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Preface
PREFACE

Introduction Welcome to the Spotfire S+ 8 Guide to Statistics, Volume 2.

This book is designed as a reference tool for Spotfire S+ users who
want to use the powerful statistical techniques in Spotfire S+. The
Guide to Statistics, Volume 2 covers a wide range of statistical and
mathematical modeling. No single user is likely to tap all of these
resources, since advanced topics such as survival analysis and time
series are complete fields of study in themselves.

All examples in this guide are run using input through the
Commands window, which is the traditional method of accessing the
power of Spotfire S+. Many of the functions can also be run through
the Statistics dialogs available in the graphical user interface. We
hope that you find this book a valuable aid for exploring both the
theory and practice of statistical modeling.

Online Version The Guide to Statistics, Volume 2 is also available online. 

On Microsoft Windows®, from the Help � Online Manuals menu,
and in the /help/statman2.pdf file of your Spotfire S+ home
directory.

On Solaris/Linux, in the /doc/statman2.pdf file of your Spotfire S+
home directory. 

You can open and view this file using Adobe Acrobat Reader, which
is required for reading all online manuals shipped with Spotfire S+.

The online version of the Guide to Statistics, Volume 2 has particular
advantages over print. For example, you can copy and paste example
Spotfire S+ code into the Commands window and run it without
having to type the function calls explicitly. (When doing this, be
careful not to paste the greater-than “>” prompt character, and note
that distinct colors differentiate between input and output in the
online manual.) 

A second advantage to the online guide is that you can perform full-
text searches. To find information on a certain function, first search,
and then browse through all occurrences of the function’s name in the
guide. A third advantage is in the contents and index entries: all
entries are links; click an entry to go to the selected page.
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Chapter   
Evolution of 
SPOTFIRE S+

Spotfire S+ has evolved considerably from its beginnings as a
research tool. The contents of this guide have grown steadily, and will
continue to grow, as the Spotfire S+ language is improved and
expanded. As a result of these changes, some examples in the text
might not match exactly the formatting of the output you obtain.
However, the underlying theory and computations are as described
here.

In addition to the range of functionality covered in this guide, there
are additional modules, libraries, and user-written functions available
from several sources. Refer to the User’s Guide for more details.

Companion 
Guides

The Guide to Statistics, Volume 2, together with Guide to Statistics,
Volume 1, is a companion volume to the User’s Guide , the Programmer’s
Guide, and the Application Developer’s Guide. These manuals, as well as
the rest of the manual set, are available in electronic form. For a
complete list of manuals, see the section TIBCO Spotfire S+ Books
on page v.

This volume covers the following topics:

• Tree models

• Multivariate analysis, including factor analysis, principal 
components analysis, and discriminant analysis

• Cluster analysis

• Survival analysis

• Quality control charts

• Resampling methods (bootstrap and jackknife)

• Mathematical computing

The Guide to Statistics, Volume 1 covers basic probability, descriptive
statistics, statistical inference, regression techniques, and analysis of
variance.
xviii
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Chapter 19  Classification and Regression Trees
INTRODUCTION

Tree-based modeling is an exploratory technique for uncovering
structure in data, increasingly used for:

• devising prediction rules that can be rapidly and repeatedly 
evaluated

• screening variables

• assessing the adequacy of linear models

• summarizing large multivariate data sets

Tree-based models are useful for both classification and regression
problems. In these problems, there is a set of classification or
predictor variables (x), and a single-response variable (y).

If y is a factor, classification rules are of the form:

if  and 

then y is most likely to be in level 5.

If y is numeric, regression rules for description or prediction are of the
form:

if  and  and 

then the predicted value of y is 4.75.

A classification or regression tree is the collection of many such rules
displayed in the form of a binary tree, hence the name. The rules are
determined by a procedure known as recursive partitioning. Tree-based
models provide an alternative to linear and additive models for
regression problems, and to linear and additive logistic models for
classification problems.

Compared to linear and additive models, tree-based models have the
following advantages:

• Easier to interpret when the predictors are a mix of numeric 
variables and factors.

• Invariant to monotone re-expressions of predictor variables.

• More satisfactorily treat missing values.

x1 2.3≤ x3 A B,{ }∈

x2 2.3≤ x9 C D F, ,{ }∈ x5 3.5≤
2



Introduction
• More adept at capturing nonadditive behavior.

• Allow more general (that is, other than of a particular 
multiplicative form) interactions between predictor variables.

• Can model factor response variables with more than two 
levels.
3



Chapter 19  Classification and Regression Trees
GROWING TREES

We describe the tree-growing function tree by presenting several
examples. The tree function generates objects of class "tree". This
function automatically decides whether to fit a regression or
classification tree, according to whether the response variable is
numeric or a factor. We also show two types of displays generated by
generic functions: a tree display produced by plot and a table
produced by print.

In general, the response y and predictors x may be any combination
of numeric or factor types. In fact, the predictors can be a mix of
numeric and factor. However, no factor predictor can have more than
32 levels, and no factor response can have more than 128 levels. In
both of the examples below, the predictors are all numeric. The
numeric response example illustrates a regression tree. The factor
response example illustrates a classification tree.

Numeric 
Response and 
Predictor

In the first example, we grow a regression tree relating the numeric
response Mileage to the predictor variable Weight from the data
frame car.test.frame. The resulting tree is given the name
auto.tree, which is then plotted by the generic plot function and
labeled by the generic text function (see Figure 19.1).

> attach(car.test.frame)
> auto.tree <- tree(Mileage ~ Weight, car.test.frame)
> plot(auto.tree,type = "u")
> text(auto.tree)
> title("A Tree-Based Model\nfor Mileage versus Weight")

In describing tree-based models, the terminology mimics real trees.

• Root: the top node of the tree

• Leaf: A terminal node of the tree

• Split: A rule for creating new branches

In growing a tree, the binary partitioning algorithm recursively splits
the data in each node until either the node is homogeneous or the
node contains too few observations (� 5, by default).
4



Growing Trees
In order to predict mileage from weight, one follows the path from the
root, to a leaf, according to the splits at the interior nodes. The tree in
Figure 19.1 is interpreted in the following way:

• Automobiles are first split according to whether they weigh 
less than 2567.5 pounds.

• If so, they are again split according to weight being less than 
2280 pounds.

• Lighter cars (< 2280 pounds) have a predicted mileage of 34 
mpg.

• Heavier cars (2280 <= Weight <= 2567.5) have a mileage of 
28.9 mpg.

Figure 19.1: Display of a tree-based model with a numeric response, Mileage, and 
one numeric predictor, Weight.

|Weight<2567.5

Weight<2280 Weight<3087.5

Weight<2747.5

Weight<2882.5

Weight<3637.5

Weight<3322.5

Weight<3197.5

34.00 28.89

25.62

23.33 24.11

20.60 20.40

22.00

18.67

A Tree-Based Model
for Mileage versus Weight
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Chapter 19  Classification and Regression Trees
• For those automobiles weighing more than 2567.5 pounds, 
seven weight classes are formed.

• The predicted mileage ranges from a high of 25.6 mpg to a 
low of 18.7 mpg.

• Overall, heavier cars get poorer mileage than lighter cars.

• It appears that doubling the weight of an automobile 
approximately halves its mileage.

Factor 
Response and 
Numeric 
Predictor

In this classification example, we model the probability of developing
Kyphosis, using the kyphosis data frame with predictors Age, Start,
and Number.

First, use boxplots to plot the distributions of the predictor variables
as a function of Kyphosis in Figure 19.2. Start appears to be the
single best predictor of Kyphosis since Kyphosis is more likely to be
present among individuals with Start � 12.

> kyph.tree <- tree(Kyphosis ~ Age + Number + Start,
+ data = kyphosis)

Since Kyphosis is a factor response, the result kyph.tree is a
classification tree.

Figure 19.2: Boxplots of the predictors of Kyphosis.
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Growing Trees
Either the formula or data arguments to the tree function may be
missing. Without the formula argument, a tree is constructed from the
data frame using the first variable as the response. Hence, the
Kyphosis example could have been constructed as follows:

> kyph.tree <- tree(kyphosis)

Without the data argument, the variables named in formula are
expected to be in the search list. The Kyphosis tree could also have
been grown with

> attach(kyphosis)
> kyph.tree <- tree(Kyphosis ~ Age + Number + Start)

The only meaningful operator on the right side of a formula is "+".
Since tree-based models are invariant to monotone re-expressions of
individual predictor variables, functions like log, I, and ^ have little
use. Also, tree-based models capture interactions without explicit
specification.

This time, we display the fitted tree using the generic function, print,
which is called automatically simply by typing the name of the tree
object. This tabular representation is most useful when the details of
the fitting procedure are of interest. Indentation is added as a key to
the underlying structure.

> kyph.tree

node), split, n, deviance, yval, (yprob)
      * denotes terminal node
1) root 81 83.230 absent ( 0.7901 0.20990 )  
   2) Start<12.5 35 47.800 absent ( 0.5714 0.42860 )  
     4) Age<34.5 10  6.502 absent ( 0.9000 0.10000 )  
       8) Age<16 5  5.004 absent ( 0.8000 0.20000 ) *
       9) Age>16 5  0.000 absent ( 1.0000 0.00000 ) *
     5) Age>34.5 25 34.300 present ( 0.4400 0.56000 )  
      10) Number<4.5 12 16.300 absent ( 0.5833 0.41670 )  
        20) Age<127.5 7  8.376 absent ( 0.7143 0.28570 ) *
        21) Age>127.5 5  6.730 present ( 0.4000 0.60000 ) *
      11) Number>4.5 13 16.050 present ( 0.3077 0.69230 )  
        22) Start<8.5 8  6.028 present ( 0.1250 0.87500 ) *
        23) Start>8.5 5  6.730 absent ( 0.6000 0.40000 ) *
   3) Start>12.5 46 16.450 absent ( 0.9565 0.04348 )  
     6) Start<14.5 17 12.320 absent ( 0.8824 0.11760 )  
7



Chapter 19  Classification and Regression Trees
      12) Age<59 5  0.000 absent ( 1.0000 0.00000 ) *
      13) Age>59 12 10.810 absent ( 0.8333 0.16670 )  
        26) Age<157.5 7  8.376 absent ( 0.7143 0.28570 ) *
        27) Age>157.5 5  0.000 absent ( 1.0000 0.00000 ) *
     7) Start>14.5 29  0.000 absent ( 1.0000 0.00000 ) *

The first number in each row of the output is a node number. The
nodes are numbered to index the tree for quick identification. For a

full binary tree, the nodes at depth  are integers , .
Usually, a tree is not full, but the numbers of the nodes that are
present are the same as they would be in a full tree. 

In the print output, the nodes are ordered according to a depth-first
traversal of the tree. Let us first examine one row of the output:

2) Start<12.5 35 47.800 absent ( 0.5714 0.42860 )

This row is for node 2. Following the node number is the split,
Start < 12.5. This states the the observations in the parent (root)
node with Start < 12.5 were put into node 2.

The next number after the split is the number of observations, 35.
The number 47.8 is the deviance, the measure of node heterogeneity
used in the tree-growing algorithm. A perfectly homogeneous node
has deviance zero. The fitted value, yval, of the node is absent.
Finally, the numbers in parentheses (0.5714 0.42860), yprob, are the
estimated probabilities of the observations in that node not having,
and having, kyphosis. Therefore, the observations with Start < 12.5
have a 0.5714 chance of not having kyphosis under this tree model.

An interpretation of the table follows:

• The split on Start partitions the 81 observations into groups 
of 35 and 46 individuals (nodes 2 and 3) with probability of 
Kyphosis 0.429 and 0.043, respectively.

• The group at node 2 is then partitioned into groups of 10 and 
25 individuals (nodes 4 and 5) depending on whether Age is 
less than 34.5 months or not.

• The group at node 4 is divided in half depending on whether 
Age is less than 16 or not. If Age > 16 none of the individuals 
have Kyphosis (probability of Kyphosis is 0). These subgoups 
are divided no further.

d n 2d n 2d 1+<≤
8



Growing Trees
• The group at node 5 is subdivided into groups of size 12 and 
13 depending on whether or not Number is less than 4.5. The 
respective probabilities of Kyphosis for these groups is 0.417 
and 0.692.

• The procedure continues, yielding 10 distinct groups with 
probabilities of Kyphosis ranging from 0.0 to 0.875.

• Asterisks signify terminal nodes; that is, those that are not split.
9



Chapter 19  Classification and Regression Trees
DISPLAYING TREES

The generic functions print, plot, and summary work as expected for
tree objects. We have already encountered the first two functions in
the examples above. A further interesting feature of plot is that an
optional type argument controls node placement. The type argument
can have either of the two values:

• "" produces nonuniform spacing as the default. The more 
important the parent split, the further the children node pairs 
are spaced from their parents.

• "u" produces uniform spacing.

In the car mileage example, we used uniform spacing in order to label
the tree. However, if the goal is tree simplification, we gain insight
into the relative importance of the splits by using the default type,
that is, nonuniform spacing. This is shown in Figure 19.3.

When you first plot the tree using plot, the nodes and splits will be
displayed without any text labels. The generic text function,
described in the Programmer’s Guide , uses the same arguments to
rotate and adjust text in tree plots that it uses with most other types of
plots.

The summary function has a tree-specific method which indicates the
tree type (regression/classification), a record of how the tree was
created, the residual mean deviance, and other information. The
residual deviance is the sum, over all the observations, of terms which
vary according to type (regression/classification) of tree. The residual
mean deviance is then obtained after dividing by the degrees of
freedom (number of observations minus the number of terminal
nodes).
10



Displaying Trees
The following summary is typical for regression trees:

> summary(auto.tree)

Regression tree:
tree(formula = Mileage ~ Weight, data = car.test.frame) 
Number of terminal nodes: 9
Residual mean deviance: 4.289 = 218.7 / 51
Distribution of residuals:
   Min. 1st Qu. Median Mean 3rd Qu. Max.
 -3.889 -1.111 0 0 1.083 4.375

Figure 19.3: Plot of the car mileage tree with non-uniform node placement.

|
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Chapter 19  Classification and Regression Trees
The regression tree has nine terminal nodes. Under a normal
(Gaussian) assumption, the terms in the residual mean deviance are
the squared differences between the observations and the predicted
values. See the section Prediction and Residuals for a discussion of
prediction and residuals. The summary function also summarizes the
distribution of residuals.

The following summary is typical for classification trees:

> summary(kyph.tree)

Classification tree:
tree(formula = Kyphosis ~ Age + Number + Start)
Number of terminal nodes: 10
Residual mean deviance: 0.5809 = 41.24 / 71
Misclassification error rate: 0.1235 = 10 / 81

Note that, for classification trees, the summary function gives the
misclassification error rate instead of distribution of residuals. First,
predicted classifications are obtained as described in the section
Prediction and Residuals. The error rate is then obtained by counting
the number of misclassified observations, and dividing by the number
of observations. The terms in the residual mean deviance are based
on the multinomial distribution (see Chambers and Hastie (1992)).
12



Prediction and Residuals
PREDICTION AND RESIDUALS

Once a tree is grown, an important use of the fitted tree is to predict
the value of the response variable for a set of predictor variables.

For concreteness, consider just one observation x on the predictor
variables. In prediction, the splits direct x through the tree. The
prediction is taken to be the yval at the deepest node reached. Usually
this corresponds to a leaf node. However, in certain situations, a
prediction may reside in a nonterminal node (Chambers and Hastie
(1992)). In particular this may happen if missing values occur in x,
and the tree was grown with only complete observations.

The generic function predict has a tree-specific method. It takes a
tree object and, optionally, a data frame as arguments. If the data
frame is not supplied, predict returns the fitted values for the data
originally used to construct the tree. The function returns predicted
values either as a vector (the default) or a tree object (type = "tree").

The residuals can then be obtained either by subtracting the fitted
values from the response variable, or directly using the function
residuals. Figure 19.4 presents a plot of the residuals versus the
predicted values and a normal probability of the residuals for the
auto.tree model.

Figure 19.4: Residuals versus predicted values and a normal probability plot of the residuals for a tree 
object.
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Chapter 19  Classification and Regression Trees
MISSING DATA

Missing values, NAs, can occur either in data used to build trees, or in
a set of predictors for which the value of the response variable is to be
predicted. For data used to build trees, the tree function permits NAs
only in predictor variables, but only if the argument na.action =
na.tree.replace or na.action = na.tree.replace.all. For any
predictor with missing values, the na.tree.replace function creates a
new factor variable with an added level named "NA" for the NAs; it
leaves numeric predictors alone, even if they have NAs. The
na.tree.replace.all function behaves like na.tree.replace for
factor predictors, and converts numeric predictors with NAs to factors
(based on quantiles), adding a separate level for NAs.

In prediction, suppose an observation is missing a value for the
variable V. Further, suppose there were no missing values for V  in the
training data. The observation follows its path down the tree until it
encounters a node whose split is based on V. The prediction is then
taken to be the yval at that node. If values of several variables are
missing, the observation stops at the first such variable split
encountered.

To clarify this, let us return to the automobile example, where some
of the data are missing values on the variable Reliability. We first fit
a tree on the data with no missing values. The resulting tree is
displayed in Figure 19.5. Notice the split on the variable Reliability.
14



Missing Data
Figure 19.5: Display of tree relating Mileage to Weight and Reliability. 
Missing values have been removed from the analysis.
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Chapter 19  Classification and Regression Trees
To create the tree shown in Figure 19.5, first create a new data set
from car.test.frame, omitting those observations which are missing
data for Reliability:

> car.test.no.miss <-
+ car.test.frame[!is.na(car.test.frame[,3]),]

Now grow the tree using the cleansed data:

> car.tree <- tree(Mileage ~ Weight + Reliability,
+ car.test.no.miss)

Next, we predict the data with values missing on Reliability, by
extracting those observations that were omitted from
car.test.no.miss, and then calling predict on the resulting data set:

> car.test.miss <-
+ car.test.frame[is.na(car.test.frame[,3]),]

> pred.miss <-
+ predict(car.tree, car.test.miss, type = "tree")
> pred.miss

node), split, n, deviance, yval
      * denotes terminal node
1) root 11 245.300 24.80
  2) Weight<2600 3 65.940 30.92
    4) Weight<2280 1 0.000 34.00 *
    5) Weight>2280 2 26.000 29.00 *
  3) Weight>2600 8 81.060 22.58
    6) Weight<3087.5 3 11.770 24.32
     12) Reliability:2 0 0.000 22.60 *
     13) Reliability:1,3,4,5 0 0.000 24.93
       26) Weight<2777.5 0 0.000 26.40 *
       27) Weight>2777.5 0 0.000 24.11 *
    7) Weight>3087.5 5 10.680 20.65
     14) Weight<3637.5 4 17.000 21.50
       28) Weight<3322.5 3 8.918 20.86 *
       29) Weight>3322.5 1 5.760 22.40 *
     15) Weight>3637.5 1 0.160 18.60 *

Notice that there are no observations in the nodes (12, 13, 26, 27) at
or below the split on Reliability.
16



Pruning and Shrinking
PRUNING AND SHRINKING

Since tree size is not limited in the growing process, a tree may be
more complex than necessary to describe the data. Two functions
assess the degree a tree can be simplified without sacrificing goodness
of fit. The prune.tree function achieves parsimonious description by
reducing the nodes on a tree, whereas the shrink.tree function
shrinks each node towards its parent.

Both functions take the arguments listed below.

• tree: Fitted model object of class "tree".

• k: Cost complexity parameter for prune.tree and shrinkage 
parameter for shrink.tree.

• newdata: A data frame containing the values at which 
predictions are required. If missing, the data used to grow the 
tree are used.

Pruning Pruning successively snips off the least important splits. Importance of
a subtree is measured by the cost-complexity measure:

where

Cost-complexity pruning determines the subtree  that minimizes

 over all subtrees. The larger the , the fewer nodes there will

be.

The prune.tree function takes a cost-complexity parameter
argument k, which can be either a scalar or a vector. A scalar k
defines one subtree of tree whereas a vector k defines a sequence of
subtrees minimizing the cost-complexity measure. If the k argument
is not supplied, a nested sequence of subtrees is created by recursively
snipping off the least important splits.

Dk T '( ) D T '( ) k size T '( )⋅+=

Dk T '( ) the deviance of the subtree T ',=

size T '( ) the number of terminal nodes of T ',=

k the cost-complexity parameter. =

T
Dk T '( ) k
17



Chapter 19  Classification and Regression Trees
Figure 19.6 shows the deviance decreasing as a function of the
number of nodes and the cost-complexity parameter k.

# Establish the margin sizes.
> par(mai = c(1.25, 1.0, 1.25, 1.0))
> plot(prune.tree(kyph.tree))
> mtext("Reduction in Deviance
Continue string: With the Addition of Nodes",
+ line=5, cex=1.5) 

Figure 19.6: A sequence of plots generated by the prune.tree function.
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Pruning and Shrinking
Since over one half of the reduction in deviance is explained by the
first three nodes, we limit the tree to three nodes.

> plot(prune.tree(kyph.tree, k = 5))
> text(prune.tree(kyph.tree, k = 5))
> title("k=5")
> summary(prune.tree(kyph.tree, k = 5))

Classification tree:
snip.tree(tree = kyph.tree, nodes = c(4, 5, 3))
Variables actually used in tree construction:
[1] "Start" "Age"  
Number of terminal nodes:  3 
Residual mean deviance:  0.734 = 57.25 / 78 
Misclassification error rate: 0.1728 = 14 / 81

By comparing this to the summary of the full tree in the section
Displaying Trees, we see that reducing the number of nodes from 10
to 3 simplifies the model, but at the cost of increased misclassification.

Increasing the complexity of the tree to 6 nodes drops the
misclassification to a rate comparable to that of the full tree with 10
nodes:

> summary(prune.tree(kyph.tree, k = 2))

Classification tree:
snip.tree(tree = kyph.tree, nodes = c(10, 4, 6))
Number of terminal nodes:  6 
Residual mean deviance:  0.6383 = 47.88 / 75 
Misclassification error rate: 0.1358 = 11 / 81

Figure 19.6 shows kyph.tree pruned to 3 and 6 nodes.

Shrinking Shrinking reduces the number of effective nodes by shrinking the fitted
value of each node towards its parent node. Shrunken fitted values,
for a shrinking parameter , are computed according to the
recursion:

.

k

y node( ) k y node( ) 1 k–( ) ŷ parent(⋅+⋅=
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Chapter 19  Classification and Regression Trees
Here,

The shrink.tree function optimally shrinks children nodes to their

parent, based on the magnitude of the difference between 

and . The shrinkage parameter argument  may be
a scalar or a vector. A scalar k defines one shrunken version of tree,
whereas a vector k defines a sequence of shrunken trees obtained by
optimal shrinking for each value of k. If the k argument is not
supplied, a nested sequence of subtrees is created by recursively
shrinking the tree for a default sequence of values (roughly .05 to .91)
of k.

Figure 19.7 shows the deviance decreasing as a function of the
number of effective nodes and the shrinkage parameter, k. In the
figure, note that there is no change other than a decrease in the
residual mean deviance and an increase in the number of effective
nodes.

# Establish the margin sizes.
> par(mai = c(1.25, 1.0, 1.25, 1.0))
> plot(shrink.tree(kyph.tree))
> mtext("Reduction in Deviance
Continue string: With Sequential Shrinking of Nodes",
+ line=5, cex=1.5) 

Limit the tree to three effective nodes as done with pruning as
follows:

> kyph.tree.sh.25 <- shrink.tree(kyph.tree, k = 0.25)
> plot(kyph.tree.sh.25)
> text(kyph.tree.sh.25)
> title("k = 0.25")
> summary(kyph.tree.sh.25)

Classification tree:
shrink.tree(tree = kyph.tree, k = 0.25)
Number of terminal nodes: 10
Effective number of terminal nodes: 2.8
Residual mean deviance: 0.7385 = 57.75 / 78.2
Misclassification error rate: 0.1358 = 11 / 81

y node( ) the usual fitted value for a node,=

ŷ parent( ) the shrunken fitted value for the node′ s parent.=

y node( )

y parent( ) 0 k 1< <
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Pruning and Shrinking
The lower misclassification rate is maintained even with only three
effective nodes.

Expand the tree to three effective nodes as follows:

> kyph.tree.sh.47 <- shrink.tree(kyph.tree, k = 0.47)
> plot(kyph.tree.sh.47)
> text(kyph.tree.sh.47)
> title("k = 0.47")
> summary(kyph.tree.sh.47)

Classification tree:
shrink.tree(tree = kyph.tree, k = 0.47)
Number of terminal nodes: 10
Effective number of terminal nodes: 6
Residual mean deviance: 0.6281 = 47.11 / 75
Misclassification error rate: 0.1358 = 11 / 81
21
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Figure 19.7: A sequence of plots generated by the shrink.tree function.
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Graphically Interacting with Trees
GRAPHICALLY INTERACTING WITH TREES

A number of Spotfire S+ functions use the tree metaphor to diagnose
tree-based model fits. The functions are naturally grouped by
components of trees: subtrees, nodes, splits, and leaves. Except for
those that are specific to leaves, the functions allow you to interact
graphically with trees, to perform a what-if analysis. You can also use
these functions noninteractively by including a list of nodes as an
argument. The goal is to better understand the fitted model, examine
alternatives, and interpret the data in light of the model.

You can select subtrees from a large tree, and apply a common
function (such as a plot) to the stand of resulting trees. Similarly, you
can snip subtrees from the large tree, in order to gain resolution and
label the top of the tree.

You can browse nodes to obtain important information too bulky to
be usefully placed on a tree plot. You can obtain the names of
observations that occur in a node. By examining the path (that is, the
sequence of splits) that lead to a node, you can characterize the
observations in that node.

You can compare optimal splits (generated by the tree-growing
algorithm) to other potential splits. This helps to discover splits on
variables that may shed light on the nature of the data. Any split
divides the observations in a node into two groups. Therefore, you
can compare the distribution of observations of a chosen variable in
each of the two groups. This helps characterize the two groups, and
also find variables with good discriminating abilities. You may regrow
the tree, after designating a different split at a node.

The leaves of the trees represent the most homogeneous partitions of
the data. You can investigate the differences across leaves by studying
the distribution and summary statistics of chosen variables.

Subtrees You can select or delete subtrees by subscripting the original tree, or
by using snip.tree or select.tree, described below.

The function snip.tree function deletes subtrees; that is, it snips
branches off a specified tree. One goal may be to gain resolution at
the top of the tree so that it can be labeled.
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Chapter 19  Classification and Regression Trees
The graphical interface for snip.tree proceeds as follows:

• The first left-click informs you of the change in tree deviance 
if that branch is snipped off.

• The second left-click removes the branch from the tree.

• To end the interactive process, click on either the middle or 
right mouse button.

Figure 19.8 shows the result of snipping three branches off kyph.tree.

> par(mfrow = c(3,1))
> plot(kyph.tree)
> plot(kyph.tree)
> kyph.tree.sn <- snip.tree(kyph.tree)

node number: 4
   tree deviance = 41.24
   subtree deviance = 42.74
node number: 10
   tree deviance = 42.74
   subtree deviance = 43.94
node number: 6
   tree deviance = 43.94
   subtree deviance = 47.88

> plot(kyph.tree.sn)
> text(kyph.tree.sn,cex = 1)

For noninteractive use, we can equivalently supply the node numbers
in snip.tree(kyph.tree,c(4,10,6)). Negative subscripting is a
convenient shorthand: kyph.tree[-c(4,10,6)].

Similarly, the function select.tree function selects subtrees of a
specified tree. For each node specified in the argument list or selected
interactively, the function returns a tree object rooted at that node.
These can in turn be plotted.
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Graphically Interacting with Trees
Nodes Several Spotfire S+ functions encourage the user to obtain more
detailed information about nodes. Each function takes a tree object as
a required argument, and accepts a list of nodes as an optional
argument. If the node list is omitted, graphical interaction is expected.
The functions return a list, with one component for each node.

Figure 19.8: A sequence of plots created by snipping branches from the top tree.
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Chapter 19  Classification and Regression Trees
The graphical interface for the node functions proceeds as follows:

• Left-click to receive information about a particular node in a 
tree. 

• To end the interactive process, click on either the middle or 
right mouse button.

The browser function returns a summary of the information
contained in a node. Interactively, you can obtain information on the
second and fifth nodes of kyph.tree by first plotting the tree, and
then calling browser as follows:

> plot(kyph.tree)
> browser(kyph.tree)

node number: 2
 split: Start<12.5
 n: 35
 dev: 47.800
 yval: absent
        absent present
[1,] 0.5714286 0.4285714
node number: 5
 split: Age>34.5
 n: 25
 dev: 34.300
 yval: present
     absent present
[1,]   0.44    0.56

You can also provide a list of nodes to browser and obtain the node
information noninteractively:

> browser(kyph.tree, c(2,5))

     var  n      dev   yval splits.cutleft splits.cutright
2    Age 35 47.80357 absent          <34.5           >34.5
5 Number 25 34.29649 present          <4.5            >4.5
  yprob.absen yprob.present
2   0.5714286     0.4285714
5   0.4400000     0.5600000
26



Graphically Interacting with Trees
The identify function is another generic function with a tree-specific
method. The following noninteractive call lists the observations in the
eighth and ninth nodes of kyph.tree:

> identify(kyph.tree, nodes = c(8,9))

$"8":
[1] "4" "14" "26" "29" "39"
$"9":
[1] "13" "21" "41" "68" "71"

The function path.tree returns the path (sequence of splits) from the
root to any node of a tree. This is useful in cases where overplotting
results if the tree is labeled indiscriminately. As an example, we
interactively look at the path to the rightmost terminal node of the
kyphosis tree:

> path.tree(kyph.tree)

 node number: 27
   root
   Start>12.5
   Start<14.5
   Age>59
   Age>157.5

By examining the path, we can determine that the children in this
node are more than 157.5 months old, and the beginnings of the
range of vertebrae involved are between 12.5 and 14.5.

Splits The recursive partitioning algorithm underlying the tree function
chooses a “best” set of splits that partition the predictor variable space
into increasingly homogeneous regions. However, it is important to
remember that it is only an algorithm. There may be other splits that
also help you understand the data. The functions in this section help
to examine alternative splits.

As in previous sections, the graphical interface for functions that
examine splits proceed as follows:

• Left-click to receive information about the split at a particular 
node. 

• To end the interactive process, click on either the middle or 
right mouse button.
27
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With the burl.tree function, you can select a node and observe the
goodness of split for each predictor in the model formula. The
goodness-of-split criterion is the difference in deviance between the
node and its children (defined by the tentative split). Large differences
correspond to important splits. 

The burl.tree function returns a list with one component for each
variable. Each component contains the necessary information for
generating the plots. The reduction in deviance is plotted against a
quantity that depends upon the form of the predictor:

• If the predictor is numeric, each possible cut-point split is 
plotted.

• If the predictor is a factor variable, a decimal equivalent of the 
binary representation of each possible subset split is plotted. 
The plotting character is a string labeling the left split.

In the following example, competing splits are plotted for each of the
four predictor variables in the cu.summary data frame. The resulting
graph is displayed in Figure 19.9.

> reliab.tree <- tree(Reliability ~
+ Price + Country + Mileage + Type,
+ na.action = na.tree.replace.all, data = cu.summary)

> tree.screens() # Establish plotting regions

[1] 1 2

> plot(reliab.tree, type = "u")
> text(reliab.tree)
> burl.tree(reliab.tree) # Now click at the root node

The burl plot shows that the most important splits involve the
variable Country. In the burl plot window for Country, the candidate
splits are divided into two groups; there is a cluster of splits in the top
of the window, and another in the bottom. The top cluster
discriminates better than the bottom cluster, and the very best split is
the one labeled ef. Moreover, the split ef occurs in all candidates that
are in the top cluster. Therefore, we conclude that this is a meaningful
split.
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Graphically Interacting with Trees
The function hist.tree requires a list of variable names in addition
to the tree object (and, optionally, a list of nodes). Unlike burl.tree,
the variables need not be predictors in the tree model. For a given
node, a side-by-side histogram is plotted for each variable. The
histogram on the left displays the distribution of the observations
following the left split. Similarly, the histogram on the right displays
the distribution of the observations following the right split.

Figure 19.10 is produced by the expressions below. The figure shows
that Japanese cars manufactured in the U.S. or abroad (i.e., the
Country:ef split) tend to be less expensive and more fuel efficient
than other cars. The lower portion of the plot displays side-by-side

Figure 19.9: A tree for Reliability in the cu.summary data frame with a burl plot of the four predictors 
for the root node.
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Chapter 19  Classification and Regression Trees
histograms for the Price and Mileage variables. Note that it is
possible to obtain a histogram of Price, even though the formula for
reliab.tree.2 does not include it as a predictor.

> reliab.tree.2 <- tree(Reliability ~
+ Country + Mileage + Type,
+ na.action = na.tree.replace.all, data = cu.summary)
> tree.screens() # Establish plotting regions

[1] 1 2

> plot(reliab.tree.2, type = "u")
> text(reliab.tree.2, cex=0.7)
> hist.tree(reliab.tree.2, Price, Mileage, nodes = 1)

Figure 19.10: A tree for Reliability in the cu.summary data frame.
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Graphically Interacting with Trees
Manual 
Splitting and 
Regrowing

After examining competitor splits at a node, you may wonder what
the tree would look like if the node were split differently. You can
achieve this by using the edit.tree function.

The arguments to edit.tree are listed below.

• object: Fitted model object of class "tree".

• node: Number of the node to edit.

• var: Character string naming variable to split on.

• splitl: Left split. Numeric for continuous variables; 
character string of levels that go left for a factor.

• splitr: Right split. Character string of levels that go right for 
a factor.

As an example, look at a burl of kyph.tree at the root node for the
variable Start.

> kyph.burl <- burl.tree(kyph.tree, node = 1, plot=F)
> kyph.burl$Start

   Start       dev numl
 1   1.5  1.001008    5
 2   2.5  1.887080    7
 3   4.0  2.173771   10
 4   5.5  5.098140   13
 5   7.0 11.499747   17
 6   8.5 17.946393   19
 7   9.5 12.812267   23
 8  10.5 12.821041   27
 9  11.5 10.136948   30
10  12.5 18.977175   35
11  13.5 13.927629   47
12  14.5 17.508746   52
13  15.5 12.378558   59
14  16.5  2.441679   76
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Chapter 19  Classification and Regression Trees
Use edit.tree to regrow the tree with a designated split at
Start = 8.5. The result is shown in Figure 19.11.

> kyph.tree.edited <- edit.tree(kyph.tree, node = 1,
+ var = "Start", splitl = 8.5)
> plot(kyph.tree.edited)
> text(kyph.tree.edited)

Figure 19.11: kyph.tree regrown at the root node with a split at Start = 8.5.
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absent
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Graphically Interacting with Trees
Leaves Two noninteractive functions, tile.tree and rug.tree, show the
distribution of a variable over all terminal nodes of a tree.

The function tile.tree plots histograms of a specified variable for
observations in each leaf. This function can be used, for example, to
display class probabilities across the leaves of a tree. Figure 19.12
shows the distribution across leaves for the Kyphosis variable, as
generated by the following commands:

> tree.screens() # split plotting screen

[1] 1 2

> plot(kyph.tree)
> text(kyph.tree)
> tile.tree(kyph.tree, Kyphosis)

A related function, rug.tree, shows the average value of a variable
over the leaves of a tree. The optional argument FUN allows you to
summarize the variable with a measure other than the mean (for
example, the trimmed mean or median). Figure 19.13 shows the rug
plot of medians for the Start variable, as generated by the following
commands:

> tree.screens() # split plotting screen

[1] 3 4

> plot(kyph.tree)
> text(kyph.tree)
> rug.tree(kyph.tree, Start, FUN = median)
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Chapter 19  Classification and Regression Trees
Figure 19.12: A tree of the kyphosis data with a tile plot of Kyphosis.
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.

Figure 19.13: A tree of the kyphosis data with a rug plot of Start.
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Chapter 20  Principal Components Analysis
INTRODUCTION

For investigations involving a large number of observed variables, it
is often useful to simplify the analysis by considering a smaller
number of linear combinations of the original variables. For example,
scholastic achievement tests typically consist of a number of
examinations in different subject areas. In attempting to rate students
applying for admission, college administrators frequently attempt to
reduce the scores from all subject areas to a single, overall score. If
the reduction can be done with minimal information loss, all the
better.

One obvious choice for the overall score is the mean over all subject
areas. For three subject areas , , and , the mean corresponds to

the linear combination , or equivalently ,

where  is the vector of coefficients . A linear

combination with  is called a standardized linear combination,

or SLC. By restricting attention to SLCs, you can make meaningful
comparisons between various choices of linear combinations. For
example, with the test scores, you can seek the combination with the
greatest variance as a way of ranking the students and separating
them.

Principal components analysis finds a set of SLCs, called the principal
components, which are orthogonal and taken together explain all the
variance of the original data. The principal components are defined
as follows (from Mardia, Kent, and Bibby (1979)):

If  is a random vector with mean  and covariance matrix 
, then the principal component transformation is the 

transformation

,

where  is orthogonal,  is diagonal, and 

. The ith principal component of  

may be defined as the ith element of the vector , namely, as

.

s1 s2 s3

3⁄ s2 3⁄ s3 ⁄+ + l's
l' 3⁄ 1 3⁄ 1 ⁄, ,

li
2∑ 1=

x μ
Σ

x y→ Γ ' x μ–( )=

Γ Γ 'ΣΓ Λ=

λ1 λ2 … λp 0…≥ ≥ ≥ ≥ x

y

yi γ 'i x μ–( )=
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Introduction
Here γ i is the ith column of  and may be called the ith 
vector of principal component loadings.  

Γ

Note

Some authors define the loadings somewhat differently, as the covariances of the principal 
components with the original variables. Spotfire S+ follows Mardia, Kent, and Bibby (1979).

The first principal component has the largest variance among all SLCs of x. Similarly, the second 
principal component has the largest variance among all SLCs of x uncorrelated with the first 
principal component, and so on.

In general, there are as many principal components as variables. However, because of the way 
they are calculated, it is usually possible to consider only a few of the principal components, 
which together explain most of the original variation.
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Chapter 20  Principal Components Analysis
CALCULATING PRINCIPAL COMPONENTS

To calculate principal components, use the princomp function. In
general, the first argument to princomp is a numeric matrix or a data
frame consisting solely of numeric variables. For example, Table 20.1
shows the results of qualifying examinations for 25 graduate students
in mathematics at a fictional university. The students sat for
examinations in each of five subject areas—differential geometry,
complex analysis, algebra, real analysis, and statistics. The differential
geometry and complex analysis examinations were closed book,
while the remaining three exams were open book.
Table 20.1: Examination scores for graduate students in mathematics.

diffgeom complex algebra reals statistics

1 36 58 43 36 37

2 62 54 50 46 52

3 31 42 41 40 29

4 76 78 69 66 81

5 46 56 52 56 40

6 12 42 38 38 28

7 39 46 51 54 41

8 30 51 54 52 32

9 22 32 43 28 22

10 9 40 47 30 24

11 32 49 54 37 52

12 40 62 51 40 49
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Calculating Principal Components
The data in Table 20.1 is stored in a data set called testscores. To
perform principal components analysis on these data, use the
princomp function as follows:

> testscores.prc <- princomp(testscores)

13 64 75 70 66 63

14 36 38 58 62 62

15 24 46 44 55 49

16 50 50 54 52 51

17 42 42 52 38 50

18 2 35 32 22 16

19 56 53 42 40 32

20 59 72 70 66 62

21 28 50 50 42 63

22 19 46 49 40 30

23 36 56 56 54 52

24 54 57 59 62 58

25 14 35 38 29 20

Table 20.1: Examination scores for graduate students in mathematics. (Continued)

diffgeom complex algebra reals statistics
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Chapter 20  Principal Components Analysis
> testscores.prc

Standard deviations:
  Comp. 1  Comp. 2  Comp. 3  Comp. 4  Comp. 5
 28.48968 9.035471 6.600955 6.133582 3.723358

The number of variables is 5
        and the number of observations is 25

Component names:
 "sdev" "loadings" "correlations" "scores" "center"
 "scale" "n.obs" "call" "factor.sdev" "coef"

Call:
princomp(x = testscores)

The princomp function returns an object of mode "princomp". The
printing method for objects of this class shows the standard deviations
of the resulting principal components, together with information on
the size of the original data set, the names of the components making
up the object, and the original call. Use summary to produce a
summary showing the importance of the calculated principal
components:

> summary(testscores.prc)

Importance of components:
                          Comp. 1    Comp. 2
    Standard deviation 28.4896795 9.03547104
Proportion of Variance  0.8212222 0.08260135
 Cumulative Proportion  0.8212222 0.90382353
                          Comp. 3    Comp. 4
    Standard deviation 6.60095491 6.13358179
Proportion of Variance 0.04408584 0.03806395
 Cumulative Proportion 0.94790936 0.98597332
                          Comp. 5
    Standard deviation 3.72335754
Proportion of Variance 0.01402668
 Cumulative Proportion 1.00000000

In our example, the first principal component explains 82% of the
variance, and the first two principal components together explain
90% of the variance.
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Calculating Principal Components
By default, princomp uses a weighted covariance estimation function,
cov.wt, to perform the principal components analysis. If you want to
use a minimum volume ellipsoid covariance estimate, use the cov.mve
function, which is described in the section Estimating the Model
Using a Covariance or Correlation Matrix.
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Chapter 20  Principal Components Analysis
PRINCIPAL COMPONENT LOADINGS

The principal component loadings are the coefficients of the principal
components transformation. They provide a convenient summary of
the influence of the original variables on the principal components,
and thus a useful basis for interpretation. A large coefficient (in
absolute value) corresponds to a high loading, while a coefficient near
zero has a low loading.

You can view the loadings for a principal components object in either
of two ways. First, you can print them as part of the object summary
by using the loadings=T argument to summary:

> summary(testscores.prc, loadings = T)

Importance of components:
                          Comp. 1    Comp. 2
    Standard deviation 28.4896795 9.03547104
Proportion of Variance  0.8212222 0.08260135
 Cumulative Proportion  0.8212222 0.90382353
                          Comp. 3    Comp. 4
    Standard deviation 6.60095491 6.13358179
Proportion of Variance 0.04408584 0.03806395
 Cumulative Proportion 0.94790936 0.98597332
                          Comp. 5
    Standard deviation 3.72335754
Proportion of Variance 0.01402668
 Cumulative Proportion 1.00000000

Loadings:
          Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
  diffgeom  0.598  -0.675  -0.185  -0.386
   complex  0.361  -0.245   0.249   0.829  -0.247
   algebra  0.302   0.214   0.211   0.135   0.894
     reals  0.389   0.338   0.700  -0.375  -0.321
statistics  0.519   0.570  -0.607          -0.179

To see the loadings alone, use the loadings function:

> loadings(testscores.prc)
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Principal Component Loadings
          Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
  diffgeom  0.598  -0.675  -0.185  -0.386
   complex  0.361  -0.245   0.249   0.829  -0.247
   algebra  0.302   0.214   0.211   0.135   0.894
     reals  0.389   0.338   0.700  -0.375  -0.321
statistics  0.519   0.570  -0.607          -0.179

The loadings function returns an object of class "loadings". This
class has methods for printing and plotting; a plot of the loadings lets
you see at a glance which variables are best explained by each
component. For example, consider the loadings plot created by the
following call:

> plot(loadings(testscores.prc))

The plot is shown in Figure 20.1. The loadings for the first principal
component are all of the same sign, and of moderate size. A
reasonable interpretation is that this component represents an
“average” score for the five qualifying examinations. The second
component contrasts the two closed book exams with the three open
book exams, with the first and last exams weighted most heavily.
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.

Figure 20.1: Loadings plot for the test scores data.
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Principal Components Analysis Using Correlation
PRINCIPAL COMPONENTS ANALYSIS USING CORRELATION

The principal components decomposition is not scale-invariant. This
means that you obtain different decompositions depending on
whether you calculate them for the (unscaled) covariance matrix or
the (scaled) correlation matrix. In general, you use the covariance
matrix when the original observations are on a common scale (as, for
example, in the testscores data set). You use the correlation matrix
when you have observations of different types, such as those in the
state.x77 data set. To calculate principal components for scaled
data, use the cor=T argument to princomp:

> state.prc <- princomp(state.x77, cor = T)
> state.prc

Standard deviations:
 Comp. 1  Comp. 2  Comp. 3   Comp. 4   Comp. 5   Comp. 6
1.897076 1.277466 1.054486 0.8411327 0.6201949 0.5544923
  Comp. 7   Comp. 8
0.3800642 0.3364338

The number of variables is 8 and the number of observations 
is 50

Component names:
"sdev" "loadings" "correlations" "scores" "center" "scale" 
"n.obs" "call"

Call:
princomp(x = state.x77, cor = T)

> summary(state.prc, loadings = T)

Importance of components:
                         Comp. 1   Comp. 2   Comp. 3
    Standard deviation 1.8970755 1.2774659 1.0544862
Proportion of Variance 0.4498619 0.2039899 0.1389926
 Cumulative Proportion 0.4498619 0.6538519 0.7928445
                          Comp. 4    Comp. 5
    Standard deviation 0.84113269 0.62019488
Proportion of Variance 0.08843803 0.04808021
 Cumulative Proportion 0.88128252 0.92936273
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Chapter 20  Principal Components Analysis
                          Comp. 6   Comp. 7
    Standard deviation 0.55449226 0.3800642
Proportion of Variance 0.03843271 0.0180561
 Cumulative Proportion 0.96779544 0.9858515
                          Comp. 8
    Standard deviation 0.33643379
Proportion of Variance 0.01414846
 Cumulative Proportion 1.00000000

Loadings:
          Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
Population -0.126   0.411   0.656   0.409   0.406
    Income  0.299   0.519   0.100          -0.638
Illiteracy -0.468                  -0.353
  Life Exp  0.412           0.360  -0.443   0.327
    Murder -0.444   0.307  -0.108   0.166  -0.128
   HS Grad  0.425   0.299          -0.232
     Frost  0.357  -0.154  -0.387   0.619   0.217
      Area          0.588  -0.510  -0.201   0.499
          Comp. 6 Comp. 7 Comp. 8
Population                  0.219
    Income -0.462
Illiteracy -0.387  -0.620   0.339
  Life Exp -0.219  -0.256  -0.527
    Murder  0.325  -0.295  -0.678
   HS Grad  0.645  -0.393   0.307
     Frost -0.213  -0.472
      Area -0.148   0.286

From the loadings for this decomposition, we see that the first
principal component contrasts “good” variables such as income and
life expectancy with “bad” variables such as murder and illiteracy. It
is tempting to interpret this component as a real measure of some
nebulous quantity labeled, for example, “Quality of Life.” From the
importance-of-components summary, however, we see that this
component explains only about 45% of the total variance. If we give
this “obvious” interpretation to the first principal component, what
natural interpretation can we give to the second principal component,
which seems to contrast the proportion of frosty days with virtually all
of the other variables, and explains another 20% of the variance? This
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Principal Components Analysis Using Correlation
example shows that, while calculating principal components is
straightforward, interpreting the resulting components in physical or
social terms is not always so.
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Chapter 20  Principal Components Analysis
ESTIMATING THE MODEL USING A COVARIANCE OR 
CORRELATION MATRIX

If you do not have raw data, but either a covariance or correlation
matrix derived from the original data, you can use the covlist
argument of the princomp function to perform a principal
components analysis. The data object that is passed to princomp must
be a list object with two components, cov and center.

For example, suppose you have a data object covmatrix containing
the following covariance matrix:

           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

This matrix is created in Spotfire S+ with the following two
commands:

> covmatrix <- matrix(scan(), ncol=5, byrow=T)

1:  334.8224  174.424 132.0432 169.8096 224.312
6:  174.4240  139.920  87.6320 104.1360 136.800
11: 132.0432   87.632  91.5776 101.8928 129.776
16: 169.8096  104.136 101.8928 160.2784 160.848
21: 224.3120  136.800 129.7760 160.8480 261.760
26: 

> dimnames(covmatrix) <- list(c("diffgeom","complex",
+ "algebra","reals","statistics"), c("diffgeom","complex",
+ "algebra","reals","statistics"))

Convert covmatrix into a list object containing the cov and center
components as follows:

> cov.obj <- list(cov = covmatrix, center = c(0,0,0,0,0))
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Estimating the Model Using a Covariance or Correlation Matrix
> cov.obj

$cov:
           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760
$center:
[1] 0 0 0 0 0

To perform the principal components analysis, pass cov.obj to the
princomp function by using the covlist argument:

> princov <- princomp(covlist = cov.obj)
> princov

Standard deviations:
  Comp. 1  Comp. 2  Comp. 3  Comp. 4  Comp. 5
 28.48968 9.035471 6.600955 6.133582 3.723358

The number of variables is 5 and the number of
    observations is unknown.

Component names:

 "sdev" "loadings" "correlations" "center" "scale" "call"

Call:
princomp(covlist = cov.obj)

If you have a correlation matrix, you can use the covlist argument in
the same way. For example, suppose you have a data object
cormatrix containing the following correlation matrix:

             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999
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As before, the cormatrix object is created in Spotfire S+ with the
following two commands:

> cormatrix <- matrix(scan(), ncol=5, byrow=T)

1: 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
6: 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
11: 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
16: 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
21: 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999
26: 

> dimnames(cormatrix) <- list(c("diffgeom","complex",
+ "algebra","reals","statistics"), c("diffgeom","complex",
+ "algebra","reals","statistics"))

Convert cormatrix into a list object containing the cov and center
components as follows:

> cor.obj <- list(cov = cormatrix, center = c(0,0,0,0,0))
> cor.obj

$cov:
             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

$center:
[1] 0 0 0 0 0

To perform the principal components analysis, pass cor.obj to the
princomp function by using the covlist argument:

> princor <- princomp(covlist = cor.obj)
52



Estimating the Model Using a Covariance or Correlation Matrix
> princor

Standard deviations:
  Comp. 1   Comp. 2   Comp. 3   Comp. 4   Comp. 5
 2.020188 0.6114408 0.4653519 0.4525298 0.3516317

The number of variables is 5 and the number of observations 
is unknown.

Component names:
 "sdev" "loadings" "correlations" "center" "scale" "call"

Call:
princomp(covlist = cor.obj)

By default, princomp uses a weighted covariance estimation function,
cov.wt, to perform the principal components analysis. If you want to
use a minimum volume ellipsoid covariance estimate, use the cov.mve
function by performing the following steps:

1. Use the cov.mve function with the raw data (the rawdataobj 
object below), as follows:

> mve.object <- cov.mve(rawdataobj)

The returned object is a list containing the cov and center 
components.

2. Pass the raw data and mve.object to princomp by using the 
covlist argument as follows:

> prin.obj <- princomp(rawdataobj, covlist=mve.object)
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EXCLUDING PRINCIPAL COMPONENTS

The purpose of principal components analysis is to reduce the
complexity of multivariate data by transforming the data into the
principal components space, and then choosing the first n principal
components that explain “most” of the variation in the original
variables. Many criteria have been suggested for deciding how many
principal components to retain, including the following:

• (Cattell) Plot the eigenvalues  against . The resulting plot, 
called a screeplot because it resembles a mountainside with a 
jumble of boulders at its base, often provides a convenient 
visual method of separating the important components from 
the less-important components.

• Include just enough components to explain some arbitrary 
amount (typically, 90%) of the variance.

• (Kaiser) Exclude those principal components with eigenvalues 
below the average. For principal components calculated from 
a correlation matrix, this criterion excludes components with 
eigenvalues less than 1.

Mardia, et al. point out that using Cattell’s criterion typically results in
too many included components, while Kaiser’s criterion typically
includes too few. The 90% criterion is often a useful compromise.

Creating a 
Screeplot

A screeplot plots the eigenvalues against their indices, and breaks
visually into a steady downward slope (the mountainside) and a
gradual tailing away (the scree). The break from the steady downward
slope indicates the break between the “important” principal
components and the remaining components which make up the
scree. The screeplot is the default plot for objects of class "princomp".
Thus, to create a screeplot for a principal components object, simply
use the plot function:

> plot(state.prc)

[1] 0.700000 1.900000 3.100000 4.300000 5.500000
[6] 6.700000 7.900000 9.099999

λ j j
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Excluding Principal Components
By default, the screeplot takes the form of a barplot, and the call to
plot returns the x-coordinates of the centers of the bars. The resulting
plot is shown in Figure 20.2. Looking for an obvious break between
mountainside and scree, you would probably conclude that four or
six components should be retained. The 90% criterion retains five
components.

You can also create a screeplot as a line graph, using the argument
style="lines":

> plot(testscores.prc, style = "lines")

[1] 1 2 3 4 5

The screeplot for the testscores data is shown in Figure 20.3. Only
the first and second components appear important here, in agreement
with the 90% criterion.

Figure 20.2: Screeplot for the state.x77 data.
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Chapter 20  Principal Components Analysis
The plot method objects of class "princomp" simply calls the
screeplot function. You can call screeplot directly to create the
plots in Figure 20.2 and Figure 20.3. Using screeplot is particularly
useful when writing functions or Spotfire S+ scripts; it clearly
indicates what type of plot is being created.

Evaluating 
Eigenvalues

To apply Kaiser’s criterion for excluding eigenvalues:

1. Square the sdev component of the principal components 
object to obtain the vector of eigenvalues.

2. Take the mean of the vector of eigenvalues.

3. Exclude those components with eigenvalues less than the 
mean.

For the testscores data, these steps are:

> testscores.eigen <- testscores.prc$sdev^2
> testscores.eigen

 Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
 811.662 81.6397 43.5726 37.6208 13.8634

> mean(testscores.eigen)

Figure 20.3: Screeplot for the testscores data, using style="lines".
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Excluding Principal Components
[1] 197.672

Using Kaiser’s criterion, we exclude all components except the first.
The 90% criterion suggests keeping the first two.

For principal components objects created from correlation matrices,
such as our state.prc example, the mean of the eigenvalues is 1. We
can therefore look at the eigenvalues to determine which components
to exclude:

> state.prc$sdev^2

 Comp. 1 Comp. 2 Comp. 3  Comp. 4  Comp. 5  Comp. 6
  3.5989 1.63192 1.11194 0.707504 0.384642 0.307462

  Comp. 7  Comp. 8
 0.144449 0.113188

Kaiser’s criterion suggests including only the first three principal
components. The 90% criterion suggests including the first five.
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PREDICTION: PRINCIPAL COMPONENT SCORES

One important use of principal components is interpreting the
original data in terms of the principal components. For example, the
first principal component of the test scores data seems to reflect a
weighted average of the test scores. Evaluating this average for each
student provides a simple criterion for ranking the students. The
images of the original data under the principal components
transformation are referred to as principal component scores. By default,
princomp calculates the scores and stores them in the scores
component of the returned object:

> testscores.prc$scores

      Comp. 1    Comp. 2    Comp. 3    Comp. 4
 1  -7.540322 -10.216765  -2.537471   8.670900
 2  20.361037      . . .

You can force princomp to omit the scores by giving the argument
scores=F.

Alternatively, if you view the principal components as estimates of
interpretable quantities (for example, interpreting the first principal
component of the test scores as an estimate of overall ability), it is
perhaps more natural to view the principal component scores as
predictions from the principal components model. In this case, it is
most natural to obtain the scores using the generic predict function:

> predict(testscores.prc)

      Comp. 1    Comp. 2    Comp. 3    Comp. 4
 1  -7.540322 -10.216765  -2.537471   8.670900
 2  20.361037      . . .

You can use predict to obtain estimated scores for new data as well.
The new data must be in the same form as the original data. For
example, suppose you obtained test scores for five additional students
and stored them in the matrix newscores.

> newscores
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Prediction: Principal Component Scores
  diffgeom complex algebra reals statistics
1       22      50      70    54         30
2       22      46      38    52         62
3       22      42      50    40         62
4       42      49      70    42         50
5       32      35      44    66         32

You can obtain the predicted scores for this new data using predict
as follows:

> predict(testscores.prc, newdata = newscores)

     Comp. 1   Comp. 2    Comp. 3     Comp. 4
1  -7.273022  9.070945  20.624141   3.8263656
2  -2.559011 20.754755  -7.975341  -0.7556388
3  -5.044379 20.243279 -14.834342   2.0521791
4  10.041295  3.158848  -3.878835   1.2183456
5  -8.851869  5.635621  16.724818 -20.3311596
      Comp. 5
1  16.4349148
2 -16.2811592
3  -0.7045226
4  18.1853226
5  -6.7149242
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Chapter 20  Principal Components Analysis
ANALYZING PRINCIPAL COMPONENTS GRAPHICALLY

We have already seen several graphical views of some portions of the
principal components analysis, namely the screeplot and the loadings
plot. However, neither of these plots gives a comprehensive view of
both the principal components and the original data. The biplot
(Gabriel (1971)) allows you to represent both the original variables
and the transformed observations on the principal components axes.
By showing the transformed observations, you can easily interpret the
original data in terms of the principal components. By showing the
original variables, you can view graphically the relationships between
those variables and the principal components.

To create a biplot in Spotfire S+, use the biplot function, giving an
object of class "princomp" as its first argument. For example, to create
a biplot for the test scores data, use biplot as follows:

> biplot(testscores.prc)

The resulting plot is shown in Figure 20.4.

Figure 20.4: Biplot of test scores data.
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Analyzing Principal Components Graphically
Interpreting the biplot is straightforward: the x-axis represents the
scores for the first principal component, the y-axis the scores for the
second principal component. The original variables are represented
by arrows which graphically indicate the proportion of the original
variance explained by the first two principal components. The
direction of the arrows indicates the relative loadings on the first and
second principal components. For example, the variable diffgeom
has the largest loadings in absolute value for both the first and second
components, and the loading on the second component has negative
sign. Thus diffgeom is represented by a longish, downward sloping
arrow. The variable algebra has the smallest loadings on the first two
components, and both loadings have the same sign. Thus, algebra is
represented by a short, slightly upward-pointing arrow.

While the points plotted on the lower axes in a biplot represent the
scores for two principal components, they are not equal to the values
returned in the scores attribute of a princomp object. Likewise, the
upper axes do not equal the values returned by the loadings
function. We devote the remainder of this section to explaining the
exact values that are plotted by the Spotfire S+ biplot.princomp
function. For simplicity, we focus our explanation on the first two
principal components only; the derivation is analogous for any two
components displayed in a biplot. For additional details, see Gabriel
(1971).

An  data matrix  has a singular value decomposition

, where  is a diagonal matrix of singular values. For the
first two principal components, we calculate the following two
matrices:

 

,

where  is the ith column of ,  is the ith column of ,  is the

upper  submatrix of , and  is a scaling factor. A biplot
displays the rows of  on the lower and left axes, and the rows of 
on the upper and right axes.
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Chapter 20  Principal Components Analysis
The princomp function uses the eigenvalues of covariance or
correlation matrices instead of the singular value decomposition, as
explained in the section Principal Components Analysis Using
Correlation. In this formulation, the loadings matrix  of a principal
components analysis is equal to , the scores matrix  is ,
and the standard deviations of the principal components are equal to

. For the first two principal components, we calculate:

,

where  is the ith column of  and  is the ith column of . The

biplot.princomp function displays the rows of  on the lower and
left axes, and the rows of  on the upper and right axes. The scaling
factor  corresponds to the scale argument in biplot.princomp; by
default, .
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Chapter 21  Factor Analysis
INTRODUCTION

In many scientific fields, notably psychology and other social
sciences, you are often interested in quantities, such as intelligence or
social status, that are not directly measurable. However, it is often
possible to measure other quantities which reflect the underlying
variable of interest. Factor analysis is an attempt to explain the
correlations between observable variables in terms of underlying
factors, which are themselves not directly observable. For example,
measurable quantities such as performance on a series of tests can be
explained in terms of an underlying factor such as intelligence.

At first glance, factor analysis closely resembles principal components
analysis. Both use linear combinations of variables to explain sets of
observations of many variables. In principal components analysis, the
observed variables are themselves the quantities of interest. The
combination of these variables in the principal components is
primarily a tool for simplifying the interpretation of the observed
variables. In factor analysis, by contrast, the observed variables are of
relatively little intrinsic interest; the underlying factors are the
quantity of interest.

Formally, if  is a  random vector with mean  and covariance
matrix , then the k-factor model holds for  if  can be written in
the form

where  is a  matrix of constants called the matrix of

factor loadings. In this equation,  and  are random vectors
representing, respectively, the  underlying common factors and 

Note

The use of the word “factor” in factor analysis has nothing to do with the usual Spotfire S+ sense 
of a factor as a categorical data object. In this chapter, we reserve the phrase “Spotfire S+ factor” 
for this usual sense. The word “factor” alone refers to the traditional meaning in factor analysis: 
an underlying variable that is not directly observable.

(21.1)
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Introduction
unique factors associated with the original observed variables.
Equivalently, the covariance matrix  can be decomposed into a
factor covariance matrix and an error covariance matrix:

where . The diagonal of the factor covariance matrix is

called the vector of communalities , where

.

The communalities represent the common variation in the factors,
while the , called the uniquenesses, represent the variation in the 
not shared with the other variables.

The k-factor model makes sense only if the degrees of freedom ,
where  is given by the equation

.

For example, if ,  for  and , but  for
, , and . Thus, if a factor model is appropriate for a

set of five variables, it will have no more than two factors.

(21.2)
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Chapter 21  Factor Analysis
ESTIMATING THE MODEL

To perform factor analysis in Spotfire S+, use the factanal function.
There are two main techniques for estimating the factors in factor
analysis: the principal factor estimate and the maximum likelihood
estimate. For a description of these techniques, see Harman (1976) or
Mardia, Kent, and Bibby (1979). The principal factor estimate
(method="principal") is the default.

For example, consider again the test scores data of Table 20.1. We
suppose a two-factor model, one factor representing the overall ability
of each student and the second factor representing the relative effects
of open vs. closed book exams. We perform the factor analysis as
follows, giving factanal the raw data testscores and specifying the
number of factors with the factors argument:

> testscores.fa <- factanal(testscores, factors =  2)

The factanal function returns an object of class "factanal". As
always, you can look at the object by typing its name. The print
method for objects of class "factanal" shows the sum of squares of
the factor loadings, the size of the data, the names of the components
in the returned object, and the call that created the object:

> testscores.fa

Sums of squares of loadings:
  Factor1  Factor2
 2.219645 1.866672
The number of variables is 5 and the number of observations 
is 25

Component names:

 "loadings" "uniquenesses" "correlation" "criteria"
 "factors" "dof" "method" "center" "scale" "n.obs"
 "scores" "call"

Call:
factanal(x = testscores, factors = 2)
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Estimating the Model
By default, factanal uses a weighted covariance estimation function,
cov.wt, to perform the factor analysis. If you want to use a minimum
volume ellipsoid covariance estimate, use the cov.mve function,
which is described in the section Estimating the Model Using a
Covariance or Correlation Matrix.

To see a numeric summary of the factor solution, use the summary
function:

> summary(testscores.fa)

Importance of factors:
                Factor1   Factor2
   SS loadings 2.219645 1.8666722
Proportion Var 0.443929 0.3733344
Cumulative Var 0.443929 0.8172634

The degrees of freedom for the model is 1.

Uniquenesses:
  diffgeom   complex   algebra     reals statistics
 0.1970121 0.1879035 0.1201226 0.1984058  0.2102388

Loadings:
           Factor1 Factor2
  diffgeom 0.506   0.739
   complex 0.457   0.777
   algebra 0.787   0.510
     reals 0.775   0.448
statistics 0.730   0.507

The table at the top of the summary, labeled Importance of Factors,
shows the sum of squares of the loadings on each factor, along with
the proportion of the total variance explained by each factor, and the
cumulative proportion explained after each factor is included. Thus,
the two-factor model for the test scores data explains about 80% of the
variation in the original data, with the first factor accounting for about
45%.
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Chapter 21  Factor Analysis
The summary also shows the number of degrees of freedom in the
model, the uniquenesses, and the factor loadings. The factor loadings
can also be seen by themselves, using the loadings function:

> loadings(testscores.fa)

           Factor1 Factor2
  diffgeom 0.506   0.739
   complex 0.457   0.777
   algebra 0.787   0.510
     reals 0.775   0.448
statistics 0.730   0.507

Since the uniquenesses and communalities sum to 1 for each variable,

you can calculate the communalities  from the uniquenesses as
follows:

> 1 - testscores.fa$uniquenesses

  diffgeom   complex   algebra     reals statistics
 0.8029879 0.8120965 0.8798774 0.8015942  0.7897612

h2
i
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Estimating the Model Using Maximum Likelihood
ESTIMATING THE MODEL USING MAXIMUM LIKELIHOOD

To use the maximum likelihood factor estimate, specify method="mle"
in the call to factanal:

> testscores.fa2 <- factanal(testscores, factors = 2,
+ method = "mle")
> testscores.fa2

Sums of squares of loadings:
 Factor1  Factor2
 2.48222 1.726735

The number of variables is 5 and the number of observations 
is 25

Test of the hypothesis that 2 factors are sufficient versus 
the alternative that more are required:
The chi square statistic is 0.78 on 1 degree of freedom.
The p-value is 0.378

Component names:

"loadings" "uniquenesses" "correlation" "criteria" 
"factors" "dof" "method" "center" "scale" "n.obs" "scores" 
"call"

Call:
factanal(x = testscores, factors = 2, method = "mle")

With the maximum likelihood method, it is possible to perform a test
of the hypothesis that the specified number of factors is adequate to
explain the model, and the print method for objects of class
"factanal" gives the results of this test. In this case, there is no
evidence that more factors should be added.
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Chapter 21  Factor Analysis
ESTIMATING THE MODEL USING A COVARIANCE OR 
CORRELATION MATRIX

If you do not have raw data, but either a covariance or correlation
matrix derived from the original data, you can use the covlist
argument of the factanal function to estimate the factors. The data
object that is passed to factanal must be a list object with two
components, cov and center.

For example, suppose you have a data object covmatrix containing
the following covariance matrix:

           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

Convert covmatrix into a list object containing the cov and center
components as follows:

> cov.obj <- list(cov = covmatrix, center = c(0,0,0,0,0))
> cov.obj

$cov:
           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

$center:
[1] 0 0 0 0 0

To perform the factor analysis, pass the cov.obj object to the
factanal function by using the covlist argument, as follows:

> factcov <- factanal(covlist = cov.obj)
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Estimating the Model Using a Covariance or Correlation Matrix
> factcov

Sums of squares of loadings:
  Factor1
 3.854577

The number of variables is 5 and the number of observations 
is unknown.

Component names:

"loadings" "uniquenesses" "correlation" "criteria" 
"factors" "dof" "method" "center" "scale" "call"

Call:
factanal(covlist = cov.obj)

If you have a correlation matrix, you can use the covlist argument in
the same way. For example, suppose you have a data object
cormatrix containing the following correlation matrix:

             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
       real 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

Convert cormatrix into a list object containing the cov and center
components as follows:

> cor.obj <- list(cov = cormatrix, center = c(0,0,0,0,0))
> cor.obj

$cov:
             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

$center:
[1] 0 0 0 0 0

To perform the factor analysis, pass the cor.obj object to the
factanal function by using the covlist argument, as follows:
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Chapter 21  Factor Analysis
> factcor <- factanal(covlist = cor.obj)
> factcor

Sums of squares of loadings:
  Factor1
 3.854577

The number of variables is 5 and the number of observations 
is unknown.

Component names:

"loadings" "uniquenesses" "correlation" "criteria" 
"factors" "dof" "method" "center" "scale" "call"

Call:
factanal(covlist = cor.obj)

By default, factanal uses a weighted covariance estimation function,
cov.wt, to estimate the factors. If you want to use a minimum volume
ellipsoid covariance estimate, use the cov.mve function by performing
the following steps:

1. Use the cov.mve function with the raw data, in this example, 
the rawdataobj object, as follows:

> mve.object <- cov.mve(rawdataobj)

The returned object is a list containing the cov and center 
components.

2. Pass the raw data and mve.object to factanal by using the 
covlist argument as follows:

> fact.obj <- factanal(rawdataobj, covlist=mve.object)
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Rotating Factors
ROTATING FACTORS

The solution to Equation (21.2) is not unique unless the number of
factors  is 1. If  is a  orthogonal matrix, then

which has the form of Equation (21.2) with  being the matrix
of rotated factor loadings. Thus, the factor loadings are inherently
indeterminate. Any solution can be rotated arbitrarily to arrive at a
new solution. In practice, this indeterminancy is used to arrive at a
factor solution that has what Thurstone (1935) named simple structure.
Loosely, the factor solution has simple structure if each variable is
loaded highly on one factor, and all factor loadings are either large (in
absolute value) or near zero.

Factor analysts have developed many different criteria for choosing
the appropriate rotation. By default, Spotfire S+ uses the “varimax”
method. You can specify a different rotation with the rotation
argument to factanal. For example, to compute the factor solution to
the test scores data using the "oblimin" rotation, call factanal as
follows:

> testscores.fao <- factanal(testscores, factors = 2,
+ rotation = "oblimin")
> summary(testscores.fao)

Importance of factors:
                   Factor1    Factor2
     SS loadings 3.8946361 0.18800271
  Variable Index 0.7789272 0.03760054
Cumulative Index 0.7789272 0.81652776

The degrees of freedom for the model is 1.

Uniquenesses:
  diffgeom   complex   algebra     reals statistics
 0.1970121 0.1879035 0.1201226 0.1984058  0.2102388

(21.3)
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Chapter 21  Factor Analysis
Loadings:
           Factor1 Factor2 
  diffgeom  0.855   0.216 
   complex  0.839   0.277 
   algebra  0.937  -0.143 
     reals  0.889  -0.181 
statistics  0.889  -0.107 

Component/Factor Correlations:
        Factor1 Factor2 
Factor1  1.000  -0.067 
Factor2 -0.067   1.000 

You can rotate any object of class "factanal" using the rotate
function:

> rotate(testscores.fa, rotation="biquartimin")

Sums of squares of loadings:
  Factor1   Factor2 
 3.884609 0.1903185

The number of variables is 5 and the number of observations 
is 25 

Component names:

 "loadings" "uniquenesses" "correlation" "criteria"
 "factors" "dof" "method" "center" "scale" "n.obs" "call"

Call:
rotate.factanal(x = factanal(x = testscores, factors = 2), 

rotation = "biquartimin")

> loadings(.Last.value)

           Factor1 Factor2
  diffgeom  0.844   0.225 
   complex  0.825   0.286 
   algebra  0.943  -0.135 
     reals  0.897  -0.173 
statistics  0.894         
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Rotating Factors
Component/Factor Correlations:
        Factor1 Factor2
Factor1 1.000   0.106  
Factor2 0.106   1.000  

Spotfire S+ recognizes the following character strings as valid
rotation arguments:

"varimax"      "quartimax"  "equamax"
"parsimax"     "orthomax"   "covarimin"
"biquartimin"  "quartimin"  "oblimin"
"procrustes"   "promax"     "none"
"crawford.ferguson"

See Harman (1976) for descriptions of the various rotations. See the
rotate help file for additional information on using the various
rotations in Spotfire S+.
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Chapter 21  Factor Analysis
VISUALIZING THE FACTOR SOLUTION

The loadings matrix provides a precise, numeric answer to the
question of which variables are loaded most strongly on each factor.
However, you can get a much more intuitive feel for the answer if you
look at the loadings visually. You obtain a loadings plot by calling
plot on the factor loadings:

> plot(loadings(testscores.fa))

The resulting plot is shown in Figure 21.1.

Figure 21.1: Loadings for the test scores principal factor solution.
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Visualizing the Factor Solution
To see the relation of the factors to both the original variables and the
original data, use biplot:

> biplot(testscores.fa)

The resulting plot is shown in Figure 21.2.

Figure 21.2: Biplot for the test scores principal factor solution.
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Chapter 21  Factor Analysis
PREDICTION: FACTOR ANALYSIS SCORES

An important use of factor analysis is to translate the original data into
the planes of the factors. You view the factors as estimates of
interpretable quantities (for example, interpreting the first factor of
the test scores as an estimate of overall ability). The images of the
original data under the factor analysis transformation are referred to
as factor analysis scores. By default, factanal calculates the scores and
stores them in the scores component of the returned object:

> testscores.fa$scores

       Factor1   Factor2
 1  -1.1778029 0.7612478
 2  -0.2755734     . . .

You can force factanal to omit the scores by giving the argument
scores=F.

It is perhaps more natural to view the factor scores as predictions
from the factor analysis model. In this case, you can use the generic
predict function to obtain the scores:

> predict(testscores.fa)

       Factor1    Factor2
 1  -1.1778029  0.7612478
 2  -0.2755734      . . .

You can use predict to obtain estimated scores for new data, as well.
The new data must be in the same form as the original data. For
example, suppose you obtained test scores for five additional students
and stored them in the matrix newscores:

> newscores

  diffgeom complex algebra reals statistics
1       22      50      70    54         30
2       22      46      38    52         62
3       22      42      50    40         62
4       42      49      70    42         50
5       32      35      44    66         32
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Prediction: Factor Analysis Scores
You can obtain the predicted scores for this new data using predict
as follows:

> predict(testscores.fa, newdata = newscores)

          Factor1    Factor2
[1,]  1.454873272 -0.9626068
[2,] -0.001166622 -0.5764937
[3,]  0.493414880 -0.8808624
[4,]  1.216808651 -0.3201456
[5,]  0.570954434 -1.1814138
attr(, "type"):
[1] "regression"
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Chapter 22  Discriminant Analysis
INTRODUCTION

Suppose you have a set of quantitative observations about individuals
belonging to two or more groups, such as the three species in Fisher’s
iris data, or patients infected with or free of some disease.
Membership in a given group can be represented by a categorical
variable. You can use the quantitative observations to create a model
that explains the grouping of the given individuals, and can further be
used to assign additional observations to the correct group. Such
models can be fit in a variety of ways, all of which are encompassed
by the general term discriminant analysis.

In the simplest case, assume that all the groups have equal covariance
matrices. In this case, called the homoscedastic model, you can derive a
linear discriminant function of the form:

In the most general case, the various groups have independent
covariance matrices, leading to the heteroscedastic model, which leads to
a quadratic discriminant function of the form:

Relationships among feature variables with respect to the grouping
variable can be expressed by their mean values and their variance-
covariance matrices. You can quantify these relationships and take
advantage of group variance-covariance similarities to reduce the
number of parameters estimated.

l x( ) βi0 βi1x+=

d x( ) βi0 βi1x xTβi2x+ +=
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A Simple Example
A SIMPLE EXAMPLE

As a simple example of using the discrim function, consider Fisher’s
iris data in the Spotfire S+ data set iris. This data set is an array
containing 50 observations of each of three species of iris. We first
need to convert it to a data frame:

> Species <- factor(c(rep("Setosa", 50), 
+ rep("Versicolor", 50), rep("Virginica", 50)))
> exiris <- rbind(iris[,,1], iris[,,2], iris[,,3])
> exiris <- data.frame(Species, exiris)

Next we fit a default (homoscedastic) model:

> exiris.discrim <- discrim(Species ~ ., data = exiris)
> exiris.discrim

Call:
discrim(Species ~ Sepal.L. + Sepal.W. + Petal.L. +
Petal.W., data = exiris)

Group means:
           Sepal.L. Sepal.W. Petal.L. Petal.W.  N
    Setosa    5.006    3.428    1.462    0.246 50
Versicolor    5.936    2.770    4.260    1.326 50
 Virginica    6.588    2.974    5.552    2.026 50
              Priors
    Setosa 0.3333333
Versicolor 0.3333333
 Virginica 0.3333333

Covariance Structure: homoscedastic 
          Sepal.L.  Sepal.W.  Petal.L.   Petal.W.
Sepal.L. 0.2650082 0.0927211 0.1675143 0.03840136
Sepal.W.           0.1153878 0.0552435 0.03271020
Petal.L.                     0.1851878 0.04266531
Petal.W.                               0.04188163

Constants:
    Setosa Versicolor Virginica 
 -86.30847  -72.85261 -104.3683
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Linear Coefficients:
            Setosa Versicolor Virginica 
Sepal.L.  23.54417   15.69821  12.44585
Sepal.W.  23.58787    7.07251   3.68528
Petal.L. -16.43064    5.21145  12.76654
Petal.W. -17.39841    6.43423  21.07911

The “.” on the right-hand side of the formula tells Spotfire S+ to fit a
model using all the remaining variables in exiris as predictor
variables. We next obtain predictions for our training data:

> exiris.predict <- predict(exiris.discrim)

How well did our model do? There were 150 observations in the
original data; as the following expression shows, only 3 are
misclassified by our simple model:

> sum(exiris.predict$groups != Species)

[1] 3
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Models
MODELS

The various models for discriminating between the groups specify
some relationships among the groups’ covariance matrices; the two
extremes that are typically considered are the heteroscedastic model,
in which there is no posited relationship among the covariance
matrices, and the homoscedastic model, in which the covariance
matrices are assumed to be all alike. For the discrim function a model
is specified by the family argument. Currently, there are three family
constructors for the discrim function: Classical, CPC, and Canonical.
Each family defines a possible hierarchy of models that makes use of
the posited similarity among the group covariances.

The Classical family includes the following covariance structures,
from most general to specific:

• Heteroscedastic

• Equal correlation

• Proportional

• Group spherical

• Homoscedastic

• Spherical

As you move from the heteroscedastic to the spherical model, there is
in general a reduction in the number of parameters which have to be
estimated. There is some overlap in the number of parameters
estimated for the proportional and group spherical models, however,
depending on the number of groups and number of feature variables.
Models with fewer estimated parameters tend to be more stable in
terms of standard errors than models with more parameters. You fit
the classical hierarchy of models in Spotfire S+ using the discrim
function with the argument
family=Classical(cov.structure=structure). For example, an
equal correlation model is fit by specifying cov.structure="equal
correlation".

The family CPC is the common principal component family (Flury,
1984). The two covariance structures currently available for this
family are the proportional and common principal component. These
do not exhaust the possibilities discussed by Flury (1988), but together
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with the homoscedastic and heteroscedastic models of the classical
family, they complete another logical hierarchy of models. The
argument family=CPC(cov.structure = structure) to discrim
provides the two principal component models.

The Canonical family consists of just one model, using the
homoscedastic covariance structure.

We assume that the feature vectors are p-variate normal random
variables , for . The normality assumption is not
required for the canonical discriminant function, however.

Heteroscedastic The heteroscedastic model is the most general model and requires
estimating the maximum number of parameters: 
variance-covariance estimates. Here, we have . 

To fit a heteroscedastic model, use discrim with the argument
family=Classical(cov="heteroscedastic"):

> exiris.het <- discrim(Species ~ ., data = exiris,
+ family = Classical(cov = "heteroscedastic"))
> exiris.het

Call:
discrim(Species ~ Sepal.L. + Sepal.W. + Petal.L. +
Petal.W., data = exiris, family = Classical(cov = 
"heteroscedastic"))

Group means:
           Sepal.L. Sepal.W. Petal.L. Petal.W.  N 
    Setosa    5.006    3.428    1.462    0.246 50
Versicolor    5.936    2.770    4.260    1.326 50
 Virginica    6.588    2.974    5.552    2.026 50
              Priors 
    Setosa 0.3333333
Versicolor 0.3333333
 Virginica 0.3333333

Covariance Structure: heteroscedastic 

N μi Σi,( ) i 1 … g, ,=

g p⋅ p 1+( ) 2⁄
Σi Σj for i j≠≠
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Group: Setosa 
          Sepal.L.  Sepal.W.   Petal.L.   Petal.W. 
Sepal.L. 0.1242490 0.0992163 0.01635510 0.01033061
Sepal.W.           0.1436898 0.01169796 0.00929796
Petal.L.                     0.03015918 0.00606939
Petal.W.                                0.01110612
...

Equal 
Correlation 
Matrix

The equal correlation matrix model assumes that the groups have a
common correlation structure, but different variances. The
covariance matrix of each group is then , where

 and  is the common correlation matrix.

Here, we estimate  correlation and variance
parameters, a reduction of  from the
heteroscedastic model.

To fit an equal-correlation model, use discrim with the argument
family=Classical(cov="equal correlation"):

> exiris.eqcor <- discrim(Species ~ ., data = exiris,
+     family = Classical(cov = "equal"))

Common 
Principal 
Component

The group covariance matrices for the common principal component
model can be written as , where 
and A is the matrix of common principal components. The number
of parameters estimated here is .

To fit a common principal component model, use discrim with the
argument family=CPC() (the common principal component is the
default for the CPC family):

> exiris.cpc <- discrim(Species ~ ., data = exiris,
+     family = CPC())

Proportional 
Covariances

The proportional covariances model further reduces the number of
parameters to estimate to  by assuming each
group’s covariance is proportional to a common covariance:

. Note that one proportionality constant, , is redundant so

Σi KiΨKi=

Ki diag σi1 … σip, ,( )= Ψ

g p⋅ p p 1–( ) 2⁄⋅+

g 1– ) p p 1–( ) ⁄⋅ ⋅

Σi AΛ iA= Λ i diag λ i1 … λ ip, ,( )=

g p p p⋅+⋅

g 1–( ) p p 1+( ) 2⁄⋅+

Σi κi
2Σ= κi
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we set  In the common principal component family, the

proportional model assumes , for  and

.

To fit a classical proportional covariances model, use discrim with
the argument family=Classical(cov="proportional"):

> exiris.propcov <- discrim(Species ~ ., data = exiris,
+     family = Classical(cov = "proportional"))

Spherical Here we assume that the feature vectors are independent. Two
spherical models can be fit. The more general is the group spherical
model, in which the variances for the feature vectors for each group

are different . To fit a group spherical model,
use the argument family=Classical(cov="group") in the call to
discrim:

> exiris.gs <- discrim(Species ~ ., data = exiris,
+     family = Classical(cov = "group"))

The spherical model, on the other hand, assumes the feature vector

variances are the same for each group , for

all . Thus, the spherical model is the most restrictive
model, but also the simplest to compute, with only p variances to be
estimated. 

To fit a spherical model, use discrim with the argument
family=Classical(cov="spherical"):

> exiris.sph <- discrim(Species ~ ., data = exiris,
+     family = Classical("spherical"))

Homoscedastic The homoscedastic model assumes that the group covariance
matrices are equal , for all . Here, 
variance-covariances are estimated. You can fit a homoscedastic
model using either the Classical or Canonical families; it is the only
covariance structure permissible for the Canonical family. 

κ1 1.≡

λ ik κi
2λ1k= i 2 … g, ,=

k 1 … p, ,=

Σi diag σi1
2 … σip

2, ,( )=

Σi Σ diag σ1
2 … σp

2, ,( )= =

i 1 … g, ,=

Σ i Σ= i 1 … g, ,= p p 1+( ) 2⁄⋅
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Models
To fit a classical homoscedastic model, use discrim with the
argument family=Classical(cov="homoscedastic"):

> exiris.homcl <- discrim(Species ~ ., data = exiris,
+     family = Classical(cov = "homoscedastic"))

To fit a canonical homoscedastic model, use discrim with the
argument family=Canonical():

> exiris.homcan <- discrim(Species ~ ., data = exiris,
+     family = Canonical())
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HYPOTHESIS TESTING

A likelihood ratio test can be performed between two or more fitted
models to test for a plausible covariance structure for the groups.
One hierarchy of models that can be constructed is the
heteroscedastic, call it hypothesis H5, equal correlation, H4,
proportional, H3, group spherical, H2, homoscedastic, H1, and
spherical, H0, covariance structures. A sequence of tests proceeds
from the most general, H4 versus H5, to the most restrictive, H0
versus H1, until a significant likelihood ratio statistic is observed
(McLachlan, 1992, pp. 175-178). You perform these tests using the
anova method for the discrim class.

For example, to compare our heteroscedastic model discrim.het to
our equal-correlation model discrim.eqcor, we call anova as follows:

> anova(exiris.het, exiris.eqcor)

Group Variable: Species 
                 Cov.Structure Df     AIC     BIC 
  exiris.het   heteroscedastic 46 -838.57 -792.08
exiris.eqcor equal correlation 34 -823.08 -788.72
             Loglik    Test Lik.Ratio     P.value 
  exiris.het 511.28                              
exiris.eqcor 479.54 1 vs. 2    63.489 5.1801e-009

The models differ significantly, so in this case we believe the full
heteroscedastic model is required.

Within the CPC family, there is just a two level hierarchy. This
permits a two level hierarchy for the principal component models:
Hproportional versus HCPC. For a full hierarchy, you should include the
classical heteroscedastic and homoscedastic models.
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Estimation
ESTIMATION

How parameters are estimated depends on the model fitted. The
classical homoscedastic and heteroscedastic covariance structures of
the Classical family require only simple manipulation of the
estimated means and covariances. The equal correlation and
proportional covariance structures of the Classical family require
numerical optimization with respect to the Wishart distribution.  The
canonical discriminant function requires eigenvalue estimation, while
the common principal component family requires both optimization
and eigenvalue estimation.

Classical 
Homoscedastic 
and 
Heteroscedastic

The classical homoscedastic and heteroscedastic discriminant
functions are derived from the log of the normal distribution

For the heteroscedastic model, the quadratic discriminant function is
then

where , , and

. Substituting the unbiased estimates for  and 

results in the estimated quadratic discriminant function.

A linear discriminant function is obtained if we can assume the group
covariance matrices are equal, the homoscedastic model. In this case
we replace the common covariance matrix  with the group
covariance matrices  above. Once done, the quadratic term

 is constant for all groups and may be discarded from the
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discriminant function leaving only the constant terms  and the

linear terms .

Proportional 
Covariance and 
Equal 
Correlation 
Matrices

For the proportional covariance matrices model we assume that
 for . Under the assumption of p-variate

normality of the feature variables, the maximum likelihood estimates

(denoted by a ‘hat’ ^) of  and  satisfy  and

, where , tr() is the trace function,  is the number

of observations in the training data from group i and 

(McLachlan, 1992, p. 139). These equations are solved iteratively
until convergence.

McLachlan (1992, p. 139) also provides an iterative solution for the
equal correlation problem. Instead of working with the common
correlation matrix, however, we work with the group covariance
matrices such that , where the diagonal matrices

 and for the first group , for

. The estimating equations are then

 and , for

 and .

Common 
Principal 
Components

Flury (1984) developed the common principal component model,
which is also discussed in McLachlan (1992, p. 140). Here, the group
covariance matrices share the same principal axes, A, which is
expressed as  where .

A special case is the proportional covariance model where
 for .

βi0

βi1
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Canonical 
Variates

The canonical discriminant function is a dimension reduction
technique that can be applied only to the homoscedastic model.
Define B as the between-groups sum of squares product matrix
divided by ,

where . The canonical variates are then the eigenvectors

associated with the eigenvalues of Σ-1B. There are at most
 nonzero eigenvalues. Denote the canonical

variates by the  matrix . 

We can then write the constants and linear coefficients of the
discriminant function as

,

.

g 1–

B 1
g 1–
------------ μi μ–( ) μi μ–( )T

i 1=

g

∑=

μ μii∑=

d min g 1– p,( )=

p d× Γ
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1
2
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d
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PREDICTION

We assume that an observation with feature vector  is drawn
randomly from a mixture of  groups with probability density

, where  are the mixing proportions and

 is the probability density function for the observation for each

group . Using the notation of McLachlan (1992), denote
the probability of group membership given an observation with

feature vector  as . The optimal

rule, or Bayes Rule , is to assign observation  to group  if

. 

The discrim function assumes the group density function for x is
multivariate normal. Estimates for the mean, , and covariance, ,

for the p-variate normal density for group  are estimated from
training data, , , . Treatment of the mixing

proportions, , is dependent on the sampling scheme used to obtain
the training data.

There are two sampling schemes in which the training data can be
obtained: mixture sampling and group conditional sampling. The
mixture sampling design is where a random sample of  observations
are obtained and each observation’s group membership and feature
vector is recorded, thereby making the number of observations from
each group, , multinomial random variables so the maximum

likelihood estimate for   is .

In group conditional sampling, the number of individuals sampled
from each group is fixed. If the  are not known in advance,
McLachlan (1992, pp. 31-33) discusses a technique to use an
additional unclassified mixture sample to estimate the group
proportions using the group conditional error rates obtained from the
training data (the confusion matrix).
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Plug-In Plug-in estimates of the population densities are computed by
substituting the unbiased estimates of the group means, , and

covariances, Si , for the parameters of the densities  and , without
regard to their being random variables.

To obtain the plug-in estimates, use predict on a discrim object with
the argument method="plug-in":

> predict(exiris.het, method = "plug-in")

        groups Setosa Versicolor Virginica
  ...
 69 Versicolor      0  0.8130906 0.1869094
 70 Versicolor      0  0.9999643 0.0000357
 71  Virginica      0  0.3359442 0.6640558
 72 Versicolor      0  0.9999898 0.0000102
 73 Versicolor      0  0.6993187 0.3006813
 74 Versicolor      0  0.9721091 0.0278909
 75 Versicolor      0  0.9999794 0.0000206
  ...

Unbiased 
Estimates

An unbiased estimate of the log of the p-variate normal densities is
obtained as follows. Denote the estimated squared Mahalanobis
distance between an observed feature set x and the mean of group i to

be , where Si is the unbiased
estimate of the group covariance, Σi . Based on the Wishart
distribution, its expected value is

,

where . Moreover, the expected

value of  is

.
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In the above equation,  is the digamma function (McLachlan, 1992,
p. 57).  The results are used to compute unbiased log density
estimates for the heteroscedastic model. Ripley (1996, p. 56) gives the
unbiased estimator of the log of the p-variate normal density
explicitly.

McLachlan (1992, p. 57) gives similar results for the homoscedastic
model. Let S be the unbiased estimate of the common covariance ,
then

To obtain unbiased estimates, use predict with method="unbiased":

> predict(exiris.het, method = "unbiased")

        groups Setosa Versicolor Virginica
  ...
69 Versicolor      0  0.8052674 0.1947326
70 Versicolor      0  0.9999080 0.0000920
71  Virginica      0  0.3745987 0.6254013
72 Versicolor      0  0.9999702 0.0000298
73 Versicolor      0  0.7020916 0.2979084
74 Versicolor      0  0.9640201 0.0359799
75 Versicolor      0  0.9999439 0.0000561
  ...

Predictive Predictive estimation of group membership is a Bayesian method.
Here, we estimate the posterior density function for each group given
the training data by taking the product of the p-variate normal
probability density  and the posterior probability density

function of the unknown parameters, ,

, and integrating out the Θ. A non-
informative prior for the unknown mean and covariance is derived

using Jeffery’s rule, and is taken to be  and

the likelihood of the unknown parameters given the training data is

.
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The resulting densities are multivariate . For the heteroscedastic
model we have

whereas for the homoscedastic model we have

Further details and original authors can be found in Krzanowski and
Marriot (1995, §9.20 and §9.21), McLachlan (1992, p. 68), and Geisser
(1982, pp. 106–108).

If the group proportions are also unknown, estimation of the  can
be done within the Bayesian framework using a Dirichlet prior

proportional to  (Krzanowski and Marriot, 1995, p.20). The

posterior density is then proportional to

Krzanowski and Marriot (1995) then remove  from the posterior

probability that  belongs to group  by multiplying 

by  and integrating out the , .

The result is

In the case of group condition sampling Krzanowski and Marriot
(1995) set . A non-informative prior sets  (Box and
Tiao, 1973).  As pointed out by Ripley (1996, p. 53), we are left with a
Bayes rule that is essentially the same as .
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To obtain predictive estimates, use predict with
method="predictive":

> predict(exiris.het, method = "predictive")

        groups   Setosa Versicolor Virginica
  ...
69 Versicolor      0  0.7970519 0.2029481
70 Versicolor      0  0.9998288 0.0001712
71  Virginica      0  0.3816198 0.6183802
72 Versicolor      0  0.9999235 0.0000765
73 Versicolor      0  0.7021942 0.2978058
74 Versicolor      0  0.9582749 0.0417251
75 Versicolor      0  0.9998786 0.0001214
  ...
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Error Analysis
ERROR ANALYSIS

Apparent Error 
Rate

An estimate of the misclassification rate provides a quantitative
assessment of the discriminating power of an estimated discriminant
function. One such estimate is the apparent error rate where each
observation in the training data is classified and the number of
misclassifications for each group is divided by the group sample size.
This estimate provides an overly optimistic assessment of the true
error rate (conditioned on the training data). The overall conditional
error rate is weighted means of the group error rates where the
weights are the mixture proportions.

> exiris.plug <- predict(exiris.het)
> tbl <- table(exiris$Species, exiris.plug$groups)
> tbl <- cbind(tbl, error = (apply(tbl,1,sum)-diag(tbl))/
+ exiris.het$counts)
> tbl

           Setosa Versicolor Virginica error
    Setosa     50          0         0  0.00
Versicolor      0         48         2  0.04
 Virginica      0          1        49  0.02

> sum(exiris.het$prior*tbl[,'error'])

[1] 0.02

Cross-
Validation

Cross-validation is a leave-one-out technique for estimating the error
rate conditioned on the training data. Conceptually, each observation
is systematically dropped, the discriminant function reestimated, and
the excluded observation classified. Fortunately, for the
homoscedastic, heteroscedastic, and spherical models, the
discriminant function does not need to be reestimated. The leave-one-
out formulas for Mahalanobis distance and the determinant of the
estimated covariances matrices for the homoscedastic and
heteroscedastic models can be found in McLachlan (1992, pp. 342-
343) and Ripley (1996, p. 100).
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For example, the commands below estimate the error rate of the
exiris.het object:

> exiris.cross <- crossvalidate(exiris.het)
> tbl <- table(exiris$Species, exiris.cross$groups)
> tblx <- table(exiris$Species, exiris.cross$groups)
> tblx <- cbind(tblx, error = (apply(tblx,1,sum)-
+ diag(tblx))/exiris.het$counts)
> tblx

           Setosa Versicolor Virginica error
    Setosa     50          0         0  0.00
Versicolor      0         47         3  0.06
 Virginica      0          1        49  0.02

> sum(exiris.het$prior*tblx[,'error'])

[1] 0.02666667

Estimating 
Error Rates 
Based on 
Posterior 
Probabilities

One can use the posterior probabilities for error rate estimation.
Borrowing the discussion from McLachlan (1992, p. 365) or Ripley
(1996, pp. 75-76), let  be the discriminant rule for the
observation  randomly chosen from a mixed population that

has the mixture distribution ,  if

, where  is the

posterior probability of an observation belonging to group . Also let
 be the indicator function that evaluates to 1 if  and 0

otherwise. Then

r x( )
X x=

fX x( ) πifi x( )i 1=
g∑= r x( ) i=

maxj τ j x( )( ) τ i x( )= τ i x( ) πi fi x( ) fX x( )⁄=

i
I i j,( ) i j=

eij Pr r X( ) j X Gi∈={ }
Pr X Gi r X( ),∈ j=( )

πi
------------------------------------------------------= =

1
πi
----EX τ i X( )I r X( ) j,( )[ ]=

1
πi
---- πk Ek τ i X( )I r X( ) j,( )[ ]( )

k 1=

g

∑=
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Error Analysis
Substituting the expectation with the averages over the training data
gives the posterior-based error rate estimator

where  if observation  from the training data came from

group . The following example exploits .

> Z <- diag(3)[exiris.cross$groups,]
> P <- NULL
> for (i in 1:3)
+ P <- rbind(P, apply(exiris.cross[,i+1]*Z, 2, sum)/
+ exiris.het$counts[i])
> P

     [,1]       [,2]       [,3]
[1,]    1 0.00000000 0.00000000
[2,]    0 0.93595428 0.02613819
[3,]    0 0.02404572 1.01386181

Note that  does not necessarily equal 1 so the estimate can be

normalized.

> P/apply(P, 1, sum)

     [,1]      [,2]       [,3]
[1,]    1 0.0000000 0.00000000
[2,]    0 0.9728319 0.02716806
[3,]    0 0.0231675 0.97683250

The SAS® system takes a different approach to the formulation of the
posterior probability error rate estimates. Here, they define the
classification error rate for group  as

êij
1
π̂i
---- π̂k

nk
----- τ̂ i xl( )I r̂ xl( ) j,( ) zlk⋅

l 1=

n

∑
k 1=

g

∑=

zlk 1= l

Gk π̂i ni n⁄=

êijj∑

i

ei 1  fi x( ) xd∫–=

1 1
πi
---- τ i x( )fX x( ) xd∫–=
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Chapter 22  Discriminant Analysis
In the above equation, the interval of integration is over the set of
observations such that  is maximum, that is all x such that 
(SAS, 1988). This leads to the unstratified and stratified estimates

and

respectively. Huberty (1994, p. 90) also discusses these estimates. If

, the stratified estimate reduces to the unstratified. Note
also that negative estimates can occur.

> 1-apply(Z*as.matrix(exiris.cross[,-1]), 2, sum)/
+ exiris.het$counts

 Setosa Versicolor   Virginica
      0 0.06404572 -0.01386181

Example > summary(exiris.het)

Call:
discrim(Species ~ Sepal.L. + Sepal.W. + Petal.L. +
     Petal.W., data = exiris, family =
     Classical(cov.structure = "heteroscedastic"))

...

Plug-in classification table:
           Setosa Versicolor Virginica Error
    Setosa     50          0         0  0.00
Versicolor      0         48         2  0.04
 Virginica      0          1        49  0.02
   Overall                              0.02

τ i r x( ) i=

êi 1 1
π̂i n⋅
--------------– τ̂ i xj( )I r̂ xj( ) i,( )

j 1=

n

∑=

êi
1
π̂i
---- π̂k

nk
----- τ̂ k xj( )I r̂ xj( ) i,( ) zjk⋅

j 1=

n

∑
k 1=

g

∑=

π̂i ni n⁄=
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Error Analysis
           Posterior.Error
    Setosa       0.0000000
Versicolor       0.0443544
 Virginica       0.0021883
   Overall       0.0155142
(from=rows,to=columns)

Rule Mean Square Error: 0.02304681
(conditioned on the training data)

Cross-validation table:
           Setosa Versicolor Virginica     Error
    Setosa     50          0         0 0.0000000
Versicolor      0         47         3 0.0600000
 Virginica      0          1        49 0.0200000
   Overall                             0.0266667
           Posterior.Error
    Setosa       0.0000000
Versicolor       0.0640457
 Virginica      -0.0138618
   Overall       0.0167280
(from=rows,to=columns)

The error estimates labeled Posterior.Error are the same estimates
as those computed by SAS.

The rule mean squared error reported above is computed as

 where  is an indicator variable that

is equal to one if observation  is from group  and zero otherwise
(McLachlan, 1992, p. 20).

MSE 1
n
--- τ̂ j xi( ) zij–( )2

i 1=

nj

∑
j 1=

g

∑= zij

i j
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Chapter 23  Cluster Analysis
INTRODUCTION

Cluster analysis is the searching for groups (clusters ) in the data, in
such a way that objects belonging to the same cluster resemble each
other, whereas objects in different clusters are dissimilar.

In two or three dimensions, clusters can be visualized. With more
than three dimensions, or in the case of dissimilarity data (see below),
we need some kind of analytical assistance.

Generally speaking, clustering algorithms fall into two categories:

1. Partitioning Algorithms. A partitioning algorithm describes a 
method that divides the data set into k clusters, where the 
integer k needs to specified. Typically, you run the algorithm 
for a range of k-values. For each k, the algorithm carries out 
the clustering and also yields a “quality index,” which allows 
you to select the “best” value of k afterwards. Algorithms of 
this type described in this chapter are used by the functions 
kmeans, pam, clara, and fanny.

2. Hierarchical Algorithms. A hierarchical algorithm describes a 
method yielding an entire hierarchy of clusterings for the 
given data set. Agglomerative methods start with the situation 
where each object in the data set forms its own little cluster, 
and then successively merges clusters until only one large 
cluster remains which is the whole data set. The functions 
agnes, mclust, and hclust use agglomerative methods. 
Divisive methods start by considering the whole data set as one 
cluster, and then splits up clusters until each object is separate. 
Algorithms of this type are used in the functions diana and 
mona.

The clustering functions daisy, pam, clara, fanny, agnes, diana, and
mona make up the cluster library, which implements the algorithms
described in Kaufman & Rousseeuw (1990). The functions kmeans,
mclust, and hclust are not part of the cluster library. They have a
slightly different syntax than the cluster library functions.
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Data and Dissimilarities
DATA AND DISSIMILARITIES

Data sets for clustering can have either of the following structures:

1.  data matrix:

where rows stand for objects and columns stand for variables.

2.  dissimilarity matrix:

where  measures the “difference” or 
dissimilarity between the objects  and . This kind of data 
occurs frequently in the social sciences and in marketing.

Many of the clustering algorithms considered here operate on a
dissimilarity matrix. If the data consist of an  data matrix, the
algorithm first constructs the corresponding dissimilarity matrix.

The functions kmeans, clara, mona, and mclust operate on a data
matrix. The hclust function operates on a dissimilarity matrix. The
functions pam, fanny, diana, and agnes will take either a data or
dissimilarity matrix.

Dissimilarity 
Matrices

The function daisy constructs a dissimilarity matrix. The algorithm
used by daisy is described in full in Kaufman and Rousseeuw (1990,
Chapter 1). Compared to the older function dist for which input
must be numeric variables, daisy accepts other variable types (for
example, nominal, ordinal, and asymmetric binary) even when the
different types occur in the same data set. 

n p×

x11 …x1p

� �
xn1 …xnp

n n×

0
d 2 1,( ) 0
d 3 1,( ) d 3 2,( ) 0

A A A
d n 1,( ) d n 2,( ) ……0

d i j,( ) d j i,( )=

i j

n p×
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Chapter 23  Cluster Analysis
Although we refer to the object produced by daisy or dist as a
dissimilarity matrix, it is actually a vector representing the below-
diagonal elements of such a matrix, with additional attributes giving
information such as the number of observations.

Dissimilarities The dissimilarity between two objects measures how different they
are. Sometimes we can use an actual metric (distance function)
between objects, but a dissimilarity function is not necessarily a
metric. Often only the following three axioms of a metric are
satisfied:

1.

2.

3.

Computation How we compute the dissimilarity between two objects depends on
the type of the original variables.

By default, numeric columns are treated as interval-scaled variables,
factors are treated as nominal variables, and ordered factors are
treated as ordinal variables. The type argument to daisy may be used
to specify that a column should be treated in a manner other than the
default.

1. Interval-scaled variables

Interval-scaled variables are continuous measurements on a (roughly)
linear scale. Typical examples are temperature, height, weight, and
energy.

If all variables are interval-scaled, we can use an actual metric such as:

or

d i i,( ) 0=

d i j,( ) 0≥

d i j,( ) d j i,( )=

(23.1)

(23.2)

d i j,( ) xif xjf–( )2

f 1=

p

∑=       (Euclidean distance)

d i j,( ) xif xjf–

f 1=

p

∑=      (Manhattan distance)
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Data and Dissimilarities
Note that the choice of measurement units strongly affects the
resulting clustering. The variable with the largest dispersion will have
the largest impact on the clustering. If all variables are considered
equally important, the data need to be standardized first.

Put  and ; then the standardized

measurements are defined as follows:

Here we have used , the mean absolute deviation instead of the usual
standard deviation, because the former is more robust: since the
deviations are not squared, the effect of outliers is somewhat reduced.
Of course, there are more robust measures of dispersion, such as the
median absolute deviation (the function mad). The advantage of using
a robust measure of dispersion is that the z-scores of outliers do not
become too small, hence the outliers remain detectable and visible in
the clustering.

2. Continuous ordinal variables

Continuous ordinal variables are continuous measurements on an
unknown scale, or where only the ordering is known but not the
actual magnitude. Then the dissimilarities are computed as follows:

1. Replace the  by their rank .

2. Transform the scale to [0,1] as follows: .

3. Compute the dissimilarities as for interval-scaled variables.

3. Ratio-scaled variables

Ratio-scaled variables are positive continuous measurements on a
nonlinear scale, such as an exponential scale. One example would be
the growth of a bacterial population (say, with a growth function

). With this model, equal time intervals multiply the population
by the same ratio.

(23.3)

mf
1
n
--- xif

i 1=

n

∑= sf
1
n
--- xif mf–

i 1=

n

∑=

zif
xif mf–

sf
-----------------=

sf

xif rif 1 … M, f,{ }∈

zif
rif 1–

Mf 1–
---------------=

AeBt
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Chapter 23  Cluster Analysis
There are different ways to compute dissimilarities for ratio-scaled
variables:

1. Simply as interval-scaled variables, though this is not 
recommended as it can distort the measurement scale.

2. As continuous ordinal data.

3. By first transforming the data, perhaps by taking logarithms, 
and then treating the results as interval-scaled variables.

4. Discrete ordinal variables

A discrete ordinal variable has  possible values (scores) which are
ordered. The dissimilarities are computed in the same way as for
continuous ordinal variables.

5. Nominal variables

Nominal variables have  possible values, which are not ordered.
The dissimilarity between objects  and  is usually defined as:

This is called the simple matching coefficient.

6. Symmetric binary variables

Symmetric binary variables have two possible values, coded 0 and 1,
which are equally important. Examples include male and female, or
vertebrate and invertebrate.

Symmetric binary variables are nominal variables, hence we again
use the simple matching coefficient given above for nominal variables.
Let us also consider the contingency table of the objects  and :

i\j 1 0

1 a b

0 c d

M

M
i j

d i j,( ) # variables taking different values for i and j
total number of variables

------------------------------------------------------------------------------------------------------------------=

i j
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Data and Dissimilarities
We can then rewrite the simple matching coefficient as

7. Asymmetric binary variables

Asymmetric binary variables have two possible values, one of which
carries more importance than the other. The most meaningful
outcome is coded as 1, and the less meaningful outcome as 0.
Typically, 1 stands for the presence of a certain attribute (for
example, a particular disease), and 0 for its absence.

The dissimilarity between  and  is then defined as:

Using the contingency table again, this becomes ,

which is called the Jaccard coefficient.

8. Variables of mixed types

The above formulas hold when all variables in the data set are of the
same type. However, many data sets contain variables of different
types. Therefore, we want a method to compute dissimilarities
between objects when the data set contains  variables that may be of
different types. For this the function daisy uses the formula

(23.4)

. (23.5)

d i j,( ) b c+
a b c d+ + +
------------------------------=

i j

d i j,( ) # variables taking different values for i and j
total number of meaningful comparisons

------------------------------------------------------------------------------------------------------------------=

d i j,( ) b c+
a b c+ +
---------------------=

p

d i j,( )

δ f( )
ij d

ij
f( )

f 1=

p

∑

δ f( )
ij

f 1=

p

∑
------------------------------- 0 1,[ ]∈=
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Chapter 23  Cluster Analysis
In Equation (23.5),  if  or  is missing, or if 

and  is an asymmetric binary variable. Otherwise, . The

term  is the contribution of variable , which depends on its type:

1. If  is binary or nominal,  if , and  
otherwise.

2. If  is interval-scaled, .

3. For ordinal and ratio-scaled variables, Spotfire S+ computes 

ranks  and , and treats the  as interval-

scaled.

Example: 
Calculating 
Dissimilarities

As a simple example of using daisy, we will calculate dissimilarities
for a data frame where the rows are the first five integers:

> my.df <- data.frame(inds = 1:5)
> daisy(my.df)

Dissimilarities :
[1] 1 2 3 4 1 2 3 1 2 1

Metric :  euclidean
Number of objects :  5

δij
f( )

0= xif xjf xif xjf 0= =

f δij
f( )

1=

dij
f( )

f

f dij
f( )

0= xif xjf= dij
f( )

1=

f dij
f( ) xif xjf–

maxh xhf( ) minh xhf( )–
------------------------------------------------------=

rif zif
rif 1–

Mf 1–
---------------= zif
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Partitioning Methods
PARTITIONING METHODS

Partitioning methods are based on specifying an initial number of
groups, and iteratively reallocating observations between groups until
some equilibrium is attained.

K-Means One of the most well-known partitioning methods is k-means. In the
k-means algorithm the observations are classified as belonging to one
of k groups. Group membership is determined by calculating the
centroid for each group (the multidimensional version of the mean)
and assigning each observation to the group with the closest centroid.

The k-means algorithm alternates between calculating the centroids
based on the current group memberships, and reassigning
observations to groups based on the new centroids. Centroids are
calculated using least-squares, and observations are assigned to the
closest centroid based on least-squares. This use of a least-squares
criterion makes k-means less resistant to outliers than the medoid-
based methods which will be discussed in later sections.

The kmeans function performs k-means clustering. It is an older
function that does not have special plot or summary methods. The
main arguments to kmeans are dissimilarities as produced by daisy or
dist and the number of clusters. Alternatively, a matrix of starting
centroids may be specified in place of the number of centroids. If
starting values are not specified the initial centroids are obtained
using the hierarchical clustering algorithm in hclust.

Example: 
K-Means

The ruspini data were originally used by Ruspini (1970) in order to
illustrate fuzzy clustering techniques. The data set consists of 75
points; see Figure 23.1, which was created using the function
plot.default(ruspini). We will use k-means to cluster the
observations into four groups:

> kmeans(ruspini, 4)

Centers:
            x        y
[1,] 98.17647 114.8824
[2,] 20.15000  64.9500
[3,] 43.91304 146.0435
[4,] 68.93333  19.4000
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Clustering vector:
 [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
[28] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1
[55] 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Within cluster sum of squares:
[1] 4558.235 3689.500 3176.783 1456.533

Cluster sizes:
[1] 17 20 23 15

Available arguments:
[1] "cluster"  "centers"  "withinss" "size"

Partitioning 
Around 
Medoids

The partitioning around medoids algorithm is similar to k-means but
uses medoids rather than centroids.

The method pam is fully described in Chapter 2 of Kaufman and
Rousseeuw (1990). Compared to the function kmeans, the function
pam has the following features: (a) it accepts a dissimilarity matrix; (b)
it is more robust because it minimizes a sum of dissimilarities instead
of a sum of squared euclidean distances; (c) it provides novel
graphical displays  such as silhouette plots and clusplots.

Figure 23.1: The Ruspini data.
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Algorithm The function pam operates on the dissimilarity matrix of the given
data set. When it is presented with an  data matrix, pam first
computes a dissimilarity matrix.

The algorithm computes k representative objects, called medoids, which
together determine a clustering. The number k of clusters is an
argument of the function.

Each object is then assigned to the cluster corresponding to the
nearest medoid. That is, object  is put into cluster  when medoid

 is nearer than any other medoid :

The  representative objects should minimize the sum of the
dissimilarities of all objects to their nearest medoid:

The algorithm proceeds in two steps:

1. Build-step 

This step sequentially selects  centrally located objects to be 
used as initial medoids.

2. Swap-step 

If the objective function can be reduced by interchanging 
(swapping) a selected object with an unselected object, then 
the swap is carried out. This is continued until the objective 
function no longer decreases.

Graphical 
Displays: 
Silhouette Plots

A partition of the data, such as the clustering found by pam, can be
displayed by means of the silhouette plot (Rousseeuw 1987).

For each object , the silhouette value  is computed and then
represented in the plot as a bar of length . In order to define ,
A denotes the cluster to which object  belongs, and the calculation
proceeds as

= average dissimilarity of  to all other objects of A

n p×

i vi

mvi
mw

d i mvi
,( ) d i mw,( ) for all w 1 … k, ,=≤

k

objective function d i mvi
,( )

i 1=

n

∑=

k

i s i( )
s i( ) s i( )

i

a i( ) i
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Chapter 23  Cluster Analysis
Now consider any cluster C different from A and define

= average dissimilarity of  to all objects of C

After computing  for all clusters C not equal to A, we take the
smallest of those:

The cluster B which attains this minimum, namely , is
called the neighbor of object . This is the second-best cluster for object

.

The value  can now be defined:

We see that  always lies between -1 and 1. The value  may be
interpreted as follows:

s(i) ≈ 1 ⇒object i is well classified

s(i) ≈ 0 ⇒object i lies between two clusters

s(i) ≈ -1 ⇒object i is badly classified

The silhouette of a cluster is a plot of the , ranked in decreasing
order, of all its objects . The entire silhouette plot shows the
silhouettes of all clusters next to each other, so the quality of the
clusters can be compared. The overall average silhouette width of the
silhouette plot is the average of the  over all objects  in the data
set (Figure 23.2).

It is possible to run pam several times, each time for a different k, and
to compare the resulting silhouette plots (as in Figure 23.3). You can
then select that value of k yielding the highest average silhouette
width. If even that highest width is below (say) 0.25, one may
conclude that no substantial structure has been found.

(23.6)

d i C,( ) i

d i C,( )

b i( ) minC A≠ d i C,( )=

d i B,( ) b i( )=

i
i

s i( )

s i( ) b i( ) a i( )–
max a i( ) b i( ),{ }
--------------------------------------=

s i( ) s i( )

s i( )
i

s i( ) i
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Graphical 
Displays: 
Clusplots

A clusplot is a bivariate plot displaying a partition (clustering) of the
data (Figure 23.2). All observations are represented by points in the
plot, using principal components or multidimensional scaling.
Around each cluster an ellipse is drawn. The clusplot provides a
convenient projection of the points into a two dimensional space with
an indication of cluster membership.

Example: 
European 
Countries

The euro data set is an extract from the brochure “Cijfers en feiten:
Een statistisch portret van de Europese Unie” (1994) published by
Eurostat, the European agency for statistics. For each country
belonging to the European Union during 1994, it gives the gross
national product (bbp) in 1992 and the percentage of the gross
national product due to agriculture (landbouw).

Here, both partitioning and hierarchical methods yield the same
division of the European countries into two clusters; with one cluster
consisting of four countries that are more oriented towards agriculture
and whose gross national product is low relative to the other
countries.
Table 23.1: Countries of the European Union

Code Country Code Country

B Belgium I Italy

D Germany IRL Ireland

DK Denmark L Luxembourg

E Spain NL Netherlands

F France P Portugal

GR Greece UK United Kingdom
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To view the euro data and cluster it with the pam function, type:

> euro

    landbouw  bbp
  B      2.7 16.8
 DK      5.7 21.3
  D      3.5 18.7
 GR     22.2  5.9
  E     10.9 11.4
  F      6.0 17.8
IRL     14.0 10.9
  I      8.5 16.6
  L      3.5 21.0
 NL      4.3 16.4
  P     17.4  7.8
 UK      2.3 14.0

> pam(euro, 2)

Call:
pam(x = euro, k = 2)
Medoids:
  landbouw  bbp
D      3.5 18.7
P     17.4  7.8
Clustering vector:
 B DK D GR E F IRL I L NL P UK
 1  1 1  2 2 1   2 1 1  1 2  1
Objective function:
    build    swap
 3.429317 3.36061

Available arguments:
[1] "medoids"    "clustering" "objective"  "isolation"
[5] "clusinfo"   "silinfo"    "diss"       "data"
[9] "call"

We can visualize the cluster with the command below. The plot is
displayed in Figure 23.2.

> plot(pam(euro, 2))
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Example: Ruspini 
Data

We will compare the silhouette plots for two different partitions of the
Ruspini data. We first use pam to partition the data into four clusters.
After that, a partition into five clusters is constructed. The four
medoids resulting from the first call are points in the centers of the
four clusters. The second call to pam produces the same four medoids,
and takes an intermediate object as the fifth medoid. The minimal
value reached for the objective function is a little smaller when five
clusters are formed. However, that does not necessarily imply that the
second clustering is better. From the clustering vector, and the
numerical output per cluster, it can be seen that both clusterings are
similar. The second partition places the three most outlying points of
the third cluster in a separate cluster. This new cluster is an isolated
one.

Figure 23.2: Clusplot and silhouette plot of pam(euro,2).
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On the other hand, the clusters resulting from the second call are not
as well-separated as those from the first call. Looking at the silhouette
plots in Figure 23.3, the conclusion is similar. With the first clustering,
all  are above 0.4. The second clustering yields very large
silhouette widths for the new cluster with three objects. But some of
the silhouette widths of the second and third cluster have decreased.
That is, those objects lie somewhere between two clusters. According
to the overall average silhouette width both clustering structures are
approximately of the same quality,  slightly preferable over

.

> plot(pam(ruspini, 4), which = 2)
> plot(pam(ruspini, 5), which = 2) 

Figure 23.3: Silhouette plots generated by pam(ruspini,4) and 
pam(ruspini,5).
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Clustering 
Large 
Applications

As the k-means and partitioning around medoids techniques
construct dissimilarities between all pairs of observations, their
memory requirements are quadratic in the number of observations.
This can be prohibitive when the number of observations is large.
The Clustering Large Applications technique uses a less memory-
intensive algorithm.

The method clara is fully described in Chapter 3 of Kaufman and
Rousseeuw (1990). Compared to other partitioning methods such as
pam, the clara function can deal with much larger data sets.
Internally, this is achieved by considering data subsets of fixed size, so
that the overall time and storage requirements become linear in the
total number of objects, rather than quadratic.

The function pam needs to store the dissimilarity matrix of the entire

data set (which has  entries) in central memory, while its
computation time goes up accordingly. For larger data sets (say, with
more than 250 objects) this becomes less convenient. To avoid this
problem, the function clara does not compute the entire dissimilarity
matrix at once. Therefore, this function only accepts input of an 
data matrix.

Algorithm The algorithm takes a data subset, and then applies the pam algorithm
to it. This divides the data subset into k clusters. The remaining
objects of the original data set are then assigned to the nearest
medoid. In this way, all n objects are assigned. The objective function
is then computed for the entire data set, namely by summing all n
terms .

This procedure is repeated for several data subsets, and the clustering
with the lowest overall objective function is retained. In this way, we
only need to compute and store the dissimilarity matrix of one data
subset at any one time, which makes the overall order of complexity
linear in n.

The first data subset is drawn randomly. Each of the following data
subsets is forced to contain the currently best medoids, supplanted
with randomly drawn objects.

O n2( )

n p×

d i mvi
,( )
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Chapter 23  Cluster Analysis
Graphical Display The clustering obtained by clara can also be represented by means
of clusplots and silhouette plot, described in the previous section on
pam. Due to the potential sizes of the data sets, the silhouette plot is
given only for the best data subset.

Example: A Large 
Data Set

This data set, consisting of 500 two-dimensional points, is generated
in Spotfire S+ using the following command:

> x <- rbind(cbind(rnorm(200, 0, 8),rnorm(200, 0, 8)),
+ cbind(rnorm(300, 50, 8), rnorm(300, 50, 8)))
> plot(x[,1], x[,2])

A plot of the points is shown in Figure 23.4.

The objects in the data set are clearly divided into two clusters. If pam
had been used with this data set, 124750=500*499/2 dissimilarities
would have been considered. The function clara uses only
946=44*43/2 dissimilarities, since the default sample size is
40+2*k = 40+2*2 = 44. The clara function still finds the correct
clustering. The average silhouette width, 0.82, indicates a good
clustering structure.

> a<- clara(x, 2)
> names(a)

[1] "sample"     "medoids"    "clustering" "objective"
[5] "clusinfo"   "silinfo"    "diss"       "data"
[9] "call"

Figure 23.4: A large data set of 500 points. 
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Partitioning Methods
> a$medoids

          [,1]         [,2]
[1,]  2.374335  -0.05215445
[2,] 49.636427  48.02134564

> plot(a)

Fuzzy Analysis The functions kmeans, pam, and clara are crisp clustering methods.
This means that each object of the data set is assigned to exactly one
cluster. For instance, an object lying between two clusters must be
assigned to one of them. In fuzzy clustering, each observation is given
fractional membership in multiple clusters.

Figure 23.5: Clusplot and silhouette plot of clara(x,2), where x is the large data 
set.
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Chapter 23  Cluster Analysis
The method fanny is fully described in Chapter 4 of Kaufman and
Rousseeuw (1990). Compared to other fuzzy clustering methods,
fanny has the following features: (a) it accepts a dissimilarity matrix;
(b) it is more robust to the “spherical cluster” assumption (see
Kaufman and Rousseeuw); (c) its graphical display is in the form of a
clusplot or silhouette plot.

For each object  and each cluster  there will be a membership 

which indicates how strongly object  belongs to cluster .

Memberships have to satisfy the following conditions:

1.  for all  and all .

2. = 100% for all .

Algorithm The memberships are defined through minimization of:

In this expression, the dissimilarities  are known and the
memberships  are unknown. The minimization is carried out
numerically by means of an iterative algorithm, taking into account
the above conditions that memberships need to obey. To have an
idea of “how fuzzy” the resulting clustering is, Dunn’s partition
coefficient is computed:
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Partitioning Methods
Dunn’s partition coefficient attains its extreme values in the following
situations:

1. entirely fuzzy clustering; all 

2. crisp clustering; all  or 

The normalized version of this coefficient is

which always lies in the range [0, 1].

Graphical Display For any fuzzy clustering, such as the one produced by fanny, the
nearest crisp clustering method should be considered for graphical
output. It assigns each object  to the cluster v in which it has the
highest membership . This crisp clustering is then represented
graphically by means of a clusplot or silhouette plot.

Example: Ruspini 
Data

When we call fanny with the ruspini data and , nearly all
objects have a large membership to one of the clusters. The three
objects that were placed in a separate cluster when calling pam for

 now are classified in a fuzzy way, since none of their
memberships is much higher than the other memberships. We
conclude that the majority of the data can be divided into four
clusters, but some objects are situated between the clusters. The
nearest crisp clustering is the same as that from pam with .
Hence, the silhouette plots are identical. But this is not always the
case. When we call fanny for , the nearest crisp clustering is
different from that produced by pam. The second cluster has been split
instead of the third one. Because the average silhouette width is
smaller than before, the clustering structure is less clear (Figure 23.6).

> plot(fanny(ruspini, 4), which = 2)
> plot(fanny(ruspini, 5), which = 2)

(23.9)
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Chapter 23  Cluster Analysis
> fanny(ruspini, 4)

Call:
fanny(x = ruspini, k = 4)
 iterations objective
         12  422.8389
Membership coefficients:
         [,1]       [,2]       [,3]       [,4]
 1 0.65700251 0.10241150 0.09105386 0.14953212
 2 0.71377401 0.09277800 0.07872431 0.11472369
 3 0.76033966 0.07322710 0.06478832 0.10164492

…
73 0.09673152 0.04828669 0.06629964 0.78868216
74 0.11367653 0.05369059 0.07298550 0.75964738
75 0.11731903 0.04977991 0.06446637 0.76843470
Coefficients:
 dunn_coeff normalized
  0.6237448  0.4983264
Closest hard clustering:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1  2  2
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  2  2  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3
 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4

Available arguments:
[1] "membership" "coeff"      "clustering" "objective"
[5] "silinfo"    "diss"       "data"       "call"
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Figure 23.6: Silhouette plots generated by fanny(ruspini,4) and 
fanny(ruspini,5).
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Chapter 23  Cluster Analysis
HIERARCHICAL METHODS

The partitioning algorithms discussed previously are based on
specifying an initial number of groups, and iteratively reallocating
observations between groups until some equilibrium is attained. In
contrast, hierarchical algorithms proceed by combining or dividing
existing groups, producing a hierarchical structure displaying the
order in which groups are merged or divided.

Agglomerative methods start with each observation in a separate group,
and proceed until all observations are in a single group. Divisive
methods start with all observations in a single group and proceed
until each observation is in a separate group.

Agglomerative 
Nesting

The two most widespread clustering techniques are k-means and
agglomerative hierarchical clustering. Spotfire S+ has three functions
for agglomerative hierarchical clustering: hclust, mclust, and agnes.
The oldest is hclust, and its capabilities have largely been subsumed
by mclust and agnes. The agnes function provides more
sophisticated plots than mclust, and has an interface consistent with
the other functions in the cluster library. However, mclust does offer
some computational methods not available in agnes, and is thus of
interest in its own right. (The mclust function is discussed in a later
section.)

The method agnes is fully described in Chapter 5 of Kaufman and
Rousseeuw (1990). Compared to other agglomerative clustering
methods such as hclust, agnes has the following features: (a) it yields
the agglomerative coefficient which measures the amount of clustering
structure found; (b) apart from the usual clustering tree, it also utilizes
the banner plot.

As the function agnes is an agglomerative hierarchical clustering
method, it yields a sequence of clusterings. In the first clustering each
of the  objects forms its own separate cluster. In subsequent steps
clusters are merged, until (after  steps) only one large cluster
remains, consisting of all the objects.

n
n 1–
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Hierarchical Methods
Algorithm The algorithm is based on dissimilarities only. If a data matrix is
input, the function starts by computing the dissimilarity matrix.

Initially (at step 0), each object is considered as a separate cluster. The
rest of the computation consists of iteration of the following steps:

1. Merge the two clusters with smallest between-cluster 
dissimilarity;

2. Compute the dissimilarity between the new cluster and all 
remaining clusters.

The between-cluster dissimilarity can be defined in various ways,
notably:

1. Group average method

2. Nearest neighbor method, or single linkage method

3. Furthest neighbor method, or complete linkage method

The group average method is taken as the default, based on arguments of
robustness and consistency. 

The function agnes also provides the agglomerative coefficient
(Rousseeuw 1986), which measures the clustering structure of the data
set. For each object ,  denotes its dissimilarity to the first cluster
it is merged with, divided by the dissimilarity of the merger in the last
step of the algorithm. The agglomerative coefficient (AC) is defined as
the average of all . Because the AC grows with the number of
objects, this measure should not be used to compare data sets of very
different sizes.
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Chapter 23  Cluster Analysis
Graphical 
Display: The 
Clustering Tree 
and Banner

The hierarchy obtained from agnes can be graphically displayed in
two ways, by means of a clustering tree or by a banner.

1. Clustering tree . This is a tree in which the leaves represent 
objects. The vertical coordinate of the place where two 
branches join equals the dissimilarity between the 
corresponding clusters.

2. Banner. The banner shows the successive mergers from left to 
right. Imagine the ragged flag parts at the left, and the flagstaff 
at the right; the objects are listed from top to bottom. The 
mergers, which commence at the between-cluster 
dissimilarity, are represented by horizontal bars of the correct 
length. The banner thus contains the same information as the 
clustering tree.

Note that the agglomerative coefficient defined above can also be
defined as the average width (or the percentage filled) of the banner
plot.

Example: 
Republican Votes 
Data

The votes.repub data set is standard in Spotfire S+. This matrix
contains the percentage of people in the 50 states of the USA that
voted Republican in the 31 presidential elections between 1856 and
1956. If a state did not yet belong to the USA in the year in question,
an NA value is given.

When agnes is applied to this data set, the clustering tree indicates a
division of the data into two well-separated clusters. A cluster
containing eight of the Southern states is merged with the other states
in the last step. The dissimilarity between the two clusters is large in
comparison with the dissimilarities of the mergers at the other stages.
When the complete linkage method is used, the same clustering
structure is found. The clustering tree obtained by the single linkage
method looks very different. Upon closer scrutiny, one sees that the
states which are merged in the final steps are exactly those states that
the other methods considered as a separate cluster. The single linkage
method has a tendency towards chains of clusters, which causes the
differences between the trees in this example. The diana function
discussed in the next section finds the same main clustering structure:
the eight Southern states are already split off at the first stage.
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Hierarchical Methods
Since all of these hierarchical methods seem to agree on the division
of the data set into two clusters, the conclusion might be that the
voting behavior in the Southern states of the USA is rather different
from that in the other states. The further division of the clusters is not
so clear-cut: different methods yield more or less different structures.

> plot(agnes(votes.repub), which = 2)

Note that Figure 23.7 and Figure 23.8 have been rotated in this
manual. When you run the code above, the resulting plots have trees
with branches downward and labels on the bottom. Spotfire S+ does
not provide an easy method for rotating plots to match what you see
in these figures. 

Figure 23.7: Clustering tree of agnes(votes.repub).
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Chapter 23  Cluster Analysis
Divisive 
Analysis

While agglomerative clustering starts with many groups and
combines them to form one group, divisive analysis starts with one
group and repeatedly divides groups to form many groups.

The method diana is fully described in Chapter 6 of Kaufman and
Rousseeuw (1990). It is probably unique in computing a divisive
hierarchy, because most other software for hierarchical clustering is
agglomerative. Moreover, diana provides (a) the divisive coefficient
which measures the amount of clustering structure found; and (b) the
banner plot.

The function diana is a divisive hierarchical method. The initial
clustering (at step 0) consists of one large cluster containing all n
objects. In each subsequent step, the largest available cluster is split
into two smaller clusters, until finally all clusters contain but a single
object.

In the first step of an agglomerative method, there are

 possible ways to merge two clusters. But in the first

step of a divisive method, we are faced with  possibilities to
split up the data set into two clusters. The latter number is much
larger than the first, and in practice it is not feasible to try all possible
splits.

Algorithm To avoid considering all possible splits, diana divides the data set in
the following way (based on dissimilarities only):

1. Find the most disparate object, which is the one with the 
highest average dissimilarity to the other objects. This object 
initiates the splinter group, analogous to a dissenting fraction of 
a political party.

2. For each object  outside the splinter group, compute

to find the object  for which this difference is largest. If 
, then  is on average closer to the splinter group than 

to the remainder, so add object  to the splinter group.

3. Repeat step 2 until all differences  are negative. The data 
set is then split into two clusters.
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Hierarchical Methods
4. Select the cluster with the largest diameter; the diameter of a 
cluster is the largest dissimilarity between any two of its 
objects. Then divide this cluster as in steps 1 to 3.

5. Repeat step 4 until all clusters contain only a single object.

The function diana also provides the divisive coefficient (Rousseeuw,
1986), which measures the clustering structure of the data set. For
each object ,  denotes the diameter of the last cluster to which it
belongs (before being split off as a single object), divided by the
diameter of the whole data set. The divisive coefficient (DC) is then
defined as the average of all . Like the AC in the previous section
on agnes, the DC also grows with the number of objects. Therefore,
the DC should not be used to compare data sets of very different
sizes.

Graphical Display The hierarchy obtained from diana can again be graphically
displayed either as a clustering tree or as a banner. Note that the
divisive coefficient (DC) defined above can also be defined as the
average width (or the percentage filled) of the banner plot.

Examples We mentioned in the section Agglomerative Nesting that diana gives
a clustering tree quite similar to that from agnes on the Republican
voting data. The following command shows this:

> plot(diana(votes.repub), which = 2)

i d i( )

d i( )
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Monothetic 
Analysis

When all of the variables in a data set are binary, a natural way to
divide the observations is by splitting the data into two groups based
on the two values of a particular binary variable. Monothetic analysis
produces a hierarchy of clusters in which at each step a group is split
in two based on the value of one of the binary variables.

The method mona is fully described in Chapter 7 of Kaufman and
Rousseeuw (1990). It is a different type of divisive hierarchical
method. Contrary to diana, which can process a dissimilarity matrix
as well as a data matrix with interval-scaled variables, mona operates
on a data matrix with binary variables. For each split mona uses a

Figure 23.8: Clustering tree of diana(votes.repub).
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Hierarchical Methods
single (well-chosen) variable, which is why it is called a monothetic
method. Most other hierarchical methods (including agnes and
diana) are polythetic; that is, they use all variables simultaneously.

Algorithm First all missing values in the binary data matrix (all those values
not = 0 or 1) are replaced by estimated values, obtained as follows.
Suppose that  is missing. Then we consider any other variable ,
and construct the contingency table

The association between  and  is then defined as

 

The variable  for which  is the most correlated with

variable . The missing values of  are then estimated by means of
variable  in the following way:

put  when 

put  when 

When all missing values have been replaced, the actual splitting can
begin. If the data matrix cannot be filled in completely, due to too
many missing values in the original data, the method stops with an
error message.

The mona algorithm constructs a hierarchy of clusterings, starting with
one large cluster. In each step, each available cluster is divided
according to one variable. The cluster is divided into two: one cluster
with all objects having value 1 for that variable, and another cluster
with all objects having value 0 for that variable.
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Chapter 23  Cluster Analysis
The variable used for splitting a cluster is the variable with the largest
total association to the other variables. The association between
variables  and  is given by the expression  above, but now the
contingency table uses only the objects of the cluster to be split. The
total association of a variable  is then defined as:

The variable  which satisfies  is selected for splitting

the cluster. We continue to divide clusters in this way, until each
cluster consists of objects having identical values for all variables.
Such clusters cannot be split any more. A final cluster is thus a
singleton or an indivisible cluster.

Graphical Display The clustering hierarchy constructed by mona can be represented by
means of a banner. This is again a divisive banner; however, the
length of a bar is now given by the number of divisive steps needed to
make that split. Inside the bar, the variable responsible for the split is
listed.

Example: Animals 
Data

Six binary attributes are considered for twenty animals.

(23.10)

f g Afg

f

Af Afg
g f≠
∑=

t At maxAf
f

=

Table 23.2: Animal attributes.

Abbreviation Attribute

war Warm or cold blooded

fly Flying or nonflying

var Vertebrate or invertebrate

end Endangered or not
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This example illustrates the use of mona. The following call produces
the banner plot shown in Figure 23.9:

> plot(mona(animals))

Figure 23.9 shows that mona classifies the animals according to the six
attributes. In the first step, cold- and warm-blooded animals are put in
separate clusters. The first cluster is then split into vertebrate and
invertebrate animals, and the second cluster into flying and nonflying
animals. Finally, after the fifth step, animals belonging to the same
group have the same value for all six variables; on the banner, no bar
is drawn between these animals.

gro Lives in social groups, or not

hai Hairy or not hairy

Figure 23.9: Banner of mona(animals).

Table 23.2: Animal attributes. (Continued)

Abbreviation Attribute

0 1 2 3 4 5 6

eag
duc
wha
ele

man
lio
chi
rab
cow
cat
sal
liz
her
fro
fly

bee
lob
spi

  end
  fly

  
  hai

  
  

  end
  

  gro
  war

  
  gro

  end
  ver

  gro
  fly

  hai
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Chapter 23  Cluster Analysis
If we wished to apply agnes or diana to this data set, we would have
to compute the dissimilarities with daisy, because the variables are
not numeric. The instruction is: agnes(daisy(animals),diss=T).
When we consider variable two (flying or not flying), and six (hairy or
not hairy) as asymmetric binary, the call becomes:

agnes(daisy(animals,type=list(asymm=c(2,6))),diss=T)

The resulting clusterings will differ from the previous clustering. Since
agnes and diana operate on the dissimilarities only, they do not use
the individual variables. The function mona is probably more suitable
for this example, where the animals have been classified nicely
according to their attributes.

> animals

    war fly ver end gro hai
ant   1   1   1   1   2   1
bee   1   2   1   1   2   2
cat   2   1   2   1   1   2
cpl   1   1   1   1   1   2
chi   2   1   2   2   2   2
cow   2   1   2   1   2   2
duc   2   2   2   1   2   1
eag   2   2   2   2   1   1
ele   2   1   2   2   2   1
fly   1   2   1   1   1   1
fro   1   1   2   2  NA   1
her   1   1   2   1   2   1
lio   2   1   2  NA   2   2

Table 23.3: The animals and the three-letter abbreviations used in the data.

ant caterpillar frog man

bee duck hermit crab rabbit

cat eagle lion salamander

chimpanzee elephant lizard spider

cow fly lobster whale
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liz   1   1   2   1   1   1
lob   1   1   1   1  NA   1
man   2   1   2   2   2   2
rab   2   1   2   1   2   2
sal   1   1   2   1  NA   1
spi   1   1   1  NA   1   2
wha   2   1   2   2   2   1

Model-Based 
Hierarchical 
Clustering

Another approach to hierarchical clustering is model-based clustering,
which is based on the assumption that the data are generated by a
mixture of underlying probability distributions. The mclust function
fits model-based clustering models. It also fits models based on
heuristic criteria similar to those used by pam. The mclust function is
separate from the cluster library, and has somewhat different
semantics than the methods discussed previously.

Heuristic Criteria The basic hierarchical agglomeration algorithm starts with each
object in a group of its own. At each iteration it merges two groups to
form a new group; the merger chosen is the one that leads to the
smallest increase in the sum of within-group sums of squares. The
number of iterations is equal to the number of objects minus one, and
at the end all the objects are together in a single group. This is known
variously as Ward’s method, the sum of squares method, or the trace
method.

The hierarchical agglomeration algorithm can be used with criteria
other than the sum of squares criterion. For example, in the single
link (or nearest neighbor) method, the distance between two groups is
defined to be the smallest distance between any two members from
different groups, and at each iteration the two closest groups are
merged. The complete link method, also known as the compact or
farthest neighbor method, is similar except that the distance between
any two groups is defined to be the largest distance between any two
members from different groups, while the centroid method defines
the distance between two groups to be the distance between their
centroids. The average weighted link method uses the average of the
distances between the objects in one group and the objects in the
other group. These are all heuristic criteria.

Model-Based 
Criteria

Model-based clustering is based on the assumption that the data are
generated by a mixture of underlying probability distributions.
Specifically, it is assumed that the population of interest consists of G
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different subpopulations, and that the density of an observation 
from the th subpopulation is  for some unknown vector of

parameters . Given data , we let 

denote the identifying labels, where  if  comes from the th
subpopulation. In the classification maximum likelihood procedure,

 and  are chosen so as to maximize the likelihood.

We consider mainly the situation where  is a multivariate

normal density with mean  and variance matrix . If 

for each , where  is the identity matrix, then maximizing the
likelihood (Equation (23.11)) is the same as minimizing the sum of
within-group sums of squares that underlies Ward’s method. Thus,
Ward’s method corresponds to the situation where clusters are
hyperspherical with the same variance. If clusters are not of this kind
(for example, if they are thin and elongated), Ward’s method tends to
break them up into hyperspherical blobs.

Other forms of  yield clustering methods that are appropriate in
different situations; see Banfield and Raftery (1992). The key to
specifying this is the eigenvalue decomposition of . The

eigenvectors of  specify the orientation of the th cluster, the
biggest eigenvalue specifies its variance or size, and the ratios of the
other eigenvalues to the largest one specify its shape. We can
constrain some but not all of these features (orientation, size, and
shape) to be the same across clusters. For example, if we let

, the criterion corresponds to hyperspherical clusters of

different sizes; this is the Spherical criterion.

A criterion that appears to work well in a variety of situations results
from constraining only the shape to be the same across clusters; this is
denoted by S *. Here you must specify the shape, represented by the
eigenvalue ratios  , where  are

(23.11)
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the eigenvalues ordered from largest to smallest. Specifying each
 leads to elliptical clusters that are moderately concentrated

about a line in p-space, while choosing each  yields very

concentrated and linear clusters. Setting each  gives the
Spherical criterion as a special case. Your choice will be determined
by the kind of data that you are working with, but we have found
setting each  often to be a good first guess.

Table 23.4 shows the different model-based clustering criteria and the
assumptions that they embody.

Choosing the 
Number of 
Clusters

In model-based clustering, choosing the number of clusters is the
same as choosing a model for the data. A standard approach to this is
to calculate the Bayes factor, , for the model defined by  clusters
against the model defined by a single cluster (that is, all the objects
belong to the same group). The Bayes factor is the odds for one

αj 0.2=

αj 0.01=

αj 1=

αj 0.2=

Table 23.4: Model-based clustering criteria with corresponding assumptions.

Criterion Reference Distribution Orientation Size Shape

Sum of Squares Ward (1963) Spherical None Same Same

Spherical Banfield and 
Raftery (1992)

Spherical None Different Same

Determinant Friedman and 
Rubin (1967)

Ellipsoidal Same Same Same

S Murtagh and 
Raftery (1984)

Ellipsoidal Different Same Same

S* Banfield and 
Raftery (1992)

Ellipsoidal Different Different Same

Unconstrained Scott and 
Symons (1971)

Ellipsoidal Different Different Different

Bk k
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model against another given the data (provided that one has no initial
preference for either model). Thus the larger , the more evidence

there is for the existence of  clusters.

The approximate weight of evidence for k clusters (AWEk ) is an
approximation to 2 logBk; see Banfield and Raftery (1992). This is
calculated by mclust. The larger AWEk , the more evidence there is
for the existence of k clusters. By definition, AWE1 = 0, so if all the

AWEk  are negative, there is no evidence for any
clustering.

The value of  which maximizes AWEk is the number of clusters for
which there is the most evidence. However, we do not recommend
using the AWE criterion to choose a single number of clusters unless
the evidence is overwhelming. Rather, we suggest that the plot of
AWEk be inspected with a view to picking several plausible
possibilities to be further investigated. The change in the approximate
weight of evidence, AWEk - AWEk-1, is often large and positive for

the first few values of , say, and small or negative
thereafter. If that is the case, ideas of parsimony suggest considering
the classification into  groups, as well as the value of  which
maximizes AWEk , and any intervening values.

Robust Clustering So far, it has been assumed that each object belongs to a cluster.
However, even when a data set is made up mainly of clusters of the
prescribed type, there may be other data points that do not follow this
pattern. This possibility can be allowed for by extending the model
given by Equation (23.11) to include such isolated observations, or
outliers, assumed to occur according to a Poisson process with an
intensity which is constant over the region from which the data have
been drawn. The likelihood (Equation (23.11)) is modified
accordingly. This yields a class of clustering algorithms designed to be
robust to outliers; see Banfield and Raftery (1992).

Performing 
Model-Based 
Clustering

The function mclust performs the analyses described in this section.
It carries out hierarchical agglomerative clustering using the six
model-based criteria shown in Table 23.4, and also the five heuristic
criteria discussed at the start of this section. For the model-based

Bk

k

k 2 … n, ,=( )

k

k k, 2 … K, ,=

K k
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criteria, it returns the AWE statistic for each number of clusters k; this
is used to determine the number of clusters. Functions related to
model-based clustering are listed in Table 23.5.

If noise=T is specified in mclust, it will do robust clustering (available
for the model-based criteria only). If the existence of outliers is
suspected, it may be a good idea to run mclust with noise=F and
noise=T and to compare the results. Important differences between
the resulting classifications would suggest that there are outliers that
are contaminating the results, in which case either these outliers could
be removed from the data sets and studied separately, or the robust
clustering results (with noise=T) could be used. Note that the number
of clusters indicated by the AWE in the nonrobust case (noise=F) will
tend to be larger than in the robust case (noise=T), because in the
nonrobust case some of the outliers may be classified as single-
member groups.

Iterative relocation for any of the eleven criteria listed can be done
using the function mreloc. The function mclass takes the output of
mclust or mreloc and produces a classification of the data objects.

The output of mclust and mreloc can be used to plot and manipulate
classification trees. The function plclust plots the tree, subtree
extracts part of the tree, clorder reorders the leaves of the tree,
labclust labels the leaves of the tree, and cutree creates groups
using the tree.

The function hclust also does hierarchical agglomerative clustering,
but only for three of the heuristic criteria included in mclust. mclust
is much more general and is to be preferred for many purposes.
However, hclust has two features which can be advantages in certain
situations. It takes as argument a distance matrix rather than a data
matrix, and it is applicable even when the data cannot be represented
by points in Euclidean space; it accepts a dissimilarity matrix which
need not be a distance matrix in the strict sense. A distance matrix
can be calculated from a data matrix using the function dist. Also,
unlike mclust, hclust returns the height at which each merger was
made; this can yield more informative plots of the classification tree. 
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Example of 
Simple Use

We can use model-based clustering to explore the percent of votes
given to the Republican candidate in presidential elections from 1856
to 1976. In the votes.repub data, rows represent the 50 states and
columns the 31 elections.

> elect.years <- c("1960", "1964", "1968", "1972", "1976")
> votes.S <- mclust(votes.repub[,elect.years],
+ method = "S", noise = T)
> plclust(votes.S$tree, label = state.abb)
> plot( x = 1:length(votes.S$awe), y = votes.S$awe)
> # 9-cluster classification
> votes.9 <- mclass(votes.S, 9)
> # 3-cluster classification
> votes.3 <- mclass(votes.S, 3, votes.9)
> votes.3 <- mreloc(votes.3, votes.repub[,elect.years],
+ method = "S", noise = T)

Table 23.5: Functions for model-based clustering.

Function Use

clorder Re-order leaves of a classification tree

cutree Create groups from hierarchical agglomerative clustering

labclust Label the leaves of a classification tree

mclass Classify objects (uses output of mclust)

mclust Model-based and heuristic hierarchical agglomerative 
clustering
Determination of the number of clusters
Robust Clustering

mreloc Model-based iterative relocation

plclust Plot a classification tree

subtree Extract part of a classification tree
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CLUSTER LIBRARY ARCHITECTURE

Object-
Oriented 
Structure

The algorithms of Kaufman and Rousseeuw (1990), summarized
above, have been implemented in Spotfire S+ as a library of
functions, which generate objects of seven different classes. For each
class of objects, methods for textual or graphical output are available.
Most of the objects are named after the function that generates them.
In this way, classes "pam", "clara", "fanny", "agnes", "diana", and
"mona" exist. The seventh class, "dissimilarity", is generated by the
function daisy but is also be part of the objects of classes "pam",
"clara", and "fanny".

Some of these classes are grouped together and inherit from the same
superclass. The created hierarchy of classes is as follows:

1. Class "dissimilarity"

2. Class "partition"

• Class "pam"

• Class "clara"

• Class "fanny"

3. Class "hierarchical"

• Class "agnes"

• Class "diana"

4. Class "mona"

These classes have methods for the following functions:

1. print, for classes "dissimilarity", "pam", "clara", "fanny", 
"agnes", "diana", and "mona".

2. summary, for classes "pam", "clara", "fanny", "agnes", 
"diana", and "mona". These summary methods return new 
objects of class summary.oldclass. For each of those new 
summary classes, a print method is available.

3. plot, for classes "partition", "agnes", "diana", and "mona".

4. clusplot, for class "partition".

5. pltree, for class "hierarchical".
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The partition class has a method for the generic plot function that is
common to all its subclasses.

Calling the 
Functions

The daisy function, for calculating dissimilarities, is similar to the
older function dist. One advantage of daisy it that it accepts data sets
with different types of variables. The function’s header is

daisy(x, metric = "euclidean", stand = F, type = list())

When all variables are interval scaled, this specifies the metric to be
used for calculating dissimilarities, and whether or not to standardize
first. When other variable types occur, a list of types can be given.
The output of daisy can be used as input for several of the new
clustering functions.

The input arguments of the six clustering functions are similar. The
calls to the six functions are given in Table 23.6.

Table 23.6: Summary of clustering functions.

Function Description and example function call

daisy Computes a dissimilarity matrix from a data matrix.

daisy(x, metric = "euclidean", stand = F, type = list())

pam A crisp partitioning method for smaller data sets.

pam(x, k, diss = F, metric = "euclidean", stand = F, save.x = T, 
save.diss = T)

clara A method for larger data sets (more than 250 objects) using the same basic 
algorithm as pam.

clara(x, k, metric = "euclidean", stand = F, samples = 5, sampsize = 40 
+ 2 * k, save.x = T, save.diss = T)

fanny A fuzzy partitioning method, employing the concept of memberships.

fanny(x, k, diss = F, metric = "euclidean", stand = F, save.x = T, 
save.diss = T)
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All functions, except for clara and mona, accept two possible input
structures: a dissimilarity matrix or a data matrix. The logical
argument diss tells the algorithm how x should be interpreted, the
default being a data matrix of observations by variables. When a
dissimilarity matrix is given as input, it is preferably an object of class
"dissimilarity". However, the functions will also accept
dissimilarities produced with dist, or a vector that can be interpreted
as a dissimilarity matrix.

The algorithms of clara and mona don’t accept dissimilarities as input,
but only accept the second input form: a matrix of observations by
variables.

If a function has to compute dissimilarities from a given data matrix,
the function needs to know which metric to use and whether or not to
standardize first. These arguments are similar to the corresponding
arguments of daisy. Since mona doesn’t compute dissimilarities, it
does not have the arguments metric and stand.

The function clara has two additional arguments, specifying the
number of samples and the size of each sample. Also agnes has a
special argument defining the method to be used for calculating
dissimilarities between clusters.

agnes An agglomerative hierarchical method, computes a measure of the clustering 
found.

agnes(x, diss = F, metric = "euclidean", stand = F, method = "average", 
save.x = T, save.diss = T)

diana A divisive hierarchical method, computing a measure of the divisive clustering 
found.

diana(x, diss = F, metric = "euclidean", stand = F, save.x = T, 
save.diss = T)

mona A divisive hierarchical method that works on binary data.

mona(x)

Table 23.6: Summary of clustering functions.

Function Description and example function call
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By default, all functions store a copy of the data (if specified) and the
dissimilarities as part of the returned model object. This information
is needed to produce clusplots, but otherwise is provided solely for
reference. The size of the returned model object may be reduced by
setting save.x and/or save.diss to FALSE, in which case the data
and/or dissimilarities are not returned.

Sometimes the output of the functions is rather extensive, especially
when the summary method is invoked for an object of one of the
partition classes. In those cases, the output scrolls off the screen.
Therefore, all available components of the output are listed on the last
output lines. Those components can be extracted from the result like
a component from a list: object$component.

Objects resulting from the clustering functions can be given as input
to high level graphics functions.

• The plot method for partition objects (pam, clara, and fanny) 
produces clusplots and silhouette plots.

• The plot methods for agnes and diana produce clustering 
trees and banner plots.

• The plot method for mona produces a banner plot.

More information and details about the input arguments and the
structure of the output can be found in the help files. 
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Chapter 24  Hexagonal Binning
INTRODUCTION

This chapter describes the use of the hexbin function to graphically
display spatial data. The S+SPATIALSTATS module, available for both
UNIX and Windows, provides a more extensive set of tools for
analyzing spatial data in the form of geostatistical data, lattice data,
and spatial point patterns.
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THE APPEAL OF HEXAGONAL BINNING

Hexagonal binning is a data grouping or reduction method typically
employed on large data sets to clarify spatial structure. It can be
thought of as partitioning a scatter plot into larger units to reduce
dimensionality, while maintaining a measure of data density. The
groups or bins are used to make hexagon mosaic maps colored or
sized according to density. Rectangular or square grids are often used
in this context for image-processing applications, for example, in
grayscale, contour, and perspective maps. However, hexagons are
preferable for visual appeal and representational accuracy (Carr,
Olsen, and White, 1992). Hexagonal binning can also be used to
group geostatistical data into a lattice for use in spatial regression
modeling.

The data frame quakes.bay contains the locations of earthquakes in
the San Francisco Bay Area for 1962-1981. Hexagonal bins are
maintained in an object of class "hexbin". Use the function hexbin to
create the hexbin object for the earthquake data as follows.

> quakes.bin <- hexbin(quakes.bay$longitude,
+ quakes.bay$latitude)
> summary(quakes.bin)

Call:
hexbin(x = quakes.bay$longitude, y = quakes.bay$latitude)
Total Grid Extent: 36 by 31
      cell            count            xcenter
Min.   :  17.0   Min.   :  1.000   Min.   :-123.3
1st Qu.: 239.0   1st Qu.:  1.000   1st Qu.:-122.0
Median : 419.0   Median :  3.000   Median :-121.6
Mean   : 467.9   Mean   :  7.505   Mean   :-121.5
3rd Qu.: 696.0   3rd Qu.:  5.000   3rd Qu.:-121.0
Max.   :1091.0   Max.   :144.000   Max.   :-119.8
     ycenter
Min.   :36.01
1st Qu.:36.51
Median :36.94
Mean   :37.06
3rd Qu.:37.59
Max.   :38.50
155



Chapter 24  Hexagonal Binning
The summary function shows the four components of the hexbin
object and their distributions. The hexagon identified by cell
contains count observations, and has center of mass at (xcenter,
ycenter). The default settings for hexbin partition the range of x
values into approximately 30 equal-sided hexagonal bins. The most
useful bin size depends on the number of observations, and is best
chosen iteratively. Plot the hexagonal bins as follows.

> trellis.device(color = F)
> at.quakes <- c(0, 10, 20, 30, 40, 50, 150)
> plot(quakes.bin, border = T, col.regions = 80:15,
+ at = at.quakes)

The Trellis graphics device produces the best color and grayscale
images for hexagonal binning. The default settings for plot.hexbin
plot the hexagonal bins as a full tessellation, containing equally sized
hexagons with color corresponding to grouped bin counts. By default,
the groups are equal in range. Since the distribution of
quakes.bin$count (shown by the summary output above) is skewed,

Figure 24.1: The San Andreas Fault has a clear ridge of frequent earthquakes.
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The Appeal of Hexagonal Binning
we have chosen the groups formed by at.quakes. The plot in Figure
24.1 shows the ridge of frequent earthquakes along the San Andreas
Fault.

Hexagonal Bin 
Plot Styles

Besides the default grayscale style used here, there are four other plot
styles available which plot the hexagons in varying sizes depending
on cell density. Plot the earthquake hexbin object with differing sizes
of hexagons as follows:

> plot(quakes.bin, style = "centroids", cuts = 6)

The "centroids" style shown in the figure scales the hexagon sizes by
cell count, and plots them at the center of mass determined by
xcenter and ycenter. The cuts=6 argument yields six different
hexagon sizes. There are two nested plot styles (nested.lattice and
nested.centroids, not shown) which provide depth when plotted on
a color screen.

Figure 24.2: As an alternative to using different grayscales in a hex plot, the 
hexagons can be drawn to a range of sizes. The range is determined by the cuts 
argument.
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Examining 
Individual Bins

There are several large bins in the plot which we may want to
examine more closely. The generic identify function can be used to
interactively identify points on a hexagonal bin plot. The two largest
bins can be identified as follows.

> quake.par <- plot(quakes.bin, style = "centroids", 
+ cuts = 6)
> oldpar <- par(quake.par)
> identify(quakes.bin, use.pars = quake.par, offset = 1)

[1] 114 79

> par(oldpar)

First it is necessary to save the graphical parameters used to plot the
hexagonal bin. After entering the identify command, use the cross-
hairs to locate the point of interest on the graphics screen, and click
the left mouse button. The count in the closest cell will appear on the
graphics screen. We have used the optional argument offset to make
the count easier to read. When you have identified both points, click
the center or right mouse button, while keeping your pointer within
the graphics window. The index of the points you have identified will
appear on your command line, as above. Then use the par function to
reset the graphics parameters.

Directional 
Rays

The rayplot function can be used to display the magnitudes of a
variable of interest at spatial locations using directional rays. For
smaller data sets, these rays or other types of symbols can be plotted
at each data location. However, when the number of sites is large, the
magnitudes and trends are easier to visualize if the locations are first
binned using hexbin. The following example uses the ozone data set:

1. Create a hexbin object for the ozone data, using eight bins in 
the x direction.

> ozone.bin <- hexbin(ozone.xy$x, ozone.xy$y,
+ xbins = 8)

2. Map each  pair in the original data to a hexagonal cell 
using the function xy2cell.

> ozone.cells <- xy2cell(ozone.xy$x, ozone.xy$y,
+ xbins = 8)

x y,( )
158



The Appeal of Hexagonal Binning
3. Use the function tapply to calculate the median for each cell, 
and use these values as angles for the rayplot.

> ozone.angle <- tapply(ozone.median, ozone.cells,
+ median)
> library(maps)

Warning messages:
The functions and datasets in library section maps 
are not supported by TIBCO Software Inc.

> map(region = c("new york", "new jersey", "conn",
+ "mass"), lty = 2)
> rayplot(ozone.bin$xcenter, ozone.bin$ycenter,
+ ozone.angle)

The plot shows the median ozone emissions for the group of sites
within each hexagonal bin. The ray is plotted at the center of each
bin, and the medians are scaled so the rays follow an arc from 
(lowest median) to  (highest median). It appears that the highest

Figure 24.3: Rayplots add direction as well as density. This plot shows median 
ozone emissions.
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emissions for the time period covered are in Connecticut. Additional
attributes can be used with rayplot to add confidence intervals and a
second variable to the plot. Also, the lengths and widths of the rays
and the size of the base octagon can be changed. See the online help
file for more information on rayplot.
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Introduction
INTRODUCTION

There are two general approaches to analyzing time series and
signals. One is to use time domain methods in which the values of the
process are used directly; the other is to use frequency domain
methods. Frequency methods investigate the periodic properties of
the process. The books by Chatfield (1984) and Shumway (1988)
provide readable introductions to time series analysis, which covers
both time domain and frequency domain methods.

Fields of study tend to focus on analyzing data in one domain or the
other. For example, economists use the time domain extensively
while electrical engineers often use the frequency domain. To a large
extent, this division arises from the types of questions that are being
asked of the data. However, combining the approaches can at times
give a more thorough understanding of the data.

Robust methods are necessary for both domains because the failure of
model assumptions (such as Gaussian errors) can cause misleading
results when classical techniques are applied.
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AUTOCORRELATION IN SERIES DATA

If data are collected over time, there may be correlation between
successive observations; this is known as autocorrelation or serial
correlation. In this section, we show how to use visual analysis (simple
plots, lagged plots, and autocorrelation plots) and numerical analysis
to look into autocorrelation.

You can visually explore autocorrelation in your data using Spotfire
S+ functions to make three kinds of plots:

• Simple time series and signal plots, which you can read about in 
the chapter Time Series and Signal Basics in the Programmer’s 
Guide.

• Lagged scatter plots, which are scatter plots of pairs of values 
 of a time series separated by a lag of one or more 

time units.

• Autocorrelation function plots, which provide an estimate of the 
correlation between observations separated by a lag of zero, 
one, or more time units.

To illustrate the use of these functions, we use the function rnorm to
create uncorrelated normal random numbers. From these numbers, we
create a correlated series x.cor:

> r.norm <- rnorm(100)
> x.cor <- signalSeries(data = r.norm[1:98] +
+ r.norm[2:99] + r.norm[3:100])

The series x.cor is serially correlated at lags 1 and 2; that is, x.cor[i]
is correlated with x.cor[i+1] and x.cor[i+2]. But x.cor is serially
uncorrelated at lags greater than 2; that is, x.cor[i] and x.cor[i+k]
are uncorrelated for k > 2.

Basic Time 
Series Plots

The basic time series plot shows each observation plotted against its
observation time. For example, our series x.cor can be plotted as
follows, using both lines and plotting symbols:

> plot(x.cor, plot.args = list(type = "b", pch = 16))

This expression yields the plot of Figure 25.1. 

yt yt m+( , )
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Autocorrelation in Series Data
The values of successive observations tend to be close together, so
you suspect some serial correlation. You can see this more clearly
with lag.plot and acf, as described in the following sections.

Lagged Scatter 
Plots

The lagged scatter plots in Figure 25.2 consist of scatter plots of pairs
of values  of a time series separated by  time units for

. The figure is generated with the following
expression:

> lag.plot(x.cor, lags = 4,layout = c(2,2)) 

The maximum lag  is specified by the lags argument to lag.plot.
For the above example, the choice lags=4 results in , and so
there are four plots. The layout argument specifies the way the 
scatter plots are arranged in a single figure, just as you use the
function par to specify multiple figure layout.

A circular shape for a lagged scatter plot at a specific lag m indicates
that there is little correlation at that lag. On the other hand, an
elliptical shape for a lag  scatter plot in the 45 degree direction
indicates positive correlation at lag . An elliptical shape in the 135
degree direction indicates negative correlation. In the above example

Figure 25.1: Time series plot for a correlated series.
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Chapter 25  Analyzing Time Series and Signals
using x.cor, the lag 1 plot shows clear evidence of positive
correlation, and the lag 2 plot shows some indication of positive
correlation. 

Autocorrela-
tion Function 
in Univariate 
Series

The autocovariance and autocorrelation functions are important tools
for describing the serial (or temporal) dependence structure of a
univariate time series. Let  be a stationary time series with mean 

Figure 25.2: Lagged scatter plots for a correlated series.
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Autocorrelation in Series Data
and variance , and assume for ease of notation that  takes on

integer values . The autocovariance function of  at

lag  is defined as

Since  is stationary, this does not depend on . The autocorrelation

function at lag  is defined as

and is simply a standardized version of the autocovariance function.
Both the autocovariance function and the autocorrelation function are
even functions; that is,  and . In addition,
the autocorrelation function satisfies

Example: white noise. 

A stationary time series for which  and  are uncorrelated is

called white noise, and satisfies  for all

integers . Such a process is sometimes loosely termed a “purely

random process.” Since , a white noise process has the
autocovariance function

. (25.1)

, (25.2)

(25.3)

(25.4)

σx
2 t

t 0 1± 2± …, , ,= xt

k

γ k( ) E xt μ–( ) xt k+ μ–( )=

xt t
k

ρ k( ) γ k( )
γ 0( )
----------- γ k( )

σx
2

-----------= =

γ k( ) γ k–( )= ρ k( ) ρ k–( )=

ρ k( ) 1     for all k≤ 0 1 2 …,±,±,=

xt xt k+

γ k( ) E xt μ–( ) xt k+ μ–( ) 0= =

k 0≠
γ 0( ) σx

2=

γ k( )
σx

2 k 0=

0 k 0≠
⎩
⎪
⎨
⎪
⎧

=
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Chapter 25  Analyzing Time Series and Signals
The autocorrelation function is

Example: moving average process. 

A moving average process of order q, denoted MA(q), is defined by
the equation

where  is a white noise process. It is easy to show that the
autocovariance function for this process is given by

The autocorrelation function is given by

(25.5)

, (25.6)

(25.7)

. (25.8)

ρ k( ) 1 k 0=

0 k 0≠⎩
⎨
⎧

=

xt μ β0ε t β1ε t 1–
… βqε t q–+ + + +=

ε t

γ k( ) βtβt k+
t 0=

q k–

∑     k q≤

0     k q>⎩
⎪
⎨
⎪
⎧

=

ρ τ( ) βtβt τ+
t 0=

q τ–

∑     τ q≤

0     τ q>⎩
⎪
⎨
⎪
⎧

=
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Autocorrelation in Series Data
The autocovariance  function estimate at lag  is:

where

is the mean of the series and  is the length of the observed series.
Notice that the divisor  is used, even though there are only 

terms. As a result,  is a biased estimate, even if  is replaced by

the true mean μ. However,  has a few properties that make up for
a small amount of bias. In particular, use of the divisor  ensures

positive semi-definiteness of the function , and the mean squared

error of this estimate is often smaller than that obtained when  is

replaced by . See Priestley (1981) for details.

The autocorrelation function estimate at lag  is  

Autocorrela-
tion Function 
in Multivari-
ate Series

The autocovariance and autocorrelation functions for multivariate
series are defined analogously to those of univariate series. In
addition, one is interested in crosscovariance and crosscorrelation
functions. Suppose that  is an -variate stationary time series and

, (25.9)

. (25.10)

k

γ̂ k( ) 1
n
--- xt x–( ) xt k+ x–( )

t 1=

n k–

∑=

x 1
n
--- xt

t 1=

n

∑=

n
n n k–

γ̂ k( ) x

γ̂ k( )
n

γ̂ k( )

n 1–

n k–( ) 1–

k

ρ̂ k( ) γ̂ k( )
γ̂ 0( )
-----------=

xt m
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Chapter 25  Analyzing Time Series and Signals
 is the ith time series, for . In addition, suppose

that the ith series has a mean value of . The covariance

function matrix for  at lag  is defined as

where  denotes the transpose and . The

covariance matrix  is  and has the property that

. The ith main diagonal element of  is the
autocovariance function

for the ith time series . The ijth off-diagonal element of  is the
crosscovariance function  

for the ith and jth series  and , where  and .

Note that a crosscovariance function  is not generally

symmetric in ; that is,  in general. The estimate of

either an autocovariance or crosscovariance at lag  is given by

, (25.11)

(25.12)

(25.13)

, (25.14)

xit xt( )i= i 1 … m, ,=

μi Exit=

xt x1t … x, mt,( )= k

Γ k( ) E xt μ–( ) xt k+ μ–( )T=

T μ μ1( μ2 … μm ), , ,=

Γ k( ) m m×
Γ T k( ) Γ k–( )= Γ k( )

γ ii k( ) E xit μi–( ) xi t k+( ) μi–( )=

xit Γ k( )

γ ij k( ) E xit μi–( ) xj t k+( ) μj–( )=

xit xjt i j, 1 … m, ,= i j≠

γ ij k( ) i j≠,

k γ ij k( ) γ ij k–( )≠

k

γ̂ ij k( ) 1
n
--- xit xi–( ) xj t k+( ) xj–( )

t 1=

n k–

∑=
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Autocorrelation in Series Data
where

.

Note that for , the autocovariance estimate  in Equation
(25.14) has the same form as Equation (25.9). The autocorrelation and
crosscorrelation estimates at lag  are

Partial Auto-
correlation

Another useful diagnostic tool for the analysis of the serial
dependence is the partial autocorrelation function. Background on
this function is deferred to the next section, after introducing
autoregressive processes.

Simple Use of 
Autocorrela-
tion Function

The function acf can be used to compute the sample autocovariance,
autocorrelation, or partial correlation functions for a specified
number  of lags.

To compute an estimate of the autocorrelation function  for lags
 of the x.cor series, we can use the command:

> x.acr <- acf(x.cor, plot=F)

To generate a plot of  along with a plot of the time series, we can
use the following commands:

> par(mfrow=c(2,1))
> plot(x.cor)
> acf.plot(x.acr)

The result is shown in Figure 25.3. The autocorrelation estimate at
each lag is given by the height of the vertical lines in the acf plot. You
can specify the number of lags  for which you want
autocorrelations by using the optional argument lag.max to acf. 

(25.15)

xi
1
n
--- xit

t 1=

n

∑=

i j= γ̂ ij k( )

k

ρ ij k( ) γ̂ ij k( )

γ̂ ii 0( )γ̂ jj 0( )
----------------------------------=

k

γ k( )
k 0 1 … M, , ,=

γ k( )

M
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Chapter 25  Analyzing Time Series and Signals
The value of the autocorrelation function at lag 0 is always 1. The
horizontal band about zero represents the approximate 95%
confidence limits for H0:ρ = 0. If no autocorrelation estimate falls
outside the strip defined by the two dotted lines, and the data contain
no outliers, you may safely assume that there is no serial correlation.
Otherwise, you should be concerned about the presence of serial
correlation. In our example, the acf plot indicates serial correlation at
lags 1 and 2.

The function acf.plot can be used to plot the results from acf. This
function takes the list returned by acf and uses its components to
calculate approximate limits and decide appropriate labeling for the
plot. For more details, see the help file for acf.plot.

Figure 25.3: Time series plot and ACF plot for a correlated series.
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Autoregression Methods
AUTOREGRESSION METHODS

Univariate 
Autoregression

Consider a time series  that satisfies the difference equation
(recursion)

where  is a white noise process with zero mean and finite variance

. The time series  is called an autoregressive process of order 

and is denoted . The  in Equation (25.16) has zero mean, a

fact which can be easily verified. An  process with nonzero
mean  is generated by the equation

It is worth noting that an  process is a pth-order Markov
process.

Not all values of the autoregression coefficients  result in a

stationary process. In particular, in an  process

it is fairly easy to show that  is the condition for stationarity.
For , the  process becomes a discrete time random
walk, which is known to be nonstationary. 

, (25.16)

. (25.17)

(25.18)

xt

xt α1xt 1– α2xt 2–
… αpxt p– ε t+ + + +=

ε t

σε
2 xt p

AR p( ) xt

AR p( )
μ

xt μ– α1 xt 1– μ–( ) … αp xt p– μ–( ) ε t+ + +=

AR p( )

α1 … α, p,

AR 1( )

xt αxt 1– ε t+=

α 1<
α 1= AR 1( )
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Chapter 25  Analyzing Time Series and Signals
For an  process, the condition for stationarity is that the
(complex) roots of

lie outside the unit circle. An interpretation of  models from a
physical point of view is given by Priestley (1981).

Autoregressive models have a wide range of uses in statistics,
including forecasting and autoregression-type spectral density
function estimation.  Autoregressive modeling is also widely
applicable in engineering, where it is referred to as linear prediction
modeling. For example, speech analysis and recognition systems rely
on autoregressive models. For many applications, autoregression
provides good linear approximations, which have the virtue of
extreme simplicity. In particular, the equations used to estimate the
unknown coefficients  are linear, as we point out below. Of
course one should be careful not to insist on using an autoregression
model where, for example, a moving average component is needed,
nonstationarity must be dealt with, or a nonlinear model is required.
When in doubt, consult an experienced statistician with a time series
background.

The Yule-
Walker 
Equations

Let  be the autocovariance function for the  process . It

can be shown that the  coefficients  satisfy the Yule-
Walker equations

(25.19)

AR p( )

φ z( ) 1 α1z– α2 z2– …– αp zp–=

AR 2( )

α1 … α, p,

(25.20)

γ k( ) AR p( ) xt

AR p( ) α1 … α, p,

γ k i–( ) αk
k 1=

p

∑ γ i( )        i 1 2 … p, , ,= =
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Autoregression Methods
In addition, one can show that 

Given that the  coefficients satisfy the Yule-Walker equations
in (25.20), there is a very natural way to obtain estimates

 based on a finite sample  of the time series.

Namely, replace the  in Equation (25.20) by the estimates

where

and solve the resulting equations for . Since ,
we can write the equations as

. (25.21)

, (25.22)

(25.23)

(25.24)

σx
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k 1=

p
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n
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n k–

∑=
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Chapter 25  Analyzing Time Series and Signals
We call these equations the sample-based Yule-Walker equations.
Once the ’s are obtained by solving Equation (25.24), we can use

them along with the  in Equation (25.21),

to solve for .

In practice, the order of the autoregression is not known, and it is
often desirable to compare solutions of various orders. Hence, we
wish to solve Equation (25.24) for a variety of values of  from 1
through , where  is sometimes 10, 15, or even larger.

The Levinson-
Durbin 
Recursion

The matrix of coefficients in Equation (25.24) is a Toeplitz matrix;
that is, the elements on each diagonal are all the same. Because of this
property, there is a recursive method that allows you to obtain
estimates for a kth-order model from the estimates of the  model
in a fast and accurate manner. The method is referred to as the
Levinson or Levinson-Durbin algorithm. Let  denote the estimate

of the ith autoregression coefficient  in an  model. If we

have the estimates , and the estimated error variance

 assuming an  model, then estimates for an 
model are

where

(25.25)

α̂j

γ k( )

γ̂ 0( ) α1 γ̂ 1( ) α2 γ̂ 2( ) … αpγ̂ p( ) σ̂ε
2+ + + +=

σε
2
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, (25.26)

(25.27)
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Autoregression Methods
and

From Equation (25.28), we see that the squares of the  can be
interpreted as a measure of the usefulness of increasing the order of
the AR process from  to . The  sequence is called the
partial autocorrelation function or “reflection coefficients,” depending
on the field of study. This sequence is useful in diagnosing whether
the series is in fact an AR process. If the process is an , then all

 should be close to zero for . A common approximation for

the standard error of the  for  is . See Box and
Jenkins (1976).

AIC Order 
Selection

A way of selecting the order of the AR process is to find an order that
balances the reduction of estimated error variance with the number of
parameters being fit. One such measure is Akaike’s Information
Criterion (AIC). For an order  model, this criterion can be written as

If the series is an AR process, then the value of  that minimizes
 is an estimate of the order of the autoregression.

Multivariate 
Autoregression

If the scalar quantities , , and  in Equation (25.17) are replaced

by -dimensional vectors , , and , and the scalars  are

replaced by  matrices , we obtain the multivariate pth-order
autoregression

(25.28)σk
2 σk 1–

2 1 ak k,
2–( )=

ak k,

k 1– k ak k,

AR p( )
ak k, k p>

ak k, k p> 1 n⁄ )1 2⁄

(25.29)

k
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k
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. (25.30)
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Chapter 25  Analyzing Time Series and Signals
Here,  is an -dimensional white noise series with a mean of zero

and a covariance matrix . This covariance matrix is sometimes
loosely referred to as the “prediction variance.”

The vector autoregression  satisfies a vector analogue of the Yule-

Walker equations in (25.20). Namely, with  we
have

We also have the vector autoregression analogue of Equation (25.21):

Sample Yule-Walker equations for this vector case are obtained by
replacing  in Equation (25.22) by

where

(25.31)

(25.32)

, (25.33)

. (25.34)
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Autoregression Methods
The equations

are then solved for the estimates , for . The
multivariate version of Equation (25.25) is therefore

which may be solved for .

There is also an analogue of the Levinson-Durbin algorithm
(Equations (25.26) to (25.28)), which may be used to obtain estimates

, , and  for a kth-order vector autoregression,

given estimates , , and  for an order 
vector autoregression. This method is referred to as Whittle’s recursion.

Autoregression 
Estimation via 
Yule-Walker 
Equations

The Spotfire S+ function ar.yw fits autoregressive models to
multivariate time series using Whittle’s extension to the Levinson-
Durbin recursion. We can use it to fit an autoregression model to a
short piece of the say.wavelet speech data set as follows:

> sp <- say.wavelet[2501:2600,]
> sp.ar <- ar.yw(sp)
> sp.ar$order.max

  [1] 20

> sp.ar$order

  [1] 6

> acf.plot(sp.ar)

(25.35)

(25.36)

Γ
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∑ Γ
ˆ

i( ),     i 1 2 … p, , ,= =

Âk k 1 … p, ,=
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0( ) Γ
ˆ

k( )Âk Q̂+

k 1=

p

∑=

Q̂

Âi k, i 1 … k, ,= Q̂k

Âi k, i 1 … k, 1–,= Q̂k 1– k 1–
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Chapter 25  Analyzing Time Series and Signals
> plot(sp.ar$aic, type = "l",
+ main = "Akaike Information Criteria for sp")

The result of the acf.plot command is shown in Figure 25.4; the
output from the plot command is shown in Figure 25.5.

The maximum order fit defaults to 20 in this case, and the AIC picks
a model of order 6. Figure 25.4 shows the minimum AIC at 7; this
plot starts indexing at 1, but the first element of the sp.ar$aic
component is for order 0.

We can plot the residuals of the sp.ar model with the following
command:

> plot(sp.ar$resid,
+ main = "Residuals after fitting an AR(6) to sp")

The result is shown in Figure 25.6.

Figure 25.4: Autocorrelation plot for speech data.
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Figure 25.5: AIC for the speech data.

Figure 25.6: Residuals for the speech data.
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Autoregression 
Estimation 
with Burg’s 
Algorithm

This section presents Burg’s algorithm, an alternative to using Yule-
Walker equations for fitting autoregressive models. Burg’s approach is
based on estimating the kth partial correlation coefficient by
minimizing the sum of forward and backward prediction errors:

Given all of the coefficients for the order  model, Equation
(25.37) is a function only of . The function essentially measures

how well the order  model predicts forwards and backwards. The
algorithm is optimal in the sense of maximizing a measure of entropy.
See Burg (1967). The following Spotfire S+ commands fit an 
model using Burg’s algorithm on the same piece of the say.wavelet
data set that we used in the previous section.

> sp.arb <- ar.burg(sp, F, 2)
> sp.ar <- ar(sp, aic = F, order.max = 2)
> sp.arb$ar

, , 1
           [,1]
[1,]  1.3642945
[2,] -0.4733473

> sp.ar$ar

, , 1
           [,1]
[1,]  1.3430803
[2,] -0.4559053

(25.37)
SS ak k,( ) xt a1 k, xt 1–– …– ak k, xt k––[ ]2
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k 1–

ak k,

k
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Autoregression Methods
Finding the 
Roots of a 
Polynomial 
Equation

The function polyroot finds the zeroes of the complex-valued
polynomial equation:

Use this function to find the roots of an autoregression or moving
average operator with user-specified coefficients. For example, if you

have estimated pth-order autoregressive coefficients ,

then the autoregression polynomial is . In

this case, you would choose  with , ,

and  for .

To solve the equation  in Spotfire S+, we use the
following command:

> polyroot(c(6,5,1))

  [1] -2+0i -3+0i

akzk … a1z a0+ + + 0=

φ̂1 φ̂2 … φ̂p, , ,

1 φ̂1 z– φ̂2 z2– …– φ̂p zp–

a a0 a1 … ak, , ,( )= k p= a0 1=

ai φ̂i–= i 1 … p, ,=

z2 5z 6 0=+ +
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Chapter 25  Analyzing Time Series and Signals
UNIVARIATE ARIMA MODELING

Spotfire S+ provides several functions for fitting autoregressive
integrated moving-average (ARIMA) models to univariate time series
data. ARIMA models are useful for a wide variety of problems
including forecasting, quality control, seasonal adjustment, spectral
estimation, and general summarization of data. Box and Jenkins
(1976) give a comprehensive account of ARIMA modeling, and
discussions of ARIMA models can be found in many recent standard
textbooks for time series.

ARMA Models A stationary autoregressive moving-average process is obtained by
combining Equation (25.6) for an MA process and Equation (25.16)
for an AR process. A zero mean ARMA  process  can be
written in the form

Here,  is a white noise process; that is, the  are uncorrelated with

zero mean and variance . The process  is sometimes called the

innovations process. The parameters  are the autoregressive

coefficients, and the parameters  are the moving-average
coefficients.

If the innovations  are Gaussian and uncorrelated, then they are
also independent. This is a frequently used assumption.

The ARMA model of Equation (25.38) is often written in the form
, where  is a backshift operator. That is,

 and

. (25.38)

(25.39)

p q,( ) xt

xt φ1xt 1–– …– φpxt p–– ε t θ1ε t 1–– …– θqε t q––=

ε t ε t

σ2 ε t

φ1 … φp, ,

θ1 … θ, q,

ε t

φ B( )xt θ B( )ε t= B

B xt( ) xt 1–=

φ B( ) 1 φ1B– …– φpBp–=

θ B( ) 1 θ1B– …– θqBq.–=
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Univariate ARIMA Modeling
ARIMA Models Many time series encountered in practice are nonstationary. For these
series, simple ARMA models are typically inadequate. However, the
differenced series may be stationary. Box and Jenkins (1976) developed
a methodology for fitting ARMA models to differenced data. These
are known as autoregressive integrated moving-average (ARIMA)
models. An ARIMA  process  is 

where , , and  are as defined in Equation (25.38),

 is the first-difference operator and  is the
-fold differencing operator. When , the differenced series

 follows an ARMA  process:

. When , the twice differenced series  is an

ARMA  process:

Seasonal 
Models

Time series data frequently exhibit seasonal cycles or periodicities.
For example, data collected on a monthly basis may have a period of
length  months, reflecting the seasonal  behavior of the process.
The framework for ARIMA models can be extended to handle
periodicities as well (see Box and Jenkins (1976), Chapter 9). Seasonal
behavior is modeled by using seasonal autoregressive moving-
average processes and differencing operators. For a period of length

, these operators are of the form

(25.40)

p d q, ,( ) xt

φ B( )∇ dxt θ B( )ε t=

ε t φ B( ) θ B( )

∇ 1 B–= ∇ d 1 B–( )d=

d d 1=

wt xt∇ xt xt 1––= = p q,( )

φ B( )wt θ B( )ε t= d 2= wt

p q,( )

wt ∇ 2xt ∇ xt xt 1––( ) xt 2xt 1–– xt 2–+= = =

(25.41)

s 12=

s

Φ Bs( ) 1 Φ1Bs– …– ΦPBsP–=

Θ Bs( ) 1 Θ1Bs– …– ΘQBsQ–=

∇ s
D 1 Bs–( )D=
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Chapter 25  Analyzing Time Series and Signals
The parameters  are the seasonal autogressive coefficients

and the parameters  are the seasonal moving average

coefficients. The operator  is the seasonal -fold differencing
operator.

Typically, , , and  are combined with the ordinary

operators , , and  in a multiplicative fashion. The
multiplicative seasonal ARIMA s process can be
represented by

In general, Spotfire S+ allows for any number of multiplicative
operators with arbitrary periods. However, Equation (25.42) should
be sufficiently general for most problems.

ARIMA Models 
with 
Regression 
Variables

In addition to using past values to model a series, it is often desirable
to use explanatory or regression variables. The regression variables
may simply be a constant (intercept) term, a deterministic function of
time, dummy variables to model outliers, or lagged values of another
time series.

Let  be a vector of  elements. An ARIMA process  with known
regression variables is defined by

where  is an unknown parameter vector and  is an ARIMA

process. For example, setting  results in a straight line

regression model component  with slope  and

intercept .

. (25.42)

Φ1 … Φ, p,

Θ1 … Θ, Q,

∇ s
D d

Φ Bs( ) Θ Bs( ) ∇ s
D

φ B( ) θ B( ) ∇ d

p d q, , ) P D Q, ,(×

Φ Bs( )φ B( )∇ s
D ∇ dxt Θ Bs( )θ B( )ε t=

, (25.43)
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Univariate ARIMA Modeling
Identifying and 
Fitting ARIMA 
Models

Box and Jenkins (1976) give the following paradigm for fitting
ARIMA models.

1. Model identification: Determination of the ARIMA model 
orders  and .

2. Estimation of model parameters: The unknown parameters in 
Equations (25.42) and (25.43) are estimated.

3. Diagnostics and model criticism: The residuals are used to 
validate the model and suggest potential alternative models 
which may be better.

These steps are repeated until a satisfactory model is found.

Model 
Identification

Initial model identification is done using the autocorrelation and
partial autocorrelation functions. These can be computed using the
Spotfire S+ function acf. See Chapter 6 of Box and Jenkins (1976) for
a complete discussion on the identification of ARIMA models.

An alternative procedure for selecting the model order is use of a
penalized log-likelihood measure. One such measure is Akaike’s
Information Criterion (AIC). For autoregressive models, AIC is given
by Equation (25.29). For general ARIMA models, AIC is defined
below in Equation (25.46).

Estimation of 
Model 
Parameters

ARMA models

The log-likelihood for an ARMA model, Equation (25.40), can be
computed using the prediction error decomposition (see Harvey (1981)).
Consider an ARMA process  as in Equation (25.38), and assume

the innovations  are independent Gaussian random variables. Let

denote the conditional mean one-step-ahead prediction of  based

on the data , and let

p d q, ,( ) P D Q, ,( )

(25.44)

xt

ε t

xt
t 1– E xt x1 … xt 1– φ1 … φp θ1 … θq, , , , , , , ,(=

xt

x1 x2 … x, t 1–, ,

σ2ft var x1 … xt 1– φ1 … φp θ1 … θq, , , , , , , ,( )=
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Chapter 25  Analyzing Time Series and Signals
denote the conditional variance of . The parameter  is the

variance of the innovations process . Defining the prediction errors by

 and letting  denote the likelihood, one
can show that

Fitting an ARMA  model by Gaussian maximum likelihood

involves finding the estimates  and  that yield a

minimum in Equation (25.45). The parameters  and

 enter into Equation (25.45) through Equation (25.44). The

estimate of  is , which can be concentrated out of the

likelihood. The likelihood is, in general, nonlinear in  and

 and so a nonlinear optimizer must be used.

The likelihood for an ARMA model (Equation (25.43)) with
regression variables can be computed in a similar fashion. In this
case, replace ’s by ’s in Equation (25.45). The regression
coefficients can be concentrated out of the likelihood (see Kohn and
Ansley, (1985)).

A so-called conditional log-likelihood approximation to Equation
(25.45) can be obtained by conditioning on the first  values of the
series, where  is the order of the autoregressive operator. This
conditional log-likelihood function is given by

(25.45)

(25.46)

x̂ t
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Univariate ARIMA Modeling
Bell and Hillmer (1987) give several arguments in favor of Equation
(25.46). The main advantage of using the conditional log-likelihood
approximation is that the AR parameters  can be
concentrated out of the likelihood, reducing the computational
complexity of the nonlinear optimization. Usually, little information
is lost in using Equation (25.46) instead of Equation (25.45).

The prediction errors  and their variances  can be computed in a
number of ways. Ansley (1979) gives an efficient algorithm based on
the Choleski decomposition of the covariance of the process .
However, if missing values are present, this algorithm no longer
applies. Alternative algorithms are based on applying the Kalman
filter to a state space representation of an ARMA process. See Jones
(1980), Harvey (1981), and Kohn and Ansley (1986) for various
methods based on the Kalman filter approach. All of these methods
handle missing values, although the Kohn and Ansley approach is the
most general.

Multiplicative ARIMA models

Estimating multiplicative ARIMA models by Gaussian maximum
likelihood is a straightforward extension to estimating ARMA
models. With no missing values present, the likelihood for a
nonstationary series is obtained by differencing the data and
computing the likelihood for the differenced process.

With missing values present, the likelihood can be computed using
the Kalman filter: see Kohn and Ansley (1986) and Bell and Hillmer
(1987). The simplest approach is to condition on the first 

observations, where  and  are the orders of the expanded
autoregressive and differencing operators obtained by multiplying the
regular and seasonal AR and the regular and seasonal difference
operators in Equation (25.42). Specifically,  is the order

of the polynomials , and  is the order of

. This gives the general ARIMA analog to the ARMA log-
likelihood in Equation (25.46), and is equivalent to the differencing
approach in the case of no missing values.

φ1 … φp, ,

et ft

xt

p∗ d∗+

p∗ d∗

p∗ p sP+=

Φ Bs( )φ B( ) d∗ d sD+=

∇ s
D∇ d
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Chapter 25  Analyzing Time Series and Signals
Missing values in the beginning of the series

If a missing value occurs in the first  observations, then

conditioning on the first  observations is not possible. In this
case, the series can be reversed and the likelihood function is
computed for the reversed series. The likelihood is invariant to
reversing the order of the data. If there are missing values at both the
beginning and the end of the series, then the exact likelihood must be
computed using a modification of the Kalman filter, derived by Kohn
and Ansley (1986). However, an approximate likelihood can be
obtained by including a dummy regression variable for each missing
value, and then replacing the missing value by an arbitrary number
(see Bruce and Martin (1989)). The dummy regression variable is zero
at all time points except for the time of the missing value.

Starting values for the optimizer

The likelihood is maximized using a general quasi-Newton optimizer
(see the nlmin help file for a discussion of the optimizer). It is
necessary to provide starting values for the ARIMA parameters. Poor
starting values can lead to slow convergence to the maximum, or
even worse, convergence to a local maximum. To avoid this, it is
advisable to use a stepwise fitting procedure, starting with relatively
simple ARIMA models and adding one coefficient at a time. Several
tuning constants can be adjusted to provide better performance, but
the default values in nlmin are usually sufficient.

Transformation to ensure stationarity and invertibility

The ARIMA coefficients can be transformed to ensure stationarity
and invertibility of the model (see Jones, (1980)). If the solution lies
on the boundary of stationarity or invertibility, then the optimizer
may take many steps to converge. For this reason it may be desirable
not to constrain the model to be invertible.

p∗ d∗+

p∗ d∗+

Warning

If printed output from the optimizer is requested, the printed coefficients are the transformed 
coefficients and not the original ARIMA coefficients.
192



Univariate ARIMA Modeling
AIC and model selection

One method of model selection is based on Akaike’s information
criterion (AIC). The best model is given by the model with the lowest
AIC value. AIC is a penalized version of the log-likelihood function
in Equation (25.46), and is defined by

where  is the total number of parameters estimated. Specifically,  is
the number of AR, MA, and regression coefficients. For example,

 in an ARIMA  model.

When comparing the AIC values for different models, it is important
to condition the likelihood on the same number of observations. In
other words,  should be the same in Equation (25.47) for all models.
This allows one to use AIC to compare models with different
numbers of AR or differencing coefficients.

Computational notes

The Spotfire S+ function arima.mle fits ARIMA models to univariate
time series data through Gaussian maximum likelihood. The
conditional form of the likelihood (Equation (25.46)) is used.

The regression parameters are concentrated out of the likelihood, as
in Kohn and Ansley (1985). With no missing data, an algorithm
similar to that of Ansley (1979) is used to compute the likelihood.
With missing data, the Kalman filter is used with the state space
representation of Kohn and Ansley (1986). However, missing values
are not permitted in the beginning of the series; see the above
discussion on missing values.

By default, the moving average parameters are transformed to ensure
invertibility. However, if the solution lies on the boundary of
invertibility, better performance by the optimizer can be obtained by
not transforming the parameters. In certain circumstances, it might be
useful to fit models in which lower order AR or MA parameters are
constrained to be zero. In this case, the coefficients cannot be
transformed to ensure stationarity or invertibility.

, (25.47)AIC 2 L xm 1+ … xn x1 … xm, ,, ,( ) 2r+log–=

r r

r 2= 1 1 1, ,( )

m
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Chapter 25  Analyzing Time Series and Signals
Examples of simple use

Simulate an MA(2) series and fit it using a Gaussian maximum
likelihood.

> ma <- arima.sim(100, model = list(ma = c(-0.5,-0.25)))
> ma.fit <- arima.mle(ma, model = list(ma = c(-0.5,-0.25)))

Fit a Box-Jenkins (0,1,1) x (0,1,1) Airline model to the ship data. Use
zeroes as the starting values for the optimizer.

> model <- list(list(order = c(0,1,1)), list(order =
+ c(0,1,1), period = 12))
> fit <- arima.mle(ship, model = model)

Diagnostics and 
Model Criticism

The third stage in fitting ARIMA models consists of validating the
model through examination of the one-step prediction residuals .
See Chapter 8 of Box and Jenkins (1976) for a more complete
discussion of ARIMA model diagnostics. The single most important

diagnostic is a plot of the standardized residuals  over time. If

the correct ARIMA model is fit and the data are Gaussian, then 
should behave approximately like a Gaussian white noise process
with zero mean and a variance of 1. Problems to look for in the plot of

 include outliers, nonhomogeneity of variance, and obvious
structure in time.

Another basic diagnostic technique is to examine the autocorrelation

function of the residuals . Let  be the autocorrelations of the

residuals . If the model is adequate, then the  should be
uncorrelated Gaussian random variables with zero mean and a

variance of . Hence, the presence of large autocorrelations

indicates that a model may be inadequate, and the nature of the 
may suggest how to improve it. However, some caution should be

exercised in the use of  to evaluate the model. For example, the

variance times  can be a serious overestimate of the true variance
for small lags, which underestimates the significance for lack of fit.
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Univariate ARIMA Modeling
In addition to examining the  individually, it is useful to base a
diagnostic on the autocorrelations as a whole. Define the portmanteau
test statistic  by

,

where  is a fixed maximum number of lags and  is the number of
observations used to compute the likelihood. Typically,  should be
between 10 and 20. If the correct ARIMA model is fit and the data
are Gaussian, then  is approximately distributed as a chi-square
random variable on  degrees of freedom, where  is the number
of parameters in the model.

The Spotfire S+ function arima.diag computes the three diagnostics
discussed in this section for ARIMA models fit to univariate time
series.

Examples of simple use

Compute diagnostics for simulated AR(1) series.

> x <- arima.sim(model = list(ar = 0.9))
> fit <- arima.mle(x, model = list(ar = 0.9))
> diag <- arima.diag(fit)

By default, the argument plot = T in arima.diag, and the diagnostics
are plotted using the function arima.diag.plot.

Forecasting 
Using ARIMA 
Models

An important application of ARIMA models is to forecast beyond the
end of a series. Assuming that the model order and parameters are
known, the forecast means and confidence intervals are easily
produced using the Kalman filter (see Harvey (1981)). Typically, one
would first fit an ARIMA model using the techniques described in the
section Model Identification. The resulting model can then be used to
produce forecasts for the series.

The Spotfire S+ function arima.forecast produces forecasts given an
ARIMA model for a univariate time series.
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Chapter 25  Analyzing Time Series and Signals
Predicted and 
Filtered Values 
for ARIMA 
Models

The Spotfire S+ function arima.filt produces one-step predicted
values and their variances , as defined in Equation (25.44). The
primary application of arima.filt is for use in other Spotfire S+
functions; it computes the residuals in arima.diag, and it computes
the forecasts in arima.forecast.

If autoregressive or differencing operators are present in the model,
then predicted values are not produced for the first  time

points, where  and  are the orders of the expanded
autoregressive and differencing polynomials.

Computational 
Note

The function arima.filt also returns filtered values and their
variances. Let  be a process which behaves according to a signal
plus noise model:

,

where  is the signal and  is the noise. A common problem is to

extract the signal by filtering the observed process . The filtered

values and their variances are  and .

For a pure signal,  is 0 for all  and the filtered values are simply the
observations themselves. The current version of Spotfire S+ does not
support signal plus noise models. Hence, the filtered values are the
same as the input series. However, the filtered values are returned for
compatibility with future releases.

Simulating 
ARIMA 
Processes

The Spotfire S+ function arima.sim generates a simulated ARIMA
process of the form in Equations (25.42) or (25.43), given an ARIMA
model structure, regression variables and a vector of innovations or a
random generator. The innovations vector corresponds to  in
Equation (25.40), and can be input directly. Alternatively, a random
generator may be supplied, and the innovations are generated
accordingly.
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Univariate ARIMA Modeling
For stationary ARMA processes, the series can be initialized by
generating an initial random state vector according to a state space
form of the model. The initial state vector is computed by
transforming a white noise vector using the Choleski decomposition
of the unconditional covariance matrix of the state vector.

For nonstationary ARIMA processes, the unconditional covariance
matrix of the state vector doesn’t exist. Hence, the simulated series is
initialized by assuming that the initial state vector is zero. This is
equivalent to assuming past innovations and simulated values are
zero. To avoid the effects of the initialization, a series longer than the
one needed is generated, and the simulated series is taken from the
end of the generated series.

Examples of simple use

Simulate an ARMA(1,1):

> x <- arima.sim(model = list(ar = 0.5, ma = -0.6), n = 100)

Simulate an ARIMA(0,1,1) with contaminated innovations:

> rand.gen <- function(n) ifelse(runif(n) > 0.9, rnorm(n),
+ rcauchy(n))
> x.wild <- arima.sim(100, model = list(ndiff = 1, 
+ ma = 0.6), start.innov = 50, rand.gen = rand.gen)

Modeling 
Effects of 
Trading Days

In many monthly economic time series, the data are affected by the
number of trading days in that month. For example, if a given month
has more weekdays and fewer weekends than other months, then one
might expect a higher level of economic activity during that month.
One approach to handling the trading day effect is to include
regression variables reflecting the number of Mondays, Tuesdays,
etc., in each month or quarter.

The function arima.td returns a multivariate time series that is
suitable for use as a regression variable. The first column gives the
number of days in the month or quarter. The following six columns
give the number of Saturdays, Sundays, Mondays, Tuesdays,
Wednesdays, and Thursdays minus the number of Fridays in the
month or quarter. See Hillmer, Bell, and Tiao (1983) for use of trading
day variables in ARIMA modeling of time series data.
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Using the holiday functions in Spotfire S+, you can modify arima.td
to take into account the number of holidays. See the section
Calculating Holiday Dates in the chapter Dates, Times, Time
Intervals, and Sequences in the Programmer’s Guide.

Examples of simple use

> td.ship <- arima.td(ship)
> mle.td <- arima.mle(ship, model = list(order = c(0,1,1)),
+ xreg = td.ship)
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Long Memory Time Series Modeling
LONG MEMORY TIME SERIES MODELING

Long memory is a common feature of time series in a wide variety of
areas. It is hard to detect, but has enormous effects on statistical
quantities such as standard errors and tests, and hence on the
conclusions drawn. One major application has been to time series of
wind speeds (Haslett and Raftery, (1989)), where long memory means
that there is a tendency to observe not just windy weeks and months,
but windy years and decades, and presumably also windy centuries
and millennia; we often say that there is variation at all temporal
scales.

Long memory time series have autocorrelations that decay slowly as
lag increases. Typically, the autocorrelations tend to zero
hyperbolically; that is, , with  so that the sum of the

autocorrelations is infinite, . Thus, the

autocorrelations between observations far away from one another in
time are small, but not negligible. The spectrum of a long memory
time series goes to infinity as the frequency goes to zero at the rate

.

One important property is that the variance of the sample mean
declines at a slower rate than the usual . If , then

. (Note that a long memory time series is stationary
only if .) This can have huge consequences. In the wind
speed example,  is estimated to be 0.34. This implies that, for
estimating the mean wind speed at a given location, twenty years of
actual data are worth only about the same as one month of
independent daily observations.

The ARMA models (with no differencing) discussed in the section
Autoregression Methods and the section Univariate ARIMA
Modeling are, by contrast, short memory models. For ARMA
models, the autocorrelations decay exponentially, the sum of the
autocorrelations is finite, the spectrum is finite at zero, and the
variance of the sample mean is the usual . Fitting a short
memory ARMA model to data can give very misleading results if the
long memory property holds, even if the fitted model matches the
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Chapter 25  Analyzing Time Series and Signals
lower-lag autocorrelations well. In the wind speed example, a short
memory ARMA model underestimates the variance of the sample
mean by a factor of more than ten in many cases.

The long memory property in time series is discussed by Mandelbrot
(1977), who calls it the Joseph effect because of the sequence of seven
years of plenty followed by seven lean years, as recounted in the
Book of Genesis story of Joseph. Mandelbrot pointed out that long
memory time series tend to be asymptotically approximately self-
similar and hence to be, at least approximately, equivalent to fractals.

Fractionally 
Differenced 
ARIMA 
Modeling

Fractionally differenced ARIMA models

The fractionally differenced ARIMA  model has been found
to represent long memory time series quite well. It is defined by
Equation (25.40), namely

.

However,  may take any value in the interval  instead of being

restricted to either 0 or 1, and  is defined by the

binomial expansion , where  are

the binomial coefficients. When the series has a nonzero mean , the
model is better written as

For the model given in Equation (25.48), , so that
, where  is defined in the section Long Memory Time

Series Modeling. This model is stationary only for  and
reduces to the usual short memory ARMA  model when .

Estimation of model parameters

The log-likelihood for the fractionally differenced ARIMA
model of Equation (25.48) can be computed exactly using the
prediction error decomposition given by Equation (25.45). In this

(25.48)
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Long Memory Time Series Modeling
calculation,  and  are given by Equations 4.3 and 4.4 of Haslett
and Raftery (1989). A major practical problem with maximum
likelihood estimation based on this likelihood is that the required

CPU time is . This can be enormous for the long series that are
typical of application areas in which long memory is known to arise
often. For example, in the wind speed data set, .

We therefore use an approximation described in section 4.3 of Haslett
and Raftery (1989) that essentially uses asymptotic values to
approximate the dependence of  on  for . This reduces

the order of the required CPU time from  to . In practice,
the approximation is extremely accurate, and for the wind speed data,
it reduces the actual computer time by a factor of 70. We have found

 to be a good choice; the exact maximum likelihood
estimator can be recovered by setting .

Computational notes

The Spotfire S+ function arima.fracdiff estimates the parameters of
the fractionally differenced ARIMA  model. It returns exact
or approximate maximum likelihood values, standard errors,
covariance and correlation matrices of the parameter estimates, and
the log-likelihood. The degree of approximation is determined by ;
we recommend . The exact maximum likelihood estimator
can be found by setting , but if the series is long it can require
significant CPU time. The log-likelihood is useful for comparing
models and choosing the number of AR and MA parameters. An
approximate test of the long memory property can be carried out by
dividing the estimate of  by its standard error and comparing the
result with a standard normal distribution.

Simulating 
Fractionally 
Differenced 
ARIMA 
Processes

The Spotfire S+ function arima.fracdiff.sim generates a simulated
fractionally differenced ARIMA  series of the form in
Equation (25.48), given the values of , the AR and MA parameters,
and the mean . This function uses the prediction error
decomposition to generate  from its conditional distribution, given
all of the aforementioned values.

xt
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Chapter 25  Analyzing Time Series and Signals
Examples of simple use

Simulate a fractionally differenced ARIMA(2,.33,0).

> x.sim <- arima.fracdiff.sim(model = list(d=0.33,
+ ar=c(0.01, -0.06), mu=3.1))
> arima.fracdiff(x.sim, model = list(ar=rep(NA,2)))

$model:
$model$ar:
[1]  0.01145420 -0.06152254
 
$model$ma:
[1] 0
 
$model$d:
[1] 0.3189504
 
 
$var.coef:
                d           ar1           ar2 
  d  1.959256e-04 -1.914622e-04 -9.319428e-05
ar1 -1.914622e-04  2.867117e-04  8.999233e-05
ar2 -9.319428e-05  8.999233e-05  1.439553e-04
 
$loglik:
[1] -14162.39
 
$h:
[1] 0.0001492355
 
$d.tol:
[1] 0.0001220703
 
$M:
[1] 100
 
$hess:
            d         ar1         ar2 
  d -17064.33  -9863.2099  -4881.2697
ar1  -9863.21 -10040.2167   -108.7296
ar2  -4881.27   -108.7296 -10038.6852
 
$call:
arima.fracdiff(x = x.sim, model = list(ar = rep(NA, 2)))
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Spectral Analysis
SPECTRAL ANALYSIS

Let  be a stationary time series with sampling interval . A major
theorem for time series states that any series with zero mean

 and finite variance  may be well
approximated by a truncated Fourier series:

where  and  are random Fourier (series) coefficients, the  are

well-chosen frequencies, and  is sufficiently large. This
approximation of  as a Fourier series may be re-expressed in
complex exponential form

where the  are complex random Fourier coefficients that have zero

mean, . The  are also uncorrelated: 

The notation  denotes the complex conjugate of .

Sometimes the set of real coefficients,  and , or the set of

complex coefficients , are referred to as the (discrete time) Fourier

transform of .

, (25.49)

, (25.50)

(25.51)
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Chapter 25  Analyzing Time Series and Signals
Time series with a nonzero mean may be approximated by adding
the mean  to the right hand side of Equation (25.50):

The exact version of the approximation in Equation (25.50) is an
integral known as the spectral representation of . The spectrum or

spectral density  for the series  can be described in terms of the

coefficients  defined in Equation (25.50):  

Thus, the value of the spectrum at frequency  is the second moment

of the random amplitude at frequency . The spectrum  at an

arbitrary frequency  can also be expressed exactly in terms of the
autocovariance sequence 

Namely,  has the exact Fourier series representation

(25.52)

(25.53)

(25.54)

. (25.55)
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Spectral Analysis
The autocovariances are the Fourier coefficients of :    

Again, we often refer to  as the (discrete time) Fourier transform
of , and refer to  as the inverse Fourier transform of .

Estimating the 
Spectrum  
from the 
Periodogram

Suppose that we have a time series  observed at a sampling

interval . The spectrum of this series may be estimated from the
periodogram by using the function spec.pgram. The steps involved in
this computation are described below.

1.  Detrending and de-meaning

The first step in estimating the spectrum is to ensure that the mean is
zero for the time series. If it is thought that the original series may
contain a linear trend, this is accomplished by subtracting a least
squares regression line from the series; that is, replace  with

, where  is the least squares linear fit to the data. If it is
thought that there is no trend in the data, subtract the mean from the
series; i.e., replace  with , where  is the sample mean of

. By default, the spec.pgram function removes the least
squares line.

2. Tapering

A data taper is often applied to a detrended or de-meaned series. A
taper sequence  multiplies each value in a series by a number
between 0 and 1. Tapering reduces leakage of power. See Bloomfield
(1976) and Priestley (1981) for discussions of tapering. The
spec.pgram function includes a default split cosine taper of ten
percent on each end of the series. See the section Tapering for further
details.

. (25.56)
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Chapter 25  Analyzing Time Series and Signals
3. Padding

Padding consists of increasing the length of the series  from  to 

by adding  zero values . Padding may
generally be ignored for the spectrum function. See discussions on the
fast Fourier transform (FFT) in the references for explanation.

4. The periodogram

To avoid extra notation, let  be the length of the series with or
without padding. Let  be the sampling interval, where

 is the frequency sampling rate component of the tspar attribute.
Following the above operations, an estimate of the power spectrum at
discrete Fourier frequencies  is found by forming the
periodogram

where  is the tapered, detrended series. Note that

 and  if only a mean was removed from the series. The
discrete Fourier transform (DFT) sum in Equation (25.57) is
computed using a mixed radix fast Fourier transform (FFT) algorithm.

5. Smoothing

The periodogram is smoothed to reduce variability in the spectrum
estimate (the estimates in Equation (25.57) do not become less
variable as the length of the series increases). However, smoothing
also introduces bias in the estimates, and there is a trade-off between
the variability of the estimates and the bias. A thorough analysis
might include inspecting the periodogram with several levels of
smoothing. The smoothing that is performed on the periodogram is a
sequence of running averages. The user can specify lengths of

(25.57)
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Spectral Analysis
modified Daniell windows to be run sequentially over the
periodogram in spec.pgram. The spec.pgram function yields the

smoothed estimate  expressed in decibels ( ).

6. Degrees of freedom and bandwidth

The spec.pgram function also computes the degrees of freedom for a
chi-square approximation of the spectral density estimate at each
Fourier frequency. When there is no smoothing, tapering or padding,
there are  degrees of freedom. The degrees of freedom 
increases with the amount of smoothing.

Bandwidth is a measure of the amount of smoothing. The formula for
bandwidth used by  spec.pgram is

where  are the values of the smoothing filter for , and

 is the interval between discrete Fourier frequencies. The
spec.pgram function returns the smoothing filter in the filter
component, which has an index starting at zero. See Bloomfield
(1976) for details.

Readers with no interest in multivariate time series may skip to the
section Example of simple use.

Cross-Spectra 
Coherency and 
Phase

The cross-spectrum  between two time series  and  at

frequency  is approximately , where the  and  are

given by Equation (25.50) (the extra subscript,  or , distinguishes
coefficients for the two series). One can think of this quantity as the
complex covariance between  and . The phase of  and  at

frequency  is the angle of the cross-spectrum .

, (25.58)

S̃ fk( ) 10 10S̃ fk( )log×

n 2= n

bw
I

Δn
------- 1

12
------ j k–( )2+⎝ ⎠

⎛ ⎞ aj
1 2/

j 0=

2k

∑=

aj j 0 … 2k, ,=

1 Δn⁄

Sxy fj( ) xt yt

fj ECxjCyj Cxj Cyj

x y

Cxj Cyj xt yt

fj Sxy fj( )
207



Chapter 25  Analyzing Time Series and Signals
The squared-coherency  between  and  at frequency  is the

squared modulus of the cross-spectrum at , normalized by the

product of the two spectral densities  and :

.

In view of Equation (25.53), we have

.

This provides the most natural interpretation of squared-coherency: it
is the square of the correlation between the random coefficients 

and  of the series  and  at frequency .

Smoothing of the spectral estimates is mandatory for the estimation of
coherency. If no smoothing is performed, the estimate is identically 1.
See Priestley (1981). Similarly, the estimation of phase is basically
meaningless unless smoothing is performed.

The spec.pgram function computes estimates of the squared-
coherency and the phase for multivariate series. The output is in the
form of matrices, where each column is identified with a particular
pair of univariate components. If  is less than , then the column

associated with the pair  is .

Example of simple use

A spectral estimate of the square root of the sunspots data may be
obtained with:

> srsun.sp <- spec.pgram(sqrt(sunspots),
+ spans = c(3, 5, 7, 9), detrend = F, demean = T)
> spec.plot(srsun.sp)

The spec.pgram command subtracts the mean from the series, but
assumes that there is no trend. The spectrum is smoothed with a
series of 4 running averages. By default, ten percent on each end of
the series has been tapered with a split cosine bell. The length of the
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Spectral Analysis
series is automatically padded from 2739 to 2744. A plot of the
spectrum is produced by the spec.plot function. The result is shown
in Figure 25.7.

Another simple example of the spec.pgram function is:

> llynx <- log(lynx)
> ll.sp <- spec.pgram(llynx, taper = 0)
> spec.plot(ll.sp)

The result is shown in Figure 25.8.

The spectral estimate of the lynx series uses no tapering, and since it
also uses no smoothing, it is the raw periodogram estimate. The data
are detrended, allowing for the possibility of a linear trend in the data.
Note that this is probably a poor spectral estimate for the dataset.

Below, we analyze monthly CO2 concentrations at Mauna Loa,
Hawaii from January 1958 to December 1975. A ts.plot of the data
reveals a strong linear trend and obvious cyclic behavior. Not
surprisingly, the cycles appear to be yearly. The analysis is shown in
Figure 25.9.

> par(mfrow = c(3, 1)) # put three plots in the figure
> co.sp1 <- spec.pgram(co2, plot=T)
> co.sp2 <- spec.pgram(co2, spans=c(9,9), plot=T)
> co.sp3 <- spec.pgram(co2, spans=c(3,3,3), plot=T)
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Figure 25.7: Smoothed periodogram of the sunspot data.

Figure 25.8: Periodogram of the lynx data.
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Autoregressive 
Spectrum 
Estimation

An alternative spectral estimate to the smoothing of the periodogram
is to compute an autoregressive (or some other) model. The spectrum
of the estimated model can then be used as the spectral estimate of
the smoothed periodogram.

The spectrum  of an autoregressive process with coefficients
 is

Figure 25.9: Spectral estimates for the CO2 data.
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Chapter 25  Analyzing Time Series and Signals
where  is the frequency in cycles per unit time, and  is the

variance of the innovation process .

Phase and coherency may also be estimated for multivariate series.
The Spotfire S+ function spec.ar computes the autoregressive
spectrum of a time series.

Examples of simple use

> lynx.ar <- ar(log(lynx))
> lynx.spar <- spec.ar(lynx.ar, plot = T) 

The resulting plot is displayed in Figure 25.10. The spectrum function
can be used in the same way as spec.pgram to allows for different
types of spectrum estimates. The function spec.plot can be used to
plot the output from any spectrum estimation function. 

Tapering Tapering is a technique applied to time series to reduce the leakage
phenomenon in spectral estimates. Leakage occurs when there is a
large amplitude peak at a particular frequency . The spectral
estimates at frequencies near  can be higher than expected, and can
easily obscure nearby lower amplitude peaks.

Figure 25.10: Autoregression spectral estimate for the lynx data.
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Spectral Analysis
A data taper , , applied to a time series  produces a new
tapered series.

Typically the values of  are close to zero at the ends, and close to
one in the central part of the data.

The function spec.taper implements a split cosine bell taper. Let 
be the portion to be tapered at each end of the series, and let  be the
length of the series. For  the split cosine bell taper is

Examples of simple use

> lynx.taper <- spec.taper(lynx)
> lynx.taper.5 <- spec.taper(lynx, .05)

All the values in lynx.taper are smaller than the corresponding value
in lynx. In lynx.taper.5, five percent of the values on each end are
tapered.

(25.60)
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Chapter 25  Analyzing Time Series and Signals
LINEAR FILTERS

The most important and widely used type of filter is a linear time-
invariant filter. With this kind of filter, the relationship between the
input series  and the filtered output series is described by a constant
coefficient linear difference equation. Linear time-invariant filters are
often referred to as a digital filters by engineers. This class of filters has
two primary types: convolution filters and recursive filters.

1. Convolution filters are usually called finite-impulse response (FIR) 
filters in the engineering literature, and moving average (MA) 
filters in the statistical literature.

2. Recursive filters are usually referred to as infinite-impulse response 
(IIR) filters in the engineering literature, and autoregressive 
(AR) filters in the statistical literature.

Convolution 
Filters

If  is the original series and  is the set of filter

coefficients, then the filtered series  is related to  by the
convolution equation

We note that the filter is “causal”, in that each  is formed as a linear

combination of present and past , namely . If one is
dealing with a spatial series rather than a time series, then the
noncausal symmetric form of the convolution filter can be used:

xt

(25.62)
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Linear Filters
In Equation (25.63), the filter coefficients are
 and  is an even integer. In this

case, the  are usually symmetric; that is,  for

. The noncausal symmetric form of the convolution
filter can also be used when one is dealing with a time series in an
“off-line” mode, as opposed to a real-time application, as is usually
the case for Spotfire S+ users.

Recursive 
Filters

A recursive filter uses an autoregressive-type recursion to transform
the series. If  is the original series and  are the

coefficients, then the filtered series  is obtained by the recursion

Examples of simple use

Here are two examples using convolution filters:

> flynx <- filter(log(lynx), rep(0.2,5))
> ts.plot(log(lynx), flynx)
> gaussfilt <- exp(-((-15:15)^2/7))
> gaussfilt <- gaussfilt/sum(gaussfilt)
> gflynx <- filter(log(lynx), gaussfilt)
> ts.plot(log(lynx), gflynx)

The resulting plots are shown in Figure 25.11 and Figure 25.12.
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Chapter 25  Analyzing Time Series and Signals
Figure 25.11: Moving average of the lynx data.

Figure 25.12: Gaussian filtering of the lynx data.
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Linear Filters
The flynx structure is a simple, equal-weight moving average of the
logarithm of the lynx data, while gflynx is filtered with a Gaussian
filter.

Here is an an example using a recursive filter:

> set.seed(14) # set the seed to reproduce this example
> ar.sim <- filter(rnorm(500), c(0.5, -0.3, 0.35), "r",
+ init = rnorm(3))
> ar.sim <- ar.sim[101:500]
> ts.plot(ar.sim, main = "AR(3) simulation")

This example is a simulation of an AR  process. The first part of
the simulation is removed to more closely approximate a stationary
process. The resulting plot is shown in Figure 25.13.

Figure 25.13: Simulated autoregression.
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Chapter 25  Analyzing Time Series and Signals
Complex 
Demodulation 
and Least 
Squares Low-
Pass Filtering

Complex demodulation is a technique for analyzing a time series that
does not assume stationarity. Inherent in the technique is the use of a
low-pass filter. Hence, these two topics are presented together. The
function demod can be used not only to perform complex
demodulation of a time series, but also to generate a least squares low-
pass filter with specific qualities.

Complex 
Demodulation

Suppose that a time series  satisfies

where  and  are smooth processes that vary slowly over time,

and  is a process without a component at frequency . The 

multiplier is the amplitude at time  of the periodic component with
frequency , and  is the phase of this periodic component at time

. Hence the model fits a series with an oscillation at some given
frequency  that changes slowly over time.

Equation (25.65) may be rewritten using complex numbers as:  

The series is then transformed into

A smooth component of  yields estimates of  and . The
problem is to extract this component.

, (25.65)
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Linear Filters
Least Squares 
Low-Pass 
Filtering

An ideal low-pass filter with cutoff frequency  has a transfer
function

That is, all frequencies less than  are left unchanged, while no

frequencies higher than  are allowed to pass through. Such an ideal
filter does not exist, but it can be approximated arbitrarily well by
using a sufficiently complex filter. A common approach is to design a
fixed length filter using the least squares approximation method; the
approximation improves as the filter length increases. See Bloomfield
(1976) for details.

Examples of simple use

In the commands below, the lynx data are demodulated at the peak
frequency of the raw periodogram. The phase and amplitude of the
demodulation are plotted separately.

> lynx.sp <- spectrum(log(lynx))
> lynx.pk <- lynx.sp$freq[lynx.sp$spec == 
+ max(lynx.sp$spec)]
> lynx.dem <- demod(log(lynx), lynx.pk, .05, .10)
> ts.plot(lynx.dem$phase, xlab = "Time", ylab = "Phase")
> ts.plot(lynx.dem$amp, xlab = "Time", ylab = "Amplitude")

Figure 25.14 shows the phase estimate of demodulation of the lynx
data, while Figure 25.15 shows the amplitude estimate of
demodulation.

(25.68)
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Figure 25.14: Phase estimate in the demodulation of the lynx data.

Figure 25.15: Amplitude estimate in the demodulation of the lynx data.
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Linear Filters
A method for obtaining a low-pass filter of length 50 with cutoff
frequency 0.08 when the data are sampled at intervals of one time
unit is shown below.

> filt50 <- demod(rnorm(200), 0.1, 0.08-1/49,
+ 0.08+1/49)$filter
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ROBUST METHODS

Outliers in time series typically cause bias and an increase in the
variability of conventional Gaussian maximum likelihood or least
squares estimates. Unacceptably large biases can occur even in large
sample size situations, when the fraction of outliers is not negligibly
small. In particular, this problem occurs for both the Yule-Walker and
Burg methods of fitting autoregressions.

As a simple example, consider the Yule-Walker estimate of the first-

order autoregression parameter , which is also the lag 1
autocorrelation:

.

Suppose that  is an outlier for some given time , where 

is large. Then  is small, and in fact,  as .

The robust procedures described in this section are designed to
minimize the increased bias and variability due to outliers, whether
they appear in isolation or in patches. We describe four functions for
dealing with outliers: ar.gm, acm.filt, acm.ave, and acm.smo.

Typically, ar.gm and acm.ave are used in conjunction. The ar.gm
function provides initial robust autoregression parameter estimates,
which are then used by the robust “smoother” algorithm acm.ave.
The function acm.smo is an alternative robust smoother, and both
acm.ave and acm.smo use the robust filter acm.filt as a basic building
block.

We elaborate on our setup and terminology. Consider the general
replacement type outliers (or RO) model: 

. (25.69)
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Robust Methods
In Equation (25.69),  is a pth-order autoregression,  is a 0-1

process with probability  of being 1, and  is a contamination

process. Here,  is the fraction of contamination. This general
replacement model contains the so-called additive outliers (AO)
model

as the special case where  with  when , and

 when . Although the methods described in this section
work for the general RO model, it is sometimes convenient for
purposes of discussion to use the AO model. In doing so, we think in
terms of the  having a contaminated normal distribution

where  is an arbitrary outlier-generating distribution. The 

term is the “nominal” Gaussian distribution of the additive noise .
In the context of Equations (25.69) or (25.70), a filter

 is an estimate of the unobservable “signal”  that

depends on the present and past observations  at time . A

smoother  is an estimate of  that depends on all the

observations  for each time  . This is common
terminology in the engineering literature. Both filters and smoothers
often perform a smoothing operation, in the sense that they are
weighted linear combinations of  and , respectively,
and act approximately like local weighted means of the observations.

Robust filters and smoothers are nonlinear functions of the data that
are designed to give good estimates of  in the presence of outliers
generated by Equation (25.69) or (25.70). Although acm.filt,
acm.ave, and acm.smo are capable of robust filtering and smoothing
when  is known and positive, none of these functions are capable

of estimating  from the data. Estimation of  along with the

(25.70)
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Chapter 25  Analyzing Time Series and Signals
autoregression parameters for  is a more difficult problem that we
will hopefully address in future releases of Spotfire S+. Thus, we
assume for the most part that . This corresponds to the

frequently occurring situation in which the autoregression  is

observed perfectly a large fraction ( ) of the time, and observed
with additive outliers a small fraction ( ) of the time.

When , the values of  are observed perfectly a fraction

 of the time, and this corresponds to  in Equation (25.69)

and  in Equation (25.70).  For the fraction of time  when the

 are unobservable, we replace the terms robust filter and robust
smoother by robust filter-cleaner and robust smoother-cleaner,
respectively. We often shorten these terms to simply filter-cleaner and
smoother-cleaner.

A well-designed filter-cleaner has the following intuitively desirable
property: for times at which  by virtue of  or ,

we have . This occurs a large fraction  of the time. For

times at which  is a gross outlier by virtue of  having a large

magnitude,  is a pure prediction based on the previous filter-

cleaned values . A well-designed smoother-cleaner

behaves similarly, except at the times when  is a gross outlier; at

these times,  is a pure interpolation based on all the other smoother-

cleaned data .

In order to use a robust filter-cleaner or smoother-cleaner for
autoregression models

we must specify the unknown parameters  and , where

 is the scale parameter for the distribution  of the innovations .

In the case where , we have .

, (25.71)
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Robust Methods
Since we seldom know the parameters  or , we must
estimate them robustly from the data. This may be done using ar.gm,
which computes a so-called generalized M-estimate, or GM estimate.
This kind of robust estimate is also called a bounded influence
autoregression estimate, and is described in the section Generalized
M-Estimates for Autoregression. The GM estimate produces robust

parameter estimates  and , which may be used in any
of the robust filter or smoother functions: acm.ave, acm.filt, and
acm.smo.

Typically, one uses least squares autoregression model fitting via
ar.yw or ar.burg to produce improved parameter estimates

 and . These can, in turn, be used to run acm.ave again
and obtain improved smoother-cleaned values and least squares
estimates of these autoregression parameters. Although one could
iterate this procedure several times, we recommend using just one
complete iteration of this form, which produces a second set of

improved values , , and . Because of the
strongly nonlinear nature of acm.ave, further iteration can lead to
poor solutions.

Generalized 
M-Estimates 
for 
Autoregression

Generalized M-estimates (or GM estimates)  and  of

autoregression parameters  and the innovations

scale parameter  are obtained by solving the equations
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φ̂1 φ̂2 … φ̂p, , , ŝε
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where the observed time series is ,

,  is a bounded and continuous function,

and both  and  are nonnegative, data-dependent weight

functions. As we see below,  depends on  as well. We focus our
description on Equation (25.72), and refer the reader to Martin (1980)
for details concerning Equation (25.73).

Equation (25.72) provides a linear weighted least squares estimate.
The estimate is linear in the case where the “big” weights  and

the “little” weights  are replaced by fixed weights; that is, the

weights are independent of both the data  and the estimate .

Because the  depend upon , the equations in (25.72) are
nonlinear. They are solved by an iterative weighted least squares
method:

where  is the desired number of iterations, and the first iteration

starts with the least squares estimate . Equation (25.73) is

also iterated, yielding an estimate  at iteration .

The big weights  are constructed so that  is bounded

and continuous, and the little weights  are constructed so that

 is bounded and continuous. This achieves the basic
requirement for robustness: the summands of the estimating equation
in (25.72) must be bounded and continuous. 

Specifically, the weights  are obtained from a psi-function :

, (25.74)
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Robust Methods
where  is a tuning constant. Two kinds of psi-functions are typically
used.  Huber’s favorite psi-function is defined as (Huber (1964)):

and Tukey’s bisquare psi-function is (Mosteller and Tukey (1977)):

The separate tuning constants  for the psi-functions are adjusted to
obtain a compromise between high efficiency when the data are
actually Gaussian, and robustness towards outliers.

The “big” weights  are also derived from a psi-function of either
the Huber or Tukey type. As a default, ar.gm uses Tukey’s bisquare
psi-function. Details concerning the formation of the weights 
may be found in Martin (1980).

The main idea behind the choice of big weights and little weights is as
follows. Basing the big weights  on the Tukey bisquare function,

the  are close to one when  is not too large, and  therefore

has little effect. However, when  is “very large” (that is, when it is a

gross outlier in the vector sense), the  are zero and  has no

influence on the estimate . Similar comments apply when  is
based on the Tukey bisquare function. When the residual

 is not too large,  is close to one, and when  is

“very large” by virtue of  being a gross outlier,  is zero.

Despite its attractive properties, a difficulty arises when  is based

on the Tukey bisquare function . The equations in (25.72) have
multiple solutions, and starting the iteration in Equation (25.74) with a
least squares estimate might lead to a poor solution. This difficulty is
avoided when  is based on the Huber psi-function , since
Equation (25.72) has an essentially unique solution. However, basing
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Chapter 25  Analyzing Time Series and Signals
 on  does not result in as much robustness toward large outliers

as when  is based on . Thus, the strategy adopted is to iterate

Equation (25.74) a number of times using  based on the Huber psi-

function, followed by a number of iterations using  based on the
Tukey psi-function.

Example of simple use

> robar <- ar.gm(bicoal.tons, 2)

Robust 
Filtering

Consider the special case where  in Equation (25.70) is an AR(1)

process with known parameter . In this case, the robust filtering
algorithm is given by

,

where  is a measure of scale for the observation prediction residuals

. The quantity  is computed using an auxiliary data-
dependent recursion. See Martin (1981) for details. The psi-function

we use to compute  is the Hampel two-part redescending type:

The robust filter has the property that, if  is a gross outlier large

enough that the scaled residual  is larger in absolute

value than , then  is a pure prediction based on the previous

robust filter value, .

Now consider the case where  is a pth-order autoregression. In this

case,  may be represented in state space form
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Robust Methods
,

where  and  are

-dimensional vectors, and

is the so-called state transition matrix. In this case, the robust filter
value of time  is

.

Namely,  is the first component of the vector filtered value 
obtained from the recursion

.

Here  is obtained from an auxiliary, data-dependent recursion. See

Martin and Thomson (1982) for details. In the recursion for ,

is the first component of the vector one-step-ahead prediction .

In the usual case where we can use acm.filt as a filter-cleaner by
setting  equal to zero, it turns out that
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Chapter 25  Analyzing Time Series and Signals
It is easy to check that when the Hampel two-part psi-function  is

used and  is a “good” data point by virtue of  being

less than  in magnitude, then . In this case,  is not altered if
it is “good.” This usually occurs for most of the data points when
acm.filt is used in the filter-cleaner mode.

Examples of simple use

> gm <- ar.gm(bicoal.tons, 3)
> bicoal.filt <- acm.filt(bicoal.tons, gm)

Two-Filter 
Robust 
Smoother

The robust smoother acm.ave is constructed using two acm.filt
robust filters: one “forward” filter  going forward in time over the

data, and one “backward” filter  going backward in time over the
data.

Let  denote the backward one-step-ahead predictor of , given

the data . Let  denote conditional mean squared error,

conditioned on , for filtering for the forward filter (this is

computed in acm.filt). Let  be the conditional mean-squared

error, conditioned on , for predicting  for the backward
filter (this is also computed in acm.filt). Then the robust smoother

 is obtained by confining  and  in the natural Bayesian
way:

This smoother has the following characteristics when used as a
smoother-cleaner by setting : “good” data points  are
left unaltered, while gross outliers are replaced by interpolates based

on the cleaner data .

Examples of simple use

> gm <- ar.gm(bicoal.tons, 3)
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Robust Methods
> bicoal.smo <- acm.ave(bicoal.tons, gm)

Alternative 
Robust 
Smoother

The alternative robust smoother acm.smo is an approximate
conditional mean type robust smoother. For details, see Martin (1979).

Examples of simple use

> gm <- ar.gm(bicoal.tons, 3)
> bicoal.smo <- acm.smo(bicoal.tons, gm)
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Chapter 26  Overview of Survival Analysis
INTRODUCTION

The term survival analysis originated in the study and analysis of times
to death (that is, survival times) for medical patients diagnosed with
some fatal disease. Survival analysis is now a well-developed field of
statistical research and methodology that pertains to modeling and
testing hypotheses of failure time data. These data can be for humans
as well as for animals, machines, electronic equipment, automobile
components, etc. Hence, the methodology is far more general than
the analysis of survival times. In fact, fields of study other than
medicine have given other names to the identical methodology
discussed here. This chapter might just a well have been called any
one of the following:

• Analysis of Failure Time Data

• Reliability Analysis

• Event History Analysis

However, because of the focus of most of the examples, and because
of the history of the development of this material, we call it Survival
Analysis. This helps to simplify the presentation. In examples, we will
simply refer to patients (or people or subjects) and their survival times.
You can substitute the appropriate terminology for your field of study
as you read if you wish.

Modeling of survival times is based on two distinct approaches:
parametric and nonparametric. The material in this and the following
chapters covers both approaches. The addition of parametric survival
models extends the functionality of earlier versions of Spotfire S+.
The parametric survival functions include methods that predate the
nonparametric methods but are still widely used in industrial and
manufacturing settings, where estimation of component and system
reliability may require extrapolation from accelerated tests. The
nonparametric methods are widely used in clinical trials, and include
Kaplan-Meier estimates of survival, Cox proportional hazards
regression models and extensions due to Andersen and Gill (1982).
Miller (1981) and Kalbfleisch and Prentice (1980) are excellent
references.
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OVERVIEW OF SPOTFIRE S+ FUNCTIONS

Nonparametric survival analysis in Spotfire S+ is based on the

survival51 StatLib entry produced by Terry Therneau of the Mayo
Clinic. It differs only slightly from the version 5 code found in
StatLib. The expected survival routines have been modified to use
dates objects for dates, and there have been some minor bug fixes
and enhancements. Major enhancements include penalized and
frailty models. Terry Therneau has been an important contributor to
the documentation for survival analysis in Spotfire S+.

Spotfire S+ 4.5 introduced a new set of functions for life testing
analysis based on estimation code originally developed by Meeker
and Duke (1981), and subsequently refined by W.Q. Meeker.
Additional parametric survival analysis code (survReg) was added to
Spotfire S+ 2000; this code was taken from the survival5 library,
with a name change from survreg to survReg for backward
compatibility.

In this section we present a brief overview of the functions used for
doing survival analysis in Spotfire S+. This section provides an
overview of the type of computations, model fitting, and graphical
displays available for doing survival analysis in Spotfire S+. More in
depth information is contained in the chapters that follow.

Survival Curve 
Estimates

The function survfit fits a Kaplan-Meier or a Fleming-Harrington
survival curve, or computes the predicted survival curve for a Cox
proportional hazards model.

Examples • A simple Kaplan-Meier estimate:

> survfit(Surv(time, status), data = leukemia)

• Print the survival curve estimate, standard errors, and 
confidence intervals:

> summary(survfit(Surv(time, status),
+ data = leukemia))

1. Copyright © 1994, 1999, Mayo Foundation for Medical Education 
and Research. All Rights Reserved.
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• A Fleming-Harrington estimate:

> survfit(Surv(time, status), data = leukemia,
+ type = "fleming-harrington")

• A Kaplan-Meier estimate with two groups:

> survfit(Surv(time, status) ~ group,
+ data = leukemia)

• Predict survival at the average predictor for a Cox model:

> survfit(coxph(Surv(futime, fustat) ~ age,
+ data = ovarian))

• Predict survival at other than the average predictor for a Cox 
model:

> survfit(coxph(Surv(futime, fustat) ~ age, data =
+ ovarian), newdata = data.frame(age = 70))

Important 
Options

1. Kaplan-Meier or Fleming-Harrington estimate of survival.

2. Greenwood or Tsiatis variance estimate.

Comparing 
Kaplan-Meier 
Survival Curves

The function survdiff computes one- and k-sample versions of the

Fleming-Harrington  family of tests. This includes the log-rank
and Gehan-Wilcoxon tests as special cases.

Examples • Test for the presence of a separate baseline survival for each 
sex:

> survdiff(Surv(time, status) ~ sex, data = lung)

• A one-sample test:

> pred <- survexp(time ~ ratetable(sex = sex,
+ year = 1970, age = age * 365.25), data = lung,
+ cohort = F)

> survdiff(Surv(time, status) ~ offset(pred),
+ data = lung)

Gρ
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Cox 
Proportional 
Hazards 
Models

The function coxph fits a Cox proportional hazards model. Available
options include stratified and penalized models, as well as models
with fixed coefficients. Penalized Cox models include ridge
regression, smoothing splines, and frailty terms (random effects) as
special cases. User-written penalty functions are also supported.

The cox.zph function computes a test of proportional hazards for a
fitted Cox model, and also estimates time-dependent coefficients
suitable for graphing. This function has an option to compute a global
test of the proportional hazards assumption, in addition to tests for
each covariate.

Examples • A standard Cox model:

> coxph(Surv(time, status) ~ group, 
+ data = leukemia)

• A model with time dependent data:

> coxph(Surv(start, stop, event) ~ (age + surgery) *
+ transplant, data = heart)

• A stratified model containing a separate baseline hazard 
function for each institution, with patient covariates sex and 
Karnofsky score:

> coxph(Surv(time, status) ~ sex + pat.karno 
+ strata(inst), data = lung, na.action=na.exclude)

• A simplified ridge regression:

> coxph(Surv(futime, fustat) ~ rx + ridge(age,
+ ecog.ps, theta=1), data = ovarian)

• A model with a penalized p-spline fit for the age variable:

> coxph(Surv(futime, fustat) ~ rx + pspline(age),
+ data = ovarian)

• A model with a Gaussian random effect for litter:

> coxph(Surv(time, status) ~ rx + frailty(litter,
+ distribution="gaussian"), data = rats)
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• Force in a known term, age, without estimating a coefficient 
for it:

> coxph(Surv(time, status) ~ offset(age) + sex,
+ data = lung)

• Compute proportional hazards test for fitted model:

> cox.zph(coxph(Surv(time, status) ~ age + sex +
+ ph.ecog, data = lung, na.action = na.exclude))

• Display the estimated coefficients as a function of time:

> plot(cox.zph(coxph(Surv(time, status) ~ age + sex +
+ ph.ecog, data = lung, na.action = na.exclude)))

Important 
Options

Breslow, Efron, or exact partial likelihood methods for handling ties.

Parametric 
Survival 
Models

The functions survReg and censorReg fit parametric survival models.
The survReg function supersedes survreg, and includes options for
frailty models, nonparametric smooth terms, penalized models, and
user-defined distributions; the syntax for penalized models is
analogous to that for penalized Cox models. In contrast to other
survival functions that use Surv to specify the censored response,
censorReg uses censor. The censor function in similar in structure to
Surv, but has flexible options for custom definitions of censor codes.

The function kaplanMeier, which extends survfit to allow for left
and interval censoring, fits Kaplan-Meier models using the same
syntax as censorReg.

Examples • A stratified model, with separate baseline hazards for males 
and females:

> survReg(Surv(time, status) ~ sex + age + ph.karno +
+ strata(sex), data = lung, na.action = na.exclude)

• Fit a log-gaussian model:

> survReg(Surv(days, event) ~ voltage, 
+ data = capacitor, dist = "loggaussian")
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• Fit a Weibull distribution:

> censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights)

• Predict life times from a model for default failure rates:

> predict(censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights))

• Predict failure rates from a model for given life times:

> predict(censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights), q = c(100,
+ 200, 300),  type = "prob")

• Fit an extreme value distribution:

> censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights,
+ dist = "extreme")

• Fit a Weibull distribution stratified by the unique values of 
voltage:

> censorReg(censor(days, event) ~ strata(voltage),
+ data = capacitor2, weights = weights)

• Fit a Kaplan-Meier model stratified by the unique values of 
voltage:

> kaplanMeier(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights)

Important 
Options

1. Distributions include Weibull, smallest extreme value, 
logistic, log-logistic, normal, log-normal, exponential, log-
exponential, Rayleigh, and log-Rayleigh.

2. It is possible to fix the scale parameter, or have it estimated as 
part of the regression.

Predicted 
Survival

The function survexp predicts survival for an age and sex matched
cohort of subjects given a baseline matrix of known hazard rates for
the population. Most often, the hazard rates are entries in U.S.
mortality tables. Also, a prior Cox model can act as the rate table.
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Examples • Average conditional cohort survival, which defaults to U.S. 
white:

> survexp(time ~ ratetable(sex = sex, year = 1970,
+ age = age * 365.25), conditional = T, data = lung)

• Data to enter into a one sample test for comparing the given 
group to a known population:

> pred <- survexp(time ~ ratetable(sex = sex,
+ year = 1970, age = age * 365.25), data = lung,
+ cohort = F)

Important 
Options

1. Matrix of known hazards include U.S., Arizona, Florida, and 
Minnesota.

2. It is possible to compute estimates of individual or cohort 
expected survival.

Utility 
Functions

The Surv and censor commands are packaging functions; like I and C,
they don’t transform their arguments. The Surv function is used for
the left-hand side of all formulas in the nonparametric survival model
fitting functions. The censor function, which supports user-defined
censor codes, is used for the left-hand side of censorReg formulas.
For details on specifying censor codes, see the chapter Life Testing. 

A strata term in a model formula marks a variable or group of
variables as strata. If there are multiple variables, each unique
combination forms a stratum.

A frailty term in a model formula marks a variable as a penalized
term or random effect. The distribution of the random effect can be
"gamma", "gaussian", or "t".

A pspline term in a model formula fits a smoothing spline to the
variable using the p-spline basis.

A ridge term in a model formula fits a group of variables as a
simplified ridge regression.

A cluster term in a model formula identifies correlated groups of
observations.

An offset term in a model formula includes a variable in the model
with a fixed coefficient of 1.
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Examples • Right censored data with status=1 for death and status=0 for 
censored:

Surv(time, status)

• Right censored data, where a value of 3 corresponds to a 
death:

Surv(time, status = 3)

• Counting process data:

Surv(start, stop, event)

• Left censored data:

Surv(time, status, type = "left")

• Specify a vector of censoring codes explicitly:

censor(failure, upper, censor.codes = cens)

• Specify rx as a stratification variable:

strata(rx)

• Specify rx and residual.dz as stratification variables:

strata(rx, residual.dz)

• Make NA a separate group rather than omitting NA:

strata(rx, na.group = T)

• A model with a Gaussian random effect for litter:

> coxph(Surv(time, status) ~ rx + frailty(litter,
+ distribution="gaussian"), data = rats)

• A model with a penalized p-spline fit for the age variable:

> coxph(Surv(futime, fustat) ~ rx + pspline(age),
+ data = ovarian)

• A simplified ridge regression:

> coxph(Surv(futime, fustat) ~ rx + ridge(age,
+ ecog.ps, theta=1), data=ovarian)
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• Mark the observations in the group variable as correlated:

cluster(group)

• Force in a known term, age, without estimating a coefficient 
for it:

> coxph(Surv(time, status) ~ offset(age) + sex,
+ data = lung)
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Missing Values
MISSING VALUES

The handling of missing values (NA) for the survival analysis functions
has been enriched in recent releases of Spotfire S+. In particular, the
functions naresid and naprint provide new methods for handling
missing values. The main improvements follow.

1. You can specify a global default function for handling missing 
values. This frees you from having to do it in the call to the 
model fitting function. For example, to set the global missing 
value action to delete missing values row-wise, type:

> options(na.action = "na.exclude")

2. A brief report of the action taken is included when printing a 
fitted model. For example, if na.exclude is the action, a 
message similar to the following is included when the fit 
object is printed:

"14 observations deleted due to missing values".

3. When residuals and predictions are computed, NAs are 
appropriately inserted so that the resulting vectors are the 
same length as the original variables. This allows you to, for 
example, plot the residuals versus the predictors without 
worrying about whether the vectors are different lengths. 
Because of this feature, you can do the following:

> fit <- coxph(Surv(time, status) ~ age + sex +
+ ph.ecog + ph.karno, data = lung,
+ na.action = na.exclude)
> plot(lung$age, residuals(fit))

Warning Specifying a global default for handling NAs through the options list
affects all of the model fitting functions that call
model.frame.default. The tree function does not rely on
model.frame.default, so it is immune to the global setting. However,
virtually all of the remaining model fitting functions call
model.frame.default, and the global setting effects them. Because of
this, it is recommended that you provide the NA action function (for
example, na.exclude) as the na.action argument to the fitting
function, rather than rely on the global action.
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Additionally, if you fit a survival model relying on a global NA action,
and you use the fitted model in later computations, errors and/or
incorrect values can result if the global NA action is different than at
the time of fitting the model. If you expect to change the global NA
action, it is safer to provide the NA action function as the na.action
argument to the fitting function, rather than as a global option.
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Chapter 27  Estimating Survival
INTRODUCTION

A survival function defined over time  is, by definition, the probability
that a person survives at least to time . More formally, let  be a
positive random variable with distribution function  and density

. The survival function  is

and the hazard rate or hazard function  is

.

The hazard rate has the interpretation {patient dies in the
next small unit of time, , given they have survived to time }. A
constant hazard indicates that, over each interval, a constant
proportion of surviving subjects is expected to die. A familiar
example is radioactive decay, where the “death” of an atom
corresponds to its decay. Constant hazard may also be associated with
some fatal diseases, such as metastatic cancer.

The cumulative hazard  is defined as

.

What distinguishes survival analysis from most other statistical
methods is the presence of censoring. In a study of survival following
two different treatment regimens, for example, analysis of the trial
typically occurs well before all of the patients have died. For those
still alive at the time of analysis, the true survival time is known only
to be greater than the time observed to date. Such an observation is
said to be censored . Survival data are presented to the computer
program as a pair , where  is the observed survival time and

 if the observation is censored,  if a death is observed.

Survival data is often presented using a + for the censored
observation, so that a set of times might be 8, 11+, 14, 22, 36+, etc.

t
t T

F t( )
f t( ) S t( )

S t( ) 1 F t( )– P T t>{ }= =

λ t( )

λ t( ) f t( )
S t( )
--------=

λ t( ) P=

Δ t( ) t

Λ t( )

Λ t( ) λ t( ) td
0

t

∫ -logS t( )= =

ti δi,( ) ti
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Introduction
Let  denote the m distinct death times. Let 

be an indicator function, which is 1 if person  is still at risk at time s

and 0 otherwise; that is, . Then the number at

risk at time  is . We can similarly define  as

the number of deaths occurring at time .

In order to discuss some of the more recent methods in survival
analysis, it is helpful to recast the problem as a counting process, a
notation found in Andersen and Gill (1982) and others. A good
reference is Fleming and Harrington (1981). Let  be a counting

process associated with the ith subject, so  increases by 1 at each

observed event (for example, heart attack). In this notation a subject
can have multiple events.  is an indicator function as before, but

now can have multiple transitions from 0 (zero) to 1 (one), with a
subject entering and leaving the risk set.

t∗1 t∗2 … t∗m< < < Yi s( )
i

Yi s( ) 1 if s t i∗≤=

s r s( ) Yi s( )
1

n

∑= d s( )

s

Ni t( )

Ni

Yi t( )
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Chapter 27  Estimating Survival
KAPLAN-MEIER ESTIMATOR

The most common estimate of the survival distribution, the Kaplan-
Meier (KM) estimate, is a product of survival probabilities

,

where  and  are the number at risk and the number of deaths,
respectively, as defined above. Graphically, the Kaplan-Meier
survival curve appears as a step function with a drop at each death.
Censoring times are often marked on the plot as “+” symbols.

Example: AML 
Study

The data presented in Table 27.1 are preliminary results from a
clinical trial to evaluate the efficacy of maintenance chemotherapy for
acute myelogenous leukemia (AML). The study was conducted by
Embury, et al. (1977) at Stanford University. After reaching a status of
remission through treatment by chemotherapy, the patients who
entered the study were assigned randomly to two groups. The first
group received maintenance chemotherapy; the second, or control,
group did not. The objective of the trial was to see if maintenance
chemotherapy prolonged the time until relapse.

ŜKM t( )
r ti( ) d ti( )–

r ti( )
----------------------------

ti t<
∏=

r d

Table 27.1: Data for AML maintenance study. A+ indicates a censored value.

Group Length of Complete Remission (in weeks)

Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+

Nonmaintained 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45
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Kaplan-Meier Estimator
The Kaplan-Meier estimator of survival for the maintained group is
computed by hand as follows:

In Spotfire S+, the survfit function produces Kaplan-Meier survival
curve estimates by default. The data displayed in Table 27.1 is in a
data frame named leukemia, with the variables listed below.

• time: Time to relapse

• status: Indicator whether the observed time was a relapse (1) 
or censored (0).

• group: Treatment group indicator taking values Maintained 
and Nonmaintained.

You compute the KM estimate as follows:

> leukemia.surv <- survfit(Surv(time, status) ~ group,
+ data = leukemia)

> summary(leukemia.surv)

S 0( ) 1,=

S 9( ) S 0( ) 10
11
------× 0.91,= =

S 13( ) S 9( ) 9
10
------× 0.82,= =

S 18( ) S 13( ) 7
8
---× 0.72,= =

S 23( ) S 18( ) 6
7
---× 0.61,= =

S 28( ) S 23( ) 6
6
---× 0.61,= =

S 31( ) S 23( ) 4
5
---× 0.49,= =

S 34( ) S 31( ) 3
4
---× 0.37,= =

S 48( ) S 34( ) 1
2
---× 0.18= =
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Call: survfit(formula = Surv(time, status) ~ group, data = 
leukemia)

               group=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   9     11       1    0.909  0.0867       0.7541        1.000
  13     10       1    0.818  0.1163       0.6192        1.000
  18      8       1    0.716  0.1397       0.4884        1.000
  23      7       1    0.614  0.1526       0.3769        0.999
  31      5       1    0.491  0.1642       0.2549        0.946
  34      4       1    0.368  0.1627       0.1549        0.875
  48      2       1    0.184  0.1535       0.0359        0.944

               group=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   5     12       2   0.8333  0.1076       0.6470        1.000
   8     10       2   0.6667  0.1361       0.4468        0.995
  12      8       1   0.5833  0.1423       0.3616        0.941
  23      6       1   0.4861  0.1481       0.2675        0.883
  27      5       1   0.3889  0.1470       0.1854        0.816
  30      4       1   0.2917  0.1387       0.1148        0.741
  33      3       1   0.1944  0.1219       0.0569        0.664
  43      2       1   0.0972  0.0919       0.0153        0.620
  45      1       1   0.0000      NA           NA           NA

The survfit function returns an object of class "survfit". The
function produces the tabled output including columns for the
survival estimates, the standard errors of the estimates, and
confidence bounds for the estimates. The NAs on the last line result
from not being able to estimate a standard error and, consequently, a
confidence interval for zero survival on a log survival scale.
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Nelson and Fleming-Harrington Estimators
NELSON AND FLEMING-HARRINGTON ESTIMATORS

Another approach is to estimate , the cumulative hazard, using
Nelson’s estimate,

,

or, using counting process notation,

.

The Nelson estimate is also a step function. It starts at zero and has a

step of size  at each death.

One problem with the Nelson estimate is that it is susceptible to ties
in the data. For example, assume that 3 subjects die at 3 nearby times

, , , with 7 other subjects also at risk. Then the total increment
in the Nelson estimate is 1/10 + 1/9 + 1/8. However, if time data
were grouped such that the distinction between , , and  was
lost, the increment would be the smaller step 3/10. If there are a large
number of ties this can introduce significant bias. One solution is to
employ a modified Nelson estimate that always uses the larger
increment, as suggested by Nelson (1969) and Fleming and
Harrington (1984). This is not an issue with the Kaplan-Meier
estimate, however; with or without ties, the multiplicative step would
be 7/10.

The relationship , which holds for any continuous
distribution, leads to the Fleming-Harrington (FH) (Fleming and
Harrington (1984)) estimate of survival:

(27.1)
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Chapter 27  Estimating Survival
This estimate has natural connections to survival curves for a Cox
model. For sufficiently large sample sizes the FH and KM estimates
are arbitrarily close to one another, but keep in mind that unless there
is heavy censoring, the number at risk  is always small in the
right-hand tail of the estimated curve.

Example: AML 
Study (cont.)

You produce the Fleming-Harrington estimate of survival for the data
in Table 27.1 by specifying the type argument in the call to survfit.

> summary(survfit(Surv(time, status) ~ group,
+ data = leukemia, type = "fleming-harrington"))

Call: survfit(formula = Surv(time, status) ~ group, data = 
leukemia, type = "fleming-harrington")

               group=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   9     11       1    0.913  0.0871       0.7575        1.000
  13     10       1    0.826  0.1174       0.6253        1.000
  18      8       1    0.729  0.1422       0.4974        1.000
  23      7       1    0.632  0.1572       0.3882        1.000
  31      5       1    0.517  0.1731       0.2687        0.997
  34      4       1    0.403  0.1781       0.1695        0.958
  48      2       1    0.244  0.2038       0.0477        1.000

               group=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   5     12       2   0.8465   0.109       0.6572        1.000
   8     10       2   0.6930   0.141       0.4645        1.000
  12      8       1   0.6116   0.149       0.3791        0.987
  23      6       1   0.5177   0.158       0.2849        0.941
  27      5       1   0.4239   0.160       0.2021        0.889
  30      4       1   0.3301   0.157       0.1300        0.838
  33      3       1   0.2365   0.148       0.0692        0.808
  43      2       1   0.1435   0.136       0.0225        0.914
  45      1       1   0.0528     Inf       0.0000        1.000

You produce the modified Nelson estimate similarly by specifying
type = "fh2". Note that you can abbreviate the character string
passed to the type argument:

# Fleming-Harrington estimate

r t( )
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Nelson and Fleming-Harrington Estimators
> survfit(Surv(time, status) ~ group, data = leukemia,
+ type = "flem")

# Nelson estimate
> survfit(Surv(time, status) ~ group, data = leukemia,
+ type = "fh")
257



Chapter 27  Estimating Survival
VARIANCE ESTIMATION

Several estimates of the varaiance of  are possible. Since  can
be treated as a sum of independent increments, the variance is a
cumulative sum with terms of

See Klein (1991) for details. Using Equation (27.1) and the simple

Taylor series approximation , the variance of the
KM or FH estimators is

Klein also considers two other forms for the variance of S, but
concludes

• For computing the variance of  the Tsiatis formula is 
preferred.

• For computing the variance of , the Greenwood formula 
along with Equation (27.2) is preferred.

Confidence intervals for  can be computed on the plain (identity)
scale,

(27.2)

(27.3)

Λ
ˆ

N Λ
ˆ

N

d t( )
r t( ) r t( ) d t( )–[ ]
--------------------------------------- Greenwood

d t( )
r2 t( )
----------- Tsiatis

d t( ) r t( ) d t( )–[ ]
r3 t( )

---------------------------------------- Klein

var log f var f f⁄≈
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Variance Estimation
on the cumulative hazard or log-survival scale,

or on the log-hazard or log-log survival scale,

where “se” refers to the standard error.

Confidence intervals based on Equation (27.3) may give survival
probabilities that are greater than 1 or less than zero. Those based on
Equation (27.4) may sometimes be greater than 1, but those based on
Equation (27.5) are always between 0 and 1. For this reason many
users prefer the log-hazard formulation. Link (1984), (1986), however,
suggests that confidence intervals based on the cumulative-hazard
scale have the best performance. All three methods have been
implemented in the survfit function and are referred to as the
"plain", "log", and "log-log" confidence types. By default, the
summary.survfit confidence intervals are based on the log-survival
(or cumulative hazard) scale. Intervals on the two other scales may be
specified through the conf.type argument to survfit. Intervals on
the other scales are computed based on the following relationships:

A further refinement to the confidence intervals is suggested by
Dorey and Korn (1987). When the tail of the survival curve contains
much censoring and few deaths, there will be one or more long flat
segments. Confidence intervals based strictly on Equation (27.3),
Equation (27.4), or Equation (27.5) are constant across these intervals.
Dorey and Korn point out that, as censored subjects are removed
from the sample, the effective sample size decreases, so the actual
reliability of the curve should also decrease. Their correction retains
the original upper confidence limit and a modified lower limit which
agrees with the standard limits at each death time but is based on the
effective number at risk  between death times.

(27.4)

(27.5)

exp log S 1.96 se Λ( )±( )

exp exp– log log S–( ) 1.96 se log Λ( )±( )( )

se S( ) S se Λ( )≅

se log Λ( ) 1
Λ
----- se Λ(≅
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Chapter 27  Estimating Survival
Three lower confidence limit methods (the conf.lower argument) are
implemented in survfit. The usual method (conf.lower="usual")
uses, optionally, either the Greenwood or the Tsiatis formulation
unaltered.

Peto’s method (conf.lower="peto") assumes that

,

where  is the number at risk and . The Peto limit is
known to be conservative. The modified Peto limit
(conf.lower="modified") chooses  such that the variance at each
death time is equal to the usual estimate but between death times the

usual variance estimate is multiplied by , where  is the

number at risk and  is the number at risk at the last jump in the
curve (last death time). This is almost identical to Dorey and Korn’s
estimator and is the recommended procedure.

Example: AML 
Study (cont.)

Applying the methods of this section to the leukemia data, you can
compute the conservative lower confidence intervals of Peto for
survival based on the log-hazard scale as follows:

> summary(survfit(Surv(time, status) ~ group,
+ data = leukemia, conf.type = "log-log", 
+ conf.lower = "peto"))

Call: survfit(formula = Surv(time, status) ~ group, data =
leukemia, conf.type = "log-log", conf.lower = "peto")

               group=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   9     11       1    0.909  0.0867       0.5390        0.987
  13     10       1    0.818  0.1163       0.4729        0.951
  18      8       1    0.716  0.1397       0.3645        0.899
  23      7       1    0.614  0.1526       0.2854        0.835
  31      5       1    0.491  0.1642       0.1802        0.753
  34      4       1    0.368  0.1627       0.1132        0.657
  48      2       1    0.184  0.1535       0.0288        0.525

var Λ
ˆ

N t( )( ) c
r t( )
---------=

r t( ) c 1 Ŝ t( )–≡

c

r∗ t( )
r t( )

------------ r t( )

r∗ t( )
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Variance Estimation
               group=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   5     12       2   0.8333  0.1076       0.5235        0.956
   8     10       2   0.6667  0.1361       0.3753        0.860
  12      8       1   0.5833  0.1423       0.2906        0.801
  23      6       1   0.4861  0.1481       0.2024        0.730
  27      5       1   0.3889  0.1470       0.1421        0.650
  30      4       1   0.2917  0.1387       0.0901        0.561
  33      3       1   0.1944  0.1219       0.0476        0.461
  43      2       1   0.0972  0.0919       0.0166        0.349
  45      1       1   0.0000      NA           NA           NA
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MEAN AND MEDIAN SURVIVAL

For the Kaplan-Meier estimate, the estimated mean survival is
undefined if the last observation is censored. The procedure used by
Spotfire S+ is to redefine the estimate to be zero beyond the last
observation. This gives an estimated mean that is biased towards zero,
but there are no compelling alternatives that do better. With this
definition, the mean is estimated as

,

where  is the Kaplan-Meier estimate and  is the maximum
observed follow-up time in the study. The variance of the mean is

,

where  is the total number of deaths up to

time , and  is the number at risk at time .

The sample median is defined as the first time at which .
Upper and lower confidence intervals for the median are defined in
terms of the confidence intervals for : the upper confidence interval

is the first time at which the upper confidence interval for .
This corresponds to drawing a horizontal line at 0.5 on the graph of
the survival curve, and using intersections of this line with the curve
and its upper and lower confidence bands. In the event that the
survival curve has a horizontal portion at exactly 0.5 (for example, an
even number of subjects and no censoring before the median) then
the average time of that horizontal segment is used. This agrees with
the usual definition of the median for uncensored data when the
sample size is an even number. If neither confidence band for 
reaches 0.5, as in the example which follows, then the corresponding
confidence limit for the median is unknown and is reported as an NA.
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Ŝ t( ) 0.5≤

S
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Mean and Median Survival
Example: AML 
Study (cont.)

The mean, median, and confidence intervals for the median survival
time are part of the table produced by printing a "survfit" object.
For the leukemia data set these statistics are produced as follows:

> leukemia.surv <- survfit(Surv(time, status) ~ group,
+ data = leukemia)
> leukemia.surv

Call: survfit(formula = Surv(time, status) ~ group, data = 
leukemia)

                     n events mean se(mean) median 0.95LCL
   group=Maintained 11      7 52.6    19.83     31      18
group=Nonmaintained 12     11 22.7     4.18     23       8

                    0.95UCL 
   group=Maintained      NA
group=Nonmaintained      NA

Printing the object returned by survfit produces a brief report of the
resulting fits. For each fit, the print method prints the number of
subjects in the cohort (n), the total number of events (events), as well
as the mean, its standard error (se(mean)), the median, and
confidence intervals for the median survival time (the last two
columns).
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COMPARISON OF SURVIVAL CURVES

Assume that we wish to compare  different groups with respect to
their survival distributions. One method is to form the  table at
each death time.

If there are no tied deaths, then  for each table. Treating this
table as a simple multinomial experiment with  events in  trials,

the expected number of deaths in each group is  with a

standard multinomial variance matrix .

Treating each of the  unique death time tables as independent, we
can sum over the tables to obtain an observed and an expected
number of deaths for each group. This “O-E” vector has variance

matrix . The argument may be generalized by the inclusion of

weights  for each death time. The overall weighted vector is then

, where  is the top row of table ,  is the

expected, and the variance is . When  this is the

Mantel-Haenszel or log-rank test, for  it is the Gehan-

Wilcoxon test, and for  it is the Peto-Peto modification
of the Wilcoxon test.

The survdiff function implements a family of tests suggested by
Fleming and Harrington (1981) for comparing two or more survival
curves. A single parameter  controls the weights given to different

Groups 1 2 ... p
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Comparison of Survival Curves
survival times;  yields the log-rank test and  the Peto-
Wilcoxon. Other values give a test that is intermediate to these two.
The default value is .

The log rank test is most powerful for a proportional hazards
alternative, that is, when  for any two groups  and

, and some constant  which is independent of time. This
assumption is found to hold, at least approximately, in many clinical
trials. Other values for  produce tests more sensitive to early
differences in    or to later differences .

Example: AML 
Study (cont.)

Returning to the leukemia data frame, compare the two treatment
groups using survdiff. The survdiff function takes a formula and a
data frame as its first two arguments. Recalling that  by default,
the log-rank test for difference between the maintained and
nonmaintained groups is produced as follows:

> survdiff(Surv(time, status) ~ group, data = leukemia)

                     N Observed Expected (O-E)^2/E
   group=Maintained 11        7   10.689     1.273
group=Nonmaintained 12       11    7.311     1.862

Chisq= 3.4 on 1 degrees of freedom, p= 0.06534

Thus, there is mild evidence to suggest that the maintained group has
better survival than the nonmaintained group.

ρ 0= ρ 1=

ρ 0=

λ i t( ) λ j t( )⁄ cij= i
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ρ
S ρ 0>( ) ρ 0<( )
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MORE ON SURVFIT

The survfit function fits Kaplan-Meier or, optionally, Fleming-
Harrington survival curves. For example,

> sf <- survfit(Surv(futime, fustat) ~ rx + residual.dz,
+ data = ovarian)
> sf

Call: survfit(formula = Surv(futime, fustat) ~ rx + 
residual.dz, data = ovarian)

                    n events mean se(mean) median 0.95LCL
rx=1, residual.dz=1 5      1  989      101     NA     638
rx=1, residual.dz=2 8      6  430      131    299     156
rx=2, residual.dz=1 6      2  943      161     NA     563
rx=2, residual.dz=2 7      3  833      156     NA     464

                    0.95UCL 
rx=1, residual.dz=1      NA
rx=1, residual.dz=2      NA
rx=2, residual.dz=1      NA
rx=2, residual.dz=2      NA

This command results in four Kaplan-Meier survival curves, indexed
by the two levels of treatment (rx) and the two levels of residual
disease (residual.dz). The right hand side of the formula is
interpreted differently than it would be for an ordinary linear or Cox
model. The survfit function uses the + operator to specify an
interaction.

A summary of important options to survfit are  listed below.

• weights: Case weights.

• type: Type of fit. The choices are "kaplan-meier", "fleming-
harrington" or "fh2".

• error: Type of variance estimate. The choices are 
"greenwood" or "tsiatis".

• conf.int: Level for the two-sided confidence interval of 
median survival. The default is 0.95.
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More on survfit
• conf.type: One of "none", "plain", "log", or "log-log". The 
default is "log".

• conf.lower: One of "usual", "peto", or "modified".

The plot.survfit function plots survival curves returned by survfit.
For the AML data, you can plot survival curves, and add a title and
legend as follows:

> plot(leukemia.surv, xlab = "Survival Time in Weeks",
+ ylab = "Proportion Surviving", cex = 2, lty = 2:3)
> title("AML Maintenance Study")
> legend(c(75, 130), c(0.95, 0.85),
+ c("Maintenance", "No Maintenance"), lty = 2:3)

Figure 27.1 displays the results of plotting the Kaplan-Meier estimates
of survival stratified by the maintenance grouping variable group.
Some important optional arguments to plot.survfit are as follows:

• conf.int: Plot confidence intervals for the curves. The default 
is TRUE for a single curve and FALSE for multiple curves.

• mark.time: If logical, indicates whether to mark the curves at 
censoring times. If a numeric vector, the curve is marked at 
each time indicated.

• mark: Vector of characters or integers specifying special 
symbols used to mark the curve. The default value of 3 
produces a + at the censored values.

• cex: Character size of the censor marks.

By default, confidence intervals are suppressed if there are multiple
curves. Marks are normally placed on the curve(s) at each censoring
time. If there are a large number of censored observations, this can
make the plot too “busy.” In this case, the mark.time option can be
used to specify the time values at which curves are labeled.
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Figure 27.1: Kaplan-Meier estimates of survival for the maintained and 
nonmaintained groups of the AML study.
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Introduction
INTRODUCTION

The Cox proportional hazards model is the most commonly used
regression model for survival data. If  is the vector of covariates

for the th individual at time , the model assumes that the hazard for
a subject is of the form

,

where

is referred to as the risk score for the ith subject,  is a vector of
regression parameters, and  is an arbitrary and unspecified

baseline hazard function. The vector of coefficients  does not
include an intercept term; it is absorbed into . The exponential

function guarantees that  is positive for any . Assume that a death

has occurred at time . Then conditional on this death occurring, the
likelihood that it would be subject  rather than some other subject is

The product of the terms (Equation (28.1)) over all death times,

, was termed a partial likelihood by Cox (1972).

Maximization of  gives an estimate for  without the need
to estimate the nuisance parameter . An estimator of the
covariance matrix is given by the inverse of the second derivative
matrix. The proportional hazards model is nonparametric in the

.
(28.1)
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Chapter 28  The Cox Proportional Hazards Model
sense that it depends only on the ranks of the survival times. It
remains sensitive, however, to skewed covariates. The first derivative
of  is the  by 1 vector    

and the p by p information matrix is

where  is the weighted covariate mean for those still at risk at time 

.

Cox proposed, and it was later shown by Efron (1977) and Oakes
(1977), that the partial likelihood contains nearly all of the information
about . That is, the calendar times when deaths occur give
information about the overall hazard rate  but little about the

(28.2)
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Introduction
relative rates for different values of . The Cox model thus gives very
efficient estimates as compared to a parametric proportional hazards
model, such as the Weibull, even when the data actually come from
the parametric model. The notation for  in Equation (28.1) is
derived from the counting process representation found in Fleming and
Harrington (1991). It allows for several extensions to the original Cox
model formulation, including:

• Multiple events per subject;

• Time-dependent covariates including cation variables;

• Discontinuous intervals of risk, where  may change states 
from 1 to 0 and back again multiple times;

• Left truncation, where subjects need not enter the risk set at 
time 0.

This extension is known as the multiplicative hazards model.

Example: 
Ovarian Cancer

This example uses data from a study of ovarian cancer [EFD+79].
The variables are listed below.

• futime: The number of days from enrollment until death or 
censoring, whichever comes first;

• fustat: An indicator of death (1) or censoring (0);

• age: The patient age in years (actually, the age in days divided 
by 365.25);

• residual.dz: An indicator of the extent of residual disease;

• rx: An indicator of the treatment given;

• ecog.ps: A measure of performance score or functional status, 
using the Eastern Cooperative Oncology Group’s scale. It 
ranges from 0 (fully functional) to 4 (completely disabled). 
Level 4 subjects are usually considered too ill to enter a 
randomized trial such as this.

The data are stored in a data frame named ovarian. A summary
produces the following:

> summary(ovarian)

Z
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      futime          fustat           age
 Min.   :  59.0  Min.   :0.0000  Min.   :38.89
 1st Qu.: 368.0  1st Qu.:0.0000  1st Qu.:50.17
 Median : 476.0  Median :0.0000  Median :56.85
 Mean   : 599.5  Mean   :0.4615  Mean   :56.17
 3rd Qu.: 794.8  3rd Qu.:1.0000  3rd Qu.:62.38
 Max.   :1227.0  Max.   :1.0000  Max.   :74.50
  residual.dz         rx            ecog.ps
 Min.   :1.000   Min.   :1.0     Min.   :1.000
 1st Qu.:1.000   1st Qu.:1.0     1st Qu.:1.000
 Median :2.000   Median :1.5     Median :1.000
 Mean   :1.577   Mean   :1.5     Mean   :1.462
 3rd Qu.:2.000   3rd Qu.:2.0     3rd Qu.:2.000
 Max.   :2.000   Max.   :2.0     Max.   :2.000

Start by modeling survival as a function of age only:

> ov.fit1 <- coxph(Surv(futime, fustat) ~ age, 
+ data = ovarian)
> ov.fit1

Call: coxph(formula = Surv(futime,fustat) ~ age, data = 
ovarian)
     coef exp(coef) se(coef)    z      p
age 0.162      1.18   0.0497 3.25 0.0012
Likelihood ratio test=14.3  on 1 df, p=0.000156  n=26

Printing the resulting fit produces the estimated coefficient , the

estimated relative risk for a one unit change in the variable , the

standard error of the estimated coefficient, a z-test  along
with its p-value for the significance of the estimated coefficient, and a
likelihood ratio test for goodness of fit. The z-test is sometimes
referred to as Wald’s test. An estimate of the relative risk of dying of
ovarian cancer for two patients in the study differing in age by one
year is 1.18 which is significantly larger than one ( ).
The older patient has an estimated 1.18 times higher risk of dying of
ovarian cancer than the younger patient. You produce a summary of
the survival curve with a combination of the summary function and the
survfit function. For example,

> summary(survfit(ov.fit1))

β̂( )

e β̂( )

β̂( ) se β̂( )⁄
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Call: survfit(formula = ov.fit1)

 time n.risk n.event survival std.err 
   59     26       1    0.988  0.0142
  115     25       1    0.974  0.0244
  156     24       1    0.955  0.0364
  268     23       1    0.933  0.0482
  329     22       1    0.897  0.0621
  353     21       1    0.862  0.0724
  365     20       1    0.824  0.0819
  431     17       1    0.775  0.0934
  464     15       1    0.724  0.1032
  475     14       1    0.673  0.1112
  563     12       1    0.596  0.1226
  638     11       1    0.520  0.1287

 lower 95% CI upper 95% CI 
        0.961        1.000
        0.927        1.000
        0.886        1.000
        0.844        1.000
        0.783        1.000
        0.732        1.000
        0.678        1.000
        0.612        0.982
        0.548        0.958
        0.487        0.931
        0.398        0.892
        0.321        0.845

The Fleming-Harrington estimate of survival for a patient with age
equal to the average is produced in this case because the model was fit
using coxph and survival for a particular age was not specified with
the newdata argument. 
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You can produce a plot of the survival curve, shown in Figure 28.1, at
the average age as follows:

> plot(survfit(ov.fit1), xlab = "Survival in Days",
+ ylab = "Proportion Surviving")
> title("Suvival for Ovarian Cancer Study")

The default, when you plot only one curve, is to add confidence
limits. 

Figure 28.1: Cox regression estimate of survival for a subject of average age (56.17 
years), from the ovarian cancer study.
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Hypothesis Tests
HYPOTHESIS TESTS

Once you fit a Cox model, three tests of hypothesis are produced that
are asymptotically equivalent, but are not always equivalent in

practice. Let  be the initial value of the coefficients and  the
solution after fitting the model. The likelihood ratio test  is defined as

,

and is the most reliable. The Wald statistic  is defined as

, 

where . It is the estimated variance-covariance matrix, and is

perhaps the most natural because it provides a per-variable test rather
than an overall measure of significance. The score test is defined as

,

where  is the vector of derivatives given by Equation (28.3) and  is
the information matrix given by Equation (28.4), both evaluated at

. The score test does not require iteration and, consequently, is
more computationally efficient if a large number of models are to be
tested.

Example: 
Ovarian Cancer 
(cont.)

For the ovarian cancer example, you can compute all three tests by
computing a summary of the resulting fit.

> summary(ov.fit1)

Call: coxph(formula = Surv(futime, fustat) ~ age, data = 
ovarian)
  n= 26
     coef exp(coef) se(coef)  z        p
age 0.162      1.18   0.0497 3.25 0.0012
    exp(coef) exp(-coef) lower .95 upper .95
age      1.18      0.851      1.07       1.3

Rsquare= 0.423   (max possible= 0.932 )
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Likelihood ratio test= 14.3 on 1 df,    p=0.000156
Wald test            = 10.6 on 1 df,    p=0.00116
Efficient score test = 12.3 on 1 df,    p=0.000463

The summary of a fit returns the efficient score test , in addition to the
likelihood ratio test and Wald’s test. Additionally, a confidence

interval is estimated for the relative risk estimated by . To produce
confidence limits with a different confidence level use the conf.int
argument in the call to summary. For example, specifying
conf.int=0.99 produces 99% confidence intervals for the relative
risk. It is clear that age is an important predictor of survival. Let’s add
the other predictors to the model:

> ov.fit2 <- coxph(Surv(futime, fustat) ~ age +
+ residual.dz + rx + ecog.ps, ovarian)
> ov.fit2

Call:
coxph(formula = Surv(futime, fustat) ~ age + residual.dz + 
rx + ecog.ps, data = ovarian)

              coef exp(coef) se(coef)      z      p
age          0.125     1.133   0.0469  2.662 0.0078
residual.dz  0.826     2.285   0.7896  1.046 0.3000
rx          -0.914     0.401   0.6533 -1.400 0.1600
ecog.ps      0.336     1.400   0.6439  0.522 0.6000

Likelihood ratio test=17 on 4 df, p=0.0019 n= 26

To check for an overall improved fit over the age-only model,
compute the likelihood ratio test between the models as follows:

> -2*(ov.fit1$loglik[2] - ov.fit2$loglik[2])

[1] 2.749708

eβ̂
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The loglik component of the fit is a vector of the log-likelihoods for
two fits. The null model (intercept only) is the first value, and the
current model is the second value. Noting that there is a difference of
three degrees of freedom between the models, the p-value for the
likelihood ratio test is computed as follows:

> pchisq(2.75, df = 3)

[1] 0.5682029

There is no significant difference between the two models, indicating
that residual.dz, rx, and ecog.ps don’t improve the fit. Note that
this approach will not work if there are missing values in the data.
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STRATIFICATION

A simple extension of the Cox model is to allow multiple strata. The
hazard for a subject contained in stratum  is then

.

When a variable is entered into the model as a stratification factor
rather than as a covariate, it allows for nonproportional hazards to
exist between levels of the variable. However, the disadvantage is that
no β is available to estimate the effect of that variable. For instance, in
a multi-center drug study the enrolling center is often entered into the
model as a stratum variable. Because of different patient populations
(for example, a higher proportion of acute cases), the centers may
well have different shapes for their baseline survival curves. If
modeled as a covariate, this nonproportionality could bias the
estimate of the treatment effect.

Example: 
Ovarian Cancer 
(cont.)

You can stratify the ovarian cancer fit with respect to treatment, rx,
still fitting age as a covariate, as follows:

> ov.fit3 <- coxph(Surv(futime, fustat) ~ age +
+ strata(rx), data = ovarian)
> survfit(ov.fit3)

Call: survfit(formula = ov.fit3)

      n events mean se(mean) median 0.95LCL 0.95UCL
rx=1 13      7  512     72.8    638     329      NA
rx=2 13      5  522     22.5     NA     475      NA

Printing the resulting fit displays the usual summary statistics for the
survival curve for each stratum. Applying the summary function to the
fit produces a more detailed table which includes the survival curve,
standard errors and confidence intervals for each stratum.

j
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Stratification
> summary(survfit(ov.fit3))

Call: survfit(formula = ov.fit3)

                rx=1 
 time n.risk n.event survival std.err 
   59     13       1    0.978  0.0269
  115     12       1    0.950  0.0481
  156     11       1    0.910  0.0758
  268     10       1    0.862  0.1050
  329      9       1    0.736  0.1525
  431      8       1    0.625  0.1698
  638      5       1    0.341  0.2225

 lower 95% CI upper 95% CI 
       0.9264            1
       0.8607            1
       0.7725            1
       0.6793            1
       0.4902            1
       0.3671            1
       0.0947            1

                rx=2 
 time n.risk n.event survival std.err 
  353     13       1    0.943  0.0558
  365     12       1    0.880  0.0812
  464      9       1    0.791  0.1125
  475      8       1    0.701  0.1318
  563      7       1    0.602  0.1460

 lower 95% CI upper 95% CI 
        0.840        1.000
        0.735        1.000
        0.599        1.000
        0.485        1.000
        0.374        0.968

You can produce a plot of the stratified fit as follows:

> plot(survfit(ov.fit3), lty = 2:3)
> legend(100, 0.6, c("Treatment 1","Treatment 2"), lty=2:3)
> title("Ovarian Cancer Stratified by Treatment")
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The result is displayed in Figure 28.2. The plot is one method of
viewing a nonparametric estimate of treatment effect, after adjusting
for possible differences in age distributions. 

Figure 28.2: A plot of the stratified fit of the ovarian cancer data adjusted for 
average age.
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Residuals
RESIDUALS

The Breslow (or Tsiatis, Link, or Nelson-Aalen) estimate of the
baseline hazard is

.

The martingale residual at time  is

The residual is computed at  and . If there are no time-
dependent covariates, then  can be factored out of the integral,

giving . The deviance residual is a normalizing
transform of the martingale residual

.

The other two residuals are based on the score process  for

the th subject and the th variable:

.

The score residual is defined as  for each subject and each

variable (an  by  matrix). It is the sum of the score process over
time. The usual score vector  (Equation (28.2)) is the column
sum of the matrix of score residuals. The martingale and score
residuals are integrals over time for a given subject. Specifically, in
setting up a multiplicative hazards model, a single subject is
represented by multiple lines of the input data, as though the subject
was a set of different individuals observed over disjoint times. The
residual for that person is the sum of the residuals for these “pseudo”
subjects. 

. (28.5)
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Chapter 28  The Cox Proportional Hazards Model
The Schoenfeld residuals (Schoenfeld, 1982) are defined as a matrix

with one row per death and one column per covariate, where  and 
are the subject and the time that the event occurred. Note that the
Schoenfeld residuals are related to the score process . To see
this, sum the score process over individuals to get a total score process

. This is just the score vector at time , so that at

 we must have . Because  is discrete, our
estimated score process is also discrete, having jumps at each of the
unique death times. There are two simplifying identities for these
residuals:

Note that  is zero when subject  is not in the risk set at time .
Since the sums are the same for all , each increment of the processes
must be the same as well. Comparing the second of these to Equation
(28.6), we see that the Schoenfeld residuals are the increments or
jumps in the total score process. 

There is a small nuisance with tied death times: under the integral
formulation the O-E process has a single jump at each death time,
leading to one residual for each unique event time, while under the
Schoenfeld representation there is one residual for each event. In
practice, the latter formulation has been found to work better for both
plots and diagnostics, as it leads to residuals that are approximately
equivariant. For the alternative of one residual per unique death time,
both the size and variance of the residual is proportional to the
number of events.

(28.6)

(28.7)

sij β( ) Zij ti( ) Zj β ti,( )–=

i ti

Uij β t,( )

Uij β t,( )i∑ U β t,( )= t

β̂ U β̂ 0,( ) U β̂ ∞,( ) 0= = Λˆ

U β t,( ) Zij s( ) Mi β s,( )d
0

t∫
i

∑=

Zij s( ) Zj β s,( )–( ) Ni s( ) d
0

t∫
i

∑=

M̂i t( )d i t
t
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Residuals
The last and most general residual is the entire score process ,

where  indexes subjects,  indexes the covariates, and  indexes the
event times:

The score and Schoenfeld residuals are the marginal sums of this
array. Lin, Wei and Ying (1992) suggest a global test of the
proportional hazards model based on the maximum of the array.

Uses for the 
Residuals

Four possible uses of residuals are addressed in this section.

1. Discovering the correct functional form for a predictor.

2. Identifying subjects who are poorly predicted by the model.

3. Identifying influential points (points with high leverage).

4. Assessing the proportional hazards assumption.

Discovering the 
Functional Form 
for a Predictor

The martingale residual, , is given by Equation (28.5) evaluated at

. Assume that the true functional form for a covariate in the
exponent is . Then Therneau, Grambsch, and Fleming (1990)
show that the martingale residuals, after regression on the other
variables, satisfy

.

A smoothed plot of the  versus  gives an approximate image of

the true functional form, with the -axis scaled by a constant that
depends on the proportion of censoring. If there are several
covariates, the martingale residuals from a model with all covariates
except , for example, can be plotted against the residuals of a

regression of  on the others. This is similar to the adjusted variable
plots for the linear model in Chambers, Cleveland, Kleiner, and
Tukey (1983).

Another use is to plot the residuals from a null model, that is, with
iter.max=0, against each predictor. This is roughly equivalent to the
standard scatter plots of  against each  that is used for uncensored

Rijk

i j k

Rijk Zij tk( ) Zj tk( )–[ ] Ni tk( ) ri tk( ) Λ
ˆ

0 tk( )d–( )d[ ]=

Mi

t ∞=

h Z( )

E Mi( ) h t( ) h–( )E Ni( )≡

Mi x

y

Z1

Z1

y Z
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Chapter 28  The Cox Proportional Hazards Model
data, before a model is fit. Addition of a local regression smooth curve
using loess gives, in both cases, a first approximation to what
transformations, if any, might be appropriate for each .

Identifying 
Poorly Predicted 
Subjects

The martingale residuals can be highly skewed. The deviance
residual, , is a normalized transform of , and can be used to
identify individuals who are poorly predicted by a model. However,
you should exercise extreme caution when using deviance residuals
in analysis. Recent experience has shown that deviance residuals
cannot be recommended in all cases. For more details, see Therneau,
et al. (1990).

Identifying 
Influential Points

In a linear model, the influence of a point on the fit depends on both
its residual and its distance from the center of the predictor space,

roughly . In a Cox model, the mean of the covariates
changes over time as subjects leave the risk set, which suggests an
average of some sort. The score residuals are a decomposition of the
first derivative or score vector; large values indicate a point with high
leverage. In particular, , where  is the Cox model variance

matrix, is approximately the change that would occur in  if
observation  were dropped from the model. These changes in  are
returned when you specify type="dfbeta" or type="dfbetas" to the
residuals function.

Assessing the 
Proportional 
Hazards 
Assumption

The Schoenfeld residuals are increments in time for the total score
process; see Equation (28.6). If the proportional hazards assumption
holds, the Schoenfeld residuals should be a random walk. Conversely,
assume that some variable, such as treatment, has a large positive
effect early but that the effect trails off. The treatment might influence
how many patients survive to some point , but once they are “cured”
it has no influence on survival beyond . In this case, proportional
hazards does not hold and the fitted models underestimate the true
treatment effect for small , and overestimate it for large . If
treatment has a beneficial effect ( ), the Schoenfeld residuals have
an early negative trend followed by a late positive trend. Harrell
(1986) suggests using the correlation of rank(time) with this residual
as a test for nonproportional hazards. Therneau, et al. (1990) use the
maximum of the absolute cumulative summed Schoenfeld residual, a

Z

di Mi

residi Zi Z–( )⋅

I– 1– Li I 1–

β
i β

t
t

t t
β 0<
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Residuals
Kolmogorov-type test. Grambsch and Therneau (1994) further show
that a rescaled Schoenfeld residual can correct for correlation among
the covariates and be more interpretable. This result is the basis for
the cox.zph function.

Example: Lung 
Cancer

This example examines data from a study of lung cancer patients
conducted by the North Central Cancer Treatment Group. The lung
data frame includes the usual survival times (time) and indicator
variable of death or censoring (status) plus the following additional
variables on each patient.

• inst: A numeric code for the institution at which the patient 
was hospitalized.

• age: Patient’s age.

• sex: Sex of the patient. Possible values are 1 for males and 2 
for females.

• ph.ecog: Physician’s estimate of the ECOG performance 
score (0-4).

• ph.karno: Physician’s estimate of the Karnofsky score, a 
competitor to the ECOG performance score.

• pat.karno: Patient’s assessment of his/her Karnofsky score.

• meal.cal: Calories consumed at meals excluding beverages 
and snacks.

• wt.loss: Weight loss in the last 6 months.

A summary of the lung data frame follows:

> summary(lung)

       inst            time            status     
    Min.: 1.00      Min.:   5.0      Min.:1.000  
 1st Qu.: 3.00   1st Qu.: 166.8   1st Qu.:1.000  
  Median:11.00    Median: 255.5    Median:2.000  
    Mean:11.09      Mean: 305.2      Mean:1.724  
 3rd Qu.:16.00   3rd Qu.: 396.5   3rd Qu.:2.000  
    Max.:33.00      Max.:1022.0      Max.:2.000  
    NA's: 1.00                                   

       age             sex           ph.ecog      
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    Min.:39.00      Min.:1.000      Min.:0.0000  
 1st Qu.:56.00   1st Qu.:1.000   1st Qu.:0.0000  
  Median:63.00    Median:1.000    Median:1.0000  
    Mean:62.45      Mean:1.395      Mean:0.9515  
 3rd Qu.:69.00   3rd Qu.:2.000   3rd Qu.:1.0000  
    Max.:82.00      Max.:2.000      Max.:3.0000  
                                    NA's:1.0000  

     ph.karno        pat.karno         meal.cal     
    Min.: 50.00      Min.: 30.00      Min.:  96.0  
 1st Qu.: 75.00   1st Qu.: 70.00   1st Qu.: 635.0  
  Median: 80.00    Median: 80.00    Median: 975.0  
    Mean: 81.94      Mean: 79.96      Mean: 928.8  
 3rd Qu.: 90.00   3rd Qu.: 90.00   3rd Qu.:1150.0  
    Max.:100.00      Max.:100.00      Max.:2600.0  
    NA's:  1.00      NA's:  3.00      NA's:  47.0  

     wt.loss       
    Min.:-24.000  
 1st Qu.:  0.000  
  Median:  7.000  
    Mean:  9.832  
 3rd Qu.: 15.750  
    Max.: 68.000  
    NA's: 14.000  

Note that the status variable takes values 1 (censoring) and 2 (event),
as does the sex variable. The coxph function recognizes either a 0/1 or
a 1/2 binary variable as an indicator of censored/event status, so you
needn’t transform the status variable in this case. Let’s start the
example by fitting a model on all the variables stratified by sex.

> lung.fit1 <- coxph(Surv(time, status) ~ strata(sex) +
+ age + ph.ecog + ph.karno + pat.karno + meal.cal +
+ wt.loss, data = lung, na.action = na.exclude)
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Residuals
> lung.fit1

Call: coxph(formula = Surv(time, status) ~ strata(sex) +
              age + ph.ecog + ph.karno + pat.karno +
              meal.cal + wt.loss, data = lung,
              na.action = na.exclude)
               coef exp(coef) se(coef)     z      p
age        9.05e-03     1.009 0.011601  0.78 0.4400
ph.ecog    7.07e-01     2.029 0.222773  3.17 0.0015
ph.karno   2.07e-02     1.021 0.011282  1.84 0.0660
pat.karno -1.33e-02     0.987 0.008050 -1.65 0.0980
meal.cal  -5.27e-06     1.000 0.000263 -0.02 0.9800
wt.loss   -1.52e-02     0.985 0.007890 -1.93 0.0540

Likelihood ratio test=21.6 on 6 df, p=0.00145 n=168
   (60 observations deleted due to missing values)

The resulting fit indicates that age and meal.cal are not important
predictors of survival, so we drop them from the model:

> lung.fit2 <- coxph(Surv(time, status) ~ strata(sex) +
+ ph.ecog + ph.karno + pat.karno + wt.loss, data = lung,
+ na.action = na.exclude)
> lung.fit2

Call:
coxph(formula = Surv(time, status) ~ strata(sex) +
        ph.ecog + ph.karno + pat.karno + wt.loss,
        data = lung, na.action = na.exclude)
             coef exp(coef) se(coef)     z p
ph.ecog    0.6495     1.915  0.20070  3.24 0.0012
ph.karno   0.0173     1.017  0.01031  1.68 0.0930
pat.karno -0.0167     0.983  0.00726 -2.30 0.0220
wt.loss   -0.0137     0.986  0.00691 -1.99 0.0470
Likelihood ratio test=25.7 on 4 df, p=3.61e-05 n=210
   (18 observations deleted due to missing values)

Because of the different number of missing values for these two
models, you cannot compare them directly using a likelihood ratio, as
we did for the ovarian data.

Assessing 
Functional Form

We now look at the functional form of the relationship with respect to
each of the important predictors in the model. We do this by plotting
the martingale residuals from a model with the variable of interest
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removed, versus the variable of interest. We then add a loess smooth
line to estimate the relationship. You can accomplish both the plot
and the smooth using the scatter.smooth function. To make the
handling of NAs a bit easier, begin by creating a new data frame with
just the variables in the model and with the NAs removed.

> nlung <- na.exclude(lung[, c("time", "status", "sex",
+ "ph.ecog", "ph.karno", "pat.karno", "wt.loss")])

Note that the 18-row difference between the two data frames is
confirmed by the number of NAs that were deleted in fitting
lung.fit2:

> dim(nlung)

[1] 210 7

> dim(lung)

[1] 228 10

The four plots displayed in Figure 28.3 show the estimated
relationships for each predictor.

> par(mfrow = c(2,2))
> attach(nlung)
> fit1 <- coxph(Surv(time, status) ~ strata(sex) +
+ ph.karno + pat.karno + wt.loss, data = nlung)
> scatter.smooth(ph.ecog, resid(fit1))

> fit2 <- coxph(Surv(time, status) ~ strata(sex) +
+ ph.ecog + pat.karno + wt.loss, data = nlung)
> scatter.smooth(ph.karno, resid(fit2))

> fit3 <- coxph(Surv(time, status) ~ strata(sex) +
+ ph.ecog + ph.karno + wt.loss, data = nlung)
> scatter.smooth(pat.karno, resid(fit3))

> fit4 <- coxph(Surv(time, status) ~ strata(sex) +
+ ph.ecog + ph.karno + pat.karno, data = nlung)
> scatter.smooth(wt.loss, resid(fit4))

All of the relationships look reasonably linear. 
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Residuals
Poorly Predicted 
Subjects

Subjects with large deviance residuals are poorly predicted by the
model. You produce the deviance residual plot for the second lung
cancer model as follows:

> plot(resid(lung.fit2, type = "deviance"))

Figure 28.4 displays the resulting plot. There are no wildly deviant
observations. 

Figure 28.3: Plots of the martingale residuals for four models with each variable in turn left out of the model 
for the lung cancer study.
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Chapter 28  The Cox Proportional Hazards Model
Influence Another set of plots examines the influence of individual observations
on the parameter estimates. Use the changes in the estimated scaled
coefficient due to dropping each observation from the fit
(type="dfbetas") as a measure of influence. The first of the four plots
is created as follows:

> bresid <- resid(lung.fit2, type = "dfbetas")
> plot(1:228, bresid[,1], type = "h",
+ ylab = "Scaled change in coef",
+ xlab = "Observation")
> title("ph.ecog")

The remaining plots are created by selecting the appropriate columns
of bresid and changing labels on the plots. The resulting plots are
displayed in Figure 28.5. Note the use of 1:228 to generate the indices
for the observations even though the fit had only 210 observations
after deleting missing values. The dimension of bresid is 228 x 4.
The number of rows matches that of lung because the naresid
method for omitting missing values (na.exclude) inserts NAs in the
residual matrix returned.

Figure 28.4: Plots of the deviance residuals for model lung.fit2 of the lung cancer 
study.
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The largest change in a regression coefficient is 0.6 standard errors of
the coefficient for ph.karno (upper right corner plot). Since the
coefficient for ph.karno is marginally significant at best, you need not
worry much about this observation. The other plots are reasonable.

Assessing 
Proportional 
Hazards

You can examine the assumption of proportional hazards both
graphically and statistically for the lung.fit2 model. The plot in
Figure 28.6 is produced as follows:

> plot(cox.zph(lung.fit2))

Figure 28.5: A plot of influence by observation number for the four important predictors for the lung cancer 
study.
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Chapter 28  The Cox Proportional Hazards Model
All of the smooth curves are flat, indicating proportional hazards is a
reasonable assumption. Statistical tests for significant slope in the
scatter plots of Figure 28.6 support the interpretation of the graphical
displays.

> cox.zph(lung.fit2)

              rho  chisq     p
  ph.ecog 0.05189 0.3905 0.532
 ph.karno 0.14216 2.2081 0.137
pat.karno 0.04773 0.3812 0.537
  wt.loss 0.00857 0.0131 0.909
   GLOBAL      NA 4.4476 0.349

Figure 28.6: A plot of the rescaled Schoenfeld residuals to assess the proportional hazards assumption for four 
covariates in lung cancer study.
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Residuals
Plotting the 
Resulting Fit

Finally, you can plot estimated survival curves for the lung.fit2
model as follows:

> plot(survfit(lung.fit2), lty = 2:3)
> legend(500, .9, c("Male", "Female"), lty = 2:3)
> title("Survival for Male and Female Patients
Continue string: \nwith Average Covariates")

The fitted Cox models are presented in Figure 28.7. 

Recall that the model was stratified on sex. The resulting survival
curves are for two pseudo patients (a male and a female) with average
values for each of ph.ecog, ph.karno, pat.karno, and wt.loss.

Figure 28.7: Cox regression estimation of baseline survival curves for a sample of 
lung cancer patients.
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Chapter 28  The Cox Proportional Hazards Model
USING THE COUNTING PROCESS NOTATION

The Anderson-Gill formulation of the proportional hazards model as
a counting process is useful not only theoretically but also in the
practice of fitting models. From a data analysis point of view, each
subject is treated as an observation of a (very slow) Poisson process. A
censored subject is thought of not as incomplete data, but as one
whose event count is still zero. Time-dependent covariates effect the
rate for upcoming events, and can depend in any way on past
observation of the subject. Furthermore, intervals of observation need
not be contiguous. 

Organizing data in this framework has advantages. Each subject is
represented by a set of observations: , ,

where ( ] is an interval of risk, open on the left and closed on the

right. The term  is equal to 1 if the subject had an event at time ,

 is the covariate vector over the interval, and  is the stratum the
subject belongs to during the interval. Data sets like this are easy to
construct in Spotfire S+. Following are a few specific examples to aid
in constructing the analysis data frame.

Multiple 
Events

This example comes from a study of myocardial infarction (heart
attack) patients where one of the events of interest is fatal or nonfatal
re-infarction. Several patients had multiple events. The maximum
number of events was three. Analysis was done using the counting
process formulation by breaking any patient with multiple events into
multiple intervals of risk. For example, one patient had infarctions on
days 100 and 185 and was followed until day 250. This patient had
three rows of data with time intervals (0, 100], (100, 185], and
(185, 250] and corresponding event status codes of 1, 1, and 0.

Time-
Dependent 
Covariates

The most common type of time-dependent covariates are repeated
measurements on a subject or a change in the subject’s treatment.
Both of these situations are easily handled by the counting process
formulation. As an example consider the Stanford heart transplant
study, where treatment is a time-dependent covariate. Suppose there
are two patients whose time from enrollment to death is 102 and 343

ij tij δij xij ki, , , , j 1 … n, ,=

sij tij,

δij tij
xij kij
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Using the Counting Process Notation
days, respectively, and that the second patient had a heart transplant
21 days after enrollment. The data for these two patients displayed
are in Table 28.1.

The static covariates such as age and surgery are repeated over the
multiple rows for a given patient. A minor modification is needed
when there is a tie between the event or censoring time and the time
at which a time-dependent covariate changes value. In this case,
decrease the time for the time-dependent covariate slightly so it
precedes the event or censoring time. For a patient who is
transplanted and dies on day 5, the transplant time is set to 4.9 and
the death is recorded at 5. Multiple test results are easily coded as
well. For a patient with tests on days 0, 60, and 120, and follow-up to
day 140, the data are coded as three time intervals, 0-60, 60-120, and
120-140. This implicitly assumes that the time-dependent covariate is
a step function with jumps at the measurement points. Alternatively,
you can break at the midpoints between the measurement times or
interpolate the test measurements over smaller intervals of time. If
test results vary markedly from visit to visit, interpolation of the
measurements or redesign of the study may be required.

Discontinuous 
Intervals of 
Risk

In a study of tumor progression and its relationship to a particular
blood marker, the key time-dependent variable is the monthly
measurement of the marker. A few patients, however, had gaps in
their visit record. One choice for analysis is to interpolate these
patients’ values over the missing time periods. An alternate, more
conservative course is to treat the values on the marker as missing.
This strategy effectively removes these subjects from the risk set for
the missing visit times, but they are not removed entirely from the
study.

Table 28.1: Data for two hypothetical patients in the Stanford heart transplant 
study.

Interval Status Transplant Age Prior Surgery

(0, 102] 1 0 41 0

(0, 21] 0 0 48 1

(21, 343] 1 1 48 0
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Chapter 28  The Cox Proportional Hazards Model
Another application of discontinuous risk intervals results when
multiple events are possible, but the treatment for an event
temporarily protects the patient from another event. In the study of
hip-fracture in the elderly, hospitalization following a fracture protects
the patient from further fractures. For studies with low event rates,
discontinuous risk intervals probably have little impact on the
analysis.

Multiple Time 
Scales

The usual Cox model forms risk groups based on time since entry.
For some studies a more logical grouping might be based on another
alignment, such as age or time since diagnosis. An example is with
Parkinson’s disease patients. Natural history of the disease suggests
that risk groups be based on the time since diagnosis. The Mayo
Clinic is a referral center and frequently receives such patients
sometime after diagnosis. Using the counting process formulation, the
interval for a referred patient who is enrolled one year after diagnosis
and has an event in the second year is (1, 2]. This patient is not in the
risk set for an early enrollee with an event at six months. The risk set
for the event at two years is all subjects. This is known as left
truncation.

Time-
Dependent 
Strata

Another case where alignment is a potential issue concerns time-
dependent strata. The example is a study of Dutch patients with
primary biliary cirrhosis of the liver (PBC), which is a rare but fatal
chronic liver disease of unknown cause. The hazard rate for patients
with the disease grows over time, as does the rate of degeneration in
their hepatic function, tracked by various blood tests. A portion of the
patients receive a liver transplant at some point during the follow-up.
One objective of the study was to assess the value of covariates such
as age and bilirubin in predicting patient outcome, both before and
after transplantation. The transplant was treated as a time-dependent
stratification variable. In the post-transplant strata, the most natural
hazard function is based on time since transplant. Surgical death is a
major risk for such an extensive procedure, and this time scale
properly aligns the patient’s clock with the dominating hazard.
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Using the Counting Process Notation
Proper alignment for time-dependent strata is not always clear. One
appealing method of analysis for the myocardial infarction study is to
place patients into new strata after each cardiac event. The baseline
hazard for a patient with multiple events may be quite different than
the group as a whole. It is not obvious, however, whether time since
enrollment or time since last event is the better index of an
appropriate risk group.
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Chapter 28  The Cox Proportional Hazards Model
MORE DETAILED EXAMPLES

Complex Cox models usually involve time-dependent data, which is
handled by using the counting process notation developed by
Andersen and Gill (1982). For a technical reference see Fleming and
Harrington (1991). The examples in this section involve time-
dependent variables in some way. In the Stanford heart transplant
example, the time dependency is on a binary covariate indicating
whether a patient has had a heart transplant. For patients who
received heart transplants during the study, the transplant variable
changes. The second example involves a bladder cancer study for
patients with multiple occurrences of bladder tumors. The multiple
events are modeled using the counting process notation and an
additional notion of correlated responses.

Stanford Heart 
Transplant 
Study

The example below reproduces an analysis of the Stanford Heart
Transplant Study found in Kalbfleisch and Prentice (1980), section
5.5.3. The data itself are taken from Crowley and Hu (1977), because
the values listed in the appendix of Kalbfleisch and Prentice are
rounded and do not reproduce the results of their section 5.5. The
covariates in the study, contained in the heart data frame, are
described as follows.

• transplant: Binary variable indicating whether the patient 
received a heart transplant (1) or not (0)

• age: (Age at acceptance in days)/365.25 - 48

• year: (Date of acceptance in days since 1 Oct 1967)/365.25

• surgery: Binary variable indicating whether the patient had 
prior surgery (1 = yes, 0 = no)

The transplant variable is the only time-dependent variable. From
the time of admission into the study until the time of death, a patient
was eligible for a heart transplant. The time to transplant depends on
the next available donor heart with an appropriate tissue-type match. 

In the heart data frame, a transplanted patient is represented by two
rows of data. The first row is over the time period from enrollment
(time 0) until the transplant, and has transplant=0. The second row is
over the period from transplant to death or last follow-up, and has
transplant=1. All other covariates are the same on the two lines. 
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More Detailed Examples
Subjects without a transplant are represented by a single row of data.
Each row of data contains two variables start and stop that mark the
time interval (start, stop] for the data. Each row also has an
indicator variable event that is 1 if there was a death at time stop and
0 otherwise. For example, a subject who was transplanted at day 10
and followed up until day 31 has a first row of data corresponding to
the time interval (0, 10] and a second row corresponding to the
interval (10, 31]. 

Below is the Spotfire S+ code used to fit the six models found in
Kalbfleisch and Prentice. Note the use of the options call, which
forces the factors to be coded as dummy variables; see the help file on
contr.treatment for more details. Since the data set contains tied
death times, you must use the Breslow approximation to match the
coefficients that Kalbfleisch and Prentice produce. See the section
Computations for Tied Deaths for more details on methods for
handling ties.

> options(contrasts = c("contr.treatment", "contr.poly"))
> heart.fit1 <- coxph(Surv(start, stop, event) ~
+ (age + surgery)*transplant,
+ data = heart, method = "breslow")

> heart.fit2 <- coxph(Surv(start, stop, event) ~
+ year * transplant,
+ data = heart, method = "breslow")

> heart.fit3 <- coxph(Surv(start, stop, event) ~
+ (age + year) * transplant,
+ data = heart, method = "breslow")

> heart.fit4 <- coxph(Surv(start, stop, event) ~
+ (year + surgery) * transplant,
+ data = heart, method = "breslow")

> heart.fit5 <- coxph(Surv(start, stop, event) ~
+ (age + surgery)*transplant + year,
+ data = heart, method = "breslow")

> heart.fit6 <- coxph(Surv(start, stop, event) ~
+ age * transplant + surgery + year,
+ data = heart, method = "breslow")
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Chapter 28  The Cox Proportional Hazards Model
A summary of the first fit produces the following:

> summary(heart.fit1)

Call:
coxph(formula = Surv(start, stop, event) ~ (age + surgery) 
* transplant, data = heart, method = "breslow")

n= 172

                    coef   exp(coef) se(coef)      z
               age  0.0138     1.014   0.0181  0.763
           surgery -0.5457     0.579   0.6109 -0.893
        transplant  0.1181     1.125   0.3277  0.360
    age:transplant  0.0348     1.035   0.0273  1.276
surgery:transplant -0.2916     0.747   0.7582 -0.385

                      p
               age 0.45
           surgery 0.37
        transplant 0.72
    age:transplant 0.20
surgery:transplant 0.70

                   exp(coef) exp(-coef) lower .95
               age     1.014      0.986     0.979
           surgery     0.579      1.726     0.175
        transplant     1.125      0.889     0.592
    age:transplant     1.035      0.966     0.982
surgery:transplant     0.747      1.339     0.169
                   upper .95
               age      1.05
           surgery      1.92
        transplant      2.14
    age:transplant      1.09
surgery:transplant      3.30

Rsquare= 0.07   (max possible= 0.969 )
Likelihood ratio test= 12.4 on 5 df,   p=0.0291
Wald test            = 11.6 on 5 df,   p=0.0402
Efficient score test = 12 on 5 df,   p=0.0345
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The summary indicates that n=172. This is the number of
observations in the study, not the number of subjects. There are
actually 103 patients, of which 69 had a transplant and are thus
represented with 2 rows of data. 

You can create a table of coefficients similar to Kalbfleisch and
Prentice’s table 5.2 as follows:

> var.names <- c("age", "year", "surgery", "transplant",
+ "age:transplant", "year:transplant",
+ "surgery:transplant")

> round(rbind(heart.fit1$coef[var.names],
+ heart.fit2$coef[var.names], heart.fit3$coef[var.names],
+ heart.fit4$coef[var.names], heart.fit5$coef[var.names],
+ heart.fit6$coef[var.names]), digits = 4)

       age   year surgery transplant age:transplant
[1,] 0.014     NA  -0.546      0.118          0.035
[2,]    NA -0.265      NA     -0.282             NA
[3,] 0.016 -0.274      NA     -0.588          0.034
[4,]    NA -0.254  -0.236     -0.292             NA
[5,] 0.015 -0.136  -0.419      0.077          0.027
[6,] 0.015 -0.136  -0.621      0.047          0.027
     year:transplant surgery:transplant
[1,]              NA             -0.292
[2,]           0.136                 NA
[3,]           0.201                 NA
[4,]           0.164             -0.550
[5,]              NA             -0.298
[6,]              NA                 NA

When there are time-dependent covariates, the predicted survival
curve can present something of a dilemma. The usual call to survfit
is for a pseudo cohort whose covariates do not change:

> heart.surv1 <- survfit(heart.fit2,
+ data.frame(year = 2, transplant = 0) )

> heart.surv2 <- survfit(heart.fit2,
+ data.frame(year = 2, transplant = 1) )
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Chapter 28  The Cox Proportional Hazards Model
The second curve, heart.surv2, represents a cohort of patients whose
transplant variable is always 1, even on day 0 (that is, patients who
had no waiting time for a transplant). There were none of these in the
study, so just what does it represent? Time-dependent covariates that
represent repeated measurements on a patient, such as a blood
enzyme level, are particularly problematic. With time-dependent
covariates, it is easy to create predicted survival curves for “patients”
that never would or perhaps never could exist.

Because the model depends on the time-dependent covariate,
transplant, a proper predicted survival requires specification of a
future covariate history for the patient in question. See the discussion of
internal and external covariates in section 5.3 of Kalbfleisch and
Prentice for a more complete exposition on these issues. 

It is possible to obtain the projected survival for some particular
pattern of change in the covariates by supplying a multiple-line data
frame that reflects that pattern, and then setting individual=T. The
example below produces the survival curve for a cohort aged 50 with
prior surgery and a transplant at 6 months. That is, over the time
interval (0, .5] the covariate set is (50, 1, 0), and over the time interval
(.5, 3] it is (50, 1, 1). Note that start and stop times are in days rather
than years. In order to specify the time points, the failure time
variables start, stop, and event, must be specified in the data frame
as well as the covariates, though the value for event will be ignored.

> newdata <- data.frame(start=c(0,183), stop=c(183,3*365),
+ event=c(1,1), age=c(50,50), surgery=c(1,1), 
+ transplant=c(0,1))
> survfit(heart.fit1, newdata, individual=T)

Bladder Cancer 
Study

This example is taken from the paper by Wei, Lin, and Weissfeld
(1989). The study is of time to recurrence of bladder cancer, and the
data are contained in the bladder data frame. The data fram bladder
has either 4 or 5 rows for each subject. Many subjects had
recurrences, sometimes as many as four, and were followed beyond
the fourth recurrence. The variables in bladder are defined as
follows.

• id: Patient ID

• rx: Treatment group (1 = placebo, 2 = thiopeta)

• size: Size of the largest initial tumor
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More Detailed Examples
• number: The number of initial tumors

• start: Entry into the study or the time of last recurrence

• stop: Time to event (months)

• event: Indicator of cancer recurrence (1) or censoring (0)

• enum: Number of recurrences of bladder cancer

A summary of bladder follows:

> summary(bladder)

        id              rx            number     
    Min.: 1.00      Min.:1.000      Min.:1.000  
 1st Qu.:22.75   1st Qu.:1.000   1st Qu.:1.000  
  Median:43.00    Median:1.000    Median:1.000  
    Mean:43.18      Mean:1.443      Mean:2.145  
 3rd Qu.:64.00   3rd Qu.:2.000   3rd Qu.:3.000  
    Max.:85.00      Max.:2.000      Max.:8.000  

       size           start            stop      
    Min.:1.000      Min.: 0.00      Min.: 1.00  
 1st Qu.:1.000   1st Qu.: 1.00   1st Qu.:13.00  
  Median:1.000    Median:15.00    Median:25.00  
    Mean:1.997      Mean:18.03      Mean:25.73  
 3rd Qu.:3.000   3rd Qu.:29.00   3rd Qu.:38.00  
    Max.:7.000      Max.:59.00      Max.:64.00  

      event             enum      
    Min.:0.0000      Min.:1.000  
 1st Qu.:0.0000   1st Qu.:2.000  
  Median:0.0000    Median:3.000  
    Mean:0.3182      Mean:2.585  
 3rd Qu.:1.0000   3rd Qu.:4.000  
    Max.:1.0000      Max.:5.000  

We create two data frames for analysis. The first one has only the first
four rows for each subject and has start removed.

> bladder1 <- bladder[bladder$enum < 5, ]
> bladder1$start <- NULL
307



Chapter 28  The Cox Proportional Hazards Model
The second one has removed all rows for which start and stop are
equal.

> bladder2 <- bladder[bladder$start < bladder$stop, ]

Wei, et al. fit four separate models, one for each recurrence, and then
combined the results. The first of the individual fits is based on time
from the start of the study until the first event for all patients. The
second fit is based on time from the start of the study until the second
event again for all patients, and likewise for the third and fourth fits.
The model estimated by Wei, et al . is fit by the following commands.
The key to the model is the cluster(id) term, which asserts that
subjects with the same value of the variable id may be correlated. To
compare the results directly to Wei, et al., we first set the factor
contrasts to "contr.treatment".

> options(contrasts = c("contr.treatment","contr.poly"))

We can now fit the model as follows:

> wfit <- coxph(Surv(stop, event) ~ (rx + size + number) *
+ strata(enum) + cluster(id), data = bladder1, 
+ method = "breslow")

# Coefficients for the treatment effect
> rx <- c(1,4,5,6)
# Contrast matrix
> cmat <- diag(4); cmat[,1] <- 1 
# Coefs in WLW (table 5)
> cmat %*% wfit$coef[rx]   

           [,1]
[1,] -0.5175702
[2,] -0.6194396
[3,] -0.6998691
[4,] -0.6504161

> wvar <- cmat %*% wfit$var[rx,rx] %*% t(cmat)
# Var matrix from WLW (eqn 3.2)
> sqrt(diag(wvar))

[1] 0.3075006 0.3639071 0.4151602 0.4896743
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The same coefficients can also be obtained, as Wei, et al. do, by
performing four separate fits, but it takes more work. A major
advantage to fitting the model as above is that it allows us to fit
submodels that are not available using separate fits for each stratum.
In particular, the model

> coxph(Surv(stop, event) ~ rx + (size + number) *
+ strata(enum) + cluster(id), data = bladder1, 
+ method = "breslow")

differs only in that there is no treatment by strata interaction. It gives
an average treatment coefficient of -0.60, which is near to the
weighted average of the marginal fits (based on the diagonal of wvar)
suggested by Wei, et al.. 

Wei, et al. also give the results for two suggestions proposed by
Prentice, Williams, and Peterson (1981). For time to first event, these
are the same as above. For the second event they use only patients
who experienced at least one event, and use either the time from start
of study (method a) or the time since the occurrence of the last event
(method b). The Spotfire S+ commands for these are as follows:

> fit2pa <- coxph(Surv(stop, event) ~ rx + size + number,
+ data = bladder2, subset = (enum == 2))
> fit2pb <- coxph(Surv(stop - start, event) ~ rx + size +
+ number, data = bladder2, subset = (enum == 2))

Lastly, the authors also make use of an Andersen-Gill model for
comparison. This model has the advantage that it uses all of the data
directly, but because of correlation it may underestimate the variance
of the relevant coefficients. A method to address this is given in a
paper by Lee, Wei, and Amato (1992); it is essentially the same
method found in the Wei, et al . paper. This method for variance
estimation is invoked by specifying the cluster(id) term.

> afit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number + cluster(id), data = bladder2)
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> afit

Call:
coxph(formula = Surv(start, stop, event) ~ rx + size + 
number + cluster(id), data = bladder2)

          coef exp(coef) se(coef) robust se      z     p
    rx -0.4116     0.663   0.1999    0.2415 -1.704 0.088
  size -0.0411     0.960   0.0703    0.0723 -0.568 0.570
number  0.1637     1.178   0.0478    0.0569  2.876 0.004

Likelihood ratio test=14.7  on 3 df, p=0.00213 n= 190

> sqrt(diag(afit$var))

[1] 0.24876453 0.07421445 0.05842243

> sqrt(diag(afit$naive.var))

[1] 0.19989234 0.07029462 0.04776578 

The naive estimate of standard error is 0.20, the correct estimate of
0.24 is intermediate between the naive estimate and the linear
combination estimate. Further discussion on these estimators can be
found in the section Robust Variance Estimation.
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Penalized Cox Models
PENALIZED COX MODELS

Consider a Cox model with both constrained and unconstrained
effects

,

where  and  are the covariates, and  and  are the
unconstrained and constrained coefficients, respectively. The
problem is solved by maximizing a penalized partial likelihood

over both  and . Here  is the usual Cox partial likelihood,
treating  as “just another parameter,” and  is some constraint
function which gives large values to “bad” values of . For the
moment assume that , a vector of tuning parameters, is known and
constant. 

Following Gray (1992), let  be the usual Cox model information
matrix, and let

be the second derivative matrix for the penalized likelihood .
Gray’s suggested estimate of the variance is 

Let  be a column vector of constants and  be the combined
vector of  parameters. Then for a general test of the hypothesis

, Gray recommends the Wald test .
Because of the shrinkage, this is not necessarily a chi-square statistic.
Let  be the eigenvalues of the matrix ; under 

the Wald test is distributed as , where the  are independent
identically distributed (iid) Gaussian random variables. 

. (28.8)
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Chapter 28  The Cox Proportional Hazards Model
Let . When the  are all 0 or 1, the case for non-penalized

models, the mean and variance of the test statistic are  and ,
respectively, and the distribution is chi-square on  degrees of

freedom. In penalized models,  and the variance is ,

so the distribution of the statistic is more compact than a standard chi-
square based on  degrees of freedom. Therefore, the test is
conservative.

The generalized degrees of freedom for the test statistic can be written
as 

.

Thus, the computation of eigenvalues is not strictly necessary. For a
particular term in the model, this becomes ,
where [ ] indicates Spotfire S+-style subscripts and  indexes the
columns corresponding to the term.

An alternate variance estimator is to use  directly, the inverse of
the second derivative of the full log-likelihood, which is the variance
used in the Wald statistic. It has an interpretation as a posterior
variance in a Bayes setting, and tends to be larger than  and thus

more conservative. Spotfire S+ returns both var2=  and var= .
The chi-square tests are based on var, as simulation experiments
suggest that this is the more reliable choice for tests.

Fitting 
Penalized 
Models

Spotfire S+ provides two functions for including penalized terms in
the Cox model. The ridge function implements a simplified pseudo-
ridge regression, while the pspline function implements a penalized
B-spline fit. Both functions are packaging functions that provide a
convenient interface to the functions that actually do the fitting: a
control function is used to estimate  and a penalty function
computes  and its first and second derivatives.
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Penalized Cox Models
Fitting a Ridge 
Model

For ridge, let  be a penalty function which

tends to shrink the coefficients  towards zero. The penalty function
inside ridge is then

function(coef, theta)
{
    list(penalty = sum(coef^2) * theta/2,
         first = theta * coef,
         second = rep(theta, length(coef)),
         flag = F)
}

The control function is even simpler:

function(parms, ...) list(theta = parms$theta, done = T)

As an example of using ridge, consider again the ovarian data set.
Recall that these data give the survival time of 26 women with
advanced ovarian carcinoma, with major covariates age and ecog.ps.
The ecog.ps variable is a performance score that measures physical
debilitation, with 0 corresponding to normal and 4 corresponding to
bedridden. In the example below, fit0 is the standard Cox model
and fit1 is the penalized model. The shrinkage parameter  is
chosen arbitrarily.

> fit0 <- coxph(Surv(futime,fustat) ~ rx + age + ecog.ps,
+ data = ovarian)
> fit0

Call:
coxph(formula = Surv(futime, fustat) ~ rx + age +

ecog.ps, data = ovarian)

          coef exp(coef) se(coef)     z      p
     rx -0.815     0.443   0.6342 -1.28 0.2000
    age  0.147     1.158   0.0463  3.17 0.0015
ecog.ps  0.103     1.109   0.6064  0.17 0.8600

Likelihood ratio test=15.9  on 3 df, p=0.00118  n= 26 

> fit1 <- coxph(Surv(futime, fustat) ~ rx + ridge(age,
+ ecog.ps, theta = 1), data = ovarian)
> fit1

f ω θ,( ) θ 2⁄( ) ωj
2∑=

ωj

θ 1=
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Chapter 28  The Cox Proportional Hazards Model
Call:
coxph(formula = Surv(futime, fustat) ~ rx + ridge(age, 

ecog.ps, theta = 1), data = ovarian)

                 coef se(coef)    se2 Chisq DF      p 
            rx -0.856 0.6161   0.6156  1.93 1  0.1600
    ridge(age)  0.123 0.0385   0.0354 10.21 1  0.0014
ridge(ecog.ps)  0.109 0.5734   0.5484  0.04 1  0.8500

Iterations: 1 outer, 4 Newton-Raphson
Degrees of freedom for terms= 1.0 1.8 
Likelihood ratio test=15.6  on 2.76 df, p=0.00104  n= 26 

The likelihood ratio test that is printed is twice the difference in the
 between the null model ( ) and the final fitted model.

The p-value is based on comparison to a chi-square distribution with
2.73 degrees of freedom. As mentioned earlier, this comparison is
somewhat conservative (p is too large). The eigenvalues for the
problem, eigen(solve(fit1$var, fit1$var2)), are 1, 0.9156, and
0.8486. The respective quantiles of the weighted sum of squared
normals and the chi-square distribution qchisq(q, 2.73) are:

From this table, we see that the actual distribution is somewhat more
compact than the chi-square approximation.

The shrinkage has a smaller effect on age than on the performance
score. Although the unpenalized coefficients for the two covariates
are of about the same magnitude, as shown by fit0, the standard
error for ecog.ps is much larger. The impact on overall fit (Cox )
of shrinking the age coefficient is thus larger than that for the
performance score; the age coefficient is “harder to change.”

Fitting Spline 
Models

The pspline function is used to fit a general spline term within the
Cox model. The method used is p-splines, described in Eilers and
Marx, 1996. The p-spline approach has several useful properties:

80% 90% 95% 99%

Actual sum 4.183 5.580 7.027 10.248

4.264 5.818 7.337 10.789

PL β ω 0= =

χ2.73
2

PL
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Penalized Cox Models
• For moderate degrees of freedom, a smaller number of basis 
functions give a fit that is nearly identical to the standard 
smoothing spline.

• The p-spline basis has basis functions that are evenly spaced 
and identical in shape. Because of the symmetry of the basis 

functions, the usual spline penalty  is very close 

to the sum of second differences of the coefficients, 
*sum((diff(diff(coef)))^2), which is very easy to 

program.

• The penalty does not depend on the values of the data, other 
than for establishing the range of the spline basis.

• If the coefficients are a linear series, the fitted function is a 
line. Thus a linear trend test on the coefficients is a test for the 
significance of a linear model. This makes it relatively easy to 
test for the significance of nonlinearity.

• Since there are a small number of terms, ordinary methods of 
estimation can be used. That is, the program can compute and 

return the variance matrix of . Contrast this to the classical 
smoothing spline basis, which has a term (knot) for each 
unique data value; for a large sample size, storage of the  by 

 matrix  becomes infeasible.

The penalty function for the p-spline is
, where , and  is the

matrix of second differences. The case  corresponds exactly to
the straight line model (an infinite penalty for curvature).

As an example, consider again the ovarian data and fit three models:

> fit1 <- coxph(Surv(futime, fustat) ~ rx + age, 
+ data = ovarian)

> fit2 <- coxph(Surv(futime, fustat) ~ rx + pspline(age,
+ df = 2), data = ovarian)

> fit4 <- coxph(Surv(futime, fustat) ~ rx + pspline(age,
+ df = 4), data = ovarian)

> fit1

f′ ′ x( )[ ]2 xd∫

θ

β̂

n
n H

ω θ,( ) θ 1 θ–( )⁄[ ] ω′ Pω( )( ) 2⁄= P T′ T= T
θ 1=
315



Chapter 28  The Cox Proportional Hazards Model
Call:
coxph(formula = Surv(futime, fustat) ~ rx + age, data

 = ovarian)

      coef exp(coef) se(coef)     z      p 
 rx -0.804     0.448   0.6320 -1.27 0.2000
age  0.147     1.159   0.0461  3.19 0.0014

Likelihood ratio test=15.9  on 2 df, p=0.000355  n= 26 

> fit2

Call:
coxph(formula = Surv(futime, fustat) ~ rx + pspline(

age, df = 2), data = ovarian)

                            coef se(coef)    se2 
                       rx -0.589 0.6990   0.6786
pspline(age, df = 2), lin  0.144 0.0433   0.0433
pspline(age, df = 2), non                       
                          Chisq   DF       p 
                       rx  0.71 1.00 0.40000
pspline(age, df = 2), lin 11.09 1.00 0.00087
pspline(age, df = 2), non  0.84 0.93 0.33000

Iterations: 2 outer, 7 Newton-Raphson
     Theta= 0.447 
Degrees of freedom for terms= 0.9 1.9 
Likelihood ratio test=17  on 2.87 df, p=0.0006  n= 26 

> fit4

Call:
coxph(formula = Surv(futime, fustat) ~ rx + pspline(

age, df = 4), data = ovarian)
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                            coef se(coef)   se2 Chisq 
                       rx -0.373 0.761    0.749 0.24 
pspline(age, df = 4), lin  0.139 0.044    0.044 9.98 
pspline(age, df = 4), non                       2.59 
                            DF      p 
                       rx 1.00 0.6200
pspline(age, df = 4), lin 1.00 0.0016
pspline(age, df = 4), non 2.93 0.4500

Iterations: 3 outer, 13 Newton-Raphson
     Theta= 0.242 
Degrees of freedom for terms= 1.0 3.9 
Likelihood ratio test=19.4  on 4.9 df, p=0.00149  n= 26

The printout for the simple Cox model fit1 shows an increase in the
log-hazard for death of 0.147 per year of age, with an overall chi-
square for the model of 15.9. The p-spline basis functions sum to a
constant, so the first one is deleted to remove the singularity. 

There are seven coefficients associated with the fit with two degrees of
freedom, which are summarized in the printout as a linear and
nonlinear effect. Similarly, the thirteen coefficients associated with the
four degrees of freedom fit are summarized as simply a linear and
nonlinear effect. Because of the symmetry of the basis functions, the
chi-square test for linearity is a test for zero slope in a regression of the
spline coefficients on the centers of the basis functions, using var as
the known variance matrix of the coefficients. The linear “coefficient”
that is printed is the slope of this regression. This computation of
coefficient and p-value is equivalent to the approximate backwards
elimination method of Lawless and Singhal (1978), here removing all
the nonlinear terms for age. If the terms being dropped are important
(that is, there is a significant nonlinearity), the approximation for the
linear coefficient is not as accurate.

As a more interesting example, consider the data from the Multi-
center Post-Infarction Project (MPIP) contained in the data set mpip.
This data set contains data on 866 patients, gathered after hospital
admission for myocardial infarction. The main goal of the study was
to determine which factors, if any, were predictive of the future
clinical course of the patients. 
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Chapter 28  The Cox Proportional Hazards Model
Our model of survival time uses four variables:

• ved, ventricular ectopic polarizations per hour obtained from 
analysis of a 24 hour Holter monitor. A large number of these 
irregular heartbeats is indicative of a high risk for fatal 
arrhythmia.

• nhya, New York Heart Association class. This is a measure of 
the amount of activity that a subject is able to undertake 
without angina, ranging from 1 to 4.

• rales, presence of pulmonary rales on initial examination.

• ef, ejection fraction. This is the proportion of blood cleared 
from the heart on each contraction.

The ved variable is very skewed; it has a mean value of 19.1, a
median of 0.45, a maximum value of 733, and 14% of the subjects
have a value of 0. The minimum nonzero value is 0.042, so we use the
derived covariate lved = log(ved+0.02) instead. This is still a
skewed variable, but not unmanageably so. A simple linear fit of the
four variables shows all to be highly significant:

> fit1 <- coxph(Surv(futime, status) ~ lved + nyha + rales + 
+ ef, data = mpip, na.action = na.exclude)
> fit1

Call:
coxph(formula = Surv(futime, status) ~ lved + nyha + 

rales + ef, data = mpip, na.action = 
na.exclude)

         coef exp(coef) se(coef)     z        p
 lved  0.1007     1.106  0.04266  2.36  1.8e-02
 nyha  0.3707     1.449  0.09379  3.95  7.7e-05
rales  0.4535     1.574  0.10527  4.31  1.7e-05
   ef -0.0265     0.974  0.00833 -3.18  1.5e-03

Likelihood ratio test=79.4  on 4 df, p=2.22e-016  n=764
 (102 observations deleted due to missing values)
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Now we explore more complicated forms for the effect of the
covariates. Since rales is a binary covariate, it allows no further
transformation; nyha, with four levels, is entered as a factor variable.
That leaves the two continuous variables, lved and ef, to be modeled
as p-splines with the default four degrees of freedom:

> fit2 <- coxph(Surv(futime, status) ~ pspline(lved) + 
+ factor(nyha) + rales + pspline(ef), data = mpip,
+ na.action = na.exclude)
> fit2

Call:
coxph(formula = Surv(futime, status) ~ pspline(lved) + 

factor(nyha) + rales + pspline(ef), data = 
mpip, na.action = na.exclude)

                         coef se(coef)     se2 Chisq 
pspline(lved), linear  0.0982 0.04384  0.04359  5.02
pspline(lved), nonlin                           2.59
        factor(nyha)1 -0.0308 0.15917  0.15890  0.04
        factor(nyha)2  0.2426 0.10380  0.10337  5.46
        factor(nyha)3  0.2008 0.06745  0.06725  8.86
                rales  0.4204 0.10816  0.10761 15.11
  pspline(ef), linear -0.0256 0.00738  0.00737 12.03
  pspline(ef), nonlin                           8.06
                        DF       p 
pspline(lved), linear 1.00 0.02500
pspline(lved), nonlin 3.06 0.47000
        factor(nyha)1 1.00 0.85000
        factor(nyha)2 1.00 0.01900
        factor(nyha)3 1.00 0.00290
                rales 1.00 0.00010
  pspline(ef), linear 1.00 0.00052
  pspline(ef), nonlin 3.01 0.04500

Iterations: 4 outer, 11 Newton-Raphson
     Theta= 0.776 
     Theta= 0.66 
Degrees of freedom for terms= 4.1 3.0 1.0 4.0 
Likelihood ratio test=92.5  on 12.04 df, p=1.69e-014
  n=764 (102 observations deleted due to missing values)
319



Chapter 28  The Cox Proportional Hazards Model
From this, we conclude that the first two classes of nyha can be
combined, the nonlinear effect for VED is not significant, and the
nonlinear effect from ejection fraction is important. 

Plots of the two spline terms can be produced as follows:

> temp <- predict(fit2, type = "terms", se.fit = T)
> tmat <- cbind(temp$fit[,1], 
+ temp$fit[,1] - 1.96 * temp$se.fit[,1], 
+ temp$fit[,1] + 1.96 * temp$se.fit[,1])

> jj <- match(sort(unique(mpip$lved)), mpip$lved)
> matplot(mpip$lved[jj], tmat[jj,], type = "l",
+ lty = c(1,2,2), xaxt = "n")

> xx <- c(0, 1, 50, 100, 500)
> axis(1, log(xx + .2), as.character(xx))
> title(xlab = "VED", ylab = "log hazard")

> tmat2 <- cbind(temp$fit[,4], 
+ temp$fit[,4] - 1.96 * temp$se.fit[,4], 
+ temp$fit[,4] + 1.96 * temp$se.fit[,4])

> jj2 <- match(sort(unique(mpip$ef)), mpip$ef)
> matplot(mpip$ef[jj2], tmat2[jj2,],type = "l", 
+ lty = c(1, 2, 2), xlab = "Ejection Fraction", 
+ ylab = "log hazard")

The resulting plot is shown in Figure 28.8. Some extra work was
required to label the first graph in the original ved units; this is done
with the axis command. The match function and the jj subscripts
sort the plot from left to right; otherwise, the line becomes a scribble.
The graph shows an increase in risk with ejection fractions below
60%, sharply so below 20%. The rise after 70% is not significant,
given the wide confidence intervals. This agrees with the
conventional wisdom of the physicians that the instrumentation is not
able to reliably distinguish values above this level.
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Penalized Cox Models
 

Figure 28.8: Plots of spline fit terms in mpip data model.
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Chapter 28  The Cox Proportional Hazards Model
FRAILTY MODELS

In this section, we consider survival models to which a random effect
is added. The random effect is usually viewed as a categorical
variable that describes excess risk, or frailty for an individual or
family. The idea is that individuals have different frailties, and those
who are most frail die earlier than the others.

Computationally, the frailty is usually viewed as an unobserved
covariate. This has led naturally to the use of the EM algorithm as an
estimation tool. Assume a proportional hazards model with random
effects, or frailties, with the hazard function 

Here  is a vector of  fixed effects and  is a vector of  random
effects, where the individual elements  are iid realizations from

some distribution . The matrix  normally contains measured
covariate values, and  is a design matrix that describes how the
random effects apply to individual subjects. Both  and  might
contain time-dependent effects, but we ignore this complication for
the moment. The baseline hazard may contain other parameters ,
but these are also ignored. If  contains an intercept term (implicit in
the proportional hazards model), we can constrain  to have mean 0.

We can treat the random effects as unobserved data and apply the
EM algorithm. The  of the formal EM argument is the entire
observed data (time, status, covariates) plus the frailties, and  is the
data without the frailties. The full log-likelihood had we observed 
is

Here  for censored observations and 1 for events. The  term

is an  by  matrix, and  is an  by  matrix.
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Frailty Models
This model setup is similar in notation to random effects models in
linear regression. Another notation, more common in the survival
literature, is to define  as the frailty parameter for each
subject. Then

where subject  is a member of the th family.The imposed constraint
is usually  rather than .

The most popular choice for the random distribution is the gamma
frailty model, where  is from a gamma distribution with mean 1 and

variance . Then the marginal likelihood , after integrating
out the frailty, is

where  is the numerical value returned as the partial likelihood by
a standard Cox model for the given values of  and ,  having
been entered as an offset term. This result applies only to the simple
frailty problem where each subject  is a member of exactly one
family , with one random effect per family. Then  gives the

number of events in the family and , where  is
the expected number of events for the family, using the final model.

There is an interesting connection between frailty models and
penalized likelihoods. In particular, let the penalty function for a
constrained solution be the log-gamma density

with  as the variance of the random effect, and with 
defined as in the frailty model. The first and second derivatives are

 and , respectively. Surprisingly, for any
fixed value of , the EM algorithm and this constrained minimization
have the same solution. This connection between the two methods
has several interesting consequences, as listed below.
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Chapter 28  The Cox Proportional Hazards Model
• Since penalized likelihood methods are well understood 
numerically, this leads to more stable computational methods; 
the EM algorithm is slow, and the proper variance estimate is 
uncertain. In particular, the penalized likelihood methods fit 
nicely into the new coxph function.

• There is a connection to the “degrees of freedom” for a fit.

• It suggests a heuristic approach for other frailty distributions 
and/or frailty terms such as nested models, for which the EM 
algorithm is not tenable.

Fitting a Cox 
Model with 
Frailty

To add a frailty term to the Cox model, use the frailty function
within the call to coxph. For example, consider the rats data set,
which contains information on the effect of treatment for survival of
150 female rats from 50 different litters. The data set has three rats per
litter, one of which received a potentially tumorigenic treatment.
Forty rats developed a tumor during follow-up. We use the Breslow
approximation for tied times to match other analyses of this same
data in the literature:

> rfit <- coxph(Surv(time, status) ~ rx + frailty(litter),
+ data = rats, method = "breslow")
> rfit

Call:
coxph(formula = Surv(time, status) ~ rx + frailty(

litter), data = rats, method = "breslow")

                 coef se(coef)   se2 Chisq   DF     p 
             rx 0.906 0.323    0.319  7.88  1.0 0.005
frailty(litter)                      16.89 13.8 0.250

Iterations: 6 outer, 20 Newton-Raphson
     Variance of random effect = 0.474   EM likelihood =
 -181.1 
Degrees of freedom for terms = 1.0 13.9 
Likelihood ratio test = 36.3  on 14.83 df, p = 0.00145  
    n = 150 

> rfit0 <- coxph(Surv(time, status) ~ rx, data = rats,
+ method = "breslow")
> rfit0
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Call:
coxph(formula = Surv(time, status) ~ rx, data = rats, 

method = "breslow")

    coef exp(coef) se(coef)    z      p 
rx 0.898      2.46    0.317 2.83 0.0047

Likelihood ratio test=7.87  on 1 df, p=0.00503  n= 150 

> rfit1 <- coxph(Surv(time, status) ~ rx + frailty(litter,
+ theta = 1), data = rats, method = "breslow")
> rfit1

Call:
coxph(formula = Surv(time, status) ~ rx + frailty(litter,

theta = 1), data = rats, method = "breslow")

                           coef se(coef)   se2 Chisq 
                       rx 0.918 0.327    0.321  7.85
frailty(litter, theta = 1                      27.25
                            DF      p 
                       rx  1.0 0.0051
frailty(litter, theta = 1 22.7 0.2300

Iterations: 1 outer, 5 Newton-Raphson
     Variance of random effect= 1    EM likelihood = -181.5 
Degrees of freedom for terms=  1.0 22.7 
Likelihood ratio test=50.7  on 23.67 df, p=0.001  n= 150 

The main thing to notice about these results is how little the treatment
coefficient is changed by the inclusion of a random effect term. This is
likely a consequence of the balanced model; each litter received both
active and control treatments.

For a fixed value of the frailty, the iteration is nearly as efficient as for
a normal Cox model, which usually requires 3–4 iterations. The
generalized fit required six guesses to maximize the profile likelihood,
and about three internal iterations per  value.ν
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Chapter 28  The Cox Proportional Hazards Model
The “likelihood ratio test” is always the difference in partial likelihood
between the initial and final fit, ignoring penalty terms and
corrections. The default for the initial fit is , which is a fit
with no covariates or random effect.

The solution using a Gaussian frailty is not much different:

> rfit2 <- coxph(Surv(time, status) ~ rx + frailty(litter,
+ dist = "gauss"), data = rats, method="breslow")
> rfit2

Call:
coxph(formula = Surv(time, status) ~ rx + frailty(litter,

dist = "gauss"), data = rats, method="breslow")

                           coef se(coef)   se2 Chisq 
                       rx 0.905 0.322    0.318  7.89
frailty(litter, dist = "g                      14.94
                            DF      p 
                       rx  1.0  0.005
frailty(litter, dist = "g 11.5  0.220

Iterations: 5 outer, 14 Newton-Raphson
     Variance of random effect= 0.396 
Degrees of freedom for terms=  1.0 11.5 
Likelihood ratio test=34.2  on 12.51 df, p=0.000846310
  n= 150

β ω,( ) 0=
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Additional Technical Details
ADDITIONAL TECHNICAL DETAILS

The remaining subsections provide additional details on
computations and options available for fitting proportional hazards
models, including:

• The handling of ties

• The effect of ties on the definitions of residuals

• Tests for proportional hazards

• Robust variance estimation

• The handling of case weights

• Details about the computations of coxph

Computations 
for Tied 
Deaths

For untied data, the terms in the partial likelihood (Equation (28.1))
look like

where  are the subject risk scores. Assume the real data
are continuous, but the recorded data have tied death times. For
example, several subjects might die on the first day of their hospital
stay but they do not all perish at the same moment. For a simple
example, assume 5 subjects (ordered by time of death or censoring)
are in a study and the first two die at the same recorded time. If the
time data had been more precise, the first two terms in the likelihood
would be either

or

.
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Chapter 28  The Cox Proportional Hazards Model
Notice that the numerators remain constant, but the denominators do
not. The question is, how do you approximate the correct term for the
likelihood?

The Breslow approximation is the most commonly used because it is
the easiest to program. It uses the complete sum, ,
for both denominators. Clearly, if the proportion of ties is large, this
deflates the partial likelihood.

The Efron approximation uses 0.5 + 0.5  as the

second denominator, based on the idea that  and  each have a
50% chance of appearing in the “true” second term. If there were 4
tied deaths, the ratios for  to  would be 1, 3/4, 1/2, and 1/4 in
each of the four denominator terms, respectively. Though it is not
widely used, the Efron approximation is only slightly more difficult to
program than the Breslow version. In particular, since the down-
weighting is independent of any case weights, the form of the
derivatives of the likelihood is unchanged.

An alternate approach attempts an “exact” computation. The exact
partial likelihood comes from viewing the data as genuinely discrete.

The denominator in this case is  if two subjects are tied,

 if three subjects are tied, etc.

When using the coxph function to fit proportional hazards models,
you can specify any of the above three methods for handling ties. The
default is the Efron approximation, method="efron". The other two
may be specified by setting method="breslow" or method="exact".
Note that when there are no ties, all three methods produce the same
likelihood function.

Effect of Ties 
on Residual 
Definitions

The Efron approximation induces changes in the residuals’
definitions. In particular, the Cox score statistic is still

r1 r2 r3 r4 r5+ + + +
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However, the definition of  changes if there are tied deaths at

time . If there are  deaths at , there are  different values of 

used at the time point. The Schoenfeld residuals use , the average of
these  values, in the computation. The martingale and score

residuals require a new definition of . If there are  tied deaths at
time , we again assume that in the exact (but unknown) untied data
there are events and corresponding jumps in the cumulative hazard at

. Then each of the tied subjects will in expectation

experience all of the first hazard increment, but only  of the
second,  of the next, and so on. If we equate observed to
expected hazard at each of the  deaths, the total increment in hazard
at the time point is the sum of the denominators of the weighted
means. 

Recall our earlier example of 5 subjects of which 1 and 2 have tied
deaths:

.

For the null model where  for all , the new definition above
agrees with the suggestion of Nelson (1969) to use 1/5+1/4 rather than
2/5 as the increment to the cumulative hazard. The formula for the
score residuals is demonstrated using our previous example with five
subjects, the first two being tied. For subject 1, the residual at time 1 is
the sum  where
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Chapter 28  The Cox Proportional Hazards Model
The products defining  and  do not neatly collapse into

, but they are easy to compute. The connection between
residuals and the exact partial likelihood is not as precise and are thus
not implemented. If residuals are requested after a Cox fit with
method="exact" the Breslow formulae are used.

Tests for 
Proportional 
Hazards

The key ideas of this section are taken from Grambsch and Therneau
(1994). Most of the common alternatives to the hypothesis test of
proportional hazards can be cast in terms of a time-varying coefficient
model. That is, we assume that

.

If  is a 0/1 covariate such as treatment, this formulation is
completely general in that it encompasses all alternatives to
proportional hazards. The proportional hazards assumption is then a
test for , which is a test for zero slope in the appropriate plot

of  on . Let  index subjects,  index variables, and  index the
death times. Then let  be the Schoenfeld residual and  be the

contribution to the information matrix (Equation (28.4)) at time .
Define the rescaled Schoenfeld residual as

.

The main results are:

• , so that a smoothed plot of  versus time 

gives a direct estimate of .

• Many of the common tests for proportional hazards are linear 
tests for zero slope, applied to the plot of  versus  for 
some function . In particular, the Z:PH test popularized in 
the SAS PHGLM procedure corresponds to  of 
the death time. The test of Lin (1991) corresponds to 

, where  is the Kaplan-Meier.

a b
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• Confidence bands, tests for individual variables, and a global 
test are available, and all have the fairly standard linear models 
form.

• The estimates and tests are affected very little if the individual 
variance estimates  are replaced by their global average 

. Calculations then require only the 

Schoenfeld residuals and the standard Cox variance estimate 
.

For the global test, let  be the desired transformation of time, and
let  be the value of  at the th death time. Then

is asymptotically  on  degrees of freedom, where

.

Because the  sum to zero, a little algebra shows that the above

expression is invariant if  is replaced by  for any constant .
Subtraction of a mean will, however, result in less computer round-off

error. A further simplification occurs by using , leading to

For a given covariate , the diagnostic plot has on the vertical axis

and  on the horizontal. The variance matrix of  is

, where  is a  diagonal matrix whose th

diagonal element is . Here ,  is a  matrix of ones

and  is the identity matrix. The constant  reflects the uncertainty

in  due to the  term. If only the shape of  is of interest (for

. (28.10)
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Chapter 28  The Cox Proportional Hazards Model
example, is it linear or sigmoid) the  can be dropped. If absolute
values are important (for example,  for  years), it should
be retained. 

For smooths that are linear operators, such as splines or the loess

function, the final smooth is  for some matrix . Then 
is asymptotically normal with mean 0 and variance . Standard

errors are computed using ordinary linear model methods. If  is

replaced with , then Sj simplifies to . With the same
substitution, the component-wise test for linear association is

The cox.zph function uses Equation (28.10) as a global test of
proportional hazards, and Equation (28.11) to test individual
covariates. The plot method for cox.zph uses a natural spline
smoother. Confidence bands for the smooth are based on the full

covariance matrix, with  replacing .

Though the simulations in Grambsch and Therneau (1994) did not

uncover any situations where the simpler formulae based on  are
less reliable, such cases could arise. The substitution trades a possible
increase in bias for a substantial reduction in the variance of the
individual . It is likely to be unwise in those cases where the
variance of the covariates within the risk sets differs substantially from
the variance between different risk sets. Two examples come to mind.
The first is a stratified Cox model, where the strata represent different
populations. In a multi-center clinical trial (for instance, inner city,
Veterans Administration, and suburban hospitals), disparate

populations are often serviced. In this case, a separate average 
should be formed for each strata. A second example is where the
covariate mix changes markedly over time, perhaps because of
aggressive censoring of certain patient types. These cases have not

. (28.11)
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ŝ∗ Hs∗= H ŝ∗
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been addressed directly in the software. However, coxph.detail
returns all of the  matrices, which can then be used to construct
specialized tests for such situations.

Clearly, no one scaling function  is optimal for all situations. The
cox.zph function directly supports four common choices: identity,
log, rank, and 1 – Kaplan-Meier. By default, it uses the last of these,
based on the following rationale. Since the test for proportional
hazards is essentially a test for significant regression of the scaled
residual modeled linearly in the , we expect this test to be

adversely effected if there are outliers in the . We would also like
the test to be at most mildly affected by the censoring pattern of the
data. The Kaplan-Meier transform appears to satisfy both of these
criteria.

Robust 
Variance 
Estimation

The following technical discussion of robust variance estimation for
Cox models leads to a rather simple implementation conceptually.
The basic idea is to compute an approximate matrix of changes in
estimated coefficients, , resulting from leaving out each observation
one at a time. The robust estimate of variance is then , which
relates to other variance estimators as follows:

•  is equivalent to the working independence estimate in 
generalized estimating equations models.

•  is an approximate jackknife estimate of variance.

•  is equivalent to the Wei, Lin, and Weissfeld (1989) 
variance estimate for a Cox model.

•  is a robust sandwich estimate as discussed in Huber (1967).

If the observations are grouped and correlated within groups, this
idea works if entire groups (rather than individual observations) are
left out for computing the approximate jackknife variance estimate.
This case corresponds to Cox models with a counting process
formulation and multiple observations per subject. The resulting
estimator of variance is called the grouped jackknife estimator.
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Chapter 28  The Cox Proportional Hazards Model
The Sandwich 
Estimator

The following discussion describes the general sandwich estimator, a
modification of the sandwich estimator for grouped data, and its
implementation for Cox models. Robust variance calculations are
based on the sandwich estimate

,

where  is the usual information matrix and  is a correction
term. The genesis of this formula can be found in Huber (1967), who
discusses the behavior of any solution to an estimating equation

.

Of particular interest is the case of a maximum likelihood estimate
based on distribution , so that , when in fact the data
are observations from distribution . Then under appropriate

conditions,  is asymptotically normal with mean  and covariance
, where

and  is the covariance matrix for . Under most

situations the derivative can be moved inside the expectation, and 
is the inverse of the usual information matrix. This formula was
rediscovered by White (1980, 1982) and is also known in the
econometric literature as White’s method. Under the common case of
maximum likelihood estimation we have
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By interchanging the order of the expectation and the derivative, 
is the expected value of the information matrix, which is estimated by
the observed information . Since ,

where  is assumed to be a row vector. If the observations are

independent, the  are also independent and the cross terms in

Equation (28.12) are zero. A natural estimator of  is

where  is the matrix of score residuals (the ith row of  equals

). The column sums of  are the efficient score vector .

As a simple example, consider generalized linear models. McCullagh
and Nelder (1989) maintain that overdispersion “is the norm in
practice and nominal dispersion the exception.” To account for
overdispersion they recommend inflating the nominal covariance

matrix of the regression coefficients  by a factor

,

where  is the nominal variance. Smith and Heitjan (1993) show that

 may be regarded as a multivariate version of this variance
adjustment factor, and that  and  may be interpreted as the

average ratio of actual variance  to nominal variance . By

(28.12)
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Chapter 28  The Cox Proportional Hazards Model
premultiplying by , each element of the nominal variance-
covariance matrix  is adjusted differentially for departures from
nominal dispersion.

Modified 
Sandwich 
Estimator

When the observations are not independent, the estimator  must be

adjusted accordingly. The natural choice  is not available of

course, since  by definition. However, a reasonable
estimate is available when the correlation is confined to subgroups. In
particular, assume that the data come from clustered sampling with

 clusters, where there may be correlation within
clusters but observations from different clusters are independent.
Using Equation (28.12), the cross-product terms between clusters can
be eliminated and the resulting equation rearranged as

,

where  is the sum of  over all subjects in the th cluster. This
leads to the modified sandwich estimator

,

where the collapsed score matrix  is obtained by replacement of
each cluster of rows in  by the sum of those rows. If the total
number of clusters is small, this estimate is sharply biased towards
zero and some other estimate must be considered. In fact,

, where  is the number of clusters. Asymptotic results
for the modified sandwich estimator require that the number of
clusters tend to infinity.

Implementation 
for Cox Models

Application of these results to the Cox model proceeds by defining a
weighted Cox partial likelihood and letting

,
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Ũ
U

rank V( ) k< k

ui β( ) U∂
wi∂

--------⎝ ⎠
⎛ ⎞

w 1=
=

336



Additional Technical Details
where w is the vector of weights. This approach is used by Cain and
Lange to define a leverage or influence measure for Cox regression.
In particular, they derive the leverage matrix

,

where  is the approximate change in  when observation  is
removed from the data set. Their estimate can be recognized as a
form of the infinitesimal jackknife ; see, for example, the discussion in
Efron (1982) for the linear models case.

The connection to the jackknife is quite general. For any model stated
as an estimating equation, the Newton-Raphson iteration has step

,

where the column sums of the matrix . At the solution 
the iteration’s step size is zero by definition. Consider the following
approximation to the jackknife:

1. Treat the information matrix  as fixed.

2. Remove observation .

3. Beginning at the full data solution  and do one Newton-
Raphson iteration.

This is equivalent to removing one row from  and using the new

column sum as the increment. Since the column sums of 
are zero, the increment must be . That is, the rows of  are
an approximation to the jackknife and the sandwich estimate of
variance  is an approximation to the jackknife estimate of
variance. 

Lin and Wei (1989) show the applicability of Huber’s work to the
partial likelihood, and derive the ordinary Huber sandwich estimate

, the approximate jackknife. When the data
are correlated, the appropriate form of the jackknife is to leave out an
entire subject at a time, rather than just one observation; this is the
grouped jackknife. To approximate this, we leave out groups of rows

from , leading to  as the approximation to the jackknife.
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Chapter 28  The Cox Proportional Hazards Model
Examples Lee, Wei, and Amato (1992) consider highly stratified data sets which
arise from inter-observation correlation. As an example, they use
paired eye data on visual loss due to diabetic retinopathy, where
photocoagulation was randomly assigned to one eye of each patient.
There are  clusters (patients) with 2 observations per
cluster. Treating each pair of eyes as a cluster, they derive the

modified sandwich estimate , where  is derived from  in
the following way. The  term has one row, or observation, per eye.
Because of possible correlation, we want to reduce this to a leverage

matrix  with one row per individual. The leverage (or row) for an
individual is simply the sum of the rows for each of their eyes. A
subject, if any, with only one eye retains the single row of unchanged
leverage data. The resulting estimator is shown to be much more
efficient than analysis stratified by cluster. A second example given in
Lee, Wei, and Amato concerns a litter-matched experiment; in this
case, the number of rats per litter may vary.

Wei, Lin, and Weissfeld (1989) consider multivariate survival times.
An example is the measurement of both time to progression of
disease and time to death for a group of cancer patients. The data set
again contains  observations with time and status variables, subject
id, and covariates. It also contains an indicator variable etype to
distinguish the event type, progression vs. survival. The suggested
model is stratified on event type, and includes all strata x covariate
interaction terms. One way to do this with coxph is

> fit2 <- coxph(Surv(time,status) ~ (rx + size + number)*
+ strata(etype))
> Ltilde <- residuals(fit2, type = "dfbeta",
+ collapse = subject.id)
> newvar <- t(Ltilde)

The per-subject leverage matrix  is newvar. An alternate way to do
this is

> fit2a <- coxph(Surv(time,status) ~ (rx + size + number)*
+ strata(etype) + cluster(id))

The cluster argument asserts that subjects with the same value of id
may be correlated. 
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The data for fitting the above two models is not built into Spotfire S+.
However, similar computations can be performed using the bladder
data frame for comparison. Two ways of producing the robust
variance estimate follow.

> bladder2 <- bladder[bladder$start< bladder$stop, ]
> afit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number + cluster(id), data = bladder2)
> sqrt(diag(afit$var))

[1] 0.24876453 0.07421445 0.05842243

Performing the computation in an alternate way, we get:

> bfit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number, data = bladder2)
> db <- resid(bfit, type = "dfbeta", collapse = 
+ bladder2$id)
> sqrt(diag(t(db) %*% db))

[1] 0.24876453 0.07421445 0.05842243

Using the grouped jackknife approach as suggested here, rather than
separate fits for each event type, has some practical advantages:

• It is easier to program, particularly when the number of 
events per subject is large.

• Other models can be encompassed. In particular, one need 
not include all of the strata x covariate interaction terms.

• There need not be the same number of events for each 
subject. The method for building up a joint variance matrix 
requires that all of the score residual matrices be of the same 
dimension, which is not the case if information on one of the 
failure types was not collected for some subjects.
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Weighted Cox 
Models

A Cox model that includes case weights has been suggested by
Binder (1992) in the context of survey data. If  are the weights, the
modified score statistic is

The individual terms  are still  but the weighted mean 

is changed in the obvious way to include both the risk weights  and
the external weights . The information matrix can be written as

, where  is the censoring variable and  is a weighted

covariance matrix. The definition of  changes in the obvious way
from Equation (28.4). If all of the weights are integers, then for the
Breslow approximation this reduces to ordinary case weights; that is,
the solution is identical to what you obtain by replicating each
observation  times. With the Efron approximation or the exact
partial likelihood approximation, replication of a subject results in a
correction for ties. 

The coxph function allows general case weights. Residuals from the fit
are such that the sum of weighted residuals is zero, and the returned
values from the coxph.detail function are the individual terms 

and , so that  and  are weighted sums. The sandwich estimator

of variance has  as its central term, where  is the diagonal

matrix of weights. The estimate of  and the sandwich estimate of its
variance are unchanged if each  is replace by  for any .

Multiplying weights by  does not change the robust se reported by
printing a coxph fit, but it does decrease the se(coef) reported by a
factor of sqrt(c).

For either of the Breslow or the Efron approximations, the extra
programming to handle weights is modest. For the Breslow method,
the logic behind the addition is straightforward and corresponds to

. (28.13)
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the derivation given above. For tied data and the Efron
approximation, the formula is based on extending the basic idea of
the approximation

to include the weights as necessary. Returning to the simple example
of the section Computations for Tied Deaths, the second term of the
partial likelihood is either

or

.

To compute the Efron approximation, separately replace the
numerator with 0.  and the denominator with 0.

+ 0.  + .

An exciting use of weights is presented in Pugh, Robins, Lipsitz, and
Harrington (1993), for inference with missing covariate data. Let 
be the probability that none of the covariates for subject i is missing,
and let  be an indicator function which is 0 if any of the covariates

actually is NA, so that . The usual strategy is to compute the

Cox model fit over only the complete cases (those with ). If
information is not missing at random, this can lead to serious bias in

the estimate of . A weighted analysis with weights of  corrects
for this imbalance. There is an obvious connection between this idea
and survey sampling; both reweight cases from underrepresented
groups.

In practice,  is unknown and the authors suggest estimating it using

a logistic regression with  as the dependent variable. The covariates
for the logistic regression may be some subset of the Cox model
covariates (those without missing information), as well as others. In an
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Chapter 28  The Cox Proportional Hazards Model
example, the authors use a logistic model with follow-up time and
status as the predictors. Let  be the matrix of score residuals from
the logistic model, that is,

,

where α are the coefficients of the fitted logistic regression. Then the

estimated variance matrix for  is the sandwich estimator ,
where

.

This is equivalent to first replacing each row of  with the residuals
from a regression of  on , and then forming the product .
Note that if the logistic regression is completely uninformative
( ), this reduces to the ordinary sandwich estimate.

Computations The coxph function is used to fit Cox proportional hazards models.
The input data are assumed to consist of observations or rows of data,
each of which contains the covariate values , a status indicator
variable (1=event, 0=censored), an optional stratum indicator
variable (referenced by the strata function), along with the time
interval (start, stop] over which this information applies. This means
that each row is treated as a separate subject whose  variable is 1 on

the interval (start, stop] and 0 otherwise. The risk set at time  only
uses the applicable rows of the data.

The code for coxph does not specifically accommodate time-
dependent covariates, time-dependent strata, multiple events, or any
of the other special features mentioned. Consequently, it is your
responsibility to construct an appropriate data set. This strategy leads to a
fitting program that is simpler, shorter, easier to debug, and more
computationally efficient than one with multiple specific options. A
significantly more important benefit is that the flexibility inherent in
building the proper data set allows analyses not originally considered;
left truncation is a case in point.

T

Tij αj∂
∂ pi πi α( ) 1 pi–( ) 1 πi α( )–( )log+log[ ]=

β̂ I 1– BI 1–

B U′ U U′ T[ ] T′ T[ ] 1– T′ U[–=

U
U T U′ U

πi constant=

Z

Yi

t

342



Additional Technical Details
The more common way to deal with time-dependent Cox models is
to do a computation for each death time. For example, BMDP and
SAS PHREG do this. One advantage of this over the algorithm
implemented in coxph is the ability to code continuously varying
time-dependent covariates. The coxph function only accommodates
step functions. However, this does not appear to be a deficiency in
practice. For the common case of repeated measurements on each
subject, the data for coxph are quite easy to set up since they
correspond to the original measurements of one line of data per visit.

The coxph function typically runs much faster when there are
stratification variables in the model. When strata are introduced,
coxph spends less time locating the current risk set because it only
looks within the stratum it is estimating. If the start time is omitted, it
is assumed to be zero for all cases. In this case the algorithm is
equivalent to the standard Cox model.
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Chapter 29  Parametric Regression in Survival Models
INTRODUCTION

In contrast to the non-parametric (and semi-parametric) survival
curve estimates of Kaplan-Meier, Fleming-Harrington, and Cox,
among others, this chapter presents a parametric formulation to the
estimation problem.  Assume the survival time  satisfies

, where  follows some given distribution and  is a
given transformation. For example, if  is the identity function and 
is Gaussian, this corresponds to ordinary linear regression. The usual
choice for  is , which corresponds to an accelerated failure time
(AFT) model. Using the log transform, if  is the cumulative

hazard function for , the cumulative hazard function for subject  is
. That is, the time scale for the subject is

accelerated by a constant factor.

The development and use of parametric survival models actually
predates that of the non-parametric methods. Although non-
parametric methods now dominate in fields of study where the
primary concern is to assess the risk of failure and its relation to
covariates (for example, the effect of treatment arm on breast cancer
recurrence), parametric methods are still vitally important in
situations where extrapolation of results is necessary to predict failure
rates under different conditions than those in the original study.  A
typical question addressed by non-parametric methodology is “How
much does the risk of dying decrease if a new treatment is given to a
lung cancer patient?”  A typical question addressed by the parametric
methodology in an accelerated testing setting is “What proportion of
heaters will fail when run at 1100°  F for 2 years, even though the
original study ran heaters at temperatures ranging from 1520°  to
1710°  for only four months?”

In a manufacturing setting, studies of failure rates for new products
cannot typically be done under normal operating conditions because
they take too long to complete.  Consequently, accelerated tests are
conducted, exposing the product to more severe stresses than normal
so that failures occur. Extrapolation is then used to estimate failure
rates under normal operating conditions. In contrast, the Kaplan-
Meier and Cox models do not extrapolate past the last observation. If
the data are reasonably well modeled by one of the parametric

y
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t W

t y( )log
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W i
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Introduction
distributions, parametric models provide information for assessing
properties of the baseline hazard function which the non-parametric
models don’t. 

To perform parametric regression in Spotfire S+, you use the survReg
function. The survReg function is similar to the survreg function
available in earlier versions of SPOTFIRE S+, but has some new and
modified arguments. The survreg function is still available, but is
now deprecated.

As a simple example, consider the  lung cancer data set included in
Spotfire S+. We can fit a Weibull model to this data using survReg as
follows:

> options(na.action = na.exclude)
> lung.survReg <- survReg(Surv(time, status) ~ age + sex +
+ ph.karno, data = lung, dist = "weibull")
> lung.survReg

Call:
survReg(formula = Surv(time, status) ~ age + sex +
     ph.karno, data = lung, dist = "weibull")

Coefficients:
 (Intercept)          age       sex    ph.karno 
    5.326344 -0.008910282 0.3701786 0.009263843

Scale= 0.7551354 

Loglik(model)= -1138.7   Loglik(intercept only)= -1147.5
Chisq= 17.59 on 3 degrees of freedom, p= 0.00053 

n=227 (1 observations deleted due to missing values)
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STRATA

In a Cox model, the strata statement is used to allow separate
baseline hazards for subgroups of the data, while retaining common
coefficients for the other covariates across groups. For parametric
models, the statement allows for a separate scale parameter for each
subgroup, but again keeping the other coefficients common across
groups. For instance, assume that separate baseline hazards are
desired for males and females in the lung cancer data set. If we think
of the intercept and scale as the baseline shape, an appropriate model
can be fit as follows:

> lung.sfit <- survReg(Surv(time, status) ~ sex + age +
+ ph.karno + strata(sex), data = lung, 
+ na.action = na.exclude)
> lung.sfit

Call:
survReg(formula = Surv(time, status) ~ sex + age + ph.karno 
+ strata(sex), data = lung, 

na.action = na.exclude)

Coefficients:
 (Intercept)       sex          age   ph.karno 
    5.059089 0.3566277 -0.006808082 0.01094966

Scale:
     sex=1     sex=2 
 0.8165161 0.6222807

Loglik(model)= -1136.7   Loglik(intercept only)= -1146.2
Chisq= 18.95 on 3 degrees of freedom, p= 0.00028 

n=227 (1 observations deleted due to missing values)

The intercept-only model used for the likelihood ratio test has 3
degrees of freedom, corresponding to the intercept and two scales, as
compared to the 6 degrees of freedom for the full model.
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This is quite different from the effect of strata in censorReg, where it
acts as a “by” statement and causes a completely separate model to be
fit to each gender. The same fit (but not as nice a printout) can be
obtained from survReg by adding an explicit interaction to the
formula:

> survReg(Surv(time, status) ~ sex + (age +
+ ph.karno) * strata(sex), data = lung)
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SPECIFYING A DISTRIBUTION

The survReg fitting routine is quite general, and can accept any
distribution that spans the real line for  and any monotone
transformation of . The following distributions are included by
default:

• exponential 

• extreme    

• Gaussian

• logistic

• Rayleigh

• t          

• Weibull     

• log Gaussian

• log logistic

W
y

352



Residuals
RESIDUALS

The residuals method for parametric survival objects can return any
of several types of residuals. This section describes the available types
along with their strengths and weaknesses.

Response Response residuals for other models such as lm or glm are defined as
, where  is the observed data value. For censored data, some

modifications must be made. If the observation is exact,  is the
observed value; if the observation is left- or right-censored, the
censoring value is used for . One could argue that the returned
residuals in this case should be marked as left- or right-censored, but
this has not been done. For an interval-censored observation,  is
chosen as the MLE from  a fit with . That is, it is chosen so that
the observed interval has the largest possible probability. For a
symmetric distribution such as Gaussian or logistic, this is the center
of the interval. However, it is somewhat more complicated for non-
symmetric distributions such as the extreme value. 

Response residuals are the default type:

> resid(lung.survReg)

         1        2        3         4        5 
 -48.57054 80.95766 593.7474 -202.5602 442.3329
        6         7         8         9        10 
 777.2215 -140.0104 -38.37526 -137.2232 -164.7835
        11       12       13        14       15 
 -206.0581 203.9896 186.3892 -233.2154 190.9419
        16       17       18        19        20 
 -199.9997 245.5643 437.0149 -395.4849 -324.5602
...

Deviance Deviance residuals are response residuals transformed to the log-
likelihood scale:

.

y ŷ– y
y

y

y
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Here  is the unconstrained MLE for a fit with  (only the

observation in question), but with  fixed at its value from the overall

fit. This leads to  and  for right- and left-censored
observations, respectively. The first term under the square root is
zero. 

The advantages of the deviance residuals for plotting and outlier
detection are nicely detailed in McCullagh and Nelder (1990).
However, unlike GLMs, deviance residuals for interval-censored data
are not free of the scale parameter. This means that if there are
interval-censored data values and you fit two models A and B, the
sum of the squared deviance residuals for model A minus the sum for
model B does not equal the difference in log-likelihoods. This is one
reason that the current survReg function does not inherit from class
"glm": the models created by glm use the deviance as the main
summary statistic.

Deviance residuals are obtained by specifying type="deviance" in
the call to resid:

> resid(lung.survReg, type = "deviance")

          1         2        3          4        5
 -0.1889512 0.2711838 2.543388 -0.7786656 1.086197
        6          7          8          9         10 
 3.643226 -0.4560836 -0.1308644 -0.5838006 -0.7929039
        11        12        13       14        15 
 -0.895371 0.5395109 0.4189815 -1.46457 0.5978532
         16        17       18        19        20 
 -0.9683285 0.7638346 1.614463 -1.862741 -1.533163
 ...

Dfbeta The dfbeta residuals are a matrix with one row per subject and one
column per parameter. The ith row gives the approximate change in
the parameter vector resulting from observation i; that is, it is the

change in  when observation i is added to a fit based on all
observations but the ith. The dfbetas residuals scale each column of
the dfbeta matrix by the standard error of the respective parameter.

ŷ0 n 1=

σ

ŷ0 ∞–=  ∞+

β̂
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Residuals
To obtain the dfbeta residuals, use type="dfbeta" in the call to
resid. To obtain the dfbetas residuals, use type="dfbetas":

> resid(lung.survReg, type = "dfbeta")

       (Intercept)            age            sex 
  1  0.01511630872 -1.133792e-004  0.00002623577
  2 -0.00696784585  1.451185e-004 -0.00325004547
  3  0.06865167740 -1.420568e-003 -0.01938509704
  4 -0.01038268752  2.135163e-004  0.00380158171
  5 -0.03436155488 -7.371198e-005 -0.01080367964
  6  0.24197961727  2.394794e-003 -0.02658673104
  ...
          ph.karno     Log(scale) 
  1 -1.065334e-004 -0.00355606713
  2  4.546980e-005 -0.00364612597
  3  7.566163e-004  0.01453486059
  4 -1.338031e-004 -0.00178635419
  5  7.467109e-004  0.00219801001
  6 -4.089797e-003  0.02732249126
  ...

> resid(lung.survReg, type = "dfbetas")

              [,1]          [,2]          [,3] 
  1  0.02280083554 -0.0159498488  0.0002050366
  2 -0.01051002003  0.0204148405 -0.0253996072
  3  0.10355144468 -0.1998413454 -0.1514975268
  4 -0.01566083063  0.0300368545  0.0297099481
  5 -0.05182959519 -0.0103695863 -0.0844324247
  ...
             [,4]          [,5] 
  1 -0.0238667512 -0.0576293685
  2  0.0101866266 -0.0590888556
  3  0.1695052040  0.2355509068
  4 -0.0299759836 -0.0289495277
  5  0.1672860906  0.0356207923
  ...
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Working The Newton-Raphson iteration used to solve the model can be
viewed as an iteratively reweighted least-squares problem with a
dependent variable of current prediction-correction. The working
residual is the correction term. You can obtain the working residuals
by specifying type="working" in the call to resid.

Likelihood 
Displacement

Escobar and Meeker (1982) define a matrix of likelihood
displacement residuals for the accelerated failure time model. The full
residual information is a square matrix  with dimension equal to the
number of perturbations considered. Three examples are developed
in detail, all with dimension , the number of observations: the
likelihood displacement residuals for a perturbation in the case
weight for observation  (ldcase), a perturbation in the response
value (ldresp), or a perturbation in the shape (ldshape).

Case weight perturbations measure the overall effect on the
parameter vector of dropping a case. Let  be the variance matrix of
the model, and let  the  by  matrix with elements ,

where  is the likelihood contribution of the th observation. Then

. The residuals function with type="ldcase" returns the
diagonal values of the matrix and  equals the dfbeta residuals.

Response perturbations correspond to a change of one  unit in one
of the response values. For a Gaussian linear model, the equivalent
computation yields the diagonal elements of the hat matrix. Shape
perturbations measure the effect of a change in the log of the scale
parameter by 1 unit. The matrix residual returns the raw values that
can be used to compute these and other LD influence measures. The
result is an  matrix, containing columns for the following
quantities:
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Predicted Values
PREDICTED VALUES

The predict method for survReg objects allows several types of
predictions. They fall into three groups: the linear predictor and
predicted response, terms, and predicted quantiles.

Linear 
Predictor and 
Predicted 
Response

The linear predictor is , where  is the covariate vector for

subject  and  is the final parameter estimate. The standard error of

the linear predictor is , where  is the variance matrix for .
You obtain the linear predictions by using predict with the argument
type="lp":

> predict(lung.survReg, type = "lp")

  [1] 5.870907 5.924369 6.031292 6.022382 6.088290
  [6] 5.500354 6.109271 5.989901 5.872746 5.801464
 [11] 5.929744 6.109271 6.294548 5.717736 5.929744
 [16] 5.840641 5.906548 5.598367 6.123556 6.022382
 . . .

The predicted response is identical to the linear predictor for fits to
the untransformed distributions (the extreme-value, logistic, and
Gaussian). For transformed distributions such as the Weibull, in
which  is from the extreme-value distribution, the linear
predictor is on the transformed scale and the response is on the
original scale of the data; this is  for the Weibull. The

standard error of the transformed response is the standard error of 
times the first derivative of the inverse transform. 

The predicted response is the default prediction. You can ask for it
explicitly by specifying type="response".

> predict(lung.survReg)

  [1] 354.5705 374.0423 416.2526 412.5602 440.6671
  [6] 244.7785 450.0104 399.3753 355.2232 330.7835
 [11] 376.0581 450.0104 541.6108 304.2154 376.0581
 [16] 343.9997 367.4357 269.9851 456.4849 412.5602
 . . .

ηi x'iβ̂= xi

i β̂

x'iVxi V β̂

y( )log
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Terms Predictions of type terms are useful for examination of terms in the
model that expand into multiple dummy variables, such as factors
and p-splines. The result is a matrix with one column for each of the
terms in the model, along with an optional matrix of standard errors.
Here is an example using p-splines on the stanford2 data set:

> fit <- survReg(Surv(time,status) ~ pspline(age, df=3) +
+ t5, data = stanford2, dist = "lognormal",
+ na.action = na.exclude)

> tt <- predict(fit, type = "terms", se.fit = T)
> yy <- cbind(tt$fit[,1], 
+ tt$fit[,1] - 1.96*tt$se.fit[,1],
+ tt$fit[,1] + 1.96*tt$se.fit[,1])

> matplot(stanford2$age, yy, type = "l", lty = c(1, 2, 2))
> plot(stanford2$age, stanford2$time, log = "y", 
+ xlab = "Age", ylab = "Days", ylim = c(0.1,10000))
> matlines(stanford2$age, exp(yy+attr(tt$fit, "constant")),
+ lty = c(1, 2, 2))

The second plot, shown in Figure 29.2, puts the fit onto the scale of
the data and thus is similar to Figure 1 in Escobar and Meeker (1982).
Their plot is for a quadratic fit to age, without the T5 mismatch score
in the model. For more details on p-splines, see the section Fitting
Spline Models on page 314.
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Figure 29.1: Plot of p-spline fit with error bands.

Figure 29.2: Plot of p-spline fit with scale of the data.
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Quantiles If predicted quantiles are desired, the set of probability of values 
must also be given to the predict function. A matrix of  rows by 
columns is returned, whose th element is the th quantile of the

predicted survival distribution, based on the covariates of subject .
This can be written as  where  is the th quantile of the
parent distribution. The variance of the quantile estimate is then

, where  is the variance matrix of  and .

In computing confidence bands for the quantiles, it may be preferable
to add standard errors on the untransformed scale. You can do this
using the "uquantile" prediction type. For example, consider the
motor reliability data of Nelson and Hahn (1972, as cited in
Kalbfleisch and Prentice, 1980). We first fit the standard quantile
confidence intervals:

> fit <- survReg(Surv(time, status) ~ temp, data = motor)
> q1 <- predict(fit, data.frame(temp = 130), 
+ type = "quantile", p = c(0.1, 0.5, 0.9), se.fit = T)

> ci1 <- cbind(q1$fit, 
+ q1$fit - 1.96*q1$se.fit,
+ q1$fit + 1.96*q1$se.fit)

> dimnames(ci1) <- list(c(0.1, 0.5, 0.9), c("Estimate", 
+ "Lower ci", "Upper ci"))

> round(ci1)

    Estimate Lower ci Upper ci 
0.1    15935     9057    22812
0.5    29914    17395    42433
0.9    44687    22731    66643

Next we fit the standard errors on the untransformed scale:

> q2 <- predict(fit,data.frame(temp = 130), 
+ type = "uquantile", p = c(0.1, 0.5, 0.9), se.fit = T)

> ci2 <- cbind(q2$fit, 
+ q2$fit - 1.96 * q2$se.fit,
+ q2$fit + 1.96 * q2$se.fit)

> ci2 <- exp(ci2)
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> dimnames(ci2) <- list(c(0.1, 0.5, 0.9), c("Estimate", 
+ "Lower ci", "Upper ci"))

> round(ci2)

    Estimate Lower ci Upper ci
0.1    15935    10349    24535
0.5    29914    19684    45459
0.9    44687    27340    73041

Using the default Weibull method, the data are fit on the  scale.
The confidence bands obtained by the second method are
asymmetric and may be more reasonable. They are also guaranteed
to be positive.

The following example reproduces Figure 1 of Escobar and Meeker:

> plot(stanford2$age, stanford2$time, log = "y",
+ xlab = "Age", ylab = "Days", ylim = c(0.01, 10^6), 
+ xlim = c(1, 65))

> fit <- survReg(Surv(time, status) ~ age + age^2, 
+ data = stanford2, dist = "lognormal")

> qq <- predict(fit, newdata = list(age = 1:65),
+ type = "quantile", p = c(0.1, 0.5, 0.9))

> matlines(1:65, qq, lty = c(1, 2, 2))

The plot is shown in Figure 29.3. Note that the percentile bands on
this figure are really quite a different object than the confidence bands
on the spline fit. The latter reflect the uncertainty of the fitted estimate
and are related to the standard error. The quantile bands reflect the
predicted distribution of a subject at each given age, assuming no
error in the quadratic estimate of the mean, and are related to the
standard deviation of the population. 

y( )log
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Figure 29.3: Predicted 10th, 50th, and 90th survival quantiles for subjects at given 
age.
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FITTING THE MODEL

With some care, parametric survival can be formulated as an
iteratively reweighted least squares (IRLS) problem used in
Generalized Linear Models (GLM) of McCullagh and Nelder (1990).
A detailed description of this setup for general maximum likelihood
computation is found in Green (1984). 

Let  be the response vector and  be the vector of covariates for the

th observation.  Assume that

for some distribution , where  may be censored and  is a
differentiable transformation function. The likelihood for  is

where exact, right, left, and interval refer to uncensored, right-censored,
left-censored, and interval-censored observations, respectively. The

 term is the lower endpoint of a censoring interval. The log-
likelihood is defined as 
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Derivatives of the log-likelihood with respect to the regression
parameters are 

where  is the vector of linear predictors.

Thus, if we treat  as fixed, iteration is equivalent to IRLS with
weights of  and adjusted dependent variable of . The
Newton-Raphson step defines an update  by

where  is the diagonal matrix formed from  and  is the vector
. The current estimate  satisfies , so that the new estimate

 will have

At the solution to the iteration, we might expect that . In fact,
weighted regression with  replacing  gives, in general, good
starting estimates for the iteration; for an interval-censored
observation, we use the center of the interval as . If all the
observations are uncensored, this reduces to using the linear
regression of  on  as a starting estimate:  so , thus

 and  (all of the supported densities have a
mode at ).
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Fitting the Model
This clever starting estimate is introduced in McCullagh and Nelder,
and works extremely well in that context: convergence often occurs
in 3–4 iterations. It does not work quite so well here, since a “good” fit
to a right-censored observation might have . Secondly, the other
coefficients are not independent of , and  often appears to be the
most touchy variable in the iteration.

Most often, the parametric survival functions are used with ,
which corresponds to the set of accelerated failure time models. The
transform can be applied implicitly or explicitly. For example, the
following two fits give identical coefficients:

> fit1 <- survReg(Surv(futime, fustat) ~ age + rx,
+ data = ovarian, dist = "weibull")

> fit2 <- survReg(Surv(log(futime), fustat) ~ age + rx,
+ data = ovarian, dist = "extreme")

The log-likelihoods for the two fits differ by a constant,the sum of
 for the uncensored observations. In addition, certain

predicted values and residuals will be on the  versus  scale.

Derivatives of 
the Log-
Likelihood

This section is very similar to the appendix of Escobar and Meeker,
differing only in the use of  rather than  as the natural
parameter. Let  and  denote the density and cumulative
distribution functions, respectively, of one of the parametric survival
distributions.  Using Equation (29.2) for defining , we have
the equations listed below.
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To obtain the derivatives for , set the upper endpoint  to  in

the equations for .  To obtain the equations for , left-censored

data, set the lower endpoint to . The internal iteration is done in
terms of , which avoids the boundary condition at zero and
helps the iteration speed considerably for some test cases. 
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Fitting the Model
By the chain rule:

At the solution,  so the variance matrix for  is a simple
scale change of the returned matrix for .
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DISTRIBUTIONS

The presentation of the distributions contained in this section is
similar to that in Nelson (1982). Derivatives of the terms in the log-
likelihood, Equation (29.2), are presented following the details for
each distribution.  

For each distribution, the standardized variable  is defined by
Equation (29.1), where  is the linear predictor and  is the
scale parameter.  The details for each distribution are written in terms
of the  standardized variable, .

Gaussian This is perhaps the most frequently used distribution in applied
statistics.  It is more commonly known as the normal distribution. The
continual calls to  may make it slow on censored data, however.
The standardized variable  has mean 0 and variance 1. The standard
normal distribution is then defined by 

The derivatives of the terms in the log-likelihood are given by 

For uncensored data, the “standard” GLM results are obtained by
substituting  into Equations (29.2) through (29.6).  The first

derivative vector is equal to  where  is a scaled residual,
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the update step  is independent of the estimate of , and the
maximum likelihood estimate of  is the sum of squared residuals.
None of these hold so neatly for right-censored data.

Least Extreme 
Value

If  has a Weibull distribution,  is distributed according to the
least extreme value distribution. Fits on the latter scale are
numerically preferable because they remove the range restriction on

. A Weibull distribution with the scale constrained to be 1 gives an
exponential model.

The standardized variable  defined by Equation (29.1) has mean

0.5722 and variance . Let . Then the standard least
extreme value distribution is  defined as

The derivatives for the terms in the log-likelihood, Equation (29.2),
are given by:

The mode of the distribution is at  with . For an
exact observation, the deviance term has . For interval-

censored data where the interval is of length , most mass is
covered if the interval has a lower endpoint of

,

so that the resulting log-likelihood is
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Logistic This distribution is very close to the Gaussian except in the extreme
tails, but it is far easier to work with. All the computations are closed
form. However, some data sets may contain survival times close to
zero, leading to differences in fit between the lognormal and log-
logistic choices. In such cases, the rationality of a Gaussian fit may
also be in question. 

The standardized variable  defined by Equation (29.1), has mean 0

(zero) and variance .  Again, let . The standard logistic
distribution is defined by

The derivatives for the terms in the log-likelihood, Equation (29.2),
are given by:

The distribution is symmetric about 0, so for an exact observation the
contribution to the deviance term is .  For an interval-
censored observation with span  the contribution is

.
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Other 
Distributions

Some other population hazards can be fit into this location-scale
framework, while others cannot.

We can see that an extreme value distribution on  is
equivalent to a Weibull hazard on , with .

The Makeham hazard  seems to fit human mortality
experience beyond infancy quite well. Here  is a constant mortality
that is independent of the health of the subject (accidents, homicide,
etc.), and the second term models the Gompertz assumption that “the
average exhaustion of a man’s power to avoid death is such that, at
the end of equal infinitely small intervals of time, he has lost equal
portions of his remaining power to oppose destruction which he had
at the commencement of these intervals.” For older ages,  is a
negligible portion of the death rate and the Gompertz model holds.

The next two statements follow from the form of the hazards in the
table:

• The Weibull distribution with  ( ) is the same as 
a Rayleigh distribution with . It is not, however, the 
most general form of a Rayleigh.

• The extreme value and Gompertz distributions have the same 
hazard function, with  and .
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On first glance, it appears that the Gompertz can be fit with an
identity link function combined with the extreme value distribution,
but this ignores a boundary restriction. If  is the extreme
value distribution with parameters  and , the definition of the
Gompertz density is

where  is the constant necessary so that 
integrates to 1. If  is far from 1, the correction term is minimal
and survReg should give a reasonable fit to Gompertz data. If not, the
distribution cannot be made to easily conform to the general fitting
scheme of the function. The censorReg function, however, can fit the
data using the truncation argument to specify that each observation
is restricted to .

The Makeham distribution falls into the gamma family (equation 2.3
of Kalbfleisch and Prentice) but with the same range restriction
problem.
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A Final Example
A FINAL EXAMPLE

The capacitor data frame contains data from a simulated life testing
of capacitors from Meeker and Duke (1982). The capacitor data
frame is close enough to the data modeled in Nelson (1990), page
302, that it works as a verification data set. The variables in capacitor
are:

• days, time to failure

• event, indicator of failure (1) or censoring (0)

• voltage, voltage at which the test was run

A summary of this data frame follows:

> summary(capacitor)

       days            event          voltage
 Min.   :  0.68   Min.   :0.000   Min.   :20.00
 1st Qu.: 73.87   1st Qu.:0.000   1st Qu.:26.00
 Median :300.00   Median :0.000   Median :26.00
 Mean   :205.20   Mean   :0.432   Mean   :26.72
 3rd Qu.:300.00   3rd Qu.:1.000   3rd Qu.:29.00
 Max.   :300.00   Max.   :1.000   Max.   :32.00

You fit a Weibull model to the capacitor data as follows:

> capac.fit1 <- survReg(Surv(days, event) ~ voltage,
+ data = capacitor)

You don’t have to specify the distribution in this case because
survReg defaults to dist="weibull".

Printing the resulting fit produces the following display: 

> capac.fit1

Call:
survReg(formula = Surv(days, event) ~ voltage,
     data = capacitor)

Coefficients:
 (Intercept)    voltage
    24.13993 -0.6403297
373



Chapter 29  Parametric Regression in Survival Models
Scale= 1.203916

Loglik(model)= -316.5   Loglik(intercept only)= -372.8
Chisq= 112.61 on 1 degrees of freedom, p= 0

n= 125

The summary of the fit object is shown below:

> summary(capac.fit1)

Call:
survReg(formula = Surv(days, event) ~ voltage, data = 
capacitor)
              Value Std. Error     z         p
(Intercept)  24.140     2.4493  9.86 6.48e-023
    voltage  -0.640     0.0811 -7.89 2.93e-015
 Log(scale)   0.186     0.1113  1.67 9.54e-002

Scale= 1.2

Weibull distribution
Loglik(model)= -316.5   Loglik(intercept only)= -372.8

Chisq= 112.61 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n= 125

Correlation of Coefficients:
           (Intercept) voltage
   voltage -0.998
Log(scale)  0.560      -0.559

Voltage is clearly quite significant in the model. McCullagh and
Nelder discuss the utility of deviance residual plots in assessing the fit
of a model. The following code constructs the plot of deviance
residuals versus the logged fitted values displayed in  Figure 29.4.

> plot(log(fitted(capac.fit1)), resid(capac.fit1,
+ type = "deviance"))

The example in Nelson (1990), page 302, displays a Weibull model
with  the logged scale parameter, , modeled as a linear

function of . We fit and display a partial summary of
this second model as follows.

α( )elog

voltage( )elog
374



A Final Example
> capac.fit2 <- survReg(Surv(days, event) ~ log(voltage),
+ data = capacitor)

> summary(capac.fit2)

Call:
survReg(formula = Surv(days, event) ~ log(voltage), data = 
capacitor)
               Value Std. Error     z         p
 (Intercept)  67.945      8.151  8.34 7.71e-017
log(voltage) -18.546      2.396 -7.74 9.81e-015
  Log(scale)   0.191      0.111  1.71 8.67e-002

Scale= 1.21

Weibull distribution
Loglik(model)= -316.4   Loglik(intercept only)= -372.8

Chisq= 112.71 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 6
n= 125

Correlation of Coefficients:
             (Intercept) log(voltage)
log(voltage) -1.000
  Log(scale)  0.543      -0.542 

Figure 29.4: Deviance residuals versus fitted values for a model of capacitor failure 
times versus voltage.
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Chapter 30  Life Testing
INTRODUCTION

Parametric regression models for censored data are used in a variety
of contexts, ranging from manufacturing to studies of environmental
contaminants. Because of their frequent use for modeling failure time
or survival data, they are often referred to as parametric survival
models. In this context, they are used throughout engineering to
discover reasons why engineered products fail. They are called
accelerated failure time models or accelerated testing models when the
product is tested under more extreme conditions than normal to
accelerate its failure time. 

Most product engineering can’t wait long enough to observe ample
failures for fitting models under normal operating conditions. The
results obtained under extreme conditions are related to the results
that would be obtained when the product is subject to normal wear.
Thus, for example, capacitors may be operated under higher
temperatures and voltages than normal to increase their likelihood of
failure. The resulting fitted model is used to extrapolate failure rates
back to normal operating conditions. Similar use is made of these
failure time distributions in the context of survival analysis, where
living organisms rather than engineered products are the primary
interest.

In the context of environmental studies, the measures of interest may
be chemical contaminant levels rather than failure times, but these
data are frequently censored or obtained from truncated distributions.
Censored and/or truncated data regression methodology applies
equally well in these cases but, of course, the values of interest have
nothing to do with survival.

Model selection is a major concern when using censored regression
models. As in other model fitting activities, the distributional
assumptions that are made must be appropriate for the data collected,
and the model must also reasonably account for variation in the
independent variables. Consequently, visual comparisons of the
predicted distribution of the response with nonparametric estimates
of the distribution is an important activity when fitting models. To
obtain the most appropriate model, usually a number of models with
different failure distributions and/or dependence relationships with
378



Introduction
the independent variables are fitted and compared. Visual
comparison and statistical tests are then used to determine the most
appropriate model.

Given that a model has been obtained, the results may be
extrapolated to new values for the independent variables, and
inference procedures may be used to obtain interval estimates for
failure probabilities or quantiles of the response. In doing this, the
usual precautions apply: one should not try to extrapolate model
information too far beyond the values collected in the data.
Moreover, because the interval estimate procedures are asymptotic,
the confidence levels should be treated as approximate, especially in
small samples.

In this chapter we discuss a set of functions for the analysis of
censored and/or truncated data or, more specifically, for the analysis
of accelerated failure time and survival data. These functions are
based upon estimation code originally developed by Meeker and
Duke (1981) and refined subsequently by W.Q. Meeker (personal
communication). This estimation code has been modified slightly for
inclusion in the Spotfire S+ product. The Spotfire S+ code that calls
the underlying estimation routines borrows from work done by both
W.Q. Meeker and Terry Therneau. For further reading on analyzing
accelerated test data see Nelson (1990) or Meeker and Escobar
(1998).

Taken as a whole, the Spotfire S+ functions we discuss in this chapter
allow you to easily specify and fit censored data models. They allow
you to graph and compare the fitted models with appropriate
nonparametric estimates of these models. You can also make
inferences regarding the model parameters, predicted failure
probabilities, and quantiles. We begin by briefly discussing the
nonparametric estimates and how they may be computed. This brief
introduction is followed by a complete discussion of the model fitting
software for censored data with emphasis on accelerated failure time
models. We then discuss the ANOVA function, which can be used to
compare one or more fitted models, and we describe the various
visualizations that can be performed once a model has been fit. In the
final sections of this chapter, we discuss the estimation of quantiles
and failure probabilities at various points for selected values of the
independent variables.
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Chapter 30  Life Testing
The censorReg function discussed in this chapter supersedes the
survreg function available in previous versions of Spotfire S+, as it
provides more extensive parametric survival capabilities. The censor
function is a new function for use in formulas, and specifies censoring
codes in a more general way than does the Surv function. The
kaplanMeier function is a companion function to survfit, providing
Kaplan-Meier estimates for survival models specified by the censor
function in censorReg. 
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The Generalized Kaplan-Meier Estimate
THE GENERALIZED KAPLAN-MEIER ESTIMATE

The Kaplan-Meier estimator produces nonparametric estimates of
failure probability distributions for a single sample of data that either
contains the exact time of failure, or is right-censored . A right-censored
observation is one in which the failure time is only known to be
greater than the time it was removed, or censored , from the study.
Because we consider data that may be left-censored, observed in an
interval, and/or grouped as well, we use a generalization of the
Kaplan-Meier estimate originally developed by Turnbull (1974,
1976).

Specifying 
Interval 
Censored Data

Consider the following (artificial) table of failure times:
Table 30.1: Failure time format.

Unit Failure Upper Censor Censor Codes

1 7 NA right 0

2 4 NA exact 1

3 5 NA exact 1

4 9 NA right 0

5 3 NA left 2

6 2 9 interval 3

7 7 12 interval 3

8 4 NA exact 1

9 11 NA right 0
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First we define what we mean by the censoring types. Let 
be a random censoring interval, let  be the failure time, and suppose
that  and  are independent. Note that less strict assumptions are
possible; see, for example, Andersen, et al., 1993. An observation is
an exact failure if the failure time  is observed so that . The
observation is right-censored if the censoring time  is observed so that

. The observation is interval-censored if all that is known is that
. Finally, the observation is left-censored if all that is known is

that ; that is, the observation is interval-censored with a
lower censoring time of zero.

In Spotfire S+, a censoring code indicates the type of censoring.
Censoring codes are handled quite generally, allowing you to specify
a set of values for each type of censoring. The default codes are 0 for
right-censored observations, 1 for exact failures, 2 for left-censored
observations, and 3 for interval-censored observations. To specify a
censored distribution dependent variable, you must give both the
time of failure or censoring, and except in exact failure (or complete)
data, the censoring code. The Spotfire S+ function censor is used to
specify the dependent variable. For the data in Table 30.1, the correct
specification is:

> unit <- c(1:9)
> failure <- c(7, 4, 5, 9, 3, 2, 7, 4, 11)
> upper <- c(rep(NA,5), 9, 12, NA, NA)
> Censor <- c("right", "exact", "exact", "right",
+ "left", "interval", "interval", "exact", "right")

> censor.codes <- c(0, 1, 1, 0, 2, 3, 3, 1, 0)
> censor(failure, upper, censor.codes)

[1]  7+    4     5     9+    3-   [ 2,  9] [ 7, 12]
[8]  4       11+

When three arguments are specified to censor, the default censoring
type is “interval.” To show the generality of the censor function, an
alternate way of specifying the censor codes is by using the Censor
column and stating explicitly what the codes are:

> cens <- censor(failure, upper, Censor, event = "exact",
+ right = "right", left = "left", interval = "interval")
> cens

C L U( , )=

T
C T

T T L<
L

T L>
L T≤ U<

0 T U<≤
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The Generalized Kaplan-Meier Estimate
[1]  7+    4     5     9+    3-   [ 2,  9] [ 7, 12]
[8]  4       11+

While this is lengthier command, it is far more general and allows you
to specify a vector of codes for each of the four censoring types.

It is always a good idea to display the output from the censor function
to verify that you have correctly specified the censoring information.
This is especially important because it is common practice to reverse
the censoring codes for exact failures and right-censored
observations; these values must be correctly specified if the analysis is
to be meaningful. An additional check you can do is to examine the
censor codes map as follows:

> censorCodesMap(cens)

   event: exact ==> 1
   right: right ==> 2
    left: left ==> 3
interval: interval ==> 4

The internal codes 1, 2, 3, and 4 are used by the estimation routine.

The outCodes argument to censor allows you to use it with the coxph,
survreg, and survfit routines, which require internal codes of 1
(event), 0 (right), 2 (left), and 3 (interval). Setting the outCodes
argument to "0-3" results in the internal codes that the three survival
functions require:

> cens <- censor(failure, upper, Censor, right = "right",
+ left = "left", event = "exact", interval = "interval",
+ outCodes = "0-3")

> censorCodesMap(cens)

   event: exact ==> 1
   right: right ==> 0
    left: left ==> 2
interval: interval ==> 3
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The outCodes argument allows you to generate output that is
equivalent to the output from Surv. This allows you to pass a censor
object to those functions that require an object of class "Surv". A
simple example shows the idea. You can fit a model using coxph with
the following call to censor:

> coxph(censor(time, status, outCodes = "0-3") ~ age + sex,
+ data = lung)

When you specify outCodes="0-3", not only are the output codes set
accordingly, but the return value of censor inherits from Surv, which
is required by coxph. You can also go the other way, from Surv to
censor, by selecting each column of a Surv object to pass to censor.

Computing 
Kaplan-Meier 
Estimates

The kaplanMeier function is used to compute Kaplan-Meier estimates
and Turnbull’s generalization of the Kaplan-Meier estimates. It
generalizes survfit by allowing left- and interval-censored data, and
it uses the same formula specification as the censorReg function
discussed later in this chapter. For the data in Table 30.1, use the
following Spotfire S+ statements to create a data frame called
int.data and compute Kaplan-Meier estimates with standard
confidence intervals:

> int.data <- data.frame(unit, failure, upper, Censor,
+ censor.codes)

> int.data

  unit failure upper   Censor censor.codes 
1    1       7    NA    right            0
2    2       4    NA    exact            1
3    3       5    NA    exact            1
4    4       9    NA    right            0
5    5       3    NA     left            2
6    6       2     9 interval            3
7    7       7    12 interval            3
8    8       4    NA    exact            1
9    9      11    NA    right            0

> kaplanMeier(censor(failure, upper, censor.codes) ~ 1,
+ data = int.data, conf.interval="identity")

Number Observed: 9 
Number Censored: 6 
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Confidence Type: identity 
            Survival Std.Err 95% LCL 95% UCL 
(-Inf,   2]    1.000   0.000   1.000   1.000
(   3,   4]    0.861   0.127   0.612   1.000
(   4,   5]    0.583   0.173   0.244   0.922
(   5,   7]    0.444   0.166   0.120   0.769
(   9,  11]    0.444   0.166   0.120   0.769
(  12, Inf)    0.000   0.000      NA      NA

In the output, each row begins with a label indicating the observation
interval. The time interval is followed by the survival estimate, the
standard error for the estimate, and approximate confidence intervals
for the estimate.

The kaplanMeier model computed above estimates the survival curve
for a single sample. If independent variables were available in the
sample, the values of all the independent variables would have to be
identical to obtain meaningful results from kaplanMeier. If an
independent variable is used on the right side of a formula, it is
treated as a stratification variable and separate survival curves are
estimated for each value.

Consider the capacitor2 data set distributed with Spotfire S+. This
data set contains four variables:

• days, the time of failure or censoring.

• event, the censoring code. A value of 1 is a failure at time 
days while 0 is right-censoring at time days.

• weights, the number of observations represented by that row.

• voltage, the voltage at which the capacitor was tested. There 
are four distinct voltages in the data set.

To analyze the failure date without regard to the test voltage, the
following statement is used:

> kaplanMeier(censor(days, event) ~ 1, weights = weights,
+ data = capacitor2)

However, this model ignores the different test voltages. An alternate
analysis computes a nonparametric estimate of the failure time for
each voltage. This is done with the statements:

> km.cap <- kaplanMeier(censor(days, event) ~ voltage,
+ weights = weights, data = capacitor2,
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+ conf.interval="identity")

> km.cap

voltage=20 
Number Observed: 25 
Number Censored: 25 
[1] Not enough failures available to fit a nonparametric 
censored data model

voltage=26 
Number Observed: 50 
Number Censored: 39 
Confidence Type: identity 
                 Survival Std.Err 95% LCL 95% UCL 
(  -Inf,  12.95]     1.00   0.000   1.000   1.000
( 12.95,  28.41]     0.98   0.020   0.941   1.000
( 28.41,  63.10]     0.96   0.028   0.906   1.000
( 63.10, 136.33]     0.94   0.034   0.874   1.000
(136.33, 139.37]     0.92   0.038   0.845   0.995
(139.37, 179.02]     0.90   0.042   0.817   0.983
(179.02, 187.80]     0.88   0.046   0.790   0.970
(187.80, 201.28]     0.86   0.049   0.764   0.956
(201.28, 214.28]     0.84   0.052   0.738   0.942
(214.28, 271.73]     0.82   0.054   0.714   0.926
(271.73, 277.33]     0.80   0.057   0.689   0.911
(277.33, 300.00]     0.78   0.059   0.665   0.895

voltage=29 
Number Observed: 20 
Number Censored: 7 
Confidence Type: identity 
                 Survival Std.Err 95% LCL 95% UCL 
(  -Inf,  10.21]     1.00   0.000   1.000   1.000
( 10.21,  40.69]     0.95   0.049   0.854   1.000
( 40.69,  45.85]     0.90   0.067   0.769   1.000
. . .

For voltage=20, there are not enough observations in the sample to
compute estimates. For voltage=26, voltage=29, and voltage=32,
estimates are computed and displayed in separate tables.
386



The Generalized Kaplan-Meier Estimate
The Kaplan-Meier estimates of failure probabilities can also be used
to compute nonparametric estimates of the quantiles. For example,
the statement

> qkaplanMeier(km.cap, p = seq(from=0.1, to=0.9, by=0.1))

produces the result below.
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$"voltage=20":
[1] NA

$"voltage=26":
    0.1    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 139.37 271.73 Inf Inf Inf Inf Inf Inf Inf

$"voltage=29":
   0.1   0.2   0.3    0.4   0.5    0.6 0.7 0.8 0.9
 45.85 55.73 91.81 108.62 164.2 257.88 Inf Inf Inf

$"voltage=32":
  0.1  0.2  0.3   0.4   0.5   0.6  0.7   0.8   0.9
 2.81 5.45 6.26 11.51 15.16 20.86 65.9 94.08 149.2

Notice that because no failures were observed beyond 300 days,
survival drops to 0.0 in the final intervals for 26 and 29 volts, resulting
in quantile estimates that are infinite. The true value is, of course,
finite, but is not estimable from these data.

Plotting 
Kaplan-Meier 
Survival Curves

The plot method for the kaplanMeier function produces a plot of the
estimated survival curves with optional confidence bands. For
example, you can plot the fit km.cap from the previous section with
the command:

> plot(km.cap)

To add confidence intervals to the curves, specify a logical vector to
the conf.int argument as follows:

> plot(km.cap, conf.int = c(T, T, T))

Figure 30.1 displays the resulting plot.
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The conf.int argument allows you to specify confidence intervals for
each curve independently, so you can turn some intervals on and
leave others off. Confidence intervals are automatically added when
only one survival curve is plotted, as for a nonstratified fit. When
more than one curve is plotted with confidence intervals, the line type
for the confidence interval automatically matches that of the survival
curve.

Additional arguments to plot.kaplanMeier allow you to specify the
color of the survival curves with color-matching confidence intervals.
In addition, the line type and line width of the curves and confidence
intervals can be specified along with x- and y-axis labels. In general,
any argument to the generic plot function can be given to
plot.kaplanMeier, including xlim for specifying x-axis limits and
main for specifying a main title for the plot.

Figure 30.1: Plot of km.cap.
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You can also use plot.kaplanMeier as a low-level graphics function
for adding survival curves to an existing plot. This requires, of course,
that the axis limits be set appropriately so that warning messages are
not generated when the survival curves or their confidence intervals
extend beyond the range of the plot region. An example uses the
built-in data set lung. To do a stratified fit the inst column, plot two
curves from the fit and then overlay a third plot using the following
commands:

> kap.lung <- kaplanMeier(censor(time, status) ~ inst,
+ data = lung, na.action = na.exclude)

> plot.kaplanMeier(kap.lung$fits[c(1, 5)])
> plot.kaplanMeier(kap.lung$fits[9], conf.int = T, lty = 4,
+ add = T)

Note that the plot.kaplanMeier function is called explicitly here,
because fits that are subscripted out of a kaplanMeier object lose their
class designation. Also note that the above example is for pedagogy
only. It could more easily be accomplished by doing the plots in a
single call to plot.kaplanMeier, as follows:

> plot.kaplanMeier(kap.lung$fits[c(1, 5, 9)],
+ conf.int = c(F, F, T))

Figure 30.2 shows the result of this latter call.
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Figure 30.2: Plot of kap.lung.
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PARAMETRIC SURVIVAL MODELS

Parametric (rather than nonparametric) estimates of failure
distributions can be easily computed with the censorReg function.
Like kaplanMeier, the censorReg function can handle interval-, right-,
and left-censoring. In addition, censorReg handles three general
families of failure distributions with logged and unlogged versions,
truncated data, offsets, a threshold parameter, fixed coefficients, and
much more.

An Example 
Model

As the simplest possible example, use the defaults for most arguments
in a censorReg model with no covariates. For the capacitor2 data set,
a possible Spotfire S+ statement is:

> para.fit <- censorReg(censor(days,event) ~ 1,
+ weights = weights, data = capacitor2)

> para.fit

Call:
censorReg(formula = censor(days, event) ~ 1, data = 
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)
    6.704817

Dispersion (scale) = 1.821207
Log-likelihood: -372.7664

Observations: 125 Total; 71 Censored
Parameters Estimated: 2

As with the kaplanMeier function, the response is specified by the
censor function. Because the model formula contains no covariates, a
parametric model is fit for a single sample of observations. In this
case, the parametric family defaults to the Weibull distribution. In the
output, the location parameter for the Weibull distribution is
estimated as 6.704 and the scale parameter is estimated as 1.82.
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As with other Spotfire S+ fitting functions, summary can be used to
obtain a more detailed summary of the fit. Following is the result of
calling summary on the fit object:

> summary(para.fit)

Call:
censorReg(formula = censor(days, event) ~ 1, data = 
capacitor2, weights = weights)

Distribution:  Weibull

Standardized Residuals:
             Min   Max
Uncensored 0.020 0.553
  Censored 0.577 0.577

Coefficients:
            Est. Std.Err. 95% LCL 95% UCL z-value   p-value
(Intercept)  6.7    0.296    6.12    7.29    22.6 3.01e-113
Extreme value distribution: Dispersion (scale) = 1.821207
Observations: 125 Total; 71 Censored
-2*Log-Likelihood: 746

Specifying the 
Parametric 
Family

The censorReg function supports 10 parametric distribution families.
A particular family can be specified by setting the distribution
argument in censorReg equal to the quoted string in the first column
of Table 30.2. 

The discussion following the table describes the internal specification
of the parametric distribution families as they are viewed by the
estimation routines. The general user need not be concerned with this
aspect of the family specification, and can safely skip the rest of this
section. The discussion is included here for the user who wants or
needs access to the internal routines.
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Internally, the distributions are defined by two quantities, following
the development of standard textbooks on parametric survival
analysis: the distribution of the random variable, and the link
function. Let (•) denote the link function, and let

be the random variable for failure time . Here  is the scale factor,
 is a vector of covariates, and  is a vector of coefficients. In the

simplest model,  for the intercept term. The term  specifies
the location of the estimates. Two link functions (•) are possible: the
identity link

,

Table 30.2: Distributions supported by censorReg.

Argument Distribution

"weibull" Weibull

"extreme" Smallest extreme value

"lognormal" Log-normal or log-Gaussian

"normal" Normal or Gaussian

"loglogistic" Log-logistic

"logistic" Logistic

"logexponential" Log-exponential

"exponential" Exponential

"lograyleigh" Log-Rayleigh

g

z g y( ) xβ–
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x β

x 1= xβ
g
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and the log link

.

Three distributions for  are available. These are the logistic

,

the normal or Gaussian distribution

,

and the smallest extreme value distribution

.

When the log link is used with a fixed value of , the smallest
extreme value distribution becomes an exponential distribution; if

, this becomes the Rayleigh distribution. When the smallest
extreme value distribution is used with the log link, the distribution
can be made equivalent to the two-parameter Weibull distribution:

.

Here,  is the shape parameter.

Typically, failure times are positive since failure at a negative time is
not usually meaningful. However, it is possible to give censorReg
negative values for survival times when the identity link function is
used. This might be useful with a Gaussian distribution, for example,
which takes values over the entire real line.

To fit a Gaussian model to the capacitor2 data, type:

> censorReg(censor(days, event) ~ 1, data = capacitor2,
+ distribution = "gaussian")

The hazard rate is the instantaneous rate of failure. This is computed
as the first derivative of the failure density with respect to time.
Different distributions result in different hazard rates, and thus in
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different models. Much time in model building can be spent in
deciding upon the correct model to use. The plotting functions
discussed below can help in making this decision.

Accounting for 
Covariates

In the censorReg models above, we consider only a single sample of
observations from the same distribution. Typically, a survival model
also includes covariates to describe the distribution. For example,
accelerated failure time models describe designed experiments in
which a covariate is held fixed at a specified value for some
observations, and the time to failure for the observations is recorded.
The capacitor2 data set is an example of such an experiment. Four
values of the covariate voltage were observed: voltage=20,
voltage=26, voltage=29, and voltage=32. Suppose we assume that
the location parameter varies linearly with the voltage covariate:

,

for intercept . This model can be specified with the Spotfire S+
statement:

> censorReg(censor(days, event) ~ voltage,
+ weights = weights, data = capacitor2)

Call:
censorReg(formula = censor(days, event) ~ voltage, data = 
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)    voltage
    24.14083 -0.6403586

Dispersion (scale) = 1.203945
Log-likelihood: -316.4589

Observations: 125 Total; 71 Censored
Parameters Estimated: 3
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In this model, the location parameter is obtained by regression on
voltage. This requires a linear relationship of the hazard rate on
voltage. Assuming that the relationship is not linear, a more general
model fits

.

In this model,  indexes the different voltages, and the location
parameter is allowed to vary in an arbitrary manner with voltage.
This model is accomplished with the following command:

> censorReg(censor(days, event) ~ factor(voltage),
+ weights = weights, data = capacitor2)

Alternatively, suppose that the scale parameters are different for
different values of the covariate. Then the model

can be specified using the Spotfire S+ statement:

> censorReg(censor(days, event) ~ strata(voltage),
+ weights = weights, data = capacitor2)

In all but the last case, an object of class "censorReg" is produced.
When the strata function is used to create a stratified fit (as in the last
example), an object of class "censorRegList" is produced. This object
contains a list of censorReg objects.

The anova function is used to compare the models described above.
This is discussed in more detail in the section Comparing Parametric
Survival Models.

Truncation 
Distributions

Aside from the distributions above, it is also possible to specify a
different truncation distribution for each observation. In truncated
data, the item being tested is not observed over the entire positive
axis. Instead, observation of the item is made over a known interval
that is a subset of the time period in which the observation could fail.
Thus, if there is left truncation, the items under test may be

z
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z
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manufactured, used for a time, and then placed on test. Although the
time to failure is scored as the time since manufacture, items that fail
prior to being placed on test are not scored. 

Let  be the time of manufacture, and suppose that testing begins
at . If  is the cumulative distribution of the failure time
when observation starts at time zero, the distribution of the left-
truncated failure times is given by

.

Similarly, in right truncation, observation of failure or censoring is
only made until . Observations that either fail or are censored
after time  cannot be observed or are thrown out. Finally, in interval
truncation, observation is made over a fixed interval , and
observations that fail or are censored outside of the interval are not
considered.

Truncation distributions can be fit easily with the censorReg function.
For example, to obtain a Gaussian fit to the data in Table 30.3, use the
following set of commands to first build the data set:

> unit <- c(1:9)
> failure <- c(7, 4, 5, 9, 4, 5, 7, 4, 11)
> upper <- c(rep(NA,5), 9, 12, NA, NA)
> Censor <- c("right", "exact", "exact", "right",
+ "left", "interval", "interval", "exact", "right")
> censor.codes <- c(0, 1, 1, 0, 2, 3, 3, 1, 0)
> tlower <- c(3, 0, 0, 3, 9, 3, 3, 0, 3)
> tupper <- c(rep(NA,5), 20, 20, NA, NA)
> trunc.codes <- c(2, 1, 1, 2, 0, 3, 3, 1, 2)
> table4 <- data.frame(unit, failure, upper,
+ Censor, censor.codes, tlower, tupper, trunc.codes)
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The following call to censorReg computes the Gaussian fit:

> trunc.fit <- censorReg(
+ censor(failure, upper, censor.codes) ~ 1, data = table4,
+ truncation = censor(tlower, tupper, trunc.codes),
+ distribution = "lognormal")

> trunc.fit

Call:
censorReg(censor(failure, upper, cens) ~ 1, data = table4, 
truncation = censor(tlower, tupper, trunc.codes), 
distribution = "lognormal")
Distribution: Lognormal

Coefficients:
 (Intercept)

Table 30.3: Truncated data.

Unit
Failur

e Upper Censor
Censor
Codes

Lower
Truncatio

n

Upper
Truncatio

n

Truncatio
n

Codes

1 7 NA right 0 3 NA 2

2 4 NA exact 1 0 NA 1

3 5 NA exact 1 0 NA 1

4 9 NA right 0 3 NA 2

5 4 NA left 2 9 NA 0

6 5 9 interval 3 3 20 3

7 7 12 interval 3 3 20 3

8 4 NA exact 1 0 NA 1

9 11 NA right 0 3 NA 2
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    1.920974

Dispersion (scale) = 0.9211897
Log-likelihood: -12.49965

Observations: 9 Total; 6 Censored
Parameters Estimated: 2

Because the log-likelihood is numerically complex when truncation
distributions are used, it is important to verify convergence. Here,
convergence is verified by the near-zero values of the first derivatives
of the log-likelihood. We can extract the derivatives from the
trunc.fit model as follows:

> trunc.fit$first.deriv

    (Intercept)          scale
 -6.594777e-010 -4.993228e-009

Threshold 
Parameter

Truncation distributions modify the fitted distribution by considering
failure in a subset of the positive real line. A distribution with a
threshold parameter also modifies the failure distribution, but in a
slightly different way. The idea of the threshold parameter is that test
items cannot fail for a period of time after testing begins. Although
testing begins at time zero, no tested item fails for some fixed period

 after time zero. Thus, the failure distribution is given by
. The net effect of the threshold parameter is to shift

the failure distribution to the right by a fixed amount.

Maximum likelihood estimation of  is not easily accomplished,
though there is some discussion of this in Meeker and Escobar (1998,
pp. 224-231). You can either compute the value of  yourself and
enter it as input to the censorReg function, or censorReg can estimate

 in two different ways. The first is to simply decrease the smallest
failure time by 10%. The second works only for log distributions, and
computes a value for  which optimally linearizes a qqplot of the
Kaplan-Meier survival estimate. By default, . Once computed,

 is carried along with the censorReg object for further computations
and information.
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For the example in Table 30.3, we can set the threshold parameter
equal to two as follows:

> censorReg(censor(failure, upper, censor.codes) ~ 1,
+ data = table4, truncation = censor(tlower, tupper, 
+ trunc.codes), distribution = "lognormal", threshold = 2)

Call:
censorReg(formula = censor(failure, upper, censor.codes) ~
1, data = table4, truncation = censor(tlower, tupper, 
trunc.codes), distribution = "lognormal", threshold = 2)

Distribution: Lognormal

Coefficients:
 (Intercept)
    1.664897

Dispersion (scale) = 1.38711
Log-likelihood: -12.23809

Observations: 9 Total; 6 Censored
Parameters Estimated: 2
Threshold Parameter: 2

Notice that the coefficient estimates have dramatically changed.

Offsets Like threshold parameters, offsets are also used to change the
distribution of the failure time variable. Let  denote a known, fixed
offset, and let  denote the failure time. When offsets are used, the
transformed failure time becomes

.

A typical use of offsets is in likelihood ratio tests. Suppose that

 optimizes the likelihood when covariates  and  are

included in the model. Then a likelihood ratio test of  is

ω
y

z g y( ) ω– xβ–
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------------------------------=
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obtained by setting , and then comparing the optimized

value of the likelihood of a model  with the optimized

likelihood for model .

We illustrate this idea using the built-in capacitor2 failure data.
When the voltage covariate is included in the model, the output is:

> censorReg(censor(days,event) ~ voltage,
+ weights = weights, data = capacitor2)

Call:
censorReg(formula = censor(days, event) ~ voltage, data = 
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)    voltage
    24.14083 -0.6403586

Dispersion (scale) = 1.203945
Log-likelihood: -316.4589

Observations: 125 Total; 71 Censored
Parameters Estimated: 3

A likelihood ratio test that the voltage coefficient is fixed at -0.5 is
obtained by fitting a second model that fixes the parameter estimate
of voltage. This is accomplished with an offset term:

> censorReg(censor(days, event) ~ offset(-0.5 * voltage),
+ weights = weights, data = capacitor2)

Call:
censorReg(formula = censor(days, event) ~ offset(-0.5 * 
voltage), data = capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)
    19.94567

ω x1κ=

ω x2β̂2+

x1β̂1 x2β̂2+
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Dispersion (scale) = 1.090527
Log-likelihood: -1129.826

Observations: 125 Total; 71 Censored
Parameters Estimated: 2
Offset has been specified

Computing the likelihood ratio test from the above two fits by hand
we get:

LRT = -2*(-1129.8 + 316.5) = 1626.6

which is compared with a chi-squared distribution with one degree of
freedom. Clearly, this is a significant result.

Fixing 
Parameters

It is also possible to simply fix parameters in the model. Most often
the scale parameter is fixed, but it is possible to fix any parameter. For
example, in the capacitor2 example we may fix the voltage
coefficient to be -0.5 using the command:

> censorReg(censor(days, event) ~ voltage, data = 
+ capacitor2, weights = weights, fixed = list(
+ voltage = -0.5))

Distribution: Weibull

Coefficients:
 (Intercept)
    19.94567

Dispersion (scale) = 1.090527
Log-likelihood: -1129.826

Observations: 125 Total; 71 Censored
Parameters Estimated: 2

Comparing this with the results in which offset is used, we see that
the effect of fixing voltage to be -0.5 is the same as specifying the
offset to be -0.5*voltage.
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COMPARING PARAMETRIC SURVIVAL MODELS

The anova function is used to compare models. If a single object is
input to anova, then one term at a time is added to the model. The
anova comparisons start from the smallest possible model (usually the
intercept-only model) and continue until the model object is
obtained. As an example, consider the following model:

> fit <- censorReg(censor(days, event) ~ voltage +
+ voltage^2, weights = weights, data = capacitor2)

Apply the anova function to the fit as follows:

> anova(fit, test = "Chisq")

Likelihood Ratio Test Table

Weibull model

Response: censor(days, event)

Terms added sequentially (first to last)
             N.Params -2*LogLik Df      LRT   Pr(Chi)
        NULL        2  745.5327
     voltage        3  632.9178  1 112.6149 0.0000000
I(voltage^2)        4  632.8494  1   0.0684 0.7937407

The results suggest that the location parameter of the distribution
depends on voltage linearly, and that the quadratic term is
unimportant. We verify this hypothesis below.

When two or more censorReg or censorRegList objects are input to
the anova function, the models are compared with likelihood ratio
tests. Suppose we are interested in testing whether the model for the
capacitor2 data should be

,

where  is voltage. 

z g y( ) xβ–
σ

---------------------=

x
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Comparing Parametric Survival Models
More general models (in the sense of having more parameters) are

,

and

,

where  indexes the different voltages. These three models plus an
intercept-only model can be generated in Spotfire S+ using the
following statements:

> fit0 <- censorReg(censor(days,event) ~ 1,
+ weights = weights, data = capacitor2)

> fit1 <- censorReg(censor(days,event) ~ voltage,
+ weights = weights, data = capacitor2)

> fit2 <- censorReg(censor(days, event) ~ factor(voltage),
+ weights = weights, data = capacitor2)

> fit3 <- censorReg(censor(days, event) ~ strata(voltage),
+ weights = weights, data = capacitor2)

The models are then compared using the anova function as follows:

> anova(fit0, fit1, fit2, fit3, test = "Chisq")

Likelihood Ratio Test(s)

Response: censor(days, event)

     Terms N.Params -2*LogLik      Test Df     LRT  Pr(Chi)
1         1       2   745.53
2      voltage    3   632.92  + voltage  1 112.615  0.0000
3 factor(voltage) 5   632.37    2 vs. 3  2   0.547  0.7605
4 strata(voltage) 6   630.40    3 vs. 4  1   1.973  0.1601

The evidence is now quite strong that we can’t do any better than the
model that linearly relates the location parameter of the distribution
and voltage. We can verify this by looking at graphics.

z
g y( ) αi–

σ
--------------------=

z
g y( ) αi–

σi
--------------------=

i
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Chapter 30  Life Testing
PLOTS FOR PARAMETRIC SURVIVAL MODELS

The plot method for objects of class "censorReg" generates four to six
plots depending on the type of fit. You can generate all possible plots
for a censorReg fit object by simply using the plot function as follows:

> plot(fit1)

The first three graphs that result from plot are equivalent to those
produced for fits of class "lm" or "glm", so they are not discussed
further here. The last four graphs are presented in Figure 30.3
through Figure 30.6. 

Figure 30.3 displays a probability plot of the standardized residuals.
Standardized residuals are described in Meeker and Escobar (1998),
where they are referred to as “censored Cox-Snell” residuals. For
diagnostic purposes, a maximum likelihood estimate of a null model
(intercept only) is displayed in Figure 30.3, along with the residuals.

Figure 30.3: Probability plot of standardized residuals with maximum likelihood 
estimate.
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Plots for Parametric Survival Models
Figure 30.4 displays a probability plot of the fitted model along with
the noncensored observations. Each line corresponds to the fit for a
different value of the covariate, and each set of points corresponds to
the noncensored observations. Although the censorReg function is
not constrained to single covariates, probability plots are currently
available for single covariate models only. For more details, see the
help file for probplot.censorReg, which is the function that produces
these kinds of plots.

Figure 30.5 displays what engineers refer to as a stress plot. It plots the
noncensored observations and equi-probability lines for the predictor
variable (the stressor) versus failure times. It is quite clear from the
graph that as voltage (or stress) decreases, failure times increase. Like
probability plots, stress plots are constrained to single covariate
regression models. For more details, see the help file for
stressplot.censorReg.

Figure 30.4: Probability plot of the fit with maximum likelihood estimates.
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Chapter 30  Life Testing
 

The final diagnostic plot for a censorReg object is displayed in Figure
30.6. This is the same plot as Figure 30.4, but repeated for six
distributions. The distributions are the Weibull, the lognormal, and
the loglogistic, coupled with their nonlogged counterparts. This plot is
provided primarily for distribution assessment. It’s quite clear from
Figure 30.6 that a nonlogged distribution does not fit the data well.
Exactly which logged distribution fits the data best is not so clear. For
more information on this kind of plot, see the help file for
probplot6.censorReg.

Figure 30.5: Stress plot of the fit.
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Plots for Parametric Survival Models
Although the three plotting functions probplot.censorReg,
stressplot.censorReg, and probplot6.censorReg are called by the
plot method for a censorReg object, they were designed to be called
directly. This provides more capabilities than those available through
the general plot command alone. For example, the method argument
in each of the plotting functions allows the plotted points to be
computed based upon some alternative model. This argument
defaults to the "KM", or Kaplan-Meier estimates, but four other
methods are possible. They are:

1. The "one" or null (intercept only) model, where

,

for location parameter .

2. The "regression" model, in which

,

for covariate .

Figure 30.6: Six-distribution plot of the fit.
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Chapter 30  Life Testing
3. The "factor" model, which uses

to compute separate locations for each value of the covariate.

4. The "separate" model,

.

This is the most general single-variable parametric model, 
and allows separate location and scale parameter estimates for 
each value of the covariate.

To compare the regression fit stored in fit1 with the more general
"separate" fit, use the statement:

> probplot(fit1, method = "separate", add.legend = T,
+ legend.loc = "auto")

This results in the plot shown in Figure 30.7. The plotted points in
Figure 30.7 are obtained from the "separate" model and show some
deviation from the "regression" model. However, the deviation is
not statistically significant, as we saw when we compared the models
with a likelihood ratio test.

It is also possible to add confidence intervals for each maximum
likelihood estimate to get a feel for the variability of the estimated
distribution(s). To do this, set the argument mle.interval=T in the
probplot.censorReg and probplot6.censorReg functions.

z
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Plots for Parametric Survival Models
 

Figure 30.7: Probability plot for comparing models.
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Chapter 30  Life Testing
COMPUTING PROBABILITIES AND QUANTILES

The predict method for censorReg objects computes predictions for
specified covariate values in a fitted model on either probability or
response scales, at designated quantiles or probabilities, respectively.
For example, suppose you want to estimate the time to 10%, 50%, and
90% failure from our fit1 regression model for voltages of 16, 20,
and 24. The call to the predict function is:

> predict(fit1, newdata = data.frame(voltage =
+ c(16, 20, 24)))

$"voltage=16":
      Estimate  Std.Err   95% LCL    95% UCL
0.1   72097.22 1.028782   9598.82   541525.8
0.5  696503.03 1.133190  75570.05  6419427.9
0.9 2955616.38 1.217862 271644.96 32158403.5

$"voltage=20":
      Estimate   Std.Err   95% LCL    95% UCL
0.1   5565.468 0.7211182  1354.206   22872.76
0.5  53765.809 0.8136006 10913.602  264877.00
0.9 228155.656 0.8986737 39199.343 1327956.02

$"voltage=24":
      Estimate   Std.Err   95% LCL   95% UCL
0.1   429.6203 0.4384364  181.9228  1014.571
0.5  4150.3943 0.5003670 1556.5971 11066.302
0.9 17612.2327 0.5853507 5591.9462 55470.980

Operating the capacitor at 16 volts increases its life span by about 170
times compared to operating at 24 volts. The probability values
(proportion failed) are 0.1, 0.5, and 0.9 by default when calling the
predict function. These values can be modified with the p argument
in predict. For example, to compute the 10%, 20%, and 30% failure
times, enter:

> predict(fit1, p = c(0.1, 0.2, 0.3),
+ newdata = data.frame(voltage = c(16, 20, 24)))
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Computing Probabilities and Quantiles
Alternatively, to predict the failure rates for given quantiles of the
failure time distribution (i.e., the proportion failed), specify the
type="probability" argument to predict. For example, to compute
the failure rates for 16, 20 and 24 volts at 1000, 2000, and 3000 days,
type:

> predict(fit1, q = c(1000, 2000, 3000), 
+ type = "probability", 
+ newdata = data.frame(voltage = c(16, 20, 24)))

$"voltage=16":
        Estimate   Std.Err      95% LCL    95% UCL
1000 0.003011831 0.7981976 0.0006315958 0.01423447
2000 0.005350046 0.7977207 0.0011250641 0.02504342
3000 0.007484339 0.7997419 0.0015703341 0.03489259

$"voltage=20":
       Estimate   Std.Err     95% LCL    95% UCL
1000 0.02500204 0.5845648 0.008088394 0.07462304
2000 0.04403085 0.5949867 0.014147239 0.12879193
3000 0.06111373 0.6058481 0.019466567 0.17587955

$"voltage=24":
      Estimate   Std.Err    95% LCL   95% UCL
1000 0.1914712 0.4138868 0.09520448 0.3476748
2000 0.3147595 0.4679518 0.15510243 0.5347458
3000 0.4110080 0.5191918 0.20142736 0.6587655

The difference is again dramatic when comparing 16 and 24 volts.
After 1000 days, you expect only about 3 of 1000 capacitors to fail
when operated at 16 volts, compared to 19 out of 1000 that are
operated at 24 volts.

Additional arguments to predict allow you to specify the level of the
confidence intervals, and whether you want to print the standard
errors and confidence intervals. For more details, see the descriptions
of the coverage, se.fit, and conf.interval arguments in the
predict.censorReg help file.
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Chapter 31  Expected Survival
INTRODUCTION

This chapter describes several methods for estimating expected
survival curves. Typically expected curves are used for comparison
with another study. Sometimes the results of an earlier study are
compared with a later one to assess, for example, improvement in
treatment. Expected survival curves can be computed from tables of
hazards rates or from a previously computed Cox model.

The methodology described in this chapter includes the computation
of individual and cohort expected survival curves. Individual expected
curves are typically used to compute tests that compare the observed
survival with that expected (for example, the one-sample log-rank
test) for a matched (for example, on age, sex, and year of entry)
control population. Cohort expected curves are useful for graphical
comparisons, sample size computations, and forecasting.

Three methods are available for computing cohort expected survival
curves: the Ederer or exact method, Hakulinen’s method, and the
conditional estimate. In the Cox model literature, these have been
called the direct-adjusted, Bonsel, and expected survival curves. Each
method generates a matched control for each subject in the study and
then computes the expected survival for the matched controls. The
difference between the methods lies in the assumptions made when
computing the expected survival. The basic assumptions of each and
a brief description of its utility follows.

• Ederer: Assumes complete follow-up (that is, no censoring). 
Each control is followed until death. This is most appropriate 
when doing forecasting, sample size calculations, or other 
predictions of the “future” where censoring is not an issue.

• Hakulinen: Assumes maximal potential follow-up. Each 
control is followed until death or censoring of its matched 
case. This is useful for graphical comparison with the study 
population.

• Conditional: Has the same assumptions and is asymptotically 
equivalent to Hakulinen’s method.
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Introduction
The implementation of expected survival curve estimation allows you
to add your own table of hazard rates or compute expected survival
based on a previous Cox model. Additionally, the notion of person
years of follow-up time is discussed as an example.
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Chapter 31  Expected Survival
INDIVIDUAL EXPECTED SURVIVAL

Let  and  be the derived hazard and cumulative hazard

functions, respectively, for subject , starting at their time of entry to
the study. Then  is the subject’s expected survival

function. Some authors use the product form ,

where the  are yearly probabilities of death; yet others use an
equation similar to actuarial survival estimates. Numerically, it makes
little difference which form is chosen. The Spotfire S+ functions use
the hazard based formulation for its convenience.

The survival tables published by the Department of the Census
contain one year survival probabilities by age and sex, optionally
subgrouped by race and geographic region. The entry for age 21 in
1950 is the probability that a subject who turns 21 during 1950 will
live to his or her 22nd birthday. For convenience, the tables stored in
Spotfire S+ contain the daily hazard rate λ rather than the probability
of survival 

.

If , , and  are subscripts into the age by sex by calendar year
table of rates, then the cumulative hazard for a given subject is simply
the sequential sum of . That is,
the patient progresses through the rate table on a diagonal line whose
starting point is (date of entry, age at entry, sex). See Berry (1983) for
a nice graphical illustration.

λ i t( ) Λ i t( )

i
Si t( ) exp Λ i t( )–( )=

S 1 Π 1 qk–( )–=

q

p

p exp 365.25 λ×–( )=
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Cohort Expected Survival
COHORT EXPECTED SURVIVAL

The expected survival curve for a cohort of  subjects is an average
of the  individual survival curves for the subjects. There are 3 main
methods for combining these; for some data sets they can give
substantially different results. Let  be the expected survival for the

cohort as a whole, and let  and  be the individual survival and
hazard functions, respectively. All three methods can be written as

The methods differ only in the weight function .

The cohort curve should be distinguished from the individual curve
for an average subject. For example, assume we had a cohort of
grandfathers and their grandsons, the grandfathers average 70 years
of age and the grandsons average 10 years. The cohort curve, which is
an estimate of the curve we would expect from long term follow-up of
these subjects, is considerably different than the curve for the average
subject with mean age of 40 years.

The Exact 
Method

A weight function of  corresponds to the exact method.
This is the oldest and most commonly used technique, and is
described in Ederer, Axtel and Cutler (1961). An equivalent
expression for the estimate is

The exact method corresponds to selecting a population-matched
control for each subject in the study, and then computing the
expected survival of this cohort assuming complete follow-up. The

. (31.1)
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Chapter 31  Expected Survival
exact method is most appropriate when doing forecasting, sample size
calculations, or other predictions of the future where censoring is not
an issue.

A common use of the expected survival curve is to plot it along with
the Kaplan-Meier estimate of the sample in order to assess the relative
survival of the study group. When used in this way, several authors
have shown that the exact method can be misleading if censoring is
not independent of age and sex (or whatever the matching factors are
for the referent population). Indeed, independence is often not the
case. For example, in a long study it is not uncommon to allow older
patients to enroll only after the initial phase. A severe example of this
is demonstrated in Verheul, et al. (1993), concerning aortic valve
replacement over a 20 year period. The proportion of patients over
70 years of age was 1% in the first ten years, and 27% in the second
ten years. Assume that analysis of the data took place immediately at
the end of the study period. The Kaplan-Meier curve for the later
years of follow-up time will be too flat, since it is computed only over
the early enrollees, who are younger on the average. The Ederer or
exact curve does not reflect this bias, and makes the treatment look
better than it is. The exact expected survival curve forms a reference
line, in reality, for what the Kaplan-Meier will be when follow-up is
complete, rather than for what the Kaplan-Meier is now.

Hakulinen’s 
Method

In Hakulinen’s method (Hakulinen (1982), Hakulinen and
Abeywickrama (1985)), each study subject is again paired with a
fictional referent from the cohort population, but the referents are
now treated as though they were followed in the same way as the
study patients. The referents thus have a maximum potential follow-
up; that is, they will become censored at the analysis date. Let 
be a censoring indicator which is 1 during the period of potential
follow-up and 0 thereafter. The weight function for the Hakulinen or
cohort method is .

If the study subject is censored, the referent is presumably censored at
the same time. However, if the study subject dies, the censoring time
for the matched referent is the time at which the study subject would
have been censored. For observational studies or clinical trials where
censoring is induced by the analysis date, this should be
straightforward, but determination of the potential follow-up could be
a problem if there are large numbers lost to follow-up. As pointed out

ci t( )

wi t( ) Si t( )ci t( )=
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Cohort Expected Survival
long ago by Berkeson (1950), if a large number of subjects are lost to
follow-up then any conclusion is subject to doubt. Did patients stop
responding to follow-up letters at random because they were cured or
because they were at death’s door?

In practice, the program is invoked using the actual follow-up time for
those patients who are censored, and the maximum potential follow-up
for those who have died. By the maximum potential follow-up, we
mean the difference between enrollment date and the average last
contact date. For example, if patients are contacted every 3 months
on average and the study was closed six months ago, the maximum
potential follow-up date would be 7.5 months ago. It may be true that
the (hypothetical) matched control for a case who died 30 years ago
has little actual chance of such long follow-up, but this is not really
important. Almost all of the numerical differences between the
Ederer and Hakulinen estimates result from censoring those patients
who most recently entered the study. For these recent patients,
presumably enough is known about the operation of the study to give
a rational estimate of potential follow-up.

The Hakulinen formula can be expressed in a product form

where  is the conditional probability  of

surviving from time  to time . The formula is technically correct
only over time intervals ( ) for which  is constant for all 
(censoring only at the ends of the interval).

The 
Conditional 
Method

The conditional estimate is advocated by Verheul, et al . (1993), and
was also suggested as a computation simplification of the exact
method by Ederer and Heise (1977). For this estimate, the weight
function  is defined to be 1 while the subject is alive and at risk,
and 0 otherwise. It is clearly related to Hakulinen’s method, since

. Most authors present the estimator in the

product-limit form , where  and  are the
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Chapter 31  Expected Survival
numerator and denominator terms within the integral of Equation
(31.1). One disadvantage of the product-limit form is that the value of
the estimate at time  depends on the number of intervals into which
the time axis has been divided. For this reason we use the integral
form (Equation (31.1)) directly.

One advantage of the conditional estimate, shared with Hakulinen’s
method, is that it remains consistent when the censoring pattern
differs between age-sex strata. A problem with the conditional
estimator is that it has a much larger variance than either the exact or
Hakulinen estimate. In fact, the variance of these latter two can
usually be assumed to be zero, at least in comparison to the variance
of the Kaplan-Meier of the sample. Rate tables are normally based on
a very large sample size, so the individual  are very precise and the

censoring indicators  are based on the study design rather than on

patient outcomes. The conditional estimate , however, depends

on the actual death times and  is a random variable.

The main use of the conditional estimate is when making conditional
statements about survival. For example, in studies of surgical
intervention such as hip replacement, the observed and expected
survival curves often diverge initially due to surgical mortality, and
then appear to become parallel. It is tempting to say that survival
beyond hospital discharge is equivalent to expected. This is a
conditional probability statement, and it should not be made unless a
conditional estimate is used.

A hypothetical example may make this clearer. For simplicity,
assume no censoring. Suppose we have studies of two diseases which
have identical age distributions at entry. Disease A kills 10% of the
subjects in the first month, independent of age or sex, and thereafter
has no effect. Disease B also kills 10% of its subjects in the first month,
but predominately affects the old. After the first month it exerts a
continuing though much smaller force of mortality, still biased toward
the older ages. With proper choice of the age effect, studies A and B
will have almost identical survival curves, as the patients in B are
always younger, on average, than those in A. 
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Cohort Expected Survival
In our hypothetical example, two different questions can be asked
under the guise of expected survival:

1. What is the overall effect of the disease? In this sense both A 
and B have the same effect, in that the 5 year survival 
probability for a diseased group is x% below that of a matched 
population cohort. The Hakulinen estimate is preferred 
because of its lower variance. It estimates the curve we would 
have gotten if the study had included a control group.

2. What is the ongoing effect of the disease? Detection of the 
differential effects of A and B after the first month requires the 
conditional estimator. We can look at the slopes of the curves 
to judge if they have become parallel.

The actual curve generated by the conditional estimator remains
difficult to interpret, however. The difficulty lies in the fact that the
control subject is removed from the calculation whenever the
matching case dies. In general, Hakulinen’s cohort estimate is
probably best. If there is a question about delayed effects, as in the
above example, there would be an apparent flattening of the Kaplan-
Meier curves after the first month. Then one can plot a new curve
using only those patients who survived at least one month.
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APPROXIMATIONS

The Hakulinen cohort estimate (Equation (31.3)) is “Kaplan-Meier
like,” in that it is a product of conditional probabilities and the time
axis is partitioned according to the observed death and censoring
times. Both the exact and conditional estimators can be written in this
way as well. They are unlike a Kaplan-Meier calculation, however, in
that the ingredients of each conditional estimate are the  distinct
individual survival probabilities at that time point, rather than just a
count of the number at risk. 

For a large data set, this requirement for  temporary variables
can be a problem. An approximation is to use longer intervals and
allow subjects to contribute partial information to each interval. For
instance, in Equation (31.3) replace the 0/1 weight  by

, which is the proportion of time that subject  was

uncensored during the interval ( ). If those with fractional
weights form a minority of those at risk during the interval, the
approximation should be reliable. More formally, if the sum of their
weights is a minority of the total sum of weights, the approximation is
reliable. By Jensen’s inequality, the approximation is always biased
upwards, but it is very small. For the Stanford heart transplant data
used in the examples, an exact 5 year estimate using the cohort
method is 0.94728, an approximate cohort computation using only
the half year intervals yields 0.94841. The exact estimate is
unchanged under repartitioning of the time axis.
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Testing
TESTING

All of the above discussion has been geared towards a plot of
 which attempts to capture the proportion of

patients who will have died by . When comparing observed to
expected survival, an appropriate test is the one-sample log-rank test

(Harrington and Fleming (1982)). This is defined as ,
where  is the observed number of deaths and

Here  is the expected number of deaths, given the observation time
of each subject. This follows Mantel’s concept of exposure to death
(Mantel (1966)), and is the expected number of deaths during this
exposure. Notice how this differs from the expected number of deaths

 in the matched cohort at time . In particular,  can be

greater than . Equation (31.4) is referred to as the person-years estimate
of the expected number of deaths. The log-rank test is usually more
powerful than one based on comparing the observed survival at time

 to ; the former is a comparison of the entire observed curve to
the expected, and the latter is a test for difference at one point in time.

Tests at a particular time point, though less powerful, are appropriate
if some fixed time is of particular interest, such as 5 year survival. In
this case, the test should be based on the cohort estimate. The H0 of
the test is, “Is survival different than what a control-group’s survival
would have been?” A pointwise test based on the exact estimate may
well be invalid if there is censoring. A pointwise test based on the
conditional estimate has two problems: the first is that an appropriate
variance is difficult to construct and the second, more serious one, is
that it is unclear exactly what alternative is being tested against.

(31.4)
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Chapter 31  Expected Survival
Hartz, Giefer, and Hoffman (1983) argue strongly for the pointwise
tests based on an expected survival estimate equivalent to Equation
(31.3), and claim that such a test is both more powerful and more
logical than the person-years approach. Subsequent letters to the
editor (Hartz, Giefer, and Hoffmann (1984, 1985)) challenged these
views, and it appears that the person-years method is preferred.

Berry (1983) provides an excellent overview of the person-years
method. Let the  be the expected number of events for each

subject, treating them as an  Poisson process. We have

where  is the observed survival or censoring time for a subject. This

quantity  is the total amount of hazard that would have been
experienced by the population-matched referent subject, over the
time interval that subject  was actually under observation. If we treat

 as though it were the follow-up time, this corrects for the
background mortality by mapping each subject onto a time scale
where the baseline hazard is 1.

Tests can now be based on a Poisson model, using  as the response

variable (1 = dead, 0 = censored) and  as the time of observation (an

offset of log ). The intercept term of the model estimates the overall
difference in hazard between the study subjects and the expected
population. An intercept-only model is equivalent to the one sample
log-rank test. Covariates in the model estimate the effect of a
predictor on excess mortality, whereas an ordinary Poisson or Cox
model estimates its effect on total mortality.
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Andersen and Væth (1989) consider both multiplicative and additive
models for excess risk. Let  be the actual hazard function for the

individual at risk and let  be that for the matched control from the
population. The multiplicative hazard model is

.

If  is constant, then

is an estimate of the standard mortality ratio or SMR, which is identical
to exp(intercept) in the Poisson model used by Berry (assuming a
log link). Their estimate over time is based on a modified Nelson
hazard estimate

,

which estimates the integral of . If the SMR is constant, a plot of

 versus  should be a straight line through the origin.

For the additive hazard model

,

the integral  of  is estimated as

.

This is the difference between the Kaplan-Meier and the conditional
estimator when plotted on log scale. Under the hypothesis of a

constant additive risk, a plot of  versus  should approximate a
line through the origin.
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Chapter 31  Expected Survival
COMPUTING EXPECTED SURVIVAL CURVES

The Spotfire S+ function that computes expected survival curves is
survexp. Besides taking the typical arguments of a model fitting
function, survexp also takes the arguments listed below.

• times: Vector of follow-up times at which the resulting 
survival curve is evaluated. If absent, the result is reported for 
each unique value of the vector of follow-up times supplied in 
the formula.

• cohort: Logical value. If cohort=FALSE, each subject is treated 
as a subgroup of size 1. The default value is TRUE.

• conditional: Logical value. If conditional=TRUE, the follow-
up times supplied in the formula are death times and 
conditional expected survival is computed. If 
conditional=FALSE, the follow-up times are potential 
censoring times. If follow-up times are missing in the formula, 
this argument is ignored.

• ratetable: Table of event rates, such as survexp.uswhite or a 
fitted Cox model.

Table 31.1 summarizes the argument settings used to compute
expected survival curves by the various methods. The real-life
examples of the following section show the use of the various
argument settings to obtain the different estimates of expected
survival.

Table 31.1: Summary of arguments settings for invoking the various methods of estimating expected survival.

Method
Conditional
Argument Cohort Argument Follow-up Times

Individual survival Not used cohort=F Yes

Cohort survival:

Ederer

Hakulinen

Conditional

conditional=F

conditional=F

conditional=T

cohort=T

cohort=T

cohort=T

No

Yes

Yes
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EXAMPLES

The examples in this section show how the methods discussed earlier
in this chapter are implemented in Spotfire S+. In addition to
computing various expected survival curves, an example of a closely
related topic, person years of follow-up, is provided. The person-years
example uses a function called pyears, and the expected survival
examples use the survexp function.

All of the examples use a data frame, hearta, computed from heart
as follows:

> hearta <- by(heart, heart$id,
+ function(x) x[x$stop == max(x$stop), ])
> hearta <- do.call("rbind", hearta)

Because the transplanted patients are represented by two rows in the
heart data frame, you first need to extract only those rows that
correspond to death or censoring. Do this by selecting all rows for
which stop is a maximum for each patient, and then use rbind to put
them back together into the data frame called hearta. Once this is
done, stop contains only the total follow-up times for each patient.
Note that this depends on each patient having a start time of zero.

Computing 
Expected 
Survival from 
National 
Hazard Rate 
Tables

The computation of expected survival curves requires either a table of
hazard rates or a fitted Cox model to act as a hazard rate table.
Several rate tables are built into Spotfire S+, including tables for the
U.S. population, Minnesota, Florida, and Arizona. The U.S. and state
rate tables contain the expected hazard rate for a subject, stratified by
age, sex, calendar year, and optionally by race.

You can add new rate tables for other areas if you wish. Created rate
tables have no restrictions on the number or names of the
stratification variables. See the help file for survexp.us for details.

Warning

When using a rate table, it is important that all time variables be in the same units as were used 
for the table. For the U.S. tables, this is hazard/day, so time must be in days. All time variables 
must also have the same start date. Year is an exception; see the examples below. 
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Chapter 31  Expected Survival
The following example computes the conditional expected survival
curves for the two surgery groups in the heart transplant study. No
ratetable argument is supplied, so the default table survexp.us is
used.

> expsurv <- survexp(stop ~ surgery + ratetable(
+ age = (age + 48) * 365.25, sex = "male", 
+ year = year + 1967.75), data = hearta, conditional = T)

In addition to follow-up times, the formula contains stop, a grouping
variable, surgery, which causes the output to contain two curves, and
a special function, ratetable. The ratetable function matches the
data frame’s variables to the corresponding dimensions of the rate
table. The order of the arguments to the ratetable function is not
important. The necessary key words age, sex, and year are contained
in the "dimid" attribute of the rate table providing the hazard rates.
The hearta data frame does not contain a sex variable so sex is set
conservatively to "male". Setting values such as this must be done by
providing an integer subscript or a match to one of the "dimnames".

This example produces a cohort survival curve which is almost
always plotted along with the observed (Kaplan-Meier) survival of the
data for visual comparison. For this example, you can plot the
survival curves together as follows:

> plot(survfit(Surv(stop, event) ~ surgery, data = hearta),
+ lty = 2:3)
> lines(expsurv, lty = 2:3)
> legend(750, 0.9, c("No Prior Surgery", "Prior Surgery"),
+ lty = 2:3)

Figure 31.1 displays the resulting plot. In general, there are three
different methods for calculating the cohort curve, which are
discussed in detail in the section Cohort Expected Survival. They are: 

1. The conditional method illustrated in the above example, 
which uses the actual death or censoring time; 

2. The method of Hakulinen, which uses the potential follow-up 
time of each subject; 

3. The uncensored population method of Ederer, Axtel, and 
Cutler, which requires no response variable.
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Individual 
Expected 
Survival 
Probabilities

Formal tests of observed versus expected survival are not usually
based on the cohort curve directly; instead, they are based on the
individual expected survival probabilities for each subject. These
probabilities are always based on the actual death/censoring time:

> surv.prob <- survexp(stop ~ ratetable(
+ age = (age + 48) * 365.25, sex = "male", 
+ year = year * 365.25), data = hearta, cohort = F)

> # convert from survival to hazard
> newtime <- -log(surv.prob)

> summary(glm(stop ~ offset(log(newtime)),
+ family = poisson, data = hearta))

Call: glm(formula = stop ~ offset(log(newtime)), family =
poisson, data = hearta)
Deviance Residuals:
       Min        1Q     Median       3Q      Max
 -34.04402 -3.601203 -0.5733439 4.343454 39.95069

Figure 31.1: Comparison of the heart transplant study population stratified 
according to prior surgery to a matched cohort from a national survival rate table.
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Coefficients:
               Value  Std. Error  t value 
(Intercept) 10.77882 0.005593555 1927.006

(Dispersion Parameter for Poisson family taken to be 1 )

    Null Deviance: 13699.27 on 102 degrees of freedom

Residual Deviance: 13699.27 on 102 degrees of freedom

Number of Fisher Scoring Iterations: 4 

When cohort=F, the survexp function returns a vector of survival
probabilities, one per subject. For the purposes of modeling, the
negative log of the survival probability can be treated as an “adjusted
time” for the subject. The one-sample log-rank test for equivalence of
the observed survival to the expected survival is the test for intercept
equal to zero in the Poisson regression model shown. A test for
treatment difference, adjusted for any age-sex differences between the
two arms, is obtained by adding a treatment variable to the model.

Computing 
Person Years

Expected survival is closely related to a standard method in
epidemiology called person years, which consists of counting the total
amount of follow-up time contributed by the subjects within any of
several strata. Person-years analysis is accomplished in Spotfire S+
with the pyears function. The main complication in computing
person years is that a subject may contribute to several different cells
of the output array during his/her follow-up. For example, if the
desired output table is treatment group by age in years, subjects with
4 years of observation each contribute to five different cells of the
table (four cells if they entered the study exactly on their birthdates). 

This example counts up years of observation for the Stanford heart
patients by age group and surgical status. Using the hearta data frame
computed above, the person-years table is produced as follows:

> pyears(stop/365.25 ~ tcut(age + 48, c(0, 50, 60, 
+ 70, 100)) + surgery, data = hearta, scale = 1)

$call:
pyears(formula = stop/365.25 ~ tcut(age + 48,
c(0,50,60,70,100)) + surgery, data = hearta, scale = 1)
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$pyears:
                      0         1
 0+ thru  50 44.9253936 18.960986
50+ thru  60 16.7501711  6.093087
60+ thru  70  0.7556468  0.000000
70+ thru 100  0.0000000  0.000000

$n:
              0  1
 0+ thru  50 56 13
50+ thru  60 33  6
60+ thru  70  3  0
70+ thru 100  0  0

$offtable:
[1] 0

The scale argument is provided because pyears defaults to input
times in days and output times in years (scale=365.25). A 48 is added
to age to relocate it back to its original scale. For surgery, a 0
corresponds to no prior surgery and a 1 corresponds to prior surgery.
See the help file for heart for more detail.

The tcut function has the same arguments as cut, but also indicates
that the category is time based. If you use cut in the formula above,
the final table is based only on each subject’s age at entry. With tcut,
a subject who entered at age 58.5 and had 4 years of follow-up
contributed 1.5 years to the 50-60 category and 2.5 years to the 60-70
category. A consequence of this is that the age and stop variables
must be in the same units for the calculation to proceed correctly. In
this case both should be in years, given the cutpoints that were
chosen. The surgery variable is treated as a factor, exactly as it is
treated by survfit.

The output of pyears is a list of arrays containing the total amount of
time contributed to each cell, and the number of subjects who
contributed some fraction of time to each cell. The offtable
component that is returned is the number of person years of exposure
in the cohort that is not part of any cell in the pyears component.
This is often useful as an error check. If there is a mismatch of units
between two variables, nearly all the person years may be in
offtable.
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If the response variable is a Surv object, the output also contains an
array with the observed number of events for each cell. If a rate table
is supplied, the output contains an array with the expected number of
events in each cell. These can be used to compute observed and
expected rates, along with confidence intervals.

Using a Cox 
Model as a 
Rate Table

Many times, a study group is compared to a historical control. If the
comparison is to be adjusted for differences in certain covariates, it is
usually based on a Cox model fit to the historical data. The methods
used in this example are parallel to the previous examples using
national rate tables (for example, survexp.us). However, in this
example, a prior Cox model acts as the “rate table” for survexp.

Individual survival curves can be obtained using survfit, as
described in Chapter 28, The Cox Proportional Hazards Model. For
convenience, we reproduce an example from that chapter here:

> ov.fit1 <- coxph(Surv(futime, fustat) ~ age, 
+ data = ovarian)

Extending the example, the command

> s1 <- survfit(ov.fit1, newdata = data.frame(age = 35))

gives the expected curve for a 35 year old subject. In addition,

> s2 <- survfit(ov.fit1, newdat = ovarian)

gives a matrix of 26 survival curves, one for each subject in the
ovarian data set.

The Ederer estimate is the average of the 26 survival curves in s2 and
can be obtained as follows:

> s3 <- survexp(~ ratetable(age = age), data = ovarian,
+ ratetable = ov.fit1)

In the Cox model literature, the Ederer estimate has been called the
direct adjusted survival curve . Thomsen, Keiding, and Altman (1991)
point out the importance of the Ederer estimate and the difference
between the Ederer estimate, average survival, and the individual
survival of a subject with the average age.
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The equivalent of Hakulinen’s estimate has been labeled the Bonsel
estimator. For studies with a short accrual, it does usually not differ
from the Ederer method. Thomsen, et al. (1991) also discuss the
conditional estimator, but conclude that the final curve is “hard to
interpret.”
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CREATING RATE TABLES

You can create your own rate tables to use in place of those provided
in Spotfire S+. Table 31.2 through Table 31.5 show yearly death rates
per 100,000 subjects based on their smoking status. 

Assume the eight data columns are stored in a file named
data.smoke. A rate table is created using the following Spotfire S+
code: 

> temp <- matrix(scan("data.smoke"), ncol = 8, 
+ byrow = T)/100000

> smoke.rate <- c(rep(temp[,1], 6), rep(temp[,2], 6), 
+ temp[,3:8])

> attributes(smoke.rate) <- list(
+ dim = c(7, 2, 2, 6, 3),
+ dimnames = list(c("45-49", "50-54", "55-59", "60-64",
+ "65-69", "70-74", "75-79"), 

Table 31.2: Death rates for former male light smokers (1–20 cigarettes per day).

Duration of Abstinence (years)

Age
Never 

Smoked
Current 
Smokers < 1 1–2 3–5 6–10 11–15 ≥ 16

45–49 186.0 439.2 234.4 365.8 159.6 216.9 167.4 159.5

50–54 255.6 702.7 544.7 431.0 454.8 349.7 214.0 250.4

55–59 448.9 1132.4 945.2 728.8 729.4 590.2 447.3 436.6

60–64 733.7 1981.1 1177.7 1589.2 1316.5 1266.9 875.6 703.0

65–69 1119.4 3003.0 2244.9 3380.3 2374.9 1820.2 1669.1 1159.2

70–74 2070.5 4697.5 4255.3 5083.0 4485.0 3888.7 3184.3 2194.9

75–79 3675.3 7340.6 5882.4 6597.2 7707.5 4945.1 5618.0 4128.9
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+ c("1-20", "21+"), c("Male", "Female"), 
+ c("<1", "1-2", "3-5", "6-10", "11-15", ">=16"),
+ c("Never", "Current", "Former")),
+ dimid = c("age", "amount", "sex", "duration", "status"),
+ factor = c(0,1,1,0,1),
+ cutpoints = list(c(45, 50, 55, 60, 65, 70, 75), 
+ NULL, NULL, c(0, 1, 3, 6, 11, 16), NULL), 
+ class = "ratetable")

> is.ratetable(smoke.rate)

The smoking data cross-classifies subjects by five characteristics: age
group, sex, status (Never, Current, or Former smoker), the number of
cigarettes consumed per day, and for the prior smokers, the duration
of abstinence.     

Table 31.3: Death rates for former male heavy smokers (more than 21 cigarettes per day).

Duration of Abstinence (years)

Age
Never 

Smoked
Current 
Smokers < 1 1–2 3–5 6–10 11–15 ≥ 16

45–49 186.0 610.0 497.5 251.7 417.5 122.6 198.3 193.4

50–54 255.6 915.6 482.8 500.7 488.9 402.9 393.9 354.3

55–59 448.9 1391.0 1757.1 953.5 1025.8 744.0 668.5 537.8

60–64 733.7 2393.4 1578.4 1847.2 1790.1 1220.7 1100.0 993.3

65–69 1119.4 3497.9 2301.8 3776.6 2081.0 2766.4 2268.1 1230.7

70–74 2070.5 5861.3 3174.6 2974.0 3712.9 3988.8 3268.6 2468.9

75–79 3675.3 6250.0 4000.0 4424.8 7329.8 6383.0 7666.1 5048.1
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Table 31.4: Death rates for former female light smokers (1–20 cigarettes per day).

Duration of Abstinence (years)

Age
Never 

Smoked
Current 
Smokers < 1 1–2 3–5 6–10 11–15 ≥ 16

45–49 125.7 225.6 433.9 212.0 107.2 135.9 91.0

50–54 177.3 353.8 116.8 92.1 289.5 200.9 121.3 172.1

55–59 244.8 542.8 287.4 259.5 375.9 165.8 202.2 247.2

60–64 397.7 858.0 1016.3 365.0 650.9 470.8 570.6 319.7

65–69 692.1 1496.2 1108.0 1348.5 1263.2 864.8 586.6 618.0

70–74 1160.0 2084.8 645.2 1483.1 1250.0 1126.3 1070.5 1272.1

75–79 2070.8 3319.5 2580.6 2590.7 3960.4 1666.7 1861.5

Table 31.5: Death rates for former female heavy smokers (more than 21 cigarettes per day).

Duration of Abstinence (years)

Age
Never 

Smoked
Current 
Smokers < 1 1–2 3–5 6–10 11–15 ≥ 16

45–49 125.7 277.9 266.7 102.7 178.6 224.7 142.1 138.8

50–54 177.3 517.9 138.7 466.8 270.1 190.2 116.8 83.0

55–59 244.8 823.5 473.6 602.0 361.0 454.5 412.2 182.1

60–64 397.7 1302.9 1114.8 862.1 699.6 541.7 373.1 356.4

65–69 692.1 1934.9 2319.6 1250.0 1688.0 828.7 797.9 581.5
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In the Spotfire S+ implementation, a rate table is an array with added
attributes, and thus must be rectangular. In order to cast the above
data into a single array, the rates for the Never and Current smokers
need to be replicated across all six levels of the duration. We do this
by first creating the smoke.rate vector. The array of rates is then
saddled with a list of descriptive attributes. The dim and dimnames
attributes are as they would be for an array, and give its shape and
printing labels, respectively. The dimid attribute is the list of
keywords to be is recognized by the ratetable function when the
table is used with the survexp or pyears function. For the U.S. total
table, for instance, the keywords are "age", "sex", and "year".  These
keywords must be in the same order as the array dimensions (as
found in the dimid attribute). 

The factor attribute of a rate table identifies each dimension as fixed
or varying with time. For a subject with fifteen years of follow-up, for
example, the sex category remains fixed but the age and duration of
abstinence continue to change; more than one of the age groups must
be referenced to compute the subject’s total hazard. For each
dimension that is not a factor, the starting value for each of the rows
of the array must be specified so that the routine can change rows at
the appropriate time. This information is specified in the cutpoints
attribute. The cutpoints are null for a factor dimension. Because the
cutpoints must be self-consistent, you should check them for any rate
tables you create. The function is.ratetable does this for you
automatically.

70–74 1160.0 2827.0 4635.8 2517.2 1687.3 2848.7 1621.2 1363.4

75–79 2070.8 4273.1 2409.6 5769.2 3125.0 2987.7 2803.7 2195.4

Table 31.5: Death rates for former female heavy smokers (more than 21 cigarettes per day). (Continued)

Duration of Abstinence (years)

Age
Never 

Smoked
Current 
Smokers < 1 1–2 3–5 6–10 11–15 ≥ 16
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As an example, we apply our smoke.rate rate table to the hearta
data, assuming that all of the subjects were current heavy smokers:

> ptime <- hearta$stop/365.24
> exp4 <- survexp(ptime ~ ratetable(age = (age/365.24), 
+ status = "Current", amount = "21+", duration = "<1", 
+ sex = "Male"), data = hearta, ratetable = smoke.rate,
+ conditional = F, scale = 1)

This example illustrates some important points. First, since we are
using the current smoker category, duration is unimportant, so any
value can be specified. Second, note that we must rescale age. The
smoke.rate table contains rates per year, while the U.S. tables contain
rates per day. It is crucial that all of the time variables (age, duration,
etc.) be scaled to the same units, or the results may not be correct.
The U.S. rate tables were created using days as the basic unit, since
year of entry is normally a Julian date; for the smoking data, years
seems more natural.

An optional portion of a rate table, not illustrated in the example
above, is a summary attribute. This is a user-written function which is
given a matrix and returns a character string. The matrix must have
one column per dimension of the rate table, in the order of the dimid
attribute, and must be preprocessed to remove illegal values. To see
an example of a summary function, use the following command:

> attr(survexp.us, "summary")

In this summary function, the returned character string lists the range
of ages and calendar years in the output of survexp. This printout is
the only good way to catch errors in the time units. For example, if
the string contained “age ranges from 0.13 to 0.26 years,” it is a
reasonable guess that age was given in years when it should have
been stated in days.
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Chapter 32  Quality Control Charts
INTRODUCTION

Spotfire S+ provides several functions for doing quality control
charts. Table 32.1 lists the type of basic charts available. Both
Shewhart and cusum charts are available for each basic chart type
except the R chart, for which a cusum chart has not been
implemented. Ryan (1989) provides a good discussion of the use and
utility of both Shewhart and cusum charts

In addition to the basic chart types listed in Table 32.1, several
extensions to Shewhart charts allow charting non-grouped, one-at-a-
time data. These extensions typically use standard deviation estimates
based on moving or sliding intervals of data values to improve the
power of the resulting chart. The extensions are listed in Table 32.2.

Table 32.1: Types of basic quality control charts available in Spotfire S+.

Typ
e Statistic Charted Chart Description

xbar Mean Means of a continuous process variable

s Standard 
Deviation

Standard deviations of a continuous process 
variable

R Range Ranges of a continuous process variable

np Count Number of nonconforming units

p Proportion Proportion of nonconforming units

c Count Number of nonconforming units

u Count Number of nonconforming units for 
variable unit sizes
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Table 32.2: Types of extended Shewhart control charts available in Spotfire S+.

Type Statistic Charted Chart Description

ma Moving Average Moving means of a continuous process 
variable

ms Moving Standard 
Deviation

Moving standard deviations of a 
continuous process variable

mR Moving Range Moving ranges of a continuous process 
variable

ewma Moving Average Exponentially weighted moving average 
of a continuous process variable
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CONTROL CHART OBJECTS

Spotfire S+ quality control charts are produced in two steps:

1. Create a qcc object from process data known to be gathered 
when the process was in a state of control.

2. Create a chart of new data using the qcc object as the 
reference data.

You can think of the qcc object as containing the data necessary to
calibrate the control chart. It contains information on the type of
chart being plotted as well as the process center and variability, which
are necessary to compute the control limits.

The qcc function produces an object of class "qcc". Its only required
arguments are data and type, which specify the process data
(grouped appropriately) and the chart type, respectively. A simple
example is given below.

# Set the seed for reproducibility.
> set.seed(15)
> qcdata <- matrix(10 + rnorm(100), ncol = 5)
> qccobj <- qcc(qcdata, type = "xbar")

A print method summarizes the qcc object:

> qccobj

xbar based on qcdata

Summary of Group Statistics:
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 9.163   9.655  10.14 10.09   10.51 11.31

 Group Sample Size:  5
 Number of Groups:  20
 Center of Group Statistics:  10.09016
 Standard Deviation:  1.022341
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In this example, the data argument is given as a matrix. In general, if
data is a matrix or data frame, each row represents a group and the
number of columns corresponds to the group size. If you have
unequal group sizes, your process data must be a list that has one
component for each group.

The arguments to qcc are:

• data, the control data in the form of a vector, matrix, data 
frame, or list.

• type, a character string or function specifying the group 
statistics to compute.

• std.dev, a numeric vector or function for specifying the 
within-group standard deviation(s).

• sizes, a numeric vector specifying the sample sizes associated 
with each group.

• labels, a character vector of labels for each group.

You can pass functions to the type and std.dev arguments to extend
the built-in capabilities of qcc. The function that is used by default to
compute the group summary statistics and the center of the group
summary statistics is named stats.type, where type corresponds to
the value of the type argument. For example, the default summary
statistics and center for an xbar chart are computed by stats.xbar.
Similarly, the default function that computes the standard deviation
for an xbar chart is sd.xbar. When type is given as a function,
std.dev must also be given (usually as a function as well, though not
necessarily).

You can use the stats.xbar and sd.xbar functions as templates for
additional functions accepted by the type and std.dev arguments.
For example, the function below is similar to stats.xbar but
computes the summary statistics and the center as medians instead of
means.
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> stats.med

function(data, sizes)
{
        if(is.list(data)) {
                statistics <- sapply(data, median)
                center <- median(unlist(data))
        }
        else {
                statistics <- apply(data, 1, median)
                center <- median(data)
        }
        list(statistics = statistics, center = center)
}

The stats.med function depends on data being given as a matrix or
list. The qcc function insures this by coercing vectors to matrices. 

The following function is derived from sd.xbar, and computes a
standard deviation based on the median absolute deviation:

> sd.med

function(data, sizes)
{
  if(is.list(data))
    std.dev.within <- sapply(data, mad)
  else {
    std.dev.within <- apply(data, 1, mad)
    if(dim(data)[2] == 1)
      warning("MAD computation based on group sizes of 1")
  }
  if(length(sizes) == 1)
    sizes <- rep(sizes, length = length(std.dev.within))
  sum(sizes * std.dev.within)/sum(sizes)
}

You can now compute a qcc object with the stats.med and sd.med
functions as follows:

> qccobj.med <- qcc(qcdata, type = "med")
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> qccobj.med

med based on qcdata

Summary of Group Statistics:
   Min. 1st Qu. Median   Mean 3rd Qu.   Max.
  8.782  9.599  10.060  9.989 10.520  11.160
 
 Group Size:  5
 Number of Groups:  20
 Center of Group Statistics:  10.14026
 Standard Deviation:  0.8418576

If the functions are not named with the proper prefixes (stats and sd,
respectively), you must pass the function names to the type and
std.dev arguments explicitly. For example, if your functions are
named st.med and sd.mad, you would need to type:

> qccobj.med <- qcc(qcdata, type = st.med, 
+ std.dev = sd.mad)

To chart the control data and any ongoing process data, you can
produce Shewhart or cusum charts with the Spotfire S+ functions
shewhart and cusum. Typically, Shewhart charts are used for detecting
large shifts in a process (two to three sigma shifts), whereas cusum
charts are used to detect smaller shifts in a process (one-half to one
sigma shifts).
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SHEWHART CHARTS

Overview You can produce a Shewhart chart of the data in qcdata by using the
shewhart function. For example:

> shewhart(qccobj)

Note that qcdata is preserved in qccobj as a qcc object, which is the
type of object that shewhart requires. Figure 32.1 displays the
resulting chart.

Figure 32.1: Shewhart chart of the data in qccobj.
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The text at the bottom of the chart displays pertinent statistics. The
target value is the center of the group summary statistics unless it is
given as a separate argument to shewhart. The Number beyond
limits indicates the number of points beyond the control limits. The
Number violating runs indicates how many points violate the runs
criterion; by default, this criterion is five or more consecutive points
on one side of the center. You can change the run length by
specifying the run.length argument to shewhart:

> shewhart(qccobj, run.length = 8)

By default, the shewhart function computes control limits based on
the center and std.dev components of the qcc object. As with the
runs criterion, however, both of these can be overridden by providing
additional arguments in the call to shewhart. 

The default control limits produced by shewhart are probability limits
for all charts except the u chart. Probability limits are centered in
probability about the estimate of the center of the summary statistics’
distribution; if the target argument to shewhart is specified,
probability limits are centered about the target value instead. In
contrast, you can specify sigma limits through the nsigmas argument to
shewhart. In this case, the control limits are placed at the center, plus
or minus nsigmas times the standard errors of the group summary
statistics. For u charts, only sigma limits are implemented. If the
sample sizes vary, the standard errors also vary and a step function is
plotted for each control limit.

Arguments and 
Return Values

The arguments to shewhart are as follows.

• object: An object of class "qcc", which provides information 
on the type of group summary statistics to plot and the within-
group standard deviation necessary for computing the control 
limits.

• newdata: A vector, matrix, data frame, or list to be charted. By 
default, Spotfire S+ charts the data used to create object.

• type: A character string or function specifying the group 
summary statistics to compute.

• limits: A numeric vector or matrix, or a function specifying 
the control limits.
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• target: A numeric value specifying the center of the process. 
By default, this is the center component of object.

• std.dev: A numeric value specifying the overall within-group 
standard deviation.

• sizes: A vector of the number of observations (or the number 
of units examined) in each group of newdata. By specifying 
sample sizes, you can supply a vector of group summary 
statistics to newdata instead of the entire data matrix. In this 
case however, you must also specify the within-group 
standard deviations.

• labels: A character vector of labels for each group in 
newdata.

• label.limits: A character vector of length two with labels for 
the control limits.

• confidence.level: A numeric value between 0 and 1 
specifying the confidence level of the computed probability 
limits. By default, a confidence level of 0.999 is used. If 
confidence.level is given, nsigmas is ignored.

• nsigmas: A numeric value specifying one-half the width of the 
control limits in the number of standard errors of the group 
summary statistics. If nsigmas is given, confidence.level is 
ignored.

• add.stats: A logical value indicating whether statistics should 
be listed at the bottom of the chart.

• chart.all: A logical value indicating whether the statistics 
component of object should be plotted along with the 
new.statistics component and the summary statistics of 
newdata (if given).

• ylim.min: A numeric vector of values to be included in the 
computation of the approximate y-axis limits for the control 
chart.

• rules: A function of rules to apply to the chart. By default, 
this is the shewhart.rules function.

• highlight: A list of plotting parameters to be used for 
highlighting the points violating rules.

• ...: Additional arguments to the rules function.
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See the shewhart help file for more detailed descriptions of the
arguments listed above.

The shewhart function returns an object that contains all the
components of the reference object, plus the following additional
components.

• new.statistics: A vector of group summary statistics for 
newdata.

• new.sizes: A vector of group sample sizes for newdata.

• target: The target argument if specified.

• cntrl.limits: The control limits.

• newdata.name: A character string containing the name of the 
input data passed to the newdata argument.

Specifying New 
Data

The newdata argument to shewhart allows you to chart new data with
a reference qcc object provided as the object argument. As an
illustration, we add  to the last six rows of qcdata and call it
newdata:

> newdata <- qcdata
> newdata[15:20,] <- newdata[15:20,] + 1/2

The Shewhart chart of newdata is as follows:

> qccobj.shew <- shewhart(qccobj, newdata = newdata,
+ labels = paste("Lot", 1:20, sep = ""))

We use the optional labels argument to print descriptive labels on
the chart, which provide clarity in later examples of this section.
Figure 32.2 displays the resulting chart. In addition to viewing the
chart, we can also print the invisible return value of shewhart to see a
summary of both qccobj and newdata. The command below displays
the qccobj.shew object.

> qccobj.shew

xbar based on qcdata

Summary of Statistics in qcdata.
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 9.163   9.655  10.14 10.09   10.51 11.31

1 2⁄
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 Group Sample Size:  5
 Number of Groups:  20
 Center of Statistics:  10.09016
 Standard Deviation:  1.022341

Summary of New Data Statistics in newdata.
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 9.163   9.762  10.14 10.24   10.84 11.49

 Group Sample Size:  5
 Number of Groups:  20

 Target Value: 10.09016

 Control Limits:
      LCL     UCL
 8.585714 11.5946

Figure 32.2: Shewhart chart of newdata using qccobj as the reference data.
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If you want to see newdata displayed alongside the original
calibration data, use the chart.all argument to shewhart:

> shewhart(qccobj.shew, chart.all = T)

Figure 32.3 shows the Shewhart chart that displays both the old and
new data. The vertical dashed line separates the in-control calibration
data from the ongoing process data. 

To create an s chart of newdata using qcdata for calibration, type:

> shewhart(qcc(qcdata, type = "s"), newdata = newdata)

Figure 32.3: Shewhart chart of newdata using qccobj as the reference data. Both 
the new and the old data are displayed in the plot.
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The type argument to shewhart allows you to specify a summary
statistic for newdata that is different than the one used to compute the
reference object. For example, the object qccobj.med from the
section Control Chart Objects on page 446 contains robust estimates
of location and scale for the reference data qcdata. Typically, you do
not want to estimate the location of the ongoing process robustly,
since extreme values are of key interest. In this case, you can compute
control limits based on the robust estimates, and then compute the
group summary statistics of the ongoing process by specifying the
usual type for your data. For example:

> shewhart(qccobj.med, newdata = newdata, type = "xbar")

If you want to compute the summary statistics for newdata in the same
way you did for the reference data, the type argument is not needed.
Thus, the following command estimates the group summary statistics
of the ongoing process robustly with the stats.med function:

> shewhart(qccobj.med, newdata = newdata, 
+ limits = limits.xbar)

The limits argument is required when using a summary statistics
function that is not built into Spotfire S+, such as stats.med.
Otherwise, a function with the name limits.type must exist. In the
above example, the limits argument is required unless a function
named limits.med exists, since we use type="med" to create the
qccobj.med object. The limits.xbar function uses the center and
std.dev components of object to compute control limits based on
normally distributed data, so it is reasonable (though not exactly
correct) to use in this example. Ideally, you would write a custom
limits.med function. For more information on the way the control
limits are computed by shewhart, see the help file for limits.xbar.
Any of the functions in the help file can be used as a template when
writing a custom limits function.

When tracking a process, it is possible to repeatedly capture the
return value from shewhart and pass it as the new object argument in
a subsequent shewhart call. In addition, you can provide even newer
data as the newdata argument, which allows you to continually track a
process without recomputing the reference qcc object. The shewhart
function incorporates the newest data into the new.statistics
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component of object, and then charts all the new data accordingly.
In this situation, the function calls might look something like the
following:

> qccobj.shew.1 <- shewhart(qccobj, newdata = newdata.1)
> qccobj.shew.2 <- shewhart(qccobj.shew.1, 
+ newdata = newdata.2)

Customizing 
Shewhart 
Charts

A rules function for shewhart refers to a method of examining the
plotted summary statistics for patterns that suggest a shift in the
process. For example, five or more successive points on one side of
the center may indicate a shift in the process. The function
runs.target checks for runs in a process, and the function
beyond.limits locates points beyond the control limits. For details
about either of these functions, see their help files.

By default, shewhart applies both runs.target and beyond.limits
through the wrapper function shewhart.rules, which highlights
points in the same way regardless of which rule is violated. If you
want to display the points violating the two rules differently, provide
the appropriate graphical parameters to the highlight argument of
shewhart. For example:

> shewhart(qccobj.shew, highlight = list(
+ list(pch=1, col=2), list(pch=2, col=3)))

In addition to graphical displays, you can view a list of violating
points by calling runs.target, beyond.limits, or shewhart.rules
directly. Each of these functions accept objects returned by shewhart.
For example:

> shewhart.rules(qccobj.shew)

[[1]]:
numeric(0)
attr([[1]], "names"):
character(0)
attr([[1]], "label"):
[1] "beyond limits"
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[[2]]:
 Lot19 
    19
attr([[2]], "label"):
[1] "violating runs"

To add labeling information to a Shewhart chart, you can use the
identify function. To do this, chart a shewhart object with no
statistics and then apply identify:

> shewhart(qccobj.shew, add.stats = F)
> identify(qccobj.shew)

[1] 19

Left-click on the highlighted point in the chart, which is Lot 19 in this
example. To exit identify, press either the middle or right mouse
button, and 19 is returned at the Spotfire S+ prompt. Figure 32.4
displays the resulting chart with the 19th observation labeled.

It is possible to use runs.target to make a Shewhart chart more
sensitive to small shifts off the center. However, such rules are
typically ad hoc. A better way to detect small shifts is through the use
of cusum charts, which we discuss in the next section.
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Figure 32.4: Shewhart chart of the new data in qccobj.shew with the 19th 
observation labeled.
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CUSUM CHARTS

Overview Cusum charts display how the group summary statistics deviate above
or below the process center or target value, relative to the standard
errors of the summary statistics. In essence, a cusum chart
accumulates z-scores of deviations above (or below) the center and
then charts them. Consequently, the points plotted are not the
original data, but are cumulative sums of deviations in standard errors
from the center. Cusum charting in Spotfire S+ follows a decision
interval scheme discussed in detail by Ryan (1989) and Wetherill and
Brown (1991).

For the ith group in an xbar chart, the upper cumulative sum  and

lower cumulative sum  are defined as follows:

In these equations,  is the z-score for the ith group centered about

, the center of the group summary statistics :

The lower cumulative sums are charted as . In both Equation

(32.1) and Equation (32.2),  is called the reference value and
corresponds to the amount by which the absolute z-score must exceed
the target before either cumulative sum increases.

A cusum chart in Spotfire S+ is really a composite of two charts: one
of the upper cumulative sums and one of the negative lower
cumulative sums. The upper and lower sums, typically charted
separately in standard quality control text books, are plotted on the
same graph by the cusum function in Spotfire S+.

(32.1)

(32.2)
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In the section Control Chart Objects on page 446, we simulated some
process data in the matrix qcdata, and created a corresponding qcc
object named qccobj. You can plot a cusum chart of the data with the
following command:

> cusum(qccobj)

Note that qcdata is preserved in qccobj as a qcc object, which is the
type of object that cusum requires. In the section Specifying New Data
on page 453, we also created a matrix called newdata. To see the new
data charted, request it in addition to the reference data in the call to
cusum. The following command uses the chart.all=T argument to
plot both the new and old data on the same graph:

> cusum(qccobj, newdata = newdata, chart.all = T)

Figure 32.5 displays the resulting chart. Compare this figure with the
Shewhart chart displayed in Figure 32.2 to see how dramatically
cusum charts signal a detectable shift in the process. In newdata, the
last six observations are shifted up from qcdata by one standard
deviation of the population, which is about two standard errors of the
summary statistics. This shift is not highlighted in the Shewhart chart,
but it is clearly detected in the cusum chart.
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Arguments and 
Return Values

A summary of the arguments to cusum are as follows.

• object: An object of class "qcc", which provides information 
on the type of group summary statistics to compute and the 
within group standard deviation necessary for computing the 
z-scores.

• newdata: A vector, matrix, data frame, or list to be charted.

• type: A character string or function specifying the group 
statistics to compute.

Figure 32.5: Cusum chart of newdata using qccobj as the reference data. Both 
the new and old data are included in the chart.
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• z.scores: An optional function to compute the z-scores. This 
argument is required if type is not one of "xbar", "s", "R", 
"p", "np", "u", or "c", or if there does not exist a function with 
the name zs.type .

• decision.int: A numeric value specifying the number of 
standard errors of the summary statistics at which the 
cumulative sum is out of control.

• se.shift: The amount of shift to detect in the process, 
measured in standard errors of the summary statistics.

• target: A numeric value specifying the center of the process. 
By default, this is the center component of object.

• std.dev: A numeric value specifying the overall within-group 
standard deviation.

• sizes: A numeric vector specifying the sample sizes 
associated with each group of newdata.

• labels: A character vector of labels to associate with each 
group of newdata.

• label.bounds: A character vector of length two containing 
labels for the decision interval boundaries.

• headstart: A numeric value specifying the number of 
standard errors of the group summary statistics at which the 
cumulative sums should be reset. This argument is ignored if 
reset=FALSE.

• reset: A logical value indicating whether the cumulative 
sums should be reset after an out-of-control signal.

• add.stats: A logical value indicating whether statistics should 
be listed at the bottom of the chart.

• chart.all: A logical value indicating whether the cumulative 
sums of the object$statistics component should be charted 
along with the new.statistics component and the 
cumulative sums of the summary statistics for newdata (if 
given).

• ylim.min: A numeric vector of values to be included in the 
computation of the approximate y-axis limits for the control 
chart.
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• check.cl: A logical value indicating whether the summary 
statistics beyond the control limits of the Shewhart chart 
should be highlighted on the chart, in addition to the decision 
boundary violations of the cumulative sums of the summary 
statistics.

• highlight: A list of graphical parameters for highlighting the 
points outside the decision boundaries, or beyond the 
Shewhart control limits.

The type argument is the same as that specified for the shewhart
function; see the section Shewhart Charts for more details. If type is
one of "xbar", "s", "R", "p", "np", "u", or "c", there are built in
functions for computing the group summary statistics and z-scores. If
type is not one of these options, you must either create two functions
with names stats.type and zs.type, or pass functions to the type
and z.scores arguments explicitly.

The type and z.scores arguments to cusum are useful when charting
is based on nonstandard summary statistics. For example, recall the
qccobj.med object we create in the section Control Chart Objects, in
which the estimate of the center of the process is based on the median
and the standard deviation is based on the MAD. If the type
component of qccobj.med is equal to "med" and you have defined the
external functions stats.med and zs.med, simply type the following
command to see the cusum chart:

> cusum(qccobj.med, newdata = newdata)

If you haven’t defined appropriate stats and zs functions, or if you
require functions other than those used to create qccobj.med, you
must specify the names explicitly in the call to cusum. For example, to
do a cusum chart of the group means of newdata with the center and
standard deviation based on the median and mad, respectively, use
type="xbar":

> cusum(qccobj.med, newdata = newdata, type = "xbar")

With this argument, the stats.xbar function is used to compute the
summary statistics, and the z-score function associated with xbar
charts, zs.xbar, is used as well.

The se.shift argument is twice the reference value  in Equations
(32.1) and (32.2). This corresponds roughly to the sensitivity of the
cusum chart, in terms of detecting shifts in standard errors of the

k
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summary statistics. By default, se.shift=1, which corresponds to a
cusum chart being sensitive to one standard error shift and is
equivalent to setting  in (32.1) and (32.2).

Usually, when an out-of-control signal is generated by a large (in
absolute value) cumulative sum, a search is conducted and a cause is
assigned and removed to correct the process. In this case, the
cumulative sums are reset and the monitoring continues. The act of
resetting the sums to something other than zero is called a headstart.
With headstarts, you can produce a fast initial response (FIR) cusum
chart. This is useful for quickly detecting a process that has not been
fully corrected. When reset=TRUE the cumulative sums are reset to
headstart each time one exceeds a decision boundary.

A group summary statistic greater than three standard errors from the
target in a cusum chart is equivalent to that summary statistic being
outside three-sigma Shewhart control limits. When check.cl=TRUE,
summary statistics violating Shewhart control limits are flagged as
well as large cumulative sums. If object is of class "shewhart", it has a
cntrl.limits component that is used to check for violating summary
statistics. Otherwise, three-sigma Shewhart control limits (centered
about target) are computed to check for violating summary statistics.

The cusum function returns an object that contains all the components
of the reference object, plus the following additional components.

• new.statistics: A vector of group summary statistics for 
newdata.

• new.sizes: A vector of group sample sizes for newdata.

• target: The target argument if specified.

• newdata.name: A character string containing the name of the 
input data passed to the newdata argument.

• cusum.upper: A numeric vector of the upper cumulative 
sums.

• cusum.lower: A numeric vector of the lower cumulative sums.

k 1 2⁄=
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EXTENSIONS TO SHEWHART CHARTS

To create “moving” charts, Spotfire S+ bases standard deviation
estimates on a moving interval within which the standard deviation is
computed. These estimates may be calculated from the range of
values in a given interval, or from the standard deviation of values
within the interval. You can produce moving Shewhart charts based
on one-at-a-time data in the same way you produce basic Shewhart
charts, but with the addition of two optional arguments to qcc.

• sigma.span: The number of data values used in each 
computation of sigma. This can be any integer larger than 1, 
but cannot be larger than the length of the data. The default 
value is 2.

• moving.sigma: A character string specifying the method used 
to compute the standard deviation in each interval. This must 
be one of "range" or "s".

In addition to these arguments, the type argument may be one of the
four options listed in Table 32.2: "ma", "ms", "mR", and "ewma". As an
example, the following commands convert the qcdata matrix to a
vector, and then generate a moving average chart with a moving
window of three observations:

> mqcdata <- as.vector(qcdata)
> shewhart(qcc(mqcdata, type = "ma", sigma.span = 3))

For exponentially weighted moving average charts, specify the type
argument as "ewma", and provide a value from the closed interval

 for the weight argument wt. The default for wt is . The
sequence

is plotted, where  is the wt value and  is the group mean or one-
at-a-time data values associated with the ith group. For more details,
see the help files for stats.type and sd.type, where type is one of
the chart types. 

0.1 0.5[ , ] 0.25

ki wXi 1 w–( )ki 1–+=

w Xi
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Process Capability
PROCESS CAPABILITY

Process capability computations quantify the ability of a process to
maintain its end product within the specification limits required by
engineering. That is, capability compares the requirements of product
engineering with the reality of the process. You can compute process
capability with the capability function using an optional qcc object
to define the process. The two values computed by capability are
defined as follows:

where USL is the upper specification limit, LSL is the lower
specification limit,  is the process center, and  is the process
standard deviation. The quantity  is referred to in some
texts as the allowable range. 

The arguments to capability are as follows.

• qccobj: An object returned by a call to the qcc function.

• allowable.range: The range between the upper and lower 
specification limits.

• limits: A vector of length two providing upper and lower 
specification limits.

• center: The process center.

• std.dev: The process standard deviation.

• nsigmas: The number of sigmas used to compute control 
limits. By default, nsigmas=3.

To compute , provide a qcc object and the allowable range in the

call to capability. If limits is not specified, then  is set equal to

. If the center and std.dev arguments are not specified, the
corresponding values from qccobj are used. 

Cp
USL LSL–

6σ
----------------------------=

Cpk min USL μ–
6σ

-------------------- μ LSL–
6σ

-------------------,
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

μ σ
USL LSL–

Cp

Cpk

Cp
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Chapter 32  Quality Control Charts
For example, to compute process capability for the mqcdata vector
defined in the previous section, do the following:

> capability(qcc(mqcdata, type = "ma", sigma.span = 3),
+ allowable.range = 6, limits = c(8,14))

       cp       cpk
 0.927223 0.6443803

If you know the process parameters but do not have a qcc object, you
can still compute process capability by providing the parameters
directly as follows:

> capability(allowable.range = 6, limits = c(8,14),
+ std.dev = 1.09, center = 10.08)

        cp       cpk
 0.9174312 0.6360856
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PROCESS MONITORING

In many manufacturing situations, processes are monitored in real
time by production engineers and product managers. You can use
Spotfire S+ for real-time monitoring with a few simple functions. We
present examples below of two functions, monitor and get.process,
which you can use to monitor a process data file and update a control
chart as data comes in.

The basic idea is the following:

1. Create a file for accumulating the process data. In our 
example, this file is called Process.

2. Track the growth of Process with get.process and monitor, 
updating the control chart only when new data have been 
added to the file.

Suppose a typical line of the Process data file looks like the following:

Lot1  9.496215  8.718396  11.470395  9.671888  11.328800

Also, suppose you want to accumulate the data in a matrix. Then you
could write the data-reading function, get.process, as follows:

> get.process <- function(file, skip = 0) {
+ data <- scan(file, what = list(names = "",0,0,0,0,0),
+                skip = skip)
+ nm <- data$names
+ data <- cbind(data[[2]],data[[3]],data[[4]],data[[5]],
+                data[[6]])
+ dimnames(data) <- list(nm, NULL)
+ return(data)
+ }

The configuration of the data fields are built into the get.process
function. The first field in Process is a character label, and the
remaining five fields are numeric data. The skip argument is added
so that previously read data can be skipped when it is time to update
the chart.
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The monitor function keeps track of which data have already been
read, and updates the control chart with any new data. An example of
what monitor might look like is the following:

> monitor

function(file, qc.object, sleep.time = 5)
{
# define a subfunction to obtain the length of a file
   file.length <- function(file)
   length(count.fields(file, sep="\n"))
#
#
   old.length <- file.length(file)
   new.data <- get.process(file)
#
# put up initial chart
#
   qcc.shew <- shewhart(qc.object, new.data, add.stats=F)
   cat("to quit type CNTRL-CESC\n")
   repeat {
      new.length <- file.length(file)
      if(new.length > old.length) {
#
# new data have come in, we need to update the plot
#
         new.data <- get.process(file, skip = old.length)
         old.length <- new.length
         qcc.shew <- shewhart(qcc.shew, new.data,

add.stats = F)
      }
      sleep(sleep.time)
   }
}

The statistics on the bottom of the chart have been turned off so that a
number of charts can be efficiently placed within a single figure. The
monitor function makes use of the fact that shewhart updates its
return object; thus, the data that have just been added to Process are
all you need to scan in each iteration.
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Process Monitoring
Suppose now that qcdata, defined in the section Control Chart
Objects, is coming in one row (or one lot) at a time. Place the first lot
in the file Process to start the monitoring, and then run monitor as
follows:

> monitor("Process", qccobj)

to quit type CNTRL-CESC

Spotfire S+ now monitors Process for a change in size. When one is
detected, the new data are read in and the chart is updated. Figure
32.6 displays the results of 19 updates. 
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Chapter 32  Quality Control Charts
Figure 32.6: A series of Shewhart charts of the data resulting from running monitor on a growing process 
data file.
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Chapter 33  Resampling Techniques: Bootstrap and Jackknife
INTRODUCTION

In statistical analysis, the researcher is usually interested in obtaining
not only a point estimate of a statistic but also an estimate of the
variation in this point estimate, and a confidence interval for the true
value of the parameter. For example, a researcher may calculate not
only a sample mean, but also the standard error of the mean and a
confidence interval for the mean.

Traditionally, researchers have relied on the central limit theorem
and normal approximations to obtain standard errors and confidence
intervals. These techniques are valid only if the statistic, or some
known transformation of it, is asymptotically normally distributed.
Hence, if the normality assumption does not hold, then the traditional
methods should not be used to obtain confidence intervals.

A major motivation for the traditional reliance on normal-theory
methods has been computational tractability. Now, with the
availability of modern computing power, researchers need no longer
rely on asymptotic theory to estimate the distribution of a statistic.
Instead, they may use resampling methods which return inferential
results for either normal or nonnormal distributions.

Resampling techniques such as the bootstrap and jackknife provide
estimates of the standard error, confidence intervals, and distributions
for any statistic. In the bootstrap, for example, B new samples, each of
the same size as the observed data, are drawn with replacement from
the observed data. The statistic is calculated for each new set of data,
yielding a bootstrap distribution for the statistic. The fundamental
assumption of bootstrapping is that the observed data are
representative of the underlying population. By resampling
observations from the observed data, the process of sampling
observations from the population is mimicked. For more detailed
descriptions of bootstrapping, see Efron and Tibshirani (1993) and
Shao and Tu (1995).

Spotfire S+ includes a suite of functions for bootstrapping and
jackknifing with the basic capabilities listed below.
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• Given a vector, matrix, or data frame, create bootstrap or 
jackknife resamples of observations and use these to calculate 
resampling replicates of a specified statistic. The statistic may 
be a scalar, vector, or matrix and may be specified as an 
Spotfire S+ function or call.

• Produce informative summaries and plots for a resample 
object (resamp) produced by bootstrapping or jackknifing.

• Calculate empirical percentile and BCa confidence limits for 
a bootstrap object, and empirical percentiles for a jackknife 
object.

• Use jackknife after bootstrap to examine the influence of 
observations, and to estimate the standard error of a 
functional of the bootstrap distribution for a statistic.

A list of the bootstrapping and jackknifing functions is presented in
Table 33.1.
Table 33.1: Spotfire S+ bootstrapping and jackknifing functions.

Function Description

bootstrap Main bootstrap function

jackknife Main jackknife function

summary.bootstrap Summary method for bootstrap

print.resamp
plot.resamp
qqnorm.resamp
summary.resamp

Methods for resamp objects

limits.emp
limits.bca

Calculate empirical and BCa 
percentiles

jack.after.bootstrap Perform jackknife after bootstrap

print.jack.after.bootstrap
plot.jack.after.bootstrap

Methods for jackknife after 
bootstrap object
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update.bootstrap Add more replicates to a boot 
object

bootstats
jackstats

Called by bootstrap and 
jackknife to calculate
 resampling statistics

samp.boot.mc
samp.boot.bal
samp.permute

Functions to generate resampling 
indices

Table 33.1: Spotfire S+ bootstrapping and jackknifing functions. (Continued)

Function Description
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Creating a Resample Object
CREATING A RESAMPLE OBJECT

There are two types of resample objects: bootstrap objects and
jackknife objects. The main functions for generating these objects are
bootstrap and jackknife. These functions call the more primitive
functions bootstats and jackstats, which use the replicated
parameter values and other information to calculate the bootstrap or
jackknife statistics, and return an object of the appropriate class.

The Bootstrap In bootstrap resampling, B new samples, each of the same size as the
observed data, are drawn with replacement from the observed data.
The statistic is first calculated using the observed data and then
recalculated using each of the new samples, yielding a bootstrap
distribution. The resulting replicates are used to calculate the
bootstrap estimates of bias, mean, and standard error for the statistic.

Main Arguments The main arguments in bootstrapping are the data (a vector, matrix,
or data frame) and a statistic, which returns a scalar, vector, or
matrix. This statistic may be a Spotfire S+ function or an unevaluated
call (that is, any expression that one might type at the command line).
Additional arguments to statistic may be passed as a list through
args.stat.

You may specify the number B of resamples to draw. The default is
1000, which is the recommended minimum for estimating
percentiles. Although a smaller B may be specified, 250 is
recommended as a minimum for estimating standard errors.

Optional 
Arguments

• seed: Sets the random number seed. It may be a legal random 
number seed, or an integer between 0 and 1000.

• group: Specifies a stratifying variable. If supplied, then 
resampling is performed independently within each stratum. 
This argument can be used to bootstrap a two-sample or 
multiple-sample statistic. Note that the bootstrap estimates are 
not adjusted based on stratifying.

• sampler: Generates resampling indices. The default function 
samp.boot.mc performs standard Monte Carlo bootstrapping 
of observations. The samp.boot.bal function performs 
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Chapter 33  Resampling Techniques: Bootstrap and Jackknife
balanced bootstrapping. In some cases, the bootstrap 
function may be used to perform a permutation test by using 
samp.permute with an appropriately defined statistic.

• block.size: Controls computational details of the 
bootstrapping. By default, this is set to min(B,100) and the 
bootstrapping is performed using one large lapply. If the 
sample size n and number B of resamples are large, then this 
default may be slower than the alternative of performing a for 
loop over smaller blocks of observations. The block.size 
argument specifies the size of each block over which a for is 
applied. For example, if n=1000 and B=1000, then it may be 
preferable to do 10 loops with block.size=100 rather than a 
single lapply.

• block.size: Controls computational details of the 
bootstrapping. For efficiency, the samples are drawn in blocks 
of size block.size and lapply is used over each block to 
evaluate the statistic. The drawing of blocks is embedded 
within a for loop to draw a total of B samples. When n is small 
it is most efficient to perform a single lapply so that 
block.size=B. When n is large, it is more efficient to use a 
smaller block.size. For example, if n=1000 and B=1000, then 
it may be preferable to do 10 loops with block.size=100 
rather than a single lapply. By default the block.size is set to 
min(B,100).

• assign.frame1: Logical flag indicating whether the resampled 
data should be assigned to frame 1 before evaluating the 
statistic. This may be necessary if the statistic is reevaluating 
the call of a model object. If all bootstrap estimates are 
identical, try setting assign.frame1=T. Note that this option 
slows down the algorithm.

• trace: Logical flag indicating whether to print a message 
indicating which set of replicates is currently being drawn.

Note

Pressing ESC during the looping interrupts the process and saves the replicates computed so far.
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Creating a Resample Object
• save.indices: Logical flag indicating whether to save the 
matrix of resampling indices. By default, the value of the 
random number seed used is saved, and the sampler used is 
specified in the call, which is enough information to 
reproduce the resampling indices in later analyses. The 
matrix of resampling indices may be saved as part of the 
object by setting save.indices=T. This matrix has dimension 
n x B.

Additional arguments are described in the help file for the bootstrap
function.

Other Functions The bootstrap function calls bootstats to calculate bootstrap
statistics. If you specify the required information, then bootstats may
be called directly to produce a bootstrap object. The main caveat is
that limits.bca and jack.after.bootstrap look at the call
component of the object, so the function calling bootstats should
pass along an appropriate call if these functions are to be used on the
resulting object.

Components of 
the Object

A bootstrap object has components call, observed, replicates,
estimate, B, n, dim.obs, group, seed.start, and seed.end. The
observed component contains the observed parameter values
calculated using the original data. The estimate data frame contains
bootstrap estimates of bias, mean, and standard error. The
replicates are the bootstrap replicates of the parameters. The call
component, starting random number seed seed.start, ending
random number seed seed.end, and group are stored for future
reference, as are the number B of replicates and the sample size n. If
statistic returns a matrix, then its dimension is stored as dim.obs
for use in the layout of plots. In many cases, dim.obs and group are
NULL.

The Jackknife In jackknife resampling, a statistic is calculated for the n possible
samples of size n-1, each with one observation left out. The default
sample size is n-1, but more than one observation may be removed
using the group.size argument (see below). Jackknife estimates of
bias, mean, and standard error are available and are calculated
differently than the equivalent bootstrap statistics.
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Arguments The jackknife function takes the arguments data, statistic,
args.stat, and assign.frame1, which have the same meanings as for
bootstrap.

The seed argument may be used to specify a seed for randomization
done by the statistic, and for random assignment of observations to
groups if group.size is not equal to one. It may be a legal random
number seed, or an integer between 0 and 1000.

The group.size argument may be used to specify the removal of
more than one point in each sample. This argument is useful in partial
jackknifing for calculating the acceleration when forming BCa
percentiles. It forms floor(n/group.size) replicates, each missing
group.size observations. These replicates are treated as a jackknife
sample of size floor(n/group.size).

Other Functions The jackstats function calculates the jackknife statistics.
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METHODS FOR RESAMPLE OBJECTS

The print 
Method

The print method for a resample object, print.resamp, prints out the
call, the number of resamples used, and a table giving the values of
the statistic for the original data and resampling estimates of bias,
mean, and standard error for the statistic.

The summary 
Method

The summary method for a resample object prints out the same
information as print.resamp, followed by the empirical percentiles of
the replicates. The summary of a bootstrap object also calculates BCa
percentiles. If the statistic is vector-valued, a correlation matrix for the
components of the vector is also printed. The optional probs
argument specifies probabilities at which the empirical quantiles are
calculated.

Additional arguments useful in limits.bca may be specified with
summary.bootstrap. These arguments include z0, acceleration, and
group.size. By default, a group.size of floor(n/20) is used in
limits.bca for reasons of speed. To do a full jackknifing when
estimating acceleration, specify group.size=1.

The plot 
Method

The plot method for a resample object produces plots of the
distributions of the statistics. For each statistic, a histogram of the
replicates is displayed with an overlaid smooth density estimate. A
solid vertical line is plotted at the observed parameter value, and a
dashed vertical line is plotted at the mean of the replicates. The
distance between the dotted line and the solid line is the estimated
bias. The shape of the distribution may be examined to assess issues
such as skewness of the distribution of the statistic.

You may specify plot with a bandwidth.func argument to calculate
the bandwidth of the density estimate. By default, the normal
reference density estimate is used. In addition, you may specify plot
with an nclass.func argument to calculate the number of classes in
the histogram. By default, the Freedman and Diaconis rule is used.
Arguments may also be passed to histogram through the ellipsis
(...).
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Plots are displayed in a grid (grid=T) by default. Use nrow to specify
the number of rows in the grid. If the statistic is a matrix, then by
default the plots are arranged in the same order as the terms appear in
the matrix.

Normal 
Quantile-
Quantile Plots

The qqnorm method for a resample object produces a plot with the
same layout as in plot.resamp, but with each plot containing a
normal quantile-quantile plot for the relevant statistic. If the argument
lines=T, as is the default, then a qqline is also added to each plot.

This plot is used to assess the normality of the distribution of each
statistic. If the points fall on a straight line, the empirical distribution
of the replicates is similar to that of a normal random variate.
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PERCENTILE ESTIMATES

Two types of percentile estimates are supported: empirical
percentiles, and bias-corrected and adjusted (BCa) percentiles. These
are calculated by limits.emp and limits.bca, respectively. The
empirical percentiles are available for bootstrap and jackknife objects,
while BCa percentiles are available only for bootstrap objects. The
empirical percentiles are easy to calculate, but may not be accurate
unless the sample size is very large. The BCa percentiles require more
computation but are more accurate. For either type of percentile,
using at least 1000 replications is recommended for accurate
estimation. The probs argument to the limits.emp and limits.bca
functions specifies which percentiles are computed.

Empirical 
Percentiles

The empirical percentiles are simply the percentiles of the empirical
distribution of the replicates. Linear interpolation is used if necessary
to obtain the specified percentiles.

BCa 
Percentiles

The BCa method transforms the specified prob values to determine
which percentiles of the empirical distribution most accurately
estimate the percentiles of interest. The percentiles of the empirical
distribution corresponding to these values are then returned.

To estimate the BCa percentiles, the bias correction (denoted ) and
the acceleration must be calculated. If these values are not specified
(and they usually are not), the bias correction is obtained from the
replicates and the acceleration is obtained using jackknifing. Note that
rather than doing a complete delete-1 jackknife, the data are broken
into groups of size group.size and the groups are jackknifed. If
group.size is not specified, it is calculated as floor(n/20), which
yields roughly 20 jackknife replicates depending on the magnitude of
n.

To return the values of z0, acceleration, and the empirical
percentile level for each BCa percentile, set detail=T.

z0
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JACKKNIFE AFTER BOOTSTRAP

Jackknife after bootstrap is a technique for obtaining estimates of the
variation in functionals of a bootstrap distribution, such as the bias or
standard error of a statistic, without performing a second level of
bootstrapping. It also provides information on the influence of each
observation on the functionals. See Efron and Tibshirani (pp. 275-
280) for details on this procedure.

Simulation studies have shown that, in general, jackknife after
bootstrap standard error estimates tend to be too large. A technique
called weighted jackknife after bootstrap may resolve some of these
difficulties. This technique is currently under investigation and has
not yet been implemented.

The Jackknife 
After 
Bootstrap 
Object

The jackknife after bootstrap object has components call,
functional, rel.influence, large.rel.influence,
values.functional, dim.obs, and threshold. The value of the
functional for the bootstrapped parameter replicates, and for the
jackknife after bootstrap estimates of standard errors, is given as the
functional data frame. The value of the functional over the samples
with each point removed is given in values.functional. Normalized
versions of these values are given in rel.influence. The list
large.rel.influence gives the relative influence values for points
with absolute relative influences in excess of tolerance. The call is
the call to jack.after.bootstrap. The dim.obs is the corresponding
component of the bootstrap object. The jackknife after bootstrap
object is of class "jack.after.bootstrap".

The print 
Method

The print method for a jack.after.bootstrap object displays the
call, the description of the functional under consideration, the data
frame of functional values and standard errors, and the list of large
relative influences.

The plot 
Method

The plot method for a jack.after.bootstrap object produces a plot
for each parameter, indicating the relative influence of each
observation. Values greater than a specified tolerance (default = 2) are
flagged as being particularly influential.
486



Examples
EXAMPLES

This section describes three examples. The first is a bootstrap of a
variance and discusses the output and basic plots associated with the
bootstrap object. The second example resamples a correlation
coefficient, and details the application of bootstrap, jackknife after
bootstrap, and jackknife tools. The third example shows how to test
linear regression coefficients using the bootstrap and jackknife after
bootstrap.

Resampling 
the Variance

This example uses data from the swiss.x matrix, which contains
socioeconomic indicators for the provinces of Switzerland in 1888.
More particularly, this example resamples the variance of the
Education variable, the percent of the population whose education is
beyond primary school.

First, Education is separated from the swiss.x matrix.

> Education <- swiss.x[,3]
> Education

 [1] 12  9  5  7 15  7  7  8  7 13  6 12  7 12  5  2  8 28 20
[20]  9 10  3 12  6  1  8  3 10 19  8  2  6  2  6  3  9  3 13
[39] 12 11 13 32  7  7 53 29 29

The bootstrap function is used to draw resamples and construct a
bootstrap object.

> boot.obj1 <- bootstrap(Education, var, B = 1000, seed = 0)

Forming replications  1  to  100
Forming replications  101  to  200
Forming replications  201  to  300
Forming replications  301  to  400
Forming replications  401  to  500
Forming replications  501  to  600
Forming replications  601  to  700
Forming replications  701  to  800
Forming replications  801  to  900
Forming replications  901  to  1000

To prevent the preceding messages from being displayed, set
trace=F.
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Printing the object displays the call used to construct it, the number of
replications used, and summary statistics for the parameter. The
summary statistics are the observed value of the parameter, the mean
of the parameter estimate replicates, and bootstrap estimates of bias
and standard error.

> boot.obj1

Call:
bootstrap(data = Education, statistic = var, B = 1000,
seed = 0)

Number of Replications: 1000

Summary Statistics:
    Observed   Bias  Mean    SE
var    92.46 -3.362 89.09 38.67

A more complete summary of the bootstrap object, obtained via the
summary function, includes empirical and BCa percentiles for the
statistic. The BCa percentiles, for example, show that the 95%
confidence interval for the Education variance has endpoints 45.34
and 221.2.

> summary(boot.obj1)

Call:
bootstrap(data = Education, statistic = var, B = 1000,
seed = 0)

Number of Replications: 1000

Note

All examples in this section use B=1000, the number of resamples recommended for accurate 
estimation of percentiles. Users who want to replicate the examples might use a lower number of 
resamples (say, B=250) to speed up estimation. Note, however, that results will differ slightly from 
those shown here.
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Summary Statistics:
    Observed   Bias  Mean    SE
var    92.46 -3.362 89.09 38.67

Empirical Percentiles:
    2.5%    5%   95% 97.5%
var 32.9 36.17 163.9 177.1

BCa Percentiles:
     2.5%    5%   95% 97.5%
var 45.34 51.44 211.6 221.2

Empirical and BCa percentiles may also be obtained separately using
the limits.emp and limits.bca functions, respectively.

> limits.emp(boot.obj1)

        2.5%       5%      95%    97.5%
var 32.89544 36.16716 163.8941 177.1408

> limits.bca(boot.obj1)

        2.5%      5%      95%    97.5%
var 45.33665 51.4373 211.6284 221.1731

Plotting the bootstrap object provides a histogram of the replicated
variances along with a smooth density estimate (Figure 33.1). The
solid line indicates the observed parameter value, and the dotted line
indicates the mean of the replicates. The difference between these two
values is the bootstrap estimate of bias.

> plot(boot.obj1) 

The histogram in Figure 33.1 shows that the distribution of replicated
variances is highly skewed. A normal quantile-quantile plot can be
used to further assess deviation from the normal distribution. Figure
33.2 suggests that both tails of the distribution of replicated variances
deviate from the normal distribution. Thus there is evidence that
bootstrapping is a better approach than normal-based methods.

> qqnorm(boot.obj1)
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Figure 33.1: Histogram of replicated variances.

Figure 33.2: Normal qq-plot of replicated variances.
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Resampling 
the 
Correlation 
Coefficient

This example uses the law school data from Efron and Tibshirani
(p. 9). Starting with 82 American law schools participating in a study
of admission practices, they constructed a random sample of 15
schools. Efron and Tibshirani then examined the correlation between
LSAT score and GPA for the 1973 entering classes at these schools
(p. 49). 

Traditionally, Fisher’s transformation would be used to transform the
correlation coefficient into a normally distributed variable on which
normal-based inference would be used. This example uses
resampling to obtain inferential quantities instead of employing
Fisher’s transformation.

First, the data are entered into Spotfire S+ and stored as a data frame.

> school <- 1:15
> lsat <- c(576, 635, 558, 578, 666, 580, 555, 661, 651, 
+ 605, 653, 575, 545, 572, 594)

> gpa <- c(3.39, 3.30, 2.81, 3.03, 3.44, 3.07, 3.00, 3.43,
+ 3.36, 3.13, 3.12, 2.74, 2.76, 2.88, 2.96)

> law.data <- data.frame(School = school, LSAT = lsat, 
+ GPA = gpa)

Next, the bootstrap function is used, and the summary of the
resulting object displayed.

> boot.obj2 <- bootstrap(law.data, cor(LSAT, GPA),
+ B = 1000, seed = 0, trace = F)

> summary(boot.obj2)

Call:
bootstrap(data = law.data, statistic = cor(LSAT, GPA),
B = 1000, seed = 0, trace = F)

Number of Replications: 1000

Summary Statistics:
      Observed      Bias   Mean     SE
Param   0.7764 -0.008768 0.7676 0.1322
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Empirical Percentiles:
        2.5%    5%    95%  97.5%
Param 0.4673 0.523 0.9432 0.9593

BCa Percentiles:
        2.5%    5%    95%  97.5%
Param 0.3443 0.453 0.9255 0.9384

The bootstrap object is plotted to obtain a histogram of the replicated
correlation values along with a smooth density estimate (Figure 33.3).
The distribution is clearly skewed.

> plot(boot.obj2)

Another tool available for exploring the bootstrap object is the
jackknife after bootstrap (Efron and Tibshirani, p. 275). This
technique provides standard error estimates for functionals of the
bootstrap distribution, and influence measures for each observation.
By default, the functional is the mean of the distribution. In this case,
the standard error of the functional is the standard error of the mean,
and the influence indicates the influence of each observation on the
mean. Jackknife after bootstrap is commonly used to get standard
error estimates for the bootstrap estimate of standard error.

Figure 33.3: Histogram of replicated correlations.
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> jab.obj2 <- jack.after.bootstrap(boot.obj2)
> jab.obj2

Call:
jack.after.bootstrap(boot.obj = boot.obj2, functional = 
mean)

Functional Under Consideration:
mean

Functional of Bootstrap Distribution of Parameters:
        Func SE.Func
Param 0.7676  0.1432

Observations with Large Influence on Functional:
$Param:
   Param
1 -3.025

Plotting the jack.after.bootstrap object provides an influence plot
similar to a Cook’s distance plot (Figure 33.4). Observations with
absolute relative influence greater than 2 are considered particularly
influential.

> plot(jab.obj2) 

The jackknife after bootstrap identifies observation 1 as being
particularly influential. A plot of GPA versus LSAT with this
observation plotted as a triangle shows that this point is indeed an
outlying observation (Figure 33.5).

> plot(lsat[-1], gpa[-1], xlab = "LSAT", ylab = "GPA")
> points(lsat[1], gpa[1], pch = 2)
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Jackknife summary statistics for the correlation may be obtained also.

> jackknife(law.data, cor(LSAT, GPA))

Figure 33.4: Influence plot for correlation.

Figure 33.5: GPA versus LSAT.
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Call:
jackknife(data = law.data, statistic = cor(LSAT, GPA))

Number of Replications: 15

Summary Statistics:
      Observed      Bias   Mean     SE
Param   0.7764 -0.006473 0.7759 0.1425 

Resampling 
Regression 
Coefficients

The last example shows how to test linear regression coefficients, and
uses the bootstrap to obtain standard error estimates and confidence
intervals. The data are from operation of a plant for the oxidation of
ammonia to nitric acid, measured on 21 consecutive days. See the
Spotfire S+ help file for stack for details.

First, the stack.loss vector and stack.x matrix are combined into a
data frame.

> stack <- data.frame(stack.loss, stack.x)
> names(stack)

[1] "stack.loss" "Air.Flow"   "Water.Temp" "Acid.Conc."

The bootstrap function resamples the vector of linear regression
coefficients from the model of stack.loss regressed on Air.Flow,
Water.Temp, and Acid.Conc.

> boot.obj3 <- bootstrap(stack,
+ coef(lm(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.,
+ stack)), B = 1000, seed = 0, trace = F)

> boot.obj3

Call:
bootstrap(data = stack, statistic = coef(lm(stack.loss ~ 
Air.Flow + Water.Temp + Acid.Conc., stack)), B = 1000,
seed = 0, trace = F)

Number of Replications: 1000

Summary Statistics:
            Observed      Bias     Mean     SE
(Intercept) -39.9197  0.829215 -39.0905 8.8239
   Air.Flow   0.7156  0.004886   0.7205 0.1749
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 Water.Temp   1.2953 -0.031415   1.2639 0.4753
 Acid.Conc.  -0.1521 -0.005164  -0.1573 0.1180

The summary for a vector statistic includes the correlation matrix for
the replicate values. Based on the 95% confidence limits, for either
the empirical or the BCa percentiles, all coefficients except the
Acid.Conc. coefficient are significantly different from zero.

> summary(boot.obj3)

Call:
bootstrap(data = stack, statistic = coef(lm(stack.loss ~
Air.Flow + Water.Temp + Acid.Conc., stack)), B = 1000,
seed = 0, trace = F)
Number of Replications: 1000

Summary Statistics:
            Observed      Bias     Mean     SE
(Intercept) -39.9197  0.829215 -39.0905 8.8239
   Air.Flow   0.7156  0.004886   0.7205 0.1749
 Water.Temp   1.2953 -0.031415   1.2639 0.4753
 Acid.Conc.  -0.1521 -0.005164  -0.1573 0.1180

Empirical Percentiles:
                2.5%       5%      95%     97.5%
(Intercept) -55.4846 -52.7583 -23.4913 -17.84522
   Air.Flow   0.3844   0.4454   1.0136   1.05255
 Water.Temp   0.3913   0.4768   2.0544   2.23920
 Acid.Conc.  -0.4181  -0.3604   0.0209   0.06103

BCa Percentiles:
                2.5%       5%        95%     97.5%
(Intercept) -58.8427 -54.3320 -25.385390 -21.48317
   Air.Flow   0.3197   0.3897   0.987308   1.01691
 Water.Temp   0.4977   0.5811   2.278439   2.46017
 Acid.Conc.  -0.4250  -0.3743   0.008729   0.04447
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Correlation of Replicates:
            (Intercept) Air.Flow Water.Temp Acid.Conc.
(Intercept)     1.00000  -0.1376    0.03551    -0.7848
   Air.Flow    -0.13760   1.0000   -0.79387    -0.1096
 Water.Temp     0.03551  -0.7939    1.00000    -0.2007
 Acid.Conc.    -0.78483  -0.1096   -0.20067     1.0000

The plot function provides histograms of the replicated regression
coefficients (Figure 33.6). Skewness is particularly evident in the
Acid.Conc. coefficients.

> plot(boot.obj3)

Next, the jackknife after bootstrap is used to assess the accuracy of the
standard error estimates, and the influence of each observation on
these estimates.

> jab.obj3 <- jack.after.bootstrap(boot.obj3, "SE")

Figure 33.6: Histograms of replicated regression coefficients.
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Chapter 33  Resampling Techniques: Bootstrap and Jackknife
> jab.obj3

Call:
jack.after.bootstrap(boot.obj = boot.obj3, functional = 
"SE")

Functional Under Consideration:
[1] "SE"

Functional of Bootstrap Distribution of Parameters:
              Func SE.Func
(Intercept) 8.8239 3.67775
   Air.Flow 0.1749 0.06149
 Water.Temp 0.4753 0.17850
 Acid.Conc. 0.1180 0.05395

Observations with Large Influence on Functional:

$"(Intercept)":
   (Intercept)
21       2.863

$Air.Flow:
   Air.Flow
21    3.672

$Water.Temp:
   Water.Temp
21      3.214

$Acid.Conc.:
   Acid.Conc.
14     -2.184
21      2.589

The jackknife after bootstrap and the corresponding influence plot
(Figure 33.7) suggest that points 14 and 21 are particularly influential.

> plot(jab.obj3)
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Examples
Figure 33.7: Influence plots for regression coefficients.
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Introduction
INTRODUCTION

Spotfire S+ was designed for data analysis, so it is rich in quantitative
methods. Many of these methods, while designed for particular data
analysis tasks, have been implemented as general mathematical tools.
These tools can be applied to a wide variety of numerical
applications. This chapter is a brief survey of mathematical
computing in Spotfire S+.

In this chapter, we assume a basic familiarity with the operation of the
command line. For the most part, however, this chapter is self-
contained and can be read independently of the other chapters in this
manual.
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Chapter 34  Mathematical Computing in Spotfire S+
ARITHMETIC OPERATIONS

You perform basic arithmetic in Spotfire S+ as you would with a
calculator, using the operators +, -, *, and /:

> 2 + 2
[1] 4

> 9 - 3
[1] 6

> 3 * 8
[1] 24

> 17 / 4
[1] 4.25

Use the operator ^ for exponentiation, including root extraction:

> 3 ^ 2
[1] 9

> 7 ^ (1 / 3)
[1] 1.912931

Operators have their usual precedence (powers, multiplication/
division, addition/subtraction), and parentheses can be used (as in the
previous example) to group calculations. Two other operators provide
integer quotients and remainders. The integer divide operator, %/%,
returns the integer quotient  and the modulo operator, %%, returns
the remainder r of two numbers  and , so that :

> 24.5 %/% 3.2
[1] 7

> 24.5 %% 3.2
[1] 2.1

> 7 * 3.2 + 2.1
[1] 24.5

q
y x y qx r+=
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Arithmetic Operations
The abs function returns the absolute value of a number:

> abs(-4.5)
[1] 4.5

The greatest-integer function  is obtained using floor:

> floor(2.3)
[1] 2

Similarly, the “next integer”  is obtained using ceiling:

> ceiling(2.3)
[1] 3

A vector in Spotfire S+ is an ordered set of values. Simple numeric
vectors can be created with the c function or the sequence operator
(:):

> x <- c(3, 1, 7)
> x

[1] 3 1 7

> w <- 1:6
> w

[1] 1 2 3 4 5 6

A matrix, in Spotfire S+, is simply a vector with a specified number of
rows and columns, that is, an ordered set of data in a rectangular
array. You can create matrices with the matrix command:

> A <- matrix(c(19, 8, 11, 2, 18, 17, 15, 19, 10), nrow = 3)

     [,1] [,2] [,3]
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10

You can also build matrices from existing vectors using rbind (which
assigns vectors to the rows of the matrix) or cbind (which assigns
vectors to the columns of the matrix):

> m <- c(14, 13, 10)
> n <- c(10, 11, 15)
> o <- c(19, 3, 15)

x

x
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Chapter 34  Mathematical Computing in Spotfire S+
> B <- cbind(m, n, o)
> B

      m  n  o
[1,] 14 10 19
[2,] 13 11  3
[3,] 10 15 15

Most calculations on vectors or matrices are carried out element by
element, so, for example, if  and , we have

. Multiplying A times B with the standard * operator
yields the following:

> A * B

       m    n    o
[1,]  266   20  285
[2,]  104  198   57
[3,]  110  255  150

For matrices, these element by element operations require that the
matrices have the same dimension; that is, the same number of rows
and the same number of columns, so that the matrices are conformable
for addition. For vectors, if one vector is shorter than the other, the
shorter vector is repeated cyclically to match the length of the longer
vector:

> x + w
[1]  4  3 10  7  6 13

Mathematical operations on combinations of vectors and matrices are
permitted, but may have unexpected results. For example, suppose
you define the matrix E as follows:

> E <- matrix(1:4, nrow = 2)

Dividing by the previously defined vectors x and w yields the
following results:

> E/w

[1] 1.0000000 1.0000000 1.0000000 1.0000000 0.2000000
[6] 0.3333333
Warning messages:
  Length of longer object is not a multiple of the

X xij{ }= Y yij{ }=

X∗Y xijyij{ }=
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Arithmetic Operations
 length of the shorter object in: E/w

> E/x

          [,1]      [,2]
[1,] 0.3333333 0.4285714
[2,] 2.0000000 1.3333333
Warning messages:
  Length of longer object is not a multiple of the
  length of the shorter object in: E/x

Spotfire S+ returns an object with the attributes of the longer object in
the calculation. Since length(E) < length(w), E/w returned an object
matching the attributes of w, namely a vector of length 6. On the other
hand, since length(E) > length(x), E/x returned an object matching
the attributes of E, namely, a matrix of length 4 with dim = c(2,2).

To perform matrix multiplication, use the matrix multiplication operator
%*%

> A %*% B

       m    n    o
[1,]  442  437  592
[2,]  536  563  491
[3,]  475  447  410

The two matrices must be conformable for multiplication, that is, the
number of columns of A must be the same as the number of rows of B.

Using the matrix multiplication operator on two equal length vectors
yields the vector dot product:

> z <- c(1, 0, 3, 4, 8)
> y <- c(2, 9, 3, 2, 7)
> z %*% y

     [,1]
[1,]   75
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COMPLEX ARITHMETIC

In addition to the ordinary operators described in the section
Arithmetic Operations, five special operators are provided for
manipulating complex numbers.

Re and Im are used to extract the real and imaginary parts,
respectively, from a complex number. Mod and Arg return the modulus
and argument for the polar representation of the complex number.
Conj returns the complex conjugate of the complex number.

When you graph a vector of complex numbers with plot, the real
parts are graphed along the x-axis and the imaginary parts are
graphed along the y-axis.
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Elementary Functions
ELEMENTARY FUNCTIONS

The elementary functions included in Spotfire S+ are listed in Table
34.1.

Each function acts element-by-element on its argument:

> J

     [,1] [,2] [,3] [,4]
[1,]   12   15    6   10
[2,]    2    9    2    7
[3,]   19   14   11   19

Table 34.1: Elementary Functions in Spotfire S+.

Name Operation

sqrt Square root

abs Absolute value

sin, cos, tan Trigonometric functions (radians)

asin, acos, atan Inverse trigonometric functions (radians)

sinh, cosh, tanh Hyperbolic trigonometric functions 
(radians)

asinh, acosh, atanh Inverse hyperbolic trigonometric functions 
(radians)

exp, log Exponential and natural logarithm (base )

log10 Common logarithm (base 10)

logb Logarithm for bases other than  and 10

gamma, lgamma Gamma function and its natural logarithm

e

e
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> sqrt(J)

         [,1]     [,2]     [,3]     [,4]
[1,] 3.464102 3.872983 2.449490 3.162278
[2,] 1.414214 3.000000 1.414214 2.645751
[3,] 4.358899 3.741657 3.316625 4.358899

> tan(J)

           [,1]       [,2]         [,3]      [,4]
[1,] -0.6358599 -0.8559934   -0.2910062 0.6483608
[2,] -2.1850399 -0.4523157   -2.1850399 0.8714480
[3,]  0.1515895  7.2446066 -225.9508465 0.1515895

You can use logb to compute logarithms of any base with the optional
argument base. For example, to compute log27:

> logb(7, base = 2)

[1] 2.807355
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Vector and Matrix Computations
VECTOR AND MATRIX COMPUTATIONS

The p-norm of a vector x of length n is defined as:

for . To obtain the -norm of a vector in Spotfire S+, use the
vecnorm function (by default, p = 2):

> vecnorm(1:2)
[1] 2.236068

> ( sum( (1:2) ^ 2) ) ^ (1/2)
[1] 2.236068

The vecnorm function works with both real and complex vectors:

> vecnorm(1+2i)
[1] 2.236068

You can specify the type of norm desired with the p argument.
Possible values include real numbers greater than or equal to 1, Inf,
and the character strings "euclidean" or "maximum":

> vecnorm(1:2, p = 1)
[1] 3

> vecnorm(1:2, p = "maximum")
[1] 2

> vecnorm(1:2, p = Inf)
[1] 2

To obtain the transpose of a matrix, use the t function:

> J

     [,1] [,2] [,3] [,4]
[1,]   12   15    6   10
[2,]    2    9    2    7
[3,]   19   14   11   19

x1
p x2

p … xn
p

+ + +[ ]
1 p⁄

p 1≥ p
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> t(J)

     [,1] [,2] [,3]
[1,]   12    2   19
[2,]   15    9   14
[3,]    6    2   11
[4,]   10    7   19

You can obtain the diagonal of a matrix with the diag function:

> diag(J)
[1] 12 9 11

You can also use diag to construct diagonal matrices:

> x <- c(3, 1, 7)
> diag(x)

     [,1] [,2] [,3]
[1,]    3    0    0
[2,]    0    1    0
[3,]    0    0    7

To obtain the trace of a square matrix, use sum with diag, as follows:

> sum(diag(A))
[1] 47

Identity 
Matrices

To generate identity matrices in Spotfire S+, use diag with an integer
argument representing the rank n as follows:

> diag(n)

For example, the rank 4 identity matrix is created as follows:

> diag(4)

     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1
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Determinants There is no built-in Spotfire S+ function to calculate determinants.
However, the following one-line function can be used to calculate
determinants for real-valued matrices:

> det <- function(x) prod(eigen(x)$values)

The eigen function is discussed in the section Eigenvalues and
Eigenvectors.

Kronecker 
Products

A Kronecker product of two matrices  and  is the matrix

To calculate a Kronecker product in Spotfire S+, use the kronecker
function:

> N <- matrix(5:8, nrow = 2)
> O <- matrix(4:1, nrow = 2)
> kronecker(N, O)

     [,1] [,2] [,3] [,4]
[1,]   20   10   28   14
[2,]   15    5   21    7
[3,]   24   12   32   16
[4,]   18    6   24    8

You can generalize kronecker to other operations besides
multiplication by changing the operator with the fun argument:

> kronecker(N, O, fun = "+")

     [,1] [,2] [,3] [,4]
[1,]    9    7   11    9
[2,]    8    6   10    8
[3,]   10    8   12   10
[4,]    9    7   11    9

Ap q× Bm n×

a11B …a1qB
� �

ap1B …apqB
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SOLVING SYSTEMS OF LINEAR EQUATIONS

Spotfire S+ provides several methods for solving systems of linear
equations such as the following:

This system of equations can be expressed as the matrix equation
, where  is the matrix of coefficients,  is the (column)

vector of unknowns , and  is the column vector of known
values . To define the coefficient matrix, type:

> A <- matrix(c(19, 8, 11, 2, 18, 17, 15, 19, 10), nrow=3)
> A

     [,1] [,2] [,3] 
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10

The solve function takes the square matrix of coefficients and the
vector of known values as arguments, and it returns the solution
vector:

> solve(A, c(9, 5, 14))

[1]  0.9914429  0.6161109 -0.7379758

You can also use solve to obtain the inverse of a matrix:

> solve(A)

            [,1]         [,2]        [,3]
[1,]  0.04219534 -0.069341989  0.06845677
[2,] -0.03806433 -0.007376807  0.07111242
[3,]  0.01829448  0.088816760 -0.09619357

19a 2b 15c+ + 9=

8a 18b 19c+ + 5=

11a 17b 10c+ + 14=

Ax y= A x
a b c, ,( ) y

9 5 14, ,( )
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Solving Systems of Linear Equations
If the matrix is singular, solve returns an error message:

> S <- matrix(c(9, 3, 3, 3, 1, 1, 2, 4, 7), ncol = 3, 
+ byrow = T)
> S

     [,1] [,2] [,3] 
[1,]    9    3    3
[2,]    3    1    1
[3,]    2    4    7

> solve(S)

Error in solve.qr(a): apparently singular matrix

If the matrix of coefficients is upper triangular, you can use backsolve
to solve the system of equations:

> U <- matrix(c(3, 0, 0, 1, 1, 0, 4, 5, 9), ncol=3)
> U

     [,1] [,2] [,3]
[1,]    3    1    4
[2,]    0    1    5
[3,]    0    0    9

> backsolve(U, c(9, 5, 14))

[1]  1.851852 -2.777778  1.555556

Choleski 
Decomposition

For symmetric, positive-definite matrices, the Choleski decomposition

factors the matrix  uniquely in the form , where  is
upper triangular. You can use the Choleski decomposition to generate
upper triangular matrices for use with the backsolve function.
Spotfire S+ has two functions for performing the Choleski
decomposition: chol and choleski. The chol function is most useful
for obtaining new matrices, since it returns only the upper triangular
matrix . The choleski function returns a list with the  matrix as
one of its components.

For more information on the Choleski decomposition, see the chol
help file and Chapter 8 of the LINPACK User’s Guide by Dongarra, et
al.

X X RTR= R

R R
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QR 
Decomposition

The QR decomposition expresses an  matrix  as the product of
an  orthogonal matrix  and an  upper triangular matrix

. The QR decomposition is the foundation for solve and lsfit, the
(nonrobust) least-squares fit function.

To compute a QR decomposition, use the qr function. The value
returned by qr is a list representing the QR numerical decomposition.
The first component of the list is an  matrix in which the upper
triangle, including the diagonal, is the  matrix. The entries under
the diagonal contain most of a compact representation of . To
obtain  and  explicitly, use the functions qr.R and qr.Q,
respectively. Another function, qr.X, reconstructs the original 
matrix  from the numerical decomposition. In the following
example, we use all four QR functions on the matrix  defined at the
beginning of this section:

> qr(A)

$qr:
            [,1]        [,2]       [,3] 
[1,] -23.3666429 -15.7917422 -23.409439
[2,]   0.3423684 -19.1734420  -8.987649
[3,]   0.4707565   0.6457152  -7.564412

$qraux:
[1] 1.813125 1.763578 0.000000

$rank:
[1] 3

$pivot:
[1] 1 2 3

> qr.Q(qr(A))

           [,1]       [,2]       [,3] 
[1,] -0.8131249  0.5653998 -0.1383870
[2,] -0.3423684 -0.6568151 -0.6718465
[3,] -0.4707565 -0.4989158  0.7276478

n p× X
n n× Q n p×

R

n p×
R

Q
R Q

n p×
X

A
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Solving Systems of Linear Equations
> qr.R(qr(A))

          [,1]      [,2]       [,3] 
[1,] -23.36664 -15.79174 -23.409439
[2,]   0.00000 -19.17344  -8.987649
[3,]   0.00000   0.00000  -7.564412

> qr.X(qr(A))

     [,1] [,2] [,3] 
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10

The following functions use the return value from qr to perform
additional calculations.

• qr.coef: Returns the coefficients obtained by a least-squares 
fit of response data  to the  matrix on which qr was used.

• qr.fitted: Returns the fitted values obtained by a least-
squares fit of response data  to the  matrix on which qr 
was used.

• qr.resid: Returns the residuals obtained by a least-squares fit 
of response data  to the  matrix on which qr was used.

• qr.qy: Returns the results of the matrix multiplication , 
where  is the orthogonal transformation represented by qr 
and  is the response data.

• qr.qty: Returns the results of the matrix multiplication , 
where  is the orthogonal transformation represented by qr 
and  is the response data.

For more details on the QR decomposition, see the help files for qr,
qr.coef, and qr.Q and Chapter 9 of the LINPACK User’s Guide by
Dongarra, et al.

y X

y X

y X

Qy
Q

y

QTy
Q

y
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The Singular 
Value 
Decomposition

The singular value decomposition takes an  matrix  and

decomposes it into , where  and  are orthogonal and  is a
diagonal matrix. The elements of  are the singular values of . The
squares of the singular values of  are the eigenvalues of the matrix

.

To obtain a singular value decomposition in Spotfire S+, use the svd
function. This function returns a list in which the first component is a
vector of singular values, the second component is the orthogonal
matrix , and the third component is the orthogonal matrix . In
the following example, we compute the singular value decomposition
for the matrix  defined at the beginning of this section:

> svd(A)

$d:
[1] 40.000114 14.687207  5.768609

$v:
           [,1]       [,2]       [,3]
[1,] -0.5280363  0.6449356  0.5524814
[2,] -0.5533835 -0.7547957  0.3522074
[3,] -0.6441618  0.1197558 -0.7554563

$u:
           [,1]       [,2]        [,3]
[1,] -0.5200456  0.8538399 -0.02258456
[2,] -0.6606048 -0.4188323 -0.62304157
[3,] -0.5414369 -0.3090905  0.78186261

The singular value decomposition can be used as a numerically stable
way to perform many operations that are used in multivariate
statistics. One such operation is estimating the rank of a matrix X.

For more information on the singular value decomposition, see the
svd help file and Chapter 10 of the LINPACK User’s Guide by
Dongarra, et al.

n p× X

UDVT U V D
D X

X

XTX

V U

A
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Eigenvalues and Eigenvectors
EIGENVALUES AND EIGENVECTORS

If  is a square matrix and  for a scalar  and a vector ,

then  is an eigenvalue of  and  is an eigenvector of . The Spotfire
S+ function eigen returns both the eigenvalues and the eigenvectors
associated with them. In the following example, we compute the
eigenvalues and eigenvectors for the matrix  defined in the section
Solving Systems of Linear Equations:

> eigen(A)

$values:
[1]  39.581985  13.677784  -6.259769

$vectors:
          [,1]       [,2]       [,3]
[1,] 0.6224278  0.8664541  0.3124109
[2,] 0.8793762 -0.6095730  0.3450415
[3,] 0.7368032 -0.2261540 -0.5721007

For more information on the eigen function, see the eigen help file.

A Ax λx= λ x
λ A x A

A
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INTEGRALS, DIFFERENCES, AND DERIVATIVES

Use the integrate function to compute the integral of a real-valued
function over a given interval. The integrate function returns a list,
of which the first two components are the integral and the absolute
error:

> integrate(sin, 0, pi)[1:2]

$integral:
[1] 2

$abs.error:
[1] 2.220446e-14

For this simple example, we know that the integral of  over the
interval  is equal to . We can therefore check
the result that Spotfire S+ returns with the following command:

>  (-cos(pi)) -  -cos(0)
[1] 2

Like many of the Spotfire S+ mathematical functions, integrate is
most commonly used inside other function definitions. The following
“wrapper” function provides a convenient command-line interface,
and returns a single numeric value:

> integral <- function(f, lower, upper, ...) {
+        results <- integrate(f, lower, upper, ...)
+        if(results$message != "normal termination")
+                results$message
+        else results$integral
+ }

Use the diff function to obtain the nth difference of lag  for a set of
data . The default for both  and  is 1. The data may be in the
form of a vector, time series, or matrix:

> y <- (1:10)^2
> diff(y)

[1]  3  5  7  9 11 13 15 17 19

x( )sin
0 π,[ ] π 0cos–( )–cos–

k
x k n
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Integrals, Differences, and Derivatives
With the following command, we compute differences for the built-in
corn.rain time series:

> diff(corn.rain)

1891:  3.3 -3.0 -1.2 -1.9  5.7  0.5 -2.9  0.0  0.0  0.7
1901: -3.0  8.4 -2.1 -3.5 -0.6  1.5  2.1 -1.5 -0.1 -2.7
1911: -1.6  3.3 -4.1  2.6  7.0 -7.2  0.1 -0.7  0.8  2.1
1921:  0.5 -4.1  2.7  3.2 -2.6  0.3 -1.2

Differences on matrices are performed on each column separately:

> K <- matrix(c(12, 2, 13, 5, 10, 16, 7, 1), nrow=4)
> K

     [,1] [,2]
[1,]   12   10
[2,]    2   16
[3,]   13    7
[4,]    5    1

> diff(K)

     [,1] [,2]
[1,]  -10    6
[2,]   11   -9
[3,]   -8   -6

You can use diff to write a function for approximating the derivative
of a data set:

> numdiff <- function(y, x=seq(along=y)) diff(y)/diff(x)

To perform symbolic differentiation, use the D function. AT&T
suggests the deriv function, but deriv is most useful for providing
derivatives to other Spotfire S+ functions. The D function is more
useful for obtaining an isolated derivative:

> D(expression(3*x^2), "x")
3 * (2 * x)

> D(expression(exp(x^2)), "x")
exp(x^2) * (2 * x)

> D(expression(log(y)), "y")
1/y
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INTERPOLATION AND APPROXIMATION

Spotfire S+ has a variety of functions for interpolation and
approximation, most of them developed to aid in fitting curves and
lines to data. However, they are sufficiently general to have wide
application in mathematical settings.

Linear 
Interpolation

To find interpolated values in Spotfire S+, use the approx function.
You provide a vector of  values, a vector of associated  values, and
(optionally) a vector of  values at which you want interpolated
values. Spotfire S+ returns a list of  values and the associated 
values:

> approx(1:10, (1:10)^2, xout = c(2.5, 3.5))

$x:
[1]  2.5 3.5

$y:
[1]  6.5 12.5

A more specialized interpolation function, interp, can be used to
generate input for the three-dimensional plotting functions image,
contour, and persp. The interp function interpolates the value of the

 variable onto an evenly spaced grid of the  and  variables:

> x <- cos(seq(-pi, pi, len = 9))
> y <- sin(seq(-pi, pi, len = 9))
> z <- x + y
> slanted.disk <- interp(x, y, z)
> persp(slanted.disk)

The resulting plot is shown in Figure 34.1.

x y
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Convex Hull To obtain the convex hull of a planar set of points, use the chull
function, which returns the indices of the points belonging to the hull:

> chull(corn.rain)

 [1]  1  2 13 26 35 37 38 33 24  5

The peel option allows you to peel off the convex hull, take the
convex hull of the remaining points, peel off that hull, and so on, until
either all points are assigned to a hull or a user-specified limit is
reached:

> chull(corn.rain, peel = T)

$depth:
 [1] 1 1 2 2 1 2 2 3 4 5 4 2 1 2 6 5 5 3 4 4 3 2 5 1 4 1 3
[28] 4 2 3 3 2 1 3 1 2 1 1

Figure 34.1: A perspective plot created using interp.
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$hull:
 [1]  1  2 13 26 35 37 38 33 24  5  4  3  6  7 14 32 36 29
[19] 22 12 21  8 18 31 34 30 27  9 11 19 20 28 25 10 17 23
[37] 16 15

$count:
[1] 10 10  7  6  4  1

The depth component specifies which hull each point belongs to; 1 is
the outermost hull. The hull component gives the indices of the
points belonging to each hull. The first count[1] points belong to the
outermost hull, the next count[2] points belong to the next hull, and
so on.

Cubic Spline 
Approximation

Splines approximate a function with a set of polynomials defined on
subintervals. A cubic spline is a collection of polynomials of degree
less than or equal to 3 such that the second derivatives agree at the
“knots.” That is, the spline has a continuous second derivative.

When interpolating a number of points, a spline can be a much better
solution than a polynomial interpolation, since the polynomial can
oscillate wildly in order to hit all of the points. Polynomials fit the data
globally while splines fit the data locally.

Use the spline function to obtain a cubic spline approximation:

> x <- 1:5
> y <- c(5, -5, 0, -5, 5)
> spline(x, y)

$x:
 [1] 1.000000 1.333333 1.666667 2.000000 2.333333 2.666667
 [7] 3.000000 3.333333 3.666667 4.000000 4.333333 4.666667
[13] 5.000000 

$y:
 [1]  5.0000000  0.1851852 -3.5185184 -5.0000000 -3.7037036
 [6] -1.2962964  0.0000000 -1.2962964 -3.7037036 -5.0000000
[11] -3.5185184  0.1851852  5.0000000

The spline function is primarily used for graphing, and so it returns
approximately three times as many output points as input points. For
more details, see the spline help file.
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Step Functions The Spotfire S+ function stepfun creates a step function from either
two vectors or a list with components named x and y. You can specify
whether the step function is left- or right-continuous with the type
argument. If type="left" (the default), the given points are at the left
end of the level steps of the function; this gives a right-continuous
function. If type="right", the given points are at the right end of the
level steps of the function; this gives a left-continuous function.

> x <- seq(1, 15, length=5)
> y <- x^2
> stepfun(x, y)

$x:
[1]  1.0  4.5  4.5  8.0  8.0 11.5 11.5 15.0 15.0

$y:
[1]   1.00   1.00  20.25  20.25  64.00  64.00 132.25 132.25
[9] 225.00

> plot(stepfun(x, y), type = "l")

The resulting plot is shown in Figure 34.2. 

Figure 34.2: A step function.
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INITIAL VALUE PROBLEMS

Initial Value 
Problems for 
Ordinary 
Differential 
Equations

An initial value problem is a system of first order differential equations
together with a complete set of initial conditions, one for each
equation in the system:

Since second and higher order differential equations can always be
expressed as systems of first order equations, this definition of the
initial value problem is completely general. The solution of an initial
value problem with  equations is, for any specified point , a vector

 of function values . The initial conditions 

are simply the solution at a given initial point .

To solve initial value problems in Spotfire S+, use the ivp.ab
function.  You set up the problem as follows:

1. Specify a system of differential equations as in the above 
definition. For example, consider the following initial value 
problem:

2. Define a Spotfire S+ function that returns a vector 
representing the derivatives  expressed as functions of  

and . For the system given above, a Spotfire S+ function 
ivp.ex1 is defined as follows:

> ivp.ex1 <- function(x, y) c(-y[2], y[1] + x)

3. Define the initial condition as a vector of the form 
. The first element of this vector 

specifies the initial point and the remaining elements are the 

y1' x( ) f1 x y1 x( ) … yn x( ), , ,( )= y1 x0( ) a1=

…

yn' x( ) fn x y1 x( ) … yn x( ), , ,( )= yn x0( ) an=

n x
y y1 x( ) … yn x( ), ,( ) a1 … an, ,

x0

y1' y2–= y1 0( ) 2=

y2' y1 x+= y2 0( ) 1–=

yi' x

yi

x0 y1 x0( ) … yn x0( ), ,( )( , )
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Initial Value Problems
initial conditions for the equations in the system. In our 
example, this vector can be defined with the Spotfire S+ 
command init.vals <- c(0, c(2,-1)).

4. Choose the point at which you want Spotfire S+ to calculate 
the solution; this point is called the final point.

Once you've worked out the form of the derivatives and the initial
condition list, the call to ivp.ab is straightforward. For example, here
we solve our initial value problem at the final point :

> ivp.ex1.sol <- ivp.ab(final.point=pi, initial=init.vals,
+ derivatives=ivp.ex1)

The ivp.ab function returns a list with several components, many of
which are most useful as input for further iterations of the function.
The solution itself is stored in the values component:

> ivp.ex1.sol$values

    point     val 1    val 2
 3.141593 -5.141677 2.999694

This particular example has the known analytic solution

,

where  and . You can therefore check the

solution that ivp.ab computes by substituting , , and
the final point  into the analytic solution:

> c(-pi + 2*cos(pi) + (1 - (-1))*sin(pi), 
+ 1 - (1 - (-1))*cos(pi) + 2*sin(pi))

[1] -5.141593  3.000000

Example: 
Projectile Motion

One familiar source of initial value problems is projectile motion.
Consider a body of constant mass  that is launched vertically
upward from the surface of the earth at an initial velocity of 
meters per second. Near sea level, the gravitational acceleration is
assumed to be constant at  meters per second squared. What
is the height of the projectile at time ?

x π=

y1 x( ) x– A x 1 B–( ) xsin+cos+=

y2 x( ) 1 1 B–( ) x A xsin+cos–=

A y1 0( )= B y2 0( )=

A 2= B 1–=

x π=

m
v0 500=

g 9.8=

t 4=
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We have the following one-dimensional initial value problem:

.

We can set up our derivative function to accept  and  as
parameters with the following Spotfire S+ command:

> ivp.ex2 <- function(t,y,v0,g) return(v0 - g*t)

We then specify the values of  and  as a list to the aux argument in
ivp.ab. The following syntax solves our initial value problem at the
point : 

> ivp.ex2.sol <- ivp.ab(final.point = 4, initial = c(0,0),
+ derivatives = ivp.ex2, aux = list(v0=500, g=9.8))

> ivp.ex2.sol$values

 point  val 1
     4 1921.6

The analytic solution to this equation is easily obtained by
integrating:

We can therefore verify the solution that ivp.ab returns by
substituting the appropriate values into the analytic solution:

> 500*4 - 0.5*9.8*4^2

[1] 1921.6

You can also use the Spotfire S+ function integrate to solve one-
dimensional problems directly: 

> integrate(function(t, v0 = 500, g = 9.8) {v0-g*t},
+ lower = 0, upper = 4)$integral

[1] 1921.6

For more details on the integrate function, see the section Integrals,
Differences, and Derivatives.

y' t( ) v0 gt–= y 0( ) 0=

v0 g

v0 g

t 4=

y t( ) v0 gx–( ) x y 0( )+d
0

t
∫=

v0t 1
2
---gt2–=
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Example: Simple 
Harmonic Motion

Simple harmonic motion is governed by the second-order differential
equation

,

where  is displacement as a function of time,  is acceleration,  is
mass, and  is the spring constant. For example, consider a spring that
has a natural length of 5 centimeters. Suppose the spring stretches an
additional centimeter when a 30 gram weight is attached to one end
of it. In this case,  grams,  meters, and  is
gravitational acceleration (9.8 meters per second squared). The spring
constant  can be calculated by substituting these values into the
above equation:

.

The differential equation that describes the motion of the spring is
therefore

.

If the spring is stretched 2 centimeters past its natural length and then
released so that it oscillates, what is the displacement  at time

?

To solve second-order differential equations in Spotfire S+, we must
rewrite them as systems of first-order equations. Let  and

. This change of variables gives the following initial value
problem for the spring example:

.

We define our derivative function ivp.ex3 with the following Spotfire
S+ command:

> ivp.ex3 <- function(t,y) c(y[2], -(29400/30)*y[1])

mu'' ku–=

u u'' m
k

m 30= u 1 100⁄= u''

k

k 30 9.8×
1 100⁄
--------------------- 29 400,= =

30u'' 29 400u,–=

u
t 1.75=

y1 u=

y2 u'=

y1' y2= y1 0( ) 2=

y2'
29 400,

30
--------------------y1–= y2 0( ) 0=
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To solve the initial value problem at time , we call ivp.ab
and extract the resulting values component:

> ivp.ex3.sol <- ivp.ab(final.point=1.75,
+ initial=c(0, c(2,0)), derivatives=ivp.ex3)

> ivp.ex3.sol$values

 point      val 1    val 2
  1.75 -0.3854707 61.40628

The displacement at  is therefore .
This solution indicates that the spring is approximately 0.385
centimeters shorter than its natural length after 1.75 seconds.

Computational 
Notes

You should be aware that you won't be able to solve all initial value
problems with the ivp.ab function. First of all, not every initial value
problem has a solution. Secondly, the problem may be unstable, so
that errors are magnified by the numerical method as the solution
proceeds. Finally, the method has difficulty with some stiff problems,
in which solutions have several components that exhibit widely
varying behaviors over the solution interval. For further discussion of
these and other topics, see Shampine and Gordon (1975).

t 1.75=

t 1.75= u y1 0.3854707–= =
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The Fast Fourier Transform
THE FAST FOURIER TRANSFORM

Spotfire S+ has several functions useful for signal processing,
including the fast Fourier transform and three kinds of filters:
convolution, recursive, and low-pass. For a complete description of
the filters implemented in Spotfire S+, see the section Linear Filters in
the chapter Analyzing Time Series and Signals.

The function fft calculates the unnormalized discrete Fourier
transform of the input data, which can be any numeric or complex
vector, array, or time series. For a vector  of length , the definition
of the transform x<-fft(z) is:

,

where  and  is the jth Fourier frequency . Because of
the imaginary exponent, the output from fft is of mode "complex".
This can be seen in the following example:

> fft(1:10)

 [1]  55+ 0.000000i  -5+15.388418i  -5+ 6.881910i
 [4]  -5+ 3.632713i  -5+ 1.624598i  -5+ 0.000000i
 [7]  -5- 1.624598i  -5- 3.632713i  -5- 6.881910i
[10]  -5-15.388418i

If the input data is an array (for example, a matrix), fft returns the
multi-dimensional unnormalized discrete Fourier transform of the
array. For an  array , the definition of the transform X<-fft(Z)
is:

,

where , , and  denotes the  entry of . The

result is a complex array with the same shape as the input data .
Therefore, using fft on a multivariate time series does not compute
the time transform. With the following command, we compute the
discrete Fourier transform of the matrix  that we defined in the
section Solving Systems of Linear Equations.

z n

xj zt iωj 1– t 1–( )–( )exp
t 1=

n
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1 j n≤ ≤ ωj 2πj n⁄

m n× Z

Xjk Zste
2πi j 1–( ) s 1–( )– e 2πi k 1–( ) t 1–( )–
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s 1=
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> A

     [,1] [,2] [,3] 
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10

> fft(A)

                 [,1]             [,2]             [,3]
[1,]  119.0+0.000000i  -2.5+ 6.062178i  -2.5- 6.062178i
[2,]   -5.5-6.062178i  23.0+20.784610i  11.0- 6.928203i
[3,]   -5.5+6.062178i  11.0+ 6.928203i  23.0-20.784610i

To compute the inverse transform, use fft with the argument
inverse=TRUE. For a vector  of length , the definition of the
transform z<-fft(x, inverse=T) is:

,

where  and . Likewise, for an  matrix ,
the definition of the transform Z<-fft(X, inverse=T) is:

,

where , , and  denotes the  entry of . In the
following example, we compute the inverse Fourier transform of the

vector .

> cuberoot.1 <- (cos(2*pi/3) + sin(2*pi/3)*1i)^(0:2)
> cuberoot.1

[1]  1.0+0.0000000i -0.5+0.8660254i -0.5-0.8660254i

> fft(cuberoot.1, inverse = T)

[1] 0.000000e+00+3.330669e-16i 2.220446e-16+3.142072e-16i
[3] 3.000000e+00-6.472741e-16i

x n

zt xj iωt 1– j 1–( )( )exp
j 1=

n

∑=

1 t n≤ ≤ ωt 2πt n⁄= m n× X

Zst Xjke
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m
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1 s m≤ ≤ 1 t n≤ ≤ Zst s t[ , ] Z

1– i 3+( ) 2 1– i 3–( ) 2⁄,⁄,
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The Fast Fourier Transform
Note that the unnormalized transforms implemented in fft involve
sums instead of means. For an dimensional vector , this causes the
commands

> fft(fft(x), inverse=T)
> fft(fft(x, inverse=T))

to both return  (approximately, depending on roundoff error). In
contrast, the normalized discrete Fourier transform divides the
unnormalized result by the length of the input; the normalized output
contains the Fourier coefficients. If you require Fourier coefficients for
your analysis, you should divide the value that fft returns by the
length of your input vector.

The discrete Fourier transform is used to compute an approximation
to the continuous Fourier transform of a periodic function . In the
usual definition,  points are sampled from  symmetrically around
0; that is, the domain of the sampled points is , where 
is the period of . However, Spotfire S+ assumes the  points are
sampled from the interval . When this convention is followed,
the resulting frequencies are shifted. For example, let  be the index
of the sampled points and suppose  is even. In Spotfire S+, the zero
frequency corresponds to , the positive frequencies correspond
to , the negative frequencies correspond to

, and the Nyquist critical frequency corresponds to
. The definitions are analogous if  is odd: the zero

frequency corresponds to , the positive frequencies correspond

to , the negative frequencies correspond to

, and there is no Nyquist critical frequency. For more

details, see Press et al. (1996).
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PROBABILITY AND RANDOM NUMBERS

Spotfire S+ has many functions that perform probability calculations
for the most common distributions. Each of these functions has a
name that begins with a one-letter code indicating the type of
function: rdist, pdist, ddist, and qdist, respectively, where dist is
the Spotfire S+ distribution function. The one-letter codes are as
follows.

• r: Random number generator. Requires an argument 
specifying the sample size, plus any required distribution 
parameters.

• p: Probability function. Requires a vector of quantiles, plus 
any required distribution parameters.

• d: Density function. Requires a vector of quantiles, plus any 
required distribution parameters.

• q: Quantile function. Requires a vector of probabilities, plus 
any required distribution parameters.

For a detailed description of the distribution functions implemented
in Spotfire S+, see the chapter Probability in the Guide to Statistics,
Volume 1. The probability chapter includes a table of distributions
currently supported by Spotfire S+, along with the codes used to
identify them.

For those users interested in understanding the Spotfire S+ pseudo-
random number generator (PNG), we present the internals of the
algorithm here. All Spotfire S+ functions that generate random
numbers rely on the underlying PNG, which computes uniform
random numbers in the interval . We discuss the algorithm
briefly and at a relatively high level; for general background
knowledge on random number generators, see Ripley (1987) or
Kennedy and Gentle (1980).

0 1( , )
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The Spotfire 
S+ Pseudo-
Random 
Number 
Generator

The pseudo-random number generator implemented in Spotfire S+ is
based on George Marsaglia’s original “Super-Duper” package from
1973. It produces a 32-bit integer whose top 31 bits are divided by

. The result is a real number in the half-open
interval . The 32-bit integer is computed by a bitwise exclusive-
or of two additional 32-bit integers: one produced by a congruential
generator, and one produced by a Tausworthe generator.

The congruential generator, also known as the linear or mixed
congruential method, is one of the most commonly-used random
number generators. It produces a sequence of numbers  via the
recursive relationship

,

where  is a multiplicative constant and  is an additive constant.
The modulus  is chosen to be as large as possible, since the period of

the generator cannot be larger than . In Spotfire S+,  and
all overflowing bits are discarded. The initial value  is called the

seed. Various combinations have been proposed for  and , and
Spotfire S+ uses the values  and :

.

This recursion results in a strictly multiplicative generator that has a

period of .

The Tausworthe generator produces a sequence of numbers  via
the exclusive-or operation

.

In Spotfire S+,  and . For most starting seeds , this

generator has a period of . Combining this with the
congruential part gives a PNG that has a period of

. The Spotfire S+ generator skips
cases in which the result is exactly 0, producing random numbers in
the open interval ; this reduces the period by a small amount.
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The 
.Random.seed 
Object

The Spotfire S+ vector .Random.seed stores the starting values 

and  for the congruential and Tausworthe generators, respectively.
The first time random numbers are computed in a Spotfire S+
session, .Random.seed is modified and copied to the local working
database. In general, .Random.seed is updated with the current
congruential and Tausworthe values whenever Spotfire S+ computes
a random sample. The following example illustrates this. In the code
below, the function set.seed defines the starting seeds for a particular
sequence of random numbers. 

> set.seed(1)
> .Random.seed

 [1] 21 14 49 48 24  1 32 22 36 23 28  3

> x <- rnorm(100)
> .Random.seed

 [1] 13  8 57 53 18  3 33 33 11 41 53  3

This mechanism maintains the long-term properties of the generator,
and also allows for reproducibility of results. For more details, see the
help files for .Random.seed and set.seed.

When a function containing a call to the random number generator
aborts before finishing, .Random.seed is not modified. The following
contrived example illustrates this. In the code below, we create a
function test.func that is guaranteed to abort before it completes.

> .Random.seed

 [1] 13  8 57 53 18  3 33 33 11 41 53  3

> test.func <- function() {
+ x <- rnorm(100)
+ x[1] <- NA
+ if(any(is.na(x))) stop("NAs are not allowed in x")
+ return(x)
+ }

> test.func()

Error in test.func(): NAs are not allowed in x

> .Random.seed

X0

Y0
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 [1] 13  8 57 53 18  3 33 33 11 41 53  3

The .Random.seed vector encodes the base 64 representations of the
current congruential and Tausworthe values. It stores twelve integers
from the interval , where the sixth and twelfth entries are from

. The congruential value  is encoded in the first six integers of
.Random.seed, and the Tausworthe part  is encoded in the last six. If
the entries of .Random.seed are denoted by  for ,
then

,

.

It is possible to shorten the period of this generator dramatically by
changing specific bits in .Random.seed. Because of this, set the starting
seed only with the methods outlined in the set.seed and
.Random.seed help files. 

Computational 
Note

Note that 64 bits are required by the Spotfire S+ pseudo-random
number generator (32 for  and 32 for ) to produce the final value
returned. This means that it is possible to generate repeats in a long
sequence of random numbers, even though the full period has not
been reached. For example, consider the following command:

> set.seed(15)
> table(table(runif(500000)*2147483648))

      1  2
 499866 67

We multiply the results from runif by  to
recover the original 31 bits produced by the exclusive-or of  and .
The output says that 499,866 of the random numbers show up once
in the sequence and 67 show up twice. However, the period of the
Spotfire S+ random number generator is much larger than 500,000,
the length of the sequence in this example.
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PRIMES AND FACTORS

Spotfire S+ can be useful in many number-theoretic computations, as
we have already seen with the %% and %/% operators. You can define
simple functions to list prime numbers and perform factorization;
although they will not set computational records, you may find them
useful.

The primes function returns all prime numbers less than or equal to a
given , where by default :

> primes <- function(n = 100) {
+        n <- as.integer(abs(n))
+        if(n < 2)
+                return(integer(0))
+        p <- 2:n
+        smallp <- integer(0)    # the sieve
+        repeat {
+                i <- p[1]
+                smallp <- c(smallp, i)
+                p <- p[p %% i != 0]
+                if(i > sqrt(n))
+                        break
+        }
+        c(smallp, p)
+ }

> primes(75)

 [1]  2  3  5  7 11 13 17 19 23 29 31 37 41 43 47 53 59 61
[19] 67 71 73

The factors function returns the prime factors of an integer :

> factors <- function(n) {
+        n <- as.integer(abs(n))
+        if(!exists(".Primes") || max(.Primes) < sqrt(n))
+                assign(".Primes", primes(as.integer(1.3 *
+                        sqrt(n))), where = 1)
+        pfactors <- integer(0)
+        while(n > 1) {
+                new.factors <- .Primes[n %% .Primes == 0]

n n 100=

n
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Primes and Factors
+                if(length(new.factors) == 0)
+                        new.factors <- n
+                n <- as.integer(n/(prod(new.factors)))
+                pfactors <- c(pfactors, new.factors)
+        }
+        sort(pfactors)
+ }
> factors(3012)

[1]   2   2   3 251
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A NOTE ON COMPUTATIONAL ACCURACY

Spotfire S+ performs its computations in double precision, unless
specifically written as integer or single precision. Computed values
are accurate to approximately 14 decimal places. However, computed
values can provide no more significant digits than the data they are
computed from.

The exact limits on computations in Spotfire S+ are determined by
the parameters of machine arithmetic stored in the Spotfire S+ object
.Machine. The object .Machine is a list with various numeric
components whose names are made up of the characters single. or
double. followed by the name of a particular parameter of machine
arithmetic. For example, single.digits is the number of base
single.base digits in the floating point representation of a single-
precision number. In addition, the component integer.max is the
largest integer.

See the .Machine help file for more information.
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INDEX

Symbols
* operator

arithmetic 504
+ operator

arithmetic 504
.Machine list 540
.Random.seed vector 536
/ operator

arithmetic 504
: operator

sequence 505
^ operator

arithmetic 504

Numerics
90% criterion for selecting principal 

components 54

A
abs function 505, 509
absolute value 505, 509
accelerated failure time models 378
accelerated testing models 378
acf function 173, 189
acm.ave function 222
acm.filt function 222
acm.smo function 222, 231
acos function 509
acosh function 509
addition 504
agglomerative methods 108
agnes function 108, 130, 132, 147
AIC 179, 193
Akaike’s Information Criterion 179

Akaike’s Information Criterion 
(AIC) 189

Akaike’s information criterion (AIC) 
193

algorithms
AIC 193
Akaike’s Information Criterion 

179
ARMA 186
autocorrelation function 169
autocovariance function 169
autoregressive process 175
Burg’s 184
cluster analysis 141
covariance function matrix 172
Cox proportional hazards 

model 273
factor analysis 66
hazard function 250
Levinson-Durbin recursion 178
low-pass filter transfer function 

219
moving average process 170
robust filtering 228
survival curves 250, 255
survival function 250
Yule-Walker equations 176

alternative robust smoothers 231
approx function 522
approximation

cubic splines 524
derivatives 521
linear interpolation 522

ar.gm function 222
ar.yw function 181
Arg function 508
args.stat argument 482
args.stat function 479
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arima.diag function 195, 196
arima.filt function 196
arima.forecast function 195
arima.mle function 193
arima.sim function 196
arima.td function 197
ARIMA coefficients, transforming 

192
ARIMA models 186, 187

autoregressive vs. general 189
diagnostics for and criticism of 

194
estimating the parameters of 

189
filtered values 196
forecasting with 195
fractionally differenced 200
identifying and fitting 189
identifying the model 189
missing values 192
modeling effects of trading days 

197
multiplicative 191
predicted and filtered values for 

196
regression parameters 193
residuals of 194
seasonal 187
simulating fractionally 

differenced 201
simulating processes 196
with regression variables 188

arithmetic 504–507
complex 508–??
vectors and matrices 506

ARMA models 186
ARMA process 189
AR process 179
asin function 509
asinh function 509
assign.frame1 argument 482
assign.frame1 function 480
asymmetric binary variables 113
atan function 509
atanh function 509

autocorrelation function 189
algorithm 169
for time series

multivariate 171
univariate 168

lag 171
partial 173, 179
plot 173
residuals of ARIMA models 194
simple use of 173
value of 174

autocovariance
mean squared error of 171
positive semi-definiteness of 171

autocovariance function
algorithm 169
for AR process 176
for time series

multivariate 171
univariate 168

autocovariance sequence 204
autoregression

estimation
via Yule-Walker equations 

181
with Burg’s algorithm 184

generalized M-estimates for 225
multivariate 179
univariate 175

autoregression parameter estimates, 
robust 222

autoregressive (AR) filters 214
autoregressive coefficients 186
autoregressive filters 215
autoregressive integrated moving-

average (ARIMA) models 186, 
187

autoregressive models 176
autoregressive moving-average 

(ARMA) models 186
autoregressive operators 196
autoregressive process 175
autoregressive spectrum estimation 

211
average weighted link 141
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B
backshift operator 186
backsolve function 515
bandwidth 207
banner 132
B component 481
between-cluster dissimilarity 131
bias

minimizing 222
biplot function 60, 79
biplots 60, 61

factor analysis 79
bladder 306
block.size function 480
bootstats function 479
bootstrap function 479
bootstrapping

main arguments to 479
optional arguments to 479

bootstrapping functions 477
bootstrap resampling 479
bounded influence autoregression 

estimates 225
Box-Jenkins airline model 194
browser function 23
browser function 26
burl.tree function 28

C
call function 481
Cattell’s criterion for selecting 

principal components 54
cbind function 505
ceiling function 505
censoring 250, 252
censorReg

covariates 396
censorReg function 392
centroid method 141
c function 505
charts

see plots
Choleski decomposition 191, 515

choleski function 515
chol function 515
chull function 523
clara function 108, 123, 147
classification tree

pruning 17
classification trees

browsing nodes 23, 26
classification rules 2
determining splits 27
editing 31
example 6
manipulating 145
nodes 25
plotting 145
pruning 17
removing subtrees 23
selecting subtrees 23, 24
shrinking 19
summarizing 12
see also tree-based models

clorder function 145
cluster 308
cluster analysis

algorithms 141
approximate weight of evidence 

(AWE) 144, 145
criteria 143
distance matrices 145
functions listed 145, 146
hierarchical agglomeration 

algorithm 141, 145
robust methods 144, 145

clustering methods
calling the functions 148
summary of functions 148

clustering tree 132
CO2 data set 209
complete linkage method 131
complete link method 141
complex demodulation 218
complex numbers 508–??

complex conjugate 508
plotting 508
p-norm of vectors 511
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computational accuracy 540
conditioning 190, 193
confidence intervals 195
congruential random number 

generator 535
Conj function 508
continuous ordinal variables 111
convex hull 523
convolution filters 214

examples of 215
correlation matrix 50
cos function 509
cosh function 509
cost-complexity measure

tree models 17
counting process

using 298
covariance function matrix 172
covariance matrix 50, 72
Cox model 416

adjusted variable plots 287
algorithm 273
deviance residuals 288
estimated relative risk 280
functional form for predictor 

287
grouped jackknife estimate of 

variance 333
improvement in fit 280
influential points 288
jackknife estimate of variance 

333
likelihood ratio test 276, 281
log likelihood 281
martingale residuals 287
modified sandwich variance 

estimator 336
null model 281
plotting 297
poorly predicted subjects 288
proportional hazards 

assumption 288
relative risk 276
robust estimate of variance 333
robust variance estimation 336

sandwich estimate of variance 
333

sandwich variance estimator 
334

Schoenfeld residuals 288
Wald test 276
zero iterations 287

Cox models
complex 302

Cox proportional hazards model
see Cox model

crosscorrelation function 171
crosscovariance function 171
cross-spectrum 207
cu.summary data set 28
cubic splines 524
cumulative hazard 250
cusum charts 460

fast initial response 465
new data 461
sensitivity 464
types of charts 464
xbar charts 460

cusum function 460
arguments listed 462

cutoff frequency 219
cutree function 145

D
daisy function 109, 113, 147
Daniell windows 207
data argument 482
data function 479
data taper 205, 213
decomposing matrices

Choleski 515
QR 516
singular value 518

degrees of freedom 207
de-meaning 205
demod function 218
demodulation, complex 218
density function 534
derivatives
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approximating 521
finding 521

determinants 513
detrending 205
d-fold differencing operator 187
D function 521
diag function 512
diagonal matrices 512
diana function 108, 132, 134, 147
differenced series 187
difference equation 175
differences 520
differencing operators 187, 196
diff function 520
digital filter 214
digital filters

see filters
dim.obs component 481
discontinuous intervals of risk 299
discrete Fourier transform (DFT) 

206
discrete ordinal variables 112
discrete time 203
discrete time random walk 175
dissimilarities 110
dissimilarity matrix 109
dist function 145
division 504
divisive methods 108
dot products 507
Dunn’s partition coefficient 126

E
edit.tree function 31
eigen function 519
eigenvalues 519
eigenvectors 519
entropy 184
error covariance matrix 67
errors, Gaussian 165
estimate component 481
event history analysis 236
example functions

factors 538

primes 538
stats.med 447

examples
bladder cancer study 306
classification tree from kyphosis 

data 6
complex Cox models 302
factor analysis of test scores data 

68
lung cancer study 289
ovarian cancer study 275
principal components analysis 

of exam scores 40
principal components analysis 

of states data 47
spectral analysis of sunspots 208
Stanford heart transplant study 

302
expected survival

Bonsel estimator 416
conditional estimate 416
Ederer’s method 416
Hakulinen’s method 416

exp function 509
explanatory variables 188
exponential function 509
exponents 504

F
factanal function 68

choosing rotation 75, 77
maximum likelihood 71
return object 68
valid rotation arguments 77

factor analysis
algorithm 66
communalities 67, 70
compared with principal 

components analysis 66
correlation matrix 72
covariance matrix 72
estimating the model 68
loadings 66, 70
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maximum likelihood estimate 
68, 71

plotting 78, 79
prediction 80
rotations 75
scores 80
simple structure 75
summary of return object 69
uniquenesses 67, 70

factor covariance matrix 67
factor loadings 66, 70

plotting 78
rotated 75

failure time data
analysis of 236

fanny function 108, 126, 127, 147
fast Fourier transform 206, 531
fast Fourier transform (FFT) 206
fft function 531
filters 223

autoregressive 215
autoregressive (AR) 214
causal 214
cleaners 224
convolution 214

examples of 215
finite-impulse response (FIR) 

214
infinite-impulse response (IIR) 

214
Kalman 191, 192, 195
least squares low-pass 219
linear time-invariant 214
low-pass 218
moving average (MA) 214
non-causal 214
recursive 214, 215
robust 223, 230

finite-impulse response (FIR) filters 
214

first-difference operator 187
floor function 505
Fourier series 203
Fourier transform 203

definition 531

definition of inverse 532
discrete (DFT) 206
fast 206, 531
fast (FFT) 206
Fourier coefficients 533
Fourier frequency 531
inverse 205, 532
negative frequencies 533
Nyquist critical frequency 533
positive frequencies 533
unnormalized 533
zero frequency 533

functions
mathematical, listed 509

fuzzy analysis 123

G
gamma function 509
Gaussian errors 165
Gaussian maximum likelihood 190, 

191, 193
generalized M-estimates 225
geostatistical data 155
GM estimates 225
goodness-of-split criterion (tree 

models) 28
greatest-integer function 505
group.size argument 481, 482
group average method 131
group component 481

H
harmonic motion 529

spring constant 529
hazard function

algorithm 250
cumulative 250

hazard rate 250
hclust function 145
hexagonal binning 155–159
hexbin function 155–??
hexbin function 154
hexbin function ??–158
548



Index
hierarchical algorithms 108
hist.tree function 29
Huber psi-function 227
hyperbolic trigonometric functions 

509

I
identify function 158, 458

offset argument 158
tree models 27

identifying plotted points 458
identity matrix 512
imaginary numbers 508
Im function 508
infinite-impulse response (IIR) 

filters 214
infinitesimal jackknife 337
initial value problems 526

definition 526
harmonic motion 529
initial conditions 526
projectile motion 527
second-order differential 

equations 529
solving one-dimensional 527
solving two-dimensional 529
stiff problems 530
unstable problems 530

innovations process 186, 189
integer divide 504
integrate function 520, 528
integration 520
interp function 522
interpolation

cubic splines 524
linear 522

interval censored data 381
interval-scaled variables 110
inverse Fourier transform 205
inverse hyperbolic trigonometric 

functions 509
inverse trigonometric functions 509
invertibility 192
IVP

 See initial value problems
ivp.ab function 526

aux argument 528
derivatives argument 526
extracting the solution 527
final.point argument 527
initial argument 526
limitations 530

J
jack.after.boot function 481
jackknife function 479
jackknife resampling 481
jackknifing functions 477
jackstats function 479

K
Kaiser’s criterion for selecting 

principal components 54, 56
Kalman filter 191, 192, 195
Kaplan-Meier estimate, generalized 

381
kaplanMeier function 388
Kaplan Meier survival curve

plotting 388
Kaplan-Meier survival curve

algorithm 250
kronecker function 513
Kronecker products 513
kyphosis data set 6

L
labclust function 145
lag 520
lag.plot function 167
lagged scatter plots 167
lapply function 480
leakage of power 205, 212
least squares approximation method 

219
least squares low-pass filters 219
Levinson-Durbin recursion 178
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vector form 181
lgamma function 509
limits.bca function 481
linear combinations

standardized 38
linear equations

Choleski decomposition 515
eigenvalues 519
inverting 514
QR decomposition 516–517
singular value decomposition 

518
solving 514–??
triangular systems 515

linear filters 214
linear interpolation 522
linear prediction modeling 176
loadings function 44, 45, 70
loadings see factor loadings
Loadings see principal component 

loadings
log10 function 509
logarithms 509, 510
log function 509, 510
log-likelihood function, penalized 

version of 193
log-likelihood measure 189
log rank test 264
long memory time series modeling 

199
low-pass filters 218
low-pass filter transfer function 219
lung cancer study 289
lynx data set 213

M
map function 158
maps library 158
Markov process 175
mathematics

elementary functions 509
matrices

arithmetic 506
creating 505

determinants 513
diagonal 512
differences on 521
distance 145
identity 512
Kronecker products 513
multiplication 507
trace 512
transpose 511

matrices see also linear equation
maximum likelihood estimate

factor analysis 68, 71
mclass function 145
mclust function 144
mclust function 145
mean squared error 171
medoids 117
Meeker, W.Q. 237, 379
missing data

tree models 14
missing values 191, 192

effect on computations 245
global action 245
report of action 245
warning 245

model assumptions 165
modeling

linear prediction 176
models

ARIMA 186, 187
forecasting with 195
fractionally differenced 200
identifying and fitting 189
modeling effects of trading 

days 197
predicted and filtered 

values for 196
simulating fractionally 

differenced 201
simulating processes 196
with regression variables 

188
ARMA 186
autoregressive 176
invertibility of 192
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missing values 191
seasonal 187
signal plus noise 196
stationarity of 192

Mod function 508
modified sandwich estimator 336
modulo operator 504, 535
modulus

complex numbers 508
mona function 108, 136, 139, 147
moving average (MA) filters 214
moving-average coefficients 186
moving average process 170, 185, 

186
mreloc function 145
multiple events 298
multiplication 504
multiplicative ARIMA models 191

N
na.action function 14
na.tree.replace function 14
n component 481
nearest crisp clustering 127
Nelson’s cumulative hazard estimate

algorithm 255
nominal variables 112
non-stationary process 175, 187

O
observed component 481
offset argument 158
one-step prediction residuals 194
- operator

arithmetic 504
operators

artithmetic 504
dot product 507
integer divide 504
modulo operator 504
precedence hierarchy 504
sequence 505
vectors and matrices 506, 507

outliers 222
additive (AO) 223
general replacement (RO) 222

ovarian cancer study 275
ozone data 158

P
padding 206
pam function 108, 116, 121, 147
parametric family 393
par function 158
par function 158
partial autocorrelation function 179, 

189
partial correlation coefficients 184
partitioning algorithms 108
path.tree function 27
pclust function 145
periodogram 205, 206

smoothing 206
person years 417
phase 207
plot.hexbin function 156
plot.hexbin function 156
plot.kaplanMeier function 389

as low-level graphics function 
390

plot function 10
plot of hexbin object 156
plots

autocorrelation function 173
basic time series 166
biplots 60, 61, 79
cusum charts 460
identifying points 458
lagged scatter 167
screeplots 54
shewhart charts 450

plot styles
hexbin objects 157

plotting
factor loadings 78
Kaplan Meier survival curve 

388
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principal components 60, 61
principal components loadings 

45
p-norm of vectors 511
polar representation

complex number 508
polynomial equations

finding roots of 185
polyroot function 185
portmanteau test statistic 195
power leakage 205, 212
power spectrum 206
precedence hierarchy

arithmetic 504
precision

arithmetic operations 540
predicted values 196

tree models 13
predict function

factor analysis 80
principal components 58

predict function
tree models 13, 16

prediction error decomposition 189
prediction errors 190, 191
prediction variance 180
prime numbers 538
principal component loadings 39, 44

plotting 45
principal components

calculating 40
summary 42

principal components analysis
90% selection criterion 54
Cattell’s selection criterion 54
compared with factor analysis 

66
correlation matrix 47, 50
covariance matrix 50
ellipsoid covariance estimate 53
excluding components 54
interpreting 44, 45
Kaiser’s selection criterion 54, 

56
loadings 39

plots 54, 60, 61
prediction 58
scaling data 47
scores 58
selection criteria 54
standardized linear 

combinations 38
transformations 38
weighted covariance estimation 

53
principal factor estimate 68
princomp function 40

return object 42
scaled data 47

probabilities 412
probability functions 534
prune.tree function 17
pruning trees 17
pseudo-random number generator 

534
.Random.seed vector 536
congruential 535
period of 535
set.seed function 536
Tausworthe 535

purely random process 169

Q
qcc function 446

arguments listed 447
qcc objects 446
QR decomposition 516–517
qr function 516–517
quakes.bay data 155
quakes.bay data frame 155
quality control charts 444

control data 447
cusum charts 460
group statistics 447
Shewhart charts 450
types listed 444, 445
within-group standard deviation 

447
quantile functions 534
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quantiles 412
quasi-Newton optimizer 192

R
random number generator.  See 

pseudo-random number generator
random numbers 534

.Random.seed vector 536
set.seed function 536

random walk 175
ratio-scaled variables 111
rayplot function 158
rbind function 505
recursion 175

Levinson-Durbin 178
Whittle’s 181

recursive filters 214, 215
recursive partitioning 2
reference value (cusum charts) 460
reflection coefficients 179
Re function 508
regression trees

browsing nodes 23, 26
determining splits 27
editing 31
examples 4
nodes 25
pruning 17
regression rules 2
removing subtrees 23
selecting subtrees 23, 24
shrinking 19
summarizing trees 11
see also tree-based models

regression variables 188
relative risk 276, 280
reliability analysis 236
replicates component 481
resample objects 479
resampling techniques 476
residual deviance 10
residuals

tree models 13
robust filters 223, 230

robust methods 165, 222
robust smoothers 222, 223

two-filter 230
rotations

factor analysis 75
oblimin 75
types listed 77
varimax 75

rug.tree function 35
running averages 206
Ruspini data 115
ruspini data 115

S
samp.boot.bal function 479
samp.boot.mc function 479
samp.permute function 480
sampler function 479
sandwich estimator 334
save.indices function 481
scaling data 47
scatter plots

lagged 167
scores

principal components 58
screeplot function 56
screeplots 54

creating 54
seasonal models 187
seed.end component 481
seed.start component 481
seed argument 482
seed function 479
select.tree function 24
sequence operator 505
set.seed function 536
shewhart 453
Shewhart charts 450

control limits 451
new data 453
reading 451
run length 451
summary statistic 456
target value 451
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violating points 457
shewhart function 450, 456

arguments listed 451
returned objects 453, 465

shrink.tree function 17, 20
shrinking trees 17, 19
signal plus noise model 196
signal processing 531
signals

analysis of
frequency methods 165
time domain methods 165

complex demodulation 218
linear filters for 214

convolution 214
least squares low-pass 219
recursive 215

plots for
basic 166
lagged scatter 167

robust methods for 222
alternative robust smoother 

231
generalized M-estimates for 

autoregression 225
robust filtering 228
two-filter robust smoother 

230
spectral analysis of 203

spectrum estimation
autoregressive 211
from periodogram 205

tapering 212
silhouette plot 117
simple matching coefficient 112
sin function 509
single linkage method 131
singular value decomposition 518
sinh function 509
SLC see standardized linear 

combinations
smoothers

alternative robust 231
cleaners 224
definition of 223

periodogram 206
robust 222, 223

snip.tree function 23
solve function 514
spatial data 155
spec.ar function 212
spec.pgram function 205, 207, 208
spec.plot function 212
spec.taper function 213
spectral analysis

autocovariance sequence 204
cross-spectrum 207
detrending and de-meaning 205
Fourier series 203
padding 206
periodogram 205, 206
phase 207
spectral density 204
spectral density estimate 207
spectral representation 204
spectrum estimation

autoregressive 211
from periodogram 205

squared coherency 208
tapering 205, 212

spectral density 204
spectral density estimate 207
spectrum estimation

autoregressive 211
from periodogram 205

spectrum function 212
spline function 524
splines

cubic 524
split cosine bell taper 213
sqrt function 509
squared coherency 208
standard error 179
standardized linear combinations 38
standardized residuals 194
state transition matrix 229
stationarity 192
stationary process 175
stationary time series 168
statistic argument 481, 482
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statistic function 479
stats.med function

created 447
stats.xbar function

qcc uses 447
step functions 525
stepfun function 525
subtraction 504
subtree function 145
summary function 156
summary function

principal components 42
summary function

tree models 10
survival

cohort expected 419
individual expected 418

survival analysis 378
censored observations 250, 252
correlated observations 308
discontinuous intervals of risk 

299
examples 252, 275, 289
gaussian distribution for 

parametric 368
hazard function 250
IRLS formulation for 

parametric 363
least extreme value distribution 

for parametric 369
logistic distribution for 

parametric 370
log likelihood for parametric 

363, 364
multiple events 298
other distributions for 

parametric 371
overview 236
parametric distributions 368
parametric regression 348
person years 417
survival curves 250, 273
survival distributions 264, 267
survival function 250
tests 264

time-dependent covariates 298
time-dependent strata 300
using the counting process 298

survival curve
confidence intervals 258
Cox model 273
Cox models 343
Kaplan-Meier estimate 250, 

252, 267
Nelson’s cumulative hazard 255

survival curves 416
survival data 378
survival function

algorithm 250
survival time

mean 262
median 262

symmetric binary variables 112

T
tan function 509
tanh function 509
tapering 205, 212

data taper 213
split cosine bell taper 213

tapply function 159
tapply function 158
Tausworthe random number 

generator 535
testscores data set 68

created 40
t function 511
Therneau, Terry 379
tile.tree function 33
time-dependent covariates 298
time-dependent strata 300
time series

analysis of
frequency methods 165
time domain methods 165

autoregression estimation
via Yule-Walker equations 

181
with Burg’s algorithm 184
555



Index
autoregressive process 175
long memory modeling 199
multivariate

autocorrelation function in 
171

autocovariance function in 
171

autoregression 179
plots for

basic 166
lagged scatter 167

stationary 168
univariate

ARIMA models 186, 187, 
193

forecasting with 195
fractionally differenced 

200
identifying and fitting 

189
modeling effects of 

trading days 197
predicted and filtered 

values for 196
simulating fractionally 

differenced 201
simulating processes 

196
with regression 

variables 188
ARMA models 186
autocorrelation function in 

168
autocovariance function in 

168
autoregression 175
seasonal models 187

Toeplitz matrix 178
trace argument 480
trading days 197
tree-based models 8

see also classification trees
advantages 2
browsing nodes 23, 26
classification rules 2

determining splits 27
displaying 10
editing 31
factor response 6
finding paths 27
graphical interaction 23
identifying nodes 27
importance of subtrees 17
missing data 14
nodes 25
numeric response 4
partitioning 2
prediction 13
pruning 17
regression rules 2
removing subtrees 23
selecting subtrees 23, 24
shrinking 19
see also regression trees

trigonometric functions 509
Tukey’s bisquare psi-function 227
two-filter robust smoothers 230

U
uniform distribution

random number generation 
534, 535

univariate time series 168

V
variability

minimizing 222
variables of mixed types 113
vecnorm function 511
vectors

arithmetic 506
computing p-norm 511
creating 505
dot product 507

W
Ward’s method 141
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weighted least squares estimate 226
white noise 169, 175, 180, 186
Whittle’s recursion 181
Wilcoxon test

Peto-Peto modification 264

X
xy2cell function 158

Y
Yule-Walker equations 176

sample-based 178
vector form 180

Yule-Walker estimates 222
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