 18

E

E

8 10 12 14 16 18

E E

1

2

3

4

8 10 12 14 16 18

E

C

N
O

x

151



Chapter 5  Menu Graphics
VISUALIZING ONE-DIMENSIONAL DATA

A one-dimensional data object is sometimes referred to as a (single) data
sample, a set of univariate observations, or simply a batch of data. In this
section, we examine a number of basic plot types useful for exploring
a one-dimensional data object.

• Density Plot: an estimate of the underlying probability
density function for a data set.

• Histogram: a display of the number of data points that fall in
each of a specified number of intervals. A histogram gives an
indication of the relative density of the data points along the
horizontal axis.

• QQ Math Plot: an extremely powerful tool for determining a
good approximation to a data set’s distribution. The most
common is the normal probability plot, or normal qqplot, which is
used to test whether the distribution of a data set is nearly
Gaussian.

• Bar Chart: a display of the relative magnitudes of
observations in a data set. A bar is plotted for each data point,
where the height of a bar is determined by the value of the
data point. The Bar Chart dialog can also tabulate counts for
a factor variable in a data set.

• Dot Plot: a tool that displays the same information as a bar
chart or pie chart, but in a form that is often easier to grasp.

• Pie Chart: a graph that shows the share of individual values
in a variable, relative to the sum total of all the values.

These visualization plots are simple but powerful exploratory data
analysis tools that can help you quickly grasp the nature of your data.
Such an understanding can help you avoid the misuse of statistical
inference methods, such as using a method appropriate only for a
normal (Gaussian) distribution when the distribution is strongly non-
normal.
152



Visualizing One-Dimensional Data
Density Plots As a first step in analyzing one-dimensional data, it is often useful to
study the shape of its distribution. A density plot displays an estimate of
the underlying probability density function for a data set, and allows
you to approximate the probability that your data fall in any interval.

In Spotfire S+, density plots are essentially kernel smoothers. The
algorithm used to compute the plots is therefore similar to those
presented in the section Nonparametric Curve Fits. A smoothing
window is centered on each x value, and the predicted y value in the
density plot is calculated as a weighted average of the y values for
nearby points. The size of the smoothing window is called the
bandwidth of the smoother. Increasing the bandwidth results in a
smoother curve but may miss rapidly changing features. Decreasing
the bandwidth allows the smoother to track rapidly changing features
more accurately, but results in a rougher curve fit. The Density Plot
dialog includes various methods for estimating good bandwidth
values.

The weight given to each point in a smoothing window decreases as
the distance between its x value and the x value of interest increases.
Kernel functions specify the way in which the weights decrease: kernel
choices for density plots include a cosine curve, a normal (Gaussian)
kernel, a rectangle, and a triangle. The default kernel is Gaussian,
where the weights decrease with a normal (Gaussian) distribution
away from the point of interest. A rectangular kernel weighs each
point within the smoothing window equally, and a triangular kernel
has linearly decreasing weights. In a cosine kernel, weights decrease
with a cosine curve away from the point of interest. 

Creating a density plot

From the main menu, choose Graph � One Variable � Density
Plot. The Density Plot dialog opens, as shown in Figure 5.15.
153



Chapter 5  Menu Graphics
Example

In 1876, the French physicist Cornu reported a value of 299,990 km/
sec for , the speed of light. In 1879, the American physicist A.A.
Michelson carried out several experiments to verify and improve
Cornu’s value. Michelson obtained the following 20 measurements of
the speed of light:

 850  740  900  1070  930  850  950  980  980  880
1000  980  930   650  760  810 1000 1000  960  960

To obtain Michelson’s actual measurements, add 299,000 km/sec to
each of the above values.

The 20 observations can be thought of as observed values of 20
random variables with a common but unknown mean-value location

. If the experimental setup for measuring the speed of light is free of

bias, then it is reasonable to assume that  is the true speed of light.
In evaluating these data, we seek answers to at least four questions,
listed below.

Figure 5.15:  The Density Plot dialog.

c

μ
μ

154



Visualizing One-Dimensional Data
1. What is the speed of light ?

2. Has the speed of light changed relative to our best previous
value  km/sec?

3. What is the uncertainty associated with our answers to (1) and
(2)?

4. What is the shape of the distribution of the data?

The first three questions were probably in Michelson’s mind when he
gathered his data. The last two must be answered to determine which
techniques can obtain valid statistical inferences from the data. In this
example, we use density plots to graphically analyze the distribution
of the Michelson data. In the Statistics chapter, we revisit these data
and perform various statistical tests to answer questions (2) and (3).

Setting up the data

We begin analyzing the Michelson data by first creating a Spotfire S+
data frame that contains it. To do this, type the following in the
Commands window:

> michel <- data.frame(speed = c(850, 740, 900,
+ 1070, 930, 850, 950, 980, 980, 880, 1000, 980,
+ 930, 650, 760, 810, 1000, 1000, 960, 960))

Exploratory data analysis

To obtain a useful exploratory view of the Michelson data, create a
density plot as follows:

1. Open the Density Plot dialog.

2. Type michel in the Data Set field.

3. Select speed as the Value.

4. Click Apply to leave the dialog open.

The result is shown in Figure 5.16. The rug at the bottom of the
density plot shows the unique x values in the data set.

μ

μ0 299 990,=
155



Chapter 5  Menu Graphics
 

To experiment with the smoothing kernel, click on the Plot tab in the
open Density Plot dialog and choose a new function from the
Window Type list. The Number of Points field specifies the
number of equally spaced points at which to estimate the density; the
From and To fields define the range of the equally spaced points.
The Width Method field specifies the algorithm for computing the
width of the smoothing window. Available methods are the histogram
bin (Hist Bin), normal reference density (Normal Ref), biased cross-
validation (Biased CV), unbiased cross-validation (Unbiased CV),
and Sheather & Jones pilot estimation of derivatives (Est Deriv). You
can also define your own window by selecting Specified Value from
the Width Method list, and then typing a number for the Width
Value. For more information on the methods used to compute the
width of a smoothing window, see Venables and Ripley (1999).

When you are finished experimenting, click OK to close the dialog.

Figure 5.16:  Density estimate of the Michelson data.

0
.0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

600 800 1000 1200

speed

D
e

n
si

ty
156



Visualizing One-Dimensional Data
Histograms Histograms display the number of data points that fall in each of a
specified number of intervals. A histogram gives an indication of the
relative density of the data points along the horizontal axis. For this
reason, density plots are often superposed with (scaled) histograms.

By default, the Histogram dialog displays vertical bars. For details on
horizontal bar plots, see the section Bar Charts.

Creating a histogram

From the main menu, choose Graph � One Variable �

Histogram. The Histogram dialog opens, as shown in Figure 5.17.

Example

In the section Density Plots on page 153, we created a probability
density estimate for the michel data. In this example, we plot a
histogram of the data.

1. If you have not done so already, create the michel data set
with the instructions given on page 155.

2. Open the Histogram dialog.

3. Type michel in the Data Set field and select speed as the
Value.

Figure 5.17:  The Histogram dialog.
157



Chapter 5  Menu Graphics
4. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

5. Click Apply to leave the dialog open.

The result is shown in Figure 5.18. 

By default, Spotfire S+ displays histograms scaled as probability
densities. To display the raw counts in each histogram bin instead,
click on the Plot tab in the open Histogram dialog and select Count
as the Bar Height Type.

Spotfire S+ computes the number of intervals in a histogram
automatically to balance the trade-off between obtaining smoothness
and preserving detail. To experiment with the algorithm used to
compute the intervals, click on the Plot tab in the open Histogram
dialog. There are three algorithms available in the Binning Method
list: Freedman-Diaconi, Scott, and Sturges. You can also define
your own number of intervals by selecting Specified Value from the

Figure 5.18:  Histogram of the Michelson data.

0

10

20

30

40

700 800 900 1000

speed

P
e

rc
e

n
t 

o
f 

T
o

ta
l

158



Visualizing One-Dimensional Data
Binning Method list, and then typing a number for the Number of
Bins. For more information on the methods used to compute the
number of bins, see Venables and Ripley (1999).

When you are finished experimenting, click OK to close the dialog.

QQ Math Plots The quantile-quantile plot, or qqplot, is an extremely powerful tool for
determining a good approximation to a data set’s distribution. In a
qqplot, the ordered data are graphed against quantiles of a known
theoretical distribution. If the data points are drawn from the
theoretical distribution, the resulting plot is close to a straight line in
shape. The most common in this class of one-dimensional plots is the
normal probability plot, or normal qqplot, which is used to test whether
the distribution of a data set is nearly normal (Gaussian).

Creating a QQ math plot

From the main menu, choose Graph � One Variable � QQ Math
Plot. The QQ Math Plot dialog opens, as shown in Figure 5.19. 

Figure 5.19:  The QQ Math Plot dialog.
159



Chapter 5  Menu Graphics
Example

In the section Density Plots on page 153, we created a probability
density estimate for the michel data. In this example, we compare
the data to a normal (Gaussian) distribution.

1. If you have not done so already, create the michel data set
with the instructions given on page 155.

2. Open the QQ Math Plot dialog.

3. Type michel in the Data Set field and select speed as the
Value.

4. Click Apply to leave the dialog open.

The result is shown in Figure 5.20. 

By default, Spotfire S+ includes a reference line in qqplots. To omit
the line from a graph, deselect the Include Reference Line option in
the Plot page of the dialog.

The points in Figure 5.20 do not fall particularly close to a straight
line, which suggests that the data may not be normally distributed.
You can experiment with the chosen theoretical distribution by
varying the selection in the Distribution list. For example, click on

Figure 5.20:  Normal QQ plot for the Michelson data.

7
0

0
8

0
0

9
0

0
1

0
0

0

-2 -1 0 1 2

Normal Distribution

sp
e

e
d

160



Visualizing One-Dimensional Data
the Plot tab in the open QQ Math Plot dialog. By default, the
Distribution is normal with a Mean of 0 and a Std. Deviation of 1.
Select t as the Distribution, type 5 in the Deg of Freedom 1 box,
and click Apply. Does the t distribution with 5 degrees of freedom
produce a more linear qqplot? When you are finished experimenting,
click OK to close the dialog.

Bar Charts A bar chart displays a bar for each point in a set of observations, where
the height of a bar is determined by the value of the data point. The
Bar Chart dialog also contains an option for tabulating the values in
your data set according to the levels of a categorical variable. This
allows you to view a count of the observations that are associated with
each level of a factor variable.

By default, Spotfire S+ generates horizontal bar charts from the menu
options. If you require vertical bar charts, you should use the
command line function barplot.

Creating a bar chart

From the main menu, choose Graph � One Variable � Bar
Chart. The Bar Chart dialog opens, as shown in Figure 5.21.

Figure 5.21:  The Bar Chart dialog.
161



Chapter 5  Menu Graphics
Example 1

The data set fuel.frame is taken from the April 1990 issue of
Consumer Reports. It contains 60 observations (rows) and 5 variables
(columns). Observations of weight, engine displacement, mileage,
type, and fuel were taken for each of sixty cars. In this example, we
graphically analyze the average mileage for each of the six types of
cars. 

To create a mileage.means data set containing the average Mileage
for each Type of car, type the following in the Commands window:

> mileage.means <-data.frame(average =
+ tapply(fuel.frame$Mileage, fuel.frame$Type, FUN=mean))
> mileage.means

         average
Compact 24.13333
  Large 20.33333
 Medium 21.76923
  Small 31.00000
 Sporty 26.00000
    Van 18.85714

Create a bar chart of the mileage.means data as follows:

1. Open the Bar Chart dialog.

2. Type mileage.means in the Data Set field.

3. Select average as the Value. Deselect the Tabulate Values
option.

4. Click on the Titles tab and type mileage.means for the X
Axis Label.

5. Click OK.

The horizontal bar chart is shown in Figure 5.22. Note that the bars in
the chart are placed according to the order in the data set: Compact,
the first element in mileage.means, appears with the smallest y value
in the chart, and Van, the last element in mileage.means, appears
with the largest y value.
162



Visualizing One-Dimensional Data
 

Example 2

In this example, we tabulate the number of cars in the fuel.frame
data set for each level of the Type factor variable.

1. Open the Bar Chart dialog.

2. Type fuel.frame in the Data Set field.

3. Select Type as the Value.

4. Verify that the Tabulate Values option is checked.

5. Click OK.

A Graph window appears that displays a bar chart of the tabulated
values in fuel.frame. Note that the bars in the chart are placed
according to the levels in the Type variable: Compact, the first level
Type, appears with the smallest y value in the chart, and Van, the last

Figure 5.22:  A bar chart of average mileage in the fuel.frame data set.

600

700

800

900

1000

1100

sp
ee

d

Compact

Large

Medium

Small

Sporty

Van

20 22 24 26 28 30

mileage.means
163



Chapter 5  Menu Graphics
level in Type, appears with the largest y value. You can view the order
of the levels in a factor variable by using the levels function in the
Commands window:

> levels(fuel.frame$Type)

[1] "Compact" "Large"   "Medium"  "Small"   "Sporty"  "Van"    

Dot Plots The dot plot was first described by Cleveland in 1985 as an
alternative to bar charts and pie charts. The dot plot displays the same
information as a bar chart or pie chart, but in a form that is often
easier to grasp. Instead of bars or pie wedges, dots and gridlines are
used to mark the data values in dot plots. In particular, the dot plot
reduces most data comparisons to straightforward length comparisons
on a common scale. 

Creating a dot plot

From the main menu, choose Graph � One Variable � Dot Plot.
The Dot Plot dialog opens, as shown in Figure 5.23.

Figure 5.23:  The Dot Plot dialog.
164



Visualizing One-Dimensional Data
Example 1

In the section Bar Charts on page 161, we used bar charts to
graphically display the mileage.means data set. In this example, we
create a dot plot of these data.

1. If you have not done so already, create the mileage.means
data set with the instructions given on page 162.

2. Open the Dot Plot dialog.

3. Type mileage.means in the Data Set field.

4. Select average as the Value. Deselect the Tabulate Values
option.

5. Click on the Titles tab and type mileage.means for the X
Axis Label.

6. Click OK.

The result is shown in Figure 5.24. Note that the plot labels are placed
according to the order in the data set: Compact, the first element in
mileage.means, appears with the smallest y value in the plot, and
Van, the last element in mileage.means, appears with the largest y
value.

Figure 5.24:  Dot plot of average mileage in the fuel.frame data set.

Compact

Large

Medium

Small

Sporty

Van

20 22 24 26 28 30

average
165



Chapter 5  Menu Graphics
Example 2

In this example, we tabulate the number of cars in the fuel.frame
data set for each level of the Type factor variable.

1. Open the Dot Plot dialog.

2. Type fuel.frame in the Data Set field.

3. Select Type as the Value.

4. Verify that the Tabulate Values option is checked.

5. Click OK.

A Graph window appears that displays a dot plot of the tabulated
values in fuel.frame. Note that the plot labels are placed according
to the levels in the Type variable: Compact, the first level Type,
appears with the smallest y value in the chart, and Van, the last level in
Type, appears with the largest y value. You can view the order of the
levels in a factor variable by using the levels function in the
Commands window:

> levels(fuel.frame$Type)

[1] "Compact" "Large"   "Medium"  "Small"   "Sporty"  "Van"    

Pie Charts A pie chart shows the share of individual values in a variable, relative
to the sum total of all the values. Pie charts display the same
information as bar charts and dot plots, but can be more difficult to
interpret. This is because the size of a pie wedge is relative to a sum,
and does not directly reflect the magnitude of the data value. Because
of this, pie charts are most useful when the emphasis is on an
individual item’s relation to the whole; in these cases, the sizes of the
pie wedges are naturally interpreted as percentages. When such an
emphasis is not the primary point of the graphic, a bar chart or a dot
plot is preferred.

Creating a pie chart

From the main menu, choose Graph � One Variable � Pie
Chart. The Pie Chart dialog opens, as shown in Figure 5.25. 
166



Visualizing One-Dimensional Data
Example 1

In the section Bar Charts on page 161, we used bar charts to
graphically display the mileage.means data set. In this example, we
create a pie chart of these data.

1. If you have not done so already, create the mileage.means
data set with the instructions given on page 162.

2. Open the Pie Chart dialog.

3. Type mileage.means in the Data Set field.

4. Select average as the Value. 

5. Deselect the Tabulate Values option.

6. Click Apply to leave the dialog open.

By default, Spotfire S+ includes a legend to match the pie wedges
with their labels. If you would like to include labels on the slices
instead, click on the Plot tab in the open Pie Chart dialog. Deselect
the Include Legend option and check the boxes for Include Slice
Labels and Rotate Labels. Click OK, and a new Graph window
appears displaying the changes you made. The result is similar to
Figure 5.26.

Figure 5.25:  The Pie Chart dialog.
167



Chapter 5  Menu Graphics
Because the average mileage of each type of car cannot be easily
interpreted as a fraction of the total mileage, Figure 5.26 does not
convey the information in mileage.means very well. We can see
that small cars get slightly better mileage on average, since the
corresponding pie wedge is the largest in the chart. Other than that,
the size of the pie wedges simply imply that the mileage of the cars
are relatively close in value when compared to the sum total. To
refine these conclusions, we would need to view a bar chart or a dot
plot of the data.

Example 2

In this example, we tabulate the number of cars in the fuel.frame
data set for each level of the Type factor variable.

1. Open the Pie Chart dialog.

2. Type fuel.frame in the Data Set field. Select Type as the
Value.

3. Verify that the Tabulate Values option is checked and click
OK.

A Graph window appears that displays a pie chart of the tabulated
values in the fuel.frame data set. A pie chart makes more visual
sense in this example than it did in the previous example, because
each level of Type can be viewed as a fraction of the total number of
observations in fuel.frame.

Figure 5.26:  Pie chart of the mileage.means data.

Compact

La
rg

e

Medium

Small

S
porty

Van
168



Visualizing Two-Dimensional Data
VISUALIZING TWO-DIMENSIONAL DATA

Two-dimensional data are often called bivariate data, and the
individual, one-dimensional components of the data are referred to as
variables. Two-dimensional plots help you quickly grasp the nature of
the relationship between the two variables that constitute bivariate
data. For example, you might want to know whether the relationship
is linear or nonlinear, if the variables are highly correlated, if there
any outliers or distinct clusters, etc. In this section, we examine a
number of basic plot types useful for exploring a two-dimensional
data object.

• Box Plot: a graphical representation showing the center and
spread of a distribution, as well as any outlying data points.

• Strip Plot: a one-dimensional scatter plot.

• QQ Plot: a powerful tool for comparing the distributions of
two sets of data.

When you couple two-dimensional plots of bivariate data with one-
dimensional visualizations of each variable’s distribution, you gain a
thorough understanding of your data.

Box Plots A box plot, or box and whisker plot, is a clever graphical
representation showing the center and spread of a distribution. A box
is drawn that represents the bulk of the data, and a line or a symbol is
placed in the box at the median value. The width of the box is equal
to the interquartile range, or IQR, which is the difference between the
third and first quartiles of the data. The IQR indicates the spread of
the distribution for the data. Whiskers extend from the edges of the
box to either the extreme values of the data, or to a distance of

 from the median, whichever is less. Data points that fall
outside of the whiskers may be outliers, and are therefore indicated
by additional lines or symbols. 

By default, Spotfire S+ generates horizontal box plots from the menu
options. If you require vertical box plots, you should use the
command line function boxplot.

1.5 IQR×
169



Chapter 5  Menu Graphics
Creating a box plot

From the main menu, choose Graph � Two Variables � Box
Plot. The Box Plot dialog opens, as shown in Figure 5.27. 

Example 1

In the section Density Plots on page 153, we created a probability
density estimate for the michel data. In this example, we view a box
plot of the data.

1. If you have not done so already, create the michel data set
with the instructions given on page 155.

2. Open the Box Plot dialog.

3. Type michel in the Data Set field.

4. Select speed as the Value and leave the Category field
blank.

5. Click Apply to leave the dialog open.

The result is shown in Figure 5.28.

Figure 5.27:  The Box Plot dialog.
170



Visualizing Two-Dimensional Data
 

The symbol used to indicate the median in each of the boxes is a solid
circle by default. To change the symbol, click on the Plot tab in the
open Box Plot dialog. Choose a new symbol from the Select
Symbol list, and click Apply to see the changes. When you are
finished experimenting, click OK to close the dialog.

Example 2

The lottery.payoff, lottery2.payoff, and lottery3.payoff
vectors contain the payoffs for the winning 3-digit numbers in the
New Jersey State Pick-It lottery. The lottery.payoff object
contains 254 values, corresponding to the drawings from May 22,
1975 to March 16, 1976. The lottery2.payoff object contains 254
values corresponding to drawings from the 1976-1977 lottery, and
lottery3.payoff contains 252 values corresponding to the 1980-
1981 lottery. In this example, we examine the distributions of these
data using box plots.

To create a data frame of the lottery payoff vectors that is suitable for
the Box Plot dialog, we can use the make.groups function:

> lottery.payoffs <- make.groups(
+ "1975" = lottery.payoff,
+ "1977" = lottery2.payoff,
+ "1981" = lottery3.payoff)

Figure 5.28:  Box plot of the Michelson data.

700 800 900 1000

speed
171



Chapter 5  Menu Graphics
> lottery.payoffs

    data which
 1 190.0  1975
 2 120.5  1975
 3 285.5  1975
 4 184.0  1975
 5 384.5  1975
 6 324.5  1975
 7 114.0  1975
 8 506.5  1975
 9 290.0  1975
10 869.5  1975
11 668.5  1975
12  83.0  1975
13 . . .

The data column is a numeric variable containing the payoff values
from each of the three vectors. The which column is a factor variable
with three levels, corresponding to the chosen names "1975",
"1977", and "1981". Thus, lottery.payoff appears at the
beginning of the data frame, lottery2.payoff is in the middle, and
lottery3.payoff is at the end of the data set.

Once you have generated the lottery.payoffs data, create a box
plot as follows:

1. Open the Box Plot dialog.

2. Type lottery.payoffs in the Data Set field.

3. Select data as the Value.

4. Select which as the Category.

5. Click OK.

The result is displayed in Figure 5.29.
172



Visualizing Two-Dimensional Data
 

Strip Plots A strip plot can be thought of as a one-dimensional scatter plot. Strip
plots are similar to box plots in overall layout, but they display all of
the individual data points instead of the box plot summary. 

Creating a strip plot

From the main menu, choose Graph � Two Variables � Strip
Plot. The Strip Plot dialog opens, as shown in Figure 5.30.

Figure 5.29:  Box plots of the lottery.payoffs data.

1975

1977

1981

200 400 600 800

data

w
hi

ch

Figure 5.30:  The Strip Plot dialog.
173



Chapter 5  Menu Graphics
Example

In this example, we graphically analyze the mileage for each of the
six types of cars in the fuel.frame data. 

1. Open the Strip Plot dialog.

2. Type fuel.frame in the Data Set field.

3. Select Mileage as the Value and Type as the Category.

4. Click on the Titles tab and select <NONE> for the Y Axis
Label.

5. Click Apply to leave the dialog open.

At first glance, there appears to be very few points in the strip plot.
This is because points with the same x coordinate overlap each other
in the horizontal strips. You can distinguish points very near to each
other by adding random vertical noise to the points’ coordinates. This
alleviates some of the overlap in a strip plot’s symbols. To do this,
click on the Plot tab in the open Strip Plot dialog and check the
Jitter Symbols Vertically option. Click OK to close the dialog and
see the updated graph. The result is shown in Figure 5.31. 

Figure 5.31:  Strip plot of mileage in the fuel.frame data set.

Compact

Large

Medium

Small

Sporty

Van

20 25 30 35

Mileage
174



Visualizing Two-Dimensional Data
QQ Plots In the section Visualizing One-Dimensional Data, we introduced the
quantile-quantile plot, or qqplot, as an extremely powerful tool for
determining a good approximation to a data set’s distribution. In a
one-dimensional qqplot, the ordered data are graphed against
quantiles of a known theoretical distribution. If the data points are
drawn from the theoretical distribution, the resulting plot is close to a
straight line in shape.

We can also use qqplots with two-dimensional data to compare the
distributions of the variables. In this case, the ordered values of the
variables are plotted against each other. If the variables have the same
distribution shape, the points in the qqplot cluster along a straight
line. The QQ Plot dialog creates a qqplot for the two groups in a
binary variable. It expects a numeric variable and a factor variable
with exactly two levels; the values of the numeric variable
corresponding to each level are then plotted against each other.

Creating a QQ plot

From the main menu, choose Graph � Two Variables � QQ Plot.
The QQ Plot dialog opens, as shown in Figure 5.32.

Figure 5.32:  The QQ Plot dialog.
175



Chapter 5  Menu Graphics
Example

The kyphosis data set has 81 rows representing data on 81 children
who have had corrective spinal surgery. The outcome Kyphosis is a
binary variable, and the other three columns Age, Number, and
Start, are numeric. Kyphosis is a post-operative deformity which is
present in some children receiving spinal surgery. We are interested
in examining whether the child’s age, the number of vertebrae
operated on, or the starting vertebra influence the likelihood of the
child having a deformity. As an exploratory tool, we test whether the
distributions of Age, Number, and Start are the same for the children
with and without kyphosis. To do this, we create qqplots for each of
the variables.

1. Open the QQ Plot dialog. 

2. Type kyphosis in the Data Set field.

3. Select Kyphosis as the Category.

4. Select Age as the Value. Click on the Titles tab and type Age
for the Main Title. Click Apply.

5. Click on the Data tab and select Number as the Value.
Change the Main Title to Number and click Apply.

6. Click on the Data tab and select Start as the Value. Change
the Main Title to Start and click OK.

By default, Spotfire S+ includes a reference line in qqplots. To omit
the line from a graph, deselect the Include Reference Line option in
the Plot page of the dialog.

The three qqplots appear in separate Graph windows. The only
variable that clusters near the straight line drawn in the qqplots is Age,
as shown in Figure 5.33. This suggests that the Age values
corresponding to the two levels in Kyphosis come from roughly the
same distribution. In other words, the children with and without
kyphosis do not differ significantly in the distribution of their ages.
On the other hand, the children do differ significantly in the
distributions of how many vertebrae were involved in the operation,
as well as which vertebra was the starting vertebra.
176



Visualizing Two-Dimensional Data
 

Figure 5.33:  Normal qqplot of Age, for the two groups in the binary 
Kyphosis variable.

0
5
0

1
0
0

1
5
0

0 50 100 150

absent

p
re

se
n
t

Age
177



Chapter 5  Menu Graphics
VISUALIZING THREE-DIMENSIONAL DATA

Three-dimensional data have three columns, or variables, of univariate
data, and the relationships between variables form a surface in 3D
space. Because the depth cues in three-dimensional plots are
sometimes insufficient to convey all of the information, special
considerations must be made when visualizing three-dimensional
data. Instead of viewing the surface alone, we can analyze projections,
slices, or rotations of the surface. In this section, we examine a
number of basic plot types useful for exploring a three-dimensional
data object.

• Contour Plot: uses contour lines to represent heights of
three-dimensional data in a flat, two-dimensional plane.

• Level Plot: uses colors to represent heights of three-
dimensional data in a flat, two-dimensional plane. Level plots
and contour plots are essentially identical, but they have
defaults that allow you to view a particular surface differently.

• Surface Plot: approximates the shape of a data set in three
dimensions.

• Cloud Plot: displays a three-dimensional scatter plot of
points.

Contour Plots A contour plot is a representation of three-dimensional data in a flat,
two-dimensional plane. Each contour line represents a height in the z
direction from the corresponding three-dimensional surface. Contour
plots are often used to display data collected on a regularly-spaced
grid; if gridded data is not available, interpolation is used to fit and
plot contours.

Creating a contour plot

From the main menu, choose Graph � Three Variables �

Contour Plot. The Contour Plot dialog opens, as shown in Figure
5.34.
178



Visualizing Three-Dimensional Data
Example

The exsurf data set has 1271 rows and 3 columns: V1, V2, and V3. It
is an example data set that is useful for demonstrating the
functionality of three-dimensional plots over a regular grid. In this
example, we use contour plots to explore the shape of the exsurf
data.

1. Open the Contour Plot dialog.

2. Type exsurf in the Data Set field.

3. Select V1 as the x Axis Value, V2 as the y Axis Value, and
V3 as the z Axis Value.

4. Click Apply to leave the dialog open.

The result is shown in Figure 5.35.

Figure 5.34:  The Contour Plot dialog.
179



Chapter 5  Menu Graphics
 

By default, Spotfire S+ uses 7 slices through the three-dimensional
surface to produce the lines in a contour plot. If you want to increase
or decrease the number of contour lines, click on Plot tab in the open
Contour Plot dialog and enter a new value for the Number of Cuts.
The Use Pretty Contour Levels option determines whether the
contour lines are chosen at rounded z values, which allows them to be
labelled clearly. When you are finished experimenting, click OK to
close the dialog.

Level Plots A level plot is essentially identical to a contour plot, but it has default
options that allow you to view a particular surface differently. Like
contour plots, level plots are representations of three-dimensional
data in flat, two-dimensional planes. Instead of using contour lines to
indicate heights in the z direction, however, level plots use colors.
Specifically, level plots include color fills and legends by default, and
they do not include contour lines or labels.

Figure 5.35:  Contour plot of the exsurf data.

-2
-1

0
1

2

-2 -1 0 1 2

2

2

2 2 23

3

3

3

3

3

4

4

4

4

5

56

V1

V
2

180



Visualizing Three-Dimensional Data
Creating a level plot

From the main menu, choose Graph � Three Variables � Level
Plot. The Level Plot dialog opens, as shown in Figure 5.36. 

Example

In this example, we use level plots to explore the shape of the exsurf
data set.

1. Open the Level Plot dialog.

2. Type exsurf in the Data Set field.

3. Select V1 as the x Axis Value, V2 as the y Axis Value, and
V3 as the z Axis Value.

4. Click OK.

A Graph window appears that displays the level plot and its
corresponding legend.

Figure 5.36:  The Level Plot dialog.
181



Chapter 5  Menu Graphics
Surface Plots A surface plot is an approximation to the shape of a three-dimensional
data set. Surface plots are used to display data collected on a
regularly-spaced grid; if gridded data is not available, interpolation is
used to fit and plot the surface.

Creating a surface plot

From the main menu, choose Graph � Three Variables �

Surface Plot. The Surface Plot dialog opens, as shown in Figure
5.37. 

Example

In this example, we create a surface plot of the exsurf data set.

1. Open the Surface Plot dialog.

2. Type exsurf in the Data Set field.

3. Select V1 as the x Axis Value, V2 as the y Axis Value, and
V3 as the z Axis Value.

4. Click Apply to leave the dialog open.

The result is shown in Figure 5.38. 

Figure 5.37:  The Surface Plot dialog.
182



Visualizing Three-Dimensional Data
The arrows along the axes in Figure 5.38 indicate the direction of
increasing values for each of the variables. To include tick marks
instead of arrows, click on the Axes tab in the open Surface Plot
dialog and check the Include Tick Marks and Labels box. 

By default, Spotfire S+ rotates a surface plot 40 degrees about the z
axis and -60 degrees about the x axis before displaying it. To change
this setting, enter new values in the Rotation fields; rotating each axis
0 degrees results in a view from the top of the surface, looking down
in the x-y plane. The Distance Factor controls the distance from the
surface to the viewer. A distance factor of 0 implies the viewer is right
at the object, and a factor of 1 implies the viewer is infinitely far away.
The Zoom Factor controls the overall scaling for the drawn surface.
Zoom values larger than 1 enlarge the object, and values less than 1
compress the object.

If you would like to create a surface plot with colors, click on the Plot
tab in the open Surface Plot dialog and check the Include Fills box.
Click OK to close the dialog, and a new Graph window appears that
displays the changes you made.

Figure 5.38:  Surface plot of the exsurf data.

V1
V2

V3
183



Chapter 5  Menu Graphics
Cloud Plots A cloud plot is a three-dimensional scatter plot of points. Typically, a
static 3D scatter plot is not effective because the depth cues of single
points are insufficient to give a strong 3D effect. On some occasions,
however, cloud plots can be useful for discovering simple
characteristics about the three variables.

Creating a cloud plot

From the main menu, choose Graph � Three Variables � Cloud
Plot. The Cloud Plot dialog opens, as shown in Figure 5.39.

Example

The sliced.ball data set contains three variables that comprise a
set of points uniformly distributed in a three-dimensional sphere,
except that a central slice of the points has been removed. The
removed slice is oriented so that all two-dimensional projections of
the data appear to be uniformly distributed over a disk. In addition,
the slice is not visible in the initial three-dimensional view. In this
example, we discover the location of the slice by rotating a cloud plot.

1. Open the Cloud Plot dialog.

2. Type sliced.ball in the Data Set field.

Figure 5.39:  The Cloud Plot dialog.
184



Visualizing Three-Dimensional Data
3. Select V1 as the x Axis Value, V2 as the y Axis Value, and
V3 as the z Axis Value. Click Apply to leave the dialog
open.

Note that the removed slice of data points is not visible in the initial
graph. To rotate the scatter plot, click on the Axes tab in the open
Cloud Plot dialog. The options in the Axes tab are identical to those
in the Surface Plot dialog. Experiment with different Rotation
values, clicking Apply each time you enter a new set of numbers.
Each time you click Apply, a new Graph window appears displaying
the rotated view of the surface. In particular, the values of -42, 0, and
40 clearly show the missing slice of data points, as displayed in Figure
5.40. When you are finished experimenting, click OK to close the
dialog. 

Figure 5.40:  Cloud plot of the sliced.ball data set, showing the missing 
slice of data points.

V1

V2

V3
185



Chapter 5  Menu Graphics
VISUALIZING MULTIDIMENSIONAL DATA

In the previous sections, we discussed visual tools for simple one-,
two-, and three-dimensional data sets. With lower-dimensional data,
all of the basic information in the data may be easily viewed in a
single set of plots. Different plots provide different types of
information, but deciding which plots to use is fairly straightforward.

With multidimensional data, however, visualization is more involved.
In addition to univariate and bivariate relationships, variables may
have interactions such that the relationship between any two variables
changes depending on the remaining variables. Standard one- and
two-variable plots do not allow us to look at interactions between
multiple variables, and must therefore be complemented with
techniques specifically designed for multidimensional data. In this
section, we discuss both standard and novel visualization tools for
multidimensional data.

• Scatterplot Matrix: displays an array of pairwise scatter
plots illustrating the relationship between any pair of
variables.

• Parallel Plot: displays the variables in a data set as horizontal
panels, and connects the values for a particular observation
with a set of line segments.

Two additional techniques for visualizing multidimensional data are
grouping variables and multipanel conditioning. We briefly discussed both
of these tools in the section Scatter Plots, and we intersperse more
detailed examples below. The conditioning options that we discuss
are not specific to scatter plots, but are available in most dialogs under
the Graph menu. You can therefore use the options to create
multiple histograms, box plots, etc., conditioned on the value of a
particular variable in your data set.

Scatterplot 
Matrices

A scatterplot matrix is a powerful graphical tool that enables you to
quickly visualize multidimensional data. It is an array of pairwise
scatter plots illustrating the relationship between any pair of variables
in a multivariate data set. Often, when faced with the task of
analyzing data, the first step is to become familiar with the data.
Generating a scatterplot matrix greatly facilitates this process.
186



Visualizing Multidimensional Data
Creating a scatterplot matrix

From the main menu, choose Graph � Multiple Variables �

Scatterplot Matrix. The Scatterplot Matrix dialog opens, as shown
in Figure 5.41.

Example

In this example, we create a scatterplot matrix of the fuel.frame
data. 

1. Open the Scatterplot Matrix dialog.

2. Type fuel.frame in the Data Set field.

3. Select <ALL> in the Variables box to create a 
scatterplot matrix that includes all variables.

4. Click Apply to leave the dialog open.

The result is shown in Figure 5.42. 

Figure 5.41:  The Scatterplot Matrix dialog.

5 5×
187



Chapter 5  Menu Graphics
 

From the figure, you can immediately see a number of strong linear
relationships. For example, the weight of a car and its fuel
consumption have a positive linear relationship: as Weight increases,
so does Fuel. Note that the factor variable Type has been converted
to a numeric variable and plotted. The six levels of Type (Compact,
Large, Medium, Small, Sporty, and Van) simply take the values 1
through 6 in this conversion.

The Scatterplot Matrix dialog contains the same options as the
Scatter Plot dialog for grouping variables, fitting lines, and
smoothing. Thus, you can add curve fits or distinguish the levels of a
grouping variable in each of the panels of a scatterplot matrix. For
example, to add least squares line fits to each of the plots in Figure
5.42, click on the Fit tab in the open Scatterplot Matrix dialog.
Select Least Squares as the Regression Type and click OK. As an

Figure 5.42:  Scatterplot matrix of the fuel.frame data. A number of strong relationships appears.

2000 2500

3000 3500

3000

3500

2000

2500

Weight

100 150 200

200 250 300

200

250

300

100

150

200Disp.

20 25

30 35

30

35

20

25

Mileage

3.0 3.5 4.0

4.5 5.0 5.5

4.5

5.0

5.5

3.0

3.5

4.0Fuel

C
om

pa
ct

La
rg

e

M
ed

iu
m

S
m

al
l

S
po

rt
y

V
an

Small

Sporty

Van

Compact

Large

Medium
Type
188



Visualizing Multidimensional Data
additional example, the following steps create a matrix of the four
numeric variables in fuel.frame, distinguishing the different levels
of Type in each scatter plot:

1. Open the Scatterplot Matrix dialog.

2. Type fuel.frame in the Data Set field.

3. CTRL-click to highlight Weight, Disp., Mileage, and Fuel
in the Variables box.

4. Click on the Plot tab. Select Type in the Group Variable list,
and check the boxes for Vary Symbol Style and Include
Legend.

5. Click OK.

A new Graph window appears displaying the scatterplot matrix.

Parallel Plots A parallel coordinates plot displays the variables in a data set as
horizontal panels, and connects the values for a particular observation
with a set of line segments. These kinds of plots show the relative
positions of observation values as coordinates on parallel horizontal
panels.

Creating a parallel plot

From the main menu, choose Graph � Multiple Variables �

Parallel Plot. The Parallel Plot dialog opens, as shown in Figure
5.43. 

Figure 5.43:  The Parallel Plot dialog.
189



Chapter 5  Menu Graphics
Example

In this example, we create a parallel coordinates plot of the
fuel.frame data. 

1. Open the Parallel Plot dialog.

2. Type fuel.frame in the Data Set field.

3. Select <ALL> in the Variables box to create a 5-panel plot
that includes all variables.

4. Click OK.

The result is shown in Figure 5.44. 

Figure 5.44:  Parallel coordinates plot of the fuel.frame data set.

Weight

Disp.

Mileage

Fuel

Type

Min Max
190



Visualizing Multidimensional Data
Multipanel 
Trellis 
Graphics

Trellis graphics allow you to view relationships between different
variables in your data set through conditioning. Suppose you have a
data set based on multiple variables, and you want to see how plots of
two variables change in relation to a third “conditioning” variable.
With Trellis graphics, you can view your data in a series of panels,
where each panel contains a subset of the original data divided into
intervals of the conditioning variable. When a conditioning variable is
categorical, Spotfire S+ generates plots for each level. When a
conditioning variable is numeric, conditioning is automatically
carried out on the sorted unique values; each plot represents either an
equal number of observations or an equal range of values.

A wide variety of graphs can be conditioned using Trellis graphics,
and many of the dialogs under the Graph menu include Trellis
display options. In the section Scatter Plots, we illustrate how
conditioning can be used with scatter plots to reveal relationships in
multivariate data. In this section, we present another detailed
example that shows the functionality of Trellis graphics. 

Example

The barley data set contains observations from a 1930s agricultural
field trial that studied barley crops. At six sites in Minnesota, ten
varieties of barley were grown for each of two years, 1931 and 1932.
The data are the yields for all combinations of site, variety, and year,
so there are a total of  observations. The data first
appeared in a 1934 report published by the experimenters, and has
been analyzed and re-analyzed ever since. R.A. Fisher presented the
data for five of the sites in his classic book, The Design of Experiments
(1971). Publication in the book made the data famous; many other
statisticians subsequently analyzed the data, usually to illustrate a new
statistical method.

In the early 1990s, Bill Cleveland of AT&T (now Lucent
Technologies) analyzed the barley data using Trellis graphics. The
results were quite surprising, and the basis of Cleveland’s analysis is
repeated here for illustrative purposes. For historical details about the
barley experiment, see the Cleveland (1993) reference.

6 10× 2× 120=
191



Chapter 5  Menu Graphics
Exploratory data analysis

We are interested in exploring how barley yield varies based on
combinations of the variety, year, and site variables. Trellis
graphics are particularly useful for displaying effects and interactions
between variables. We create a scatter plot of yield and variety
conditioned on site, and vary the plotting symbol by year. Because
site is a factor variable with six levels, our Trellis graph will have six
panels labeled with the names of the sites. In addition, year is a factor
variable with two levels, so each panel in our Trellis graph will
include two different plotting symbols.

1. Select Graph � Scatter Plot to open the Scatter Plot
dialog.

2. Type barley in the Data Set field. Select yield as the x Axis
Value and variety as the y Axis Value. Highlight site in
the Conditioning box.

3. Click on the Plot tab and select year as the Group Variable.
Check the boxes for Vary Symbol Style and Include
Legend.

4. Click on the Titles tab. Type Bushels/Acre for the X Axis
Label and Variety of Barley for the Y Axis Label.

5. Click on the Axes tab and select Horizontal for the Tick
Marks Label Orientation. This option places horizontal tick
labels on both the x and y axes. By default, labels are parallel
to the axes, so that x axis tick labels are horizontal and y axis
labels are vertical.

6. Click Apply to leave the dialog open.

The resulting graph is shown in Figure 5.45. 
192



Visualizing Multidimensional Data
 

To simplify the comparison of barley yields across sites, we make two
changes to the layout of the panels in Figure 5.45:

1. First, we stack the six panels in one column. To do this, click
on the Multipanel Conditioning tab in the open Scatter
Plot dialog. Type 1 for the # of Columns and 6 for the # of
Rows. 

2. Next, we set the aspect ratio of each panel to 0.5. To do this,
click on the Axes tab in the open Scatter Plot dialog. Set the
Aspect Ratio to be a Specified Value and type 0.5 as the
Ratio Value.

Click OK to close the dialog, and a new Graph window appears that
displays the updated set of plots. The final Trellis graphic looks
similar to the one shown in Figure 5.46. 

Figure 5.45:  Unformatted Trellis plot of barley yields for 1931 and 1932.

2

4

6

8

10

20 30 40 50 60

Grand Rapids Duluth

20 30 40 50 60

University Farm

Morris

20 30 40 50 60

Crookston

2

4

6

8

10

Waseca

Bushels/Acre

V
a
ri
e
ty

 o
f 
B

a
rl
e
y

1932
1931
193



Chapter 5  Menu Graphics
 

Examine Figure 5.46 to find a discrepancy in the barley data. It
appears in the Morris panel: for all other sites, 1931 has significantly
higher overall yields than 1932, but the reverse is true at the Morris
site. More importantly, the amount by which the 1932 yield exceeds
the 1931 yield at Morris is similar to the amounts by which 1931
exceeds 1932 at the other five sites. Either an extraordinary natural
event (such as disease or a local weather anomaly) produced a strange
coincidence, or the years for the Morris data were inadvertently
reversed. More Trellis graphics, statistical modeling of the data, and
some background checks on the experiment led to the conclusion
that the data are in error. But it was a Trellis graphic like the one in
Figure 5.46 that originally led Cleveland to this conclusion.

Figure 5.46:  Formatted Trellis plot of barley yields for 1931 and 1932.

2

4

6

8

10

20 30 40 50 60

Grand Rapids

2

4

6

8

10
Duluth

2

4

6

8

10
University Farm

2

4

6

8

10
Morris

2

4

6

8

10
Crookston

2

4

6

8

10
Waseca

Bushels/Acre

V
a
ri
e
ty

 o
f 
B

a
rl
e
y

1932
1931
194



Time Series
TIME SERIES

Time series are multivariate data sets that are associated with a set of
ordered positions, where the positions are an important feature of the
values and their analysis. These data can arise in many contexts. For
example, in the financial marketplace, trading tickers record the price
and quantity of each trade at particular times throughout the day.
Such data can be analyzed to assist in making market predictions.
This section discusses three plots that are helpful in visualizing time
series data.

• Line Plots: successive values of the data are connected by
straight lines.

• High-Low Plots: vertical lines are used to indicate the daily,
monthly, or yearly extreme values in a time series, and hatch
marks are drawn on the lines to represent the opening and
closing values. This type of plot is most often used to display
financial data.

• Stacked Bar Plots: multiple y values determine segment
heights in a bar chart.

Note that the dialogs for these time series plots recognize objects of
class "timeSeries" only, and do not accept data frames, matrices, or
vectors. For this reason, we periodically drop to the Commands
window in this section to create objects that are accepted by the menu
options.

Line Plots With time series data, it is often useful to view a line plot, where the
successive values of the data are connected by straight lines. By using
straight line segments to connect the points, you can see more clearly
the overall trend or shape in the ordered data values.

Creating a line plot

From the main menu, choose Graph � Time Series � Line Plot.
The Time Series Line Plot dialog opens, as shown in Figure 5.47.
195



Chapter 5  Menu Graphics
Example

In the section Scatter Plots on page 127, we created the exmain data
set. The variables in exmain are both time series: tel.gain and
diff.hstart contain values recorded once per year on the first of
January for the 14 years beginning in 1971. In this example, we use
the Time Series Line Plot dialog to analyze these variables.

If you have not done so already, create the exmain data set with the
instructions given on page 129. The exmain data is stored in an object
of class "data.frame". We must therefore convert it to class
"timeSeries" before it can be recognized by the dialogs under the
Time Series menu. To do this, type the following in the Commands
window:

> exmain.ts <- timeSeries(exmain,
+ from = timeCalendar(d=1, m=1, y=1971), by = "years")

The from and by arguments in the call to timeSeries define the
appropriate units for the time series data.

Figure 5.47:  The Time Series Line Plot dialog.
196



Time Series
Exploratory data analysis

To begin our analysis, we create a line plot of diff.hstart:

1. Open the Time Series Line Plot dialog.

2. Type exmain.ts in the Time Series Data field.

3. Highlight diff.hstart in the Series Variables box.

4. Click on the Titles tab and type New Housing Starts for the
Y Axis Label.

5. Click Apply to leave the dialog open.

The result is shown in Figure 5.48. The fourteen values in
diff.hstart, representing observations made in the years 1971-
1984, are plotted sequentially.

By default, Spotfire S+ includes a reference grid in time series line
plots. To leave the grid out of your graphics, click on the Axes tab in
the open Time Series Line Plot dialog and deselect the Include
Reference Grid option. To include both points and lines in the
graph, click on the Plot tab and select Both Points & Lines from the
Type list. When you are finished experimenting, click OK to close
the dialog.

Figure 5.48:  A time series line plot of diff.hstart.

N
e
w

 H
o
u
si

n
g
 S

ta
rt

s

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6
197



Chapter 5  Menu Graphics
Now that you have seen the time series behavior of diff.hstart,
you may be interested in seeing that of tel.gain as well. The steps
below place line plots of both variables on the same set of axes:

1. Open the Time Series Line Plot dialog.

2. Type exmain.ts in the Time Series Data field.

3. CTRL-click to highlight diff.hstart and tel.gain in the
Series Variables box.

4. Click on the Plot tab and select Both Points & Lines from
the Type list. Check the boxes for Vary Line Style and
Include Legend.

5. Click on the Titles tab and type The Main Gain Data as the
Main Title.

6. Click OK.

The result is shown in Figure 5.49. 

Viewing line plots of tel.gain and diff.hstart is a simple yet
powerful complement to viewing scatter plots of these variables
alone. Using both plot types gives you a more complete
understanding of the data. Earlier in this chapter, we determined that
the first two observations in exmain were outliers. The time series
line plots reveal that the tel.gain values during the first two years

Figure 5.49:  Time series line plots of tel.gain and diff.hstart.

The Main Gain Data

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

diff.hstart
tel.gain
198



Time Series
were the smallest during the 14-year study. At the same time, the
diff.hstart values during the first two years were near their overall
average for the 14-year time period. Furthermore, notice that except
for the first four years, there is a striking correlation pattern between
the two variables: whenever one increases, so does the other. In
comparison to the final years of the study, it appears that the relative
behavior of the two variables is different during the 1971-1974 time
period.

High-Low Plots A high-low plot typically displays lines indicating the daily, monthly,
or yearly extreme values in a time series. These kinds of plots can also
include average, opening, and closing values, and are referred to as
high-low-open-close plots in these cases. Meaningful high-low plots can
thus display from three to five columns of data, and illustrate
simultaneously a number of important characteristics about time
series data. Because of this, they are most often used to display
financial data.

In typical high-low plots, vertical lines are drawn to indicate the range
of values in a particular time unit (i.e., day, month, or year). If
opening and closing values are included in the plot, they are
represented by small horizontal hatch marks on the lines: left-
pointing hatch marks indicate opening values and right-pointing
marks indicate closing values. One variation on the high-low plot is
the candlestick plot. Where typical high-low plots display the opening
and closing values of a financial series with lines, candlestick plots use
filled rectangles. The color of the rectangle indicates whether the
difference is positive or negative. In Spotfire S+, white rectangles
represent positive differences, when closing values are larger than
opening values. Blue rectangles indicate negative differences, when
opening values are larger than closing values.

Creating a high-low plot

From the main menu, choose Graph � Time Series � High-Low
Plot. The Time Series High-Low Plot dialog opens, as shown in
Figure 5.50.
199



Chapter 5  Menu Graphics
Example

The djia data set is a multivariate time series taken from the Ohio
State University web site. It contains the high, low, opening, and
closing prices, as well as the daily trading volume, for the Dow Jones
Industrial Average. The data set has the closing price only from 1915
through September 1928, and it contains the high, low, and closing
prices from October 1928 through March 9, 1984. The high, low,
opening, and closing prices from March 12, 1984 through December
1986 are included. The high, low, opening, and closing prices, as well
as the trading volume, are included for January 1987 through
February 1990. In this example, we create high-low plots for a portion
of the djia data set.

Setting up the data

Suppose we want to analyze financial data for a period of time
surrounding the stock market crash of 1987. The command below
uses the positions function to extract a subset of the djia time
series that corresponds to the period between September 1, 1987 and
November 1, 1987.

Figure 5.50:  The Time Series High-Low Plot dialog.
200



Time Series
> dow <- djia[positions(djia) >= timeDate("09/01/87") &
+ positions(djia) <= timeDate("11/01/87"), ]
> dow

  Positions    open    high     low   close volume
 09/01/1987 2666.77 2695.47 2594.07 2610.97 193450
 09/02/1987 2606.98 2631.06 2567.76 2602.04 199940
 09/03/1987 2621.81 2642.22 2560.11 2599.49 165200
 09/04/1987 2604.11 2617.19 2556.28 2561.38 129070
 09/07/1987 2561.38 2561.38 2561.38 2561.38     NA
 09/08/1987 2551.18 2571.43 2493.78 2545.12 242880
 09/09/1987 2544.48 2570.63 2522.80 2549.27 164910
 09/10/1987 2578.13 2595.50 2549.43 2576.05 179790
 09/11/1987 2586.26 2625.96 2575.41 2608.74 178020
 09/14/1987 2624.36 2634.57 2587.85 2613.04 154380
 . . .

Exploratory data analysis

Create a high-low plot of the dow time series as follows:

1. Open the Time Series High-Low Plot dialog.

2. Type dow in the Time Series Data field.

3. Select high in the High list and low in the Low list.

4. Click Apply to leave the dialog open.

To place lines on the graph for the opening and closing prices in the
dow time series, click on the Data tab in the open Time Series High-
Low Plot dialog. Select open in the Open list and close in the
Close list, and then click Apply. The plot is shown in Figure 5.51.

To include a panel with a barplot of the trading volume, check the
Include Barplot of Volume box and select volume as the Volume
Variable. If you prefer candlestick-style indicators instead of lines in
high-low-open-close plots, click on the Plot tab and select
Candlestick from the Type list. 
201



Chapter 5  Menu Graphics
It is also possible to superpose a moving average line on a high-low
plot or candlestick plot. To do this, click on the Plot tab in the open
Time Series High-Low Plot dialog, highlight Specified Number in
the Days in Average box, and type 5 for the Specified Number. In
our example, this computes a 5-business-day moving average of the
closing stock prices in the dow time series. By default, the moving
averages are calculated for the closing prices only; if closing values
are not included in the data, moving averages are not plotted. 

When you are finished experimenting, click OK to close the dialog. 

Stacked Bar 
Plots

A stacked bar plot is a chart in which multiple y values can represent
segment heights for the bar at a single x value.

Creating a stacked bar plot

From the main menu, choose Graph � Time Series � Stacked
Bar Plot. The Time Series Stacked Bar Plot dialog opens, as
shown in Figure 5.52. 

Figure 5.51:  High-low-open-close plot for a portion of the djia time series 
corresponding to the 1987 stock market crash.

Dow Jones Industrial Average

Sep 7 Sep 14 Sep 21 Sep 28 Oct 5 Oct 12 Oct 19 Oct 26
1987

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

202



Time Series
Example

In this example, we create a bar plot of the trading volume data from
the dow time series. If you have not done so already, create the dow
time series with the instructions given on page 200. The following
steps generate the bar plot displayed in Figure 5.53.

1. Open the Time Series Stacked Bar Plot dialog.

2. Type dow in the Time Series Data field.

3. Select volume in the Height Variables list.

4. Click OK.

Figure 5.52:  The Time Series Stacked Bar Plot dialog.
203



Chapter 5  Menu Graphics
Figure 5.53:  Bar plot of the trading volume data in the dow time series.

Dow Jones Industrial Average

Sep 7 Sep 14 Sep 21 Sep 28 Oct 5 Oct 12 Oct 19 Oct 26
1987

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

4
5

0
0

0
0

5
0

0
0

0
0

5
5

0
0

0
0

6
0

0
0

0
0

204



References
REFERENCES

Chambers, J.M., Cleveland, W.S., Kleiner, B. & Tukey, P.A. (1983).
Graphical Methods for Data Analysis. Belmont, California: Wadsworth.

Cleveland, W.S. (1979). Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statistical Association, 74:
829-836.

Cleveland, W.S. (1985). The Elements of Graphing Data. Monterrey,
California: Wadsworth.

Cleveland, W.S. (1993). Visualizing Data. Murray Hill, New Jersey:
AT&T Bell Laboratories.

Fisher, R.A. (1971). The Design of Experiments (9th ed.). New York:
Hafner.

Friedman, J.H. (1984). A Variable Span Smoother. Technical Report
No. 5, Laboratory for Computational Statistics. Department of
Statistics, Stanford University, California.

Venables, W.N. & Ripley B.D. (1999). Modern Applied Statistics with
S-PLUS (3rd ed.). New York: Springer.
205



Chapter 5  Menu Graphics
206



Introduction 210
Overview 211
Basic Procedure 213
Dialogs 213
Dialog Fields 214
Plotting From the Statistics Dialogs 215
Statistics Options 215
Saving Results From an Analysis 215

Summary Statistics 216
Summary Statistics 216
Crosstabulations 218
Correlations 221

Compare Samples 223
One-Sample Tests 223
Two-Sample Tests 234
K-Sample Tests 245
Counts and Proportions 255

Power and Sample Size 269
Normal Mean 269
Binomial Proportion 271

Experimental Design 274
Factorial 274
Orthogonal Array 275
Design Plot 276
Factor Plot 277
Interaction Plot 279

Regression 281
Linear Regression 282
Robust MM Regression 288
Robust LTS Regression 290

STATISTICS 6
207



Chapter 6  Statistics
Stepwise Linear Regression 291
Generalized Additive Models 294
Local (Loess) Regression 295
Nonlinear Regression 296
Generalized Linear Models 301
Log-Linear (Poisson) Regression 302
Logistic Regression 303
Probit Regression 306

Analysis of Variance 308
Fixed Effects ANOVA 308
Random Effects ANOVA 309
Multiple Comparisons 311

Mixed Effects 314
Linear 314
Nonlinear 315

Generalized Least Squares 318
Linear 318
Nonlinear 319

Survival 322
Nonparametric Survival 322
Cox Proportional Hazards 323
Parametric Survival 325
Life Testing 326

Tree 328
Tree Models 328
Tree Tools 329

Compare Models 333

Cluster Analysis 336
Compute Dissimilarities 336
K-Means Clustering 337
Partitioning Around Medoids 339
Fuzzy Partitioning 340
Agglomerative Hierarchical Clustering 342
Divisive Hierarchical Clustering 344
Monothetic Clustering 346

Multivariate 348
Discriminant Analysis 348
Factor Analysis 349
208



Principal Components 351
MANOVA 353

Quality Control Charts 355
Continuous Grouped 355
Continuous Ungrouped 356
Counts and Proportions 358

Resample 360
Bootstrap Inference 360
Jackknife Inference 363

Smoothing 365
Kernel Smoother 366
Local Regression (Loess) 366
Spline Smoother 367
Supersmoother 367
Examples 368

Time Series 369
Autocorrelations 369
ARIMA 372
Lag Plot 374
Spectrum Plot 375

References 376
209



Chapter 6  Statistics
INTRODUCTION

The power of Spotfire S+ comes from the integration of its graphics
capabilities with its statistical analysis routines. In other chapters
throughout this manual, we introduce Spotfire S+ graphics. In this
chapter, we show how statistical procedures are performed in Spotfire
S+.

It is not necessary to read this entire chapter before you perform a
statistical analysis. Once you’ve acquired a basic understanding of the
way statistics are performed, you can refer directly to a section of
interest.

We begin this chapter by presenting general information on using the
statistics dialogs, and devote the remaining sections to descriptions
and examples for each of these dialogs. Wherever possible, we
complement statistical examples with plots generated by the graphics
dialogs. However, not all of the Spotfire S+ functionality has been
built into the menu options, and it is therefore necessary to use
command line functions in some sections.
210



Introduction
Overview Figure 6.1 displays many elements of the Spotfire S+ interface.  

  • Statistics menu: The Statistics menu gives you access to
nearly all of the statistical procedures available in Spotfire S+.
The procedures are logically grouped, with submenus that
allow you to precisely specify the procedure you want to use.
For example, in Figure 6.1 the menu tree for summary
statistics is shown. It is selected by choosing Statistics �

Data Summaries �  Summary Statistics.

  • Statistics dialogs: The open dialog in Figure 6.1 is entitled
Summary Statistics, and is used to specify which data
summaries to calculate.

  • Data Viewer: The open window on the left in Figure 6.1 is a
Data viewer, which you can use to see a data set in its
entirety. The Data viewer is not a data editor, however, and
you cannot use it to modify or create a new data set.

Figure 6.1:  Statistics-related menus and windows.
211



Chapter 6  Statistics
  • Report Window: The Report window displays the results of
statistical analyses. In Figure 6.1, a Report window shows the
results of the chosen summary statistics. In addition, any
error, warning, or informational message generated by a
statistics dialog is printed in the Report window. 

  • Commands Window (not shown): The Commands window
contains the Spotfire S+ command line prompt, which you
can use to call Spotfire S+ functions that are not yet
implemented in the menu options.

  • Graph Window (not shown): A Graph window displays the
graphics created from the statistics menus. 
212



Introduction
Basic 
Procedure

The basic procedure for analyzing data is the same regardless of the
type of analysis.

1. Choose the statistical procedure (summary statistics, linear
regression, ANOVA, etc.) you want to perform from the
Statistics menu. The dialog corresponding to that procedure
opens.

2. Select the data set, variables, and options for the procedure
you have chosen. (These are slightly different for each dialog.)
Click the OK or Apply button to conduct the analysis. If you
click OK, the dialog closes when the graph is generated; if
you click Apply, the dialog remains open.

3. Check for messages. If a message is generated, it appears in
the Report window.

4. Check the result. If everything went well, the results of your
analysis are displayed in the Report window. Some statistics
procedures also generate plots.

If you want, you can change the variables, parameters, or options in
the dialog and click Apply to generate new results. Spotfire S+ makes
it easy to experiment with options and to try variations on your
analysis.

Dialogs Most of the statistical functionality of Spotfire S+ can be accessed
through the Statistics menus. The Statistics menu includes dialogs
for creating data summaries and fitting statistical models. Many of the
dialogs consist of tabbed pages that allow for a complete analysis,
including model fitting, plotting, and prediction. Each dialog has a
corresponding function that is executed using dialog inputs as values
for function arguments. Usually, it is only necessary to fill in a few
fields on the first page of a tabbed dialog to launch the function call.
213



Chapter 6  Statistics
Dialog Fields Many dialogs include a Data Set field. To specify a data set, you can
either type its name directly in the Data Set field, or make a selection
from the dropdown list. Note that the Data Set field recognizes
objects of class "data.frame" only, and does not accept matrices,
vectors, or time series. For this reason, we periodically drop to the
Commands window in this chapter to create objects that are
accepted by the menu options. 

Most dialogs that fit statistical models include a Subset Rows field
that you can use to specify only a portion of a data set. To use a subset
of your data in an analysis, enter a Spotfire S+ expression in the
Subset Rows field that identifies the rows to use. The expression can
evaluate to a vector of logical values: true values indicate which rows
to include in the analysis, and false values indicate which rows to
drop. Alternatively, the expression can specify a vector of row
indices. For example:

• The expression Species=="bear" includes only rows for
which the Species column contains bear.

• The expression Age>=13 & Age<20 includes only rows that
correspond to teenage values of the Age variable.

• The expression 1:20 includes the first 20 rows of the data.

To use all rows in a data set, leave the Subset Rows field blank. 

Some dialogs require a Formula. To specify a formula, you can type
one directly in the Formula field, or click the Create Formula
button to bring up a dialog that builds a formula for you. Some
dialogs, such as the Generalized Additive Models dialog, require
special formulas; in these cases, the special terms available are listed
in the Formula Builder.

Most dialogs have a Save As field that corresponds to the name of
the object in which the results of the analysis are saved. Many of the
modeling dialogs also have one or more Save In fields. The Save In
field corresponds to the name of a data set in which new columns are
saved. Examples of new columns include fitted values, residuals,
predictions, and standard errors.
214



Introduction
Plotting From 
the Statistics 
Dialogs

Most of the statistics dialogs produce default plots that are
appropriate for the analysis. Many have several plot options, usually
on a separate Plot tab. 

The Options menu contains a few options that affect the graphics
you create from the statistics menus. In particular:

• The Options �  Dialog Options window includes a Create
New Graph Window check box. If this box is selected, as it
is by default, then a new Graph window is created each time
you generate a statistics plot. 

• The Options � Set Graph Colors window allows you to
select a color scheme for your graphics. 

• The Options �  Graph Options window governs whether
tabbed pages in Graph windows are deleted, preserved, or
written over when a new plot is generated.

Statistics 
Options

The Options �  Dialog Options window includes an Echo Dialog
Command check box. If this box is selected, the command
associated with a dialog action is printed before its output in the
Report window. This allows you to copy and paste the commands
used for your analyses into your own Spotfire S+ functions.

Saving Results 
From an 
Analysis

A statistical model object may be created by specifying a name for the
object in the Save As field of a dialog. Once the execution of a dialog
function completes, the object shows up in your working database.
You can then access the object from the Commands window. This
allows you to do plotting and prediction for a model without
relaunching an entire dialog.
215



Chapter 6  Statistics
SUMMARY STATISTICS

One of the first steps in analyzing data is to create summaries. This
can be done numerically through the Summary Statistics,
Crosstabulations, and Correlations and Covariances dialogs.

  • Summary Statistics: calculates summary statistics, such as
the mean, median, variance, total sum, quartiles, etc.

  • Crosstabulations: tabulates the number of cases for each
combination of factors between your variables, and generates
statistics for the table.

  • Correlations: calculates correlations or covariances between
variables.

These three procedures can be found under the Statistics �  Data
Summaries menu.

Summary 
Statistics

The Summary Statistics dialog provides basic univariate summaries
for continuous variables, and it provides counts for categorical
variables. Summaries may be calculated within groups based on one
or more grouping variables.

Computing summary statistics

From the main menu, choose Statistics � Data Summaries �

Summary Statistics. The Summary Statistics dialog opens, as
shown in Figure 6.2.
216



Summary Statistics
Example

We use the data set air. This data set measures the ozone
concentration, wind speed, temperature, and radiation of 111
consecutive days in New York. In this example, we calculate
summary statistics for these data.

1. Open the Summary Statistics dialog.

2. Type air in the Data Set field.

3. Select the variables you want summary statistics for in the
Variables field. For this example, we choose <ALL> (the
default).

Figure 6.2:  The Summary Statistics dialog.
217



Chapter 6  Statistics
4. Click on the Statistics tab to see the statistics available. For
this example, select the Variance and Total Sum check
boxes.

5. Make sure the Print Results check box is selected to ensure
that the results are printed in the Report window.

6. Click OK. A Report window containing the following output
is created, if one does not already exist:

      *** Summary Statistics for data in:  air ***

             ozone radiation temperature     wind
     Min:     1.00     7.00     57.00        2.30
 1st Qu.:     2.62   113.50     71.00        7.40
    Mean:     3.25   184.80     77.79        9.94
  Median:     3.14   207.00     79.00        9.70
 3rd Qu.:     3.96   255.50     84.50       11.50
     Max:     5.52   334.00     97.00       20.70
 Total N:   111.00   111.00    111.00      111.00
   NA's :     0.00     0.00      0.00        0.00
Variance:     0.79  8308.74     90.82       12.67
Std Dev.:     0.89    91.15      9.53        3.56
     Sum:   360.50 20513.00   8635.00     1103.20

7. If the above output is not displayed, check the Report
window for error messages.

We are done. As you can see, calculating summary statistics is
straightforward. Other statistical procedures use the same basic steps
that we did in this example.

Crosstabula-
tions

The Crosstabulations dialog produces a table of counts for all
combinations of specified categorical (factor) variables. In addition, it
calculates cell percentages and performs a chi-square test for
independence. The Crosstabulations dialog returns results in an
ASCII formatted table.

The chi-square test for independence is useful when the data consist
of the number of occurrences of an outcome for various combinations
of categorical covariates. It is used to determine whether the number
of occurrences is due to the marginal values of the covariates, or
whether it is influenced by an interaction between covariates.
218



Summary Statistics
Computing crosstabulations

From the main menu, choose Statistics � Data Summaries �

Crosstabulations. The Crosstabulations dialog opens, as shown in
Figure 6.3.

Example

Consider the data set claims, which has the components age,
car.age, type, cost, and number. The original data were taken
from 8,942 insurance claims. The 128 rows of the claims data set
represent all possible combinations of the three predictor variables
(columns) age, car.age, and type. An additional variable, number,
gives the number of claims in each cell. The outcome variable, cost,
is the average cost of the claims.

We can use a contingency table to examine the distribution of the
number of claims by car age and type. The corresponding test for
independence tells us whether the effect of age upon the likelihood of
a claim occurring varies by car type, or whether the effects of car age
and type are independent.

Figure 6.3:  The Crosstabulations dialog.
219



Chapter 6  Statistics
To construct a contingency table for the claims data:

1. Open the Crosstabulations dialog.

2. Type claims in the Data Set field.

3. In the Variables field, click on car.age and then CTRL-click
type. This selects both variables for the analysis.

4. In the Counts Variable field, scroll through the list of
variables and select number.

5. Click OK.

The table below appears in the Report window. Each cell in the table
contains the number of claims for that car age and type combination,
along with the row percentage, column percentage, and total
percentage of observations falling in that cell. The results of the test
for independence indicate that the percentage of observations in each
cell is significantly different from the product of the total row
percentage and total column percentage. Thus, there is an interaction
between the car age and type, which influences the number of claims.
That is, the effect of car age on the number of claims varies by car
type.

Call:
crosstabs(formula = number ~ car.age + type, data =

claims, na.action = na.fail, drop.unused.levels = T)
8942 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
car.age|type
       |A      |B      |C      |D      |RowTotl|
-------+-------+-------+-------+-------+-------+
0-3    | 391   |1538   |1517   | 688   |4134   |
       |0.0946 |0.3720 |0.3670 |0.1664 |0.462  |
       |0.3081 |0.3956 |0.5598 |0.6400 |       |
       |0.0437 |0.1720 |0.1696 |0.0769 |       |
-------+-------+-------+-------+-------+-------+
220



Summary Statistics
4-7    | 538   |1746   | 941   | 324   |3549   |
       |0.1516 |0.4920 |0.2651 |0.0913 |0.397  |
       |0.4240 |0.4491 |0.3472 |0.3014 |       |
       |0.0602 |0.1953 |0.1052 |0.0362 |       |
-------+-------+-------+-------+-------+-------+
8-9    | 187   | 400   | 191   |  44   |822    |
       |0.2275 |0.4866 |0.2324 |0.0535 |0.092  |
       |0.1474 |0.1029 |0.0705 |0.0409 |       |
       |0.0209 |0.0447 |0.0214 |0.0049 |       |
-------+-------+-------+-------+-------+-------+
10+    | 153   | 204   |  61   |  19   |437    |
       |0.3501 |0.4668 |0.1396 |0.0435 |0.049  |
       |0.1206 |0.0525 |0.0225 |0.0177 |       |
       |0.0171 |0.0228 |0.0068 |0.0021 |       |
-------+-------+-------+-------+-------+-------+
ColTotl|1269   |3888   |2710   |1075   |8942   |
       |0.14   |0.43   |0.30   |0.12   |       |
-------+-------+-------+-------+-------+-------+
Test for independence of all factors

Chi^2 = 588.2952 d.f.= 9 (p=0)
Yates' correction not used

Correlations The Correlations and Covariances dialog produces the basic
bivariate summaries of correlations and covariances.

Computing correlations and covariances

From the main menu, choose Statistics � Data Summaries �

Correlations. The Correlations and Covariances dialog opens, as
shown in Figure 6.4. 

Figure 6.4:  The Correlations and Covariances dialog.
221



Chapter 6  Statistics
Example

In the section Summary Statistics on page 216, we looked at
univariate summaries of the data set air. We now generate the
correlations between all four variables of the data set. Here are the
basic steps:

1. Open the Correlations and Covariances dialog.

2. Type air in the Data Set field.

3. Choose <ALL> in the Variables field.

4. Click OK.

The Report window displays the correlations between the four
variables:

       ***  Correlation for data in:  air ***

                 ozone  radiation temperature       wind
      ozone  1.0000000  0.4220130   0.7531038 -0.5989278
  radiation  0.4220130  1.0000000   0.2940876 -0.1273656
temperature  0.7531038  0.2940876   1.0000000 -0.4971459
       wind -0.5989278 -0.1273656  -0.4971459  1.0000000

Note the strong correlation of 0.75 between ozone and
temperature: as temperature increases, so do the ozone readings.
The negative correlation of -0.60 between ozone and wind indicates
that ozone readings decrease as the wind speed increases. Finally, the
correlation of -0.50 between wind and temperature indicates that
the temperature decreases as the wind increases (or that the
temperature increases as the wind decreases).
222



Compare Samples
COMPARE SAMPLES

One-Sample 
Tests

Spotfire S+ supports a variety of statistical tests for testing a
hypothesis about a single population. Most of these tests involve
testing a parameter against a hypothesized value. That is, the null
hypothesis has the form , where  is the parameter of

interest and  is the hypothesized value of our parameter.

  • One-sample t-test: a test for the population mean . We test
if the population mean is a certain value. For small data sets,
we require that the population have a normal distribution.

  • One-sample Wilcoxon signed-rank test: a nonparametric
test for the population mean . As with the t-test, we test if
the population mean is a certain value, but we make no
distributional assumptions.

  • One-sample Kolmogorov-Smirnov goodness-of-fit test: a
test to determine if the data come from a hypothesized
distribution. This is the preferred goodness-of-fit test for a
continuous variable.

  • One-sample chi-square goodness-of-fit test: a test to see if
the data come from a hypothesized distribution. This is the
preferred goodness-of-fit test for a discrete variable.

One-Sample 
t-Test

A one-sample t-test is used to test whether the mean for a variable has a
particular value. The main assumption in a t-test is that the data come
from a Gaussian (normal) distribution. If this is not the case, then a
nonparametric test, such as the Wilcoxon signed-rank test, may be a
more appropriate test of location.

Performing a one-sample t-test

From the main menu, choose Statistics � Compare Samples �

One Sample � t Test. The One-sample t Test dialog opens, as
shown in Figure 6.5. 

H0: Θ Θ0= Θ

Θ0

μ

μ

 

223



Chapter 6  Statistics
Example

In 1876, the French physicist Cornu reported a value of 299,990 km/
sec for , the speed of light. In 1879, the American physicist A.A.
Michelson carried out several experiments to verify and improve
Cornu’s value. Michelson obtained the following 20 measurements of
the speed of light:

 850  740  900  1070  930  850  950  980  980  880
1000  980  930   650  760  810 1000 1000  960  960

To obtain Michelson’s actual measurements, add 299,000 km/sec to
each of the above values.

In the chapter Menu Graphics, we created a michel data set
containing the Michelson data. For convenience, we repeat the
Spotfire S+ command here: 

> michel <- data.frame(speed = c(850, 740, 900,
+ 1070, 930, 850, 950, 980, 980, 880, 1000, 980,
+ 930, 650, 760, 810, 1000, 1000, 960, 960))

Figure 6.5:  The One-sample t Test dialog.

c

224



Compare Samples
Exploratory data analysis

To obtain a useful exploratory view of the Michelson data, create the
following plots: a boxplot, a histogram, a density plot, and a QQ
normal plot. You can create these plots from the Graph menu or the
Commands window. The function below packages the four
exploratory data analysis (EDA) plots into one Spotfire S+ call:

> eda.shape <- function(x) {
+ par(mfrow = c(2, 2))
+ hist(x)
+ boxplot(x)
+ iqd <- summary(x)[5] - summary(x)[2]
+ plot(density(x, width = 2 * iqd),
+  xlab = "x", ylab = "", type = "l")
+ qqnorm(x)
+ qqline(x)
+ invisible()
+ }

> eda.shape(michel$speed)

The plots that eda.shape generates for the Michelson data are
shown in Figure 6.6. We want to evaluate the shape of the distribution
to see if our data are normally distributed. These plots reveal a
distinctly skewed distribution toward the left (that is, toward smaller
values). The distribution is thus not normal and probably not even
“nearly” normal. We should therefore not use Student’s t-test for our
statistical inference, since it requires normality for small samples.
225



Chapter 6  Statistics
 

The solid horizontal line in the box plot is located at the median of the
data, and the upper and lower ends of the box are located at the upper
and lower quartiles of the data, respectively. To obtain precise values
for the median and quartiles, use the Summary Statistics dialog.

1. Open the Summary Statistics dialog. 

2. Enter michel as the Data Set.

Figure 6.6:  Exploratory data analysis plots for the Michelson data.

700 800 900 1100

0
2

4
6

8

x

70
0

80
0

90
0

10
00

x

600 800 1000

0.
0

0.
00

1
0.

00
2

0.
00

3

Quantiles of Standard Normal

x

-2 -1 0 1 2

70
0

80
0

90
0

10
00
226



Compare Samples
3. Click on the Statistics tab, and deselect all options except
Mean, Minimum, First Quartile, Median, Third Quartile,
and Maximum.

4. Click OK. The output appears in the Report window.

  ***  Summary Statistics for data in:  michel ***

     Min:  650.000
 1st Qu.:  850.000
    Mean:  909.000
  Median:  940.000
 3rd Qu.:  980.000
     Max: 1070.000

The summary shows, from top to bottom, the smallest observation,
the first quartile, the mean, the median, the third quartile, and the
largest observation. From this summary, you can compute the
interquartile range, IQR = 3Q - 1Q. The interquartile range provides a
useful criterion for identifying outliers: any observation that is more
than 1.5 3 IQR above the third quartile or below the first quartile is a
suspected outlier.

Statistical inference

Because the Michelson data are probably not normal, you should use
the Wilcoxon signed-rank test for statistical inference, rather than the
Student’s t-test. For illustrative purposes, we use both.

To compute Student’s t confidence intervals for the population mean-
value location parameter , we use the One-sample t Test dialog.
This dialog also computes Student’s t significance test p-values for the
parameter .

1. Open the One-sample t Test dialog. 

2. Type michel in the Data Set field.

3. Select speed as the Variable.

μ

μ0 299 990,=
227



Chapter 6  Statistics
4. Suppose you want to test the null hypothesis value 

(plus 299,000) against a two-sided alternative, and you want to
construct 95% confidence intervals. Enter 990 as the Mean
Under Null Hypothesis.

5. Click OK.

The results of the one-sample t-test appear in the Report window.

One-sample t-Test

data:  speed in michel
t = -3.4524, df = 19, p-value = 0.0027
alternative hypothesis: true mean is not equal to 990
95 percent confidence interval:
 859.8931 958.1069
sample estimates:
 mean of x
       909

The computed mean of the Michelson data is 909, and the p-value is
0.0027, which is highly significant. Clearly, Michelson’s average value
of 299,909 km/sec for the speed of light is significantly different from
Cornu’s value of 299,990 km/sec.

Spotfire S+ returns other useful information besides the p-value,
including the t-statistic value, the degrees of freedom, the sample
mean, and the confidence interval.

One-Sample 
Wilcoxon Signed-
Rank Test

The Wilcoxon signed-rank test is used to test whether the median for a
variable has a particular value. Unlike the one-sample t-test, it does
not assume that the observations come from a Gaussian (normal)
distribution.

Performing a one-sample Wilcoxon signed-rank test

From the main menu, choose Statistics � Compare Samples �

One Sample � Wilcoxon Signed-Rank Test. The One-sample
Wilcoxon Test dialog opens, as shown in Figure 6.7. 

μ0 990=
228



Compare Samples
Example

In the section One-Sample t-Test on page 223, we performed a t-test
on the Michelson data. The test concludes that Michelson’s average
value for the speed of light (299,909 km/sec) is significantly different
from Cornu’s value of 299,990 km/sec. However, we have noted that
the data may not be normal, so the results of the t-test are suspect. We
now conduct a Wilcoxon signed-rank test to see if the two values for
the speed of light differ significantly from each other.

1. If you have not done so already, create the michel data set
with the instructions given on page 155 in the Menu Graphics
chapter.

2. Open the One-sample Wilcoxon Test dialog. 

3. Type michel in the Data Set field.

4. Select speed as the Variable.

5. Enter 990 as the Mean Under Null Hypothesis.

6. Click OK.

Figure 6.7:  The One-sample Wilcoxon Test dialog.
229



Chapter 6  Statistics
The Report window shows:

     Wilcoxon signed-rank test

data:  speed in michel
signed-rank normal statistic with correction Z = -3.0715,

p-value = 0.0021
alternative hypothesis: true mu is not equal to 990

You may also receive a warning message that there are duplicate
values in the variable speed. You can ignore this message. The
p-value of 0.0021 is close to the t-test p-value of 0.0027 for testing the
same null hypothesis with a two-sided alternative. Thus, the Wilcoxon
signed-rank test confirms that Michelson’s average value for the speed
of light of 299,909 km/sec is significantly different from Cornu’s
value of 299,990 km/sec.

Kolmogorov-
Smirnov 
Goodness-of-Fit

The Kolmogorov-Smirnov goodness-of-fit test is used to test whether the
empirical distribution of a set of observations is consistent with a
random sample drawn from a specific theoretical distribution. It is
generally more powerful than the chi-square goodness-of-fit test for
continuous variables. For discrete variables, the chi-square test is
generally preferable.

If parameter values for the theoretical distribution are not available,
they may be estimated from the observations automatically as part of
the test for normal (Gaussian) or exponential distributions. For other
distributions, the chi-square test must be used if parameters are to be
estimated. In this case, the parameters are estimated from the data
separately from the test, and then entered into the dialog.

Performing a one-sample Kolmogorov-Smirnov goodness-of-fit test

From the main menu, choose Statistics � Compare Samples �

One Sample � Kolmogorov-Smirnov GOF. The One-sample
Kolmogorov-Smirnov Goodness-of-Fit Test dialog opens, as
shown in Figure 6.8.
230



Compare Samples
Example

We create a data set called qcc.process that contains a simulated
process with 200 measurements. Ten measurements per day were
taken for a total of twenty days. We use the rnorm function to
generate the data set from a Gaussian distribution.

# Use set.seed for reproducibility.
> set.seed(21)
> qcc.process <- data.frame(X = rnorm(200, mean=10),
+ Day = unlist(lapply(1:20, 
+ FUN=function(x) rep(x, times=10))))

Figure 6.8:  The One-sample Kolmogorov-Smirnov Goodness-of-Fit Test 
dialog.
231



Chapter 6  Statistics
> qcc.process

           X Day
 1  9.755851   1
 2  8.959829   1
 3 10.223913   1
 4 10.362865   1
 5  9.477088   1
 6 10.236104   1
 7  8.009497   1
 8 10.213798   1
 9  9.929919   1
10  9.656944   1
11  9.304599   2
12 10.749046   2
13 . . .

We can use the Kolmogorov-Smirnov goodness-of-fit test to confirm
that qcc.process is Gaussian:

1. Open the One-sample Kolmogorov-Smirnov Goodness-
of-Fit Test dialog. The Distribution is normal by default.

2. Select qcc.process as the Data Set.

3. Select X as the Variable.

4. Click OK.

A summary of the goodness-of-fit test appears in the Report window.
The p-value of 0.5 indicates that we do not reject the hypothesis that
the data are normally distributed. The summary also contains
estimates of the mean and standard deviation for the distribution.

The Report window contains a warning indicating that the Dallal-
Wilkinson approximation used in this test is most accurate for
extreme p-values (p-values ≤ 0.1). Our actual calculated p-value is
0.776, which is set to 0.5 in the summary to indicate that the null
hypothesis is not rejected, but our estimate of the p-value is not highly
accurate.

Chi-Square 
Goodness-of-Fit

The chi-square goodness-of-fit test uses Pearson’s chi-square statistic to
test whether the empirical distribution of a set of observations is
consistent with a random sample drawn from a specific theoretical
distribution.
232



Compare Samples
Chi-square tests apply to any type of variable: continuous, discrete, or
a combination of these. If the hypothesized distribution is discrete
and the sample size is large ( ), the chi-square is the only valid
test. In addition, the chi-square test easily adapts to the situation in
which parameters of a distribution are estimated. However, for
continuous variables, information is lost by grouping the data.

When the hypothesized distribution is continuous, the Kolmogorov-
Smirnov test is more likely than the chi-square test to reject the null
hypothesis when it should be rejected. The Kolmogorov-Smirnov test
is more powerful than the chi-square test, and hence is preferred for
continuous distributions.

Performing Pearson’s chi-square test

From the main menu, choose Statistics � Compare Samples �

One Sample � Chi-square GOF. The One-sample Chi-Square
Goodness-of-Fit Test dialog opens, as shown in Figure 6.9. 

Figure 6.9:  The One-sample Chi-Square Goodness-of-Fit Test dialog.

n 50>
233



Chapter 6  Statistics
Example

In the previous section, we created a data set called qcc.process
that contains a simulated process with 200 measurements. Ten
measurements per day were taken for a total of twenty days. We can
use the chi-square goodness-of-fit test to confirm that qcc.process is
Gaussian:

1. If you have not done so already, create the qcc.process data
set with the instructions given on page 231.

2. Open the One-sample Chi-Square Goodness-of-Fit Test
dialog. The Distribution is normal by default.

3. Select qcc.process as the Data Set.

4. Select X as the Variable.

5. For the chi-square test, we must specify parameter estimates
for the mean and standard deviation of the distribution. Enter
10 as the Mean and 1 as the Std. Deviation. If you do not
know good parameter estimates for your data, you can use the
Summary Statistics dialog to compute them.

6. Since we are estimating the mean and standard deviation of
our data, we should adjust for these parameter estimates when
performing the goodness-of-fit test. Enter 2 as the Number of
Parameters Estimated.

7. Click OK.

A summary of the goodness-of-fit test appears in the Report window.

Two-Sample 
Tests

Spotfire S+ supports a variety of statistical tests for comparing two
population parameters. That is, we test the null hypothesis that

, where  and  are the two population

parameters.

• Two-sample t-test: a test to compare two population means
 and . For small data sets, we require that both

populations have a normal distribution. Variations of the two-
sample t-test, such as the paired t-test and the two-sample
t-test with unequal variances, are also supported.

H0: Θ1 Θ2= Θ1 Θ2

μ1 μ2
234



Compare Samples
  • Two-sample Wilcoxon test: a nonparametric test to
compare two population means  and . As with the t-test,

we test if , but we make no distributional

assumptions about our populations. Two forms of the
Wilcoxon test are supported: the signed rank test and the rank
sum test. 

  • Kolmogorov-Smirnov goodness-of-fit test: a test to
determine whether two samples come from the same
distribution.

Two-Sample 
t-Test

The two-sample t-test is used to test whether two samples come from
distributions with the same means. This test handles both paired and
independent samples. The samples are assumed to come from
Gaussian (normal) distributions. If this is not the case, then a
nonparametric test, such as the Wilcoxon rank sum test, may be a
more appropriate test of location.

Performing a two-sample t-test

From the main menu, choose Statistics � Compare Samples �

Two Samples � t Test. The Two-sample t Test dialog opens, as
shown in Figure 6.10. 

μ1 μ2

μ1 μ2=

Figure 6.10:  The Two-sample t Test dialog.
235



Chapter 6  Statistics
Example

Suppose you are a nutritionist interested in the relative merits of two
diets, one featuring high protein and the other featuring low protein.
Do the two diets lead to differences in mean weight gain? Consider
the data in Table 6.1, which shows the weight gains (in grams) for two
lots of female rats under the two diets. The first lot, consisting of 12
rats, was given the high-protein diet, and the second lot, consisting of
7 rats, was given the low-protein diet. These data appear in section 6.9
of Snedecor and Cochran (1980). 

Table 6.1:  Weight gain data.

High Protein Low Protein

134 70

146 118

104 101

119 85

124 107

161 132

107 94

83

113

129

97

123
236



Compare Samples
The high-protein and low-protein samples are presumed to have
mean-value location parameters  and , and standard deviation

scale parameters  and , respectively. While you are primarily

interested in whether there is any difference in the mean values, you
may also be interested in whether the two diets result in different
variabilities, as measured by the standard deviations. This example
shows you how to use Spotfire S+ to answer such questions.

Setting up the data

The data consist of two sets of observations, so they are appropriately
described in Spotfire S+ as a data frame with two variables. Since
Spotfire S+ requires data frame columns to be of equal length, we
must pad the column representing the low-protein samples with NAs.
To create such a data frame, type the following in the Commands
window:

> weight.gain <- data.frame(gain.high=c(134, 146, 104, 119,
+ 124, 161, 107, 83, 113, 129, 97, 123), gain.low=c(70, 118,
+ 101, 85, 107, 132, 94, NA, NA, NA, NA, NA))
> weight.gain

 gain.high gain.low
       134       70
       146      118
       104      101
       119       85
       124      107
       161      132
       107       94
        83       NA
       113       NA
       129       NA
        97       NA
       123       NA

Exploratory data analysis

To begin, we want to evaluate the shape of the distribution to see if
both our variables are normally distributed. To do this, create the
following plots for each of the variables: a boxplot, a histogram, a
density plot, and a QQ normal plot. You can create these plots from

μH μL

σH σL
237



Chapter 6  Statistics
the Graph menu or from the Commands window. We use the
function eda.shape defined in the section One-Sample t-Test on
page 223:

> eda.shape(weight.gain$gain.high)

The plots that eda.shape generates for the high-protein group are
shown in Figure 6.11. They indicate that the data come from a nearly
normal distribution, and there is no indication of outliers. The plots
for the low-protein group, which we do not show, support the same
conclusions. 

Statistical inference

Is the mean weight gain the same for the two groups of rats?
Specifically, does the high-protein group show a higher average
weight gain? From our exploratory data analysis, we have good
reason to believe that Student’s t-test provides a valid test of our
hypotheses. As in the one-sample case, you can obtain confidence
intervals and hypothesis test p-values for the difference 

Figure 6.11:  Exploratory data analysis plots for the high-protein diet.

80 100 140 180

0
1

2
3

4

x

80
10

0
12

0
14

0
16

0

x

50 100 150 200

0.0
0.0

05
0.0

10
0.0

15

Quantiles of Standard Normal

x

-1 0 1

80
10

0
12

0
14

0
16

0

μ1 μ2–
238



Compare Samples
between the two mean-value location parameters  and . To do

this, we use the Two-sample t Test and Two-sample Wilcoxon Test
dialogs.

Each two-sample test is specified by a hypothesis to be tested, the
confidence level, and a hypothesized  that refers to the difference of

the two sample means. However, because of the possibility that the
two samples may be from different distributions, you may also specify
whether the two samples have equal variances. To determine the
correct setting for the option Assume Equal Variances, you can
either use informal inspection of the variances and box plots, or
conduct a formal F-test to check for equality of variance. If the heights
of the boxes in the two box plots are approximately the same, then so
are the variances of the two samples. In the weight.gain example,
the box plots indicate that the equal variance assumption probably
holds. To check this assumption, we calculate the variances exactly:

1. Open the Summary Statistics dialog. 

2. Enter weight.gain as the Data Set.

3. Click on the Statistics tab, and select the Variance check
box.

4. Click OK.

The following output appears in the Report window:

      ***  Summary Statistics for data in:  weight.gain ***
 
          gain.high  gain.low
     Min:  83.00000  70.00000
 1st Qu.: 106.25000  89.50000
    Mean: 120.00000 101.00000
  Median: 121.00000 101.00000
 3rd Qu.: 130.25000 112.50000
     Max: 161.00000 132.00000
 Total N:  12.00000  12.00000
   NA's :   0.00000   5.00000
Variance: 457.45455 425.33333
Std Dev.:  21.38819  20.62361

The actual variances of our two samples are 457.4 and 425.3,
respectively. These values support our assertion of equal variances.

μ1 μ2

μ0
239



Chapter 6  Statistics
We are interested in two alternative hypotheses: the two-sided
alternative that  and the one-sided alternative that

. To test these, we run the standard two-sample t-test

twice, once with the default two-sided alternative and a second time
with the one-sided alternative hypothesis greater.

1. Open the Two-sample t Test dialog. 

2. Type weight.gain in the Data Set field.

3. Select gain.high as Variable 1 and gain.low as
Variable 2. By default, the Variable 2 is a Grouping
Variable check box should not be selected, and the Assume
Equal Variances check box should be selected. 

4. Click Apply.

The result appears in the Report window:

       Standard Two-Sample t-Test

data:  x: gain.high in weight.gain , and y: gain.low
in weight.gain

t = 1.8914, df = 17, p-value = 0.0757
alternative hypothesis: true difference in means is

not equal to 0
95 percent confidence interval:
  -2.193679  40.193679
sample estimates:
 mean of x mean of y
       120       101

The p-value is 0.0757, so the null hypothesis is rejected at the 0.10
level but not at the 0.05 level. The confidence interval is .
In other words, we conclude at the 0.05 level that there is no
significant difference in the weight gain between the two diets.

To test the one-sided alternative that , we change the

Alternative Hypothesis field to greater in the Two-sample t Test
dialog. Click OK to perform the test and see the output shown below.

μH μL– 0=

μH μL 0>–

2.2– 40.2( , )

μH μL 0>–
240



Compare Samples
       Standard Two-Sample t-Test

data:  x: gain.high in weight.gain , and y: gain.low
in weight.gain

t = 1.8914, df = 17, p-value = 0.0379
alternative hypothesis: true difference in means is

greater than 0
95 percent confidence interval:
 1.525171       NA
sample estimates:
 mean of x mean of y
       120       101

In this case, the p-value is just half of the p-value for the two-sided
alternative. This relationship between the p-values holds in general.
You also see that when you use the greater alternative hypothesis,
you get a lower confidence bound. This is the natural one-sided
confidence interval corresponding to the “greater than” alternative.

Two-Sample 
Wilcoxon Test

The Wilcoxon rank sum test is used to test whether two sets of
observations come from the same distribution. The alternative
hypothesis is that the observations come from distributions with
identical shape but different locations. Unlike the two-sample t-test,
this test does not assume that the observations come from normal
(Gaussian) distributions. The Wilcoxon rank sum test is equivalent to
the Mann-Whitney test.

For paired data, specify “signed rank” as the type of Wilcoxon rank
test.

Performing a two-sample Wilcoxon rank test

From the main menu, choose Statistics � Compare Samples �

Two Samples � Wilcoxon Rank Test. The Two-sample
Wilcoxon Test dialog opens, as shown in Figure 6.12. 
241



Chapter 6  Statistics
Example

In the section Two-Sample t-Test on page 235, we conducted a test to
see if the mean weight gain from a high-protein diet differs from that
of a low-protein diet. The two-sample t-test was significant at the 0.10
level but not at the 0.05 level. Since normality holds, a two-sample
t-test is probably most appropriate for these data. However, for
illustrative purposes we conduct a two-sample Wilcoxon test to see if
the two diets differ in mean weight gain. We conduct a two-sided test,
where the null hypothesis is that the difference in diets is 0; that is, we
test if the mean weight gain is the same for each diet. 

1. If you have not done so already, create the weight.gain data
set with the instructions given on page 237.

2. Open the Two-sample Wilcoxon Test dialog. 

Figure 6.12:  The Two-sample Wilcoxon Test dialog.
242



Compare Samples
3. Specify weight.gain as the Data Set.

4. Select gain.high as Variable 1 and gain.low as
Variable 2. By default, the Variable 2 is a Grouping
Variable check box should not be selected, and the Type of
Rank Test should be set to Rank Sum. Click OK.

The Report window shows the following output:

     Wilcoxon rank-sum test
data:  x: gain.high in weight.gain , and y: gain.low in

weight.gain
rank-sum normal statistic with correction Z = 1.6911,

p-value = 0.0908
alternative hypothesis: true mu is not equal to 0

You may also see a warning in the Report window because the value
107 appears twice in the data set. The warning can be ignored for
now. The p-value of 0.0908 is based on the normal approximation,
which is used because of ties in the data. It is close to the t-statistic
p-value of 0.0757. It therefore supports our conclusion that the mean
weight gain is not significantly different at level 0.05 in the high- and
low-protein diets.

Kolmogorov-
Smirnov 
Goodness-of-Fit

The two-sample Kolmogorov-Smirnov goodness-of-fit test is used to test
whether two sets of observations could reasonably have come from
the same distribution. This test assumes that the two samples are
random and mutually independent, and that the data are measured
on at least an ordinal scale. In addition, the test gives exact results
only if the underlying distributions are continuous.

Perform a two-sample Kolmogorov-Smirnov goodness-of-fit test

From the main menu, choose Statistics � Compare Samples �

Two Samples � Kolmogorov-Smirnov GOF. The Two-sample
Kolmogorov-Smirnov Goodness-of-Fit Test dialog opens, as
shown in Figure 6.13.
243



Chapter 6  Statistics
 

Example

The kyphosis data set has 81 rows representing data on 81 children
who have had corrective spinal surgery. The outcome Kyphosis is a
binary variable, and the other three columns Age, Number, and
Start, are numeric. Kyphosis is a post-operative deformity which is
present in some children receiving spinal surgery. We are interested
in examining whether the child’s age, the number of vertebrae
operated on, or the starting vertebra influence the likelihood of the
child having a deformity. As an exploratory tool, we test whether the
distributions of Age, Number, and Start are the same for the children
with and without kyphosis.

1. Open the Two-sample Kolmogorov-Smirnov Goodness-
of-Fit Test dialog. 

2. Type kyphosis in the Data Set field.

3. We perform separate tests for each of the three covariates, in
each case grouping by Kyphosis. Select Kyphosis as
Variable 2. Select the Variable 2 is a Grouping Variable
check box.

4. Select Age as Variable 1. Click Apply.

5. Select Number as Variable 1. Click Apply.

6. Select Start as Variable 1. Click OK.

Figure 6.13:  The Two-sample Kolmogorov-Smirnov Goodness-of-Fit Test 
dialog.
244



Compare Samples
A Report window appears with three goodness-of-fit summaries. The
p-values for Age, Number, and Start are 0.076, 0.028, and 0.0002,
respectively. This suggests that the children with and without
kyphosis do not differ significantly in the distribution of their ages,
but do differ significantly in the distributions of how many vertebrae
were involved in the operation, as well as which vertebra was the
starting vertebra. This is consistent with the logistic regression model
fit to these data later, in the section Logistic Regression on page 303.

K-Sample Tests Spotfire S+ supports a variety of techniques to analyze group mean
differences in designed experiments.

  • One-way analysis of variance: a simple one-factor analysis
of variance. No interactions are assumed among the main
effects. That is, the  samples are considered independent,
and the data must be normally distributed.

  • Kruskal-Wallis rank sum test: a nonparametric alternative
to a one-way analysis of variance. No distributional
assumptions are made.

  • Friedman rank sum test: a nonparametric analysis of means
of a one-factor designed experiment with an unreplicated
blocking variable.

The ANOVA dialog provides analysis of variance models involving
more than one factor; see the section Analysis of Variance on page
308.

One-Way Analysis 
of Variance

The One-Way Analysis of Variance dialog generates a simple
analysis of variance (ANOVA) table when there is a grouping
variable available that defines separate samples of the data. No
interactions are assumed among the main effects; that is, the samples
are considered to be independent. The ANOVA tables include
F-statistics, which test whether the mean values for all of the groups
are equal. These statistics assume that the observations are normally
(Gaussian) distributed.

For more complex models or ANOVA with multiple predictors, use
the Analysis of Variance dialog.

k

245



Chapter 6  Statistics
Perform a one-way ANOVA

From the main menu, choose Statistics � Compare Samples � k
Samples � One-way ANOVA. The One-way Analysis of
Variance dialog opens, as shown in Figure 6.14.  

Example

The simplest kind of experiments are those in which a single
continuous response variable is measured a number of times for each
of several levels of some experimental factor. For example, consider
the data in Table 6.2 (from Box, Hunter, and Hunter (1978)). The
data consist of numerical values of blood coagulation times for each
of four diets. Coagulation time is the continuous response variable,
and diet is a qualitative variable, or factor, having four levels: A, B, C,
and D. The diets corresponding to the levels A, B, C, and D were
determined by the experimenter.

Your main interest is to see whether or not the factor “diet” has any
effect on the mean value of blood coagulation time. Experimental
factors such as “diet” are often called the treatments.

Formal statistical testing for whether the factor levels affect the mean
coagulation time is carried out using analysis of variance (ANOVA).
This method needs to be complemented by exploratory graphics to
provide confirmation that the model assumptions are sufficiently
correct to validate the formal ANOVA conclusion. Spotfire S+
provides tools for you to do both the data exploration and the formal
ANOVA.

Figure 6.14:  The One-way Analysis of Variance dialog.
246



Compare Samples
 

Setting up the data

We have one factor variable diet and one response variable time.
The data are appropriately described in Spotfire S+ as a data set with
two columns. The data presented in Table 6.2 can be generated by
typing the following in the Commands window:

> diet <- factor(c(rep("A",4), rep("B",6), rep("C",6),
+ rep("D",8)))

> Time <- scan()
1: 62 60 63 59
5: 63 67 71 64 65 66
11: 68 66 71 67 68 68
17: 56 62 60 61 63 64 63 59
25:

Table 6.2:  Blood coagulation times for four diets.

Diet

A B C D

62 63 68 56

60 67 66 62

63 71 71 60

59 64 67 61

65 68 63

66 68 64

63

59
247



Chapter 6  Statistics
> blood <- data.frame(diet=diet, time=Time)
> blood

   diet time
 1    A   62
 2    A   60
 3    A   63
 4    A   59
 5    B   63
 6    B   67
 7    B   71
 8    B   64
 9    B   65
10    B   66
11    C   68
12    C   66
13    C   71
14    C   67
15    C   68
16    C   68
17    D   56
18    D   62
19    D   60
20    D   61
21    D   63
22    D   64
23    D   63
24    D   59

Exploratory data analysis

Box plots are a quick and easy way to get a first look at the data:

> boxplot(split(blood$time, blood$diet),
+ xlab="diet", ylab="time")

The resulting box plots are similar to those in Figure 6.15. This plot
indicates that the responses for diets A and D are quite similar, while
the median responses for diets B and C are considerably larger
relative to the variability reflected by the heights of the boxes. Thus,
you suspect that diet has an effect on blood coagulation time. 
248



Compare Samples
The one-way layout model and analysis of variance

The classical model for experiments with a single factor is

where  is the mean value of the response for the ith level of the

experimental factor. There are  levels of the experimental factor,

and  measurements  are taken on the response

variable for level  of the experimental factor. Using the treatment

terminology, there are  treatments and  is called the ith treatment

mean. The is often called the one-way layout model. For the blood
coagulation experiment, there are  diets, and the means ,

Figure 6.15:  Box plots for each of the four diets in the blood data set.

60
65

70

A B C D

diet

tim
e

yij μi ε ij+= j 1 … Ji, ,=

i 1 … I, ,=

μi

I
Ji yi1 yi2 … yiJi

, , ,

i
I μi

I 4= μ1
249



Chapter 6  Statistics
,  , and  correspond to diets A, B, C, and D, respectively. The

numbers of observations are , , , and

.

You may carry out the analysis of variance using the One-way
Analysis of Variance dialog.

1. Open the One-way Analysis of Variance dialog.

2. Type blood in the Data Set field.

3. Select time as the Variable and diet as the Grouping
Variable. 

4. To generate multiple comparisons in a later section, we save
the results by typing anova.blood in the Save As field. 

5. Click OK to perform the ANOVA.

The results are displayed in the Report window:

***  One-Way ANOVA for data in time by diet ***
Call:
   aov(formula = time ~ diet, data = blood)
Terms:
                diet Residuals
 Sum of Squares  228       112
Deg. of Freedom    3        20
Residual standard error: 2.366432
Estimated effects may be unbalanced
          Df Sum of Sq Mean Sq  F Value         Pr(F)
     diet  3       228    76.0 13.57143 0.00004658471
Residuals 20       112     5.6

The p-value is equal to 0.000047, which is highly significant; we
therefore conclude that diet does affect blood coagulation times.

Kruskal-Wallis 
Rank Sum Test

The Kruskal-Wallis rank test is a nonparametric alternative to a one-
way analysis of variance. The null hypothesis is that the true location
parameter for  is the same in each of the groups. The alternative

hypothesis is that  is different in at least one of the groups. Unlike
one-way ANOVA, this test does not require normality.

μ2 μ3 μ4

JA 4= JB 6= JC 6=

JD 8=

y
y

250



Compare Samples
Performing a Kruskal-Wallis rank sum test

From the main menu, choose Statistics � Compare Samples � k
Samples � Kruskal-Wallis Rank Test. The Kruskal-Wallis Rank
Sum Test dialog opens, as shown in Figure 6.16. 

Example

In the section One-Way Analysis of Variance on page 245, we
concluded that diet affects blood coagulation times. The one-way
ANOVA requires the data to be normally distributed. The
nonparametric Kruskal-Wallis rank sum test does not make any
distributional assumptions and can be applied to a wider variety of
data. We now conduct the Kruskal-Wallis rank sum test on the blood
data set.

1. If you have not done so already, create the blood data set
with the instructions given on page 247.

2. Open the Kruskal-Wallis Rank Sum Test dialog.

3. Type blood in the Data Set field.

4. Select time as the Variable and diet as the Grouping
Variable, and click OK.

The Report window displays the result:

       Kruskal-Wallis rank sum test
data:  time and diet from data set blood
Kruskal-Wallis chi-square = 17.0154, df = 3,

p-value = 0.0007
alternative hypothesis: two.sided

Figure 6.16:  The Kruskal-Wallis Rank Sum Test dialog.
251



Chapter 6  Statistics
The p-value is 0.0007, which is highly significant. The Kruskal-Wallis
rank sum test confirms the results of our one-way ANOVA.

Friedman Rank 
Test

The Friedman rank test is appropriate for data arising from an
unreplicated complete block design. In these kinds of designs, exactly
one observation is collected from each experimental unit, or block,
under each treatment. The elements of  are assumed to consist of a
groups effect, plus a blocks effect, plus independent and identically
distributed residual errors. The interaction between groups and
blocks is assumed to be zero.

In the context of a two-way layout with factors groups and blocks, a
typical null hypothesis is that the true location parameter for , net of
the blocks effect, is the same in each of the groups. The alternative
hypothesis is that it is different in at least one of the groups.

Performing a Friedman rank test

From the main menu, choose Statistics � Compare Samples � k
Samples � Friedman Rank Test. The Friedman Rank Sum Test
dialog opens, as shown in Figure 6.17.

Example

The data set shown in Table 6.3 was first used by Box, Hunter, and
Hunter in 1978. The data was collected to determine the effect of
treatments A, B, C, and D on the yield of penicillin in a penicillin
manufacturing process. The response variable is yield, and the

Figure 6.17:  The Friedman Rank Sum Test dialog.

y

y

252



Compare Samples
treatment variable is treatment. There is a second factor, blend,
since a separate blend of the corn-steep liquor had to be made for
each application of the treatments.

Our main interest is in determining whether the treatment factor
affects yield. The blend factor is of only secondary interest; it is a
blocking variable introduced to increase the sensitivity of the
inference for treatments. The order of the treatments within blocks
was chosen at random. Hence, this is a randomized block
experiment.

Table 6.3:  The effect of four treatments on the yield of penicillin.

blend treatment yield

1 A 89

2 A 84

3 A 81

4 A 87

5 A 79

1 B 88

2 B 77

3 B 87

4 B 92

5 B 81

1 C 97

2 C 92

3 C 87

4 C 89

5 C 80

1 D 94

2 D 79

3 D 85

4 D 84

5 D 88
253



Chapter 6  Statistics
Setting up the data

To create a penicillin data set containing the information in Table
6.3, type the following in the Commands window:

> blend <- factor(rep(c("Blend 1", "Blend 2", "Blend 3",
+ "Blend 4", "Blend 5"), times=4))

> treatment <- factor(c(rep("A",5), rep("B",5), rep("C",5), 
rep("D",5)))

> yield <- scan()
1: 89 84 81 87 79
6: 88 77 87 92 81
11: 97 92 87 89 80
16: 94 79 85 84 88
21:

> penicillin <- data.frame(blend, treatment, yield)
> penicillin

     blend treatment yield
 1 Blend 1         A    89
 2 Blend 2         A    84
 3 Blend 3         A    81
 4 Blend 4         A    87
 5 Blend 5         A    79
 6 Blend 1         B    88
 7 Blend 2         B    77
 8 . . .

Statistical inference

We use the Friedman rank test to test the null hypothesis that there is
no treatment effect.

1. Open the Friedman Rank Sum Test dialog. 

2. Type penicillin in the Data Set field.

3. Select yield as the Variable, treatment as the Grouping
Variable, and blend as the Blocking Variable.

4. Click OK.
254



Compare Samples
A summary for the Friedman test appears in the Report window. The
p-value is 0.322, which is not significant. This p-value is computed
using an asymptotic chi-squared approximation.

Counts and 
Proportions

Spotfire S+ supports a variety of techniques to analyze counts and
proportions.

• Binomial Test: an exact test used with binomial data to
assess whether the data come from a distribution with a
specified proportion parameter.

• Proportions Parameters: a chi-square test to assess whether
a binomial sample has a specified proportion parameter, or
whether two binomial samples have the same proportion
parameter.

• Fisher’s Exact Test: a test for independence between the
rows and columns of a contingency table.

• McNemar’s Test: a test for independence in a contingency
table when matched variables are present.

• Mantel-Haenszel Test: a chi-square test of independence for
a three-dimensional contingency table.

• Chi-square Test: a chi-square test for independence for a
two-dimensional contingency table.

Binomial data are data representing a certain number  of successes

out of  trials, where observations occur independently with

probability  of a success. Contingency tables contain counts of the
number of occurrences of each combination of two or more
categorical (factor) variables.

Binomial Test The exact binomial test is used with binomial data to assess whether the
data are likely to have come from a distribution with a specified
proportion parameter . Binomial data are data representing a

certain number  of successes out of  trials, where observations

occur independently with probability  of a success. Examples
include coin toss data.

k
n

p

p
k n

p

255



Chapter 6  Statistics
Performing an exact binomial test

From the main menu, choose Statistics � Compare Samples �

Counts and Proportions � Binomial Test. The Exact Binomial
Test dialog opens, as shown in Figure 6.18. 

Example

When you play roulette and bet on red, you expect your probability
of winning to be close to, but slightly less than 0.5. You expect this
because, in the United States, a roulette wheel has 18 red slots, 18
black slots, and two additional slots labeled “0” and “00.” This gives a
total of 38 slots into which the ball can fall. Thus, for a fair or perfectly
balanced wheel, you expect the probability of red to be

. You hope that the house is not cheating you

by altering the roulette wheel so that the probability of red is less than
0.474.

For example, suppose you bet on red 100 times and red comes up 42
times. You wish to ascertain whether these results are reasonable with
a fair roulette wheel.

1. Open the Exact Binomial Test dialog.

2. Enter 42 as the No. of Successes. Enter 100 as the No. of
Trials.

Figure 6.18:  The Exact Binomial Test dialog.

p0 18 38⁄ 0.474= =
256



Compare Samples
3. Enter 0.474 as the Hypothesized Proportion.

4. Click OK.

A summary of the test appears in the Report window. The p-value of
0.3168 indicates that our sample is consistent with data drawn from a
binomial distribution with a proportions parameter of 0.474. Hence,
the roulette wheel seems to be fair.

Proportions 
Parameters

The proportions parameters test uses a Pearson’s chi-square statistic to
assess whether a binomial sample has a specified proportion
parameter . In addition, it can assess whether two or more samples
have the same proportion parameter. As the proportions parameters
test uses a normal approximation to the binomial distribution, it is less
powerful than the exact binomial test. Hence, the exact binomial test
is usually preferred. The advantages of the proportions parameters
test are that it provides a confidence interval for the proportions
parameter, and that it may be used with multiple samples.

Performing a proportions parameters test

From the main menu, choose Statistics � Compare Samples �

Counts and Proportions � Proportions Parameters. The
Proportions Test dialog opens, as shown in Figure 6.19.

Figure 6.19:  The Proportions Test dialog.

p

257



Chapter 6  Statistics
Example

Sometimes you may have multiple samples of subjects, with each
subject characterized by the presence or absence of some
characteristic. An alternative, but equivalent, terminology is that you
have three or more sets of trials, with each trial resulting in a success
or failure. For example, the data set shown in Table 6.4 summarizes
the results of four different studies of lung cancer patients, as
presented by Fleiss (1981). Each study has a certain number of
patients, and for each study a certain number of the patients were
smokers.

Setting up the data

To create a cancer data set containing the information in Table 6.4,
type the following in the Commands window:

> cancer <- data.frame(smokers = c(83, 90, 129, 70),
+ patients = c(86, 93, 136, 82))
> cancer

  smokers patients
1      83       86
2      90       93
3     129      136
4      70       82

Table 6.4:  Four different studies of lung cancer patients.

smokers patients

83 86

90 93

129 136

70 82
258



Compare Samples
Statistical inference

For the cancer data, we are interested in whether the probability of a
patient being a smoker is the same in each of the four studies. That is,
we wish to test whether each of the studies involve patients from a
homogeneous population.

1. Open the Proportions Test dialog. 

2. Type cancer in the Data Set field.

3. Select smokers as the Success Variable and patients as the
Trial Variable.

4. Click OK.

A summary of the test appears in the Report window. The p-value of
0.0056 indicates that we reject the null hypothesis of equal
proportions parameters. Hence, we cannot conclude that all groups
have the same probability that a patient is a smoker.

Fisher’s Exact 
Test

Fisher’s exact test is a test for independence between the row and
column variables of a contingency table. When the data consist of two
categorical variables, a contingency table can be constructed
reflecting the number of occurrences of each factor combination.
Fisher’s exact test assesses whether the value of one factor is
independent of the value of the other. For example, this might be
used to test whether political party affiliation is independent of
gender. Certain types of homogeneity, for example, homogeneity of
proportions in a  table, are equivalent to the independence
hypothesis. Hence, this test may also be of interest in such cases.

As this is an exact test, the total number of counts in the cross-
classification table cannot be greater than 200. In such cases, the chi-
square test of independence is preferable.

Performing Fisher’s exact test

From the main menu, choose Statistics � Compare Samples �

Counts and Proportions � Fisher’s Exact Test. The Fisher’s
Exact Test dialog opens, as shown in Figure 6.20.

k 2×
259



Chapter 6  Statistics
 

Example

The data set shown in Table 6.5 contains a contingency table
summarizing the results of a clinical trial. Patients were divided into a
treatment group which received an experimental drug, and a control
group which did not. These patients were then monitored for 28 days,
with their survival status noted at the end of the study.  

Setting up the data

To create a fisher.trial data set containing the information in
Table 6.5, type the following in the Commands window:

> fisher.trial <- data.frame(c(17,29), c(7,38),
+ row.names=c("Died", "Survived"))
> names(fisher.trial) <- c("Control", "Treated")

Figure 6.20:  The Fisher’s Exact Test dialog.

Table 6.5:  A contingency table summarizing the results of a clinical trial.

Control Treated

Died 17 7

Survived 29 38
260



Compare Samples
> fisher.trial

         Control Treated
    Died      17       7
Survived      29      38

Statistical inference

We are interested in examining whether the treatment affected the
probability of survival.

1. Open the Fisher’s Exact Test dialog. 

2. Type fisher.trial in the Data Set field.

3. Select the Data Set is a Contingency Table check box.

4. Click OK.

A summary of the test appears in the Report window. The p-value of
0.0314 indicates that we reject the null hypothesis of independence.
Hence, we conclude that the treatment affects the probability of
survival.

McNemar’s Test In some experiments with two categorical variables, one of the
variables specifies two or more groups of individuals that receive
different treatments. In such situations, matching of individuals is
often carried out in order to increase the precision of statistical
inference. However, when matching is carried out, the observations
usually are not independent. In such cases, the inference obtained
from the chi-square test, Fisher’s exact test, and Mantel-Haenszel test
is not valid because these tests all assume independent observations.

McNemar’s test allows you to obtain a valid inference for experiments
where matching is carried out. McNemar’s statistic is used to test the
null hypothesis of symmetry: namely, that the probability of an
observation being classified into cell  is the same as the

probability of being classified into cell . The returned p-value
should be interpreted carefully. Its validity depends on the
assumption that the cell counts are at least moderately large. Even
when cell counts are adequate, the chi-square is only a large-sample
approximation to the true distribution of McNemar’s statistic under
the null hypothesis.

i j[ , ]

j i[ , ]
261



Chapter 6  Statistics
Performing McNemar’s test

From the main menu, choose Statistics � Compare Samples �

Counts and Proportions � McNemar’s Test. The McNemar’s
Chi-Square Test dialog opens, as shown in Figure 6.21. 

Example

The data set shown in Table 6.6 contains a contingency table of
matched pair data, in which each count is associated with a matched
pair of individuals. 

In this table, each entry represents a pair of patients, one of whom
was given treatment A while the other was given treatment B. For
instance, the 5 in the lower left cell means that in five pairs, the
person with treatment A died, while the individual the person was
paired with survived. We are interested in the relative effectiveness of
treatments A and B in treating a rare form of cancer.

Figure 6.21:  The McNemar’s Chi-Square Test dialog.

Table 6.6:  Contingency table of matched pair data.

B,Survive B,Die

A,Survive 90 16

A,Die 5 510
262



Compare Samples
A pair in the table for which one member of a matched pair survives
while the other member dies is called a discordant pair. There are 16
discordant pairs in which the individual who received treatment A
survived and the individual who received treatment B died. There are
five discordant pairs with the reverse situation, in which the
individual who received treatment A died and the individual who
received treatment B survived. If both treatments are equally
effective, then we expect these two types of discordant pairs to occur
with nearly equal frequency. Put in terms of probabilities, the null
hypothesis is that , where  is the probability that the first

type of discordancy occurs and  is the probability that the second

type of discordancy occurs.

Setting up the data

To create a mcnemar.trial data set containing the information in
Table 6.6, type the following in the Commands window:

> mcnemar.trial <- data.frame(c(90,5), c(16,510),
+ row.names=c("A.Survive", "A.Die"))
> names(mcnemar.trial) <- c("B.Survive", "B.Die")
> mcnemar.trial

          B.Survive B.Die
A.Survive        90    16
    A.Die         5   510

Statistical inference

We use McNemar’s test to examine whether the treatments are
equally effective.

1. Open the McNemar’s Square Test dialog. 

2. Type mcnemar.trial in the Data Set field.

3. Select the Data Set is a Contingency Table check box.

4. Click OK.

A summary of the test appears in the Report window. The p-value of
0.0291 indicates that we reject the null hypothesis of symmetry in the
table. This suggests that the two treatments differ in their efficacy.

p1 p2= p1

p2
263



Chapter 6  Statistics
Mantel-Haenszel 
Test

The Mantel-Haenszel test performs a chi-square test of independence
on a three-dimensional contingency table. It is used for a contingency
table constructed from three factors. As with McNemar’s test, the
returned p-value should be interpreted carefully. Its validity depends
on the assumption that certain sums of expected cell counts are at
least moderately large. Even when cell counts are adequate, the chi-
square is only a large-sample approximation to the true distribution of
the Mantel-Haenszel statistic under the null hypothesis.

Performing a Mantel-Haenszel test

From the main menu, choose Statistics � Compare Samples �

Counts and Proportions � Mantel-Haenszel Test. The Mantel-
Haenszel’s Chi-Square Test dialog opens, as shown in Figure 6.22. 

Example

The data set shown in Table 6.7 contains a three-way contingency
table summarizing the results from a cancer study. The first column
indicates whether an individual is a smoker. In the second column,
“Case” refers to an individual who had cancer and “Control” refers to
an individual who did not have cancer. The third column indicates
whether an individual is a passive smoker. A passive smoker is a person
who lives with a smoker, so it is therefore possible for a person to be
considered both a smoker and a passive smoker. The fourth column
indicates the number of individuals with each combination of
Smoker, Group, and Passive values.

Figure 6.22:  The Mantel-Haenszel’s Chi-Square Test dialog.
264



Compare Samples
We are primarily interested in whether passive smoke influences the
likelihood of getting cancer. However, smoking status could be a
confounding variable because both smoking and passive smoking are
related to the outcome, cancer status. We would like to use the
information on smoking status to produce an overall test of
independence between cancer status and passive smoking status. You
can do so for two or more  tables with the Mantel-Haenszel test.

Setting up the data

To create a mantel.trial data set containing the information in
Table 6.7, type the following in the Commands window:

> mantel.trial <- data.frame(
+ Smoker = factor(c(rep("Yes",4), rep("No",4))),
+ Group = factor(c("Case", "Case", "Control", "Control",
+ "Case", "Case", "Control", "Control")),
+ Passive = factor(c("Yes", "No", "Yes", "No", "Yes", "No",
+ "Yes", "No")),
+ Number = c(120, 111, 80, 155, 161, 117, 130, 124))

Table 6.7:  A three-way contingency table summarizing the results of a cancer study.

Smoker Group Passive Number

Yes Case Yes 120

Yes Case No 111

Yes Control Yes 80

Yes Control No 155

No Case Yes 161

No Case No 117

No Control Yes 130

No Control No 124

2 2×
265



Chapter 6  Statistics
> mantel.trial

  Smoker   Group Passive Number
1    Yes    Case     Yes    120
2    Yes    Case      No    111
3    Yes Control     Yes     80
4    Yes Control      No    155
5     No    Case     Yes    161
6     No    Case      No    117
7     No Control     Yes    130
8     No Control      No    124

The mantel.trial data set has eight rows representing the eight
possible combinations of three factors with two levels each. However,
the Mantel-Haenszel Chi-Square Test dialog requires data to be in
its raw form, and does not accept data in a contingency table. To
recreate the raw data, type the following in the Commands window:

> mantel.raw <- mantel.trial[rep(1:8,mantel.trial$Number),]

This replicates each of the integers 1 to 8 as many times as indicated
by the corresponding count in the Number column. We use the
mantel.raw data frame in the example analysis below.

Statistical inference

We use the Mantel-Haenszel Chi-Square Test dialog to test the
independence between cancer status and passive smoking status. 

1. Open the Mantel-Haenszel’s Chi-Square Test dialog. 

2. Type mantel.raw in the Data Set field.

3. Select Group as Variable 1, Passive as Variable 2, and
Smoker as the Stratification Variable.

4. Click OK.

A summary of the test appears in the Report window. The p-value of
0.0002 indicates that we reject the null hypothesis of independence
between cancer status and passive smoking.

Chi-Square Test The chi-square test performs a Pearson’s chi-square test on a two-
dimensional contingency table. This test is relevant to several types of
null hypotheses: statistical independence of the rows and columns,
homogeneity of groups, etc. The appropriateness of the test to a
266



Compare Samples
particular null hypothesis and the interpretation of the results depend
on the nature of the data at hand. In particular, the sampling scheme
is important in determining the appropriate of a chi-square test.

The p-value returned by a chi-square test should be interpreted
carefully. Its validity depends heavily on the assumption that the
expected cell counts are at least moderately large; a minimum size of
five is often quoted as a rule of thumb. Even when cell counts are
adequate, the chi-square is only a large-sample approximation to the
true distribution of chi-square under the null hypothesis. If the data
set is smaller than is appropriate for a chi-square test, then Fisher’s
exact test may be preferable.

Performing Pearson’s chi-square test

From the main menu, choose Statistics � Compare Samples �

Counts and Proportions � Chi-square Test. The Pearson’s Chi-
Square Test dialog opens, as shown in Figure 6.23.

Example

The data set shown in Table 6.8 contains a contingency table with
results from Salk vaccine trials in the early 1950s. There are two
categorical variables for the Salk trials: vaccination status, which has
the two levels “vaccinated” and “placebo,” and polio status, which has
the three levels “no polio,” “non-paralytic polio,” and “paralytic
polio.” Of 200,745 individuals who were vaccinated, 24 contracted
non-paralytic polio, 33 contracted paralytic polio, and the remaining
200,688 did not contract any kind of polio. Of 201,229 individuals

Figure 6.23:  The Pearson’s Chi-Square Test dialog.
267



Chapter 6  Statistics
who received the placebo, 27 contracted non-paralytic polio, 115
contracted paralytic polio, and the remaining 201,087 did not
contract any kind of polio.

When working with contingency table data, the primary interest is
most often determining whether there is any association in the form
of statistical dependence between the two categorical variables whose
counts are displayed in the table. The null hypothesis is that the two
variables are statistically independent. 

Setting up the data

To create a vaccine data set containing the information in Table 6.8,
type the following in the Commands window:

> vaccine <- data.frame(None = c(200688, 201087),
+ Nonparalytic=c(24,27), Paralytic=c(33,115),
+ row.names = c("Vaccinated", "Placebo"))
> vaccine
             None Nonparalytic Paralytic
Vaccinated 200688           24        33
   Placebo 201087           27       115

Statistical inference

We perform a chi-square test of independency for the vaccine data.

1. Open the Pearson’s Chi-Square Test dialog. 

2. Type vaccine in the Data Set field.

3. Select the Data Set is a Contingency Table check box, and
click OK.

A summary of the test appears in the Report window. The p-value of
0 indicates that we reject the null hypothesis of independence.
Vaccination and polio status are related.

Table 6.8:  A contingency table summarizing the results of the Salk vaccine trials.

None Nonparalytic Paralytic

Vaccinated 200,688 24 33

Placebo 201,087 27 115
268



Power and Sample Size
POWER AND SAMPLE SIZE

When designing a study, one of the first questions to arise is how large
a sample size is necessary. The sample size depends upon the
minimum detectable difference of interest, the acceptable probability
of rejecting a true null hypothesis (alpha), the desired probability of
correctly rejecting a false null hypothesis (power), and the variability
within the population(s) under study.

Spotfire S+ provides power and sample size calculations for one and
two sample tests of normal means or binomial proportions.

• Normal power and sample size: computes sample sizes for
statistics that are asymptotically normally distributed, such as
a sample mean. Alternatively, it may be used to calculate
power or minimum detectable difference for a sample of a
specified size.

• Binomial power and sample size: computes sample sizes
for statistics that are asymptotically binomially distributed,
such as a proportion. Alternatively, it may be used to calculate
power or minimum detectable difference for a sample of a
specified size.

Normal Mean The Normal Power and Sample Size dialog assists in computing
sample sizes for statistics that are asymptotically normally distributed.
Alternatively, it may be used to calculate power or minimum
detectable difference for a sample of a specified size.

Computing power and sample size for a mean

From the main menu, choose Statistics � Power and Sample Size
� Normal Mean. The Normal Power and Sample Size dialog
opens, as shown in Figure 6.24.
269



Chapter 6  Statistics
Example

A scientist is exploring the efficacy of a new treatment. The plan is to
apply the treatment to half of a study group, and then compare the
levels of a diagnostic enzyme in the treatment subjects with the
untreated control subjects. The scientist needs to determine how
many subjects are needed in order to determine whether the
treatment significantly changes the concentration of the diagnostic
enzyme.

Historical information indicates that the average enzyme level is 120,
with a standard deviation of 15. A difference in average level of 10 or
more between the treatment and control groups is considered to be of
clinical importance. The scientist wants to determine what sample

Figure 6.24:  The Normal Power and Sample Size dialog.
270



Power and Sample Size
sizes are necessary for various combinations of alpha (the probability
of falsely claiming the groups differ when they do not) and power (the
probability of correctly claiming the groups differ when they do).

The Normal Power and Sample Size dialog produces a table of
sample sizes for various combinations of alpha and power.

1. Open the Normal Power and Sample Size dialog.

2. Select Two Sample as the Sample Type.

3. Enter 120 as Mean1, 130 as Mean2, and 15 for both Sigma1
and Sigma2.

4. Enter 0.025, 0.05, 0.1 for Alpha, and enter 0.8, 0.9
for Power. We calculate equal sample sizes for all
combinations of these alpha and power values.

5. Click OK. 

A power table is displayed in the Report window. The table indicates
what sample sizes n1 and n2 are needed for each group at various
levels of alpha and power. For example, the scientist needs 36
subjects per group to determine a difference of 10 at an alpha of 0.05
and power of 0.8.

*** Power Table ***
  mean1 sd1 mean2 sd2 delta alpha power n1 n2
1   120  15   130  15    10 0.025   0.8 43 43
2   120  15   130  15    10 0.050   0.8 36 36
3   120  15   130  15    10 0.100   0.8 28 28
4   120  15   130  15    10 0.025   0.9 56 56
5   120  15   130  15    10 0.050   0.9 48 48
6   120  15   130  15    10 0.100   0.9 39 39

Binomial 
Proportion

The Binomial Power and Sample Size dialog assists in computing
sample sizes for statistics that are asymptotically binomially
distributed. Alternatively, it may be used to calculate power or
minimum detectable difference for a sample of a specified size.

Computing power and sample size for a proportion

From the main menu, choose Statistics � Power and Sample Size
� Binomial Proportion. The Binomial Power and Sample Size
dialog opens, as shown in Figure 6.25.
271



Chapter 6  Statistics
Example

Historically, 40% of the voters in a certain congressional district vote
for the Democratic congressional candidate. A pollster is interested in
determining the proportion of Democratic voters in an upcoming
election. The pollster wants to know how sizable a difference could be
detected for various sample sizes. That is, how much would the
proportion of Democratic voters in the sample have to differ from the
historical proportion of 40% to claim that the proportion is
significantly different from the historical norm?

1. Open the Binomial Power and Sample Size dialog.

2. Select Min. Difference as the value to Compute. Enter 0.4
as the Proportion and 100, 500, 1000, 5000 as the
sample sizes N1 to consider.

3. Click OK.

Figure 6.25:  The Binomial Power and Sample Size dialog.
272



Power and Sample Size
A power table is displayed in the Report window. The table indicates
the detectable differences delta for each sample size. For example,
with 1000 observations the pollster could determine whether the
proportion varies from 40% by at least 4.34%.

*** Power Table ***
  p.null     p.alt     delta alpha power   n1
1    0.4 0.5372491 0.1372491  0.05   0.8  100
2    0.4 0.4613797 0.0613797  0.05   0.8  500
3    0.4 0.4434020 0.0434020  0.05   0.8 1000
4    0.4 0.4194100 0.0194100  0.05   0.8 5000
273



Chapter 6  Statistics
EXPERIMENTAL DESIGN

Typically, a researcher begins an experiment by generating a design,
which is a data set indicating the combinations of experimental
variables at which to take observations. The researcher then measures
some outcome for the indicated combinations, and records this by
adding a new column to the design data set. Once the outcome is
recorded, exploratory plots may be used to examine the relationship
between the outcome and the experimental variables. The data may
then be analyzed using ANOVA or other techniques.

The Factorial Design and Orthogonal Array Design dialogs
create experimental designs. The Design Plot, Factor Plot, and
Interaction Plot dialogs produce exploratory plots for designs.

Factorial The Factorial Design dialog creates a factorial or fractional factorial
design. The basic factorial design contains all possible combinations
of the variable levels, possibly replicated and randomized. A
fractional factorial design excludes some combinations based upon
which model effects are of interest.

Creating a factorial design

From the main menu, choose Statistics �  Design �  Factorial. The
Factorial Design dialog opens, as shown in Figure 6.26.

Figure 6.26:  The Factorial Design dialog.
274



Experimental Design
Example

We create a design with 3 levels of the first variable and two levels of
the second.

1. Open the Factorial Design dialog.

2. Specify 3, 2 as the Levels.

3. Type exfac.design in the Save In field.

4. Click OK.

An exfac.design data set containing the design is created. You can
view exfac.design with either the Commands window or the Data
viewer.

Orthogonal 
Array

The Orthogonal Array Design dialog creates an orthogonal array
design. Orthogonal array designs are essentially very sparse fractional
factorial designs, constructed such that inferences may be made
regarding main (first-order) effects. Level combinations necessary for
estimating second- and higher-order effects are excluded in the
interest of requiring as few measurements as possible.

Generating an orthogonal array design

From the main menu, choose Statistics �  Design �  Orthogonal
Array. The Orthogonal Array Design dialog opens, as shown in
Figure 6.27.

Figure 6.27:  The Orthogonal Array Design dialog.
275



Chapter 6  Statistics
Example

We create a design with 3 levels of the first variable and two levels of
the second.

1. Open the Orthogonal Array Design dialog.

2. Specify 3, 2 as the Levels.

3. Type exortho.design in the Save In field.

4. Click OK.

An exortho.design data set containing the design is created. You
can view exortho.design with either the Commands window or
the Data viewer. In this simple example, the orthogonal array design
is equivalent to the design created in the section Factorial on page
274.

Design Plot A design plot displays a function of a variable for each level of one or
more corresponding factors. The default function is the mean.

Creating a design plot

From the main menu, choose Statistics � Design � Design Plot.
The Design Plot dialog opens, as shown in Figure 6.28.

Figure 6.28:  The Design Plot dialog.
276



Experimental Design
Example

The catalyst data set comes from a designed experiment. Its eight
rows represent all possible combinations of two temperatures (Temp),
two concentrations (Conc), and two catalysts (Cat). The fourth
column represents the response variable Yield. We are interested in
determining how temperature, concentration, and catalyst affect the
Yield. Prior to fitting an ANOVA model, we can use various plots to
examine the relationship between these variables. We start with a
design plot.

1. Open the Design Plot dialog. 

2. Type catalyst in the Data Set field.

3. Select Yield as the Dependent variable. 

4. CTRL-click to select Temp, Conc, and Cat as the Independent
variables.

5. Click OK.

A design plot appears in a Graph window. This plot has a vertical bar
for each factor, and a horizontal bar indicating the mean of Yield for
each factor level.

Factor Plot A factor plot consists of side by side plots comparing the values of a
variable for different levels of a factor. By default, box plots are used.
See the plot.factor help file for details.

Creating a factor plot

From the main menu, choose Statistics � Design � Factor Plot.
The Factor Plot dialog opens, as shown in Figure 6.29. 
277



Chapter 6  Statistics
Example

We create factor plots for the catalyst data set as follows:

1. Open the Factor Plot dialog. 

2. Type catalyst in the Data Set field.

3. Select Yield as the Dependent variable.

4. CTRL-click to select Temp, Conc, and Cat as the Independent
variables.

5. Change the number of Rows and number of Columns to 2.
This specifies a  grid of plots.

6. Click OK.

A factor plot appears in a Graph window. For each factor there is a
set of box plots for Yield, with a separate box plot for each factor
level.

Figure 6.29:  The Factor Plot dialog.

2 2×
278



Experimental Design
Interaction 
Plot

An interaction plot displays the levels of one factor along the x-axis, the
response on the y-axis, and the points corresponding to a particular
level of a second factor connected by lines. This type of plot is useful
for exploring or discovering interactions.

Creating an interaction plot

From the main menu, choose Statistics � Design � Interaction
Plot. The Interaction Plot dialog opens, as shown in Figure 6.30. 

Example

We create interaction plots for the catalyst data set as follows:

1. Open the Interaction Plot dialog. 

2. Type catalyst in the Data Set field.

3. Select Yield as the Dependent variable

4. CTRL-click to select Temp, Conc, and Cat as the Independent
variables.

5. Change the number of Rows and number of Columns to 2.
This specifies a  grid of plots.

6. Click OK.

Figure 6.30:  The Interaction Plot dialog.

2 2×
279



Chapter 6  Statistics
An interaction plot appears in a Graph window. For each pair of
factors, a set of lines is created showing the mean of Yield for each
level of the second factor at each level of the first factor. If the lines in
a plot cross, it suggests that an interaction is present between the two
factors.
280



Regression
REGRESSION

Regression is the standard technique for assessing how various
predictors relate to a response. This section discusses the regression
techniques available from the Statistics � Regression menu.

  • Linear regression: predicting a continuous response as a
linear function of predictors using a least-squares fitting
criterion.

  • Robust MM regression: predicting a continuous response
using an MM based robust fitting criterion.

  • Robust LTS regression: predicting a continuous response
using a least-trimmed-squares fitting criterion.

  • Stepwise linear regression: selecting which variables to
employ in a linear regression model using a stepwise
procedure.

  • Generalized additive models: predicting a general
response as a sum of nonparametric smooth univariate
functions of the predictors.

  • Local (loess) regression: predicting a continuous response
as a nonparametric smooth function of the predictors using
least- squares.

  • Nonlinear regression: predicting a continuous response as a
nonlinear function of the predictors using least-squares.

  • Generalized linear models: predicting a general response
as a linear combination of the predictors using maximum
likelihood.

  • Log-linear (Poisson) regression: predicting counts using
Poisson maximum likelihood.
281



Chapter 6  Statistics
  • Logistic regression: predicting a binary response using
binomial maximum likelihood with a logistic link.

  • Probit regression: predicting a binary response using
binomial maximum likelihood with a probit link.

Linear 
Regression

Linear regression is used to describe the effect of continuous or
categorical variables upon a continuous response. It is by far the most
common regression procedure. The linear regression model assumes
that the response is obtained by taking a specific linear combination
of the predictors and adding random variation (error). The error is
assumed to have a Gaussian (normal) distribution with constant
variance, and to be independent of the predictor values. 

Linear regression uses the method of least-squares, in which a line is fit
that minimizes the sum of the squared residuals. Suppose a set of 

observations of the response variable  correspond to a set of values

of the predictor  according to the model , where

 and . The ith residual  is

defined as the difference between the ith observation  and the ith

fitted value : that is, . The method of least

squares finds a set of fitted values that minimizes the sum .

If the response of interest is not continuous, then logistic regression,
probit regression, log-linear regression, or generalized linear
regression may be appropriate. If the predictors affect the response in
a nonlinear way, then nonlinear regression, local regression, or
generalized additive regression may be appropriate. If the data
contain outliers or the errors are not Gaussian, then robust regression
may be appropriate. If the focus is on the effect of categorical
variables, then ANOVA may be appropriate. If the observations are
correlated or random effects are present, then the mixed effect or
generalized least squares model may be appropriate.

n
yi

xi ŷ f x̂( )=

ŷ y1 y2 … yn, , ,( )= x̂ x1 x2 … xn, , ,( )= ri

yi

yi
ˆ f̂ xi( )= ri yi ŷi–=

ri
2

i 1=

n

∑

282



Regression
Other dialogs related to linear regression are Stepwise Linear
Regression, Compare Models, and Multiple Comparisons. The
Stepwise Linear Regression dialog uses a stepwise procedure to
suggest which variables to include in a model. Compare Models
provides tests for determining which of several models is most
appropriate. Multiple Comparisons calculates effects for categorical
predictors in linear regression or ANOVA.

Fitting a linear regression model

From the main menu, choose Statistics � Regression � Linear.
The Linear Regression dialog opens, as shown in Figure 6.31. 

Example

We examine the air pollution data in the example data set air. This
is a data set with 111 observations (rows) and 4 variables (columns). It
is taken from an environmental study that measured the four

Figure 6.31:  The Linear Regression dialog.
283



Chapter 6  Statistics
variables ozone, solar radiation, temperature, and wind speed for 111
consecutive days. We first create a scatter plot of the temperature
and ozone variables in air, as shown in Figure 6.32.  

From the scatter plot, we hypothesize a linear relationship between
temperature and ozone concentration. We choose ozone as the
response and temperature as the single predictor. The choice of
response and predictor variables is driven by the subject matter in
which the data arise, rather than by statistical considerations.

1. Open the Linear Regression dialog. 

2. Type air in the Data Set field. 

3. Type ozone ~ temperature in the Formula field.
Alternatively, select ozone as the Dependent variable and
temperature as the Independent variable. As a third way of
generating a formula, click the Create Formula button and
select ozone as the Response variable and temperature as a
Main Effect. You can use the Create Formula button to

Figure 6.32:  A scatter plot of ozone versus temperature .

temperature

oz
on

e

60 70 80 90

1
2

3
4

5

284



Regression
create complicated linear models and learn the notation for
model specifications. The on-line help discusses formula
creation in detail.

4. Go to the Plot page on the Linear Regression dialog and
check the seven main diagnostic plots.

5. Click OK to do the linear regression.

Spotfire S+ generates a Graph window with seven diagnostic plots.
You can access these plots by clicking the seven page tabs at the
bottom of the Graph window. The plots appear similar to those
shown in Figure 6.33. Spotfire S+ prints the results of the linear
regression in the Report window:

       *** Linear Model ***
Call: lm(formula = ozone ~ temperature, data = air,
   na.action = na.exclude)
Residuals:
   Min      1Q  Median     3Q   Max
 -1.49 -0.4258 0.02521 0.3636 2.044

Coefficients:
               Value Std. Error  t value Pr(>|t|)
(Intercept)  -2.2260   0.4614    -4.8243   0.0000
temperature   0.0704   0.0059    11.9511   0.0000

Residual standard error: 0.5885 on 109 degrees of freedom
Multiple R-Squared: 0.5672
F-statistic: 142.8 on 1 and 109 degrees of freedom, the

p-value is 0

The Value column under Coefficients gives the coefficients of the
linear model, allowing us to read off the estimated regression line as
follows:

ozone = -2.2260 + 0.0704 ×  temperature

The column named Std. Error in the output gives the estimated
standard error for each coefficient. The Multiple R-Squared term
tells us that the model explains about 57% of the variation in ozone.
The F-statistic is the ratio of the mean square of the regression to
the estimated variance; if there is no relationship between
285



Chapter 6  Statistics
temperature and ozone, this ratio has an F distribution with 1 and 109
degrees of freedom. The ratio here is clearly significant, so the true
slope of the regression line is probably not 0.

Diagnostic plots for linear models

How good is the fitted linear regression model? Is temperature an
adequate predictor of ozone concentration? Can we do better?
Questions such as these are essential any time you try to explain data
with a statistical model. It is not enough to fit a model; you must also
assess how well the model fits the data, and be prepared to modify the
model or abandon it altogether if it does not satisfactorily explain the
data.

Figure 6.33:  Seven diagnostic plots created by the Linear Regression dialog.

•

•

•

• •

•

• •
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

Fitted : temperature

Re
sid

ua
ls

2.0 3.0 4.0

-1
0

1
2

45

23

77

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

fits

sq
rt(

ab
s(R

es
idu

als
))

2.0 3.0 4.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4

4523

77

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

••

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

Fitted : temperature

oz
on

e

2.0 3.0 4.0

1
2

3
4

5
•

•

•

••

•

••
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

Quantiles of Standard Normal

Re
sid

ua
ls

-2 -1 0 1 2
-1

0
1

2
45

23

77

•
•
••

•••
••
•
••
••
••
•••
••••
••
•
•••
•••
••••
••
••
••••••
••••
••••
•••
•••
••••••••••

•••••••
•••
•••
•••
•••••
•••
••
••
•••
•
•••
••
••

•
•

Fitted Values

0.0 0.4 0.8

-1
0

1
2

•
•

••
•
•
••••
••••••
••
••••••••
•••••
••
••••••
••••••
••••••
••
•••
••••••
•••
••••
••••
••
•••••••••
•••••••
•••••
•••
•
•
••
•
••
•
•

•
•

•

Residuals

0.0 0.4 0.8

-1
0

1
2

f-value

oz
on

e

Co
ok

’s 
Di

sta
nc

e

0 20 40 60 80

0.0
0.0

2
0.0

4
0.0

6

17
77

20

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

••

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

temperature

pa
rtia

l fo
r te

mp
era

tur
e

60 70 80 90

4
5

6
7

286



Regression
The simplest and most informative method for assessing the fit is to
look at the model graphically, using an assortment of plots that, taken
together, reveal the strengths and weaknesses of the model. For
example, a plot of the response against the fitted values gives a good
idea of how well the model has captured the broad outlines of the
data. Examining a plot of the residuals against the fitted values often
reveals unexplained structure left in the residuals, which should
appear as nothing but noise in a strong model. The plotting options
for the Linear Regression dialog provide these two plots, along with
the following useful plots:

• Square root of absolute residuals against fitted values. This plot is
useful in identifying outliers and visualizing structure in the
residuals.

• Normal quantile plot of residuals. This plot provides a visual test
of the assumption that the model’s errors are normally
distributed. If the ordered residuals cluster along the
superimposed quantile-quantile line, you have strong
evidence that the errors are indeed normal.

• Residual-fit spread plot, or r-f plot. This plot compares the
spread of the fitted values with the spread of the residuals.
Since the model is an attempt to explain the variation in the
data, you hope that the spread in the fitted values is much
greater than that in the residuals.

• Cook’s distance plot. Cook’s distance is a measure of the
influence of individual observations on the regression
coefficients.

• Partial residual plot. A partial residual plot is a plot of

 versus , where  is the ordinary residual for

the ith observation,  is the ith observation of the kth

predictor, and  is the regression coefficient estimate for the

kth predictor. Partial residual plots are useful for detecting
nonlinearities and identifying possible causes of unduly large
residuals.

The line  is shown as a dashed line in the third plot of the top
row in Figure 6.33. In the case of simple regression, this line is
visually equivalent to the regression line. The regression line appears

ri bkxik= xik ri

xik

bk

y ŷ=
287



Chapter 6  Statistics
to model the trend of the data reasonably well. The residuals plots
(left two plots in the top row of Figure 6.33) show no obvious pattern,
although five observations appear to be outliers. By default, the three
most extreme values are identified in each of the residuals plots and
in the Cook’s distance plot.

Another useful diagnostic plot is the normal plot of residuals (right
plot in the top row of Figure 6.33). The normal plot gives no reason to
doubt that the residuals are normally distributed. The r-f plot, on the
other hand (left plot in the bottom row of Figure 6.33), shows a
weakness in this model: the spread of the residuals is actually greater
than the spread in the original data. However, if we ignore the five
outlying residuals, the residuals are more tightly grouped than the
original data.

The Cook’s distance plot shows four or five heavily influential
observations. Because the regression line fits the data reasonably well,
the regression is significant, and the residuals appear normally
distributed, we feel justified in using the regression line as a way to
estimate the ozone concentration for a given temperature. One
important issue remains, however: the regression line explains only
57% of the variation in the data. We may be able to do somewhat
better by considering the effect of other variables on the ozone
concentration.

Robust MM 
Regression

Robust regression models are useful for fitting linear relationships
when the random variation in the data is not Gaussian (normal), or
when the data contain significant outliers. In such situations, standard
linear regression may return inaccurate estimates.

The robust MM regression method returns a model that is almost
identical in structure to a standard linear regression model. This
allows the production of familiar plots and summaries with a robust
model. The MM method is the robust regression procedure currently
recommended by TIBCO Software Inc.

Performing robust MM regression

From the main menu, choose Statistics � Regression � Robust
MM. The Robust MM Linear Regression dialog opens, as shown
in Figure 6.34.
288



Regression
Example

The data set fuel.frame is taken from the April 1990 issue of
Consumer Reports. It contains 60 observations (rows) and 5 variables
(columns). Observations of weight, engine displacement, mileage,
type, and fuel were taken for each of sixty cars. In the fuel.frame
data, we predict Mileage by Weight and Disp. using robust MM
regression.

1. Open the Robust MM Linear Regression dialog.

2. Type fuel.frame in the Data Set field.

3. Type Mileage~Weight+Disp. in the Formula field.
Alternatively, select Mileage as the Dependent variable and
CTRL-click to select Weight and Disp. as the Independent
variables. As a third way of generating a formula, click the
Create Formula button, select Mileage as the Response

Figure 6.34:  The Robust MM Linear Regression dialog.
289



Chapter 6  Statistics
variable, and CTRL-click to select Weight and Disp. as the
Main Effects. You can use the Create Formula button to
create complicated linear models and learn the notation for
model specifications. The on-line help discusses formula
creation in detail.

4. Click OK to fit the robust MM regression model.

A summary of the model appears in the Report window.

Robust LTS 
Regression

The robust LTS regression method performs least-trimmed-squares
regression. It has less detailed plots and summaries than standard
linear regression and robust MM regression.

Performing robust LTS regression

From the main menu, choose Statistics � Regression � Robust
LTS. The Robust LTS Linear Regression dialog opens, as shown
in Figure 6.35.

Figure 6.35:  The Robust LTS Linear Regression dialog.
290



Regression
Example

In the fuel.frame data, we predict Mileage by Weight and Disp.
using robust LTS regression.

1. Open the Robust LTS Linear Regression dialog.

2. Type fuel.frame in the Data Set field.

3. Type Mileage~Weight+Disp. in the Formula field.
Alternatively, select Mileage as the Dependent variable and
CTRL-click to select Weight and Disp. as the Independent
variables. As a third way of generating a formula, click the
Create Formula button, select Mileage as the Response
variable, and CTRL-click to select Weight and Disp. as the
Main Effects. You can use the Create Formula button to
create complicated linear models and learn the notation for
model specifications. The on-line help discusses formula
creation in detail.

4. Click OK to fit the robust LTS regression model.

A summary of the model appears in the Report window.

Stepwise 
Linear 
Regression

One step in the modeling process is determining what variables to
include in the regression model. Stepwise linear regression is an
automated procedure for selecting which variables to include in a
regression model. Forward stepwise regression adds terms to the
model until additional terms no longer improve the goodness-of-fit.
At each step the term is added that most improves the fit. Backward
stepwise regression drops terms from the model so long as dropping
terms does not significantly decrease the goodness-of-fit. At each step
the term is dropped whose removal least degrades the fit. Stepwise
regression also has the option of alternating between adding and
dropping terms. This is the default method used.

Performing stepwise linear regression

From the main menu, choose Statistics � Regression � Stepwise.
The Stepwise Linear Regression dialog opens, as shown in Figure
6.36.
291



Chapter 6  Statistics
Example

We apply stepwise regression to the air data.

1. Open the Stepwise Linear Regression dialog.

2. Type air in the Data Set field. 

3. We must supply a formula representing the most complex
model to consider. Specify ozone ~ radiation +
temperature + wind as the Upper Formula.

4. We must also supply a formula representing the simplest
model to consider. Specify ozone ~ 1 as the Lower
Formula. The 1 indicates inclusion of just an intercept term.

5. Click OK.

Stepwise regression uses the Cp statistic as a measure of goodness-of-
fit. This is a statistic which rewards accuracy while penalizing model
complexity. In this example, dropping any term yields a model with a
Cp statistic that is smaller than that for the full model. Hence, the full
model is selected as the best model.

Figure 6.36:  The Stepwise Linear Regression dialog.
292



Regression
The summary of the steps appears in the Report window.

*** Stepwise Regression ***

*** Stepwise Model Comparisons ***
Start:  AIC= 29.9302
 ozone ~ radiation + temperature + wind

Single term deletions

Model:
ozone ~ radiation + temperature + wind

scale:  0.2602624 

            Df Sum of Sq      RSS       Cp
     <none>              27.84808 29.93018
  radiation  1   4.05928 31.90736 33.46893
temperature  1  17.48174 45.32982 46.89140
       wind  1   6.05985 33.90793 35.46950

*** Linear Model ***

Call: lm(formula = ozone ~ radiation + temperature + wind, 
data = air, na.action = na.exclude)
Residuals:
    Min      1Q   Median     3Q   Max
 -1.122 -0.3764 -0.02535 0.3361 1.495

Coefficients:
              Value Std. Error t value Pr(>|t|)
(Intercept) -0.2973  0.5552    -0.5355  0.5934
  radiation  0.0022  0.0006     3.9493  0.0001
temperature  0.0500  0.0061     8.1957  0.0000
       wind -0.0760  0.0158    -4.8253  0.0000

Residual standard error: 0.5102 on 107 degrees of freedom
Multiple R-Squared: 0.6807
F-statistic: 76.03 on 3 and 107 degrees of freedom, the 
p-value is 0
293



Chapter 6  Statistics
Generalized 
Additive 
Models

Generalized additive models extend linear models by flexibly modeling
additive nonlinear relationships between the predictors and the
response. Whereas linear models assume that the response is linear in
each predictor, additive models assume only that the response is
affected by each predictor in a smooth way. The response is modeled
as a sum of smooth functions in the predictors, where the smooth
functions are estimated automatically using smoothers. Additive
models may be useful for obtaining a final fit, or for exploring what
types of variable transformations might be appropriate for use in a
standard linear model.

Fitting an additive model

From the main menu, choose Statistics � Regression �

Generalized Additive. The Generalized Additive Models dialog
opens, as shown in Figure 6.37.

Example

We fit an additive model for the air data. 

1. Open the Generalized Additive Models dialog. 

2. Type air in the Data Set field.

Figure 6.37:  The Generalized Additive Models dialog.
294



Regression
3. Specify ozone ~ s(radiation) + s(temperature) + s(wind)
as the Formula.

4. On the Plot page of the dialog, select the Partial Residuals
and Include Partial Fits check boxes. This indicates that we
want plots of the partial residuals and partial fits for each
predictor.

5. Click OK.

A summary of the additive model appears in the Report window. A
multipage Graph window appears with one partial residual plot on
each page.

Local (Loess) 
Regression

Local regression is a nonparametric generalization of multivariate
polynomial regression. It is best thought of as a way to fit general
smooth surfaces. A wide variety of options are available for specifying
the form of the surface.

Fitting a local regression

From the main menu, choose Statistics � Regression � Local
(Loess). The Local (Loess) Regression dialog opens, as shown in
Figure 6.38. 

Figure 6.38:  The Local (Loess) Regression dialog.
295



Chapter 6  Statistics
Example

The data set Puromycin has 23 rows representing the measurement
of initial velocity of a biochemical reaction for 6 different
concentrations of substrate and two different cell treatments. The
section Nonlinear Regression describes these data in detail and
discusses a theoretical model for the data. Before fitting a theoretical
model, we can use the Local (Loess) Regression dialog to fit
nonparametric smooth curves to the data.

Our model consists of a separate curve for each treatment group. We
predict the response conc by the variables vel and state. Since
state is a factor, this fits a separate smooth curve in vel for each
level of state.

1. Open the Local (Loess) Regression dialog. 

2. Type Puromycin in the Data Set field. 

3. Type conc~vel+state in the Formula field. Alternatively,
select conc as the Dependent variable and CTRL-click to
select vel and state as the Independent variables. As a
third way of generating a formula, click the Create Formula
button, select conc as the Response variable, and CTRL-click
to select vel and state as the Main Effects. You can use the
Create Formula button to create complicated linear models
and learn the notation for model specifications. The on-line
help discusses formula creation in detail.

4. On the Plot page of the dialog, select Cond. Plots of Fitted
vs Predictors. This type of plot displays a separate plot in
one variable for different subsets of another variable. In our
case, it plots a separate curve for each level of state.

5. Click OK.

A summary of the loess model is presented in the Report window,
and a Graph window displays the conditional plot.

Nonlinear 
Regression

Nonlinear regression uses a specific nonlinear relationship to predict a
continuous variable from one or more predictor variables. The form
of the nonlinear relationship is usually derived from an application-
specific theoretical model.
296



Regression
The Nonlinear Regression dialog fits a nonlinear regression model.
To use nonlinear regression, specify the form of the model in Spotfire
S+ syntax and provide starting values for the parameter estimates.

Fitting a nonlinear least squares regression

From the main menu, choose Statistics � Regression �

Nonlinear. The Nonlinear Regression dialog opens, as shown in
Figure 6.39. 

Example

The data set Puromycin has 23 rows representing the measurement
of initial velocity of a biochemical reaction for 6 different
concentrations of substrate and two different cell treatments. Figure
6.40 plots velocity versus concentration with different symbols for the
two treatment groups (treated and untreated). 

Figure 6.39:  The Nonlinear Regression dialog.
297



Chapter 6  Statistics
The relationship between velocity and concentration is known to
follow a Michaelis-Menten relationship:

where  is the velocity,  is the enzyme concentration,  is a

parameter representing the asymptotic velocity as ,  is the

Michaelis parameter, and  is experimental error. Assuming the

treatment with the drug would change  but not , the

optimization function is:

where  is the function indicating whether the cell was

treated with Puromycin.

Figure 6.40:  Scatter plot of the Puromycin data.

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

conc

v
e
l untreated

treated

V
Vmaxc
K c+
-------------- ε+=

V c Vmax

c ∞→ K
ε

Vmax K

S Vmax K,( ) Vi
Vmax ΔVmaxI treated{ } state( )+( )ci

K ci+
--------------------------------------------------------------------------------–⎝ ⎠

⎛ ⎞ 2

∑=

I treated{ }
298



Regression
We first fit the simpler model in which a single curve is fit for both
groups. We then add a term reflecting the influence of treatment.

In order to fit a nonlinear regression model, we must specify the form
of the nonlinear model, the name of the data set, and starting values
for the parameter estimates. Examination of Figure 6.40 suggests
starting values of V=200 and K=0.1, treating all observations as a
single group. We fit a Michaelis-Menten relationship between velocity
and concentration as follows:

1. Open the Nonlinear Regression dialog.

2. Type Puromycin in the Data Set field.

3. Type the Michaelis-Menten relationship vel~(Vm*conc)/
(K+conc) into the Formula field.

4. Type the parameter starting values Vm=200, K=0.1 into the
Parameters field.

5. Click OK.

The following results appear in the Report window.

*** Nonlinear Regression Model ***

Formula: vel ~ (Vm * conc)/(K + conc)

Parameters:
         Value Std. Error  t value
Vm 190.8050000  8.7644700 21.77030
 K   0.0603863  0.0107682  5.60785

Residual standard error: 18.6146 on 21 degrees of freedom

Correlation of Parameter Estimates:
     Vm
K 0.776

The printed results provide parameter estimates, standard errors, and
t-values, as well as the residual standard error and correlation of
parameter estimates.
299



Chapter 6  Statistics
We now fit a model containing a treatment effect:

1. Open the Nonlinear Regression dialog.

2. Type Puromycin in the Data Set field.

3. Type the Michaelis-Menten relationship vel ~ ((Vm+delV
* (state == "treated")) * conc)/(K + conc) into
the Formula field.

4. Figure 6.40 suggests starting values of Vm=160 and delV=40,
while the previous model suggests K=0.05. Type the starting
values Vm=160, delV=40, K=0.05 into the Parameters
field.

5. Click OK.

The following results appear in the Report window.

*** Nonlinear Regression Model ***

Formula: vel ~ ((Vm + delV * (state == "treated")) * conc)/
(K + conc)

Parameters:
           Value Std. Error  t value
  Vm 166.6010000 5.80726000 28.68840
delV  42.0245000 6.27201000  6.70032
   K   0.0579659 0.00590968  9.80863

Residual standard error: 10.5851 on 20 degrees of freedom

Correlation of Parameter Estimates:
          Vm    delV
delV -0.5410
   K  0.6110  0.0644

The printed results provide parameter estimates, standard errors, and
t-values, as well as the residual standard error and correlation of
parameter estimates. The magnitude of the t-statistic for delV
confirms that the treatment affects the maximum velocity.
300



Regression
Generalized 
Linear Models

Generalized linear models are generalizations of the familiar linear
regression model to situations where the response is discrete or the
model varies in other ways from the standard linear model. The most
widely used generalized linear models are logistic regression models
for binary data and log-linear (Poisson) models for count data.

Fitting a generalized linear model

From the main menu, choose Statistics � Regression �

Generalized Linear. The Generalized Linear Models dialog
opens, as shown in Figure 6.41.

Example

The solder data set contains 900 observations (rows) that are the
results of an experiment that varied five factors relevant to the wave-
soldering procedure for mounting components on printed circuit
boards. The response variable skips is a count of how many solder

Figure 6.41:  The Generalized Linear Models dialog.
301



Chapter 6  Statistics
skips appeared in a visual inspection. We can use the Generalized
Linear Models dialog to assess which process variables affect the
number of skips.

1. Open the Generalized Linear Models dialog.

2. Type solder in the Data Set field.

3. Select skips as the Dependent variable and <ALL> in the
Independent variable list. This generates skips ~ . in the
Formula field.

4. Select poisson as the Family. The Link changes to log,
which is the canonical link for a Poisson model.

5. Click OK.

A summary of the Poisson regression appears in the Report window.

Log-Linear 
(Poisson) 
Regression

Count data are frequently modeled using log-linear regression. In log-
linear regression, the response is assumed to be generated from a
Poisson distribution, with a centrality parameter that depends upon
the values of the covariates.

Fitting a log-linear (Poisson) regression

From the main menu, choose Statistics � Regression � Log-linear
(Poisson). The Log-linear (Poisson) Regression dialog opens, as
shown in Figure 6.42. 

Figure 6.42:  The Log-linear (Poisson) Regression dialog.
302



Regression
Example

In this example, we fit a Poisson regression to the solder data.

1. Open the Log-linear (Poisson) Regression dialog.

2. Type solder in the Data Set field.

3. Select skips as the Dependent variable and <ALL> in the
Independent variable list. This generates skips ~ . in the
Formula field.

4. Click OK.

A summary of the log-linear regression appears in the Report
window. The t-values in the resulting table of coefficients are all fairly
large, indicating that all of the process variables have a significant
influence upon the number of skips generated.

Logistic 
Regression

Logistic regression models the relationship between a dichotomous
response variable and one or more predictor variables. A linear
combination of the predictor variables is found using maximum
likelihood estimation, where the response variable is assumed to be
generated by a binomial process whose probability parameter
depends upon the values of the predictor variables.

Fitting a logistic regression

From the main menu, choose Statistics � Regression � Logistic.
The Logistic Regression dialog opens, as shown in Figure 6.43. 

Figure 6.43:  The Logistic Regression dialog.
303



Chapter 6  Statistics
Example

The data set kyphosis has 81 rows representing data on 81 children
who have had corrective spinal surgery. The outcome Kyphosis is a
binary variable, and the other three variables Age, Number, and
Start, are numeric. Figure 6.44 displays box plots of Age, Number,
and Start for each level of Kyphosis, as generated by the following
commands:

> par(mfrow=c(3,1))
> boxplot(split(kyphosis$Age, kyphosis$Kyphosis),
+ xlab="Kyphosis", ylab="Age")
> boxplot(split(kyphosis$Number, kyphosis$Kyphosis),
+ xlab="Kyphosis", ylab="Number")
> boxplot(split(kyphosis$Start, kyphosis$Kyphosis),
+ xlab="Kyphosis", ylab="Start")    

Figure 6.44:  Box plots of the Kyphosis data.

0
5

0
1

0
0

1
5

0
2

0
0

absent present

Kyphosis

A
g

e

2
4

6
8

1
0

absent present

Kyphosis

N
u

m
b

e
r

5
1

0
1

5

absent present

Kyphosis

S
ta

rt
304



Regression
Kyphosis is a postoperative spinal deformity. We are interested in
exploring how the covariates influence whether or not the deformity
occurs. Both Start and Number show strong location shifts with
respect to the presence or absence of Kyphosis. The Age variable
does not show such a shift in location. We can use logistic regression
to quantify the influence of each covariate upon the likelihood of
deformity.

1. Open the Logistic Regression dialog. 

2. Type kyphosis in the Data Set field.

3. Specify Kyphosis~Age+Number+Start in the Formula field.

4. Click OK.

A summary of the logistic regression appears in the Report window.
The summary contains information on the residuals, coefficients, and
deviance. The high t-value for Start indicates it has a significant
influence upon whether kyphosis occurs. The t-values for Age and
Number are not large enough to display a significant influence upon
the response.

*** Generalized Linear Model ***

Call: glm(formula = Kyphosis ~ Age + Number + Start,
family = binomial(link = logit), data = kyphosis,
na.action = na.exclude, control = list(
epsilon = 0.0001, maxit = 50, trace = F))

Deviance Residuals:
       Min         1Q     Median         3Q     Max
 -2.312363 -0.5484308 -0.3631876 -0.1658653 2.16133

Coefficients:
                  Value Std. Error   t value
(Intercept) -2.03693225 1.44918287 -1.405573
        Age  0.01093048 0.00644419  1.696175
     Number  0.41060098 0.22478659  1.826626
      Start -0.20651000 0.06768504 -3.051043
305



Chapter 6  Statistics
(Dispersion Parameter for Binomial family taken to be 1 )

    Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 61.37993 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 5

Probit 
Regression

The Probit Regression dialog fits a probit response model. This is a
variation of logistic regression suitable for binomial response data.

Fitting a probit regression model

From the main menu, choose Statistics � Regression � Probit.
The Probit Regression dialog opens, as shown in Figure 6.45. 

Figure 6.45:  The Probit Regression dialog.
306



Regression
Example

In this example, we fit a probit regression model to the kyphosis
data set:

1. Open the Probit Regression dialog. 

2. Type kyphosis in the Data Set field.

3. Specify Kyphosis~Age+Number+Start in the Formula field.

4. Click OK.

A summary of the model is printed in the Report window.

*** Generalized Linear Model ***

Call: glm(formula = Kyphosis ~ Age + Number + Start,
family = binomial(link = probit), data = kyphosis,
na.action = na.exclude, control = list(epsilon =
0.0001, maxit = 50, trace = F))

Deviance Residuals:
       Min         1Q     Median        3Q      Max
 -2.217301 -0.5440968 -0.3535132 -0.124005 2.149486

Coefficients:
                   Value  Std. Error   t value
(Intercept) -1.063353291 0.809886949 -1.312965
        Age  0.005984768 0.003507093  1.706475
     Number  0.215179016 0.121687912  1.768286
      Start -0.120214682 0.038512786 -3.121423

(Dispersion Parameter for Binomial family taken to be 1 )

    Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 61.0795 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 5
307



Chapter 6  Statistics
ANALYSIS OF VARIANCE

Analysis of variance (ANOVA) is generally used to explore the
influence of one or more categorical variables upon a continuous
response.

Fixed Effects 
ANOVA

The ANOVA dialog performs classical fixed effects analysis of
variance.

Fitting a fixed effects ANOVA model

From the main menu, choose Statistics � ANOVA � Fixed
Effects. The ANOVA dialog opens, as shown in Figure 6.46.

Figure 6.46:  The ANOVA dialog.
308



Analysis of Variance
Example

In the section One-Way Analysis of Variance on page 245, we
performed a simple one-way ANOVA on the blood data set listed in
Table 6.2. These data give the blood coagulation times for four
different diets. In general, the ANOVA dialog can handle far more
complicated designs than the one-way ANOVA dialog. In addition, it
generates diagnostic plots and provides more information on the
results of the analysis. We use the ANOVA dialog to reproduce the
results of the earlier example. We also generate some diagnostic plots
to see how well our model suits our data.

1. If you have not done so already, create the blood data set
with the instructions given on page 247.

2. Open the ANOVA dialog. 

3. Enter blood as the Data Set.

4. Enter the formula time ~ diet for the one-way ANOVA we
are going to perform. Alternatively, select time as the
Dependent variable and diet as the Independent variable.
As a third way of generating a formula, click the Create
Formula button, select time as the Response variable and
diet as a Main Effect. You can use the Create Formula
button to create complicated linear models and learn the
notation for model specifications. The on-line help discusses
formula creation in detail.

5. Click on the Plot page and check all seven possible plots.

6. Click OK to do the analysis.

Spotfire S+ generates seven diagnostic plots. You can access these
plots by clicking the seven page tabs at the bottom of the Graph
window. The plots do not reveal any significant problems in our
model. The Report window displays the results of the ANOVA.

Random 
Effects ANOVA

Random effects ANOVA is used in balanced designed experiments
where the treatment effects are taken to be random. The model must
be balanced, and the model must be fully random. Only single strata
designs are allowed.

For mixed effect models, use the Linear Mixed Effects dialog.
309



Chapter 6  Statistics
Fitting a random effects ANOVA model

From the main menu, choose Statistics � ANOVA � Random
Effects. The Random Effects Analysis of Variance dialog opens,
as shown in Figure 6.47.

Example

The pigment data set has 60 rows and 4 columns. The rows represent
15 batches of pigment for which 2 samples were drawn from each
batch, and 2 analyses were made on each sample. These data are
from a designed experiment of moisture content where samples are
nested within batch. We fit a random effects ANOVA model to assess
the within-batch and between-batch variation.

1. Open the Random Effects Analysis of Variance dialog.

2. Type pigment in the Data Set field.

Figure 6.47:  The Random Effects Analysis of Variance dialog.
310



Analysis of Variance
3. Enter the following Formula:

Moisture ~ Batch + Sample %in% Batch

4. Click OK.

A summary of the model is printed in the Report window.

Multiple 
Comparisons

Analysis of variance models are typically used to compare the effects
of several treatments upon some response. After an analysis of
variance model has been fit, it is often of interest to determine
whether any significant differences exist between the responses for
the various treatment groups and, if so, to estimate the size of the
differences. Multiple comparisons provides tests for equality of effects
and also estimates treatment effects.

The Multiple Comparisons dialog calculates simultaneous or
nonsimultaneous confidence intervals for any number of estimable
linear combinations of the parameters of a fixed-effects linear model.
It requires the name of an analysis of variance model (aov) or linear
model (lm), and specification of which effects are of interest. 

The Multiple Comparisons functionality is also available on the
Compare page of the ANOVA dialog.

Performing multiple comparisons

From the main menu, choose Statistics � ANOVA � Multiple
Comparisons. The Multiple Comparisons dialog opens, as shown
in Figure 6.48.
311



Chapter 6  Statistics
Example

In the section One-Way Analysis of Variance on page 245, we
performed a simple one-way ANOVA on the blood data set listed in
Table 6.2. These data give the blood coagulation times for four
different diets. In the section Fixed Effects ANOVA on page 308, we
revisited the blood data set and concluded that diet affects blood
coagulation times. The next step is to generate multiple simultaneous
confidence intervals to see which diets are different from each other.
We can do this using either the Compare page on the ANOVA
dialog or the Multiple Comparisons dialog.

Figure 6.48:  The Multiple Comparisons dialog.
312



Analysis of Variance
1. If you have not done so already, create the blood data set
with the instructions given on page 247.

2. If you have not done so already, perform the one-way analysis
of variance on page 249 and save the results in the object
anova.blood.

3. Open the Multiple Comparisons dialog.

4. Select anova.blood as the Model Object from the pull-
down menu. 

5. We want to compare the levels of diet using Tukey’s
multiple comparison procedure. Select diet from the pull-
down menu for Levels Of and set the Method to Tukey.

6. Click OK to generate the multiple comparisons.

The Report window displays the result:

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.7987
response variable: time

intervals excluding 0 are flagged by '****'

      Estimate Std.Error Lower Bound Upper Bound
A-B -5.00e+000      1.53       -9.28      -0.725 ****
A-C -7.00e+000      1.53      -11.30      -2.720 ****
A-D -8.93e-014      1.45       -4.06       4.060
B-C -2.00e+000      1.37       -5.82       1.820
B-D  5.00e+000      1.28        1.42       8.580 ****
C-D  7.00e+000      1.28        3.42      10.600 ****

From the above results and from the plot of the confidence intervals,
we can see that diets A and D produce significantly different blood
coagulation times than diets C and B.
313



Chapter 6  Statistics
MIXED EFFECTS

Mixed effects models are regression or ANOVA models that include
both fixed and random effects.

Linear The Linear Mixed Effects Models dialog fits a linear mixed-effects
model in the formulation of Laird and Ware (1982), but allows for
nested random effects.

Fitting a linear mixed effects model

From the main menu, choose Statistics � Mixed Effects � Linear.
The Linear Mixed Effects Models dialog opens, as shown in Figure
6.49.

Figure 6.49:  The Linear Mixed Effects Models dialog.
314



Mixed Effects
Example

The Orthodont data set has 108 rows and four columns, and contains
an orthodontic measurement on eleven girls and sixteen boys at four
different ages. We use a linear mixed-effects model to determine the
change in distance with age. The model includes fixed and random
effects of age, with Subject indicating the grouping of
measurements.

1. Open the Linear Mixed Effects Models dialog. 

2. Type Orthodont in the Data Set field.

3. Specify distance~age in the Formula field.

4. Select Subject as a Group Variable and age as a Random
Term. The Random Formula field is automatically filled in
as ~ age|Subject.

5. Click OK.

A summary of the model is printed in the Report window.

Nonlinear The Nonlinear Mixed Effects Models dialog fits a nonlinear
mixed-effects model in the formulation described in Lindstrom and
Bates (1990), but allows for nested random effects.

Fitting a nonlinear mixed effects model

From the main menu, choose Statistics � Mixed Effects �

Nonlinear. The Nonlinear Mixed Effects Models dialog opens, as
shown in Figure 6.50.
315



Chapter 6  Statistics
Example

The Soybean data comes from an experiment that compares growth
patterns of two genotypes of soybeans. Variables include a factor
giving a unique identifier for each plot (Plot), a factor indicating
which variety of soybean is in the plot (Variety), the year the plot
was planted (Year), the time each sample was taken (time), and the
average leaf weight per plant (weight). We are interested in
modeling weight as a function of Time in a logistic model with
parameters Asym, xmid, and scal. These parameters have both fixed
and random effects. The grouping variable is Plot.

Figure 6.50:  The Nonlinear Mixed Effects Models dialog.
316



Mixed Effects
1. Open the Nonlinear Mixed Effects Models dialog. 

2. Type Soybean in the Data Set field.

3. Type the following Formula:

weight ~ SSlogis(Time, Asym, xmid, scal)

 This specifies that we want to predict weight by a function
SSlogis of the variables Time, Asym, xmid, and scal. The
SSlogis function is a self-starting function used to specify the
nonlinear model, as well as provide initial estimates to the
solver.

4. Specify starting fixed effect parameter estimates in the
Parameters (name=value) field:

fixed=c(18, 52, 7.5)

5. Specify that Asym, xmid, and scal are the fixed effects
variables by typing the following formula in the Fixed field
under Effects:

Asym + xmid + scal ~ 1

6. Specify that Asym, xmid, and scal are the random effects
variables and that Plot is the grouping variable by typing the
following formula in the Random field under Effects:

Asym + xmid + scal ~ 1 | Plot

7. Click OK.

A summary of the fitted model appears in the Report window.
317



Chapter 6  Statistics
GENERALIZED LEAST SQUARES

Generalized least squares models are regression or ANOVA models
in which the residuals have a nonstandard covariance structure. The
covariance structures supported include correlated and
heteroscedastic residuals.

Linear The Generalized Least Squares dialog fits a linear model using
generalized least squares. Errors are allowed to be correlated and/or
have unequal variances.

Performing generalized least squares regression

From the main menu, choose Statistics � Generalized Least
Squares � Linear. The Generalized Least Squares dialog opens,
as shown in Figure 6.51.

Figure 6.51:  The Generalized Least Squares dialog.
318



Generalized Least Squares
Example

The Ovary data set has 308 rows and three columns giving the
number of ovarian follicles detected in different mares at different
times in their estrus cycles. Biological models suggest that the number
of follicles may be modeled as a linear combination of the sine and
cosine of 2*pi*Time. We expect that the variation increases with
Time, and hence use generalized least squares with a Power variance
structure instead of standard linear regression. In a Power variance
structure, the variance increases with a power of the absolute fitted
values.

1. Open the Generalized Least Squares dialog. 

2. Type Ovary in the Data Set field.

3. Enter the following Formula:

follicles ~ sin(2*pi*Time) + cos(2*pi*Time)

4. On the Options page of the dialog, select Power as the
Variance Structure Type.

5. Click OK.

A summary of the fitted model appears in the Report window.

Nonlinear The Generalized Nonlinear Least Squares dialog fits a nonlinear
model using generalized least squares. The errors are allowed to be
correlated and/or have unequal variances.

Performing generalized nonlinear least squares regression

From the main menu, choose Statistics � Generalized Least
Squares � Nonlinear. The Generalized Nonlinear Least
Squares dialog opens, as shown in Figure 6.52.
319



Chapter 6  Statistics
Example

The Soybean data comes from an experiment to compare growth
patterns of two genotypes of soybeans. Variables include a factor
giving a unique identifier for each plot (Plot), a factor indicating
which variety of soybean is in the plot (Variety), the year the plot
was planted (Year), the time each sample was taken (time), and the
average leaf weight per plant (weight). We are interested in
modeling weight as a function of Time in a logistic model with
parameters Asym, xmid, and scal. We expect that the variation
increases with time, and hence use generalized least squares with a
Power variance structure instead of standard nonlinear regression. In
a Power variance structure, the variance increases with a power of the
absolute fitted values.

Figure 6.52:  The Generalized Nonlinear Least Squares dialog.
320



Generalized Least Squares
1. Open the Generalized Nonlinear Least Squares dialog. 

2. Type Soybean in the Data Set field.

3. Enter the following Formula:

weight ~ SSlogis(Time, Asym, xmid, scal)

 The SSlogis function is a self-starting function used to specify
the nonlinear model, as well as provide initial estimates to the
solver.

4. On the Options page of the dialog, select Power as the
Variance Structure Type.

5. Click OK.

A summary of the fitted model appears in the Report window.
321



Chapter 6  Statistics
SURVIVAL

Survival analysis is used for data in which censoring is present.

Nonparametric 
Survival

Nonparametric survival curves are estimates of the probability of survival
over time. They are used in situations such as medical trials where the
response is time to failure, usually with some times lost to censoring.
The most commonly used nonparametric survival curve is the
Kaplan-Meier estimate. The Nonparametric Survival dialog fits a
variety of nonparametric survival curves and allows the inclusion of
grouping variables.

Fitting a nonparametric survival curve

From the main menu, choose Statistics � Survival �

Nonparametric Survival. The Nonparametric Survival dialog
opens, as shown in Figure 6.53.

Figure 6.53:  The Nonparametric Survival dialog.
322



Survival
Example

The leukemia data set contains data from a trial to evaluate efficacy
of maintenance chemotherapy for acute myelogenous leukemia. We
fit a Kaplan-Meier survival curve to the full set of data.

1. Open the Nonparametric Survival dialog. 

2. Type leukemia in the Data Set field.

3. Enter the Formula Surv(time,status)~1 or click on the
Create Formula button to construct the formula. The Surv
function creates a survival object, which is the appropriate
response variable for a survival formula.

4. Click OK.

A summary of the fitted model appears in the Report window, and a
plot of the survival curve with confidence intervals appears in a
Graph window.

Cox 
Proportional 
Hazards

The Cox proportional hazards model is the most commonly used
regression model for survival data. It allows the estimation of
nonparametric survival curves (such as Kaplan-Meier curves) in the
presence of covariates. The effect of the covariates upon survival is
usually of primary interest.

Fitting a Cox proportional hazards model

From the main menu, choose Statistics � Survival � Cox
Proportional Hazards. The Cox Proportional Hazards dialog
opens, as shown in Figure 6.54.
323



Chapter 6  Statistics
Example

We fit a Cox proportional hazards model to the leukemia data set
with group used as a covariate.

1. Open the Cox Proportional Hazards dialog. 

2. Type leukemia in the Data Set field.

3. Enter the Formula Surv(time,status)~group or click the
Create Formula button to construct the formula. The Surv
function creates a survival object, which is the appropriate
response variable for a survival formula.

4. Select the Survival Curves check box on the Plot page.

5. Click OK.

A summary of the fitted model appears in the Report window, and a
plot of the survival curve with confidence intervals appears in a
Graph window.

Figure 6.54:  The Cox Proportional Hazards dialog.
324



Survival
Parametric 
Survival

Parametric regression models for censored data are used in a variety
of contexts ranging from manufacturing to studies of environmental
contaminants. Because of their frequent use for modeling failure time
or survival data, they are often referred to as parametric survival models.
In this context, they are used throughout engineering to discover
reasons why engineered products fail. They are called accelerated
failure time models or accelerated testing models when the product is tested
under more extreme conditions than normal to accelerate its failure
time.

The Parametric Survival and Life Testing dialogs fit the same type
of model. The difference between the two dialogs is in the options
available. The Life Testing dialog supports threshold estimation,
truncated distributions, and offsets. In addition, it provides a variety
of diagnostic plots and the ability to obtain predicted values. This
functionality is not available in the Parametric Survival dialog. In
contrast, the Parametric Survival dialog supports frailty and
penalized likelihood models, which is not available in the Life
Testing dialog.

Fitting a parametric survival model

From the main menu, choose Statistics � Survival � Parametric
Survival. The Parametric Survival dialog opens, as shown in
Figure 6.55. 

Figure 6.55:  The Parametric Survival dialog.
325



Chapter 6  Statistics
Example

The capacitor data set contains measurements from a simulated
accelerated life testing of capacitors. It includes time to failure (days),
indicator of failure or censoring (event), and the voltage at which the
test was run (voltage). We use a parametric survival model to
examine how voltage influences the probability of failure.

1. Open the Parametric Survival dialog. 

2. Type capacitor in the Data Set field.

3. Enter the Formula Surv(days,event)~voltage or click
the Create Formula button to construct the formula. The
Surv function creates a survival object, which is the
appropriate response variable for a survival formula.

4. Click OK.

A summary of the fitted model appears in the Report window.

Life Testing The Life Testing dialog fits a parametric regression model for
censored data. These models are used in a variety of contexts ranging
from manufacturing to studies of environmental contaminants.
Because of their frequent use for modeling failure time or survival
data, they are often referred to as parametric survival models. In this
context, they are used throughout engineering to discover reasons
why engineered products fail. They are called accelerated failure time
models or accelerated testing models when the product is tested under
more extreme conditions than normal to accelerate its failure time.

The Parametric Survival and Life Testing dialogs fit the same type
of model. The difference between the two dialogs is in the options
available. The Life Testing dialog supports threshold estimation,
truncated distributions, and offsets. In addition, it provides a variety
of diagnostic plots and the ability to obtain predicted values. This
functionality is not available in the Parametric Survival dialog. In
contrast, the Parametric Survival dialog supports frailty and
penalized likelihood models, which is not available in the Life
Testing dialog.

Performing life testing

From the main menu, choose Statistics � Survival � Life Testing.
The Life Testing dialog opens, as shown in Figure 6.56.
326



Survival
Example

We use the Life Testing dialog to examine how voltage influences
the probability of failure in the capacitor data set.

1. Open the Life Testing dialog. 

2. Type capacitor in the Data Set field.

3. Enter the Formula censor(days,event)~voltage or click
the Create Formula button to construct the formula. The
censor function creates a survival object, which is the
appropriate response variable for a survival formula. It is
similar to the Surv function, but provides more options for
specifying censor codes.

4. Click OK.

A summary of the fitted model appears in the Report window.

Figure 6.56:  The Life Testing dialog.
327



Chapter 6  Statistics
TREE

Tree-based models provide an alternative to linear and additive
models for regression problems, and to linear and additive logistic
models for classification problems. Tree models are fit by successively
splitting the data to form homogeneous subsets. The result is a
hierarchical tree of decision rules useful for prediction or
classification.

Tree Models The Tree Models dialog is used to fit a tree model.

Fitting a tree model

From the main menu, choose Statistics � Tree � Tree Models. The
Tree Models dialog opens, as shown in Figure 6.57.

Figure 6.57:  The Tree Models dialog.
328



Tree
Example

The kyphosis data set has 81 rows representing data on 81 children
who have had corrective spinal surgery. The outcome Kyphosis is a
binary variable, and the other three columns Age, Number, and
Start, are numeric. Kyphosis is a post-operative deformity which is
present in some children receiving spinal surgery. We are interested
in examining whether the child’s age, the number of vertebrae
operated on, or the starting vertebra influence the likelihood of the
child having a deformity.

We fit a classification tree to the data, in which a tree structure is used
to classify individuals as likely or unlikely to have kyphosis based on
their values of Age, Number, and Start. The resulting classification
tree divides individuals into groups based on these variables.

1. Open the Tree Models dialog. 

2. Type kyphosis in the Data Set field.

3. Specify Kyphosis~Age+Number+Start in the Formula field.

4. Type my.tree in the Save As field. A tree model object is
saved under this name, which we explore in a later example
using Tree Tools.

5. Click OK.

A summary of the model is printed in the Report window, and a tree
plot is displayed in a Graph window.

Tree Tools Spotfire S+ provides a rich suite of tools for interactively examining a
regression tree. To use Tree Tools, first use the Tree Models dialog
to create a tree model. Save the tree model by specifying a name in
the Save As field of the dialog.

All of the Tree Tools begin by creating a plot of the specified tree
model. The Browse, Burl, Histogram, Identify, and Snip tools let
you select splits or nodes on the plot, and provide information on the
selection. Click the left mouse button to make a selection, and click
the right or center mouse button to leave the selection mode. With
these tools, it may be necessary to arrange your windows prior to
clicking OK or Apply so that the necessary Graph and Report
windows are in view while making selections.
329



Chapter 6  Statistics
The tools behave in the following manner:

• Browse: select a node on the tree plot. Summary information
on the node appears in the Report window. Right-click to
leave the selection mode. Specify a name in the Save As field
to save a list of the node information.

• Burl: select a split on the tree plot. Plots appear under the tree
that display the change in deviance for all candidate splits.
The actual split has the largest change in deviance. These
plots are useful for examining whether other splits would
produce an improvement in fit similar to the improvement
from the actual split. Right-click to leave the selection mode.
Specify a name in the Save As field to save a list with
information on the candidate splits.

• Histogram: specify variables for which to draw histograms in
the Hist Variables field. Select a split on the tree plot. Plots
appear under the tree that display histograms of the specified
variables, with separate histograms for the values in the two
nodes resulting from the split. Right-click to leave the
selection mode. Specify a name in the Save As field to save a
list of the variable values corresponding to the histograms.

• Identify: select a node on the tree plot. The row names or
numbers for the observations in that node appear in the
Report window. Right-click to leave the selection mode.
Specify a name in the Save As field to save a list of the
observations in each node.

• Rug: specify the variable to plot in the Rug/Tile Variable
field. A high-density plot that shows the average value of the
specified variable for observations in each leaf is plotted
beneath the tree plot. Specify a name in the Save As field to
save a vector of the average values. This tool is not interactive.

• Snip: use this tool to create a new tree with some splits
removed. Select a node on the tree plot to print the total tree
deviance and what the total tree deviance would be if the
subtree rooted at the node were removed. Click a second time
on the same node to snip that subtree off and visually erase
the subtree. This process may be repeated any number of
times. Right-click to leave the selection mode. Specify a name
in the Save As field to save the snipped tree.
330



Tree
• Tile: specify a variable to plot in the Rug/Tile Variable field.
A vertical bar plot of the variable is plotted beneath the tree
plot. Factor variables have one bar per level, and numeric
variables are quantized into four equi-sized ordered levels.
Specify a name in the Save As field to save a matrix of
frequency counts for the observations in each leaf. This tool is
not interactive. 

Using the tree tools

From the main menu, choose Statistics � Tree � Tree Tools. The
Tree Tools dialog opens, as shown in Figure 6.58. 

Example

In the section Tree Models on page 328, we fit a classification tree to
the kyphosis data. We can use a tree tile plot to see histograms of
Age within each group.

1. If you have not done so already, fit the classification tree and
save the results in an object named my.tree. This process is
outlined on page 329. 

2. Open the Tree Tools dialog.

Figure 6.58:  The Tree Tools dialog.
331



Chapter 6  Statistics
3. Select my.tree as the Model Object. 

4. Select Tile as the Tool Type. 

5. Select Age as the Rug/Tile Variable.

6. Click OK.

A tree tile plot is displayed in a Graph window. The top portion of
the graph contains a plot of the tree. The bottom portion contains
histograms of Age for each terminal node in the tree.
332



Compare Models
COMPARE MODELS

In regression and ANOVA, the data analyst often has a variety of
candidate models of interest. From these models, the data analyst
usually chooses one which is thought to best describe the relationship
between the predictors and the response.

Model selection typically involves making a trade-off between
complexity and goodness-of-fit. A more complex model (one
involving more variables or interactions of variables) is guaranteed to
fit the observed data more closely than a simpler model. For
example, a model with as many parameters as observations would fit
the data perfectly. However, as the model grows more complex, it
begins to reflect the random variation in the sample obtained rather
than a more general relationship between the response and the
predictors. This may make the model less useful than a simpler one
for predicting new values or drawing conclusions regarding model
structure.

The general strategy in regression is to choose a simpler model when
doing so does not reduce the goodness-of-fit by a significant amount.
In linear regression and ANOVA, an F-test may be used to compare
two models. In logistic and log-linear regression, a chi-square test
comparing deviances is appropriate.

The Compare Models dialog lets you compare the goodness-of-fit of
two or more models. Typically, the models should be nested, in that
the simpler model is a special case of the more complex model.
Before using the Compare Models dialog, first save the models of
interest as objects.

Comparing models

From the main menu, choose Statistics � Compare Models. The
Compare Models (Likelihood Ratio Test) dialog opens, as shown
in Figure 6.59.
333



Chapter 6  Statistics
Example

In the kyphosis analysis of the section Logistic Regression, we
suggested that Start had a significant effect upon Kyphosis, but Age
and Number did not. We can use a chi-square test to determine
whether a model with just Start is sufficient.

1. Open the Logistic Regression dialog. 

2. Type kyphosis in the Data Set field.

3. Specify Kyphosis~Age+Number+Start in the Formula field.
Type kyph.full in the Save As field and click Apply.
Information describing this model is saved as an object
named kyph.full.

4. Change the Formula field to Kyphosis~Start. Change the
Save As name to kyph.sub, and click OK. Information
describing this model is saved as an object named kyph.sub.

5. Open the Compare Models (Likelihood Ratio Test)
dialog. 

Figure 6.59:  The Compare Models (Likelihood Ratio Test) dialog.
334



Compare Models
6. CTRL-click to select kyph.full and kyph.sub in the Model
Objects list. 

7. Select Chi-Square as the Test Statistic.

8. Click OK.

An analysis of deviance table appears in the Report window. The
table displays the degrees of freedom and residual deviance for each
model. Under the null hypothesis that the simpler model is
appropriate, the difference in residual deviances is distributed as a
chi-squared statistic. The Pr(Chi) column provides a p-value for the
hypothesis that the simpler model is appropriate. If this value is less
than a specific value, typically 0.05, then the more complex model
causes a large enough change in deviance to warrant the inclusion of
the additional terms. That is, the extra complexity is justified by an
improvement in goodness-of-fit.

In our example the p-value of 0.035 suggests that Age and/or Number
add extra information useful for predicting the outcome.

Analysis of Deviance Table

Response: Kyphosis

                 Terms Resid. Df Resid. Dev        Test
1 Age + Number + Start        77   61.37993
2                Start        79   68.07218 -Age-Number
  Df  Deviance    Pr(Chi)
1
2 -2 -6.692253 0.03522052
335



Chapter 6  Statistics
CLUSTER ANALYSIS

In cluster analysis, we search for groups (clusters) in the data in such a
way that objects belonging to the same cluster resemble each other,
whereas objects in different clusters are dissimilar.

Compute 
Dissimilarities

A data set for clustering can consist of either rows of observations, or
a dissimilarity object storing measures of dissimilarities between
observations. K-means, partitioning around medoids using the large
data algorithm, and monothetic clustering all operate on a data set.
Partitioning around medoids, fuzzy clustering, and the hierarchical
methods take either a data set or a dissimilarity object.

The clustering routines themselves do not accept nonnumeric
variables. If a data set contains nonnumeric variables such as factors,
they must either be converted to numeric variables, or dissimilarities
must be used.

How we compute the dissimilarity between two objects depends on
the type of the original variables. By default, numeric columns are
treated as interval-scaled variables, factors are treated as nominal
variables, and ordered factors are treated as ordinal variables. Other
variable types should be specified as such through the fields in the
Special Variable Types group.

Calculating dissimilarities

From the main menu, choose Statistics �  Cluster Analysis �

Compute Dissimilarities. The Compute Dissimilarities dialog
opens, as shown in Figure 6.60.
336



Cluster Analysis
Example

The data set fuel.frame is taken from the April 1990 issue of
Consumer Reports. It contains 60 observations (rows) and 5 variables
(columns). Observations of weight, engine displacement, mileage,
type, and fuel were taken for each of sixty cars. In the fuel.frame
data, we calculate dissimilarities as follows:

1. Open the Compute Dissimilarities dialog.

2. Type fuel.frame in the Data Set field.

3. Type fuel.diss in the Save As field.

4. Click OK.

The dissimilarities are calculated and saved in the object fuel.diss.
We use this object in later examples of clustering dialogs.

K-Means 
Clustering

One of the most well-known partitioning methods is k-means. In the
k-means algorithm, observations are classified as belonging to one of

 groups. Group membership is determined by calculating the
centroid for each group (the multidimensional version of the mean)
and assigning each observation to the group with the closest centroid.

Figure 6.60:  The Compute Dissimilarities dialog.

k

337



Chapter 6  Statistics
Performing k-means clustering

From the main menu, choose Statistics �  Cluster Analysis �

K-Means. The K-Means Clustering dialog opens, as shown in
Figure 6.61.

Example

We cluster the information in the state.x77 data set. These data
describe various characteristics of the 50 states, including population,
income, illiteracy, life expectancy, and education. By default,
state.x77 is stored in an object of class "matrix". We must
therefore convert it to class "data.frame" before it can be
recognized by the dialogs. To do this, type the following in the
Commands window:

> state.df <- data.frame(state.x77)

We can now proceed with the k-means clustering analysis on the
state.df data frame:

1. Open the K-Means Clustering dialog.

2. Type state.df in the Data Set field.

Figure 6.61:  The K-Means Clustering dialog.
338



Cluster Analysis
3. CTRL-click to select the Variables Population through
Area.

4. Click OK.

A summary of the clustering appears in the Report window.

Partitioning 
Around 
Medoids

The partitioning around medoids algorithm is similar to k-means, but it
uses medoids rather than centroids. Partitioning around medoids has
the following advantages: it accepts a dissimilarity matrix; it is more
robust because it minimizes a sum of dissimilarities instead of a sum
of squared Euclidean distances; and it provides novel graphical
displays (silhouette plots and clusplots).

Performing partitioning around medoids

From the main menu, choose Statistics �  Cluster Analysis �

Partitioning Around Medoids. The Partitioning Around
Medoids dialog opens, as shown in Figure 6.62.

Figure 6.62:  The Partitioning Around Medoids dialog.
339



Chapter 6  Statistics
Example 1

In the section K-Means Clustering on page 337, we clustered the
information in the state.df data set using the k-means algorithm. In
this example, we use the partitioning around medoids algorithm.

1. If you have not already done so, create the state.df data
frame from the state.x77 matrix. The instructions for doing
this are located on page 338.

2. Open the Partitioning Around Medoids dialog.

3. Type state.df in the Data Set field.

4. CTRL-click to select the Variables Population through
Area.

5. Click OK.

A summary of the clustering appears in the Report window.

Example 2

In the section Compute Dissimilarities on page 336, we calculated
dissimilarities for the fuel.frame data set. In this example, we
cluster the fuel.frame dissimilarities using the partitioning around
medoids algorithm.

1. If you have not already done so, create the object fuel.diss
from the instructions on page 337.

2. Open the Partitioning Around Medoids dialog.

3. Select the Use Dissimilarity Object check box.

4. Select fuel.diss as the Saved Object.

5. Click OK.

A summary of the clustering appears in the Report window.

Fuzzy 
Partitioning

Most clustering algorithms are crisp clustering methods. This means
that each object of the data set is assigned to exactly one cluster. For
instance, an object lying between two clusters must be assigned to one
of them. In fuzzy clustering, each observation is given fractional
membership in multiple clusters.
340



Cluster Analysis
Performing fuzzy partitioning

From the main menu, choose Statistics �  Cluster Analysis �

Fuzzy Partitioning. The Fuzzy Partitioning dialog opens, as shown
in Figure 6.63. 

Example 1

In the section K-Means Clustering on page 337, we clustered the
information in the state.df data set using the k-means algorithm. In
this example, we use fuzzy partitioning.

1. If you have not already done so, create the state.df data
frame from the state.x77 matrix. The instructions for doing
this are located on page 338.

2. Open the Fuzzy Partitioning dialog.

3. Type state.df in the Data Set field.

4. CTRL-click to select the Variables Population through
Area, and click OK.

A summary of the clustering appears in the Report window.

Figure 6.63:  The Fuzzy Partitioning dialog.
341



Chapter 6  Statistics
Example 2

In the section Compute Dissimilarities on page 336, we calculated
dissimilarities for the fuel.frame data set. In this example, we
cluster the fuel.frame dissimilarities using fuzzy partitioning.

1. If you have not already done so, create the object fuel.diss
from the instructions on page 337.

2. Open the Fuzzy Partitioning dialog.

3. Select the Use Dissimilarity Object check box.

4. Select fuel.diss as the Saved Object.

5. Click OK.

A summary of the clustering appears in the Report window.

Agglomerative 
Hierarchical 
Clustering

Hierarchical algorithms proceed by combining or dividing existing
groups, producing a hierarchical structure that displays the order in
which groups are merged or divided. Agglomerative methods start with
each observation in a separate group, and proceed until all
observations are in a single group.

Performing agglomerative hierarchical clustering

From the main menu, choose Statistics �  Cluster Analysis �

Agglomerative Hierarchical. The Agglomerative Hierarchical
Clustering dialog opens, as shown in Figure 6.64.
342



Cluster Analysis
Example 1

In the section K-Means Clustering on page 337, we clustered the
information in the state.df data set using the k-means algorithm. In
this example, we use an agglomerative hierarchical method.

1. If you have not already done so, create the state.df data
frame from the state.x77 matrix. The instructions for doing
this are located on page 338.

2. Open the Agglomerative Hierarchical Clustering dialog.

3. Type state.df in the Data Set field.

4. CTRL-click to select the Variables Population through
Area.

5. Click OK.

A summary of the clustering appears in the Report window.

Figure 6.64:  The Agglomerative Hierarchical Clustering dialog.
343



Chapter 6  Statistics
Example 2

In the section Compute Dissimilarities on page 336, we calculated
dissimilarities for the fuel.frame data set. In this example, we
cluster the fuel.frame dissimilarities using the agglomerative
hierarchical algorithm.

1. If you have not already done so, create the object fuel.diss
from the instructions on page 337.

2. Open the Agglomerative Hierarchical Clustering dialog.

3. Select the Use Dissimilarity Object check box.

4. Select fuel.diss as the Saved Object.

5. Click OK.

A summary of the clustering appears in the Report window.

Divisive 
Hierarchical 
Clustering

Hierarchical algorithms proceed by combining or dividing existing
groups, producing a hierarchical structure that displays the order in
which groups are merged or divided. Divisive methods start with all
observations in a single group and proceed until each observation is
in a separate group.

Performing divisive hierarchical clustering

From the main menu, choose Statistics �  Cluster Analysis �

Divisive Hierarchical. The Divisive Hierarchical Clustering
dialog opens, as shown in Figure 6.65.
344



Cluster Analysis
Example 1

In the section K-Means Clustering on page 337, we clustered the
information in the state.df data set using the k-means algorithm. In
this example, we use a divisive hierarchical method.

1. If you have not already done so, create the state.df data
frame from the state.x77 matrix. The instructions for doing
this are located on page 338.

2. Open the Divisive Hierarchical Clustering dialog.

3. Type state.df in the Data Set field.

4. CTRL-click to select the Variables Population through
Area.

5. Click OK.

A summary of the clustering appears in the Report window.

Figure 6.65:  The Divisive Hierarchical Clustering dialog.
345



Chapter 6  Statistics
Example 2

In the section Compute Dissimilarities on page 336, we calculated
dissimilarities for the fuel.frame data set. In this example, we
cluster the fuel.frame dissimilarities using the divisive hierarchical
algorithm.

1. If you have not already done so, create the object fuel.diss
from the instructions on page 337.

2. Open the Divisive Hierarchical Clustering dialog.

3. Select the Use Dissimilarity Object check box.

4. Select fuel.diss as the Saved Object.

5. Click OK.

A summary of the clustering appears in the Report window.

Monothetic 
Clustering

When all of the variables in a data set are binary, a natural way to
divide the observations is by splitting the data into two groups based
on the two values of a particular binary variable. Monothetic analysis
produces a hierarchy of clusters in which a group is split in two at
each step, based on the value of one of the binary variables.

Performing monothetic clustering

From the main menu, choose Statistics �  Cluster Analysis �

Monothetic (Binary Variables). The Monothetic Clustering
dialog opens, as shown in Figure 6.66.

Figure 6.66:  The Monothetic Clustering dialog.
346



Cluster Analysis
Example

The catalyst data set comes from a designed experiment. Its eight
rows represent all possible combinations of two temperatures (Temp),
two concentrations (Conc), and two catalysts (Cat). The fourth
column represents the response variable Yield. We are interested in
determining how temperature, concentration, and catalyst affect the
Yield. Before fitting a model to these data, we can group
observations according to the three binary predictors by using
monothetic clustering.

1. Open the Monothetic Clustering dialog.

2. Type catalyst in the Data Set field.

3. CTRL-click to highlight the Variables Temp, Conc, and Cat.

4. Click OK.

A summary of the monothetic clustering appears in the Report
window.
347



Chapter 6  Statistics
MULTIVARIATE

Multivariate techniques summarize the structure of multivariate data
based on certain classical models.

Discriminant 
Analysis

The Discriminant Analysis dialog lets you fit a linear or quadratic
discriminant function to a set of feature data.

Performing discriminant analysis

From the main menu, choose Statistics � Multivariate �

Discriminant Analysis. The Discriminant Analysis dialog opens,
as shown in Figure 6.67.

Figure 6.67:  The Discriminant Analysis dialog.
348



Multivariate
Example

We perform a discriminant analysis on Fisher’s iris data. This data
set is a three-dimensional array giving 4 measurements on 50 flowers
from each of 3 species of iris. The measurements are in centimeters
and include sepal length, sepal width, petal length, and petal width.
The iris species are Setosa, Versicolor, and Virginica.

Before performing the discriminant analysis, we must create a two-
dimensional data frame that can be accepted by the dialogs. To do
this, type the following in the Commands window:

> iris.mm <- data.frame(Species=factor(c(rep(1,50),
+ rep(2,50), rep(3,50)), labels=dimnames(iris)[[3]]),
+ rbind(iris[,,1], iris[,,2], iris[,,3])*10)

We can now use the Discriminant Analysis dialog on the iris.mm
data frame:

1. Open the Discriminant Analysis dialog. 

2. Type iris.mm in the Data Set field.

3. Choose Species as the Dependent variable.

4. CTRL-click to select Sepal.L., Sepal.W., Petal.L., and
Petal.W. as the Independent variables.

5. Choose heteroscedastic as the Covariance Struct.

6. Click OK.

A summary of the fitted model appears in the Report window.

Factor Analysis In many scientific fields, notably psychology and other social
sciences, you are often interested in quantities like intelligence or
social status, which are not directly measurable. However, it is often
possible to measure other quantities that reflect the underlying
variable of interest. Factor analysis is an attempt to explain the
correlations between observable variables in terms of underlying
factors, which are themselves not directly observable. For example,
measurable quantities, such as performance on a series of tests, can be
explained in terms of an underlying factor, such as intelligence.
349



Chapter 6  Statistics
Performing factor analysis

From the main menu, choose Statistics � Multivariate � Factor
Analysis. The Factor Analysis dialog opens, as shown in Figure
6.68. 

Example

The data set testscores contains five test scores for each of twenty-
five students. We use factor analysis to look for structure in the scores.
By default, testscores is stored in an object of class "matrix". We
must therefore convert it to class "data.frame" before it can be
recognized by the dialogs. To do this, type the following in the
Commands window:

> testscores.df <- data.frame(testscores)

Figure 6.68:  The Factor Analysis dialog.
350



Multivariate
We can now proceed with the factor analysis on the testscores.df
data frame:

1. Open the Factor Analysis dialog. 

2. Type testscores.df in the Data Set field.

3. Specify that we want 2 factors in the Number of Factors
field.

4. Select <ALL> in the Variables field.

5. Click OK.

A summary of the factor analysis appears in the Report window.

Principal 
Components

For investigations involving a large number of observed variables, it
is often useful to simplify the analysis by considering a smaller
number of linear combinations of the original variables. For example,
scholastic achievement tests typically consist of a number of
examinations in different subject areas. In attempting to rate students
applying for admission, college administrators frequently reduce the
scores from all subject areas to a single, overall score. Principal
components is a standard technique for finding optimal linear
combinations of the variables.

Performing principal components

From the main menu, choose Statistics � Multivariate � Principal
Components. The Principal Components dialog opens, as shown
in Figure 6.69. 
351



Chapter 6  Statistics
Example

In the section Factor Analysis on page 349, we performed a factor
analysis for the testscores.df data set. In this example, we
perform a principal components analysis for these data.

1. If you have not done so already, create the testscores.df
data frame with the instructions given on page 350.

1. Open the Principal Components dialog. 

2. Type testscores.df in the Data Set field.

3. Select <ALL> in the Variables field.

4. Click OK.

A summary of the principal components analysis appears in the
Report window.

Figure 6.69:  The Principal Components dialog.
352



Multivariate
MANOVA Multivariate analysis of variance, known as MANOVA, is the extension
of analysis of variance techniques to multiple responses. The
responses for an observation are considered as one multivariate
observation, rather than as a collection of univariate responses. If the
responses are independent, then it is sensible to just perform
univariate analyses. However, if the responses are correlated, then
MANOVA can be more informative than the univariate analyses, as
well as less repetitive.

Performing MANOVA

From the main menu, choose Statistics � Multivariate �

MANOVA. The Multivariate Analysis of Variance dialog opens,
as shown in Figure 6.70.

Example

The data set wafer has eighteen rows and thirteen columns, of which
eight contain factors, four contain responses, and one is the auxiliary
variable . It is a design object based on an orthogonal-array design
for an experiment in which two integrated circuit wafers were made
for each combination of factors. On each wafer, the pre- and post-
etch line widths were measured five times. The response variables are

Figure 6.70:  The Multivariate Analysis of Variance dialog.

N

353



Chapter 6  Statistics
the mean and deviance of the measurements. As three of the wafers
were broken, the auxiliary variable  gives the number of
measurements actually made.

We are interested in treating the pre.mean and post.mean variables
as a multivariate response, using MANOVA to explore the effect of
each factor upon the response.

1. Open the Multivariate Analysis of Variance dialog. 

2. Type wafer in the Data Set field.

3. Click the Create Formula button to open the Formula
builder.

4. While holding down the CTRL key, select pre.mean and
post.mean in the Variables list. Click the Response button
to add these variables to the Formula as the response.

5. Select maskdim. Scroll through the Variables list until
etchtime appears. Hold down Shift and select etchtime.
This selects all columns between maskdim and etchtime.
Click the Main Effect button to add these variables to the
Formula as predictors.

6. Click OK to dismiss the Formula builder. The Formula field
of the MANOVA dialog contains the formula you
constructed.

7. Click OK.

A summary of the MANOVA appears in the Report window.

N

354



Quality Control Charts
QUALITY CONTROL CHARTS

Quality control charts are useful for monitoring process data.
Continuous grouped quality control charts monitor whether a process is
staying within control limits. Continuous ungrouped charts are
appropriate when variation is determined using sequential variation
rather than group variation. It is also possible to create quality control
charts for counts (the number of defective samples) and proportions
(proportion of defective samples).

Continuous 
Grouped

The Quality Control Charts (Continuous Grouped) dialog creates
quality control charts of means (xbar), standard deviations (s), and
ranges (r).

Creating quality control charts (continuous grouped)

From the main menu, choose Statistics � Quality Control Charts
� Continuous Grouped. The Quality Control Charts
(Continuous Grouped) dialog opens, as shown in Figure 6.71.  

Figure 6.71:  The Quality Control Charts (Continuous Grouped) dialog.
355



Chapter 6  Statistics
Example

In the section Kolmogorov-Smirnov Goodness-of-Fit on page 230, we
created a data set called qcc.process that contains a simulated
process with 200 measurements. Ten measurements per day were
taken for a total of twenty days. In this example, we create an xbar
Shewhart chart to monitor whether the process is staying within
control limits. The first five days of observations are treated as
calibration data for use in setting the control limits.

1. If you have not done so already, create the qcc.process data
set with the instructions given on page 231.

2. Open the Quality Control Charts (Continuous Grouped)
dialog. 

3. Type qcc.process in the Data Set field.

4. Select X as the Variable.

5. Select Day as the Group Column.

6. Select Groups as the Calibration Type.

7. CTRL-click to select 1, 2, 3, 4, 5 from the Groups list box.

8. Click OK.

A Shewhart chart of the X data grouped by Day appears in a Graph
window.

Continuous 
Ungrouped

The Quality Control Charts (Continuous Ungrouped) dialog
creates quality control charts of exponentially weighted moving
averages (ewma), moving averages (ma), moving standard deviations
(ms), and moving ranges (mr). These charts are appropriate when
variation is determined using sequential variation rather than group
variation.

Creating quality control charts (continuous ungrouped)

From the main menu, choose Statistics � Quality Control Charts
� Continuous Ungrouped. The Quality Control Charts
(Continuous Ungrouped) dialog opens, as shown in Figure 6.72.
356



Quality Control Charts
Example

For this example, we ignore the fact that qcc.process contains
grouped data, and instead pretend that the 200 observations are taken
at sequential time points. We create an exponentially weighted
moving average Shewhart chart to monitor whether the process is
staying within control limits.

1. If you have not done so already, create the qcc.process data
set with the instructions given on page 231.

2. Open the Quality Control Charts (Continuous
Ungrouped) dialog. 

3. Type qcc.process in the Data Set field.

4. Select X as the Variable.

5. Click OK.

A Shewhart chart appears in a Graph window.

Figure 6.72:  The Quality Control Charts (Continuous Ungrouped) dialog.
357



Chapter 6  Statistics
Counts and 
Proportions

The Quality Control Charts (Counts and Proportions) dialog
creates quality control charts for counts (number of defective samples)
and proportions (proportion of defective samples).

Creating quality control charts (counts and proportions)

From the main menu, choose Statistics � Quality Control Charts
� Counts and Proportions. The Quality Control Charts (Counts
and Proportions) dialog opens, as shown in Figure 6.73.

Example

We create a Spotfire S+ data set, batch.qcc, that contains simulated
data representing the number of defective items in daily batches over
40 days. For the first 10 days the batches were of size 20, but for the
remaining 30 days batches of 35 were taken. To create batch.qcc,
type the following in the Commands window:

> NumSample <- c(rep(20,times=10), rep(35,times=30))

Figure 6.73:  The Quality Control Charts (Counts and Proportions) dialog.
358



Quality Control Charts
> NumBad <- scan() 

1: 3 2 7 4 5 4 4 8 
9: 3 4 6 6 6 9 18 9
17: 7 11 11 9 10 10 14 5
25: 15 11 14 15 11 10 14 8
33: 11 13 16 14 19 13 15 23
41:

> batch.qcc <- data.frame(NumBad,NumSample)
> batch.qcc

   NumBad NumSample
 1      3        20
 2      2        20
 3      7        20
 4      4        20
 5      5        20
 6      4        20
 7      4        20
 8      8        20
 9      3        20
10      4        20
11      6        35
12      6        35
13 . . .

The NumBad column encodes the number of defective items, and the
NumSample column encodes the size of the batches. 

We create a Number (np) Shewhart chart for these data.

1. Open the Quality Control Charts (Counts and
Proportions) dialog. 

2. Type batch.qcc in the Data Set field.

3. Select NumBad as the Variable.

4. Select NumSample as the Size Column.

5. Select Number (np) as the Chart Type.

6. Click OK.

A Shewhart chart of the NumBad data with group size indicated by
NumSample appears in a Graph window.
359



Chapter 6  Statistics
RESAMPLE

In statistical analysis, the researcher is usually interested in obtaining
not only a point estimate of a statistic, but also the variation in the
point estimate, as well as confidence intervals for the true value of the
parameter. For example, a researcher may calculate not only a
sample mean, but also the standard error of the mean and a
confidence interval for the mean.

The traditional methods for calculating standard errors and
confidence intervals generally rely upon a statistic, or some known
transformation of it, being asymptotically normally distributed. If this
normality assumption does not hold, the traditional methods may be
inaccurate. Resampling techniques such as the bootstrap and
jackknife provide estimates of the standard error, confidence
intervals, and distributions for any statistic. To use these procedures,
you must supply the name of the data set under examination and a
Spotfire S+ function or expression that calculates the statistic of
interest.

Bootstrap 
Inference

In the bootstrap, a specified number of new samples are drawn by
sampling with replacement from the data set of interest. The statistic
of interest is calculated for each set of data, and the resulting set of
estimates is used as an empirical distribution for the statistic.
360



Resample
Performing bootstrap inference

From the main menu, choose Statistics �  Resample �  Bootstrap.
The Bootstrap Inference dialog opens, as shown in Figure 6.74.

Example 1

The data set fuel.frame is taken from the April 1990 issue of
Consumer Reports. It contains 60 observations (rows) and 5 variables
(columns). Observations of weight, engine displacement, mileage,
type, and fuel were taken for each of sixty cars. We obtain bootstrap
estimates of mean and variation for the mean of the Mileage
variable.

1. Open the Bootstrap Inference dialog.

2. Type fuel.frame in the Data Set field.

3. Type mean(Mileage) in the Expression field.

4. On the Options page, type 250 in the Number of
Resamples field to perform fewer than the default number of
resamples. This speeds up the computations required for this
example.

5. Click on the Plot page, and notice that the Distribution of
Replicates plot is selected by default.

6. Click OK.

A bootstrap summary appears in the Report window, and a
histogram with a density line is plotted in a Graph window.

Figure 6.74:  The Bootstrap Inference dialog.
361



Chapter 6  Statistics
Example 2

In this example, we obtain bootstrap estimates of mean and variation
for the coefficients of a linear model. The model we use predicts
Mileage from Weight and Disp. in the fuel.frame data set.

1. Open the Bootstrap Inference dialog.

2. Type fuel.frame in the Data Set field.

3. Type
coef(lm(Mileage ~ Weight+Disp., data=fuel.frame)) in
the Expression field.

4. On the Options page, type 250 in the Number of
Resamples field to perform fewer than the default number of
resamples. This speeds up the computations required for this
example.
362



Resample
5. Click on the Plot page, and notice that the Distribution of
Replicates plot is selected by default.

6. Click OK.

A bootstrap summary appears in the Report window. In addition,
three histograms with density lines (one for each coefficient) are
plotted in a Graph window.

Jackknife 
Inference

In the jackknife, new samples are drawn by replicating the data,
leaving out a single observation from each sample. The statistic of
interest is calculated for each set of data, and this jackknife
distribution is used to construct estimates.

Performing jackknife inference

From the main menu, choose Statistics � Resample �  Jackknife.
The Jackknife Inference dialog opens, as shown in Figure 6.75. 

Example 1

We obtain jackknife estimates of mean and variation for the mean of
Mileage in the fuel.frame data.

1. Open the Jackknife Inference dialog.

2. Type fuel.frame in the Data Set field.

3. Type mean(Mileage) in the Expression field.

Figure 6.75:  The Jackknife Inference dialog.
363



Chapter 6  Statistics
4. Click on the Plot page, and notice that the Distribution of
Replicates plot is selected by default.

5. Click OK.

A jackknife summary appears in the Report window, and a
histogram with a density line is plotted in a Graph window.

Example 2

In this example, we obtain jackknife estimates of mean and variation
for the coefficients of a linear model. The model we use predicts
Mileage from Weight and Disp. in the fuel.frame data set.

1. Open the Jackknife Inference dialog.

2. Type fuel.frame in the Data Set field.

3. Type
coef(lm(Mileage ~ Weight+Disp., data=fuel.frame)) in
the Expression field.

4. Click on the Plot page, and notice that the Distribution of
Replicates plot is selected by default.

5. Click OK.

A jackknife summary appears in the Report window. In addition,
three histograms with density lines (one for each coefficient) are
plotted in a Graph window.
364



Smoothing
SMOOTHING

Smoothing techniques model a univariate response as a smooth
function of a univariate predictor. With standard regression
techniques, parametric functions are fit to scatter plot data.
Frequently, you do not have enough prior information to determine
what kind of parametric function to use. In such cases, you can fit a
nonparametric curve, which does not assume a particular type of
relationship.

Nonparametric curve fits are also called smoothers since they attempt
to create a smooth curve showing the general trend in the data. The
simplest smoothers use a running average, where the fit at a particular x
value is calculated as a weighted average of the y values for nearby
points. The weight given to each point decreases as the distance
between its x value and the x value of interest increases. In the
simplest kind of running average smoother, all points within a certain
distance (or window) from the point of interest are weighted equally
in the average for that point. The window width is called the
bandwidth of the smoother, and is usually given as a percentage of the
total number of data points. Increasing the bandwidth results in a
smoother curve fit but may miss rapidly changing features.
Decreasing the bandwidth allows the smoother to track rapidly
changing features more accurately, but results in a rougher curve fit.

More sophisticated smoothers add variations to the running average
approach. For example, smoothly decreasing weights or local linear
fits may be used. However, all smoothers have some type of
smoothness parameter (bandwidth) controlling the smoothness of the
curve. The issue of good bandwidth selection is complicated and has
been treated in many statistical research papers. You can, however,
gain a good feeling for the practical consequences of varying the
bandwidth by experimenting with smoothers on real data.

This section describes how to use four different types of smoothers.

• Kernel Smoother: a generalization of running averages in
which different weight functions, or kernels, may be used. The
weight functions provide transitions between points that are
smoother than those in the simple running average approach. 

• Loess Smoother: a noise-reduction approach that is based on
local linear or quadratic fits to the data.
365



Chapter 6  Statistics
• Spline Smoother: a technique in which a sequence of
polynomials is pieced together to obtain a smooth curve.

• Supersmoother: a highly automated variable span smoother.
It obtains fitted values by taking weighted combinations of
smoothers with varying bandwidths.

Kernel 
Smoother

A kernel smoother is a generalization of running averages in which
different weight functions, or kernels, may be used. The weight
functions provide transitions between points that are smoother than
those in the simple running average approach. The default kernel is
the normal or Gaussian kernel, in which the weights decrease with a
Gaussian distribution away from the point of interest. Other choices
include a triangle, a box, and the Parzen kernel. In a triangle kernel,
the weights decrease linearly as the distance from the point of interest
increases, so that the points on the edge of the smoothing window
have a weight near zero. A box or boxcar smoother weighs each point
within the smoothing window equally, and a Parzen kernel is a box
convolved with a triangle.

Local 
Regression 
(Loess)

Local regression, or loess, was developed by W.S. Cleveland and others
at Bell Laboratories. It is a clever approach to smoothing that is
essentially a noise-reduction algorithm. Loess smoothing is based on
local linear or quadratic fits to the data: at each point, a line or
parabola is fit to the points within the smoothing window, and the
predicted value is taken as the y value for the point of interest.
Weighted least squares is used to compute the line or parabola in
each window. Connecting the computed y values results in a smooth
curve.

For loess smoothers, the bandwidth is referred to as the span of the
smoother. The span is a number between 0 and 1, representing the
percentage of points that should be included in the fit for a particular
smoothing window. Smaller values result in less smoothing, and very
small values close to 0 are not recommended. If the span is not
specified, an appropriate value is computed using cross-validation.
For small samples ( ), or if there are substantial serial
correlations between observations close in x value, a prespecified
fixed span smoother should be used.

n 50<
366



Smoothing
Spline 
Smoother

Spline smoothers are computed by piecing together a sequence of
polynomials. Cubic splines are the most widely used in this class of
smoothers, and involve locally cubic polynomials. The local
polynomials are computed by minimizing a penalized residual sum of
squares. Smoothness is assured by having the value, slope, and
curvature of neighboring polynomials match at the points where they
meet. Connecting the polynomials results in a smooth fit to the data.
The more accurately a smoothing spline fits the data values, the
rougher the curve, and vice versa.

The smoothing parameter for splines is called the degrees of freedom.
The degrees of freedom controls the amount of curvature in the fit,
and corresponds to the degree of the local polynomials. The lower
the degrees of freedom, the smoother the curve. The degrees of
freedom automatically determines the smoothing window, by
governing the trade-off between smoothness of the fit and fidelity to
the data values. For  data points, the degrees of freedom should be

between 1 and . Specifying  degrees of freedom results in
a curve that passes through each of the data points exactly. If the
degrees of freedom is not specified, a parameter estimate is computed
by crossvalidation.

Supersmoother The supersmoother is a highly automated variable span smoother. It
obtains fitted values by taking a weighted combination of smoothers
with varying bandwidths. The smoothing parameter for
supersmoothers is called the span. The span is a number between 0
and 1, representing the percentage of points that should be included
in the fit for a particular smoothing window. Smaller values result in
less smoothing, and very small values close to 0 are not
recommended. If the span is not specified, an appropriate value is
computed using crossvalidation. For small samples ( ), or if
there are substantial serial correlations between observations close in
x value, a prespecified fixed span smoother should be used.

n
n 1– n 1–

n 50<
367



Chapter 6  Statistics
Examples The air data set contains 111 observations (rows) and 4 variables
(columns). It is taken from an environmental study that measured the
four variables ozone, solar radiation, temperature, and wind speed for
111 consecutive days. We create smooth plots of ozone versus
radiation.

1. Choose Statistics � Smoothing � Kernel Smoother.
Select air as the Data Set, radiation as the x Axis Value,
and ozone as the y Axis Value. Click OK. A Graph window
is created containing a plot of ozone versus radiation with a
kernel smooth.

2. Choose Statistics � Smoothing � Loess Smoother. Select
air as the Data Set, radiation as the x Axis Value, and
ozone as the y Axis Value. Click OK. A Graph window is
created containing a plot of ozone versus radiation with a
loess smooth.

3. Choose Statistics � Smoothing � Spline Smoother. Select
air as the Data Set, radiation as the x Axis Value, and
ozone as the y Axis Value. Click OK. A Graph window is
created containing a plot of ozone versus radiation with a
smoothing spline smooth.

4. Choose Statistics � Smoothing � Supersmoother. Select
air as the Data Set, radiation as the x Axis Value, and
ozone as the y Axis Value. Click OK. A Graph window is
created containing a plot of ozone versus radiation with a
supersmoother smooth.
368



Time Series
TIME SERIES

Time series techniques are applied to sequential observations, such as
daily measurements. In most statistical techniques, such as linear
regression, the organization of observations (rows) in the data is
irrelevant. In contrast, time series techniques look for correlations
between neighboring observations.

This section discusses the time series available from the Statistics �

Time Series menu:

  • Autocorrelations: calculates autocorrelations, autocovari-
ances, or partial autocorrelations for sequential observations.

  • ARIMA: fits autoregressive integrated moving average
models to sequential observations. These are very general
models that allow inclusion of autoregressive, moving
average, and seasonal components.

  • Lag plot: plots a time series versus lags of the time series.

  • Spectrum plot: plots the results of a spectrum estimation.

We use these techniques to examine the structure in an
environmental data set.

Autocorrela-
tions

The autocovariance function is an important tool for describing the
serial (or temporal) dependence structure of a univariate time series.
It reflects how much correlation is present between lagged
observations.

Plotting autocorrelations

From the main menu, choose Statistics � Time Series �

Autocorrelations. The Autocorrelations and Autocovariances
dialog opens, as shown in Figure 6.76.
369



Chapter 6  Statistics
Example

The example data set lynx contains the annual number of lynx
trappings in the Mackenzie River District of North-West Canada for
the period 1821 to 1934. We can plot the data with the ts.plot
command as follows:

> ts.plot(lynx, type="b", xlab="year", ylab="lynx", pch=1)

Figure 6.77 displays the graph. 

Figure 6.76:  The Autocorrelations and Autocovariances dialog.

Figure 6.77:  Lynx trappings in the Mackenzie River District of North-West 
Canada. 

1800 1820 1840 1860 1880 1900 1920 1940
year

0

2000

4000

6000

ly
nx
370



Time Series
A definite cycle is present in the data. We can use autocorrelations to
explore the length of the cycle. 

By default, lynx is stored in an object of class "ts". Before it can be
recognized by the dialogs, we must store lynx as a column in a data
frame. To do this, type the following in the Commands window:

> lynx.df <- data.frame(lynx)

We can now proceed with the autocorrelation analysis on the
lynx.df data frame:

1. Open the Autocorrelations and Autocovariances dialog.

2. Type lynx.df in the Data Set field.

3. Select lynx as the Variable. 

4. Click OK.

Figure 6.78 displays the resulting autocorrelation plot. The peaks at
10 and troughs at 5 reflect a ten-year cycle. 

Figure 6.78:  Autocorrelation plot of the lynx data.

Lag

AC
F

0 5 10 15 20

-0
.5

0.0
0.5

1.0

 Series : lynx.df$lynx
371



Chapter 6  Statistics
ARIMA Autoregressive integrated moving-average (ARIMA) models are useful for
a wide variety of time series analyses, including forecasting, quality
control, seasonal adjustment, and spectral estimation, as well as
providing summaries of the data.

Fitting an ARIMA model

From the main menu, choose Statistics � Time Series � ARIMA
Models. The ARIMA Modeling dialog opens, as shown in Figure
6.79. 

Figure 6.79:  The ARIMA Modeling dialog.
372



Time Series
Example

In the section Autocorrelations on page 369, we computed
autocorrelations for the lynx time series. The autocorrelation plot in
Figure 6.78 displays correlations between observations in the lynx
data, with a ten-year cycle to the correlations. We can model this as
an autoregressive model with a period of 10.

1. If you have not done so already, create the lynx.df data
frame. The instructions for doing this are given on page 370.

2. Open the ARIMA Modeling dialog.

3. Type lynx.df in the Data Set field.

4. Select lynx as the Variable.

5. Specify an Autoregressive Model Order of 1. 

6. Select Other as the Seasonality. 

7. Specify a Period of 10.

8. Click OK.

Summaries for the ARIMA model are displayed in the Report
window:

***  ARIMA Model Fitted to Series lynx.df$lynx ***

Method:  Maximum Likelihood
Model :  1 0 0
Period:  10

Coefficients:
AR : 0.73883

Variance-Covariance Matrix:
            ar(10)
ar(10) 0.004366605

Optimizer has  converged
Convergence Type: relative function convergence
AIC: 1793.16261
373



Chapter 6  Statistics
Lag Plot The Lag Plot dialog plots a time series versus lags of the time series.

Creating a lag plot

From the main menu, choose Statistics � Time Series � Lag Plot.
The Lag Plot dialog opens, as shown in Figure 6.80. 

Example

In the section Autocorrelations on page 369, we computed
autocorrelations for the lynx time series. In this example, we use a
lag plot to example the correlation between observations at different
lags.

1. If you have not done so already, create the lynx.df data
frame with the instructions given on page 370.

2. Open the Lag Plot dialog.

3. Type lynx.df in the Data Set field.

4. Select lynx as the Variable.

5. Select a Lag of 4.

6. Select a layout of 2 Rows by 2 Columns, and click OK.

A lag plot of the lynx data appears in a Graph window.

Figure 6.80:  The Lag Plot dialog.
374



Time Series
Spectrum Plot The Spectrum Plot dialog plots the results of a spectral estimation.
This plot displays the estimated spectrum for a time series using either
a smoothed periodogram or autoregressive parameters.

Creating a spectrum plot

From the main menu, choose Statistics � Time Series � Spectrum
Plot. The Spectrum Plot dialog opens, as shown in Figure 6.81. 

Example

In the section Autocorrelations on page 369, we computed
autocorrelations for the lynx time series. In this example, we plot a
smoothed periodogram of the lynx data to examine the periodicities
in the series.

1. If you have not done so already, create the lynx.df data
frame with the instructions given on page 370.

1. Open the Spectrum Plot dialog.

2. Type lynx.df in the Data Set field

3. Select lynx as the Variable, and click OK.

A spectrum plot of the lynx data appears in a Graph window.

Figure 6.81:  The Spectrum Plot dialog.
375



Chapter 6  Statistics
REFERENCES

Box, G.E.P., Hunter, W.G., & Hunter, J.S. (1978). Statistics for
Experimenters. New York: Wiley. 

Chambers, J.M., Cleveland, W.S., Kleiner, B. & Tukey, P.A. (1983).
Graphical Methods for Data Analysis. Belmont, California: Wadsworth.

Cleveland, W.S. (1979). Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statistical Association, 74:
829-836.

Cleveland, W.S. (1985). The Elements of Graphing Data. Monterrey,
California: Wadsworth.

Fleiss, J.L. (1981). Statistical Methods for Rates and Proportions (2nd ed.).
New York: Wiley. 

Friedman, J.H. (1984). A Variable Span Smoother. Technical Report
No. 5, Laboratory for Computational Statistics. Department of
Statistics, Stanford University, California.

Laird, N.M. & Ware, J.H. (1982). Random-Effects Models for
Longitudinal Data. Biometrics, 38: 963-974. 

Lindstrom, M.J. & Bates, D.M. (1990). Nonlinear Mixed Effects
Models for Repeated Measures Data. Biometrics, 46: 673-687. 

Snedecor, G.W. & Cochran, W.G. (1980). Statistical Methods (7th ed.).
Ames, Iowa: Iowa State University Press.

Venables, W.N. & Ripley B.D. (1999). Modern Applied Statistics with
S-PLUS (3rd ed.). New York: Springer.
376



Introduction 378

Setting Spotfire S+ Options 379

Setting Environment Variables 381

Customizing Your Session at Start-up and Closing 383
Creating a .S.chapters File 384
Creating a .S.init File 385
Creating the .First Function 385
Setting S_FIRST 385
Customizing Your Session at Closing 386

Using Personal Function Libraries 387
Creating an S Chapter 387
Placing the Chapter in Your Search Path 388

Specifying Your Working Directory 389

Specifying a Pager 390

Environment Variables and printgraph 391

Setting Up Your Window System 393
Setting X11 Resources 393
Spotfire S+ X11 Resources 394
Common Resources for the Motif Graphics Device 394

CUSTOMIZING YOUR 
SPOTFIRE S+ SESSION 7
377



Chapter 7  Customizing Your Spotfire S+ Session
INTRODUCTION

Spotfire S+ offers a number of ways to customize your session. You
can set options specifying how Spotfire S+ displays data and other
information, create your own library of functions, or load C or
Fortran code. You can even define a function to set these options
each time you start Spotfire S+, and another function to ‘‘clean up’’
each time you end a session.

This chapter describes changes that apply only to your Spotfire S+
session. To install them for every user on your system, talk with your
system administrator.
378



Setting Spotfire S+ Options
SETTING SPOTFIRE S+ OPTIONS

Options in Spotfire S+ serve much the same purpose as environment
variables in Solaris/Linux: they determine the behavior of many
aspects of the Spotfire S+ environment. You can set or modify these
options with the options command. For example, to tell Spotfire S+ to
echo back to the screen the commands you type in, use this
expression:  

> options(echo=T)

Table 7.1 lists some of the most useful options you can set. See the
options help file for a complete description of the available options.
If you want to set an option each time you start a session, see the
section Customizing Your Session at Start-up and Closing (page 383).

You can also determine the value of any option with options. For
example, to find the current value of the echo option, type the
following expression at the > prompt:

> options("echo")

Spotfire S+ answers with the following:

options("echo")
$echo:
[1] T

Because echo is true (we set it in the first paragraph of this section),
Spotfire S+ prints the command you type in before returning the
requested value.   

Table 7.1:  Some of the options available with the options function.

echo tells Spotfire S+ whether to repeat commands it receives
back to the screen. The default value is echo=F.

prompt tells Spotfire S+ what character string to print when it is
ready for input. The default value is prompt=">".

continue tells Spotfire S+ which character string to print when you
press the return key before completing a Spotfire S+
expression. The default value is continue="+ ".
379



Chapter 7  Customizing Your Spotfire S+ Session
width tells Spotfire S+ how wide the screen is. You can change this
value to get the print command to create very wide or
very narrow lines. The default value is width=80.

length tells Spotfire S+ how tall the screen is. This controls how
frequently the print command prints out the summary of
column names when printing a matrix. The default value is
length=48.

check tells Spotfire S+ to perform automatic validity checking at
various points in the evaluation. The default is false, or
check=F.

editor tells Spotfire S+ what text editor will be used in history
and fix. The default is vi.

digits tells many of the printing functions how many digits to use
when printing numbers. The default value is digits=7.

pager tells Spotfire S+ what pager program to use in such places
as the help and page functions. The default for pager is
the value of environment variable S_PAGER, which in turn
defaults to the value of environment variable PAGER, or
"less" if that is not set.

Table 7.1:  Some of the options available with the options function.
380



Setting Environment Variables
SETTING ENVIRONMENT VARIABLES

Table 7.2 is a list of the environment variables recognized by Spotfire
S+. You are not required to set them. 

Many of the variables in this section take effect if you set them to any
value, and do not take effect if you do not set them, so you can leave
them unset without harm. For example, to set S_SILENT_STARTUP
type

setenv S_SILENT_STARTUP X

on the command line and Spotfire S+ does not print its copyright
information on start-up, because the variable S_SILENT_STARTUP
has a value (any value). 

You can check the current values for these variables by using getenv
from C or S code.

Table 7.2:  Environment variables recognized by Spotfire S+.

Variable Description

ALWAYS_PROMPT Chiefly affects the actions of the parse function. Normally,
parse prompts for input only when the input appears to be
coming from a terminal. When ALWAYS_PROMPT is set
(to anything at all), parse prompts even if the standard
input and standard error streams are pipes or files. See the
parse help file for more details.

EDITOR Sets the command line editor to either emacs or vi.
Overridden by S_CLEDITOR or VISUAL if either contains
a valid value.

PATH Specifies the directories which are searched when a
command is issued to the shell. In particular, the Splus
command should be installed in one of the listed directories.

S_CLEDITOR Sets the command line editor to either emacs or vi.
S_CLHISTFILE Sets the name of the command line editor’s history file. The

default is $HOME/.Splus_history. 

S_CLHISTSIZE Specifies the maximum number of lines to put in the
command line editor’s history file.

S_CLNOHIST Suppresses writing of the command line editor’s history file.

S_EDITOR Sets the value of options()$editor. The specified editor is
used by the fix function.

S_FIRST Spotfire S+ function evaluated at start-up. See section
Setting S_FIRST (page 385).
381



Chapter 7  Customizing Your Spotfire S+ Session
SHELL Specifies the command shell, which Spotfire S+ uses to
determine the shell to use in shell escapes (!) if S_SHELL is
not set.

SHOME Specifies the directory where Spotfire S+ is installed. By
default, this is set to the parent directory of the program
executable.

S_PAGER Specifies which pager to use. Sets the value of
options()$pager; the specified pager is used by the
page, help, and ? functions.

S_POSTSCRIPT_PRINT_COMMAND Specifies the command (lp, lpr, etc.) used to send files to a
PostScript printer.

S_PRINTGRAPH_ONEFILE Determines whether plots generated by the postscript
function are accumulated in a single file (TRUE) or whether
each plot is put in a separate EPS file. This environment
variable sets the default for the onefile arguments to
ps.options and postscript.

S_PRINT_ORIENTATION Specifies the orientation of the graphic as landscape or
portrait. Determines the default value of the horizontal
argument to ps.options and printgraph.

S_SHELL Specifies the shell used during shell escapes, that is,
commands issued from the escape character (!). The default
value is the value of SHELL.

S_SILENT_STARTUP Disable printing of copyright/version messages.

S_WORK  Specifies the location of the working data directory, that is,
the directory in which Spotfire S+ creates and reads data
objects.

VISUAL Sets the command line editor to either emacs or vi.
Overridden by S_CLEDITOR if it contains a valid value.

Table 7.2:  Environment variables recognized by Spotfire S+.
382



Customizing Your Session at Start-up and Closing
CUSTOMIZING YOUR SESSION AT START-UP AND 
CLOSING

If you set one or more options routinely each time you start Spotfire
S+, or if you want to automatically attach library sections or Spotfire
S+ chapters, you can store these choices and have Spotfire S+ set
them automatically whenever it starts. 

When you start Spotfire S+, the following initialization steps occur:

1. Basic initialization brings the evaluator to the point of being
able to evaluate expressions.

2. Spotfire S+ then looks for the standard initialization file
$SHOME/S.init. This is a text file containing Spotfire S+
expressions. The default initialization file performs the
remaining steps in this list.

3. If your system administrator has performed any site
customization in the file $SHOME/local/S.init, the actions
in that file are evaluated next.

4. Spotfire S+ next looks for the file $SHOME/.S.chapters, which
is a text file containing paths of library sections or Spotfire S+
chapters to be attached for all users. By default, this file does
not exist, since only the standard Spotfire S+ libraries are
attached during the basic initialization.

5. Spotfire S+ next looks for your personal .S.chapters file, first
in the current directory, and then if not found, in your
MySwork directory. You should list in this file any library
sections or Spotfire S+ chapters you want attached at start-up.

6. Spotfire S+ then determines your working data; see the
section Specifying Your Working Directory for details.

7. Spotfire S+ evaluates the customization file .S.init if it is found
in either the current directory or your MySwork directory. The
.S.init file is a text file containing Spotfire S+ expressions that
are executed at the start of your session. Note that this file is
different than $SHOME/S.init, which affects all users’
sessions. 
383



Chapter 7  Customizing Your Spotfire S+ Session
8. Spotfire S+ evaluates the function .First.Sys, which includes
evaluating the local system initialization function
.First.local if it exists.

9. Spotfire S+ evaluates the environment variable S_FIRST, if
set, or the first .First function found in the search paths set
by steps 3–5.

In most cases, the initialization process includes only one of steps 6
and 8 above. Thus, you will probably use only one of the following
mechanisms to set your start-up options:

• Create a Spotfire S+ function named .First containing the
desired options.

• Create a text file of Spotfire S+ tasks named .S.init in either
your current directory or your MySwork directory.

• Set the Spotfire S+ environment variable S_FIRST as
described below.

The .First function is the traditional Spotfire S+ initialization tool.
The .S.init file has the advantage of being a text file that can easily be
edited outside of SPOTFIRE S+. The S_FIRST variable is a convenient
way to override .First for a specific Spotfire S+ session.

Creating a 
.S.chapters File

If you want to attach specific Spotfire S+ chapters or library sections
in your Spotfire S+ session, you can specify those directories using a
.S.chapters file. Here is a sample .S.chapters file that attaches a specific
users utility functions and also the maps library:

/homes/rich/Sstuff/utilities
maps

Paths beginning in “/” (including those using environment variables
that evaluate to a path beginning in “/”) are interpreted as absolute
paths, those that begin with any other character are interpreted as
paths relative to $SHOME/library.

You can create a .S.chapters file in any directory in which you want to
start-up Spotfire S+. Spotfire S+ checks both the current directory
and the default Spotfire S+ start-up directory MySwork to see whether
this initialization file exists, and evaluates the first one it finds.
384



Customizing Your Session at Start-up and Closing
Creating a 
.S.init File

Here is a sample .S.init file that sets the output width for the session as
well as the default displayed precision:

{
options(width=55, digits=4)

}

You can create a .S.init file in any directory in which you want to
start-up Spotfire S+. Spotfire S+ checks both the current directory
and the default Spotfire S+ start-up directory MySwork to see whether
this initialization file exists, and evaluates the first one it finds.

Creating the 

.First Function
Here is a sample .First function that starts the Motif graphics device:

> .First <- function() motif()

After creating a .First function, you should always test it
immediately to make sure it works. Otherwise Spotfire S+ will not
execute it in subsequent sessions.

Setting 
S_FIRST

To store a sequence of commands in the S_FIRST variable, use the
following syntax:

setenv S_FIRST ‘Spotfire S+ expression’ # C shell
set S_FIRST=’Spotfire S+ expression’; export S_FIRST # Bourne or  
                                             # Korn shell

For example, the following C shell command tells Spotfire S+ to start
the Motif graphics device:

setenv S_FIRST ‘motif()’

To avoid misinterpretation by the command line parser, it is safest to
surround complex Spotfire S+ expressions with either single or
double quotes (whichever you do not use in your Spotfire S+
expression). 

You can also combine several commands into a single Spotfire S+
function, then set S_FIRST to this function. For example:

> startup <- function() { options(digits=4)
+ options(expressions=128)}
385



Chapter 7  Customizing Your Spotfire S+ Session
You can call this function each time you start Spotfire S+ by setting
S_FIRST as follows:

setenv S_FIRST ‘startup()’

Variables can only be defined at initialization, and not while Spotfire
S+ is running. Any changes to S_FIRST will take effect only upon
restarting Spotfire S+.

Customizing 
Your Session 
at Closing

When Spotfire S+ quits, it looks in your data directory for a function
called .Last. If .Last exists, Spotfire S+ runs it. A .Last function can
be useful for cleaning up your directory by removing temporary
objects or files.
386



Using Personal Function Libraries
USING PERSONAL FUNCTION LIBRARIES

If you write functions that you want to use many times, you should
not store them in your working directory, because objects in this
directory are easily overwritten. Instead, to prevent yourself from
inadvertently removing your functions, you should create a personal
function library to hold them. A personal function library is simply an
S chapter that you add to your Spotfire S+ search path, allowing you
to access your functions from wherever you start Spotfire S+.

If you are working on a number of different projects, you can create
personal function libraries for each project to store the functions
developed for that project.  

To set up your own library, there are two main steps:

1. Create an S chapter to hold your library of functions and help
files. 

2. Place the new directory in your Spotfire S+ search path.

We describe these steps in detail in the following subsections. 

Creating an S 
Chapter

To create a chapter, you use the mkdir command from the Solaris/
Linux prompt, followed by the Spotfire S+ utility CHAPTER. For
example, to create a Spotfire S+ chapter called mysplus in your home
directory, use the following commands:

% cd 
% mkdir mysplus 
% cd mysplus
% Splus CHAPTER

Note 

If your function library would be useful to many people on your system, you can ask your system
administrator to create a system-wide version of your function library that everyone can access
with the Spotfire S+ library function.
387



Chapter 7  Customizing Your Spotfire S+ Session
The Splus CHAPTER utility creates a .Data directory in the directory
you created with mkdir; you will store your functions in this .Data
subdirectory. The .Data subdirectory is created with two
subdirectories, __Help and __Meta, which are used to store help files
and object metadata, respectively. 

Placing the 
Chapter in 
Your Search 
Path

To add an S chapter to your search path, use the Spotfire S+ attach
function, which provides temporary access to a directory during a
Spotfire S+ session. You name the directory to be added as a
character-string argument to attach. For example, to add the chapter
/usr/rich/mysplus to your search path with attach, use the following
expression:

> attach("/usr/rich/mysplus")

When specifying directories to attach, you must specify the complete
path name. Spotfire S+ does not expand such Solaris/Linux
conventions as ~bob or $HOME.

Any directories you attach are detached when you quit Spotfire S+.
In order to have your functions available at all times, you can specify
the chapter as part of your .S.chapters file:

...other attached files
/spud/users/mysplus
...other attached files

You can also use either the S.init file or a .First function to attach
mysplus to your Spotfire S+ search list, as in the following example:

> .First <- function(){
+ attach("/spud/users/mysplus")
+ }

Whenever you start Spotfire S+, mysplus is automatically attached,
and your functions and help files are made available. 

Note  

You can create your S chapter directory anywhere you have write permission, and you can name
it anything you like.
388



Specifying Your Working Directory
SPECIFYING YOUR WORKING DIRECTORY

Whenever you assign the results of a Spotfire S+ expression to an
object, using the <- or = operator within a Spotfire S+ session,
Spotfire S+ creates the named object in your working directory. The
working directory occupies position 1 in your Spotfire S+ search list,
so it is also the first place Spotfire S+ looks for a Spotfire S+ object.

You specify the working directory with the environment variable
S_WORK, which can specify one directory or a colon-separated list of
directories. The first valid directory in the list is used as the working
directory, and the others are placed behind it in the search list. To be
valid, a directory must be a valid Spotfire S+ chapter and be one for
which you have write permission. If S_WORK is set but contains no
valid SPOTFIRE S+ chapters, attempting to launch Spotfire S+ results
in an error.

For example, to specify the chapter /usr/rich/mysplus as your working
directory, set S_WORK as follows:

setenv S_WORK /usr/rich/mysplus

If S_WORK is not set, Spotfire S+ sets the working directory as
follows:

1. If the current directory is a valid Spotfire S+ chapter, Spotfire
S+ uses it as the working data.

2. Check for the existence of the directory $HOME/MySwork.

• If it exists and is a valid Spotfire S+ chapter, Spotfire S+
uses it as the working data. 

• If it exists but is not a valid Spotfire S+ chapter, Spotfire
S+ prints a warning, then creates a directory in $HOME
with a name of the form Schapter$$, where $$ is a
number that guarantees the uniqueness of the chapter
name, to use as the working data.

• If it does not exist, Spotfire S+ creates it and initializes it
as a Spotfire S+ chapter, then uses it as the working
data.
389



Chapter 7  Customizing Your Spotfire S+ Session
SPECIFYING A PAGER

A pager is a tool for viewing objects and files that are larger than can
fit on your screen. They function much like editors for moving
around files, but typically do not have actual editing functions. The
most common uses for pagers in Spotfire S+ are to look at lengthy
functions and data sets with the page function and to look at help files
with the help function. The page function uses the pager specified in
options()$pager, while the help function uses the pager specified in
options()$help.pager. 

The value of options()$pager is initially specified by the S_PAGER
environment variable, if set, or to "less", if not. You can use the
options function to specify a new default pager at any time during
your Spotfire S+ session. Modifications to S_PAGER, however, take
effect only when you next start Spotfire S+.

Using options, usually in your .First function, is the preferred
method for setting your pager. Simply use the following function call:

> options(pager=pager)

where pager is a character string containing the command, with any
necessary flags, used to start the pager.  

The value of options()$help.pager defaults to "slynx", which is a
version of the lynx terminal-based Web browser. The help pager is
used to display HTML text in a terminal window, as opposed to the
JavaHelp window available via the help.start() command. Your
help pager should therefore be an HTML-aware viewer, such as the
default slynx browser. For more details, see the section Getting Help
in Spotfire S+ on page 34.
390



Environment Variables and printgraph
ENVIRONMENT VARIABLES AND PRINTGRAPH

Spotfire S+ uses environment variables to set defaults for the
printgraph function. Your system administrator already set these
variables system-wide, but if you would like to change the default
values for your Spotfire S+ session, use your shell command to set a
new value for the environment variable before you start Spotfire S+.

For example, to make printgraph produce plots with the x-axis on
the short side of the paper, type the following from the C shell:

setenv S_PRINT_ORIENTATION portrait 

Start Spotfire S+. Any plots made with printgraph are now produced
in portrait mode.

Spotfire S+ uses the following environment variables with
printgraph:

• S_PRINT_ORIENTATION controls the orientation of plots. It
has two possible values: ‘‘portrait", which puts the x-axis along
the short side of the paper, and ‘‘landscape", which puts the y-
axis along the short side of the paper.

• S_PRINTGRAPH_ONEFILE controls whether Spotfire S+
writes printgraph output to one file or many. It has two
possible values: ‘‘yes" and ‘‘no". If ‘‘yes", printgraph sends its
output to PostScript.out. If ‘‘no", printgraph creates a
separate file each time and tries to send it to the printer by
executing the command specified in the variable
S_POSTSCRIPT_PRINT_COMMAND.

• S_POSTSCRIPT_PRINT_COMMAND sets the Solaris/Linux
PostScript printing command.

Note 

The printgraph function sets its defaults differently from the defaults for the Print button on
graphics devices such as motif.
391



Chapter 7  Customizing Your Spotfire S+ Session
You can also modify printgraph’s behavior using options passed to
ps.options.send. See the section Printing with PostScript Printers for
details on how to control PostScript options.

Note 

You cannot change the values of any environment variable once you start Spotfire S+. If you
want to change a variable, you must stop Spotfire S+, change the variable, then start Spotfire
S+ again.   To change printgraph’s behavior temporarily, see the printgraph help file for
optional arguments.
392



Setting Up Your Window System
SETTING UP YOUR WINDOW SYSTEM

The motif graphics device has a control panel to help you pick the
colors, fonts, and printing commands you want for your Spotfire S+
graphics. When you save these settings, they are used each time you
start one of these devices. You can also specify settings for these
graphics devices by setting X11 resources. 

The motif graphics device uses resources of the X Window System,
Version 11, or X11. This section describes how to customize your
graphics windows by setting X11 resources.  

Setting X11 
Resources

There are a number of ways you can set resources for X11
applications. You should talk with your system administrator about
the way that is preferred on your system. This section describes one
of the most flexible methods of setting X11 resources—using the xrdb
command.

As with other X11 programs, before you can run the xrdb command,
you must give it permission to access your display To do this, you
need to first specify your display server, which controls the access to
your display, and then explicitly give access to that server to the host
on which you run xrdb. If you are running the C-shell, the network
name of the computer or terminal you are sitting at is displayserver,
and the network name of the machine on which you run xrdb is
remotehost, you can give the appropriate permission with the
following commands:

setenv DISPLAY displayserver:0 
xhost + remotehost 

The setenv command sets the DISPLAY environment variable to your
window server so that every X11 program knows where to create
windows. The xhost command gives the specified computer
permission to create a window on your display.

The xrdb command takes a file of X11 resources as its argument and
creates an X11 Resource Database. Whenever any X11 program tries to
create a window on your display, the program first looks at your X11
resource data base to get default values. The xrdb command uses the
C-preprocessor to set the defaults that are appropriate for your
machine. See the xrdb manual page for more information.
393



Chapter 7  Customizing Your Spotfire S+ Session
Spotfire S+ 
X11 Resources

The file SPlusMotif in the directory $SHOME/splus/lib/X11/app-
defaults holds the system-wide default values for the motif graphics
device. Many of the resources declared in the defaults file are
discussed below. 

When you specify a resource use the form:

resource :  value

where resource is the name of the resource you want to use and value
is the value you want to give it. For example, set the resource which
tells xterm windows to have a scrollbar with this command:

 xterm*scrollBar : True

When you add this resource to your X11 resource data base, then
create another window with the Solaris/Linux xterm command, the
window has a scroll bar. In this example the name of the application
for which you set defaults is xterm. When you want to set resources
for your motif devices, you must use the proper application name,
sgraphMotif.

For example, if you put the following resource into your resource
data base: 

sgraphMotif*copyScale : 0.75  

you would specify the ratio of the size of your original graph to the
size of any copies you created from it. When you create a copy of
your motif graphics device, the copy is three-fourths the size of your
current Spotfire S+ graphics window. 

Common 
Resources for 
the Motif 
Graphics 
Device

The following resources are commonly used with the motif graphics
device: 

• sgraphMotif*copyScale sets the size ratio of the copy you
produce when you click on the ‘‘Copy Graph’’ button.
Spotfire S+ multiplies the height and the width of the canvas
by the value in the copyScale resource to create the
dimensions for the new window. The default resource
declaration produces a copy with dimensions one half those
of the current window:

sgraphMotif*copyScale : 0.5 
394



Setting Up Your Window System
• sgraphMotif*fonts sets the fonts that the motif graphics device
use for creating axis labels and plotting characters. The fonts
must be named in order from smallest to largest. Use the
Solaris/Linux command xlsfonts to see a complete list of the
fonts available on your screen. As an example, the following
resources tells the motif graphics device to use the vg family
of fonts ranging in point size from 13 to 40:

sgraphMotif*fonts : vg-13 vg-20 vg-25 vg-31 vg-40

• sgraphMotif*defaultFont tells the motif graphics device which
font in the *font resource list to use as the default font, when
cex=1.

• sgraphMotif*canvas.width and sgraphMotif*canvas.height
control the starting size of the drawing area of the graphics
windows. The following resources set the size of the plotting
area for the motif graphics device to 800 by 632 pixels.

sgraphMotif*canvas.width : 800

sgraphMotif*canvas.height : 632 

Note 

If you select names that are too long to fit on one line, use multiple lines, and make sure that each
line but the last ends with a backslash (\). Since these fonts are intended to list available sizes
of the same font, the actual font used is controlled by the current value of par()$cex and
the size of the fonts relative to the defaultFont described below. 

Note 

The fonts are numbered from 0, so that the following resource tells the motif graphics devices to
use the third font in the list given by sgraphMotif*fonts: sgraphMotif*defaultFont : 2
395



Chapter 7  Customizing Your Spotfire S+ Session
To set color resources for motif devices interactively, we recommend
that you use the menus provided in the graphics windows. You can
also use the sgraphMotif*colorSchemes resource to define new color
schemes. However, if you use sgraphMotif*colorSchemes to define
new color schemes, you must copy the existing resource completely
before defining your new schemes, or the old color schemes will be
unavailable.

Note 

When Spotfire S+ creates graphics to display in the graphics windows, it uses the initial values
of *canvas.width and *canvas.height resources as the size of the drawing area. If you create a
graphics device with a small drawing area and later resize the graphics window to a larger size,
the resolution of the graphics image is reduced, so that your plots may look ‘‘blocky.’’ 
396



Index
INDEX

 operator 51

Symbols
.First function 388
.Last function 386

A
agglomerative hierarchical method 

342
analysis of variance (ANOVA) 245, 

308
one-way 245, 249
random effects 309

Apply button 124
arguments

abbreviating 56
ARIMA 372
Arithmetic, operators 50
attach function 48, 388
autocovariance/correlation 369
autoregressive integrated moving-

average (ARIMA) 372
Axes page

in graphics dialogs 121, 131

B
bandwidth 138, 153, 365

span 142, 146
bar chart 161
Bar Chart dialog 161

tabulating data 163
binomial power and sample size 

269, 271
Binomial Power and Sample Size 

dialog 269, 271

blood data 247
bootstrap 360
box kernel 139, 153
box plot 169

for a single variable 170
for multiple variables 171

Box Plot dialog 169
multiple variables 171
single variable 170

C
calling functions 49
candlestick plot 199
c function 49
character strings

delimiting 49
chi-square goodness-of-fit test 232
chi-square test 218, 266
class 40
cloud plot 184
Cloud Plot dialog 184
cluster analysis

agglomerative hierarchical 342
compute dissimilarities 336
divisive hierarchical 344
fuzzy analysis 340
k-means 337
monothetic 346
partitioning around medoids 

339
coagulation data 246
command line editing 31
command line editor 31

command recall 33
example 32
startup 31
table of keystrokes 31

Commands window 124
397



Index
compute dissimilarities 336
continuation 29
continuous response variable 246
contour plot 178
Contour Plot dialog 178
conventions, typographic 20
Correlations and Covariances 

dialog 221
cosine kernel 153
counts and proportions 255
Cox proportional hazards 323
crosstabulations 218
Crosstabulations dialog 218, 219
custom application launcher 7

D
data

editing 57
importing 57

with importData function 
57

reading from a file 57
data objects

combining 49
editing 59

Data Set field 125, 214
Data Viewer 123
degrees of freedom 228
delimiters

for character strings 49
density plot 153

bandwidth 153
cosine kernel 153
kernel functions 153
normal (Gaussian) kernel 153
rectangle kernel 153
triangle kernel 153

Density Plot dialog 122
divisive hierarchical method 344
dot plot 164
Dot Plot dialog 164

tabulating data 166

E
editing

command line 31
data objects 59

editing data 57
Editor 380
EDITOR environment variable 31
emacs 31
emacs_unixcom editor, table of 

keystrokes 31
emacs editor

table of keystrokes 31
Environment variables

PAGER 380
environment variables 381

EDITOR 31
S_CLEDITOR 31
S_CMDFILE 383
S_WORK 389
VISUAL 31

error messages 29
exact binomial test 255
examples

ANOVA of coagulation data 
246

one-sample speed of light data 
224

two-sample weight gain data 
236

exploratory analysis, speed of light 
data 225, 237

expressions
multiple line 29

F
factor analysis 349
Factorial Design dialog 274
FASCII files

notes on importing 103
Fisher’s exact test 259
formulas 214
freedom, degrees of 228
Friedman rank test 252
398



Index
functions
calling 28, 49
for hypothesis testing 73
for statistical modeling 74
for summary statistics 71
high-level plotting 67
importData 57
low-level plotting 68
operators

comparison 51
logical 51
precedence hierarchy of 53

qqnorm, for linear models 288
fuzzy analysis 340

G
Gaussian kernel 139, 153
generalized models

linear 301
GNOME 7
graph dialogs

QQ Math Plot 159
graphical user interface

Apply button 124
Commands window 124
Data Viewer 123
graphics dialogs 122
Graph menu 122
Graph window 124
OK button 124
Options menu 126
Report window 124

graphics
dialogs for 125
Graph menu for 122
Graph window for 124
Options menu for 126

graphics dialogs 122, 125
Axes page 121, 131
Bar Chart 161
Box Plot 169
Cloud Plot 184
Contour Plot 178
Data Set field 125

Density Plot 122
Dot Plot 164
Histogram 157
Level Plot 180
Multipanel Conditioning page 

121, 147
Parallel Plot 189
Pie Chart 166
Plot page 131
QQ Plot 175
Scatter Plot 121, 127
Scatter Plot Matrix 186
Strip Plot 173
Subset Rows field 125
Surface Plot 182
Time Series High-Low Plot 199
Time Series Line Plot 195
Titles page 121, 131

graphics examples
barley data 191
djia data 200
ethanol data 148
exsurf data 179
fuel.frame data 162
kyphosis data 176
lottery.payoff data 171
main gain data 128
Michelson data 154
Puromycin data 133
sensors data 139
sliced.ball data 184

graphics options 126
Graph menu 122
Graph window 124
GUI  See graphical user interface

H
help 13

? function 16
at the command line 16
from the graphical user 

interface 13
help.off function 13
help.start function 13
399



Index
help function 16
Help menu 13
help window

navigation pane 13, 15
Index page of 15
Search page of 15
Table of Contents page 

of 15
toolbar 13, 14

buttons on 14
topic pane 13, 15

keywords 15
Help, online

manuals 16
help.off function 13
help.off function 34
help.start function 13
help.start function 34
help system 34
high-low-open-close plot  See high-

low plot
high-low plot 199
histogram 157

binning algorithms 158
Histogram dialog 157
hypothesis testing 72, 73

I
importData function 57
importing data 57
index plots 131
initialization, options function 379
installation 4
interquartile range 169
interrupting evaluation 30

J
jackknife 363
Java

runtime environment 3
JavaHelp

See help
JRE 3, 4

K
KDE 7
kernel smoothers 139

box kernel 139
normal (Gaussian) kernel 139
Parzen kernel 139
triangle kernel 139

keywords 15
k-means method 337
Kolmogorov-Smirnov goodness-of-

fit test 230, 243
Kruskal-Wallis rank sum test 250
Kruskal-Wallis Rank Sum Test 

dialog 251

L
least squares line fits 135

in scatter plot matrices 188
level plot 180
Level Plot dialog 180
levels, experimental factor 246
linear models

diagnostic plots for 286, 287
F-statistic for 285
multiple R-squared for 285
standard error for 285

line plots 131, 195
list function 46
lists

components 46
loess (local) regression 295
loess smoothers 142, 366

span 142

M
make.groups function 171
MANOVA 353
Mantel-Haenszel test 264
manuals, online 16
matrix function 44
McNemar’s test 261
Michaelis-Menten relationship 298
modeling, statistical 73, 74
400



Index
monothetic analysis 346
Multipanel Conditioning page

in graphics dialogs 121, 147
multivariate analysis of variance 

(MANOVA) 353

N
navigation pane, help window 13, 

15
Index page of 15
Search page of 15
Table of Contents page of 15

Nonlinear Least Squares Regression 
dialog 296, 297, 299, 300

nonlinear regression 296
nonparametric curve fits 138
normal (Gaussian) kernel 139, 153
normal power and sample size 269
Normal Power and Sample Size 

dialog 269

O
OK button 124
one-sample tests 223

t-test 223
One-sample t Test dialog 223
One-sample t-Test dialog 227
One-sample Wilcoxon Test dialog 

229
One-way Analysis of Variance 

dialog 250
operators

comparison 51
logical 51
precedence hierarchy of 53

Operators, arithmetic 50
Options menu 126
Orthogonal Array Design dialog 

275
outlier data point 130

P
parallel plot 189
Parallel Plot dialog 189
partitioning around medoids 339
Parzen kernel 139
pie chart 166
Pie Chart dialog 166

tabulating data 168
Plot page

in graphics dialogs 131
plots

bar charts 161
box plots 169
cloud plots 184
contour plots 178
density plots 153
diagnostic, for linear models 

286
dot plots 164
for linear models 287
high-level functions for 67
high-low plots 199
histograms 157
index plots 131
least squares line fits 135
level plots 180
line plots 131, 195
low-level functions for 68
parallel plots 189
pie charts 166
qqplots 159, 175
robust line fits 136
scatter plot matrix 186
scatter plots 138
strip plots 173
surface plots 182
time series 195
time series plots 199
Trellis graphics 147, 191
using statistics dialogs 215

precedence of operators 54
principal components technique 

351
401



Index
probability distributions, skewed 
225

Prompts, continuation 379
proportions parameters test 257

Q
QQ Math Plot dialog 159
QQ Plot dialog 175
qqplots 159

normal qqplot 159
two-dimensional 175

quantile-quantile plot  See qqplots

R
random effects analysis of variance 

309
recalling previous commands 33
rectangle kernel  See box kernel
regression 281

linear 282
local (loess) 295
nonlinear 296

regression line 287
Report window 124
resampling

bootstrap 360
jackknife 363

residuals
definition of 135, 282
normal plots 288
plotting in linear models 288

resources 13
rm function 48
robust line fits 136
runtime environment, Java 3

S
S_CLEDITOR environment 

variable 31
S_CMDFILE variable 383
Save As field 214
Save In field 214

Scatter Plot dialog 121, 127
scatter plot matrix 186
Scatter Plot Matrix dialog 186

least squares line fits 188
scatter plots

least squares line fits 135, 188
multipanel conditioning 147
nonparametric curve fits for 138
robust line fits 136
smoothers 138
three-dimensional 184

Session options, continuation 
prompt 379

session options, echo 379
Session options, editor 380
Session options, printing digits 380
Session options, prompt 379
Session options, screen dimensions 

380
smoothers 365

for scatter plots 138
kernel smoothers 139
loess smoothers 142
running averages 138
spline smoothers 144
supersmoothers 146

span 142, 146
speed of light data 224

exploratory analysis of 225
spline smoothers 144

degrees of freedom 144
spotfire.tibco.com/support 17
Spotfire S+ 17
statistical modeling 73, 74
statistical techniques

analysis of variance
random effects 309

cluster analysis
agglomerative hierarchical 

342
compute dissimilarities 336
divisive hierarchical 344
fuzzy analysis 340
k-means 337
monothetic 346
402



Index
partitioning around 
medoids 339

comparing samples
one-sample

chi-square goodness-of-
fit test 232

Kolmogorov-Smirnov 
goodness-of-fit test 
230

t-test 223
Wilcoxon signed-rank 

test 228
two-sample

Kolmogorov-Smirnov 
goodness-of-fit test 
243

t-test 235
Wilcoxon rank sum test 

241
counts and proportions

chi-square test 266
exact binomial test 255
Fisher’s exact test 259
Mantel-Haenszel test 264
McNemar’s test 261
proportions parameters test 

257
data summaries

crosstabulations 218
summary statistics 216

factor analysis 349
generalized linear models 301
k samples

Friedman rank test 252
Kruskal-Wallis rank sum 

test 250
one-way analysis of 

variance 245
multivariate analysis of variance 

353
power and sample size

binomial 269, 271
normal 269

principal components 351
regression

linear 282
local (loess) 295

resampling 360
bootstrap 360
jackknife 363

smoothing
supersmoother 367

survival analysis
Cox proportional hazards 

323
time series

autocovariance/correlation 
369

autoregressive integrated 
moving-average 372

tree models 328
statistical tests

analysis of variance (ANOVA) 
245, 308

one-sample 223
two-sample 234

statistics
dialogs for 213

Correlations and 
Covariances 221

Crosstabulations 218
Data Set field in 214
formulas in 214
Nonlinear Least Squares 

Regression 296, 297, 299, 
300

plotting from 215
Save As field in 214
Save In field in 214
Summary Statistics 216, 

226
introduction to 210
regression 281
savings results from an analysis 

215
Statistics menu for 211, 213
summary 71, 216

common functions for 71
Statistics menu 211, 213
strip plot 173
403



Index
Strip Plot dialog 173
Student’s t confidence intervals 227
Student’s t significance test p-values 

227
Student’s t-tests 227, 238
Subset Rows field 125
summary statistics 71, 216

common functions for 71
Summary Statistics dialog 216, 226
supersmoother 367
supersmoothers 146

span 146
surface plot 182
Surface Plot dialog 182
survival analysis

Cox proportional hazards 323
syntax 29

case sensitivity 29
continuation lines 29
spaces 29

T
Technical Support 17
testing, hypothesis 72, 73
time series 195

autocovariance/correlation 369
autoregressive integrated 

moving-average 372
candlestick plots 199
high-low plots 199
line plots 195

Time Series High-Low Plot dialog 
199

Time Series Line Plot dialog 195
Titles page

in graphics dialogs 121, 131
toolbar, help window 13, 14

buttons on 14

topic pane, help window 13, 15
training courses 17
treatment 246

ANOVA models 249
tree-based models 328
Trellis graphics 147, 191

functions for 121
panels in 148

triangle kernel 139, 153
two-sample tests 234

t-test 235
Two-sample Wilcoxon Test dialog 

242
typographic conventions 20

U
unix function 56

V
variable, continuous response 246
vector arithmetic 53
vectors

creating 49
vi editor 31

table of keystrokes 31
vi function 59
VISUAL environment variable 31

W
weight gain data 236
Wilcoxon rank sum test 241
Wilcoxon signed-rank test 228
working directory

how set 389
www.tibco.com 17
404


	Important Information
	TIBCO Spotfire S+ Books
	Introduction
	Welcome to Spotfire S+!
	Installation
	Supported Platforms
	Installation Instructions
	Running Spotfire S+

	Creating Spotfire S+ Launchers
	Help, Support, and Learning Resources
	Online Help
	Online Manuals
	Spotfire S+ on the Web
	Training Courses
	Books Using Spotfire S+

	Typographic Conventions

	Getting Started
	Introduction
	Running Spotfire S+
	Creating a Working Directory
	Starting Spotfire S+
	Loading Libraries
	Entering Expressions
	Quitting Spotfire S+
	Basic Syntax and Conventions

	Command Line Editing
	Getting Help in Spotfire S+
	Starting and Stopping the Help System
	Using the Help Window
	Getting Help at the Spotfire S+ Prompt
	Displaying Help in a Separate Window
	Printing Help Files
	Documen- tation Objects

	Spotfire S+ Language Basics
	Data Objects
	Managing Data Objects
	Functions
	Operators
	Expressions
	Precedence Hierarchy
	Optional Arguments to Functions
	Access to Solaris and Linux

	Importing and Editing Data
	Reading a Data File
	Editing Data
	Built-in Data Sets
	Quick Hard Copy
	Adding Row And Column Names
	Extracting Subsets of Data

	Graphics in Spotfire S+
	Making Plots
	Quick Hard Copy
	Using the Graphics Window
	Multiple Plot Layout

	Statistics
	Summary Statistics
	Hypothesis Testing
	Statistical Models


	Working with the Graphical User Interface
	The User Interface
	Using Menus, Dialog Boxes, and Toolbars
	Using the Mouse
	Using the Keyboard
	Using Windows
	Using Main Menus
	Specifying Options in Dialogs
	Using Toolbar Buttons

	Spotfire S+ Windows
	Objects Summary
	Data Viewer
	Graph Window
	Commands Window
	Report Window
	Spotfire S+ Menus
	Spotfire S+ Dialogs


	Importing and Exporting Data
	Introduction
	Dialogs
	The Import Data Dialog
	Filtering Rows
	Format Strings
	The Export Data Dialog

	Supported File Types for Importing and Exporting
	Examples
	Importing and Exporting Subsets of Data
	Importing and Exporting Character Data


	Menu Graphics
	Introduction
	Overview
	General Procedure
	Dialogs
	Dialog Fields
	Graph Options

	Scatter Plots
	A Basic Example
	Line Plots
	Grouping Variables
	Line Fits
	Nonparametric Curve Fits
	Multipanel Conditioning

	Visualizing One-Dimensional Data
	Density Plots
	Histograms
	QQ Math Plots
	Bar Charts
	Dot Plots
	Pie Charts

	Visualizing Two-Dimensional Data
	Box Plots
	Strip Plots
	QQ Plots

	Visualizing Three-Dimensional Data
	Contour Plots
	Level Plots
	Surface Plots
	Cloud Plots

	Visualizing Multidimensional Data
	Scatterplot Matrices
	Parallel Plots
	Multipanel Trellis Graphics

	Time Series
	Line Plots
	High-Low Plots
	Stacked Bar Plots

	References

	Statistics
	Introduction
	Overview
	Basic Procedure
	Dialogs
	Dialog Fields
	Plotting From the Statistics Dialogs
	Statistics Options
	Saving Results From an Analysis

	Summary Statistics
	Summary Statistics
	Crosstabulations
	Correlations

	Compare Samples
	One-Sample Tests
	Two-Sample Tests
	K-Sample Tests
	Counts and Proportions

	Power and Sample Size
	Normal Mean
	Binomial Proportion

	Experimental Design
	Factorial
	Orthogonal Array
	Design Plot
	Factor Plot
	Interaction Plot

	Regression
	Linear Regression
	Robust MM Regression
	Robust LTS Regression
	Stepwise Linear Regression
	Generalized Additive Models
	Local (Loess) Regression
	Nonlinear Regression
	Generalized Linear Models
	Log-Linear (Poisson) Regression
	Logistic Regression
	Probit Regression

	Analysis of Variance
	Fixed Effects ANOVA
	Random Effects ANOVA
	Multiple Comparisons

	Mixed Effects
	Linear
	Nonlinear

	Generalized Least Squares
	Linear
	Nonlinear

	Survival
	Nonparametric Survival
	Cox Proportional Hazards
	Parametric Survival
	Life Testing

	Tree
	Tree Models
	Tree Tools

	Compare Models
	Cluster Analysis
	Compute Dissimilarities
	K-Means Clustering
	Partitioning Around Medoids
	Fuzzy Partitioning
	Agglomerative Hierarchical Clustering
	Divisive Hierarchical Clustering
	Monothetic Clustering

	Multivariate
	Discriminant Analysis
	Factor Analysis
	Principal Components
	MANOVA

	Quality Control Charts
	Continuous Grouped
	Continuous Ungrouped
	Counts and Proportions

	Resample
	Bootstrap Inference
	Jackknife Inference

	Smoothing
	Kernel Smoother
	Local Regression (Loess)
	Spline Smoother
	Supersmoother
	Examples

	Time Series
	Autocorrelations
	ARIMA
	Lag Plot
	Spectrum Plot

	References

	Customizing Your Spotfire S+ Session
	Introduction
	Setting Spotfire S+ Options
	Setting Environment Variables
	Customizing Your Session at Start-up and Closing
	Creating a .S.chapters File
	Creating a .S.init File
	Creating the .First Function
	Setting S_FIRST
	Customizing Your Session at Closing

	Using Personal Function Libraries
	Creating an S Chapter
	Placing the Chapter in Your Search Path

	Specifying Your Working Directory
	Specifying a Pager
	Environment Variables and printgraph
	Setting Up Your Window System
	Setting X11 Resources
	Spotfire S+ X11 Resources
	Common Resources for the Motif Graphics Device


	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


