
TIBCO Spotfire S+® 8.1
Guide to Statistics, Volume 1

November 2008

TIBCO Software Inc.

IMPORTANT INFORMATION

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER
TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON
FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT
LICENSED TO BE USED OR ACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS
SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY
EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF
THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS
DISPLAYED DURING DOWNLOAD OR INSTALLATION OF
THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SPOTFIRE S+® INSTALLATION AND ADMINISTRATION
GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO THOSE
TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to
U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO Software Inc., TIBCO, Spotfire, TIBCO Spotfire S+,
Insightful, the Insightful logo, the tagline "the Knowledge to Act,"
Insightful Miner, S+, S-PLUS, TIBCO Spotfire Axum,
S+ArrayAnalyzer, S+EnvironmentalStats, S+FinMetrics, S+NuOpt,
S+SeqTrial, S+SpatialStats, S+Wavelets, S-PLUS Graphlets,
Graphlet, Spotfire S+ FlexBayes, Spotfire S+ Resample, TIBCO
Spotfire Miner, TIBCO Spotfire S+ Server, and TIBCO Spotfire
Clinical Graphics are either registered trademarks or trademarks of
TIBCO Software Inc. and/or subsidiaries of TIBCO Software Inc. in
the United States and/or other countries. All other product and
company names and marks mentioned in this document are the
property of their respective owners and are mentioned for
ii

identification purposes only. This software may be available on
multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time.
Please see the readme.txt file for the availability of this software
version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
DOCUMENT COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT.
TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS
AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY
TIME.

Copyright © 1996-2008 TIBCO Software Inc. ALL RIGHTS
RESERVED. THE CONTENTS OF THIS DOCUMENT MAY
BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH
ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT
LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

TIBCO Software Inc. Confidential Information

Reference The correct bibliographic reference for this document is as follows:

TIBCO Spotfire S+® 8.1 Guide to Stats Volume 1 TIBCO Software Inc.

Technical
Support

For technical support, please visit http://spotfire.tibco.com/support
and register for a support account.
iii

ACKNOWLEDGMENTS

TIBCO Spotfire S+ would not exist without the pioneering research
of the Bell Labs S team at AT&T (now Lucent Technologies): John
Chambers, Richard A. Becker (now at AT&T Laboratories), Allan R.
Wilks (now at AT&T Laboratories), Duncan Temple Lang, and their
colleagues in the statistics research departments at Lucent: William S.
Cleveland, Trevor Hastie (now at Stanford University), Linda Clark,
Anne Freeny, Eric Grosse, David James, José Pinheiro, Daryl
Pregibon, and Ming Shyu.

TIBCO Software Inc. thanks the following individuals for their
contributions to this and earlier releases of TIBCO Spotfire S+:
Douglas M. Bates, Leo Breiman, Dan Carr, Steve Dubnoff, Don
Edwards, Jerome Friedman, Kevin Goodman, Perry Haaland, David
Hardesty, Frank Harrell, Richard Heiberger, Mia Hubert, Richard
Jones, Jennifer Lasecki, W.Q. Meeker, Adrian Raftery, Brian Ripley,
Peter Rousseeuw, J.D. Spurrier, Anja Struyf, Terry Therneau, Rob
Tibshirani, Katrien Van Driessen, William Venables, and Judy Zeh.
iv

TIBCO SPOTFIRE S+ BOOKS

The TIBCO Spotfire S+® documentation includes books to address
your focus and knowledge level. Review the following table to help
you choose the Spotfire S+ book that meets your needs. These books
are available in PDF format in the following locations:

• In your Spotfire S+ installation directory (SHOME\help on
Windows, SHOME/doc on UNIX/Linux).

• In the Spotfire S+ Workbench, from the Help � Spotfire S+
Manuals menu item.

• In Microsoft® Windows®, in the Spotfire S+ GUI, from the
Help � Online Manuals menu item.

Spotfire S+ documentation.

Information you need if you... See the...

Are new to the S language and the Spotfire S+
GUI, and you want an introduction to importing
data, producing simple graphs, applying statistical

models, and viewing data in Microsoft Excel
®

.

Getting Started
 Guide

Are a new Spotfire S+ user and need how to use
Spotfire S+, primarily through the GUI.

User’s Guide

Are familiar with the S language and Spotfire S+,
and you want to use the Spotfire S+ plug-in, or
customization, of the Eclipse Integrated
Development Environment (IDE).

Spotfire S+ Workbench
User’s Guide

Have used the S language and Spotfire S+, and
you want to know how to write, debug, and
program functions from the Commands window.

Programmer’s Guide

Are familiar with the S language and Spotfire S+,
and you want to extend its functionality in your
own application or within Spotfire S+.

Application
Developer’s Guide
v

Are familiar with the S language and Spotfire S+,
and you are looking for information about creating
or editing graphics, either from a Commands
window or the Windows GUI, or using Spotfire
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+,
and you want to use the Big Data library to import
and manipulate very large data sets.

Big Data
User’s Guide

Want to download or create Spotfire S+ packages
for submission to the Comprehensive S-PLUS
Archive Network (CSAN) site, and need to know
the steps.

Guide to Packages

Are looking for categorized information about
individual Spotfire S+ functions.

Function Guide

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 1 includes
information on specifying models in Spotfire S+,
on probability, on estimation and inference, on
regression and smoothing, and on analysis of
variance.

Guide to Statistics,
Vol. 1

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 2 includes
information on multivariate techniques, time series
analysis, survival analysis, resampling techniques,
and mathematical computing in Spotfire S+.

Guide to Statistics,
Vol. 2

Spotfire S+ documentation. (Continued)

Information you need if you... See the...
vi

GUIDE TO STATISTICS CONTENTS OVERVIEW

Volume 1
Introduction

Chapter 1 Introduction to Statistical Analysis
 in Spotfire S+ 1

Chapter 2 Specifying Models in Spotfire S+ 27

Chapter 3 Probability 49

Chapter 4 Descriptive Statistics 93

Estimation and
Inference

Chapter 5 Statistical Inference for One- and
 Two-Sample Problems 117

Chapter 6 Goodness of Fit Tests 159

Chapter 7 Statistical Inference for Counts and
 Proportions 181

Chapter 8 Cross-Classified Data and Contingency
 Tables 203

Chapter 9 Power and Sample Size 221

Regression and
Smoothing

Chapter 10 Regression and Smoothing for
 Continuous Response Data 235

Chapter 11 Robust Regression 331

Chapter 12 Generalizing the Linear Model 379

Chapter 13 Local Regression Models 433

Chapter 14 Linear and Nonlinear Mixed-Effects
 Models 461

Chapter 15 Nonlinear Models 525
v

Contents Overview
Analysis of
Variance

Chapter 16 Designed Experiments and Analysis
 of Variance 567

Chapter 17 Further Topics in Analysis of Variance 617

Chapter 18 Multiple Comparisons 673

Index, Volume 1 699

Volume 2
Multivariate
Techniques

Chapter 19 Principal Components Analysis 37

Chapter 20 Classification and Regression Trees 1

Chapter 21 Factor Analysis 65

Chapter 22 Discriminant Analysis 83

Chapter 23 Cluster Analysis 107

Chapter 24 Hexagonal Binning 153

Chapter 25 Analyzing Time Series and Signals 163

Survival
Analysis

Chapter 26 Overview of Survival Analysis 235

Chapter 27 Estimating Survival 249

Chapter 28 The Cox Proportional Hazards Model 271

Chapter 29 Parametric Regression in Survival
 Models 347

Chapter 30 Life Testing 377

Chapter 31 Expected Survival 415
vi

Contents Overview
Other Topics Chapter 32 Quality Control Charts 443

Chapter 33 Resampling Techniques: Bootstrap
 and Jackknife 475

Chapter 34 Mathematical Computing in Spotfire S+ 501

Index, Volume 2 543
vii

Contents Overview
viii

Spotfire S+ Books iv

Technical Support vi

Guide to Statistics Contents Overview vii

Preface xix

Chapter 1 Introduction to Statistical Analysis
 in Spotfire S+ 1

Introduction 2

Developing Statistical Models 3

Data Used for Models 4

Statistical Models in Spotfire S+ 8

Example of Data Analysis 14

Chapter 2 Specifying Models in Spotfire S+ 27

Introduction 28

Basic Formulas 29

Interactions 32

The Period Operator 36

Combining Formulas with Fitting Procedures 37

Contrasts: The Coding of Factors 39

Useful Functions for Model Fitting 44

Optional Arguments to Model-Fitting Functions 46

CONTENTS
xi

Contents
References 48

Chapter 3 Probability 49

Introduction 51

Important Concepts 52

Spotfire S+ Probability Functions 56

Common Probability Distributions for Continuous
Variables 60

Common Probability Distributions for Discrete
Variables 69

Other Continuous Distribution Functions in
Spotfire S+ 76

Other Discrete Distribution Functions in Spotfire S+ 84

Examples: Random Number Generation 86

References 91

Chapter 4 Descriptive Statistics 93

Introduction 94

Summary Statistics 95

Measuring Error in Summary Statistics 106

Robust Measures of Location and Scale 110

References 115

Chapter 5 Statistical Inference for One- and
 Two-Sample Problems 117

Introduction 118

Background 123

One Sample: Distribution Shape, Location, and Scale 129

Two Samples: Distribution Shapes, Locations,
 and Scales 136

Two Paired Samples 143
xii

Contents
Correlation 149

References 158

Chapter 6 Goodness of Fit Tests 159

Introduction 160

Cumulative Distribution Functions 161

The Chi-Square Goodness-of-Fit Test 165

The Kolmogorov-Smirnov Goodness-of-Fit Test 168

The Shapiro-Wilk Test for Normality 172

One-Sample Tests 174

Two-Sample Tests 178

References 180

Chapter 7 Statistical Inference for Counts and
 Proportions 181

Introduction 182

Proportion Parameter for One Sample 184

Proportion Parameters for Two Samples 186

Proportion Parameters for Three or More Samples 189

Contingency Tables and Tests for Independence 192

References 201

Chapter 8 Cross-Classified Data and Contingency
 Tables 203

Introduction 204

Choosing Suitable Data Sets 209

Cross-Tabulating Continuous Data 213

Cross-Classifying Subsets of Data Frames 216

Manipulating and Analyzing Cross-Classified Data 219
xiii

Contents
Chapter 9 Power and Sample Size 221

Introduction 222

Power and Sample Size Theory 223

Normally Distributed Data 224

Binomial Data 229

References 234

Chapter 10 Regression and Smoothing for
 Continuous Response Data 235

Introduction 237

Simple Least-Squares Regression 239

Multiple Regression 247

Adding and Dropping Terms from a Linear Model 251

Choosing the Best Model—Stepwise Selection 257

Updating Models 260

Weighted Regression 261

Prediction with the Model 270

Confidence Intervals 272

Polynomial Regression 275

Generalized Least Squares Regression 280

Smoothing 290

Additive Models 301

More on Nonparametric Regression 307

References 328

Chapter 11 Robust Regression 331

Introduction 333

Overview of the Robust MM Regression Method 334

Computing Robust Fits 337

Visualizing and Summarizing Robust Fits 341
xiv

Contents
Comparing Least Squares and Robust Fits 345

Robust Model Selection 349

Controlling Options for Robust Regression 353

Theoretical Details 359

Other Robust Regression Techniques 367

References 378

Chapter 12 Generalizing the Linear Model 379

Introduction 380

Generalized Linear Models 381

Generalized Additive Models 385

Logistic Regression 387

Probit Regression 404

Poisson Regression 407

Quasi-Likelihood Estimation 415

Residuals 418

Prediction from the Model 420

Advanced Topics 424

References 432

Chapter 13 Local Regression Models 433

Introduction 434

Fitting a Simple Model 435

Diagnostics: Evaluating the Fit 436

Exploring Data with Multiple Predictors 439

Fitting a Multivariate Loess Model 446

Looking at the Fitted Model 452

Improving the Model 455
xv

Contents
Chapter 14 Linear and Nonlinear Mixed-Effects
 Models 461

Introduction 463

Representing Grouped Data Sets 465

Fitting Models Using the lme Function 479

Manipulating lme Objects 483

Fitting Models Using the nlme Function 493

Manipulating nlme Objects 497

Advanced Model Fitting 505

References 523

Chapter 15 Nonlinear Models 525

Introduction 526

Optimization Functions 527

Examples of Nonlinear Models 539

Inference for Nonlinear Models 544

References 565

Chapter 16 Designed Experiments and Analysis
 of Variance 567

Introduction 568

Experiments with One Factor 570

The Unreplicated Two-Way Layout 578

The Two-Way Layout with Replicates 591

Many Factors at Two Levels: 2k Designs 602

References 615

Chapter 17 Further Topics in Analysis of Variance 617

Introduction 618

Model Coefficients and Contrasts 619
xvi

Contents
Summarizing ANOVA Results 626

Multivariate Analysis of Variance 654

Split-Plot Designs 656

Repeated-Measures Designs 658

Rank Tests for One-Way and Two-Way Layouts 662

Variance Components Models 664

Appendix: Type I Estimable Functions 668

References 670

Chapter 18 Multiple Comparisons 673

Overview 674

Advanced Applications 684

Capabilities and Limits 694

References 696

Index 699
xvii

Contents
xviii

Preface
PREFACE

Introduction Welcome to the Spotfire S+ Guide to Statistics, Volume 1.

This book is designed as a reference tool for TIBCO Spotfire S+ users
who want to use the powerful statistical techniques in Spotfire S+.
The Guide to Statistics, Volume 1 covers a wide range of statistical and
mathematical modeling. No single user is likely to tap all of these
resources, since advanced topics such as survival analysis and time
series are complete fields of study in themselves.

All examples in this guide are run using input through the
Commands window, which is the traditional method of accessing the
power of Spotfire S+. Many of the functions can also be run through
the Statistics dialogs available in the graphical user interface. We
hope that you find this book a valuable aid for exploring both the
theory and practice of statistical modeling.

Online Version The Guide to Statistics, Volume 1 is also available online:

• In Windows, through the Online Manuals entry of the main
Help menu, or in the /help/statman1.pdf file of your
Spotfire S+ home directory.

• In Solaris or Linux, in the /doc/statman1.pdf file of your
home directory.

You can view it using an Adobe Acrobat Reader, which is required
for reading any of the Spotfire S+manuals.

The online version of the Guide to Statistics, Volume 1 has particular
advantages over print. For example, you can copy and paste example
Spotfire S+ code into the Commands window and run it without
having to type the function calls explicitly. (When doing this, be
careful not to paste the greater-than “>” prompt character, and note
that distinct colors differentiate between input and output in the
online manual.)

A second advantage to the online guide is that you can perform full-
text searches. To find information on a certain function, first search,
and then browse through all occurrences of the function’s name in the
guide. A third advantage is in the contents and index entries: all
entries are links; click an entry to go to the selected page.
xix

Chapter
Evolution of
SPOTFIRE S+

Spotfire S+ has evolved from its beginnings as a research tool. The
contents of this guide have grown, and will continue to grow, as the
Spotfire S+ language is improved and expanded. This means that
some examples in the text might not exactly match the formatting of
the output you obtain; however, the underlying theory and
computations are as described here.

In addition to the range of functionality covered in this guide, there
are additional modules, libraries, and user-written functions available
from a number of sources. Refer to the User’s Guide for more details.

Companion
Guides

The Guide to Statistics, Volume 2, together with Guide to Statistics,
Volume 1, is a companion volume to the User’s Guide , the Programmer’s
Guide, and the Application Developer’s Guide. These manuals, as well as
the rest of the manual set, are available in electronic form. For a

complete list of manuals, see the section Spotfire S+® Books in the
introductory material.

This volume covers the following topics:

• Overview of statistical modeling in Spotfire S+

• The Spotfire S+ statistical modeling framework

• Review of probability and descriptive statistics

• Statistical inference for one, two, and many sample problems,
both continuous and discrete

• Cross-classified data and contingency tables

• Power and sample size calculations

• Regression models

• Analysis of variance and multiple comparisons

The Guide to Statistics, Volume 2 covers tree models, multivariate
analysis techniques, cluster analysis, survival analysis, quality control
charts, resampling techniques, and mathematical computing.
xx

Introduction 2

Developing Statistical Models 3

Data Used for Models 4
Data Frame Objects 4
Continuous and Discrete Data 4
Summaries and Plots for Examining Data 5

Statistical Models in Spotfire S+ 8
The Unity of Models in Data Analysis 9

Example of Data Analysis 14
The Iterative Process of Model Building 14
Exploring the Data 15
Fitting the Model 18
Fitting an Alternative Model 24
Conclusions 25

INTRODUCTION TO
STATISTICAL ANALYSIS IN
SPOTFIRE S+ 1
1

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
INTRODUCTION

All statistical analysis has, at its heart, a model which attempts to
describe the structure or relationships in some objects or phenomena
on which measurements (the data) are taken. Estimation, hypothesis
testing, and inference, in general, are based on the data at hand and a
conjectured model which you may define implicitly or explicitly. You
specify many types of models in TIBCO Spotfire S+ using formulas,
which express the conjectured relationships between observed
variables in a natural way. The power of Spotfire S+ as a statistical
modeling language lies in its convenient and useful way of organizing
data, its wide variety of classical and modern modeling techniques,
and its way of specifying models.

The goal of this chapter is to give you a feel for data analysis in
Spotfire S+: examining the data, selecting a model, and displaying
and summarizing the fitted model.
2

Developing Statistical Models
DEVELOPING STATISTICAL MODELS

The process of developing a statistical model varies depending on
whether you follow a classical, hypothesis-driven approach
(confirmatory data analysis) or a more modern, data-driven approach
(exploratory data analysis). In many data analysis projects, both
approaches are frequently used. For example, in classical regression
analysis, you usually examine residuals using exploratory data
analytic methods for verifying whether underlying assumptions of the
model hold. The goal of either approach is a model which imitates, as
closely as possible, in as simple a way as possible, the properties of
the objects or phenomena being modeled. Creating a model usually
involves the following steps:

1. Determine the variables to observe. In a study involving a
classical modeling approach, these variables correspond to
the hypothesis being tested. For data-driven modeling, these
variables are the link to the phenomena being modeled.

2. Collect and record the data observations.

3. Study graphics and summaries of the collected data to
discover and remove mistakes and to reveal low-dimensional
relationships between variables.

4. Choose a model describing the important relationships seen
or hypothesized in the data.

5. Fit the model using the appropriate modeling technique.

6. Examine the fit using model summaries and diagnostic plots.

7. Repeat steps 4–6 until you are satisfied with the model.

There are a wide range of possible modeling techniques to choose
from when developing statistical models in Spotfire S+. Among these
are linear models (lm), analysis of variance models (aov), generalized
linear models (glm), generalized additive models (gam), local
regression models (loess), and tree-based models (tree).
3

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
DATA USED FOR MODELS

This section provides descriptions of the most common types of data
objects used when developing models in Spotfire S+. There are also
brief descriptions and examples of common Spotfire S+ functions
used for developing and displaying models.

Data Frame
Objects

Statistical models allow inferences to be made about objects by
modeling associated observational or experimental data, organized
by variables. A data frame is an object that represents a sequence of
observations on some chosen set of variables. Data frames are like
matrices, with variables as columns and observations as rows. They
allow computations where variables can act as separate objects and can
be referenced simply by naming them. This makes data frames very
useful in modeling.

Variables in data frames are generally of three forms:

• Numeric vectors

• Factors and ordered factors

• Numeric matrices

Continuous
and Discrete
Data

The type of data you have when developing a model is important for
deciding which modeling technique best suits your data. Continuous
data represent quantitative data having a continuous range of values.
Categorical data, by contrast, represent qualitative data and are
discrete, meaning they can assume only certain fixed numeric or
nonnumeric values.

In Spotfire S+, you represent categorical data with factors, which keep
track of the levels or different values contained in the data and the
level each data point corresponds to. For example, you might have a
factor gender in which every element assumed one of the two values
"male" and "female". You represent continuous data with numeric
objects. Numeric objects are vectors, matrices, or arrays of numbers.
Numbers can take the form of decimal numbers (such as 11, -2.32, or
14.955) and exponential numbers expressed in scientific notation
(such as .002 expressed as 2e-3).
4

Data Used for Models
A statistical model expresses a response variable as some function of a
set of one or more predictor variables. The type of model you select
depends on whether the response and predictor variables are
continuous (numeric) or categorical (factor). For example, the
classical regression problem has a continuous response and
continuous predictors, but the classical ANOVA problem has a
continuous response and categorical predictors.

Summaries
and Plots for
Examining
Data

Before you fit a model, you should examine the data. Plots provide
important information on mistakes, outliers, distributions, and
relationships between variables. Numerical summaries provide a
statistical synopsis of the data in a tabular format.

Among the most common functions to use for generating plots and
summaries are the following:

• summary: provides a synopsis of an object. The following
example displays a summary of the kyphosis data frame:

> summary(kyphosis)

 Kyphosis Age Number Start
 absent:64 Min.: 1.00 Min.: 2.000 Min.: 1.00
 present:17 1st Qu.: 26.00 1st Qu.: 3.000 1st Qu.: 9.00
 Median: 87.00 Median: 4.000 Median:13.00
 Mean: 83.65 Mean: 4.049 Mean:11.49
 3rd Qu.:130.00 3rd Qu.: 5.000 3rd Qu.:16.00
 Max.:206.00 Max.:10.000 Max.:18.00

• plot: a generic plotting function, plot produces different
kinds of plots depending on the data passed to it. In its most
common use, it produces a scatter plot of two numeric
objects.

• hist: creates histograms.

• qqnorm: creates quantile-quantile plots.

• pairs: creates, for multivariate data, a matrix of scatter plots
showing each variable plotted against each of the other
variables. To create the pairwise scatter plots for the data in
the matrix longley.x, use pairs as follows:

> pairs(longley.x)

The resulting plot appears as in Figure 1.1.
5

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
Figure 1.1: Pairwise scatter plots for longley.x.

GNP deflator

250 350 450 550

•

•• •

•
• ••

•
•

•
•

• •• •

•

• ••

•
••

••
•
•

•
••

••

150 250 350

•

• ••

•
••

••
•
•

•
••
• •

•

• ••

•
• •• •

•
•

•
• • • •

1950 1960

90
10

0
11

0

•

• • •

•
• • • •

•
•

•
• • • •

25
0

35
0

45
0

55
0

•
••
•

•
•
••

•
•

• •

•
•
•
•

GNP

•
• •

•

•
•
• •

•
•
• •

•
•

•
•

•
• •

•

•
•
••

•
•
••

•
•
•

•

•
• •

•

•
•

••
•
•

• •

•
•

•
•

•
• •

•

•
•

• •
•

•
• •

•
•

•
•

• •

•
•

•
••

•

• • •

•

••

•

•

• •

•
•

•
• •

•

• • •

•

• •

•

•

Unemployed

••

•
•

•
••

•

•••

•

••

•

•

••

•
•

•
• •

•

• • •

•

• •

•

•

20
0

30
0

40
0

• •

•
•

•
• •

•

• • •

•

• •

•

•

15
0

20
0

25
0

30
0

35
0

•
•
••

•

••
•

•
• •

• •••

•

•
•
• •

•

• •
•

•
• •

• • ••

•

•
•

••

•

••
•

•
••

••• •

•

Armed Forces

•
•
••

•

• •
•

•
• •

• • • •

•

•
•

• •

•

• •
•

•
• •

• • • •

•

• •
•
•

•
•
•
•
•

•
•

•
•
•
•
•

• •
•

•
•
•
•
•

•
•

•
•

•
•
•

•

••
•

•
•

•
•

•
•
•
•

•
•
•

•
•

••
•
•

•
•
•

•
•

•
•

•
•
•
•

•

Population

11
0

11
5

12
0

12
5

13
0

• •
•

•
•

•
•

•
•

•
•

•
•

•
•

•

90 100

19
50

19
55

19
60

•
•
•
•

•
•
•
•
•

•
•

•
•
•
•
•

•
•
•

•
•
•
•
•

•
•

•
•

•
•
•

•

200 300 400

•
•

•
•

•
•
•

•
•
•
•

•
•
•

•
•

•
•

•
•

•
•
•

•
•

•
•

•
•
•
•

•

110 120 130

•
•
•
•
•
•

•
•
•
•

•
•
•

•
•

•

Year
6

Data Used for Models
• coplot: provides a graphical look at cross-sectional
relationships, which enable you to assess potential interaction
effects. The following example shows the effect of the
interaction between C and E on values of NOx. The resulting
plots appear as in Figure 1.2.

> attach(ethanol)
> E.intervals <- co.intervals(E, 9, 0.25)
> coplot(NOx ~ C | E, given.values = E.intervals,
+ data = ethanol, panel = function(x,y) {
+ panel.smooth(x, y, span = 1, degree = 1)) }

Figure 1.2: Coplot of response and predictors.

•
•

••

••
•

• • • • •

•

8 10 14 18

1
2

3
4

•

•
• •

•
•

•••• •
•

•
•

•

••

•

•
•
••
•

•

•

8 10 14 18

•
••••

•

•

•

• •• •• •
•

•
•
••

•
••
• •• •

••
•

•• •
•

•
• •

•
•

•

1
2

3
4

••

•
• ••

•
•

•
•
•
•

1
2

3
4

•
• • •• ••••

•
• ••

8 10 14 18

•• • •
••
••• •• • •

0.6 0.8 1.0 1.2

C

N
O

x

Given : E
7

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
STATISTICAL MODELS IN SPOTFIRE S+

The development of statistical models is, in many ways, data
dependent. The choice of the modeling technique you use depends on
the type and structure of your data and what you want the model to
test or explain. A model may predict new responses, show general
trends, or uncover underlying phenomena. This section gives general
selection criteria to help you develop a statistical model.

The fitting procedure for each model is based on a unified modeling
paradigm in which:

• A data frame contains the data for the model.

• A formula object specifies the relationship between the
response and predictor variables.

• The formula and data frame are passed to the fitting function.

• The fitting function returns a fit object.

There is a relatively small number of functions to help you fit and
analyze statistical models in Spotfire S+.

• Fitting models:

• lm: linear (regression) models.

• aov and varcomp: analysis of variance models.

• glm: generalized linear models.

• gam: generalized additive models.

• loess: local regression models.

• tree: tree models.

• Extracting information from a fitted object:

• fitted: returns fitted values.

• coefficients or coef: returns the coefficients (if present).

• residuals or resid: returns the residuals.
8

Statistical Models in Spotfire S+
• summary: provides a synopsis of the fit.

• anova: for a single fit object, produces a table with rows
corresponding to each of the terms in the object, plus a
row for residuals. If two or more fit objects are used as
arguments, anova returns a table showing the tests for
differences between the models, sequentially, from first to
last.

• Plotting the fitted object:

• plot: plot a fitted object.

• qqnorm: produces a normal probability plot, frequently
used in analysis of residuals.

• coplot: provides a graphical look at cross-sectional
relationships for examining interaction effects.

• For minor modifications in a model, use the update function
(adding and deleting variables, transforming the response,
etc.).

• To compute the predicted response from the model, use the
predict function.

The Unity of
Models in Data
Analysis

Because there is usually more than one way to model your data, you
should learn which type(s) of model are best suited to various types of
response and predictor data. When deciding on a modeling
technique, it helps to ask: “What do I want the data to explain? What
hypothesis do I want to test? What am I trying to show?”

Some methods should or should not be used depending on whether
the response and predictors are continuous, factors, or a combination
of both. Table 1.1 organizes the methods by the type of data they can
handle.
9

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
Linear regression models a continuous response variable, y, as a
linear combination of predictor variables xj, for j = 1,...,p. For a single
predictor, the data fit by a linear model scatter about a straight line or
curve. A linear regression model has the mathematical form

,

where ε i, referred to, generally, as the error, is the difference between
the ith observation and the model. On average, for given values of the
predictors, you predict the response best with the following equation:

.

Analysis of variance models are also linear models, but all predictors
are categorical, which contrasts with the typically continuous
predictors of regression. For designed experiments, use analysis of
variance to estimate and test for effects due to the factor predictors.
For example, consider the catalyst data frame, which contains the
data below.

Table 1.1: Criteria for developing models.

Model Response Predictors

lm Continuous Both

aov Continuous Factors

glm Both Both

gam Both Both

loess Continuous Both

tree Both Both

yi β0 βjxij
j 1=

p

∑ ε i+ +=

y β0 βjxj
j 1=

p

∑+=
10

Statistical Models in Spotfire S+
> catalyst

 Temp Conc Cat Yield
1 160 20 A 60
2 180 20 A 72
3 160 40 A 54
4 180 40 A 68
5 160 20 B 52
6 180 20 B 83
7 160 40 B 45
8 180 40 B 80

Each of the predictor terms, Temp, Conc, and Cat, is a factor with two
possible levels, and the response term, Yield, contains numeric data.
Use analysis of variance to estimate and test for the effect of the
predictors on the response.

Linear models produce estimates with good statistical properties
when the relationships are, in fact, linear, and the errors are normally
distributed. In some cases, when the distribution of the response is
skewed, you can transform the response, using, for example, square
root, logarithm, or reciprocal transformations, and produce a better
fit. In other cases, you may need to include polynomial terms of the
predictors in the model. However, if linearity or normality does not
hold, or if the variance of the observations is not constant, and
transformations of the response and predictors do not help, you
should explore other techniques such as generalized linear models,
generalized additive models, or classification and regression trees.

Generalized linear models assume a transformation of the expected (or
average) response is a linear function of the predictors, and the
variance of the response is a function of the mean response:

.

Generalized linear models, fitted using the glm function, allow you to
model data with distributions including normal, binomial, Poisson,
gamma, and inverse normal, but still require a linear relationship in
the parameters.

η E y()() β0 βjxj
j 1=

p

∑+=

VAR y() φV μ()=
11

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
When the linear fit provided by glm does not produce a good fit, an
alternative is the generalized additive model, fit with the gam function.
In contrast to glm, gam allows you to fit nonlinear data-dependent
functions of the predictors. The mathematical form of a generalized
additive model is:

where the fj term represents functions to be estimated from the data.
The form of the model assumes a low-dimensional additive structure.
That is, the pieces represented by functions, fi, of each predictor
added together predict the response without interaction.

In the presence of interactions, if the response is continuous and the
errors about the fit are normally distributed, local regression (or loess)
models, allow you to fit a multivariate function which include
interaction relationships. The form of the model is:

where g represents the regression surface.

Tree-based models have gained in popularity because of their
flexibility in fitting all types of data. Tree models are generally used
for exploratory analysis. They allow you to study the structure of
data, creating nodes or clusters of data with similar characteristics.
The variance of the data within each node is relatively small, since the
characteristics of the contained data is similar. The following example
displays a tree-based model using the data frame car.test.frame:

> car.tree <- tree(Mileage ~ Weight, car.test.frame)
> plot(car.tree, type = "u")
> text(car.tree)
> title("Tree-based Model")

The resulting plot appears as in Figure 1.3.

η E y()() fj xj()
j 1=

p

∑=

yi g xi1 xi2 … xip, , ,() ε i+=
12

Statistical Models in Spotfire S+
Figure 1.3: A tree-based model for Mileage versus Weight.

|
Weight<2567.5

Weight<2280 Weight<3087.5

Weight<2747.5

Weight<2882.5

Weight<3637.5

Weight<3322.5

Weight<3197.5

34.00 28.89

25.62

23.33 24.11

20.60 20.40

22.00

18.67

Tree-based Model
13

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
EXAMPLE OF DATA ANALYSIS

The example that follows describes only one way of analyzing data
through the use of statistical modeling. There is no perfect cookbook
approach to building models, as different techniques do different
things, and not all of them use the same arguments when doing the
actual fitting.

The Iterative
Process of
Model Building

As discussed at the beginning of this chapter, there are some general
steps you can take when building a model:

1. Determine the variables to observe. In a study involving a
classical modeling approach, these variables correspond
directly to the hypothesis being tested. For data-driven
modeling, these variables are the link to the phenomena
being modeled.

2. Collect and record the data observations.

3. Study graphics and summaries of the collected data to
discover and remove mistakes and to reveal low-dimensional
relationships between variables.

4. Choose a model describing the important relationships seen
or hypothesized in the data.

5. Fit the model using the appropriate modeling technique.

6. Examine the fit through model summaries and diagnostic
plots.

7. Repeat steps 4–6 until you are satisfied with the model.

At any point in the modeling process, you may find that your choice
of model does not appropriately fit the data. In some cases, diagnostic
plots may give you clues to improve the fit. Sometimes you may need
to try transformed variables or entirely different variables. You may
need to try a different modeling technique that will, for example,
allow you to fit nonlinear relationships, interactions, or different error
structures. At times, all you need to do is remove outlying, influential
data, or fit the model robustly. A point to remember is that there is no
one answer on how to build good statistical models. By iteratively
fitting, plotting, testing, changing, and then refitting, you arrive at the
best model for your data.
14

Example of Data Analysis
Exploring the
Data

The following analysis uses the built-in data set auto.stats, which
contains a variety of data for car models between the years 1970-
1982, including price, miles per gallon, weight, and more. Suppose
we want to model the effect that Weight has on the gas mileage of a
car. The object, auto.stats, is not a data frame, so we start by
coercing it into a data frame object:

> auto.dat <- data.frame(auto.stats)

Attach the data frame to treat each variable as a separate object:

> attach(auto.dat)

Look at the distribution of the data by plotting a histogram of the two
variables, Weight and Miles.per.gallon. First, split the graphics
screen into two portions to display both graphs:

> par(mfrow = c(1, 2))

Plot the histograms:

> hist(Weight)
> hist(Miles.per.gallon)

The resulting histograms appear in Figure 1.4.

Subsetting (or subscripting) gives you the ability to look at only a
portion of the data. For example, type the command below to look at
only those cars with mileage greater than 34 miles per gallon.

> auto.dat[Miles.per.gallon > 34,]

Figure 1.4: Histograms of Weight and Miles.per.gallon.

2000 3000 4000 5000

0
5

1
0

1
5

Weight

10 20 30 40

0
5

1
0

2
0

Miles.per.gallon
15

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
 Price Miles.per.gallon Repair (1978)
 Datsun 210 4589 35 5
 Subaru 3798 35 5
Volk Rabbit(d) 5397 41 5

 Repair (1977) Headroom Rear.Seat Trunk Weight
 Datsun 210 5 2.0 23.5 8 2020
 Subaru 4 2.5 25.5 11 2050
Volk Rabbit(d) 4 3.0 25.5 15 2040
 Length Turning.Circle Displacement Gear.Ratio
 Datsun 210 165 32 85 3.70
 Subaru 164 36 97 3.81
Volk Rabbit(d) 155 35 90 3.78

Suppose you want to predict the gas mileage of a particular auto
based upon its weight. Create a scatter plot of Weight versus
Miles.per.gallon to examine the relationship between the variables.
First, reset the graphics window to display only one graph, and then
create the scatter plot:

> par(mfrow = c(1,1))
> plot(Weight, Miles.per.gallon)

The plot appears in Figure 1.5. The figure displays a curved scattering
of the data, which might suggest a nonlinear relationship. Create a
plot from a different perspective, giving gallons per mile (1/
Miles.per.gallon) as the vertical axis:

> plot(Weight, 1/Miles.per.gallon)

The resulting scatter plot appears in Figure 1.6.
16

Example of Data Analysis

Figure 1.5: Scatter plot of Weight versus Miles.per.gallon.

Figure 1.6: Scatter plot of Weight versus 1/Miles.per.gallon.

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •
•

•

•
•

••
•

•

•

•

•

•

•

•
•

• ••
•• •

•

•

•

•

•

•

•

•

•

•

•

Weight

M
ile

s.
pe

r.
ga

llo
n

2000 2500 3000 3500 4000 4500

15
20

25
30

35
40

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •

•

•

•
•

••
•

•

•

•

•

•

•

• •

• ••
•• •

•
•

•

•

•

•

•

•

•
•

•

Weight

1/
M

ile
s.

pe
r.g

al
lo

n

2000 2500 3000 3500 4000 4500

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08
17

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
Fitting the
Model

Gallons per mile is more linear with respect to weight, suggesting that
you can fit a linear model to Weight and 1/Miles.per.gallon. The
formula 1/Miles.per.gallon ~ Weight describes this model. Fit the
model by using the lm function, and name the fitted object fit1:

> fit1 <- lm(1/Miles.per.gallon ~ Weight)

As with any Spotfire S+ object, when you type the name, fit1,
Spotfire S+ prints the object. In this case, Spotfire S+ uses the specific
print method for lm objects:

> fit1

Call:
lm(formula = 1/Miles.per.gallon ~ Weight)

Coefficients:
 (Intercept) Weight
 0.007447302 1.419734e-05
Degrees of freedom: 74 total; 72 residual
Residual standard error: 0.006363808

Plot the regression line to see how well it fits the data. The resulting
line appears in Figure 1.7.

> abline(fit1)
18

Example of Data Analysis

Judging from Figure 1.7, the regression line does not fit well in the
upper range of Weight. Plot the residuals versus the fitted values to see
more clearly where the model does not fit well.

> plot(fitted(fit1), residuals(fit1))

The plot appears as in Figure 1.8.

Figure 1.7: Regression line of fit1.

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •

•

•

•
•

••
•

•

•

•

•

•

•

• •

• ••
•• •

•
•

•

•

•

•

•

•

•
•

•

Weight

1/
M

ile
s.

pe
r.

ga
llo

n

2000 2500 3000 3500 4000 4500

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08
19

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
Note that with the exception of two outliers in the lower right corner,
the residuals become more positive as the fitted values increase. You
can identify the outliers by typing the following command, then
interactively clicking on the outliers with your mouse:

> outliers <- identify(fitted(fit1), residuals(fit1),
+ n=2, labels = names(Weight))

To stop the interactive process, click on either the middle or right
mouse button. The resulting plot with the identified outliers appears
in Figure 1.9. The identify function allows you to interactively select
points on a plot. The labels argument and names function label the
points with their names in the fitted object. For more information on
the identify function, see the chapter Traditional Graphics in the
Guide to Graphics.

Figure 1.8: Plot of residuals for fit1.

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

• •

•
•

•
•

•

• •
•

•

•
••

•

•

• •
•

•
•

•

••

•
•

•
•

•

•
•

•

•

•

•

•••

••

•

•

•

•

•

•

•

•
•

•

fitted(fit1)

re
si

du
al

s(
fit

1)

0.04 0.05 0.06 0.07

-0
.0

2
-0

.0
1

0.
0

0.
01
20

Example of Data Analysis

The outliers in Figure 1.9 correspond to cars with better gas mileage
than other cars in the study with similar weights. You can remove the
outliers using the subset argument to lm.

> fit2 <- lm(1/Miles.per.gallon ~ Weight,
+ subset = -outliers)

Plot Weight versus 1/Miles.per.gallon with two regression lines:
one for the fit1 object and one for the fit2 object. Use the lty
graphics parameter to differentiate between the regression lines:

> plot(Weight, 1/Miles.per.gallon)
> abline(fit1, lty=2)
> abline(fit2)

The two lines appear with the data in Figure 1.10.

A plot of the residuals versus the fitted values shows a better fit. The
plot appears in Figure 1.11.

> plot(fitted(fit2), residuals(fit2))

Figure 1.9: Plot with labeled outliers.

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

• •

•
•

•
•

•

• •
•

•

•
••

•

•

• •
•

•
•

•

••

•
•

•
•

•

•
•

•

•

•

•

•••

••

•

•

•

•

•

•

•

•
•

•

fitted(fit1)

re
si

du
al

s(
fit

1)

0.04 0.05 0.06 0.07

-0
.0

2
-0

.0
1

0.
0

0.
01

Olds 98

Cad. Seville
21

Chapter 1 Introduction to Statistical Analysis in Spotfire S+

Figure 1.10: Regression lines of fit1 versus fit2.

Figure 1.11: Plot of residuals for fit2.

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •

•

•

•
•

••
•

•

•

•

•

•

•

• •

• ••
•• •

•
•

•

•

•

•

•

•

•
•

•

Weight

1/
M

ile
s.

pe
r.g

al
lo

n

2000 2500 3000 3500 4000 4500

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

• •

•

•

•
•

• •

•
•

•

•
•

•

• •

•
•

•

•

•
•

•

•

•

••

•

•
•

•

•

•

•

•

•

•

•

•
••

••

•

•

•

•

•

•

•

•
• •

fitted(fit2)

re
si

du
al

s(
fit

2)

0.03 0.04 0.05 0.06 0.07 0.08

-0
.0

10
0.

0
0.

00
5

0.
01

0
0.

01
5

22

Example of Data Analysis
To see a synopsis of the fit contained in fit2, use summary as follows:

> summary(fit2)

Call: lm(formula = 1/Miles.per.gallon ~ Weight,
subset = - outliers)
Residuals:
 Min 1Q Median 3Q Max
 -0.01152 -0.004257 -0.0008586 0.003686 0.01441

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) 0.0047 0.0026 1.8103 0.0745
 Weight 0.0000 0.0000 18.0625 0.0000

Residual standard error: 0.00549 on 70 degrees of freedom
Multiple R-squared: 0.8233
F-statistic: 326.3 on 1 and 70 degrees of freedom, the
p-value is 0
Correlation of Coefficients:
 (Intercept)
Weight -0.9686

The summary displays information on the spread of the residuals,
coefficients, standard errors, and tests of significance for each of the
variables in the model (which includes an intercept by default). In
addition, the summary displays overall regression statistics for the fit.
As expected, Weight is a very significant predictor of 1/
Miles.per.gallon. The amount of the variability of 1/
Miles.per.gallon explained by Weight is about 82%, and the
residual standard error is .0055, down about 14% from that of fit1.

To see the individual coefficients for fit2, use coef as follows:

> coef(fit2)

 (Intercept) Weight
 0.004713079 1.529348e-05
23

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
Fitting an
Alternative
Model

Now consider an alternative approach. Recall the plot in Figure 1.5,
which showed curvature in the scatter plot of Weight versus
Miles.per.gallon. This indicates that a straight line fit may be an
inappropriate model. You can fit a nonparametric nonlinear model to
the data using gam with a cubic spline smoother:

> fit3 <- gam(Miles.per.gallon ~ s(Weight))
> fit3

Call:
gam(formula = Miles.per.gallon ~ s(Weight))

Degrees of Freedom: 74 total; 69.00244 Residual
Residual Deviance: 704.7922

The plot of fit3 in Figure 1.12 is created as follows:

> plot(fit3, residuals = T, scale =
+ diff(range(Miles.per.gallon)))

Figure 1.12: Plot of additive model with smoothed spline term.

Weight

s(
W

ei
gh

t)

2000 2500 3000 3500 4000 4500

-1
0

-5
0

5
10

15
20

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •
•

•

•
•

••
•

•

•

•

•

•

•

•
•

• ••
•• •

•

•

•

•

•

•

•

•

•

•

•

24

Example of Data Analysis
The cubic spline smoother in the plot appears to give a good fit to the
data. You can check the fit with diagnostic plots of the residuals as we
did for the linear models. You should also compare the gam model
with a linear model using aov to produce a statistical test.

Use the predict function to make predictions from models. The
newdata argument to predict specifies a data frame containing the
values at which the predictions are required. If newdata is not
supplied, the predict function makes predictions at the data
originally supplied to fit the gam model, as in the following example:

> predict.fit3 <- predict(fit3)

Create a new object predict.high and print it to display cars with
predicted miles per gallon greater than 30:

> predict.high <- predict.fit3[predict.fit3 > 30]
> predict.high

 Ford Fiesta Honda Civic Plym Champ
 30.17946 30.49947 30.17946

Conclusions The previous example shows a few simple methods for taking data
and iteratively fitting models until the desired results are achieved.
The chapters that follow discuss in far greater detail the modeling
techniques mentioned in this section. Before proceeding further, it is
good to remember that:

• General formulas define the structure of models.

• Data used in model-fitting are generally in the form of data
frames.

• Different methods can be used on the same data.

• A variety of functions are available for diagnostic study of the
fitted models.

• The Spotfire S+ functions, like model-fitting in general, are
designed to be very flexible for users. Handling different
preferences and procedures in model-fitting are what make
Spotfire S+ very effective for data analysis.
25

Chapter 1 Introduction to Statistical Analysis in Spotfire S+
26

Introduction 28

Basic Formulas 29
Continuous Data 30
Categorical Data 30
General Formula Syntax 31

Interactions 32
Continuous Data 33
Categorical Data 33
Nesting 33
Interactions Between Continuous and Categorical

Variables 34

The Period Operator 36

Combining Formulas with Fitting Procedures 37
The data Argument 37
Composite Terms in Formulas 38

Contrasts: The Coding of Factors 39
Built-In Contrasts 39
Specifying Contrasts 41

Useful Functions for Model Fitting 44

Optional Arguments to Model-Fitting Functions 46

References 48

SPECIFYING MODELS IN
SPOTFIRE S+ 2
27

Chapter 2 Specifying Models in Spotfire S+
INTRODUCTION

Models are specified in TIBCO Spotfire S+ using formulas, which
express the conjectured relationships between observed variables in a
natural way. Formulas specify models for the wide variety of
modeling techniques available in Spotfire S+. You can use the same
formula to specify a model for linear regression (lm), analysis of
variance (aov), generalized linear modeling (glm), generalized
additive modeling (gam), local regression (loess), and tree-based
regression (tree).

For example, consider the following formula:

mpg ~ weight + displ

This formula can specify a least squares regression with mpg regressed
on two predictors, weight and displ, or a generalized additive model
with purely linear effects. You can also specify smoothed fits for
weight and displ in the generalized additive model as follows:

mpg ~ s(weight) + s(displ)

You can then compare the resulting fit with the purely linear fit to see
if some nonlinear structure must be built into the model.

Formulas provide the means for you to specify models for all
modeling techniques: parametric or nonparametric, classical or
modern. This chapter provides you with an introduction to the syntax
used for specifying statistical models. The chapters that follow make
use of this syntax in a wide variety of specific examples.
28

Basic Formulas
BASIC FORMULAS

A formula is a Spotfire S+ expression that specifies the form of a
model in terms of the variables involved. For example, to specify that
mpg is modeled as a linear model of the two predictors weight and
displ, use the following formula:

mpg ~ weight + displ

The tilde (~) character separates the response variable from the
explanatory variables. For something to be interpreted as a variable,
it must be one of the following:

• Numeric vector, for continuous data

• Factor or ordered factor, for categorical data

• Matrix

For each numeric vector in a model, Spotfire S+ fits one coefficient.
For each matrix, Spotfire S+ fits one coefficient for each column. For
factors, the equivalent of one coefficient is fit for each level of the
factor; see the section Contrasts: The Coding of Factors on page 39
for more details.

If your data set includes a character variable, you should convert it to
a factor before including it in a model formula. You can do this with
the factor function, as follows:

> test.char <- c(rep("Green",2), rep("Blue",2),
+ rep("Red",2))
> test.char
[1] "Green" "Green" "Blue" "Blue" "Red" "Red"

> data.class(test.char)
[1] "character"

> test.fac <- factor(test.char)
> test.fac
[1] Green Green Blue Blue Red Red
29

Chapter 2 Specifying Models in Spotfire S+
> data.class(test.fac)
[1] "factor"

> levels(test.fac)
[1] "Blue" "Green" "Red"

You can use any acceptable Spotfire S+ expression in place of a
variable, provided the expression evaluates to something
interpretable as one or more variables. Thus, the formula

log(mpg) ~ weight + poly(displ, 2)

specifies that the natural logarithm of mpg is modeled as a linear
function of weight and a quadratic polynomial of displ.

Continuous
Data

Each continuous variable you provide in a formula generates one
coefficient in the fitted model. Thus, the formula

mpg ~ weight + displ

fits the model

mpg = β0 + β1 weight + β2 displ + ε

Implicitly, a Spotfire S+ formula always includes an intercept term,
which is β0 in the above formula. You can, however, remove the
intercept by specifying the model with -1 as an explicit predictor:

mpg ~ -1 + weight + displ

Similarly, you can include an intercept by including +1 as an
explicitly predictor.

When you provide a numeric matrix as one term in a formula,
Spotfire S+ interprets each column of the matrix as a separate
variable in the model. Any names associated with the columns are
carried along as labels in the subsequent fits.

Categorical
Data

When you specify categorical variables (factors or ordered factors) as
predictors in formulas, the modeling functions fit the equivalent of a
coefficient for each level of the variable. For example, to model
salary as a linear function of age (continuous) and gender (factor),
specify the following formula:

salary ~ age + gender
30

Basic Formulas
Different parameters are computed for the two levels of gender. This
is equivalent to fitting two dummy variables: one for males and one for
females. Thus, you need not create and specify dummy variables in
the model.

Although multiple dummy variables are returned, only one
additional parameter is computed for each factor variable in a
formula. This because the parameters are not independent of the
intercept term; more details are provided in the section Contrasts:
The Coding of Factors.

General
Formula
Syntax

Table 2.1, based on page 29 of Chambers and Hastie (1992),
summarizes the syntax of Spotfire S+ formulas. You can create and
save formulas as objects using the formula function:

> form.eg.1 <- formula(Fuel ~ poly(Weight, 2) + Disp. +
+ Type)
> form.eg.1

Fuel ~ poly(Weight, 2) + Disp. + Type

Table 2.1: A summary of formula syntax.

Expression Meaning

T ~ F T is modeled as a function of F

Fa + Fb Include both Fa and Fb in the model

Fa - Fb Include all of Fa in the model, except what is in Fb

Fa : Fb The interaction between Fa and Fb

Fa * Fb Shorthand notation for Fa + Fb+ Fa : Fb

Fb %in% Fa Fb is nested within Fa

Fa / Fb Shorthand notation for Fa + Fb %in% Fa

F^m All terms in F crossed to order m
31

Chapter 2 Specifying Models in Spotfire S+
INTERACTIONS

You can specify interactions for categorical data (factors), continuous
data, or a mixture of the two. In each case, additional parameters are
computed that are appropriate for the different types of variables
specified in the model. The syntax for specifying an interaction is the
same in each case, but the interpretation varies depending on the data
types.

To specify a particular interaction between two or more variables, use
a colon (:) between the variable names. Thus, to specify the
interaction between gender and race, use the following term:

gender:race

You can use an asterisk (*) to specify all terms in the model created
by subsets of the named variables. Thus,

salary ~ age * gender

is equivalent to

salary ~ age + gender + age:gender

You can remove terms with a minus or hyphen (-). For example, the
formula

salary ~ gender*race*education - gender:race:education

is equivalent to

salary ~ gender + race + education + gender:race +
gender:education + race:education

This is a model consisting of all terms in the full model except the
three-way interaction. Another way to specify this model is by using
the power notation. The following formula includes all terms of order
two or less:

salary ~ (gender + race + education) ^ 2
32

Interactions
Continuous
Data

By specifying interactions between continuous variables in a formula,
you include multiplicative terms in the corresponding model. Thus,
the formula

mpg ~ weight * displ

fits the model

mpg = β0 + β1weight + β2displ + β3(weight)(displ) + ε

Categorical
Data

For categorical data, interactions add coefficients for each
combination of the levels in the named factors. For example, consider
two factors, Opening and Mask, with three and five levels, respectively.
The Opening:Mask term in a formula adds 15 additional parameters to
the model. For example, you can specify a two-way analysis of
variance with the following notation:

skips ~ Opening + Mask + Opening:Mask

Using the asterisk operator *, this simplifies to:

skips ~ Opening*Mask

Either formula fits the following model:

skips = μ + Openingi + Maskj + (Opening : Mask)ij + ε

In practice, because of dependencies among the parameters, only
some of the total number of parameters specified by a model are
computed.

Nesting Nesting arises in models when the levels of one or more factors make
sense only within the levels of other factors. For example, in sampling
the U.S. population, a sample of states is drawn, from which a sample
of counties is drawn, from which a sample of cities is drawn, from
which a sample of families or households is drawn. Counties are
nested within states, cities are nested within counties, and households
are nested within cities.
33

Chapter 2 Specifying Models in Spotfire S+
In Spotfire S+ formulas, there is special syntax to specify the nesting
of factors within other factors. For example, you can write the county-
within-state model using the term

county %in% state

You can state the model more succinctly with

state / county

This syntax means “state and county within state,” and is thus
equivalent to the following formula terms:

state + county %in% state

The slash operator (/) in nested models is the counterpart of the
asterisk (*), which is used for factorial models; see the previous section
for examples of formulas for factorial models.

The syntax for nested models can be extended to included multiple
levels of nesting. For example, you can specify the full state-county-
city-household model as follows:

state / county / city / household

Interactions
Between
Continuous
and
Categorical
Variables

For continuous data combined with categorical data, interactions add
one coefficient for the continuous variable for each level of the
categorical variable. This arises, for example, in models that have
different slope estimates for different groups, where the categorical
variables specify the groups.

When you combine continuous and categorical data using the nesting
syntax, it is possible to specify analysis of covariance models. For
example, suppose gender (categorical) and age (continuous) are
predictors in a model. You can fit separate slopes for each gender
using the following nesting syntax:

salary ~ gender / age

This fits an analysis of covariance model equivalent to:

μ + genderi + βi age

Note that this is also equivalent to a model with the term gender*age.
However, the parametrization for the two models is different. When
you fit the nested model, Spotfire S+ computes estimates of the
34

Interactions
individual slopes for each group. When you fit the factorial model,
you obtain an overall slope estimate plus the deviations in the slope
for the different group contrasts.

For example, with the term gender/age, the formula expands into
main effects for gender followed by age within each level of gender.
One coefficient is computed for age from each level of gender, and
another coefficient estimates the contrast between the two levels of
gender. Thus, the nested formula fits the following type of model:

The intercept is μ, the contrast is , and the model has coefficients βi
for age within each level of gender. Thus, you obtain separate slope
estimates for each group.

Conversely, the formula with the term gender*age fits the following
model:

You obtain the overall slope estimate , plus the deviations in the
slope for the different group contrasts.

You can fit the equal slope, separate intercept model by specifying:

salary ~ gender + age

This fits a model equivalent to:

SalaryM μ αg β1 age×+ +=

SalaryF μ αg– β2 age×+=

αg

SalaryM μ αg– β age γ age×–×+=

SalaryF μ αg β age γ age×+×+ +=

β

μ genderi β age×+ +
35

Chapter 2 Specifying Models in Spotfire S+
THE PERIOD OPERATOR

The single period (.) operator can act as a default left or right side of a
formula. There are numerous ways you can use periods in formulas.
For example, consider the function update, which allows you to
modify existing models. The following example uses the data frame
fuel.frame to display the usage of the single “.” in formulas. First, we
define a model that includes only an intercept term:

> fuel.null <- lm(Fuel ~ 1, data = fuel.frame)

Next, we use update to add the Weight variable to the model:

> fuel.wt <- update(fuel.null, . ~ . + Weight)
> fuel.wt

Call:
lm(formula = Fuel ~ Weight, data = fuel.frame)

Coefficients:
 (Intercept) Weight
 0.3914324 0.00131638
Degrees of freedom: 60 total; 58 residual
Residual standard error: 0.3877015

The periods on either side of the tilde (~) in the above example are
replaced by the left and right sides of the formula used to fit the object
fuel.null.

Another use of the period operator arises when referencing data
frame objects in formulas. In the following example, we fit a linear
model for the data frame fuel.frame:

> lm(Fuel ~ ., data = fuel.frame)

Here, the new model includes all columns in fuel.frame as
predictors, with the exception of the response variable Fuel. In the
example

> lm(skips ~ .^2, data = solder.balance)

all columns in solder.balance enter the model as both main effects
and second-order interactions.
36

Combining Formulas with Fitting Procedures
COMBINING FORMULAS WITH FITTING PROCEDURES

The data
Argument

Once you specify a model with its associated formula, you can fit it to
a given data set by passing the formula and the data to the
appropriate fitting procedure. For the following example, create the
data frame auto.dat from the data set auto.stats by typing

> auto.dat <- data.frame(auto.stats)

The auto.dat data frame contains numeric columns named
Miles.per.gallon, Weight, and Displacement, among others. You
can fit a linear model using these three columns as follows:

> lm(Miles.per.gallon ~ Weight + Displacement,
+ data = auto.dat)

You can fit a smoothed model to the same data with the call:

> loess(Miles.per.gallon ~ s(Weight) + s(Displacement),
+ data = auto.dat)

All Spotfire S+ fitting procedures accept a formula and an optional
data frame as the first two arguments. If the individual variables are in
your search path, you can omit the data specification:

> lm(Miles.per.gallon ~ Weight + Displacement)
> loess(Miles.per.gallon ~ s(Weight) + s(Displacement))

This occurs, for example, when you create the variables explicitly in
your working directory, or when you attach a data frame to your
search path using the attach function.

Warning

If you attach a data frame for fitting models and have objects in your .Data directory with names
that match those in the data frame, the data frame variables are masked and are not used in the
actual model fitting. For more details, see the help file for the masked function.
37

Chapter 2 Specifying Models in Spotfire S+
Composite
Terms in
Formulas

As we previously mention, certain operators such as +, -, *, and /
have special meanings when used in formula expressions. Because of
this, the operators must appear at the top level in a formula and only
on the right side of the tilde (~). However, if the operators appear
within arguments to functions in the formula, they work as they
normally do in Spotfire S+. For example:

Kyphosis ~ poly(Age, 2) + I((Start > 12) * (Start - 12))

Here, the * and - operators appear within arguments to the I
function, and thus evaluate as normal arithmetic operators. The sole
purpose of the I function is, in fact, to protect special operators on the
right sides of formulas.

You can use any acceptable Spotfire S+ expression in place of any
variable within a formula, provided the expression evaluates to
something interpretable as one or more variables. The expression
must evaluate to one of the following:

• Numeric vector

• Factor or ordered factor

• Matrix

Thus, certain composite terms, including poly, I, and bs, can be used
as formula variables. For details, see the help files for these functions.
38

Contrasts: The Coding of Factors
CONTRASTS: THE CODING OF FACTORS

A coefficient for each level of a factor cannot usually be estimated
because of dependencies among the coefficients in the overall model.
An example of this is the sum of all dummy variables for a factor, which
is a vector of all ones that has length equal to the number of levels in
the factor. Overparameterization induced by dummy variables is
removed prior to fitting, by replacing the dummy variables with a set
of linear combinations of the dummy variables, which are

1. functionally independent of each other, and

2. functionally independent of the sum of the dummy variables.

A factor with levels has possible independent linear
combinations. A particular choice of linear combinations of the
dummy variables is called a set of contrasts. Any choice of contrasts for
a factor alters the specific individual coefficients in the model, but
does not change the overall contribution of the factor to the fit.
Contrasts are represented in Spotfire S+ as matrices in which the
columns sum to zero, and the columns are linearly independent of
both each other and a vector of all ones.

Built-In
Contrasts

Spotfire S+ provides four different kinds of contrasts as built-in
functions

1. Treatment contrasts

The default setting in Spotfire S+ options. The function
contr.treatment implements treatment contrasts. Note that
these are not true contrasts, but simply include each level of a
factor as a dummy variable, excluding the first one. This
generates statistically dependent coefficients, even in
balanced experiments.

> contr.treatment(4)

 2 3 4
1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

2. Helmert contrasts

k k 1–
39

Chapter 2 Specifying Models in Spotfire S+
The function contr.helmert implements Helmert contrasts.
The th linear combination is the difference between the

st level and the average of the first levels. The
following example returns a Helmert parametrization based
upon four levels:

> contr.helmert(4)

 [,1] [,2] [,3]
1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

3. Orthogonal polynomials

The function contr.poly implements polynomial contrasts.
Individual coefficients represent orthogonal polynomials if
the levels of the factor are equally spaced numeric values. In
general, contr.poly produces orthogonal contrasts for a
factor with levels, representing polynomials of degree 1 to

. The following example uses four levels:

> contr.poly(4)

 L Q C
[1,] -0.6708204 0.5 -0.2236068
[2,] -0.2236068 -0.5 0.6708204
[3,] 0.2236068 -0.5 -0.6708204
[4,] 0.6708204 0.5 0.2236068

4. Sum contrasts

The function contr.sum implements sum contrasts. This
produces contrasts between the th level and each of the first

 levels:

> contr.sum(4)

 [,1] [,2] [,3]
1 1 0 0
2 0 1 0
3 0 0 1
4 -1 -1 -1

j
j 1+ j

k 1–

k
k 1–

k
k 1–
40

Contrasts: The Coding of Factors
Specifying
Contrasts

Use the functions C, contrasts, and options to specify contrasts. Use
C to specify a contrast as you type a formula; it is the simplest way to
alter the choice of contrasts. Use contrasts to specify a contrast
attribute for a factor variable. Use options to specify the default
choice of contrasts for all factor variables. We discuss each of these
three approaches below.

Many fitting functions also include a contrast argument, which
allows you to fit a model using a particular set of contrasts, without
altering the factor variables involved or your session options. See the
help files for individual fitting functions such as lm for more details.

The C Function As previously stated, the C function is the simplest way to alter the
choice of contrasts. A typical call to the function is C(object, contr),
where object is a factor or ordered factor and contr is the contrast to
alter. An optional argument, how.many, specifies the number of
contrasts to assign to the factor. The value returned by C is the factor
with a "contrasts" attribute equal to the specified contrast matrix.

For example, in the solder.balance data set, you can specify sum
contrasts for the Mask column with the call C(Mask, sum). You can
also use a custom contrast function, special.contrast, that returns a
matrix of the desired dimension with the call
C(Mask, special.contrast).

You can also specify contrasts by supplying the contrast matrix
directly. For example, consider a factor vector quality that has four
levels:

> quality <- factor(
+ c("tested-low", "low", "high", "tested-high"),
+ levels = c("tested-low", "low", "high", "tested-high"))

> levels(quality)

Note

If you create your own contrast function, it must return a matrix with the following properties:

• The number of rows must be equal to the number of levels specified, and the number of
columns must be one less than the number of rows.

• The columns must be linearly independent of each other and of a vector of all ones.
41

Chapter 2 Specifying Models in Spotfire S+
[1] "tested-low" "low" "high" "tested-high"

You can contrast levels 1 and 4 with levels 2 and 3 by including
quality in a model formula as C(quality, c(1,-1,-1,1)). Two
additional contrasts are generated, orthogonal to the one supplied.

To contrast the “low” values in quality versus the “high” values,
provide the following contrast matrix:

> contrast.mat <- matrix(c(1,-1,-1,1,1,1,-1,-1), ncol=2)
> contrast.mat

 [,1] [,2]
[1,] 1 1
[2,] -1 1
[3,] -1 -1
[4,] 1 -1

The contrasts
Function

Use the contrasts function to define the contrasts for a particular
factor whenever it appears. The contrasts function extracts contrasts
from a factor and returns them as a matrix. The following sets the
contrasts for the quality factor:

> contrasts(quality) <- contrast.mat
> contrasts(quality)

 [,1] [,2] [,3]
 tested-low 1 1 -0.5
 low -1 1 0.5
 high -1 -1 -0.5
tested-high 1 -1 0.5

The quality vector now has the contrast.mat parametrization by
default any time it appears in a formula. To override this new setting,
supply a contrast specification with the C function.
42

Contrasts: The Coding of Factors
Setting the
contrasts Option

Use the options function to change the default choice of contrasts for
all factors, as in the following example:

> options()$contrasts

 factor ordered
 "contr.treatment" "contr.poly"

> options(contrasts = c(factor = "contr.helmert",
+ ordered = "contr.poly"))

> options()$contrasts

[1] "contr.helmert" "contr.poly"
43

Chapter 2 Specifying Models in Spotfire S+
USEFUL FUNCTIONS FOR MODEL FITTING

As model building proceeds, you’ll find several functions useful for
adding and deleting terms in formulas. The update function starts
with an existing fit and adds or removes terms as you specify. For
example, create a linear model object as follows:

> fuel.lm <- lm(Mileage ~ Weight + Disp., data = fuel.frame)

You can use update to change the response to Fuel, using a period on
the right side of the tilde (~)to represent the current state of the model
in fuel.lm:

> update(fuel.lm, Fuel ~ .)

The period operator in this call includes every predictor in fuel.lm in
the new model. Only the response variable changes.

You can drop the Disp. term, keeping the response as Mileage with
the command:

> update(fuel.lm, . ~ . - Disp.)

Another useful function is drop1, which computes statistics obtained
by dropping each term from the model one at a time. For example:

> drop1(fuel.lm)

Single term deletions

Model: Mileage ~ Weight + Disp.
 Df Sum of Sq RSS Cp
<none> 380.3 420.3
Weight 1 323.4 703.7 730.4
Disp. 1 0.6 380.8 407.5

Each line presents model summary statistics that correspond to
dropping the term indicated in the first column. The first line in the
table corresponds to the original model; no terms (<none>) are
deleted.
44

Useful Functions for Model Fitting
There is also an add1 function which adds one term at a time. The
second argument to add1 provides the scope for added terms. The
scope argument can be a formula or a character vector indicating the
terms to be added. The resulting table prints a line for each term
indicated by the scope argument:

> add1(fuel.lm, c("Type", "Fuel"))

Single term additions

Model: Mileage ~ Weight + Disp.
 Df Sum of Sq RSS Cp
<none> 380.271 420.299
 Type 5 119.722 260.549 367.292
 Fuel 1 326.097 54.173 107.545
45

Chapter 2 Specifying Models in Spotfire S+
OPTIONAL ARGUMENTS TO MODEL-FITTING FUNCTIONS

In most model-building calls, you’ll need to specify the data frame to
use. You may need arguments that check for missing values in the
data frame, or select only particular portions of the data frame to use
in the fit. The following list summarizes the standard optional
arguments available for most model-fitting functions.

• data: specifies a data frame in which to interpret the variables
named in the formula, subset and weights arguments. The
following example fits a linear model to data in the
fuel.frame data frame:

> fuel.lm <- lm(Fuel ~ Weight + Disp.,
+ data = fuel.frame)

• weights: specifies a vector of observation of weights. If
weights is supplied, the fitting algorithm minimizes the sum
of the squared residuals multiplied by the weights:

.

Negative weights generate a Spotfire S+ error. We
recommend that the weights be strictly positive, since zero
weights give no residuals; to exclude observations from your
model, use the subset argument instead. The following
example fits a linear model to the claims data frame, and
passes number to the weights argument:

> claims.lm <- lm(cost ~ age + type + car.age,
+ data = claims, weights = number,
+ na.action = na.exclude)

• subset: indicates a subset of the rows of the data to be used in
the fit. The subset expression should evaluate to a logical or
numeric vector, or a character vector with appropriate row
names. The following example fits a linear model to data in
the auto.dat data frame, excluding those observations for
which Miles.per.gallon is greater than 35:

> auto.lm <- lm(1/Miles.per.gallon ~ Weight,
+ data = auto.dat, subset = Miles.per.gallon < 35)

wiri
2∑
46

Optional Arguments to Model-Fitting Functions
• na.action: specifies a missing-data filter function. This is
applied to the model frame after any subset argument has
been used. The following example passes na.exclude to the
na.action argument, which drops any row of the data frame
that contains a missing value:

> ozone.lm <- lm(ozone ~ temperature + wind,
+ data = air, subset = wind > 8,
+ na.action = na.exclude)

Each model fitting function has nonstandard optional arguments, not
listed above, which you can use to fit the appropriate model. The
following chapters describe the available arguments for each model
type.
47

Chapter 2 Specifying Models in Spotfire S+
REFERENCES

Chambers, J.M., Hastie T.J. (Eds.) (1992). Statistical Models in S.
London: Chapman & Hall.
48

Introduction 51

Important Concepts 52
Random Variables 52
Probability Density and Cumulative Distribution

Functions 52
Mean 54
Variance and Deviation 54
Quantiles 55
Moments 55

Spotfire S+ Probability Functions 56
Random Number Generator r 56
Probability Function p 56
Density Function d 57
Quantile Function q 57

Common Probability Distributions for Continuous
Variables 60

Uniform Distribution 60
Normal Distribution 61
Chi-Square Distribution 64
t Distribution 65
F Distribution 67

Common Probability Distributions for Discrete
Variables 69

Binomial Distribution 69
Poisson Distribution 71
Hypergeometric Distribution 74

Other Continuous Distribution Functions in Spotfire S+ 76
Beta Distribution 76

PROBABILITY 3
49

Chapter 3 Probability
Exponential Distribution 76
Gamma Distribution 77
Weibull Distribution 77
Logistic Distribution 78
Cauchy Distribution 79
Lognormal Distribution 80
Distribution of the Range of Standard Normals 81
Multivariate Normal Distribution 82
Stable Family of Distributions 82

Other Discrete Distribution Functions in Spotfire S+ 84
Geometric Distribution 84
Negative Binomial Distribution 84
Distribution of Wilcoxon Rank Sum Statistic 85

Examples: Random Number Generation 86
Inverse Distribution Functions 86
The Polar Method 88

References 91
50

Introduction
INTRODUCTION

Probability theory is the branch of mathematics that is concerned
with random, or chance, phenomena. With random phenomena,
repeated observations under a specified set of conditions do not
always lead to the same outcome. However, many random
phenomena exhibit a statistical regularity. Because of this, a solid
understanding of probability theory is fundamental to most statistical
analyses.

A probability is a number between 0 and 1 that tells how often a
particular event is likely to occur if an experiment is repeated many
times. A probability distribution is used to calculate the theoretical
probability of different events. Many statistical methods are based on
the assumption that the observed data are a sample from a population
with a known theoretical distribution. This assumption is crucial. If
we proceed with an analysis under the assumption that a particular
sample is from a known distribution when it is not, our results will be
misleading and invalid.

In this chapter, we review the basic definitions and terminology that
provide the foundation for statistical models in TIBCO Spotfire S+.
This chapter is not meant to encompass all aspects of probability
theory. Rather, we present the facts as concise statements and relate
them to the functions and distributions that are built into Spotfire S+.
We begin with formal definitions and important concepts, including
mathematical descriptions of a random variable and a probability
density. We then introduce the four basic probability functions in
Spotfire S+, and illustrate how they are used in conjunction with
particular distributions. As a final example, we show how to
transform uniform random numbers to ones from other distributions.
51

Chapter 3 Probability
IMPORTANT CONCEPTS

Random
Variables

A random variable is a function that maps a set of events, or outcomes
of an experiment, onto a set of values. For example, if we consider the
experiment of tossing a coin, a random variable might be the number
of times the coin shows heads after ten tosses. The random variable in
this experiment can only assume a finite number of values 0, 1, ..., 10,
and so it is called a discrete random variable. Likewise, if we observe the
failure rates of machine components, a random variable might be
lifetime of a particular component. The random variable in this
experiment can assume infinitely many real values, and so it is called
a continuous random variable.

Probability
Density and
Cumulative
Distribution
Functions

The probability density function (pdf) for a random variable provides a
complete description of the variable’s probability characteristics. If
is a discrete random variable, then its density function is
defined as

.

In words, the density gives the probability that assumes a particular
finite value x. Because of this definition, is sometimes referred

to as the frequency function for a discrete random variable. For to
be valid, it must be nonnegative and the sum of all possible
probabilities must equal 1:

,

where can assume the values .

For a continuous random variable , the density is used to find

the probability that assumes a range of values, :

.

X
fX x()

fX x() P X x=()=

X
fX x()

fX x()

fX xi()
i 1=

n

∑ 1=

X x1 x2 … xn, , ,

Y fY y()

Y a Y b< <

P a Y b< <() fY y()
a

b

∫=
52

Important Concepts
Since a continuous random variable can assume infinitely many real
values, the probability that is equal to any single value is zero:

.

As with discrete variables, the probabilities for all possible values of a
continuous variable must be nonnegative and sum to 1:

.

It is sometimes convenient to consider the cumulative distribution
function (cdf), which also describes the probability characteristics of a
random variable. For a discrete random variable , the distribution

 is the probability that is less than some value x. The
cumulative distribution is found by summing probabilities for all real
values less than x:

.

If is a continuous random variable, the cumulative distribution
function takes the following form:

.

These equations illustrate a relationship between the density and
distribution functions for a random variable. If one function is known,
the other can be easily calculated. Because of this relationship, the
terms distribution and density are often used interchangeably when
describing the overall probability characteristics of a random
variable.

Y

P Y(a) fY y()
a

a

∫ 0= = =

fY y() yd
∞–

∞

∫ 1=

X
FX x() X

FX x() P X x≤() fX t()
t x≤
∑= =

Y
FY y()

FY y() P Y y≤() fY y()
∞–

y

∫= =
53

Chapter 3 Probability
Mean The mean or expected value of a random variable describes the center of
the variable’s density function. If is a discrete random variable and
assumes the values with probabilities

, then the mean is given by the weighted
sum

.

If is a continuous random variable with a probability density
function , the mean is given by

.

Variance and
Deviation

The variance and standard deviation of a random variable are measures
of dispersion. The variance is the average value of the squared
deviation from the variable’s mean, and the standard deviation is the
square root of the variance. If is a discrete random variable with

density function and mean , the variance is given by the
weighted sum

.

The standard deviation of , , provides an indication of how

dispersed the values are about . In practice, it is
sometimes desirable to compute the mean absolute deviation of a
random variable instead of its variance. For a discrete variable , the

mean deviation is .

Likewise, if is a continuous random variable with density function

 and mean , the variance is defined to be:

.

X
x1 x2 … xn, , ,

fX x1() fX x2)(… fX xn)(, , , μX

μX xi fX xi)(
i 1=

n

∑=

Y
fY y() μY

μY yfY y() yd
∞–

∞

∫=

X

fX x() μX σX
2

σX
2 xi μX–()2fX xi()

i 1=

n

∑=

X σX

x1 x2 … xn, , , μX

X
xi μX– fX xi()

i
∑

Y

fY y() μY σY
2

σY
2 y μY)2fY y()–(yd

∞–

∞

∫=
54

Important Concepts
The standard deviation of is , and the mean absolute deviation

is .

Quantiles The pth quantile of a probability distribution is defined to be the
value t such that , where p is a probability between 0 and 1.
For a random variable , this definition is equivalent to the statement

. Special cases include those quantiles corresponding to
, and . When , the quantile is

called the median of the probability distribution. When and
, the quantiles are called the upper quartile and lower quartile,

respectively. The difference between the upper and lower quartiles of
a distribution is often referred to as the interquartile range, or IQR.

The mode of a probability distribution function is a quantile for which
the function reaches a local maximum. If a distribution has only one
local maximum across its range of values, then it is said to be
unimodal. Likewise, if a distribution has exactly two local maximums,
then it is said to be bimodal. This statistical property is not related to
the Spotfire S+ function mode, which returns the data class of a
Spotfire S+ object.

Moments The moments of a random variable provide a convenient way of
summarizing a few of the quantities discussed in this section. The rth
moment of a random variable is defined to be the expected value

of the quantity . In practice, central moments are often used in place
of ordinary moments. If a random variable has mean , the rth
central moment is defined to be the expected value of the quantity

. The first central moment is similar to the mean absolute
deviation, and the second central moment is the variance of a
distribution. The third central moment is called the skewness, and is a
measure of asymmetry in a probability density function. The fourth
central moment is called the kurtosis, and is a measure of peakedness
in a density function.

Y σY

y μY– fY y() yd∞–
∞∫

F
F t() p=

X
P X t)≤(p=

1 2⁄ p, 3 ⁄= = p 1 4⁄= p 1 2⁄=

p 3 4⁄=

p 1 4⁄=

X

Xr

X μX

X μX–()r
55

Chapter 3 Probability
SPOTFIRE S+ PROBABILITY FUNCTIONS

For each of the most common distributions, Spotfire S+ contains four
functions that perform probability calculations. These four functions
generate random numbers, calculate cumulative probabilities,
compute densities, and return quantiles for the specified distributions.
Each of the functions has a name beginning with a one-letter code
indicating the type of function: rdist, pdist, ddist, and qdist,
respectively, where dist is the Spotfire S+ distribution function. The
four functions are described briefly below. Table 3.1 lists the
distributions currently supported in Spotfire S+, along with the codes
used to identify them. For a complete description of the pseudo-
random number generator implemented in Spotfire S+, see Chapter
34, Mathematical Computing in Spotfire S+.

Random
Number
Generator r

The random number generator function, rdist, requires an
argument specifying sample size. Some distributions may require
additional arguments to define specific parameters (see Table 3.1).
The rdist function returns a vector of values that are sampled from
the appropriate probability distribution function. For example, to
generate 25 random numbers from a uniform distribution on the
interval , use the following expression:

> runif(25,-5,5)

 [1] 2.36424 -1.20289 1.68902 -3.67466 -3.90192
 [6] 0.45929 0.46681 1.06433 -4.78024 1.80795
[11] 2.45844 -3.48800 2.54451 -1.32685 1.49172
[16] -2.40302 3.76792 -4.99800 1.70095 2.66173
[21] -1.26277 -4.94573 -0.89837 1.98377 -2.61245

Probability
Function p

The probability function, pdist, requires an argument specifying a
vector of quantiles (possibly of length 1). Some distributions may
require additional arguments to define specific parameters (see Table
3.1). The pdist function returns a vector of cumulative probabilities
that correspond to the quantiles. For example, to determine the
probability that a Wilcoxon rank sum statistic is less than or equal to
24, given that the first sample has 4 observations and the second
sample has 6 observations, use the command below.

5– 5[,]
56

Spotfire S+ Probability Functions
> pwilcox(24, 4, 6)

[1] 0.6952381

Density
Function d

The density function, ddist, requires an argument specifying a
vector of quantiles (possibly of length 1). Some distributions may
require additional arguments to define specific parameters (see Table
3.1). The ddist function returns a vector of corresponding values
from the appropriate probability density function. For example, to
determine the probability that a Wilcoxon rank sum statistic is equal
to 24, given that the first sample has 4 observations and the second
sample has 6 observations, use the following command:

> dwilcox(24,4,6)

[1] 0.07619048

Quantile
Function q

The quantile function, qdist, requires an argument specifying a
vector of probabilities (possibly of length 1). Some distributions may
require additional arguments to define specific parameters (see Table
3.1). The qdist function returns a vector of quantiles corresponding
to the probabilities for the appropriate distribution function. For
example, to compute the 0.95 quantile of a chi-square distribution
that has 5 degrees of freedom, use the following expression:

> qchisq(.95, 5)

[1] 11.0705

The result says that 95% of numbers drawn from the given chi-square
distribution will have values less than 11.0705.

57

Chapter 3 Probability
Table 3.1: Probability distributions in Spotfire S+.

Code Distribution
Required
Parameters

Optional
Parameters Defaults

beta beta shape1, shape2

binom binomial size, prob

cauchy Cauchy location, scale location=0,
scale=1

chisq chi-square df

exp exponential rate 1

f F df1, df2

gamma Gamma shape rate rate=1

geom geometric prob

hyper hypergeometric m, n, k

lnorm lognormal meanlog, sdlog meanlog=0,
sdlog=1

logis logistic location, scale location=0,
scale=1

mvnorm multivariate normal mean, cov, sd, rho mean=rep(0,d),
cov=diag(d),
sd=1

nbinom negative binomial size, prob

norm normal mean, sd mean=0, sd=1

nrange range of standard
normals

size
58

Spotfire S+ Probability Functions
pois Poisson lambda

stab stable index skewness skewness=0

t Student’s t df

unif uniform min, max min=0, max=1

weibull Weibull shape scale scale=1

wilcox Wilcoxon rank sum
statistic

m, n

Table 3.1: Probability distributions in Spotfire S+. (Continued)

Code Distribution
Required
Parameters

Optional
Parameters Defaults
59

Chapter 3 Probability
COMMON PROBABILITY DISTRIBUTIONS FOR
CONTINUOUS VARIABLES

A continuous random variable is one that can assume any value
within a given range. Examples of continuous variables include
height, weight, personal income, distance, and dollar amount. This
section describes five of the most common continuous distributions:
uniform, normal, chi-square, t , and F. See the section Other
Continuous Distribution Functions in Spotfire S+ for descriptions of
additional distributions.

Uniform
Distribution

The uniform distribution describes variables that can assume any
value in a particular range with equal probability. That is, all possible
values of a uniform random variable have the same relative
frequency, and all have an equal chance of appearing. Given the
endpoints of the interval as parameters, the probability density
function for a uniform random variable is defined as:

.

Outside of the interval , the density is equal to zero. Plots of this
density function for various values of and all have the same
rectangular shape, with a constant maximum of in the
interval .

Spotfire S+ functions

dunif, punif, qunif, runif

Each of these functions has optional parameters for the min and
max of the defined density interval. By default, the values for these
parameters are and .

There is a Spotfire S+ function sample that also produces a vector of
values uniformly chosen from a given population. For an example of
this function, see the section Common Probability Distributions for
Discrete Variables.

a b,[]

fa b, x() 1
b a–
------------ a x b≤ ≤,=

a b,[]
a b

1 b a–()⁄
a b,[]

a()
b()

a 0= b 1=
60

Common Probability Distributions for Continuous Variables
Command line example

A common application of continuous uniform random variables is in
queueing theory. For example, suppose a bus arrives every 15
minutes at a certain bus stop, on the quarter hour. If passengers arrive
randomly at the bus stop between 7:00 and 7:15 a.m., what is the
probability that a particular person will wait more than 12 minutes for
a bus? This will occur if the passenger arrives between 7:00 and 7:03.

> punif(3,0,15)-punif(0,0,15)

[1] 0.2

Therefore, a passenger has a 20% chance of waiting more than 12
minutes for the bus.

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type the values 0 and 3 in the first column.

3. Highlight the column and select Data � Distribution
Functions.

4. By default, Spotfire S+ generates cumulative probability
values. Select uniform in the Distribution field, and change
the Minimum and Maximum parameters to 0 and 15.

5. Click OK.

6. The values 0.00 and 0.20 appear in the second column of the
data window, which is named Probability. This means that
the probability of arriving between 7:00 and 7:03 is

, or 20%.

Normal
Distribution

The normal, or Gaussian, distribution is unimodal and symmetric
about its mean. Given the mean and the standard deviation
as parameters, the probability density function for a normal random
variable is defined as:

.

0.20 0.00–

μ σ 0>

fμ σ, x() 1

2πσ2
----------------exp 1

2
--- x μ–

σ
-----------⎝ ⎠

⎛ ⎞ 2
–=
61

Chapter 3 Probability
Plots of this density function for various values of and all have
the same “bell” shape, with a global maximum at and tails that
approach zero as becomes large or small.

In theory, the normal distribution ranges from negative to positive
infinity, implying that normal random variables can assume any real
value. However, the bulk of the values that a normal variable assumes
are within two standard deviations of its mean. For example, consider
the standard normal distribution, where and . Sixty-eight
percent of the values that a standard normal variable assumes will fall
in the range from -1.00 to +1.00. In addition, ninety-five percent of
the values will fall in the range from -1.96 to +1.96.

Spotfire S+ functions

dnorm, pnorm, qnorm, rnorm

Each of these functions has optional parameters for mean and sd
. By default, the values for these parameters are and

.

Command line example 1

The following command shows how to plot histograms of multiple
25-observation samples, each having mean 0 and standard deviation
1.

> hist(rnorm(25,0,1))

Repeat this many times and observe the variation in the distributions.

Windows GUI Example 1

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Select Data � Random Numbers.

3. In the dialog that appears, the name of the new data window
is filled for the Data Set, and Sample is filled for the Target
Column. Specify a Sample Size of 25, and leave the defaults
for Distribution, Mean, and Standard Deviation.

4. Click Apply.

μ σ
μ

x

μ 0= σ 1=

μ()
σ() μ 0=

σ 1=
62

Common Probability Distributions for Continuous Variables
5. Highlight the Sample column in the data window, open the
Plots 2D palette, and select Histogram.

6. Put the Random Numbers dialog and the graph sheet side
by side, and click Apply to create a new sample and plot.
Repeat this many times and observe the variation in the
distributions.

Command line example 2

Suppose pulmonary function is standardized on a normal distribution
with mean 0 and standard deviation 1. If a score of -1.5 is considered
to be poor pulmonary health for young people, what percentage of
children are in poor pulmonary health?

> pnorm(-1.5,0,1)

[1] 0.0668072

Thus, about 7% of children are classified as having poor pulmonary
health.

Windows GUI Example 2

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type -1.5 in the first cell.

3. Highlight the column and select Data � Distribution
Functions. By default, Spotfire S+ uses a normal distribution
with mean 0 and standard deviation 1.

4. Click OK.

5. The value 0.07 appears in the second column of the data
window, which is named Probability. To see more decimal
places in the display, highlight the columns and click the
Increase Precision button on the DataSet toolbar.

The Central Limit
Theorem

The normal distribution is very important in statistical analyses, and
arises often in nearly every field of study. Generally speaking, any
variable that is a sum of numerous independent random variables can
be approximated by a normal distribution. Consequently, the normal
distribution offers a reasonable approximation for many variables
that may not strictly follow a normal distribution. The Central Limit
Theorem formalizes this idea. In practice, the normal approximation
63

Chapter 3 Probability
is usually a good one for relatively small sample sizes if the actual
distribution of the sample is fairly symmetric. If the actual distribution
is very skewed, then the sample size must be large for the normal
approximation to be accurate.

Chi-Square
Distribution

The chi-square distribution is derived from a standard normal
distribution and is primarily used in hypothesis testing of parameter
estimates. If are standard normal variables, each having

mean and standard deviation , then a chi-square

variable with degrees of freedom is defined as the sum of their
squares:

.

A chi-square random variable with degrees of freedom has the
following probability density function:

,

where is the gamma function,

, .

Since a chi-square random variable is a sum of squares, the density
function is only defined for positive and . For small values

of , plots of the chi-square distribution are skewed and asymmetric.
As the number of degrees of freedom increases, the distribution
becomes more symmetric and approaches the shape of a regular
Gaussian curve.

Spotfire S+ functions

dchisq, pchisq, qchisq, rchisq

Each of these functions requires you to specify a value for the df .

Z1 Z2 … Zn, , ,

μ 0= σ 1=

χ2 n

χ2 Zi
2

i 1=

n

∑=

n

x() 1

2n 2⁄ Γ n 2⁄()
------------------------------------e x 2⁄– x n 2⁄() –=

Γ

Γ y() uy 1– e u– ud
0

∞

∫= y 0>

fn x() x n

n

n()
64

Common Probability Distributions for Continuous Variables
Command line example

Find the upper and lower 2.5th percentile of a chi-square distribution
with 12 degrees of freedom.

> qchisq(0.975,12)

[1] 23.3366

> qchisq(0.025,12)

[1] 4.403789

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type the values 0.975, and 0.025 in the first column. Highlight
the column and click the Increase Precision button on the
DataSet toolbar to increase the precision of the display.

3. Highlight the first column and select Data � Distribution
Functions.

4. In the Result Type field, select Quantile. From the
Distribution dropdown list, select chisquare. In the Degrees
of Freedom field, type 12.

5. Click OK.

6. The values 23.34 and 4.40 appear in the second column of the
data window, which is named Quantile.

t Distribution The distribution is derived from both a standard normal
distribution and a chi-square distribution. If is a standard normal

variable and is a chi-square random variable with degrees of
freedom, then a variable with degrees of freedom is defined to be
the ratio

.

t
Z

χ2 n
t n

t Z

χ2 n⁄
-------------------=
65

Chapter 3 Probability
A random variable with degrees of freedom has the following
probability density function:

Plots of this density function are similar in shape to plots of the
normal distribution. Although the distribution is unimodal and
symmetric about its mean, values are less concentrated and the
density function tends to zero more slowly than the normal
distribution. In practice, the distribution represents the mean of a
Gaussian sample with unknown variance. Chapter 5, Statistical
Inference for One- and Two-Sample Problems, discusses the

distribution in the context of estimation and hypothesis testing for
means of samples.

Spotfire S+ functions

dt, pt, qt, rt

Each of these functions requires you to specify a value for the df .

Command line example

What is the 95th percentile of the distribution that has 20 degrees of
freedom?

> qt(0.95,20)

[1] 1.724718

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type 0.95 in the first cell.

3. Highlight the first column and select Data � Distribution
Functions.

t n

fn x()
Γ n 1+

2
------------⎝ ⎠

⎛ ⎞

Γ n
2
---⎝ ⎠

⎛ ⎞ nπ
------------------------ 1 x2

n
-----+⎝ ⎠

⎛ ⎞
n 1+()–
2

=

t
t

t

t

n()

t

66

Common Probability Distributions for Continuous Variables
4. In the Result Type field, select Quantile. From the
Distribution dropdown list, select t. In the Degrees of
Freedom field, type 20.

5. Click OK.

6. The value 1.72 appears in the second column of the data
window, which is named Quantile. To see more decimal
places in the display, click the Increase Precision button on
the DataSet toolbar.

F Distribution The distribution is the ratio of two independent chi-square
variables, each divided by its own degrees of freedom. If and

are chi-square random variables with and degrees of freedom,
respectively, then an random variable is defined to be

.

An variable with and degrees of freedom has the following
probability density function:

Like the chi-square distribution, the density function is

defined for positive , , and only.

The distribution is used in the analysis of variance to test the
equality of sample means. In cases where two means are
independently estimated, we expect the ratio of the two sample
variances to have a distribution.

Spotfire S+ functions

df, pf, qf, rf

These functions require you to specify two values for the number of
degrees of freedom, one for each underlying chi-square variable.

F
χm χn

m n
F

F
χm m⁄
χn n⁄
-----------------=

F m n

m n, x()
Γ m n+

2
-------------⎝ ⎠

⎛ ⎞

Γ m
2
----⎝ ⎠

⎛ ⎞ Γ n
2
---⎝ ⎠

⎛ ⎞
----------------------------xm 2⁄ 1– m

n
----⎝ ⎠

⎛ ⎞ m 2⁄
1 mx

n
-------+⎝ ⎠

⎛ ⎞
m n+(–

2

=

fm· n, x()

x m n

F

F

67

Chapter 3 Probability
Command line example

Find the upper 5th percentile of an distribution with 4 and 10
degrees of freedom.

> qf(0.95,4,10)

[1] 3.47805

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type 0.95 in the first cell.

3. Highlight the first column and select Data � Distribution
Functions.

4. In the Result Type field, select Quantile. From the
Distribution dropdown list, select f. In the Degrees of
Freedom 1 field, type 4, and in the Degrees of Freedom 2
field, type 10.

5. Click OK.

6. The value 3.48 appears in the second column of the data
window, which is named Quantile. To see more decimal
places in the display, click the Increase Precision button on
the DataSet toolbar.

F

68

Common Probability Distributions for Discrete Variables
COMMON PROBABILITY DISTRIBUTIONS FOR DISCRETE
VARIABLES

A discrete random variable is one that can assume only a finite
number of values. Examples of discrete variables include the outcome
of rolling a die, the outcome of flipping a coin, and the gender of a
newborn child. Many discrete probability distributions are based on
the Bernoulli trial, an experiment in which there is only two possible
outcomes. The outcomes are often denoted as “head” and “tail”, or
“success” and “failure”. Mathematically, it is convenient to designate
the two outcomes as 1 and 0. A variable is a Bernoulli random
variable with parameter if assumes the values 1 and 0 with the
probabilities and , where .

In Spotfire S+ you can generate a series of Bernoulli trials using the
sample function. The following command returns a Bernoulli sample
of size 20 with replacement, using probabilities of 0.35 and 0.65 for 0
and 1, respectively:

 > sample(0:1, 20, T, c(0.35, 0.65))

 [1] 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1

This section describes three of the most common discrete
distributions: binomial, Poisson, and hypergeometric. See the section
Other Discrete Distribution Functions in Spotfire S+ for descriptions
of additional distributions.

Binomial
Distribution

The binomial distribution describes the probability that one of two
events occurs a certain number of times in trials. If
are independent Bernoulli random variables, each having a
probability parameter and possible values of 0 or 1, then a
binomial random variable is defined as their sum:

.

X
p X

P X 1=() p= P X 0=() 1 p–= 0 p 1≤ ≤

n X1 X2 … Xn, , ,

p
X

X Xi

i 1=

n

∑=
69

Chapter 3 Probability
A binomial random variable with parameters and has the
following probability density function:

,

where . This density gives the probability that

exactly successes occur in Bernoulli trials.

Spotfire S+ functions

dbinom, pbinom, qbinom, rbinom

Each of these functions require you to specify values for the size
and prob parameters.

Command line example

A classic illustration for the binomial distribution is the coin toss. The
following examples compute the probability of getting 6 heads with
10 throws of a fair coin.

What is the probability of getting 6 heads with 10 throws of a fair
() coin?

> dbinom(6,10,0.5)

[1] 0.2050781

What is the probability of getting at most 6 heads with 10 throws of a
fair coin?

> pbinom(6,10,0.5)

[1] 0.828125

Suppose someone is tossing a coin, and you are not sure whether the
coin is fair. In 10 throws, what is the largest number of heads you
would expect in order to be 95% confident that the coin is fair?

> qbinom(0.95,10,0.5)

[1] 8

n p

fn p, k()
n
k⎝ ⎠

⎛ ⎞ pk 1 p–()n k–=

n
k⎝ ⎠

⎛ ⎞ n!
k! n k–()!
-----------------------=

k n

n()
p()

p 0.5=
70

Common Probability Distributions for Discrete Variables
Thus, if 9 or 10 tosses showed heads, you would suspect that the coin
might not be fair.

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type 6 in the first cell.

3. Highlight the first column and choose Data � Distribution
Functions.

4. In the Result Type field, select Density. From the
Distribution dropdown list, select binomial. Type 0.5 in the
Probability field and type 10 in the Sample Size field.

5. Click Apply.

6. The value 0.21 appears in the second column of the data
window, which is named Density.

7. To find the probability of throwing at most 6 heads with 10
throws of the coin, change the Result Type field to
Probability in the Distribution Functions dialog.

8. Click Apply.

9. The value 0.83 appears in a Probability column of the data
window.

10. To find the maximum number of heads that you would
expect from 10 throws to be 95% confident that the coin is
fair, type 0.95 in the first cell of a new column in the data
window. Name the new column V4.

11. In the Distribution Functions dialog, type V4 in the Source
Column field, and change the Result Type to Quantile.

12. Click OK.

13. The value 8 appears in a Quantile column of the data
window.

Poisson
Distribution

The Poisson distribution is the limit of a binomial distribution, as the
number of Bernoulli trials gets large and the probability of a
success gets small. Formally, a binomial distribution approaches a

n
p

71

Chapter 3 Probability
Poisson distribution if and in a way such that their
product remains constant, . A Poisson random variable with a
parameter has the following probability density function:

,

In practice, computing exact binomial probabilities is convenient for
small sample sizes only, which suggests when Poisson approximations
can arise. Suppose is a binomial random variable that describes the
number of times an event occurs in a given interval of time. Assume
that we can divide the time interval into a large number of equal
subintervals, so that the probability of an event in each subinterval is
very small. Three conditions must hold for a Poisson approximation
to be valid in this situation. First, the number of events that occur in
any two subintervals must be independent of one another. Second,
the probability that an event occurs is the same in each subinterval of
time. Third, the probability of two or more events occurring in a
particular subinterval is negligible in comparison to the probability of
a single event. A process that meets these three conditions is called a
Poisson process, and arises in fields as diverse as queueing theory and
insurance analysis.

A Poisson random variable with parameter has a mean value of .
Consequently, the number of events that occur in a Poisson process
over subintervals of time has a mean value of .

Spotfire S+ functions

dpois, ppois, qpois, rpois

Each of these functions requires you to specify a value for lambda.

Command line example

The following example is taken from Rosner (1995). The number of
deaths attributed to typhoid fever over a 1-year period is a Poisson
random variable with . What is the probability distribution
for the number of deaths over a 6-month period? To find this, we use
a parameter of 2.3, since the time interval in question is half of 1 year.

n ∞→ p 0→
np λ=

λ

fλ k() λke λ–

k!
-------------= k 0 1 2 …, , ,=

X

λ λ

t λ t

λ 4.6=
72

Common Probability Distributions for Discrete Variables
To find the probability of 0, 1, 2, 3, 4, or 5 deaths in a 6-month
period, use the following command:

> dpois(0:5,2.3)

[1] 0.10025884 0.23059534 0.26518464 0.20330823 0.11690223
[6] 0.05377503

To find the probability of more than 5 deaths, use the following
command:

> 1-ppois(5,2.3)

[1] 0.03

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Highlight the first column and choose Data � Fill. Select
<END> from the dropdown list for Columns, type 6 in the
Length field, and type 0 in the Start field.

3. Click OK.

4. A sequence of integers from 0.00 to 5.00 appear in the first
column, which is named V1.

5. Highlight the column and choose Data � Distribution
Functions.

6. In the Result Type field, select Density. From the
Distribution dropdown list, select poisson. Type 2.3 in the
field for Mean.

7. Click Apply.

8. The values 0.10, 0.23, 0.27, 0.20, 0.12, and 0.05 appear in the
second column of the data window, which is named Density.
To see more decimal places in the display, click the Increase
Precision button on the DataSet toolbar.

9. To find the probability that more than 5 deaths occur in a 6-
month period, type 5 in the first cell of a new column and
name the column V3.
73

Chapter 3 Probability
10. In the Distribution Functions dialog, type V3 in the Source
Column field, and change the Result Type to Quantile.

11. Click OK.

12. The value 0.97 appears in a Probability column of the data
window. This means that the probability that more than five
deaths occur is , or 0.3.

Hypergeometric
Distribution

The hypergeometric distribution is used in the analysis of two
categorical variables, and is best described by the classic Urn Model.
Suppose an urn contains balls, of which are red and
are black. A hypergeometric random variable denotes the number of
red balls drawn when balls are taken from the urn without
replacement. Given the parameters , , and , the hypergeometric
probability density function is:

.

This density gives the probability that exactly red balls are drawn
from the urn.

The hypergeometric distribution is similar to the binomial
distribution: where a binomial variable is sampled from a finite
population with replacement, a hypergeometric variable is sampled
without replacement. In fact, as and the proportion of red
balls in the urn approaches , the hypergeometric distribution
converges to a corresponding binomial distribution.

Hypergeometric random variables arise primarily in acceptance
sampling in manufacturing. That is, the number of sample products
that should be tested for quality in a particular batch follows a
hypergeometric distribution. Such information can be used to
determine an acceptable limit for the number of defective products.

1 0.97–

b m n b m–=

k
m n k

fm n k, , r()

m
r⎝ ⎠

⎛ ⎞ n
k r–⎝ ⎠

⎛ ⎞

m n+

k⎝ ⎠
⎛ ⎞

--------------------------=

r

b ∞→
p

74

Common Probability Distributions for Discrete Variables
Spotfire S+ functions

dhyper, phyper, qhyper, rhyper

These functions require you to specify values for the number of red
balls in the urn , the number of black balls in the urn , and the
number of balls drawn without replacement .

Command line example

A box contains 100 balls, of which 50 are red and 50 are black. Ten
balls are drawn from the box at random without replacement. What is
the probability that all of the balls chosen will be red?

> dhyper(10, 50, 50, 10)

[1] 0.000593

Thus, the probability of choosing ten out of ten red balls from the box
is quite low.

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type 10 in the first cell.

3. Highlight the first column and choose Data � Distribution
Functions.

4. In the Results Type field, select Density. From the
Distribution dropdown list, choose hypergeometric. Type
10 for the Sample Size, and type 50 for both the Total
Successes and Total Failures.

5. Click OK.

6. The values 0.00 appears in the second column of the data
window, which is named Density. To see more decimal places
in the display, click the Increase Precision button on the
DataSet toolbar.

m() n()
k()
75

Chapter 3 Probability
OTHER CONTINUOUS DISTRIBUTION FUNCTIONS IN
SPOTFIRE S+

Beta
Distribution

The beta distribution is very versatile, and plots of the distribution
function can assume a wide variety of shapes. This flexibility allows
many uncertainties to be described by beta random variables.
Example applications include statistical likelihood ratio tests, random
walks, and Bayesian inference in decision theory.

The standard form of the beta probability density function is:

,

where , and are positive shape parameters, and is the
beta function,

.

Spotfire S+ functions

dbeta, pbeta, qbeta, rbeta

Each of these functions requires you to specify values for the two
shape parameters.

Exponential
Distribution

The exponential distribution is one-sided and is characterized by a
memoryless property. It is often used to model the lifetimes of machine
components and the wait times in Poisson processes. For example,
suppose that the random variable denotes the lifetime of a
particular electronic component. Given that the component survives
for months, the probability that it survives for more is not
dependent on . Formally, the memoryless property is stated in the
following conditional probability:

.

In Poisson processes, exponential random variables describe the wait
times between events.

fa b, x() 1
B a b,()
-------------------xa 1– 1 x–()b 1–=

0 x 1≤ ≤ a b B

B a b,() ua 1– 1 u–()b 1– ud
0

1

∫=

X

t s
t

P X t s X t>+>() P X s>()=
76

Other Continuous Distribution Functions in Spotfire S+
The exponential probability density function is defined as follows:

,

where and is a positive parameter.

Spotfire S+ functions

dexp, pexp, qexp, rexp

Each of these functions has an optional argument for the rate
parameter. By default, .

Gamma
Distribution

The gamma distribution is a generalization of the exponential
distribution. Where an exponential variable models the wait time
until the next event in a Poisson process, a gamma random variable
models the wait time until the nth event. In applied work, gamma
distributions provide models for many physical situations, including
meteorological precipitation processes and personal income data in
the United States.

The probability density function for a gamma random variable is
defined as:

,

where , is a shape parameter, and (the inverse of) is a
scale parameter, and is the gamma function.

Spotfire S+ functions

dgamma, pgamma, qgamma, rgamma

Each of these functions requires you to specify a value for the shape
 parameter. They also have optional arguments for the rate

parameter, which is defined to be 1 by default.

Weibull
Distribution

The Weibull distribution is closely related to the exponential
distribution, and is commonly used in manufacturing to test the
breaking strength of materials. In this context, Weibull random
variables can model the lifetimes of machine components more
realistically than exponential random variables. This is because the

fλ x() λe λx–=

x 0> λ

λ()
λ 1=

fα λ, x() λα

Γ α()
------------xα 1– e λx–=

x 0> α 0> β λ
Γ

α() λ()
77

Chapter 3 Probability
Weibull distribution has a failure rate (or hazard function) that varies
with time, whereas the exponential has a constant failure rate due to
the memoryless property. In some contexts, the lifetime of particular
components may increase or decrease with time, making the Weibull
distribution more appropriate.

The probability density function for Weibull random variables is:

,

where , is a positive shape parameter, and is a positive
scale parameter. When , this distribution corresponds to an
exponential distribution with a hazard rate of . The failure rate of
the Weibull distribution decreases with time when , is
constant when , and increases when . In Spotfire S+, the
Weibull distribution is the default for Parametric Survival and Life
Testing.

Spotfire S+ functions

dweibull, pweibull, qweibull, rweibull

Each of these functions requires you to specify a value for the shape
 parameter. They also have an optional argument for the scale
 parameter, which is defined to be 1 by default.

Logistic
Distribution

The logistic distribution is similar in shape to a Gaussian distribution,
though it has longer tails. Logistic random variables are used heavily
to model growth curves, but they have also been used in bioassay
studies and other applications.

The probability density function for a logistic random variable is
defined to be:

,

where is a location parameter and is a positive scale parameter.

fα β, x() α
βα
-----xα 1– x

β
---⎝ ⎠

⎛ ⎞ α
–⎝ ⎠

⎛ ⎞exp=

x 0> α β
α 1=

1 β⁄
0 β 1< <

β 1= β 1>

α()
β()

fλ θ, x()

λ x–
θ

------------⎝ ⎠
⎛ ⎞exp

θ 1 λ x–
θ

------------⎝ ⎠
⎛ ⎞exp+⎝ ⎠

⎛ ⎞ 2
---=

λ θ
78

Other Continuous Distribution Functions in Spotfire S+
With respect to growth curves, the logistic distribution function
satisfies the following: the derivative of with respect to is
proportional to with . The interpretation
of this statement is that the rate of growth is proportional to the
amount already grown, multiplied by the amount of growth that is
still expected.

Spotfire S+ functions

dlogis, plogis, qlogis, rlogis

Each of these functions has optional arguments for the location
and scale parameters. By default, the values of these arguments
are and .

Cauchy
Distribution

Like the Gaussian distribution, the Cauchy distribution is unimodal
and symmetric. Like the distribution, however, plots of the Cauchy
distribution have tails that tend to zero much more slowly than a
normal distribution. Given two independent standard normal
variables and , each having mean 0 and standard deviation 1, a

standard Cauchy random variable is defined as their quotient:

.

Thus, a standard Cauchy random variable follows a distribution
with one degree of freedom. A general Cauchy variable is defined by
multiplying by a positive scale parameter , and then adding a
location parameter .

Given and , the probability density function for a general Cauchy
random variable is:

.

The density function for a standard Cauchy variable corresponds to
the case when and .

F
F x

F x() A–[] B F x()–[] A B<

λ()
θ()

λ 0= θ 1=

t

Z1 Z2

Z

Z
Z1

Z2
-----=

t

Z θ
λ

λ θ

fλ θ, x() πθ 1 x λ–
θ

------------⎝ ⎠
⎛ ⎞ 2

+⎝ ⎠
⎛ ⎞ 1–

=

λ 0= θ 1=
79

Chapter 3 Probability
The Cauchy density has a few peculiar properties that provide
counterexamples to some accepted statistical results. For example, the
tails of the density are long enough so that its mean and variance do
not exist. In other words, the density decreases so slowly that a wide
range of values can occur with significant probability, and so the
integral expressions for the mean and variance diverge.

Spotfire S+ functions

dcauchy, pcauchy, qcauchy, rcauchy

Each of these functions has optional arguments for the location
and scale parameters. By default, the values of these parameters
are and .

Lognormal
Distribution

The lognormal distribution is a logarithmic transformation of the
normal distribution. Given a normal random variable with
parameters and , a lognormal random variable is defined to be
its exponential:

.

Thus, the natural logarithm of data that follows a lognormal
distribution should be approximately Gaussian.

The probability density function for a lognormal random variable is:

,

where , and and are the mean and standard deviation,
respectively, of the logarithm of the random variable. With this

definition, is a scale parameter for the distribution, and is a
shape parameter.

The lognormal distribution is sometimes referred to as the
antilognormal distribution, since it is the distribution of an exponential
(or antilogarithm) of a normal variable. When applied to economic
data, particularly production functions, it is sometimes called the
Cobb-Douglas distribution. In some cases, lognormal random variables
can represent characteristics like weight, height, and density more
realistically than a normal distribution. Such variables cannot assume

λ()
θ()

λ 0= θ 1=

Y
μ σ X

X eY=

fμ σ, x() 1
σx 2π
---------------- 1

2σ2
-------- x μ–log()2–⎝ ⎠

⎛ ⎞exp–=

x 0> μ σ 0>

eμ σ
80

Other Continuous Distribution Functions in Spotfire S+
negative values, and so they are naturally described by a lognormal
distribution. Additionally, with a small enough , it is possible to
construct a lognormal distribution that closely resembles a normal
distribution. Thus, even if a normal distribution is felt to be
appropriate, it might be replaced by a suitable lognormal distribution.

Spotfire S+ functions

dlnorm, plnorm, qlnorm, rlnorm

Each of these functions has optional arguments for the meanlog
and sdlog parameters. By default, the values of these arguments
are and .

Distribution of
the Range of
Standard
Normals

The distribution of the range of standard normal random variables is
primarily used for the construction of R-charts in quality control
work. Given standard normal variables , each with
mean 0 and standard deviation 1, the range is defined as the difference
between the minimum and maximum of the variables.

Spotfire S+ functions

dnrange, pnrange, qnrange, rnrange

Each of these functions requires you to specify a value for the size
 of the sample. They also have an optional nevals argument that

defines the number of iterations in the density, probability, and
quantile computations. The probability density function for the range
of standard normals is a complicated integral equation, and can
therefore require significant computation resources. A higher value of
nevals will result in better accuracy, but will consume more machine
time. By default, nevals is set to 200.

σ

μ()
σ()

μ 0= σ 1=

n Z1 Z2 … Zn, , ,

n()
81

Chapter 3 Probability
Multivariate
Normal
Distribution

The multivariate normal distribution is the extension of the Gaussian
distribution to more than one dimension. Let be the number of
dimensions in the multivariate distribution, let be a vector of length

 specifying the mean in each dimension, and let be a
variance-covariance matrix. The probability density function for a
multivariate normal random variable is given by:

,

where is the vector , and is the determinant of .

Spotfire S+ functions

dmvnorm, pmvnorm, rmvnorm

Each of these functions has an optional argument for the mean vector
. In addition, you can specify the variance-covariance matrix

through the cov and sd arguments. If supplied, the variance-
covariance matrix is the product of the cov matrix and the sd
argument, which contains the standard deviations for each
dimension. By default, mean is a vector of zeros, cov is an identity
matrix, and sd is a vector of ones.

Stable Family
of
Distributions

Stable distributions are of considerable mathematical interest. A
family is considered stable if the convolution of two distributions from
the family also belongs to the family. Each stable distribution is the
limit distribution of a suitably scaled sum of independent and
identically distributed random variables. Statistically, they are used
when an example of a very long-tailed distribution is required.

Spotfire S+ functions

rstab

The rstab function requires a value from the interval for an
index argument. For small values of the index, the distribution
degenerates to point mass at 0. An index of 2 corresponds to the
normal distribution, and an index of 1 corresponds to the Cauchy
distribution. Smaller index values produce random numbers from
stable distributions with longer tails. The rstab function also has an
optional skewness argument that indicates the modified skewness of

d
μ

d Σ d d×

μ Σ, x() 2π() d 2⁄– Σ 1 2⁄– 1
2
--- x μ–()′ Σ 1– x μ–()–⎝ ⎠

⎛ ⎞exp=

x x1 x2 … xd, , ,() Σ Σ

μ() Σ()

0 2],(
82

Other Continuous Distribution Functions in Spotfire S+
the distribution. Negative values correspond to left-skewed random
numbers, where the median is smaller than the mean (if it exists).
Positive values of skewness correspond to right-skewed random
numbers, where the median is larger than the mean. By default, the
skewness is set to 0.

Spotfire S+ contains only the rstab probability function for the stable
family of distributions. The efficient computation of density,
probability, and quantile values is currently an open problem.
83

Chapter 3 Probability
OTHER DISCRETE DISTRIBUTION FUNCTIONS IN
SPOTFIRE S+

Geometric
Distribution

The geometric distribution describes the number of failures before
the first success in a sequence of Bernoulli trials. In binomial
distributions, we think of the number of trials and the probability of
a success as fixed parameters, so that the number of successes is
the random variable. Reversing the problem, we could ask how many
trials would be required to achieve the first success. In this
formulation, the number of failures is the random variable, and and

 are fixed.

A geometric random variable with a parameter has the following
probability density function:

,

This density gives the probability that exactly failures occur before
a success is achieved.

Spotfire S+ functions

dgeom, pgeom, qgeom, rgeom

Each of these functions require you to specify a value for the prob
parameter.

Negative
Binomial
Distribution

The negative binomial distribution is a generalization of the
geometric distribution. It models the number of failures before
exactly successes occur in a sequence of Bernoulli trials. When

, a negative binomial random variable follows a geometric
distribution, and in general, a negative binomial variable is a sum of
independent geometric variables.

Given the probability of a success and the number of successes as
parameters, the negative binomial probability density function is:

,

n
p k

p
k 1=

p

fp n() p 1 p–()n= n 0 1 2 …, , ,=

n

p()

r
r 1=

r

p r

fp r, k()
r k 1–+

k⎝ ⎠
⎛ ⎞ pr 1 p–()k= k 0 1 2 …, , ,=
84

Other Discrete Distribution Functions in Spotfire S+
This density gives the probability that exactly failures occur before
 successes are achieved.

Spotfire S+ functions

dnbinom, pnbinom, qnbinom, rnbinom

Each of these functions require you to specify values for the size
and prob parameters.

Distribution of
Wilcoxon Rank
Sum Statistic

The Wilcoxon rank sum statistic, also known as the Mann-Whitney test
statistic, is a nonparametric method for comparing two independent
samples. The test itself is best described in terms of treatment and
control groups. Given a set of experimental units, we randomly
select and assign them to a control group, leaving units for a
treatment group. After measuring the effect of the treatment on all
units, we group the observations together and rank them in
order of size. If the sum of the ranks in the control group is too small
or too large, then it’s possible that the treatment had an effect.

The distribution of the Wilcoxon rank sum statistic describes the
probability characteristics of the test values. Given and as

parameters, the rank sum statistic takes on values between

and .

Spotfire S+ functions

dwilcox, pwilcox, qwilcox, rwilcox

Each of these functions require you to specify sizes (and) for the
two independent samples.

The wilcox functions are available in Spotfire S+ via the command
line only.

k
r

r()
p()

m n+

n m

m n+

m n
m m 1+()

2

m m 2n 1+ +()
2

m n
85

Chapter 3 Probability
EXAMPLES: RANDOM NUMBER GENERATION

In this section, we illustrate two of the common algorithms for
random number generation: the inverse cdf method and the polar
method. The algorithms we discuss are both standard techniques from
introductory statistics textbooks, and involve transformations of
uniform random variables. The techniques can thus be applied to
develop random number generators for distributions that are not
implemented in Spotfire S+. The algorithms we present do not
encompass all random number generators for all distributions, and
due to efficiency considerations, they are not the algorithms
implemented in Spotfire S+. Nevertheless, they are solid examples of
how the Spotfire S+ probability functions can be modified to serve
different analytical needs.

For details on the pseudo-random number generator implemented in
Spotfire S+, see Chapter 34, Mathematical Computing in Spotfire S+.

Inverse
Distribution
Functions

A fundamental result from probability theory states that if is a
uniform random variable on the interval , and another variable

 for some function , then the cumulative distribution
function for is . This leads to the inverse cdf method for generating
random numbers from a uniform distribution:

1. Given a distribution function , find an expression

for the inverse function .

2. Generate uniform random variables on the interval , and

substitute them into . The resulting values are randomly
sampled from the distribution .

This method is practical for those distribution functions with inverses
that can be easily calculated.

The Exponential
Distribution

Exponential random variables have a probability density function

, where and is a positive parameter. The

exponential distribution function is the integral of over positive

 values, which gives . Solving for , we find the

U
0 1[,]

X F 1– U()= F
X F

u F x()=

x F 1– u()=

0 1[,]

F 1–

F

fλ x() λe λx–= x 0> λ

Fλ fλ

x Fλ x() 1 e λx––= Fλ x
86

Examples: Random Number Generation
inverse function . We can therefore generate

uniform random variables and substitute them into to calculate
exponential variables. The code below packages this process into a
Spotfire S+ function exp.rng.

> exp.rng <- function(n,lambda=1) {
+ unif.variables <- runif(n,0,1)
+ return((-1/lambda)*log(1-unif.variables))
+ }

To generate 15 exponential random variables with the default
parameter , use the following command:

> exp.rng(15)

 [1] 0.5529780 3.0265630 0.5664921 1.2665062 0.1150221
 [6] 0.1091290 2.4797445 2.7851495 1.0714771 0.1501076
[11] 1.5948872 1.4719187 0.4208105 0.8323065 0.6344408

The Double
Exponential
Distribution

The double exponential or Laplace distribution is not explicitly
implemented in Spotfire S+. However, it is straightforward to develop
a random number generator for this distribution based on a
transformation of exponential variables. To do this, we use the
method outlined Law and Kelton’s text <reference-
year>(1991)<reference-year>.

The probability density function for a double exponential random
variable is defined as:

,

where is a positive parameter. Whereas the regular exponential
density is defined for positive only, the Laplace density is defined
for all . In fact, plots of the Laplace density function show that it is
two exponential densities placed back-to-back. In other words, it is
symmetric about and includes both the exponential density
and its mirror image across the axis. This gives the process below
for generating Laplace random variables.

Fλ
1– x() 1 x–()ln– λ⁄=

Fλ
1–

λ 1=

fλ x() λ
2
---e λ x–=

λ
x

x

x 0=

y

87

Chapter 3 Probability
1. Calculate an exponential random variable .

2. Calculate a uniform random variable on the interval .

3. If , return . This step ensures that we sample
negative values from the Laplace distribution approximately
half of the time.

4. If , return . This step ensures that we sample
positive values from the Laplace distribution approximately
half of the time.

The code below packages this process into the function laplace.rng.

> laplace.rng <- function(n,lambda=1) {
+ return(rexp(n,rate=lambda) * ifelse(runif(n)<=.5, -1, 1))
+ }

To generate 12 Laplace random variables with the default parameter
, use the following command:

> laplace.rng(12)

 [1] -0.40098376 -0.37866455 -0.97648670 3.31844284
 [5] 0.03778431 -0.11506231 -0.45228857 -1.66733404
 [9] -0.97993096 -3.84597617 3.31298104 -0.04314876

The Polar
Method

The polar method, or Box-Muller method for generating random
variables is most often seen in the context of the normal or
multivariate normal distributions. The justification behind the
method relies on a few theoretical details which we only briefly
mention here. For a rigorous justification of the method, we refer the
interested user to a general statistics text such as Rice (1995).

A fundamental transformation law of probabilities states that if is a
vector of jointly distributed continuous random variables that is
mapped into , then the density functions of and are related via
the determinant of the Jacobian of the transformation. We can use this
result to relate the probability characteristics of normally distributed
cartesian coordinates and their corresponding polar

coordinates .

X

U 0 1[,]

U 0.5≤ X–

U 0.5> X

λ 1=

X

U X U

X1 X2(,)

r θ(,)
88

Examples: Random Number Generation
The Normal
Distribution

The two-dimensional polar method for generating normal random
variables is:

1. Generate two uniform random variables and on the

interval .

2. Calculate the values

.

3. It can be shown with the fundamental transformation law that
 and are independent Gaussian random variables with

mean 0 and standard deviation . Graphically,

is the radius of the point in polar coordinates, and

 is the angle .

4. To calculate normal random variables with arbitrary mean ,
return the values and .

The code below packages this process into the Spotfire S+ function
gaussian.rng.

> gaussian.rng <- function(n,mu=0,sigma=1) {
+ x <- vector(mode="numeric")
+ # Check whether n is even or odd.
+ if(abs(n/2-floor(n/2))<.Machine$double.eps) {
+ odd.indices <- seq(from=1,to=n,by=2)
+ even.indices <- seq(from=2,to=n,by=2)
+ unif.variables <- runif(n,0,1) }
+ else { odd.indices <- seq(from=1,to=n,by=2)
+ even.indices <- seq(from=2,to=n+1,by=2)
+ unif.variables <- runif(n+1,0,1) }
+ u1 <- unif.variables[odd.indices]
+ u2 <- unif.variables[even.indices]
+ x[odd.indices] <- sqrt(-2*sigma*log(u1))*cos(2*pi*u2)
+ x[even.indices] <- sqrt(-2*sigma*log(u1))*sin(2*pi*u2)
+ x <- x+mu
+ return(x[1:n])
+ }

U1 U2

0 1[,]

X1 2σ U1()ln– 2πU2()cos=

X2 2σ U1()ln– 2πU2()sin=

X1 X2

σ 2σ U1()ln–

r X1 X2(,)

2πU2 θ

μ
X1 μ+ X2 μ+
89

Chapter 3 Probability
To generate 12 Gaussian random variables with the default
parameters and , use the following command:

> gaussian.rng(12)

 [1] -1.54634074 -0.37344362 -0.10249664 0.24225650
 [5] 1.02383498 0.80662589 0.40487670 -2.15404022
 [9] -1.22147040 0.02814069 0.17593919 -1.33878256

μ 0= σ 1=
90

References
REFERENCES

Altman, D.G. (1991). Practical Statistics for Medical Research. London:
Chapman & Hall.

Chambers, J.M. & Hastie, T.J. (1993). Statistical Models in S. London:
Chapman & Hall.

Chambers, J.M., Mallows, C.L., & Stuck, B.W. (1976). A method for
simulating random variables. Journal of the American Statistical
Association, 71(354):340-344.

DeGroot, M.H. (1975). Probability and Statistics. Reading,
Massachusetts: Addison-Wesley Publishing Company.

Evans, M., Hastings, N., and Peacock, B. (1993). Statistical
Distributions (2nd ed.). New York: John Wiley & Sons, Inc.

Freedman, D., Pisani, R., & Purves, R. (1978). Statistics. New York:
W.W Norton and Company.

Hanushek, E.A. & Jackson, J.E. (1977). Statistical Methods for Social
Scientists. Orlando, FL: Academic Press, Inc.

Hartley, H.O. (1942). The range in random samples. Biometrika,
32:334-348.

Hoel, P.G., Port, S.C., & Stone, C.J. (1971). Introduction to Probability
Theory. Boston: Houghton Mifflin Company.

Iversen, G.R. & Gergen, M. (1997). Statistics: The Conceptual Approach.
New York: Springer-Verlag Inc.

Johnson, N.L., Kotz, S., & Balakrishnan, N. (1994). Continuous
Univariate Distributions, Vol.1 (2nd ed.). New York: John Wiley & Sons,
Inc.

Johnson, N.L., Kotz, S., & Balakrishnan, N. (1995). Continuous
Univariate Distributions, Vol.2 (2nd ed.). New York: John Wiley & Sons,
Inc.

Larsen, R.J. & Marx, M.L. (1981). An Introduction to Mathematical
Statistics and Its Applications. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Law, A.M., & Kelton, W.D. (1991). Simulation Modeling and Analysis.
New York: McGraw-Hill, Inc.
91

Chapter 3 Probability
Miller, I. & Freund, J.E. (1977). Probability and Statistics for Engineers
(2nd ed.). Englewood Cliffs, NJ: Prentice-Hall, Inc.

Rice, J.A. (1995). Mathematical Statistics and Data Analysis (2nd ed.).
Belmont, CA: Duxbury Press.

Rosner, B. (1995). Fundamentals of Biostatistics (4th ed.). Belmont, CA:
Duxbury Press.

Venables, W.N. & Ripley B.D. (1997). Modern Applied Statistics with
Spotfire S+ (2nd ed.). New York: Springer-Verlag.
92

Introduction 94

Summary Statistics 95
Measures of Central Tendency 95
Measures of Dispersion 98
Measures of Shape 102
The summary Function 105

Measuring Error in Summary Statistics 106
Standard Error of the Mean 106
Confidence Intervals 107

Robust Measures of Location and Scale 110
M Estimators of Location 110
Measures of Scale Based on M Estimators 112

References 115

DESCRIPTIVE STATISTICS 4
93

Chapter 4 Descriptive Statistics
INTRODUCTION

When collecting data from a particular population, a researcher often
knows a few defining characteristics about the population. For
example, the researcher may know that the data is from a nearly
normal population, in the sense that its theoretical distribution is close
to Gaussian. It is sometimes tempting to jump directly into complex
data analyses and assume that a known theoretical distribution fully
describes the data. However, it is usually wise to assume little, and
instead examine the data in a rigorous manner.

There are two complementary approaches when initially examining a
data set: exploratory data analysis and descriptive statistics. Exploratory
data analysis involves various graphs that illustrate relationships in
the data set. An example of this technique is provided in Chapter 1,
Introduction to Statistical Analysis in Spotfire S+. In this chapter, we
discuss common descriptive statistics that are used to numerically
examine the characteristics of a data set. Given a set of
observations , we think of them as random samples
from a population with a particular distribution. In this context,
descriptive statistics are estimates of the location, scale, and shape of
the distribution. We begin by discussing common measures such as
the sample mean and variance. We then present a few of the more
robust measures, such as M estimators, Huber estimates, and bisquare
functions.

Throughout this chapter, we include examples in which descriptive
statistics are used and computed in TIBCO Spotfire S+. Wherever
possible, we provide menu examples for the Spotfire S+ graphical
user interface (GUI). At this time, however, there are some
computations that are available only through the command line
functions.

n
X1 X2 … Xn, , ,
94

Summary Statistics
SUMMARY STATISTICS

Measures of
Central
Tendency

Measures of central tendency provide an indication of the center of a
population. Because of this, they are sometimes referred to as measures
of location. Estimates of population centers are useful in determining
the expected value of a sample, or where (on average) an observation
from the population tends to lie.

Mean The mean is by far the most common measure of central tendency.

Given a sample , the mean is simply the arithmetic
average of the observations:

.

It can be shown that is an unbiased estimate of the true mean of the
population. Suppose the theoretical distribution from which the
observations are sampled has a mean of . Then the expected value

of is equal to , and the sample mean provides an unbiased

estimate of the true mean. In other words, is equal to the true mean
of the population on average.

Command line example

The Spotfire S+ function mean requires you to specify a numeric
vector, and it returns the arithmetic average of the vector.

> mean(lottery.payoff)

[1] 290.3583

GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Mean.

X1 X2 … Xn, , , X

X 1
n
--- Xi

i 1=

n

∑=

X

μ

X μ

X

95

Chapter 4 Descriptive Statistics
4. Click OK.

5. The value 290.3583 appears in a Report window.

The sample mean is attractive as a measure of location because it is a

conceptually straightforward estimate. However, is very sensitive
to outlying observations. By changing a single observation in a
sample, the arithmetic mean can be made arbitrarily large or
arbitrarily small. As a result, it is often used in conjunction with robust
measures of location, which are insensitive to outlying data points.
We discuss a few of the simpler robust measures here. For additional
statistics, see the section Robust Measures of Location and Scale.

Trimmed Mean The first robust measure of location that we discuss is the trimmed
mean. Given a sample, we first sort the observations in ascending
order. If we know that a certain percentage of the observations are
prone to extreme values, we discard them from either end of the
sorted data before computing the mean. As a result, the trimmed
mean estimates the population center more closely than the
arithmetic mean, especially in the presence of outliers.

Example

The Spotfire S+ function mean has an optional trim argument for
computing the trimmed mean of a vector. A value between 0 and 0.5,
representing the percentage of observations to be discarded from
either extreme of the data vector, can be specified for trim. The
arithmetic average of the trimmed vector is returned. This example
computes the 20% trimmed mean of the lottery.payoff vector.

> mean(lottery.payoff, trim=0.2)

[1] 274.1558

Median The second robust measure of location that we discuss is the median.
Given a sample of size , we first sort the observations in ascending
order. If is odd, the median is defined to be the middle value. If

 is even, then is equal to the average of the two middle values.
The median is not affected by extreme values in a sample, and is
therefore quite robust against outlying observations.

X

n
n M

n M
96

Summary Statistics
Command line example

The Spotfire S+ function median requires you to specify a numeric
vector, and it returns the median of the vector.

> median(lottery.payoff)

[1] 270.25

Note that the median of the lottery.payoff vector is lower than the
arithmetic mean. This indicates that the data vector has a few large
values that influence the mean.

GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Median.

4. Click OK.

5. The value 270.25 appears in a Report window.

Mode The third robust measure of location that we discuss is the mode. The
mode of a sample is defined to be the most frequently occurring value
in it. Graphically, the mode is the value at which a histogram of the
data reaches a maximum. For fairly symmetric distributions of data,
the mode is a good indicator of the population center. For skewed
distributions, the mode can indicate whether the bulk of the values
occur in the higher or lower ranges.

Example

You can use the Spotfire S+ function table to compute the mode of a
sample. The following two commands define and test a function that
returns the mode of a numeric vector. Note that this statistical
property is not related to the Spotfire S+ function mode, which returns
the data class of a Spotfire S+ object.

> Mode <- function(x) {
+ tab <- table(x)
+ Mode <- as.numeric(names(tab)[table(x) == max(tab)])
+ return(c(mode=Mode, count=max(tab))) }
97

Chapter 4 Descriptive Statistics
> Mode(lottery.payoff)

 mode count
 127 4

This result says that the value 127 occurs most often (4 times) in the
lottery.payoff vector. This value is considerably less than either the
mean or the median, which may indicate that a large number of the
lottery.payoff observations are in the lower range of values.

Measures of
Dispersion

Measures of dispersion provide an indication of the variability, or
“scatteredness,” in a collection of data points. Because of this,
dispersion statistics are sometimes referred to as measures of scale.
Many of these statistics are based on averaging the distance of each
observation from the center of the data, and therefore involve
measures of location.

Range As a first measure of scale in a data set, it is often natural to examine
the range, which is the difference between the maximum and
minimum values.

Command line example

The Spotfire S+ function range requires you to specify a numeric
object, and it returns the minimum and maximum values in the
object.

> range(lottery.payoff)

[1] 83.0 869.5

GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Minimum and Maximum.

4. Click OK.

5. The values 83.0 and 869.5 appear in a Report window.
98

Summary Statistics
Variance and
Standard
Deviation

The variance of a sample is the average value of the squared deviation
from the sample mean, and the standard deviation is the square root of
the variance. Given a sample and the arithmetic mean

of the sample , the variance is defined as:

.

The standard deviation of the sample is therefore equal to . The sum

of squares for the sample is equal to .

If is the average of the squared deviation, one might expect a

divisor of instead of . However, it can be shown that is an
unbiased estimate of the population variance, whereas a divisor of
produces a biased estimate. Suppose the theoretical distribution from

which the observations are sampled has a variance of . Then the

expected value of is equal to , and the sample variance provides

an unbiased estimate of the true variance. In other words, is equal
to the true variance of the population on average.

Command line example

The Spotfire S+ functions var and stdev require you to specify a
numeric vector, and they return the sample variance and standard
deviation of the vector, respectively.

> var(lottery.payoff)

[1] 16612.21

> stdev(lottery.payoff)

[1] 128.8884

We can also compute the biased estimate of variance with an optional
argument to var:

> var(lottery.payoff, unbiased=F)

X1 X2 … Xn, , ,

X s2

s2 1
n 1–
------------ Xi X–()2

i 1=

n

∑=

s

Xi X–()2

i
∑

s2

n n 1– s2

n

σ2

s2 σ2

s2
99

Chapter 4 Descriptive Statistics
[1] 16546.81

The standard deviation using the biased estimate is the square root of
this value, or 128.6344. By default, the unbiased argument is set to
TRUE, giving an estimate of the variance that uses the divisor.

With the SumSquares argument, we can compute the unnormalized
sum of squares for lottery.payoff:

> var(lottery.payoff, SumSquares=T)

[1] 4202890

GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Variance and Std. Deviation.

4. Click OK.

5. The unbiased variance 16612.21 and corresponding standard
deviation 128.8884 appear in a Report window.

Like the sample mean, the range and sample variance are both very
sensitive to outliers. As a result, they are often used in conjunction
with robust measures of scale, which are insensitive to outlying
observations. We discuss a few of the simpler robust measures here.
For additional statistics, see the section Robust Measures of Location
and Scale.

Median Absolute
Deviation

The first robust measure of scale that we discuss is the median absolute
deviation, or MAD. Given a collection of data points
and a measure of the population center, the MAD is the median
distance from the to the center. For example, if the population

center is the mean , the MAD is defined as the median of the values

. If the population center is the median , the MAD is

defined as the median of the values .

n 1–

X1 X2 … Xn, , ,

Xi

X

Xi X– M
Xi M–
100

Summary Statistics
Example

The Spotfire S+ function mad requires you to specify a numeric
vector, and it returns the median absolute deviation of the vector. The
mad function includes an optional center argument, which defines the
measure of location to use in the computation. By default, center is
equal to the median of the sample.

> mad(lottery.payoff)

[1] 122.3145

With the following syntax, we compute the median absolute
deviation using the 20% trimmed mean as the population center:

> mad(lottery.payoff,
+ center = mean(lottery.payoff, trim=0.2))

[1] 123.2869

Interquartile
Range

The second robust measure of scale that we discuss is the interquartile
range, or IQR. Given a collection of data points , the
IQR is the difference between the upper and lower (or third and first)
quartiles of the sample. The IQR is the visual tool used in boxplots to
display the spread of a sample around its median.

Command line example

You can use the Spotfire S+ function quantile to compute the
interquartile range of a sample. The following two commands define
and test a function that returns the IQR of a numeric vector.

> iqr <- function (x) diff(quantile(x, c(0.25, 0.75)))
> iqr(lottery.payoff)

 75%
 169.75

Note that the quantile function interpolates between data points to
find the specified quantiles. For integer samples, it is sometimes
desirable to compute the quartiles without interpolation. In this
situation, the boxplot function can be used with the plot=F argument.
The boxplot function defines quantiles to be exactly equal to a data
point, or halfway between two points. This was the method first
introduced by Tukey for computing quantiles, presumably because it

X1 X2 … Xn, , ,
101

Chapter 4 Descriptive Statistics
made the computations by hand easier. The following commands
define a function for returning the IQR of a numeric vector without
interpolation:

> iqr.data <- function(x) {
+ temp.boxplot <- boxplot(x, plot=F)
+ upper.quart <- temp.boxplot$stats[2,1]
+ lower.quart <- temp.boxplot$stats[4,1]
+ return(upper.quart-lower.quart)
+ }

> iqr.data(lottery.payoff)

[1] 171

GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
First Quartile and Third Quartile.

4. Click OK.

5. The values 194.25 and 364.00 appear in a Report window.
The interquartile range is , or 169.75.

Measures of
Shape

Measures of shape describe the overall pattern in the distribution of data
values. For example, generate a histogram of a collection of data
points. Measures of shape might describe how symmetric or
asymmetric the distribution in the histogram is, whether it has a
unique center or multiple centers, or if the distribution is relatively
flat. The most popular measures of shape compare a particular data
set to a normal distribution. The normal distribution provides a
reference point, and the measures of shape indicate how similar or
different the data is to a Gaussian density function.

364.00 194.25–
102

Summary Statistics
The measures of shape that Spotfire S+ computes are based on the
rth central moment of a sample. Given a sample with

arithmetic mean , the rth central moment is defined as:

.

Skewness Skewness is a signed measure that describes the degree of symmetry,
or departure from symmetry, in a distribution. For a sample with
second and third central moments of and , respectively, the

coefficient of skewness is defined to be:

.

Positive values of indicate skewness (or long-tailedness) to the
right, negative values indicate skewness to the left, and values close to
zero indicate a nearly-symmetric distribution. Spotfire S+ implements
a variation of called Fisher’s G1 measure to calculate skewness. If

the size of a sample is , Fisher’s G1 measure of skewness is:

.

Command line example

> skewness(lottery.payoff)

[1] 1.021289

This value is positive, which indicates a long tail to the right of the
distribution’s center. The result matches our conclusions from the
robust measures of location: both the median and mode of
lottery.payoff are considerably less than the mean, which imply
that a few large values skew the distribution.

X1 X2 … Xn, , ,

X mr

mr
1
n
--- Xi X–()r

i 1=

n

∑=

m2 m3

b1

b1
m3

m2
3 2⁄

--------------=

b1

b1

n

g1
b1 n n 1–()

n 2–
------------------------------=
103

Chapter 4 Descriptive Statistics
GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Skewness.

4. Click OK.

5. The value 1.021289 appears in a Report window.

Kurtosis Kurtosis is a measure that describes the degree of peakedness in a
distribution. For a sample with second and fourth central moments of

 and , respectively, the coefficient of kurtosis is defined to be:

.

Large values of usually imply a high peak at the center of the data,

and small values of imply a broad peak at the center. Spotfire S+

implements a variation of called Fisher’s G2 measure to calculate

kurtosis. If the size of a sample is , Fisher’s G2 measure of kurtosis
is:

.

Command line example

> kurtosis(lottery.payoff)

[1] 1.554491

GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Kurtosis.

m2 m4 b2

b2
m4

m2
2

------=

b2

b2

b2

n

g2
n 1+() n 1–()
n 2–() n 3–()

---------------------------------- b2
3 n 1–()

n 1+
--------------------–=
104

Summary Statistics
4. Click OK.

5. The value 1.554491 appears in a Report window.

The summary
Function

The Spotfire S+ function summary can operate on numeric objects to
return basic descriptive statistics in a tabular format. The output of the
summary function includes the minimum, maximum, quartiles, mean,
and median of numeric data. It is useful for printing purposes, and for
viewing a group of descriptive statistics together in one table.

Command line example

> summary(lottery.payoff)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 83 194.25 270.25 290.36 364 869.5

GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Mean and the Quantiles group: Minimum, First Quartile,
Median, Third Quartile, Maximum.

4. Click OK.

5. The values 83.0, 194.25, 270.25, 290.36, 364.0, and 869.5
appear in a Report window.
105

Chapter 4 Descriptive Statistics
MEASURING ERROR IN SUMMARY STATISTICS

Once we compute summary statistics for a particular collection of
data points, we are interested in measuring the amount of variation in
the estimates. This informs us how much emphasis we should give the
estimates when proceeding with statistical analyses of the data. Two
common measures of the variability in descriptive statistics are called
standard error and confidence intervals. In this section, we discuss these
measures for the sample mean only, as they are both based on large-
sample asymptotics. Their justifications rely on normal
approximations, which are not necessarily meaningful in the context
of the sample variance and other measures.

Standard Error
of the Mean

The standard error of the mean (or SEM) is a measure of the variation in

the location estimate . Suppose that a sample is from

a population with a true mean and variance of and ,

respectively. We compute the sample mean and the sample

variance , and we wish to find a measure of the potential error in

. Since is an unbiased estimate, its expected value is equal to the
true mean . Moreover, it can be shown that the standard deviation

of is equal to . The following estimate is therefore defined
as the standard error of the mean:

.

In practice, the SEM is useful in the context of repeated sampling. For
instance, suppose multiple samples of size are taken from the same

population. In this situation, we think of the arithmetic mean as a
random variable with a particular distribution. The Central Limit

Theorem tells us that, after enough samples, the distribution of is

approximately normal with parameters and . Since the bulk of

X X1 X2 … Xn, , ,

μ σ2

X

s2

X X
μ

X σ n⁄ SX

SX
s
n

-------=

n

X

X

μ σ2
106

Measuring Error in Summary Statistics
the values in a normal distribution occur within two standard
deviations of the mean, we expect the arithmetic mean of a sample to

be within twice the SEM of .

Command line example

You can use the Spotfire S+ function stdev to compute the standard
error of the mean for a sample. The following two commands define
and test a function that returns the SEM of a numeric vector.

> sem <- function(x) c(mean = mean(x),
+ SEM = stdev(x)/sqrt(length(x)))
> sem(lottery.payoff)

 mean SEM
 290.3583 8.087176

GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Mean and Std. Error of Mean.

4. Click OK.

5. The values 290.358268 and 8.087176 appear in a Report
window.

Confidence
Intervals

A confidence interval is a range of values that contains an estimate with
some specified probability, or confidence. If a confidence interval spans
a relatively small range, we can be reasonably sure that an estimate is
accurate. Conversely, if an interval is large, then the estimate can vary
widely from sample to sample. In most analyses, 95% confidence
levels are used to understand the variability and uncertainty in an
estimate.

Spotfire S+ computes upper and lower confidence levels for the

sample mean by using multiples of the SEM. Suppose that a
sample is from a population with a true mean of . We

first calculate the sample mean and the standard error of the mean

X

X
X1 X2 … Xn, , , μ

X

107

Chapter 4 Descriptive Statistics
. For point estimates such as , Spotfire S+ implements confidence

intervals based on quantiles of a distribution. This is because the

standardized quantity follows a distribution with

degrees of freedom. The upper and lower % confidence levels
are therefore defined as:

,

where is a function that returns quantiles of the distribution

with degrees of freedom. To compute 95% confidence levels,
we set .

Command line example

You can use the Spotfire S+ function t.test to compute confidence
levels for the mean of numeric vector. The t.test function has an
optional conf.level argument, which is set to 0.95 by default.

> t.test(lottery.payoff)

One-sample t-Test

data: lottery.payoff
t = 35.9035, df = 253, p-value = 0
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 274.4315 306.2850
sample estimates:
 mean of x
 290.3583

This result says that the 95% lower confidence level for the mean is
274.4315, and the upper confidence level is 306.285. If we take
multiple samples similar to the lottery.payoff vector, we can expect
about 95% of the sample means to lie between 274.4315 and 306.285.

SX X

t

X μ–() SX⁄ t n 1–

1 α–()

X SX qn 1–
α
2
---⎝ ⎠

⎛ ⎞±

qn 1– t

n 1–

α 0.05=
108

Measuring Error in Summary Statistics
GUI example

1. Choose Statistics � Data Summaries � Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Mean and Conf. Limits for Mean. Leave the Conf. Level
option at 0.95.

4. Click OK.

5. The values 290.358268, 274.431506, and 306.285029 appear
in a Report window.
109

Chapter 4 Descriptive Statistics
ROBUST MEASURES OF LOCATION AND SCALE

M Estimators
of Location

M estimators are a class of robust location measures that seek to find a
compromise between the sample mean and median. Given a sample

 from a population with a true standard deviation of ,
it can be shown that the sample mean minimizes the function

.

Likewise, the median of the sample minimizes the function

.

M estimators minimize the general function

,

where is some weight function and the solution is the robust
measure of location.

A wide variety of weight functions have been proposed for
M estimators. Spotfire S+ implements two choices for : Huber
functions and Tukey’s bisquare functions. A Huber function is defined
as:

,

where is equal to -1, 0, or 1 depending on the sign of , and
 is a tuning constant. This function is linear from to and is

constant outside of this interval. Thus, assigns the constant weight

 to outlying observations. Tukey’s bisquare function is
defined as:

X1 X2 … Xn, , , σ

h1 μ̂()
Xi μ̂–

σ
--------------⎝ ⎠

⎛ ⎞
2

i 1=

n

∑=

h2 μ̂() Xi μ̂–

σ

i 1=

n

∑=

h μ̂() Ψ
Xi μ̂–

σ
--------------⎝ ⎠

⎛ ⎞

i 1=

n

∑=

Ψ μ̂

Ψ
Ψ

ΨH x()
x x c<

sign x()c x c≥⎩
⎨
⎧

=

sign x() x
c c– c

ΨH

sign x()c Ψ
110

Robust Measures of Location and Scale
,

where is a tuning constant. This function is a fifth degree
polynomial from to and is zero outside of this interval. Unlike
Huber functions, bisquare functions completely ignore extreme
outliers.

In practice, the true standard deviation of a population is not known,
and must be approximated to compute M estimators of location.

Therefore, a robust measure of scale (such as the MAD) is needed
in calculations of functions.

Example

You can use the Spotfire S+ function location.m to compute a robust
M estimator for the center of a numeric vector. The location.m
function includes optional scale, psi.fun, and parameters

arguments, which respectively define the measure of scale (),
function, and tuning constant () to use in the computation. By
default, scale is the median absolute deviation from the median of
the sample, psi.fun is equal to Tukey’s bisquare function, and
parameters is set to 5.

> location.m(lottery.payoff)

[1] 279.2969
attr(, "convergence"):
 sum width evals
 1.584635e-013 1.752494e-008 5
attr(, "call"):
location.m(x = lottery.payoff)

With the following syntax, we compute an M estimator of location
using a Huber function. In this case, the default value of
parameters is equal to 1.45.

> location.m(lottery.payoff, psi.fun="huber")

[1] 279.8903
attr(, "convergence"):

ΨT x() x c2 x2–()
2

x c≤
0 x c>⎩

⎨
⎧

=

c
c– c

σ

σ̂
Ψ

σ̂ Ψ
c

Ψ

111

Chapter 4 Descriptive Statistics
 sum width evals
 8.326673e-016 8.677228e-007 5
attr(, "call"):
location.m(x = lottery.payoff, psi.fun = "huber")

Measures of
Scale Based on
M Estimators

Spotfire S+ implements two robust measures of scale that are based
on M estimators of location: bisquare A estimates and Huber estimates.

A estimates use the asymptotic variance of M estimators as a
computationally straightforward way to approximate scale. Suppose
that a sample of size has an M estimator of location that we

compute using a function and a scale estimate . To simplify

notation, let be the vector of sample values and

let . It can be shown that the asymptotic variance

 of takes the form:

,

where is a constant, is the derivative of with respect to ,

and denotes expected value. Replacing the expected value signs
with summations and taking the square root of the result, we obtain
the following A estimate of scale:

.

Spotfire S+ implements A estimates that use the median absolute
deviation for and Tukey’s bisquare function for . The value for

 is chosen so that is a consistent estimate for Gaussian models; it
is set to 0.9471 in Spotfire S+.

τ

n μM

Ψ sM

X X1 X2 … Xn, , ,()=

Y X μM–() sM⁄=

A2 μM

A2 k2sM
2 E Ψ2 Y()[]

E Ψ' Y()[]()
2

-----------------------------------=

k Ψ' Ψ μM

E

A
ksM n Ψ2 Yi()

i
∑

Ψ' Yi()
i
∑

------------------------------------=

sM Ψ

k A
112

Robust Measures of Location and Scale
The class of estimates was first introduced in the context of
regression by Yohai and Zamar in 1986. Suppose that a sample of size

 has an M estimator of location that we compute using a scale

estimate . To simplify notation, let be the

vector of sample values and let . A estimate of
scale is defined to be:

,

where is a constant and is a weight function. The value for is
chosen so that is a consistent estimate for Gaussian models; it is set
to 1.048 in Spotfire S+. The estimates implemented in Spotfire S+
use the median absolute deviation for and Huber’s function
for the weight function:

.

The constant is a tuning parameter that can be adjusted to obtain
desired asymptotic properties from .

Example

You can use the Spotfire S+ functions scale.a and scale.tau to
compute robust measures of scale based on M estimators of location.
The scale.a function computes bisquare A estimates, and the
scale.tau function computes Huber estimates. Both functions
include optional center and tuning arguments, which define the
measure of location in the MAD calculations and the tuning constants
() for and , respectively. By default, center is the median of the
sample in both functions, tuning is set to 3.85 in scale.a, and tuning
is equal to 1.95 in scale.tau.

τ

n μM

sM X X1 X2 … Xn, , ,()=

Y X μM–() sM⁄= τ

τ ksM
1
n
--- ρ Yi()

i
∑=

k ρ k
τ

τ
sM ρH

ρH x()
x2 x c≤

c2 x c>⎩
⎨
⎧

=

c
τ

τ

c Ψ ρ
113

Chapter 4 Descriptive Statistics
The following two commands compute A estimates of scale for the
lottery.payoff vector. The first command uses the median of
lottery.payoff as the estimate of location, and the second command
uses an M estimator.

> scale.a(lottery.payoff)

[1] 118.2306

> scale.a(lottery.payoff,
+ center = location.m(lottery.payoff))

[1] 119.2025

The next two commands compute estimates of scale for
lottery.payoff. The first command uses the median as the estimate
of location, and the second command uses an M estimator.

> scale.tau(lottery.payoff)

[1] 120.8589

> scale.tau(lottery.payoff,
+ center = location.m(lottery.payoff))

[1] 122.1694

τ

114

References
REFERENCES

Altman, D.G. (1991). Practical Statistics for Medical Research. London:
Chapman & Hall.

Freedman, D., Pisani, R., & Purves, R. (1978). Statistics. New York:
W.W Norton and Company.

Hoaglin, D.C., Mosteller, F., & Tukey, J.W. (1983). Understanding
Robust and Exploratory Data Analysis. New York: John Wiley & Sons,
Inc.

Iversen, G.R. & Gergen, M. (1997). Statistics: The Conceptual Approach.
New York: Springer-Verlag, Inc.

Miller, I. & Freund, J.E. (1977). Probability and Statistics for Engineers
(2nd ed.). Englewood Cliffs, NJ: Prentice-Hall, Inc.

Rice, J.A. (1995). Mathematical Statistics and Data Analysis (2nd ed.).
Belmont, CA: Duxbury Press.

Rosner, B. (1995). Fundamentals of Biostatistics (4th ed.). Belmont, CA:
Duxbury Press.

Tukey, J.W. (1977). Exploratory Data Analysis. Reading, Massachusetts:
Addison-Wesley Publishing Company.

Velleman, P.F. & Hoaglin, D.C. (1981). Applications, Basics, and
Computing of Exploratory Data Analysis. Boston: Duxbury Press.

Wilcox, R.R. (1997). Introduction to Robust Estimation and Hypothesis
Testing. San Diego: Academic Press.

Yohai, V.J. & Zamar, R. (1986). High breakdown-point estimates of
regression by means of the minimization of an efficient scale. Technical
Report No. 84, Department of Statistics, University of Washington,
Seattle.

Yohai, V.J. & Zamar, R. (1988). High breakdown-point estimates of
regression by means of the minimization of an efficient scale. Journal
of the American Statistical Association, 83:406-413.
115

Chapter 4 Descriptive Statistics
116

Introduction 118

Background 123
Exploratory Data Analysis 123
Statistical Inference 125
Robust and Nonparametric Methods 127

One Sample: Distribution Shape, Location, and Scale 129
Setting Up the Data 130
Exploratory Data Analysis 130
Statistical Inference 133

Two Samples: Distribution Shapes, Locations, and
Scales 136

Setting Up the Data 137
Exploratory Data Analysis 137
Statistical Inference 138

Two Paired Samples 143
Setting Up the Data 145
Exploratory Data Analysis 145
Statistical Inference 147

Correlation 149
Setting Up the Data 151
Exploratory Data Analysis 151
Statistical Inference 153

References 158

STATISTICAL INFERENCE FOR
ONE- AND TWO-SAMPLE
PROBLEMS 5
117

Chapter 5 Statistical Inference for One- and Two-Sample Problems
INTRODUCTION

Suppose you have one or two samples of data that are continuous in
the sense that the individual observations can take on any possible
value in an interval. You often want to draw conclusions from your
data concerning underlying “population” or distribution model
parameters that determine the character of the observed data. The
parameters that are most often of interest are the mean and variance
in the case of one sample, and the relative means and variances and
the correlation coefficient in the case of two samples. This chapter
shows you how to use TIBCO Spotfire S+ to carry out statistical
inference for these parameters.

Often, your samples of data are assumed to come from a distribution
that is normal, or Gaussian. A normal distribution has the familiar bell-
shaped population “frequency” curve (or probability density) shown by
the solid line in Figure 5.1. Another common assumption is that the
observations within a sample are serially uncorrelated with one another.
In fact, the data seldom come from an exactly normal distribution.
Usually, a more accurate assumption is that the samples are drawn
from a nearly normal distribution—that is, a nearly bell-shaped curve
whose tails do not go to zero in quite the same way as those of the true
normal distribution, as shown by the dotted line in Figure 5.1.

It is important that you be aware that nearly normal distributions,
which have “heavier tails” than a normal distribution, give rise to
outliers, that is, unusually aberrant or deviant data values. For
example, in Figure 5.1 the left-hand tail of the nearly normal
distribution is heavier than the tail of the normal distribution, but the
right hand tail is not, and so this nearly normal distribution generates
outliers which fall to the left (smaller values than) the bulk of the data.

Even though your data have only a nearly normal distribution, rather
than a normal distribution, you can use a normal distribution as a
good “nominal” model, as indicated by Figure 5.1. Thus, you are
interested in knowing the values of the parameters of a normal
distribution (or of two normal distributions in the case of two samples)
that provide a good nominal distribution model for your data.
118

Introduction
A normal distribution is characterized by two parameters: the mean μ

and the variance , or, equivalently, the mean and the standard
deviation (the square root of the variance). The mean locates the
center of symmetry of the normal distribution, and so the parameter μ
is sometimes referred to as the location. Similarly, the standard
deviation provides a measure of the spread of the distribution, and
thus can be thought of as a scale parameter.

In the case of two samples, and , for two

variables and , you may also be interested in the value of the
correlation coefficient . The parameter ρ measures the correlation (or
linear dependency) between the variables and . The value of ρ is
reflected in the scatter plot obtained by plotting versus for

. A scatterplot of versus , which has a roughly

elliptical shape, with the values of increasing with increasing

Figure 5.1: Normal and nearly normal densities.

x

0 5 10 15 20 25

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

x

0 5 10 15 20 25

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Normal
Nearly normal

σ2

σ

X1 X2 … X, n, , Y1 Y2 … Y, n, ,

X Y
ρ

X Y
Yi Xi

i 1 2 … n, , ,= Yi Xi

Yi
119

Chapter 5 Statistical Inference for One- and Two-Sample Problems
values of , corresponds to positive correlation (see, for example,

Figure 5.7). An elliptically-shaped scatter plot with the values of

decreasing with increasing values of corresponds to negative

correlation . A circular shape to the scatter plot corresponds to a
zero value for the correlation coefficient .

Keep in mind that the correlation between two variables and , as
just described, is quite distinct from serial correlation between the
observations within one or both of the samples when the samples are
collected over time. Whereas the former reveals itself in a scatterplot
of the versus the , the latter reveals itself in scatter plots of the
observations versus lagged values of the observations; for example, a
scatter plot of versus or a scatter plot of versus . If
these scatter plots have a circular shape, the data are serially
uncorrelated. Otherwise, the data have some serial correlation.

Generally, you must be careful not to assume that data collected over
time are serially uncorrelated. You need to check this assumption
carefully, because the presence of serial correlation invalidates most
of the methods of this chapter.

To summarize: You want to draw conclusions from your data

concerning the population mean and variance parameters and
for one sample of data, and you want to draw conclusions from your
data concerning the population means , , the population

variances , and the population correlation coefficient ρ for two

samples of data. You frame your conclusions about the above
parameters in one of the following two types of statistical inference
statements, illustrated for the case of the population mean μ in a one-
sample problem:

• A CONFIDENCE INTERVAL. With probability , the
mean lies within the confidence interval (L,U).

• A HYPOTHESIS TEST. The computed statistic T compares
the null hypothesis that the mean μ has the specified value μ0

with the alternative hypothesis that . At any level of
significance greater than the reported p-value for T, we reject
the null hypothesis in favor of the alternative hypothesis.

Xi ρ

Yi

Xi

ρ
ρ

X Y

Yi Xi

Yi Yi 1+ Xi Xi 1+

μ σ2

μ1 μ2

σ1
2 σ2

2

1 α–

μ

μ μ0≠
120

Introduction
A more complete description of confidence intervals and hypothesis
tests is provided in the section Statistical Inference on page 125.

Classical methods of statistical inference, such as Student’s t methods,
rely on the assumptions that the data come from a normal distribution
and the observations within a sample are serially uncorrelated. If your
data contain outliers, or are strongly nonnormal, or if the
observations within a sample are serially correlated, the classical
methods of statistical inference can give you very misleading results.
Fortunately, there are robust and nonparametric methods which give
reliable statistical inference for data that contain outliers or are
strongly nonnormal. Special methods are needed for dealing with
data that are serially correlated. See, for example, Heidelberger and
Welch (1981).

In this chapter, you learn to use Spotfire S+ functions for making both
classical and robust or nonparametric statistical inference statements
for the population means and variances for one and two samples, and
for the population correlation coefficient for two samples. The basic
steps in using Spotfire S+ functions are essentially the same no matter
which of the above parameters you are interested in. They are as
follows:

1. Setting up your data.

Before Spotfire S+ can be used to analyze the data, you must
put the data in a form that Spotfire S+ recognizes.

2. Exploratory data analysis (EDA).

EDA is a graphically-oriented method of data analysis which
helps you determine whether the data support the
assumptions required for the classical methods of statistical
inference: an outlier-free nearly normal distribution and
serially uncorrelated observations.

3. Statistical inference.

Once you’ve verified that your sample or samples are nearly
normal, outlier-free, and uncorrelated, you can use classical
methods of statistical inference that assume a normal
distribution and uncorrelated observations, to draw
conclusions from your data.
121

Chapter 5 Statistical Inference for One- and Two-Sample Problems
If your data are not nearly normal and outlier-free, the results
of the classical methods of statistical inference may be
misleading. Hence, you often need robust or nonparametric
methods, as described in the section Robust and
Nonparametric Methods on page 127.
122

Background
BACKGROUND

This section prepares you for using the Spotfire S+ functions in the
remainder of the chapter by providing brief background information
on the following three topics: exploratory data analysis, statistical
inference, and robust and nonparametric methods.

Exploratory
Data Analysis

The classical methods of statistical inference depend heavily on the
assumption that your data are outlier-free and nearly normal, and that
your data are serially uncorrelated. Exploratory data analysis (EDA)
uses graphical displays to help you obtain an understanding of
whether or not such assumptions hold. Thus, you should always carry
out some graphical exploratory data analysis to answer the following
questions:

• Do the data come from a nearly normal distribution?

• Do the data contain outliers?

• If the data were collected over time, is there any evidence of
serial correlation (correlation between successive values of the
data)?

You can get a pretty good picture of the shape of the distribution
generating your data, and also detect the presence of outliers, by
looking at the following collection of four plots: a histogram, a boxplot,
a density plot, and a normal qq-plot. Examples of these four plots are
provided in Figure 5.2.

Density plots are essentially smooth versions of histograms, which
provide smooth estimates of population frequency, or probability density
curves; for example, the normal and nearly normal curves of Figure
5.1. Since the latter are smooth curves, it is both appropriate and
more pleasant to look at density plots than at histograms.

A normal qq-plot (or quantile-quantile plot) consists of a plot of the
ordered values of your data versus the corresponding quantiles of a
standard normal distribution; that is, a normal distribution with mean
zero and variance one. If the qq-plot is fairly linear, your data are
reasonably Gaussian; otherwise, they are not.
123

Chapter 5 Statistical Inference for One- and Two-Sample Problems
Of these four plots, the histogram and density plot give you the best
picture of the distribution shape, while the boxplot and normal
qq-plot give the clearest display of outliers. The boxplot also gives a
clear indication of the median (the solid dot inside the box), and the
upper and lower quartiles (the upper and lower ends of the box).

A simple Spotfire S+ function can create all four suggested
distributional shape EDA plots, and displays them all on a single
screen or a single hard copy plot. Define the function as follows:

> eda.shape <- function(x) {
+ par(mfrow = c(2, 2))
+ hist(x)
+ boxplot(x)
+ iqd <- summary(x)[5] - summary(x)[2]
+ plot(density(x, width = 2 * iqd),
+ xlab = "x", ylab = "", type = "l")
+ qqnorm(x, pch = 1)
+ qqline(x)
+ invisible()
+ }

This function is used to make the EDA plots you see in the remainder
of this chapter. The argument width = 2*iqd to density sets the
degree of smoothness of the density plot in a good way. For more
details on writing functions, see the Programmer’s Guide .

If you have collected your data over time, the data may contain serial
correlation. That is, the observations may be correlated with one
another at different times. The assessment of whether or not there is
any time series correlation in the context of confirmatory data
analysis for location and scale parameters is an often-neglected task.

You can check for obvious time series features, such as trends and
cycles, by looking at a plot of your data against time, using the
function ts.plot. You can check for the presence of less obvious
serial correlation by looking at a plot of the autocorrelation function
for the data, using the acf function. These plots can be created, and
displayed one above the other, with the following Spotfire S+
function.
124

Background
> eda.ts <- function(x) {
+ par(mfrow = c(2, 1))
+ ts.plot(as.ts(x), type = "b", pch = 1)
+ acf(x)
+ invisible()
+ }

This function is used to make the time series EDA plots you find in
the remainder of this chapter. See, for example, Figure 5.3. The
discussion of Figure 5.3 includes a guideline for interpreting the acf
plot.

Statistical
Inference

Formal methods of statistical inference provide probability-based
statements about population parameters such as the mean, variance,
and correlation coefficient for your data. You may be interested in a
simple point estimate of a population parameter. For example, the
sample mean is a point estimate of the population mean. However, a
point estimate neither conveys any uncertainty about the value of the
estimate, nor indicates whether a hypothesis about the population
parameter is to be rejected. To address these two issues, you will
usually use one or both of the following methods of statistical
inference: confidence intervals and hypothesis tests.

We define these two methods for you, letting represent any one of
the parameters you may be interested in; for example, may be the
mean , or the difference between two means , or the

correlation coefficient .

CONFIDENCE INTERVALS. A confidence interval
for the true but unknown parameter is any interval of the form
(L,U), such that the probability is that (L,U) contains . The
probability with which the interval (L,U) fails to cover q is

Warning

If either the time series plot or the acf plot suggests the presence of serial correlation, you can
place little credence in the results computed in this chapter, using either the Student’s t statistic
approach or using the nonparametric Wilcoxon approach. A method for estimating the
population mean in the presence of serial correlation is described by Heidelberger and Welch
(1981). Seek expert assistance, as needed.

θ
θ

μ μ1 μ2–

ρ

1 α–()100%
θ

1 α– θ
α

125

Chapter 5 Statistical Inference for One- and Two-Sample Problems
sometimes called the error rate of the interval. The quantity
 is called the confidence level of the confidence interval.

Common values of are , which yield %,

%, and % confidence intervals, respectively.

HYPOTHESIS TESTS. A hypothesis test is a probability-based
method for making a decision concerning the value of a population
parameter (for example, the population mean or standard
deviation in a one-sample problem), or the relative values of two
population parameters and (for example, the difference

between the population means in a two-sample problem).
You begin by forming a null hypothesis and an alternative hypothesis. For
example, in the two-sample problem your null hypothesis is often the
hypothesis that , and your alternative hypothesis is one of the
following:

• The two-sided alternative

• The greater-than alternative

• The less-than alternative

Your decision to accept the null hypothesis, or to reject the null
hypothesis in favor of your alternative hypothesis is based on the
observed value of a suitably chosen test statistic . The

probability that the statistic exceeds the observed value when
your null hypothesis is in fact true, is called the p-value.

For example, suppose you are testing the null hypothesis that

against the alternative hypothesis that in a one-sample

problem. The p-value is the probability that the absolute value of
exceeds the absolute value of for your data, when the null
hypothesis is true.

In formal hypothesis testing, you proceed by choosing a “good”
statistic and specifying a level of significance, which is the probability
of rejecting a null hypothesis when the null hypothesis is in fact true.

1 α–() 100%×
α α 0.01, 0.05, 0.1= 99

95 90

θ μ
σ

θ1 θ2

μ1 μ2–

θ1 θ2=

θ1 θ2≠

θ1 θ2>

θ1 θ2<

T tobs= T

T tobs

θ θ0=

θ θ0≠

T
tobs

T

126

Background
In terms of formal hypothesis testing, your p-value has the following
interpretation: the p-value is the level of significance for which your
observed test statistic value lies on the boundary between
acceptance and rejection of the null hypothesis. At any significance
level greater than the p-value, you reject the null hypothesis, and at
any significance level less than the p-value you accept the null
hypothesis. For example, if your p-value is 0.03, you reject the null
hypothesis at a significance level of 0.05, and accept the null
hypothesis at a significance level of 0.01.

Robust and
Nonparametric
Methods

Two problems frequently complicate your statistical analysis. For
example, Student’s t test, which is the basis for most statistical
inference on the mean-value locations of normal distributions, relies
on two critical assumptions:

1. The observations have a common normal (or Gaussian)

distribution with mean μ and variance .

2. The observations are independent.

However, one or both of these assumptions often fail to hold in
practice.

For example, if the actual distribution for the observations is an
outlier-generating, heavy-tailed deviation from an assumed Gaussian
distribution, the confidence level remains quite close to ,
but the average confidence interval length is considerably larger than
under normality. The p values based on the Student’s t test are also
heavily influenced by outliers.

In this example, and more generally, you would like to have statistical
methods with the property that the conclusions you draw are not
much affected if the distribution for the data deviates somewhat from
the assumed model; for example, if the assumed model is a normal,
or Gaussian distribution, and the actual model for the data is a nearly
normal distribution. Such methods are called robust. In this chapter
you will learn how to use a Spotfire S+ function to obtain robust point
estimates and robust confidence intervals for the population
correlation coefficient.

For one and two-sample location parameter problems (among
others), there exist strongly robust alternatives to classical methods, in
the form of nonparametric statistics. The term nonparametric means that

tobs

σ2

1 α–()100%
127

Chapter 5 Statistical Inference for One- and Two-Sample Problems
the methods work even when the actual distribution for the data is far
from normal; that is, when the data do not have to have even a nearly
normal distribution. In this chapter, you will learn to use one of the
best of the nonparametric methods for constructing a hypothesis test
p-value, namely the Wilcoxon rank method, as implemented in the
Spotfire S+ function wilcox.test.

It is important to keep in mind that serial correlation in the data can
quickly invalidate the use of both classical methods (such as Student’s
t) and nonparametric methods (such as the Wilcoxon rank method)
for computing confidence intervals and p values. For example, a 95%
Student’s t confidence interval can have a much higher error rate
than 5% when there is a small amount of positive correlation in the
data. Also, most modern robust methods are oriented toward
obtaining insensitivity toward outliers generated by heavy-tailed
nearly normal distributions, and are not designed to cope with serial
correlation. For information on how to construct confidence intervals
for the population mean when your data are serially correlated and
free of outliers, see Heidelberger and Welch (1981).
128

One Sample: Distribution Shape, Location, and Scale
ONE SAMPLE: DISTRIBUTION SHAPE, LOCATION, AND
SCALE

In 1876, the French physicist Cornu reported a value of 299,990 km/
sec for c, the speed of light. In 1879, the American physicist A.A.
Michelson carried out several experiments to verify and improve on
Cornu’s value.

Michelson obtained the following 20 measurements of the speed of
light:

 850 740 900 1070 930 850 950 980 980 880
1000 980 930 650 760 810 1000 1000 960 960

To obtain Michelson’s actual measurements in km/sec, add 299,000
km/sec to each of the above values.

The twenty observations can be thought of as observed values of
twenty random variables with a common but unknown mean-value
location μ. If the experimental setup for measuring the speed of light
is free of bias, then it is reasonable to assume that μ is the true speed
of light.

In evaluating this data, we seek answers to at least five questions:

1. What is the speed of light ?

2. Has the speed of light changed relative to our best previous
value ?

3. What is the uncertainty associated with our answers to (1) and
(2)?

4. What is the shape of the distribution of the data?

5. The measurements were taken over time. Is there any
evidence of serial correlation?

The first three questions were probably in Michelson’s mind when he
gathered his data. The last two must be answered to determine which
techniques can be used to obtain valid statistical inferences from the
data. For example, if the shape of the distribution indicates a nearly
normal distribution without outliers, we can use the Student’s t tests in
attempting to answer question (2). If the data contain outliers or are
far from normal, we should use a robust method or a nonparametric

μ

μ0
129

Chapter 5 Statistical Inference for One- and Two-Sample Problems
method such as the Wilcoxon signed-rank test. On the other hand, if
serial correlation exists, neither the Student’s t nor the Wilcoxon test
offers valid conclusions.

In this section, we use Spotfire S+ to carefully analyze the Michelson
data. Identical techniques can be used to explore and analyze any set
of one-sample data.

Setting Up the
Data

The data form a single, ordered set of observations, so they are
appropriately described in Spotfire S+ as a vector. Use the scan
function to create the vector mich:

> mich <- scan()

1: 850 740 900 1070 930
6: 850 950 980 980 880
11: 1000 980 930 650 760
16: 810 1000 1000 960 960
21:

Exploratory
Data Analysis

To start, we can evaluate the shape of the distribution, by making a set
of four EDA plots, using the eda.shape function described in the
section Exploratory Data Analysis on page 123:

> eda.shape(mich)

The plots, shown in Figure 5.2, reveal a distinctly skewed distribution,
skewed toward the left (that is, toward smaller values), but rather
normal in the middle region. The distribution is thus not normal, and
probably not even "nearly" normal.

The solid horizontal line in the box plot is located at the median of the
data, and the upper and lower ends of the box are located at the upper
quartile and lower quartile of the data, respectively. To get precise
values for the median and quartiles, use the summary function:

> summary(mich)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 650 850 940 909 980 1070

The summary shows, from left to right, the smallest observation, the
first quartile, the median, the mean, the third quartile, and the largest
observation. From this summary you can compute the interquartile
130

One Sample: Distribution Shape, Location, and Scale
range, . The interquartile range provides a useful
criterion for identifying outliers—any observation which is more than

 above the third quartile or below the first quartile is a
suspected outlier.

To examine possible serial correlation, or dependency, make two
plots using the eda.ts function defined in the section Exploratory
Data Analysis on page 123.

IQR 3Q 1Q–=

1.5 IQR×

Figure 5.2: Exploratory data analysis plots.

700 800 900 1100

0
2

4
6

8

x

70
0

80
0

90
0

10
00

x

600 800 1000

0.
0

0.
00

1
0.

00
2

0.
00

3

Quantiles of Standard Normal

x

-2 -1 0 1 2

70
0

80
0

90
0

10
00
131

Chapter 5 Statistical Inference for One- and Two-Sample Problems
> eda.ts(mich)

The top plot in Figure 5.3 reveals a somewhat unusual excursion at
observations 14, 15, 16, and perhaps a slightly unusual oscillation in
the first 6 observations. However, the autocorrelation function plot in
the lower part of Figure 5.3 reveals no significant serial correlations—
all values lie within the horizontal dashed lines for lags greater than 0.

Figure 5.3: Time series plots.

Time

5 10 15 20

70
0

80
0

90
0

10
00

Lag

A
C

F

0 2 4 6 8 10 12

-0
.4

0.
0

0.
4

0.
8

 Series : x
132

One Sample: Distribution Shape, Location, and Scale
Statistical
Inference

Because the Michelson data are not normal, you should probably use
the Wilcoxon signed-rank test rather than the Student’s t test for your
statistical inference. For illustrative purposes, we’ll use both.

To compute Student’s t confidence intervals for the population mean-
value location parameter μ, and to compute Student’s t significance
test p values for the parameter , use the function t.test.

To perform the test, you specify the confidence level, the
hypothesized mean-value location , and the hypothesis being tested,
as follows:

• conf.level specifies the confidence level of the confidence
interval. Usual values are 0.90, 0.95, or 0.99. The default is
0.95.

• mu specifies the null hypothesis value of . The default is
μ0 = 0, which is often inappropriate for one-sample problems.

You should choose carefully, using either a previously
accepted value or a value suggested by the data before
sampling.

• alternative specifies the specific hypothesis being tested.
There are three options:

• "two.sided" tests the hypothesis that the true mean is not
equal to . This is the default alternative.

• "greater" tests the hypothesis that the true mean is
greater than .

• "less" tests the hypothesis that the true mean is less than
.

For Michelson’s data, suppose you want to test the null hypothesis
value (plus 299,000) against a two-sided alternative. To do
this, use t.test with the argument mu=990, as in the command below:

> t.test(mich, mu = 990)

 One-sample t-Test

data: mich
t = -3.4524, df = 19, p-value = 0.0027

μ0

μ

μ0 μ

μ

μ0

μ0

μ0

μ0 990=
133

Chapter 5 Statistical Inference for One- and Two-Sample Problems
alternative hypothesis: true mean is not equal to 990
95 percent confidence interval:
 859.8931 958.1069
sample estimates:
 mean of x
 909

The p value is 0.0027, which is highly significant. Spotfire S+ returns
other useful information besides the p value, including the t statistic
value, the degrees of freedom (df), the sample mean, and the
confidence interval.
134

One Sample: Distribution Shape, Location, and Scale
Our example used the default confidence level of 0.95. If you specify
a different confidence level, as in the following command:

> t.test(mich, conf.level = .90, mu = 990)

You obtain a new confidence interval of (868,950), which is shorter
than before, but nothing else changes in the output from t.test.

Wilcoxon Signed
Rank Test
p Values

To perform the Wilcoxon signed rank nonparametric test, use the
function wilcox.test. As with t.test, the test is completely
determined by the confidence level, the hypothesized mean μ0, and
the hypothesis to be tested. These options are specified for
wilcox.test exactly as for t.test.

For example, to test the hypothesis that (plus 299,000), use
wilcox.test as follows:

> wilcox.test(mich, mu = 990)

Wilcoxon signed-rank test

data: mich
signed-rank normal statistic with correction Z = -3.0715,
p-value = 0.0021
alternative hypothesis: true mu is not equal to 990
Warning messages:
 cannot compute exact p-value with ties in:
 wil.sign.rank(dff, alternative, exact, correct)

The p value of 0.0021 compares with the t test p value of 0.0027 for
testing the same null hypothesis with a two-sided alternative.

Michelson’s data have several tied values. Because exact p values
cannot be computed if there are tied values (or if the null hypothesis
mean is equal to one of the data values), a normal approximation is
used and the associated Z statistic value is reported.

μ 990=
135

Chapter 5 Statistical Inference for One- and Two-Sample Problems
TWO SAMPLES: DISTRIBUTION SHAPES, LOCATIONS, AND
SCALES

Suppose you are a nutritionist interested in the relative merits of two
diets, one featuring high protein, the other low protein. Do the two
diets lead to differences in mean weight gain? Consider the data in
Table 5.1, which shows the weight gains (in grams) for two lots of
female rats, under the two diets.

Table 5.1: Weight gain data.

High Protein Low Protein

134 70

146 118

104 101

119 85

124 107

161 132

107 94

83

113

129

97

123
136

Two Samples: Distribution Shapes, Locations, and Scales
The first lot, consisting of 12 rats, was given the high protein diet, and
the second lot, consisting of 7 rats, was given the low protein diet.
These data appear in section 6.9 of Snedecor and Cochran (1980).

The high protein and low protein samples are presumed to have
mean-value location parameters and , and standard deviation

scale parameters and , respectively. While you are primarily

interested in whether there is any difference in the ’s, you may also
be interested in whether or not the two diets result in different
variabilities, as measured by the standard deviations (or their squared
values, the variances). This section shows you how to use Spotfire S+
functions to answer such questions.

Setting Up the
Data

In the two-sample case, each sample forms a set of data. Thus, you
begin by creating two data vectors, gain.high and gain.low,
containing the first and second columns of data from Table 5.1:

> gain.high <- scan()
1: 134 146 104 119 124 161 107 83 113 129 97 123
13:

> gain.low <- scan()
1: 70 118 101 85 107 132 94
8:

Exploratory
Data Analysis

For each sample, make a set of EDA plots, consisting of a histogram,
a boxplot, a density plot and a normal qq-plot, all displayed in a two-
by-two plot layout, using the eda.shape function defined in the
section Exploratory Data Analysis on page 123.

> eda.shape(gain.high)
> eda.shape(gain.low)

The resulting plots for the high-protein group are shown in Figure 5.4.
They indicate that the data come from a nearly normal distribution,
and there is no indication of outliers. The plots for the low-protein
group, which we do not show, support the same conclusions.

μH μL

σH σL

μ

137

Chapter 5 Statistical Inference for One- and Two-Sample Problems

Since the data were not collected in any specific time order, you need
not make any exploratory time series plots to check for serial
correlation.

Statistical
Inference

Is the mean weight gain the same for the two groups of rats?
Specifically, does the high-protein group show a higher average
weight gain? From our exploratory data analysis, we have good
reason to believe that Student’s t test will provide a valid test of our

Figure 5.4: EDA plots for high-protein group.

80 100 140 180

0
1

2
3

4

x

80
10

0
12

0
14

0
16

0

x

50 100 150 200

0.
0

0.
00

5
0.

01
0

0.
01

5

Quantiles of Standard Normal

x

-1 0 1

80
10

0
12

0
14

0
16

0

138

Two Samples: Distribution Shapes, Locations, and Scales
hypotheses. As in the one-sample case, you can get confidence
intervals and hypothesis test p values for the difference μ1 - μ2

between the two mean-value location parameters and using
the functions t.test and wilcox.test.

As before, each test is specified by a confidence level, a hypothesized
μ0 (which now refers to the difference of the two sample means), and
the hypothesis to be tested. However, because of the possibility that
the two samples may be from different distributions, you may also
specify whether the two samples have equal variances.

You define the test to be performed using the following arguments to
t.test:

• conf.level specifies the confidence level of the confidence
interval. Usual values are 0.90, 0.95, or 0.99. The default is
0.95.

• mu specifies the null hypothesis value μ0 of .

The default is .

• alternative specifies the hypothesis being tested. There are
three options:

• "two.sided" tests the hypothesis that the difference of
means is not equal to . This is the default alternative.

• "greater" tests the hypothesis that the difference of
means is greater than .

• "less" tests the hypothesis that the difference of means is
less than .

• var.equal specifies whether equal variances are assumed for
the two samples. The default is var.equal=TRUE.

To determine the correct setting for the option var.equal, you can
either use informal inspection of the EDA boxplots or use the
function var.test for a more formal test. If the heights of the boxes in
the two boxplots are approximately the same, then so are the
variances of the two outlier-free samples. The var.test function
performs the F test for variance equality on the vectors representing
the two samples.

μ1 μ2

μdiff μH μL–=

μ0 0=

μ0

μ0

μ0
139

Chapter 5 Statistical Inference for One- and Two-Sample Problems
For the weight gain data, the var.test function returns:

> var.test(gain.high, gain.low)

 F test for variance equality
data: gain.high and gain.low
F = 1.0755, num df = 11, denom df = 6, p-value = 0.9788
alternative hypothesis: true ratio of variances is not
 equal to 1
95 percent confidence interval:
 0.198811 4.173718
sample estimates:
 variance of x variance of y
 457.4545 425.3333

The evidence supports the assumption that the variances are the
same, so var.equal=T is a valid choice.

We are interested in two alternative hypotheses: the two-sided
alternative that and the one-sided alternative that

. To test these, we run the standard two-sample t test
twice, once with the default two-sided alternative and a second time
with the one-sided alternative alt="g".

You get both a confidence interval for , and a two-sided test

of the null hypothesis that , by the following simple use
of t.test:

> t.test(gain.high, gain.low)

 Standard Two-Sample t-Test
data: gain.high and gain.low
t = 1.8914, df = 17, p-value = 0.0757
alternative hypothesis: true difference in means is
 not equal to 0
95 percent confidence interval:
 -2.193679 40.193679
sample estimates:
 mean of x mean of y
 120 101

The p value is 0.0757, so the null hypothesis is rejected at the 0.10
level, but not at the 0.05 level. The confidence interval is (-2.2, 40.2).

μH μL– 0=

μH μL– 0>

μH μL–

μH μL– 0=
140

Two Samples: Distribution Shapes, Locations, and Scales
To test the one-sided alternative that , use t.test again
with the argument alternative="greater" (abbreviated below for
ease of typing):

> t.test(gain.high, gain.low, alt = "g")

 Standard Two-Sample t-Test

data: gain.high and gain.low
t = 1.8914, df = 17, p-value = 0.0379
alternative hypothesis: true difference in means
 is greater than 0
95 percent confidence interval:
 1.525171 NA
sample estimates:
mean of x mean of y
 120 101

In this case, the p value is just half of the p value for the two-sided
alternative. This relationship between the p values of the one-sided
and two-sided alternatives holds in general. You also see that when
you use the alt="g" argument, you get a lower confidence bound.
This is the natural one-sided confidence interval corresponding to the
“greater than” alternative.

Hypothesis Test
p-Values Using
wilcox.test

To get a two-sided hypothesis test p value for the “two-sided”
alternative, based on the Wilcoxon rank sum test statistic, use
wilcox.test, which takes the same arguments as t.test:

> wilcox.test(gain.high, gain.low)

 Wilcoxon rank-sum test

data: gain.high and gain.low
rank-sum normal statistic with correction Z = 1.6911,
 p-value = 0.0908
alternative hypothesis: true mu is not equal to 0

Warning messages:
 cannot compute exact p-value with ties in:
wil.rank.sum(x, y, alternative, exact, correct)

μH μL– 0>
141

Chapter 5 Statistical Inference for One- and Two-Sample Problems
The above p value of 0.0908, based on the normal approximation
(used because of ties in the data), is rather close to the t statistic
p value of 0.0757.
142

Two Paired Samples
TWO PAIRED SAMPLES

Often two samples of data are collected in the context of a comparative
study. A comparative study is designed to determine the difference
between effects, rather than the individual effects. For example,
consider the data in Table 5.2, which give values of wear for two kinds
of shoe sole material, A and B, along with the differences in values.

In the table, (L) indicates the material was used on the left sole and
(R) indicates it was used on the right sole.

The experiment leading to this data, described in Box, Hunter, and
Hunter (1978), was carried out by taking 10 pairs of shoes and putting
a sole of material A on one shoe and a sole of material B on the other
shoe in each pair. Which material type went on each shoe was

Table 5.2: Comparing shoe sole material

Boy wear.A wear.B wear.A-wear.B

1 14.0(R) 13.2(L) 0.8

2 8.8(R) 8.2(L) 0.6

3 11.2(L) 10.9(R) 0.3

4 14,2(R) 14.3(L) -0.1

5 11.8(L) 10.7(R) 1.1

6 6.4(R) 6.6(L) -0.2

7 9.8(R) 9.5(L) 0.3

8 11.3(R) 10.8(L) 0.5

9 9.3(L) 8.8(R) 0.5

10 13.6(R) 13.3(L) 0.3
143

Chapter 5 Statistical Inference for One- and Two-Sample Problems
determined by randomizing, with equal probability that material A
was on the right shoe or left shoe. A group of 10 boys then wore the
shoes for a period of time, after which the amount of wear was
measured. The problem is to determine whether shoe material A or B
is longer wearing.

You could treat this problem as a two-sample location problem and
use either t.test or wilcox.test, as described in the section Two
Samples: Distribution Shapes, Locations, and Scales on page 136, to
test for a difference in the means of wear for material A and material
B. However, you will not be very successful with this approach
because there is considerable variability in wear of both materials
types A and B from individual to individual, and this variability tends
to mask the difference in wear of material A and B when you use an
ordinary two-sample test.

However, the above experiment uses paired comparisons. Each boy
wears one shoe with material A and one shoe with material B. In
general, pairing involves selecting similar individuals or things. One
often uses self-pairing as in the above experiment, in which two
procedures, often called treatments, are applied to the same individual
(either simultaneously or at two closely spaced time intervals) or to
similar material. The goal of pairing is to make a comparison more
sensitive by measuring experimental outcome differences on each
pair, and combining the differences to form a statistical test or
confidence interval. When you have paired data, you use t.test and
wilcox.test with the optional argument paired = T.

The use of paired versions of t.test and wilcox.test leads to
improved sensitivity over the usual versions when the variability of
differences is smaller than the variability of each sample; for example,
when the variability of differences of material wear between materials
A and B is smaller than the variability in wear of material A and
material B.
144

Two Paired Samples
Setting Up the
Data

In paired comparisons you start with two samples of data, just as in
the case of ordinary two-sample comparisons. You begin by creating
two data vectors, wear.A and wear.B, containing the first and second
columns of Table 5.2. The commands below illustrate one way of
creating the data vectors.

> wear.A <- scan()
1: 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6
11:

> wear.B <- scan()
1: 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
11:

Exploratory
Data Analysis

You can carry out exploratory data analysis on each of the two paired
samples and , as for an ordinary two-sample
problem, as described in the section Exploratory Data Analysis on
page 137. However, since your analysis is based on differences, it is
appropriate to carry out EDA based on a single sample of differences

, .

In the shoe material wear experiment, you use eda.shape on the
difference wear.A-wear.B:

> eda.shape(wear.A - wear.B)

The results are displayed in Figure 5.5. The histogram and density
indicate some deviation from normality that is difficult to judge
because of the small sample size.

x1 … x, n, y1 … y, n,

di xi yi–= i 1 … n, ,=
145

Chapter 5 Statistical Inference for One- and Two-Sample Problems
You might also want to make a scatter plot of wear.B versus wear.A,
using plot(wear.A,wear.B), as a visual check on correlation between
the two variables. Strong correlation is an indication that within-
sample variability is considerably larger than the difference in means,
and hence that the use of pairing will lead to greater test sensitivity.
To obtain the scatter plot of Figure 5.6, use the following Spotfire S+
expression:

> plot(wear.A, wear.B)

Figure 5.5: EDA plots for differences in shoe sole material wear.

-0.2 0.2 0.6 1.0

0.
0

1.
0

2.
0

3.
0

x

-0
.2

0.
2

0.
6

1.
0

x

-0.5 0.5 1.0 1.5

0.
0

0.
4

0.
8

1.
2

Quantiles of Standard Normal

x

-1 0 1

-0
.2

0.
2

0.
6

1.
0

146

Two Paired Samples
Statistical
Inference

To perform a paired t test on the shoe material wear data, with the
default two-sided alternative use t.test with the paired argument, as
follows:

> t.test(wear.A, wear.B, paired = T)

 Paired t-Test

data: wear.A and wear.B
t = 3.3489, df = 9, p-value = 0.0085
alternative hypothesis: true mean of differences is not
 equal to 0
95 percent confidence interval:
 0.1330461 0.6869539
sample estimates:
 mean of x - y
 0.41

Figure 5.6: Scatter plot of wear.A versus wear.B.

•

•

•

•

•

•

•

•

•

•

wear.A

w
ea

r.
B

8 10 12 14

8
10

12
14
147

Chapter 5 Statistical Inference for One- and Two-Sample Problems
The p value of .0085 is highly significant for testing the difference in
mean wear of materials A and B. You also get the 95% confidence
interval (0.13, 0.67) for the difference in mean values. You can control
the type of alternative hypothesis with the alt optional argument, and
you can control the confidence level with the conf.level optional
argument, as usual. To perform a paired Wilcoxon test (often called
the Wilcoxon signed rank test) on the shoe material data, with the
default two-sided alternative use wilcox.test with the paired
argument, as follows:

> wilcox.test(wear.A, wear.B, paired = T)

Wilcoxon signed-rank test

data: wear.A and wear.B
signed-rank normal statistic with correction Z = 2.4495,
 p-value = 0.0143
alternative hypothesis: true mu is not equal to 0

Warning messages:
 cannot compute exact p-value with ties in:
 wil.sign.rank(dff, alternative, exact, correct)

The p value of 0.0143 is highly significant for testing the null
hypothesis of equal centers of symmetry for the distributions of
wear.A and wear.B. You can control the type of alternative hypothesis
by using the optional argument alt as usual.
148

Correlation
CORRELATION

What effect, if any, do housing starts have on the demand for
residential telephone service? If there is some useful association, or
correlation , between the two, you may be able to use housing start data
as a predictor of growth in demand for residential phone lines.
Consider the data displayed in Table 5.3 (in coded form), which
relates to residence telephones in one area of New York City.

The first column of data, labeled “Diff. HS,” shows annual first
differences in new housing starts over a period of fourteen years. The
first differences are calculated as the number of new housing starts in
a given year, minus the number of new housing starts in the previous
year. The second column of data, labeled “Phone Increase,” shows
the annual increase in the number of “main” residence telephone
services (excluding extensions), for the same fourteen-year period.

Table 5.3: The phone increase data.

Diff. HS Phone Increase

0.06 1.135

0.13 1.075

0.14 1.496

-0.07 1.611

-0.05 1.654

-0.31 1.573

0.12 1.689

0.23 1.850

-0.05 1.587
149

Chapter 5 Statistical Inference for One- and Two-Sample Problems
The general setup for analyzing the association between two samples
of data such as those above is as follows. You have two samples of
observations, of equal sizes n, of the random variables

and . Let’s assume that each of the two-dimensional

vector random variables , , have the same joint
distribution.

The most important, and commonly used measure of association
between two such random variables is the (population) correlation
coefficient parameter , defined as

,

where , and , are the means and standard deviations,

respectively, of the random variables and . The E appearing in
the numerator denotes the statistical expected value, or expectation
operator, and the quantity is the covariance between

the random variables and . The value of is always between 1
and -1.

Your main goal is to use the two samples of observed data to
determine the value of the correlation coefficient . In the process
you want to do sufficient graphical EDA to feel confident that your
determination of is reliable.

-0.03 1.493

0.62 2.049

0.29 1.943

-0.32 1.482

-0.71 1.382

Table 5.3: The phone increase data. (Continued)

Diff. HS Phone Increase

X1 X2 … X, n, ,

Y1 Y2 … Y, n, ,

Xi Yi,() i 1 2 … n, , ,=

ρ

ρ
E x μ1–() Y μ2–()

σ1σ2
---=

μ1 μ2 σ1 σ2

X Y

E X μ1–() Y μ2–()

X Y ρ

ρ

ρ

150

Correlation
Setting Up the
Data

The data form two distinct data sets, so we create two vectors with the
suggestive names diff.hs and phone.gain:

> diff.hs <- scan()
1: .06 .13 .14 -.07 -.05 -.31 .12
8: .23 -.05 -.03 .62 .29 -.32 -.71
15:

> phone.gain <- scan()
1: 1.135 1.075 1.496 1.611 1.654 1.573 1.689
8: 1.850 1.587 1.493 2.049 1.943 1.482 1.382
15:

Exploratory
Data Analysis

If two variables are strongly correlated, that correlation may appear
in a scatter plot of one variable against the other. For example, plot
phone.gain versus diff.hs using the following command:

> plot(diff.hs, phone.gain)

The results are shown in Figure 5.7. The plot reveals a strong positive
correlation, except for two obvious outliers. To identify the
observation numbers associated with the outliers in the scatter plot,
along with that of a third suspicious point, we used identify as
follows:

> identify(diff.hs, phone.gain, n = 3)

See the online help for a complete discussion of identify.
151

Chapter 5 Statistical Inference for One- and Two-Sample Problems
The obvious outliers occur at the first and second observations. In
addition, the suspicious point (labeled “3” in the scatter plot) occurs at
the third observation time.

Since you have now identified the observation times of the outliers,
you can gain further insight by making a time series plot of each
series:

> plot(diff.hs, type = "b")
> plot(phone.gain, type = "b")

You should also make an autocorrelation plot for each series:

> acf(diff.hs)
> acf(phone.gain)

The results are shown in Figure 5.8. Except for the first three
observations of the two series phone.gain and diff.hs, there is a
strong similarity of shape exhibited in the two time series plots. This
accounts for the strong positive correlation between the two variables

Figure 5.7: Scatter plot of phone.gain versus diff.hs.

•

•

•

•
•

•

•

•

•

•

•

•

•

•

diff.hs

ph
on

e.
ga

in

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1.
2

1.
4

1.
6

1.
8

2.
0

1

2

3

152

Correlation
diff.hs and phone.gain shown in Figure 5.7. The dissimilar behavior
of the two time series plots for the first three observations produces
the two obvious outliers, and the suspicious point, in the scatter plot
of phone.gain versus diff.hs.

The ACF plots show little evidence of serial correlation within each of
the individual series.

Statistical
Inference

From your exploratory data analysis, two types of questions present
themselves for more formal analysis. If the evidence for correlation is
inconclusive, you may want to test whether there is correlation
between the two variables of interest by testing the null hypothesis
that . On the other hand, if your EDA convinces you that
correlation exists, you might prefer a point estimate of the
correlation coefficient , or a confidence interval for .

Figure 5.8: Time series and ACF plots of phone increase data.

• • •
• •

•

• •
• •

•
•

•

•

Index
di

ff.
hs

2 4 6 8 10 12 14

-0
.6

0.
2

• •

•
• • •

•
•

• •

• •

• •

Index

ph
on

e.
ga

in

2 4 6 8 10 12 14

1.
2

1.
8

Lag

0 2 4 6 8 10

-0
.5

0.
5

 Series : diff.hs

Lag

0 2 4 6 8 10

-0
.5

0.
5

 Series : phone.gain

ρ 0=

ρ
ρ ρ
153

Chapter 5 Statistical Inference for One- and Two-Sample Problems
Hypothesis Test
p-Values

You can get p values for the null hypothesis that by using the
function cor.test. To perform this test, you specify the alternative
hypothesis to be tested and the test method to use, as follows:

• alternative specifies the alternative hypothesis to be tested.
There are three options:

• "two.sided" (the default alternative) tests the alternative
hypothesis that ρ ≠ 0.

• "greater" tests the alternative hypothesis that ρ > 0.

• "less" tests the alternative hypothesis that ρ < 0.

You can also use the abbreviated forms alt="g" and alt="l".

• method specifies which of the following methods is used:

• "pearson" (the default) uses the standard Pearson sample
correlation coefficient.

• "kendall" uses the rank-based Kendall’s measure of
correlation.

• "spearman" uses the rank-based Spearman’s measure of
correlation.

You can abbreviate these methods by using enough of the character
string to determine a unique match; here "p", "k", and "s" work.

Because both Kendall’s and Spearman’s methods are based on
ranks, they are not so sensitive to outliers and nonnormality as the
standard Pearson estimate.

Below is a simple use of cor.test to test the alternative hypothesis
that there is a positive correlation in the phone gain data. We use the
default choice of the classical Pearson estimate with the one-sided
alternative alt="g".

ρ 0=

τ

ρ

τ ρ
154

Correlation
> cor.test(diff.hs, phone.gain, alt = "g")

 Pearson product-moment correlation

data: diff.hs and phone.gain
t = 1.9155, df = 12, p-value = 0.0398
alternative hypothesis: true coef is greater than 0
sample estimates:
 cor
 0.4839001

You get a normal theory t-statistic having the modest value of 1.9155,
and a p value of 0.0398. The estimate of is 0.48, to two decimal
places. There are 14 bivariate observations, and since the mean is
estimated for each sample under the null hypothesis that , the
number of degrees of freedom (df) is 12.

Since your EDA plots reveal two obvious bivariate outliers in the
phone gain data, the nonparametric alternatives, either Kendall’s or
Spearman’s , are preferable in determining p values for this case.
Using Kendall’s method, we obtain the following results:

> cor.test(diff.hs, phone.gain, alt = "g",method = "k")

 Kendall’s rank correlation tau

data: diff.hs and phone.gain
normal-z = 2.0834, p-value = 0.0186
alternative hypothesis: true tau is greater than 0
sample estimates:
 tau
 0.4175824

The p-value obtained from Kendall’s method is smaller than that
obtained from the Pearson method. The null hypothesis is rejected at
a level of 0.05. Spearman’s , by contrast, yields a p value similar to
that of the standard Pearson method.

ρ

ρ 0>

τ
ρ

ρ

155

Chapter 5 Statistical Inference for One- and Two-Sample Problems
Point Estimates
and Confidence
Intervals for ρ

You may want an estimate of , or a confidence interval for .
The function cor.test gives you the classical sample correlation
coefficient estimate of , when you use the default Pearson’s
method. However, cor.test does not provide you with a robust
estimate of , (since neither Kendall’s nor Spearman’s provide
an unbiased estimate of). Furthermore, cor.test does not provide
any kind of confidence interval for .

To obtain a robust point estimate of , use the function cor with a
nonzero value for the optional argument trim. You should specify a
fraction α between 0 and 0.5 for the value of this argument. This
results in a robust estimate which consists of the ordinary sample
correlation coefficient based on the fraction () of the data
remaining after “trimming” away a fraction . In most cases, set
trim=0.2. If you think your data contain more than 20% outliers, you
should use a larger fraction in place of 0.2. The default value is
trim=0, which yields the standard Pearson sample correlation
coefficient.

Applying cor to the phone gain data, you get:

> cor(diff.hs, phone.gain, trim = 0.2)

[1] 0.7145078

Comparing this robust estimate to our earlier value for obtained
using cor.test, we see the robust estimate yields a larger estimate of

. This is what you expect, since the two outliers cause the standard
sample correlation coefficient to have a value smaller than that of the
“bulk” of the data.

Warning

The values returned for tau and rho (0.407 and 0.504, respectively, for the phone gain data) do
not provide unbiased estimates of the true correlation ρ. Transformations of tau and rho are
required to obtain unbiased estimates of ρ.

ρ ρ ρ

r ρ

ρ τ ρ
ρ

ρ

ρ

1 α–

α

ρ

ρ

156

Correlation
To obtain a confidence interval for , we’ll use the following
procedure (as in Snedecor and Cochran (1980)). First, transform
using Fisher’s z transform, which consists of taking the inverse
hyperbolic tangent transform . Then, construct a
confidence interval for the correspondingly transformed true

correlation coefficient . Finally, transform this interval
back to the original scale by transforming each endpoint of this
interval with the hyperbolic tangent transformation tanh.

To implement the procedure just described as a Spotfire S+ function,
create the function cor.confint as follows:

> cor.confint <- function(x, y, conf.level = .95, trim = 0)
+ {
+ z <- atanh(cor(x, y, trim))
+ b <- qnorm((1 - conf.level)/2)/(length(x) - 3)^.5
+ ci.z <- c(z - b, z + b)
+ conf.int <- tanh(ci.z)
+ conf.int
+ }

You can now use your new function cor.confint on the phone gain
data:

> cor.confint(diff.hs, phone.gain)

[1] 0.80722628 -0.06280425

> cor.confint(diff.hs, phone.gain, trim = .2)

[1] 0.9028239 0.2962300

When you use the optional argument trim=0.2, you are basing the
confidence interval on a robust estimate of ρ, and consequently you
get a robust confidence interval. Since the robust estimate has the
value 0.72, which is larger than the standard (nonrobust) estimate
value of 0.48, you should be reassured to get an interval which is
shifted upward, and is also shorter, than the nonrobust interval you
got by using cor.confint with the default option trim=0.

ρ
ρ

x ρ()atanh=

ρ ρ()atanh=
157

Chapter 5 Statistical Inference for One- and Two-Sample Problems
REFERENCES

Bishop, Y.M.M., Fienberg, S.J., & Holland, P.W. (1980). Discrete
Multivariate Analysis: Theory and Practice. Cambridge, MA: The MIT
Press .

Box, G.E.P., Hunter, W.G., & Hunter, J.S. (1978). Statistics for
Experimenters: An Introduction to Design, Data Analysis and Model
Building. New York: John Wiley & Sons, Inc.

Conover, W.J. (1980). Practical Nonparametric Statistics (2nd ed.). New
York: John Wiley & Sons, Inc.

Heidelberger, P. & Welch, P.D. (1981). A spectral method for
confidence interval generation and run-length control in simulations.
Communications of the ACM 24:233-245.

Hogg, R.V. & Craig, A.T. (1970). Introduction to Mathematical Statistics
(3rd ed.). Toronto, Canada: Macmillan.

Mood, A.M., Graybill, F.A., & Boes, D.C. (1974). Introduction to the
Theory of Statistics (3rd ed.). New York: McGraw-Hill.

Snedecor, G.W. & Cochran, W.G. (1980). Statistical Methods (7th ed.).
Ames, IA: Iowa State University Press.
158

Introduction 160

Cumulative Distribution Functions 161

The Chi-Square Goodness-of-Fit Test 165

The Kolmogorov-Smirnov Goodness-of-Fit Test 168

The Shapiro-Wilk Test for Normality 172

One-Sample Tests 174
Comparison of Tests 174
Composite Tests for a Family of Distributions 174

Two-Sample Tests 178

References 180

GOODNESS OF FIT TESTS 6
159

Chapter 6 Goodness of Fit Tests
INTRODUCTION

Most TIBCO Spotfire S+ functions for hypothesis testing assume a
certain distributional form (often normal) and then use data to make
conclusions about certain parameters of the distribution, often the
mean or variance. In Chapter 5, Statistical Inference for One- and
Two-Sample Problems, we describe EDA techniques to informally
test the assumptions of these procedures. Goodness of fit (GOF) tests
are another, more formal tool to assess the evidence for assuming a
certain distribution.

There are two types of GOF problems, corresponding to the number
of samples. They ask the following questions:

1. One sample. Does the sample arise from a hypothesized
distribution?

2. Two sample. Do two independent samples arise from the same
distribution?

Spotfire S+ implements the two best-known GOF tests:

• Chi-square, in the chisq.gof function.

• Kolmogorov-Smirnov, in the ks.gof function.

The chi-square test applies only in the one-sample case; the
Kolmogorov- Smirnov test can be used in both the one-sample and
two-sample cases.

Both the chi-square and Kolmogorov-Smirnov GOF tests work for
many different distributions. In addition, Spotfire S+ includes the
function shapiro.test, which computes the Shapiro-Wilk W-statistic
for departures from normality. This statistic can be more powerful
than the other two tests for determining whether a particular data set
arises from the normal (Gaussian) distribution.

This chapter describes all three tests, together with a graphical
function, cdf.compare, that can be used as an exploratory tool for
evaluating goodness of fit.
160

Cumulative Distribution Functions
CUMULATIVE DISTRIBUTION FUNCTIONS

For a random variable , a cumulative distribution function (cdf),
, assigns a measure between 0 and 1 of the

probability that . If form a random sample from a

continuous distribution with observed values , an empirical

distribution function Fn can be defined for all , , so that
 is the proportion of observed values less than or equal to .

The empirical distribution function estimates the unknown cdf.

To decide whether two samples arise from the same unknown
distribution, a natural procedure is to compare their empirical
distribution functions. Likewise, for one sample, you can compare its
empirical distribution function with a hypothesized cdf. For more
information on cumulative distribution functions, see Chapter 1,
Probability.

A graphical comparison of either one empirical distribution function
with a known cdf, or of two empirical distribution functions, can be
obtained easily in Spotfire S+ using the function cdf.compare. For
example, consider the plot shown in Figure 6.1. In this example, the
empirical distribution function and a hypothetical cdf are quite close.
This plot is produced using the cdf.compare function as follows:

Set the seed for reproducibility.
> set.seed(222)
> z <- rnorm(100)
> cdf.compare(z, distribution = "normal")

X
F x() P X x≤[]=

X x< X1 … X, n,

x1 … x, n,

x ∞ x ∞< <–
Fn x() x
161

Chapter 6 Goodness of Fit Tests
You may also compare distributions using quantile-quantile plots
(qqplots) generated by either of the following functions:

• qqnorm, which compares one sample with a normal
distribution.

• qqplot, which compares two samples.

For our normal sample z, the command qqnorm(z) produces the plot
shown in Figure 6.2.

Figure 6.1: The empirical distribution function of a sample of size 100 generated
from a N(0,1) distribution. The dotted line is the smoothed theoretical N(0,1)
distribution evaluated at the sample points.

Empirical and Hypothesized normal CDFs

solid line is the empirical d.f.

-3 -2 -1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0
162

Cumulative Distribution Functions
Departures from linearity show how the sample differs from the
normal, or how the two sample distributions differ. To compare
samples with distributions other than the normal, you may produce
qqplots using the function ppoints. For more details, see the chapter
Traditional Graphics in the Guide to Graphics.

In many cases, the graphical conclusions drawn from either
cdf.compare or the qqplots make more formal tests such as the
chi-square or Kolmogorov-Smirnov unnecessary. For example,
consider the two empirical distributions compared in Figure 6.3.
They clearly have different distribution functions:

> x <- rnorm(30)
> y <- runif(30)
> cdf.compare(x, y)

Figure 6.2: A qqnorm plot of a sample from a normal distribution.

Quantiles of Standard Normal

z

-2 -1 0 1 2

-3
-2

-1
0

1
2

163

Chapter 6 Goodness of Fit Tests
Figure 6.3: Two clearly different empirical distribution functions.

Comparison of Empirical cdfs of x and y

dotted line is cdf of y

-2 -1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0
164

The Chi-Square Goodness-of-Fit Test
THE CHI-SQUARE GOODNESS-OF-FIT TEST

The chi-square test is the oldest and best known goodness-of-fit test. It
is a one-sample test that examines the frequency distribution of
observations grouped into classes. The observed counts in each

class are compared to the expected counts from the hypothesized
distribution. The test statistic, due to Pearson, is

.

Under the null hypothesis that the sample comes from the

hypothesized distribution, the test statistic has a distribution with
 degrees of freedom. For any significance level , reject the null

hypothesis if is greater than the critical value for which

.

You perform the chi-square goodness of fit test with the chisq.gof
function. In the simplest case, specify a test vector and a hypothesized
distribution:

> chisq.gof(z, distribution = "normal")

 Chi-square Goodness of Fit Test

data: z

Chi-square = 11.8, df = 12, p-value = 0.4619
alternative hypothesis:
 True cdf does not equal the normal Distn. for at least
one sample point.

Since we created z as a random sample from a normal distribution, it
is not surprising that we cannot reject the null hypothesis. If we
hypothesize a different distribution, we see that the chi-square test
correctly rejects the hypothesis. In the command below, we test
whether z is a sample from an exponential distribution.

> chisq.gof(z, distribution = "exponential")

n
k ci

Ci

χ̂
2 ci Ci–()2

Ci

i 1=

k

∑=

χ2

k 1– α

χ̂2 ν

P χ2 ν>() α=
165

Chapter 6 Goodness of Fit Tests
 Chi-square Goodness of Fit Test

data: z

Chi-square = 271.28, df = 12, p-value = 0
alternative hypothesis:
 True cdf does not equal the exponential Distn. for at
least one sample point.

The allowable values for the distribution argument are the
following strings:

"beta" "binomial" "cauchy" "chisquare"
"exponential" "f" "gamma" "geometric"
"hypergeometric" "lognormal" "logistic" "negbinomial"
"normal" "poisson" "t" "uniform"
"weibull" "wilcoxon"

The default value for distribution is "normal".

When the data sample is from a continuous distribution, one factor
affecting the outcome is the choice of partition for determining the
grouping of the observations. This becomes particularly important
when the expected count in one or more cells drops below 1, or the
average expected cell count drops below five (Snedecor and Cochran
(1980), p. 77). You can control the choice of partition using either the
n.classes or cut.points argument to chisq.gof. By default,
chisq.gof uses a default value for n.classes due to Moore (1986).

Use the n.classes argument to specify the number of equal-width
classes:

> chisq.gof(z, n.classes = 5)

Use the cut.points argument to specify the end points of the cells.
The specified points should span the observed values:

> cuts.z <- c(floor(min(z))-1, -1, 0, 1, ceiling(max(z))+1)
> chisq.gof(z, cut.points = cuts.z)
166

The Chi-Square Goodness-of-Fit Test
Chi-square tests apply to any type of variable: continuous, discrete, or
a combination of these. For large sample sizes (), the chi-square
is the only valid test when the hypothesized distribution is discrete. In
addition, the chi-square test easily adapts to the situation when
parameters of a distribution are estimated. However, information is
lost by grouping the data, especially for continuous variables.

n 50≥
167

Chapter 6 Goodness of Fit Tests
THE KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST

Suppose and are two cdfs. In the one-sample situation, is

the empirical distribution function and is a hypothesized cdf; in

the two-sample situation, and are both empirical distribution
functions. Possible hypotheses and alternatives concerning these cdfs
are:

• Two-sided

H0: for all

HA: for at least one value of

• One-sided (“less” alternative)

H0: for all

HA: for at least one value of .

• One-sided (“greater” alternative)

H0: for all

HA: for at least one value of

The Kolmogorov-Smirnov (KS) test is a method for testing the above
hypotheses. Corresponding to each alternative hypothesis is a test
statistic, as follows.

• Two-sided Test:

• Less Alternative:

• Greater Alternative:

Thus, the KS test is based on the maximum vertical distance between
the distributions and . If the test statistic is greater than
some critical value, the null hypothesis is rejected.

F1 F2 F1

F2

F1 F2

F1 x() F2 x()= x

F1 x() F2 x()≠ x

F1 x() F2 x()≥ x

F1 x() F2 x()< x

F1 x() F2 x()≤ x

F1 x() F2 x()> x

T supx F1 x() F2 x()–=

T- supx F2 x() F1 x()–=

T+ supx F1 x() F2 x()–=

F1 x() F2 x()
168

The Kolmogorov-Smirnov Goodness-of-Fit Test
To perform a KS test, use the function ks.gof. By default, the one-
sample ks.gof test compares the sample x to a normal distribution
with a mean of mean(x) and a standard deviation of stdev(x). For
example, the following is returned for our normal sample, z:

> ks.gof(z)

One sample Kolmogorov-Smirnov Test of Composite Normality

data: z
ks = 0.0826, p-value = 0.0891
alternative hypothesis:
 True cdf is not the normal distn. with estimated
parameters
sample estimates:
 mean of x standard deviation of x
 0.006999765 1.180401

In the one-sample case, ks.gof can test any of the three hypotheses
through the alternative argument; possible values of alternative
are "two-sided", "greater", and "less". In the two-sample case,
ks.gof can test only the two-sided hypothesis.

You can specify a different distribution using the distribution
argument, which accepts the following values:

"beta" "binomial" "cauchy" "chisquare"
"exponential" "f" "gamma" "geometric"
"hypergeometric" "lognormal" "logistic" "negbinomial"
"normal" "poisson" "t" "uniform"
"weibull" "wilcoxon"

For example, suppose we think the underlying distribution of z is chi-
square with 2 degrees of freedom. The KS test gives strong evidence
against this assumption. In the command below, the ks.gof function
passes the df argument to the functions for the chi-square distribution.
169

Chapter 6 Goodness of Fit Tests
> ks.gof(z, alternative = "greater",
+ distribution = "chisquare", df = 2)

One-sample Kolmogorov-Smirnov Test
Hypothesized distribution = chisquare

data: z
ks = 0.4906, p-value = 0
alternative hypothesis:
 True cdf is greater than the chisquare distn. with the
specified parameters

Figure 6.4, created as follows, also shows that this assumption is not
reasonable:

> cdf.compare(z, dist = "chisquare", df = 2)

The chisq.gof test gives further confirmation:

> chisq.gof(z, dist = "chisquare", n.param.est = 0, df = 2)

Chi-square Goodness of Fit Test

data: z
Chi-square = 314.96, df = 12, p-value = 0
alternative hypothesis:
 True cdf does not equal the chisquare Distn. for at least
one sample point.

Note that chisq.gof tests only the two sided alternative.
170

The Kolmogorov-Smirnov Goodness-of-Fit Test
Figure 6.4: Similar to Figure 6.3, except the dotted line shows a chi-square cdf with
2 degrees of freedom.

Empirical and Hypothesized chisquare CDFs

solid line is the empirical d.f.

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

171

Chapter 6 Goodness of Fit Tests
THE SHAPIRO-WILK TEST FOR NORMALITY

The Shapiro-Wilk W-statistic is a well-established and powerful test
for detecting departures from normality. The test statistic is
defined as:

where are the ordered data values. The vector

 is

,

where is the vector of expected values of the order statistics for a
random sample of size from a standard normal distribution. Here,

 is the variance-covariance matrix for the order statistics, denotes

the transpose operator, and is the inverse of . Thus, contains
the expected values of the standard normal order statistics, weighted

by their variance-covariance matrix and normalized so that .
The W-statistic is attractive because it has a simple, graphical
interpretation: you can think of it as an approximate measure of the
correlation in a normal quantile-quantile plot of the data.

To calculate Shapiro-Wilk’s W-statistic in Spotfire S+, use the
shapiro.test function. This function works for sample sizes less than
5000; Spotfire S+ returns an error if there is more than 5000 finite
values in your data set. The following is returned for our normal
sample, z:

> shapiro.test(z)

Shapiro-Wilk Normality Test

data: z

W

W

ai xi

i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

xi x–()2

i 1

n

∑

2

=

x1 x2 … xn, , ,

a a1 a2 … an, , ,()=

aT mTV 1–

mTV 1– V 1– m
---------------------------------=

m
n

V T

V 1– V a

aTa 1=
172

The Shapiro-Wilk Test for Normality
W = 0.9853, p-value = 0.3348

Small p-values indicate that the null hypothesis of normality is
probably not true. Since we generated z from a normal distribution, it
is not surprising that we cannot reject the null hypothesis.
173

Chapter 6 Goodness of Fit Tests
ONE-SAMPLE TESTS

Comparison of
Tests

As we mention in the section The Chi-Square Goodness-of-Fit Test on
page 165, the chi-square test divides the data into categories. While
this may be appropriate for discrete data, it can be an arbitrary
process when the data are from a continuous distribution. The results
of the chi-square test can vary with how the data are divided,
especially when dealing with continuous distributions. Because of this
characteristic, the one-sample Kolmogorov-Smirnov test is more
powerful than the chi-square test when the hypothesized distribution
is continuous. That is, it is more likely to reject the null hypothesis
when it should.

In general, both the chi-square and Kolmogorov-Smirnov GOF tests
are less powerful for detecting departures from normality than the
Shapiro-Wilk test. This is because the Shapiro-Wilk test is designed
specifically for normal distributions, and does not test the goodness of
fit for other distributions. In addition, the chi-square and
Kolmogorov-Smirnov tests must estimate distribution parameters
from the data if none are provided; we discuss this in detail in the
next section.

Composite
Tests for a
Family of
Distributions

When distribution parameters are estimated from a sample rather
than specified in advance, the tests described in this chapter may no
longer be adequate. Instead, different tables of critical values are
needed. The tables for the Kolmogorov-Smirnov test, for example,
vary according the the following criteria:

• Different distributions

• Estimated parameters

• Methods of estimation

• Sample sizes

The null hypothesis is composite in these cases: rather than
hypothesizing that the data have a distribution with specific
parameters, we hypothesize only that the distribution belongs to a
particular family of distributions, such as the normal. This family of
distributions results from allowing all possible parameter values.
174

One-Sample Tests
The two functions chisq.gof and ks.gof use different strategies to
solve composite tests. When estimating distribution parameters, the
chisq.gof function requires the user to pass both the number of
estimated parameters and the estimates themselves as arguments. It
then reduces the degrees of freedom for the chi-square by the number
of estimated parameters.

The ks.gof function explicitly calculates the required parameters in
two cases:

• Normal distribution, where both the mean and variance are
estimated.

• Exponential distribution, where the mean is estimated.

Otherwise, ks.gof forbids composite hypotheses. When distribution
parameters must be estimated, the KS test tends to be conservative .
This means that the actual significance level for the test is smaller than
the stated significance level. A conservative test may incorrectly fail to
reject the null hypothesis, thus decreasing its power.

The Shapiro-Wilk W-statistic is calculated directly from the data
values, and does not require estimates of the distribution parameters.
Thus, it is more powerful than both the chi-square and Kolmogorov-
Smirnov GOF tests when the hypothesized theoretical distribution is
normal.

As an example, we test whether we can reasonably assume that the
Michelson data arises from a normal distribution; see the section One
Sample: Distribution Shape, Location, and Scale on page 129 for a
definition of the mich data set. We start with an exploratory plot using
cdf.compare, as shown in Figure 6.5:

> cdf.compare(mich, dist = "normal", mean = mean(mich),
+ sd = stdev(mich))
175

Chapter 6 Goodness of Fit Tests

We now use the ks.gof function, which estimates parameters for the
mean and variance:

> ks.gof(mich, dist = "normal")

One sample Kolmogorov-Smirnov Test of Composite Normality

data: mich
ks = 0.1793, p-value = 0.0914
alternative hypothesis:
 True cdf is not the normal distn. with estimated
parameters
sample estimates:
 mean of x standard deviation of x
 909 104.926

If distribution parameters are estimated, the degrees of freedom for
chisq.gof depend on the method of estimation. In practice, you may
estimate the parameters from the original data and set the argument
n.param.est to the number of parameters estimated. The chisq.gof

Figure 6.5: Exploratory plot of cdf of the Michelson data.

Empirical and Hypothesized normal CDFs

solid line is the empirical d.f.
700 800 900 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

176

One-Sample Tests
function then subtracts one degree of freedom for each parameter
estimated. For example, the command below tests the normal
assumption for the Michelson data using chisq.gof:

> chisq.gof(mich, dist = "normal", n.param.est = 2,
+ mean = mean(mich), sd = stdev(mich))

Chi-square Goodness of Fit Test

Warning messages:
 Expected counts < 5. Chi-squared approximation may not
 be appropriate.
data: mich
Chi-square = 8.7, df = 4, p-value = 0.0691
alternative hypothesis:
 True cdf does not equal the normal Distn. for at least one
sample point.

Note that the distribution theory of the chi-square test is a large
sample theory. Therefore, when any expected cell counts are small,
chisq.gof issues a warning message. You should regard p values with
caution in this case.

In truth, if the parameters are estimated by maximum likelihood, the
degrees of freedom for the chi-square test are bounded between
() and (), where is the number of cells and is the
number of parameters estimated. It is therefore important to compare
the test statistic to the chi-square distribution with both () and
() degrees of freedom, especially when the sample size is
small. See Kendall and Stuart (1979), for a more complete discussion.

Both the chi-square and Kolmogorov-Smirnov goodness-of-fit tests
return results for the mich data which make us suspect the null
hypothesis, but don’t allow us to firmly reject it at 95% or 99%
confidence levels. The shapiro.test function returns a similar result:

> shapiro.test(mich)

Shapiro-Wilk Normality Test

data: mich
W = 0.9199, p-value = 0.0988

m 1– m 1– k– m k

m 1–

m 1– k–
177

Chapter 6 Goodness of Fit Tests
TWO-SAMPLE TESTS

In the two-sample case, you can use the ks.gof function, with the
second sample y filling in for the hypothesized distribution. The
assumptions of the two-sample KS test are:

• The samples are random samples,

• The samples are mutually independent, and

• The data are measured on at least an ordinal scale.

In addition, the test gives exact results only if the underlying
distributions are continuous.

For example, the following commands graphically compare the cdfs
of two vectors, x and y, that are generated from a normal and
exponential distribution, respectively:

> x <- rnorm(30)
> y <- rexp(100)
> par(mfrow = c(1,2))
> qqplot(x, y)
> cdf.compare(x, y)

Figure 6.6 shows the results; the qqplot is not linear and the cdfs are
quite different. This graphical evidence is verified by a formal KS test:

> ks.gof(x, y)

Two-Sample Kolmogorov-Smirnov Test

data: x and y
ks = 0.4667, p-value = 0.0001
alternative hypothesis:
 cdf of x does not equal the
 cdf of y for at least one sample point.
178

Two-Sample Tests
Figure 6.6: Normal and exponential samples compared. In the graph on the right,
the dotted line is the cumulative distribution function for the exponential sample.

x

y

-2 -1 0 1 2 3

0
1

2
3

4

Comparison of Empirical cdfs of x and y

dotted line is cdf of y

-2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0
179

Chapter 6 Goodness of Fit Tests
REFERENCES

Kendall, M.G. & Stuart, A. (1979). The Advanced Theory of Statistics,
Volume 2: Inference and Relationship (4th ed.). New York: Oxford
University Press.

Millard, S.P. and Neerchal, N.K. (2001). Environmental Statistics with
Spotfire S+ . Boca Raton, Florida: CRC Press LLC.

Moore, D.S. (1986). Tests of chi-squared type. In D'Agostino, R.B. &
Stevens, M.A. (Eds.) Goodness-of-Fit Techniques. New York: Marcel
Dekker.

Snedecor, G.W. & Cochran, W.G. (1980). Statistical Methods (7th ed.).
Ames, Iowa: Iowa State University Press.
180

Introduction 182

Proportion Parameter for One Sample 184
Setting Up the Data 184
Hypothesis Testing 184
Confidence Intervals 185

Proportion Parameters for Two Samples 186
Setting Up the Data 186
Hypothesis Testing 186
Confidence Intervals 188

Proportion Parameters for Three or More Samples 189
Setting Up the Data 189
Hypothesis Testing 190
Confidence Intervals 191

Contingency Tables and Tests for Independence 192
The Chi-Square and Fisher Tests of Independence 193
The Chi-Square Test of Independence 195
Fisher’s Exact Test of Independence 196
The Mantel-Haenszel Test of Independence 196
McNemar’s Test for Symmetry Using Matched Pairs 199

References 201

STATISTICAL INFERENCE FOR
COUNTS AND PROPORTIONS 7
181

Chapter 7 Statistical Inference for Counts and Proportions
INTRODUCTION

This chapter shows you how to use TIBCO Spotfire S+ statistical
inference functions for two types of problems that involve counts or
proportions. With these functions, you can obtain confidence intervals
for the unknown population parameters and p values for hypothesis
tests of the parameter values.

The first type of problem is one where you have one or more
samples, or sets of trials, in which the count for each sample
represents the number of times that a certain interesting outcome
occurs. By common convention, we refer to the occurrence of the
outcome of interest as a “success.” For example, if you play roulette
100 times at a casino, and you bet on red each time, you are
interested in counting the number of times that the color red comes
up. This count is a number between 0 and 100. When you divide this
count by 100 you get a proportion (that is, a number between 0 and
1). This proportion is a natural estimate of the probability that red
comes up on the roulette wheel.

Another example is provided by the famous Salk vaccine trials. These
trials involved two groups, one of which received the vaccine and one
of which received a placebo. For each group, the count of interest was
the number of individuals who contracted polio. The ratio of the
number of individuals who contracted polio to the total number of
individuals in the group is a proportion that provides a natural
estimate of the probability of contracting polio within that group.

The underlying probability model for problems of this first type is the
binomial distribution. For each set of trials i , this distribution is
characterized by the number of trials and the probability that a
success occurs on each trial. This probability is called a proportion
parameter. Your main interest is in making statistical inference
statements concerning the probabilities of occurrence of

the event of interest for each of the sets of trials.

The second type of problem is one where you have counts on the
number of occurrences of several possible outcomes for each of two
variables. For example, you may be studying three types of cancer
and three types of diet (such as low-, medium- and high-fat diets). The
two variables of interest may be “type of cancer” and “type of diet.”

pi

p1 p2 … p, m, ,

m

182

Introduction
For a fixed set of individuals, you have counts on the number of
individuals who fall jointly in each of the categories defined by the
simultaneous occurrence of a type of cancer and a diet classification.
For problems of this kind, the data is arranged in a two-way table
called a contingency table .

In this second kind of problem, your main interest is to determine
whether there is any association between the two variables of interest.
The probability model for such problems is one of statistical
independence between the two variables.

The first three sections of this chapter cover the first type of problem
described above, for which the proportion parameters are the
probabilities of success, in m sets of binomial trials. The
last section covers the second type of problem, where you are
interested in testing the null hypothesis of independence between two
variables.

p1 p2 … p, m, ,
183

Chapter 7 Statistical Inference for Counts and Proportions
PROPORTION PARAMETER FOR ONE SAMPLE

When you play roulette and bet on red, you expect your probability
of winning to be close to, but slightly less than, 0.5. You expect this
because (in the United States) a roulette wheel has 18 red slots, 18
black slots, and two additional slots labeled “0” and “00,” for a total of
38 slots into which the ball can fall. Thus, for a “fair” (that is, perfectly
balanced) wheel, you expect the probability of red to be

. You hope that the house is not cheating you
by altering the roulette wheel so that the probability of red is less than
0.474.

To test whether a given sample has a particular proportion parameter,
use the binom.test function.

Setting Up the
Data

In the roulette case there is little to do, since the only data are the
number n of trials and the number x of successes. These two values
can be directly supplied as arguments to binom.test, as shown in the
examples below.

Hypothesis
Testing

You can test the null hypothesis that using the function
binom.test. For example, if you bet on red 100 times and red comes
up 42 times, you get a p value for this null hypothesis against the
two-sided alternative that as follows:

> binom.test(42, 100, p = 0.474)$p.value

[1] 0.3167881

The two-sided alternative is the default alternative for binom.test.
You can get a p value for a one-sided alternative by using the optional
argument alt. For example, in the roulette wheel example you are
concerned that the house might cheat you in some way so that .
Use the following to test the null hypothesis against this one-sided
alternative:

> binom.test(42, 100, p = 0.474, alt = "l")$p.value

[1] 0.1632416

p0 18 38⁄ 0.474= =

p p0=

p 0.474≠

p p0<
184

Proportion Parameter for One Sample
Here alt="l" specifies the “less than” alternative . To specify

the “greater than” alternative , use alt="g".

The default for the optional argument p, which specifies the null
hypothesis value for , is p=0.5. For example, suppose you toss a
coin 1000 times, with heads coming up 473 times. To test the coin for
“fairness” (that is, to test that the probability of heads equals 0.5), use
the following:

> binom.test(473, 1000)$p.value

[1] 0.09368729

Confidence
Intervals

The function binom.test does not compute a confidence interval for
the probability of success. You can get a confidence interval for
by using the function prop.test. For example, the following shows
how to obtain the 95% confidence interval for :

> prop.test(45, 100)$conf.int

[1] 0.3514281 0.5524574
attr(, "conf.level"):
[1] 0.95

The function prop.test uses a normal approximation to the binomial
distribution for such computations.

You get different confidence intervals by using the optional argument
conf.level with different values. For example, to get a 90%
confidence interval:

> prop.test(45, 100, conf.level = 0.9)$conf.int

[1] 0.3657761 0.5370170
attr(, "conf.level"):
[1] 0.9

p p0<

p p0>

p

p p

p

185

Chapter 7 Statistical Inference for Counts and Proportions
PROPORTION PARAMETERS FOR TWO SAMPLES

In the Salk vaccine trials, two large groups were involved in the
placebo-control phase of the study. The first group, which received
the vaccination, consisted of 200,745 individuals. The second group,
which received a placebo, consisted of 201,229 individuals. There
were 57 cases of polio in the first group and 142 cases of polio in the
second group.

You assume a binomial model for each group, with a probability

of contracting polio in the first group and a probability of
contracting polio in the second group. You are mainly interested in
knowing whether or not the vaccine is effective. Thus you are mainly
interested in knowing the relationship between and .

You can use prop.test to obtain hypothesis test p values concerning
the values of and , and to obtain confidence intervals for the

difference between the values and .

Setting Up the
Data

The first two arguments to prop.test are vectors containing,
respectively, the number of successes and the total number of trials.
For consistency with the one-sample case, we name these vectors x
and n. In the case of the Salk vaccine trials, a “success” corresponds to
contracting polio (although one hardly thinks of this as a literal
success!). Thus, you create the vectors x and n as follows:

> x <- c(57, 142)
> n <- c(200745, 201229)

Hypothesis
Testing

For two-group problems, you can use either of two null hypotheses:
an equal probabilities null hypothesis that , with no
restriction on the common value of these probabilities other than that
they be between 0 and 1, or a completely specified probabilities null
hypothesis, where you provide specific probabilities for both and

, and test whether the true probabilities are equal to those
hypothesized.

p1

p2

p1 p2

p1 p2

p1 p2

p1 p2=

p1

p2
186

Proportion Parameters for Two Samples
The Equal
Probabilities Null
Hypothesis

When using the equal probabilities null hypothesis, a common
alternative hypothesis is the two-sided alternative . These null
and alternative hypotheses are the defaults for prop.test.

In the Salk vaccine trials, your null hypothesis is that the vaccine has
no effect. For the two-sided alternative that the vaccine has some
effect, either positive or negative, you get a p value by extracting the
p.value component of the list returned by prop.test:

> prop.test(x, n)$p.value

[1] 2.86606e-09

The extremely small p value clearly indicates that the vaccine has
some effect.

To test the one-sided alternative that the vaccine has a positive effect;
that is, that , use the argument alt="l" to prop.test:

> prop.test(x, n, alt = "l")$p.value

[1] 1.43303e-09

Here the p value is even smaller, indicating that the vaccine is highly
effective in protecting against the contraction of polio.

Completely
Specified Null
Hypothesis
Probabilities

You can also use prop.test to test “completely” specified null
hypothesis probabilities. For example, suppose you have some prior
belief that the probabilities of contracting polio with and without the
Salk vaccine are and , respectively. Then
you supply these null hypothesis probabilities as a vector object, using
the optional argument p. The p value returned is for the joint
probability that both probabilities are equal to the hypothesized
probabilities; that is, 0.0002 and 0.0006 .

> prop.test(x, n, p = c(0.0002, 0.0006))$p.value

[1] 0.005997006

The above p value is very small and indicates that the null hypothesis
is very unlikely and should be rejected.

p1 p2≠

p1 p2<

p01 0.0002= p02 0.0006=
187

Chapter 7 Statistical Inference for Counts and Proportions
Confidence
Intervals

You obtain a confidence interval for the difference in the
probabilities of success for the two samples by extracting the
conf.int component of prop.test. For example, to get a 95%
confidence interval for the difference in probabilities for the Salk
vaccine trials:

> prop.test(x, n)$conf.int

[1] -0.0005641508 -0.0002792920
attr(, "conf.level"):
[1] 0.95

The 95% confidence level is the default confidence level for
prop.test. You get a different confidence level by using the optional
argument conf.level=. For example, to get a 99% confidence
interval, use:

> prop.test(x, n, conf.level = 0.99)$conf.int

[1] -0.0006073419 -0.0002361008
attr(, "conf.level"):
[1] 0.99

You get a confidence interval for the difference by using
prop.test only when you use the default null hypothesis that

.

You get all the information provided by prop.test as follows:

> prop.test(x, n, conf.level = 0.90)

 2-sample test for equality of proportions with
 continuity correction
data: x out of n
X-squared = 35.2728, df = 1, p-value = 0
alternative hypothesis: two.sided
90 percent confidence interval:
 -0.0005420518 -0.0003013909
sample estimates:
 prop’n in Group 1 prop’n in Group 2
 0.0002839423 0.0007056637

p1 p2–

p1 p2–

p1 p2=
188

Proportion Parameters for Three or More Samples
PROPORTION PARAMETERS FOR THREE OR MORE
SAMPLES

Sometimes you may have three or more samples of subjects, with
each subject characterized by the presence or absence of some
characteristic. An alternative, but equivalent, terminology is that you
have three or more sets of trials, with each trial resulting in a success
or failure. For example, consider the data shown in Table 7.1 for four
different studies of lung cancer patients, as presented by Fleiss (1981).

Each study has a certain number of patients, as shown in the second
column of the table, and for each study a certain number of the
patients were smokers, as shown in the third column of the table. For
this data, you are interested in whether the probability of a patient
being a smoker is the same in each of the four studies, that is, whether
each of the studies involve patients from a homogeneous population.

Setting Up the
Data

The first argument to prop.test is a vector containing the number of
subjects having the characteristic of interest for each of the groups (or
the number of successes for each set of trials). The second argument
to prop.test is a vector containing the number of subjects in each
group (or the number of trials for each set of trials). As in the one and
two sample cases, we call these vectors x and n.

Table 7.1: Smoking status among lung cancer patients in four studies.

Study Number of Patients Number of Smokers

1 86 83

2 93 90

3 136 129

4 82 70
189

Chapter 7 Statistical Inference for Counts and Proportions
For the smokers data in Table 7.1, you create the vectors x and n as
follows:

> x <- c(83, 90, 129, 70)
> n <- c(86, 93, 136, 82)

Hypothesis
Testing

For problems with three or more groups, you can use either an equal
probabilities null hypothesis or a completely specified probabilities
null hypothesis.

The Equal
Probabilities Null
Hypothesis

In the lung cancer study, the null hypothesis is that the probability of
being a smoker is the same in all groups. Because the default null
hypothesis for prop.test is that all groups (or sets of trials) have the
same probability of success, you get a p value as follows:

> prop.test(x, n)$p.value

[1] 0.005585477

The p value of 0.006 is highly significant, so you can not accept the
null hypothesis that all groups have the same probability that a
patient is a smoker. To see all the results returned by prop.test, use:

> prop.test(x, n)

 4-sample test for equality of proportions without
 continuity correction

data: x out of n
X-squared = 12.6004, df = 3, p-value = 0.0056
alternative hypothesis: two.sided
sample estimates:
prop’n in Group 1 prop’n in Group 2 prop’n in Group 3
 0.9651163 0.9677419 0.9485294
prop’n in Group 4
 0.8536585

Completely
Specified Null
Hypothesis
Probabilities

If you want to test a completely specified set of null hypothesis
probabilities, you need to supply the optional argument p, with the
value of this argument being a vector of probabilities having the same
length as the first two arguments, x and n.
190

Proportion Parameters for Three or More Samples
For example, in the lung cancer study, to test the null hypothesis that
the first three groups have a common probability 0.95 of a patient
being a smoker, while the fourth group has a probability 0.90 of a
patient being a smoker, create the vector p as follows, then use it as an
argument to prop.test:

> p <- c(0.95, 0.95, 0.95, 0.90)
> prop.test(x, n, p)$p.value

[1] 0.5590245
Warning messages:
 Expected counts < 5. Chi-square approximation may not be
appropriate in prop.test(x,n,p).

Alternatively, you could use

> prop.test(x, n, p = c(0.95, 0.95, 0.95, 0.90))$p.value

Confidence
Intervals

Confidence intervals are not computed by prop.test when you have
three or more groups (or sets of trials).
191

Chapter 7 Statistical Inference for Counts and Proportions
CONTINGENCY TABLES AND TESTS FOR INDEPENDENCE

The Salk vaccine trials in the early 1950s resulted in the data
presented in Table 7.2.

There are two categorical variables for the Salk trials: vaccination
status, which has the two levels “vaccinated” and “placebo,” and polio
status, which has the three levels “no polio,” “non-paralytic polio,”
and “paralytic polio.” Of 200,745 individuals who were vaccinated,
24 contracted non-paralytic polio, 33 contracted paralytic polio, and
the remaining 200,688 did not contract any kind of polio. Of 201,229
individuals who received the placebo, 27 contracted non-paralytic
polio, 115 contracted paralytic polio, and the remaining 201,087 did
not contract any kind of polio.

Tables such as Table 7.2 are called contingency tables . A contingency
table lists the number of counts for the joint occurrence of two levels
(or possible outcomes), one level for each of two categorical variables.
The levels for one of the categorical variables correspond to the
columns of the table, and the levels for the other categorical variable
correspond to the rows of the table.

When working with contingency table data, your primary interest is
most often determining whether there is any association in the form
of statistical dependence between the two categorical variables whose
counts are displayed in the table. The null hypothesis is that the two
variables are statistically independent. You can test this null
hypothesis with the functions chisq.test and fisher.test. The
function chisq.test is based on the classic chi-square test statistic,
and the associated p value computation entails some approximations.

Table 7.2: Contingency table of Salk vaccine trials data.

No Polio
Non-paralytic

Polio
Paralytic

Polio Totals

Vaccinated 200,688 24 33 200,745

Placebo 201,087 27 115 201,229

Totals 401,775 51 148 401,974
192

Contingency Tables and Tests for Independence
The function fisher.test computes an exact p value for tables
having at most 10 levels for each variable. The function fisher.test
also entails a statistical conditioning assumption.

For contingency tables involving confounding variables, which are
variables related to both variables of interest, you can test for
independence using the function mantelhaen.test, which performs
the Mantel-Haenszel test. For contingency tables involving matched
pairs, use the function mcnemar.test to perform McNemar’s
chi-square test.

The functions for testing independence in contingency tables do not
compute confidence intervals, only p-values and the associated test
statistic.

The Chi-Square
and Fisher
Tests of
Independence

The chi-square and Fisher’s exact tests are familiar methods for
testing independence. The Fisher test is often recommended when
expected counts in any cell are below 5, as the chi-square probability
computation becomes increasingly inaccurate when the expected
counts in any cell are low; Spotfire S+ produces a warning message in
that case. Other factors may also influence your choice of which test
to use, however. Refer to a statistics text for further discussion if you
are unsure which test to use.

Setting Up the
Data

You can set up your contingency table data in several ways. Which
way you choose depends to some extent on the original form of the
data and whether the data involve a large number of counts or a small
to moderate number of counts.

Two-Column
Matrix Objects

If you already have the data in the form of a contingency table in
printed form, as in Table 7.2, the easiest thing to do is to put the data
in matrix form (excluding the marginal totals, if provided in the
original data). For example,

> salk.mat <- rbind(c(200688, 24, 33),c(201087, 27, 115))
> salk.mat

 [,1] [,2] [,3]
[1,] 200688 24 33
[2,] 201087 27 115
193

Chapter 7 Statistical Inference for Counts and Proportions
You could obtain the same result in a slightly different way as follows:

> salk.mat <- matrix(c(200688, 24, 33, 201087, 27, 115),
+ 2, 3, byrow = T)

Two Vector
Objects

You may be given the raw data in the form of two equal-length coded
vectors, one for each variable. In such cases, the length of the vectors
corresponds to the number of individuals, with each entry indicating
the level by a numeric coding. For example, suppose you have two
variables from a clinical trial of the drug propranolol (Snow, 1965).
The vector status is coded for control or propranolol status, and the
vector drug is coded yes or no indicating whether the patient survived
at least 28 days with the prescribed drug. The raw data are stored in
two columns of a built-in data frame named propranolol:

> propranolol$status

 [1] control control control control prop control prop
 [8] control prop control prop prop control prop
[15] prop control control prop prop prop prop
[22] control prop control control prop control control
[29] control control control control prop control prop
[36] control prop prop prop control prop control
[43] prop control prop control prop control control
[50] prop prop prop control prop prop prop
[57] control control control prop prop control prop
[64] control prop control prop control prop control
[71] prop control prop control prop control prop
[78] control prop control prop control prop control
[85] prop control prop control control prop prop

> propranolol$drug

 [1] yes yes yes no yes yes yes yes yes yes yes no no yes
[15] yes no no yes yes yes yes no yes yes no yes no yes
[29] no yes no yes no yes yes no no yes yes yes yes yes
[43] yes yes yes no yes no yes yes yes yes yes yes yes yes
[57] yes yes yes no yes yes yes no no no yes yes yes yes
[71] no no yes yes yes yes yes yes yes yes yes yes yes yes
[85] yes yes yes no no yes no
194

Contingency Tables and Tests for Independence
To obtain the contingency table (without marginal count totals) use
the table function with the status and drug columns as arguments:

> table(propranolol$drug, propranolol$status)

 control prop
no 17 7
yes 29 38

Your data may already be in the form of two factor objects, or you
may want to put your data in that form for further analysis in Spotfire
S+. To do this, use the factor command as follows:

> status.fac <- factor(propranolol$status)
> drug.fac <- factor(propranolol$drug)

We use status.fac and drug.fac as arguments to the functions
described below.

The Chi-Square
Test of
Independence

You use the function chisq.test to perform a classical chi-square test
of the null hypothesis that the categorical variables of interest are
independent. For example, using the matrix form of data object
salk.mat for the Salk vaccine trials

> chisq.test(salk.mat)$p.value

[1] 1.369748e-10

which yields an exceedingly small p value. This leads to rejection of
the null hypothesis of no association between polio status and
vaccination status.

To get all the information computed by chisq.test, use chisq.test
without specifying a return component, as usual:

> chisq.test(salk.mat)

Pearson’s chi-square test without Yates’ continuity
correction

data: salk.mat
X-squared = 45.4224, df = 2, p-value = 0
195

Chapter 7 Statistical Inference for Counts and Proportions
You could also use the two factor objects status.fac and drug.fac as
follows:

> chisq.test(status.fac, drug.fac)

Pearson's chi-square test with Yates' continuity correction

data: status.fac and drug.fac
X-square = 4.3198, df = 1, p-value = 0.0377

The results are the same no matter which way you have set up the
data.

Fisher’s Exact
Test of
Independence

You can perform an exact test of indepence by using the Spotfire S+
function fisher.test. You can use any data object type that can be
used with chisq.test. For example, using the factor objects for the
propranolol clinical trial:

> fisher.test(status.fac, drug.fac)

 Fisher's exact test

data: status.fac and drug.fac
p-value = 0.0314
alternative hypothesis: two.sided

When using fisher.test you should be aware that the p value is
computed conditionally on the fixed marginal counts of the
contingency table you are analyzing. That is, the inference does not
extend to all possible tables that might be obtained by repeating the
experiment and getting different marginal counts.

The Mantel-
Haenszel
Test of
Independence

A cancer study produced the data shown in Table 7.3 and Table 7.4, as
reported by Rosner (1986). In these tables, “case” refers to an
individual who had cancer and “control” refers to an individual who
did not have cancer. A “passive” smoker is an individual who lives
with a smoker. A smoker can also be a passive smoker if that smoker
lives with a spouse who also smokes.
196

Contingency Tables and Tests for Independence

For each of these tables, you can use chisq.test or fisher.test to
test for independence between cancer status and passive smoking
status. The data are presented in separate tables because “smoking
status,” that is, being a smoker or not being a smoker, could be a
confounding variable , because both smoking status and passive smoking
status are related to the outcome, cancer status, and because smoking
status may be related to the smoking status of the spouse. You would
like to be able to combine the information in both tables so as to
produce an overall test of independence between cancer status and
passive smoking status. You can do so for two or more two-by-two
tables, by using the function mantelhaen.test, which performs the
Mantel-Haenszel test.

Since the data are now associated with three categorical variables, the
two main variables of interest plus a confounding variable, you can
prepare your data in any one of the three forms listed below.

Table 7.3: Nonsmokers in cancer study.

Case-Control Status Passive Smoker
Not a Passive

Smoker

case 120 111

control 80 155

Table 7.4: Smokers in cancer study.

Case-Control Status Passive Smoker
Not a Passive

Smoker

case 161 117

control 130 124
197

Chapter 7 Statistical Inference for Counts and Proportions
• a three-dimensional array which represents the three
dimensional contingency table (two-by-two tables stacked on
top of one another)

• three numerical vectors representing each of the three
categorical variables, two of primary interest and one a
confounding variable

• three factor objects for the three categorical variables

Which form you use depends largely on the form in which the data
are presented to you. For example, the data in Table 7.3 and Table 7.4
are ideal for use with a three-dimensional array:

> x.array <- array(c(120, 80, 111, 155, 161, 130, 117, 124),
+ c(2, 2, 2))

> x.array

, , 1
 [,1] [,2]
[1,] 120 111
[2,] 80 155

, , 2
 [,1] [,2]
[1,] 161 117
[2,] 130 124

> mantelhaen.test(x.array)$p.value

[1] 0.0001885083

> mantelhaen.test(x.array)

 Mantel-Haenszel chi-square test with
 continuity correction

data: x.array
Mantel-Haenszel chi-square = 13.9423, df = 1,
p-value = 2e-04
198

Contingency Tables and Tests for Independence
McNemar’s
Test for
Symmetry
Using Matched
Pairs

In some experiments with two categorical variables, one of the
variables specifies two or more groups of individuals who receive
different treatments. In such situations, matching of individuals is
often carried out in order to increase the precision of statistical
inference. However, when matching is carried out the observations
usually are not independent. In such cases, the inference obtained
from chisq.test, fisher.test and mantelhaen.test is not valid
because these tests all assume independent observations. The
function mcnemar.test allows you to obtain a valid inference for
experiments where matching is carried out.

Consider, for example, the data in Table 7.5, as reported by Rosner
(1986). In this table, each entry represents one pair. For instance, the
“5” in the lower left cell means that in 5 pairs, the individual with
treatment A died, while the individual that that person was paired
with, who received treatment B, survived.

Your interest is in the relative effectiveness of treatments A and B in
treating a rare form of cancer. Each count in the table is associated
with a matched pair of individuals.

A pair in the table for which one member of a matched pair survives
while the other member dies is called a discordant pair. There are 16
discordant pairs in which the individual who received treatment A
survives and the individual who received treatment B dies. There are
5 discordant pairs with the reverse situation in which the individual
who received treatment A dies and the individual who received
treatment B survives.

If both treatments are equally effective, then you expect these two
types of discordant pairs to occur with “nearly” equal frequency. Put
in terms of probabilities, your null hypothesis is that , where

Table 7.5: Matched pair data for cancer study.

Survive With
Treatment B

Die With
Treatment B

survive with treatment A 90 16

die with treatment A 5 510

p1 p2=
199

Chapter 7 Statistical Inference for Counts and Proportions
 is the probability that the first type of discordancy occurs in a

matched pair of individuals, and is the probability that the second
type of discordancy occurs.

We illustrate the use of mcnemar.test on the above data, putting the
data into the form of a matrix object:

> x.matched <- cbind(c(90, 5),c(16, 510))
> x.matched

 [,1] [,2]
[1,] 90 16
[2,] 5 510

> mcnemar.test(x.matched)$p.value

[1] 0.02909633

> mcnemar.test(x.matched)

 McNemar’s chi-square test with continuity
 correction

data: x.matched
McNemar’s chi-square = 4.7619, df = 1, p-value = 0.0291

You can use mcnemar.test with two numeric vector objects, or two
factor objects, as the data arguments (just as with the other functions
in this section). You can also use mcnemar.test with matched pair
tables having more than two rows and more than two columns. In
such cases, the null hypothesis is symmetry of the probabilities
associated with each row and column of the table; that is, the null
hypothesis is that for each combination of and .

p1

p2

pij

pij pji= i j
200

References
REFERENCES

Bishop, Y.M.M. and Fienberg, S.J., & Holland, P.W. (1980). Discrete
Multivariate Analysis: Theory and Practice . Cambridge, MA: The MIT
Press.

Conover, W.J. (1980). Practical Nonparametric Statistics (2nd ed.). New
York: John Wiley & Sons, Inc.

Fienberg, S.E. (1983). The Analysis of Cross-Classified Categorical Data,
(2nd ed.). Cambridge, MA: The MIT Press.

Fleiss, J.L. (1981). Statistical Methods for Rates and Proportions (2nd ed.).
New York: John Wiley & Sons, Inc.

Lehmann, E.L. (1975). Nonparametrics: Statistical Methods Based on
Ranks. San Francisco: Holden-Day.

Rosner, B. (1986). Fundamentals of Biostatistics . Boston: Duxbury
Press.

Snedecor, G.W. & Cochran, W.G. (1980). Statistical Methods (7th ed.).
Ames, Iowa: Iowa State University Press.

Snow, P.J.D. (1965). Effect of propranolol in myocardial infarction.
Lancet 2: 551-553.
201

Chapter 7 Statistical Inference for Counts and Proportions
202

Introduction 204

Choosing Suitable Data Sets 209

Cross-Tabulating Continuous Data 213

Cross-Classifying Subsets of Data Frames 216

Manipulating and Analyzing Cross-Classified Data 219

CROSS-CLASSIFIED DATA
AND CONTINGENCY TABLES 8
203

Chapter 8 Cross-Classified Data and Contingency Tables
INTRODUCTION

Much data of interest is categorical in nature. Did patients receive
treatment A, B, or C and did they survive? Do the people in a sample
population smoke? Do they have high cholesterol counts? Have they
had heart trouble? These data are stored in TIBCO Spotfire S+ as
factors, that is, as vectors where the elements indicate one of a number
of levels. A useful way of looking at these data is to cross-classify it and
get a count of the number of cases sharing a given combination of
levels, and then create a multi-way contingency table (a cross-
tabulation) showing the levels and the counts.

Consider the data set claims. It contains the number of claims for
auto insurance received broken down by the following variables: age
of claimant, age of car, type of car, and the average cost of the claims.
We can disregard the costs for the moment, and consider the question
of which groups of claimants generate the most claims. To make the
work easier we create a new data frame claims.src which does not
contain the cost variable:

> claims.src <- claims[, -4]
> summary(claims.src)

 age car.age type number
17-20 :16 0-3:32 A:32 Min. : 0.00
21-24 :16 4-7:32 B:32 1st Qu.: 9.00
25-29 :16 8-9:32 C:32 Median : 35.50
30-34,35-39 :32 10+:32 D:32 Mean : 69.86
40-49 :16 3rd Qu.: 96.25
50-59 :16 Max. :434.00
60+ :16

Use the function crosstabs to generate tables of cross-classified data.
The following call to crosstabs generates output showing car age vs.
car type.
204

Introduction
> crosstabs(number ~ car.age + type, data = claims.src)

Call:
crosstabs(number ~ car.age + type, claims.src)
8942 cases in table
+----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
car.age|type
 |A |B |C |D |RowTotl|
-------+-------+-------+-------+-------+-------+
0-3 | 391 |1538 |1517 | 688 |4134 |
 |0.0946 |0.3720 |0.3670 |0.1664 |0.462 |
 |0.3081 |0.3956 |0.5598 |0.6400 | |
 |0.0437 |0.1720 |0.1696 |0.0769 | |
-------+-------+-------+-------+-------+-------+
4-7 | 538 |1746 | 941 | 324 |3549 |
 |0.1516 |0.4920 |0.2651 |0.0913 |0.397 |
 |0.4240 |0.4491 |0.3472 |0.3014 | |
 |0.0602 |0.1953 |0.1052 |0.0362 | |
-------+-------+-------+-------+-------+-------+
8-9 | 187 | 400 | 191 | 44 |822 |
 |0.2275 |0.4866 |0.2324 |0.0535 |0.092 |
 |0.1474 |0.1029 |0.0705 |0.0409 | |
 |0.0209 |0.0447 |0.0214 |0.0049 | |
-------+-------+-------+-------+-------+-------+
10+ | 153 | 204 | 61 | 19 |437 |
 |0.3501 |0.4668 |0.1396 |0.0435 |0.049 |
 |0.1206 |0.0525 |0.0225 |0.0177 | |
 |0.0171 |0.0228 |0.0068 |0.0021 | |
-------+-------+-------+-------+-------+-------+
ColTotl|1269 |3888 |2710 |1075 |8942 |
 |0.14 |0.43 |0.30 |0.12 | |
-------+-------+-------+-------+-------+-------+
Test for independence of all factors
 Chi^2 = 588.2952 d.f.=9 (p=0)
 Yates’ correction not used
205

Chapter 8 Cross-Classified Data and Contingency Tables
The first argument to crosstabs is a formula that tells which variables
to include in the table. The second argument is the data set where the
variables are found. The complete call to crosstabs is stored in the
resulting object as the attribute "call" and is printed at the top of the
table.

Following the formula at the top of the table, the next item of
information is the number of cases; that is, the total count of all the
variables considered. In this example, this is the total of the number
variable, sum(claims.src$number). After the total number of cases,
the output from crosstabs provides a key that tells you how to
interpret the cells of the table. In the key, N is the count. Below N are
the proportions of the whole that the count represents: the proportion
of the row total, the proportion of the column total, and the
proportion of the table total. If there are only two terms in the
formula, the table total is the same as the number of cases.

A quick look at the counts in the table, and in particular at the row
totals (4134, 3549, 822, 437), shows that there are fewer older cars than
newer cars. Relatively few cars survive to be eight or nine years old,
and the number of cars over ten years old is one-tenth that of cars
three years or newer. It is slightly more surprising to note the four
types of cars don’t seem to age equally. You can get an inkling of this
by comparing the cells near the top of the table with those near the
bottom; however, if you compare the third figure in each cell, the one
the key tells us is N/ColTotal, the progression becomes clear. Of cars
of type D, 64% are no more than three years old, while only 4% are
eight or nine, and less than 2% are over 10. Compare this to type A
cars, where there are slightly more in the 4-7 year age group than in
the 0-3 year, the proportion between eight and nine is 0.1474 and the
proportion over ten years is 0.1206.

It seems as if the type of car is related to its age. If we look below the

table where the results of the test for independence are written, we
see that the p value is so small it appears as 0. Of course, we must
remember these data are from insurance claims forms. This is not a
sample of all the cars on the road, but just those that were accidents
and had insurance policies with the company that collected the data.

There may also be an interaction between car type/car age and the
age of the owner (which seems likely), and between the age of the
owner and the likelihood of an automobile accident.

χ2
206

Introduction
With crosstabs, it is possible to tabulate all of these data at once and
print the resulting table in a series of layers, each showing two
variables. Thus, when we type crosstabs(number ~ car.age + type
+ age, data=claims.src), we get a series of 8 layers, one for each
factor (age group) in the variable age. The variable represented by the
first term in the formula to the right of the ~, car.age, is represented
by the rows of each layer. The second term, type is represented by
the columns, and each level of the third, age, produces a separate
layer. If there were more than three variables, there would be one
layer for each possible combination of levels in the variables after the
first two. Part of the first of these layers is shown below. Note that the
number written in the bottom right margin is the sum of the row
totals, and is not the same as the number of cases in the entire table,
which is still found at the top of the display and which is used to
compute N/Total, the fourth figure in each cell.

> crosstabs(number ~ car.age + type + age,
+ data = claims.src)

Call:
crosstabs(number ~ car.age + type + age, claims.src)
8942 cases in table
+----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
age=17-20
car.age|type
 |A |B |C |D |RowTotl|
-------+-------+-------+-------+-------+-------+
0-3 | 8 | 10 | 9 | 3 |30 |
 |0.27 |0.33 |0.3 |0.1 |0.34 |
 |0.38 |0.25 |0.39 |0.6 | |
 |8.9e-4 |0.0011 |0.001 |3.4e-4 | |
-------+-------+-------+-------+-------+-------+
4-7 | 8 | 28 | 13 | 2 |51 |
 |0.16 |0.55 |0.25 |0.039 |0.57 |
 |0.38 |0.7 |0.57 |0.4 | |
 |8.9e-4 |0.0031 |0.0015 |2.2e-4 | |
-------+-------+-------+-------+-------+-------+
207

Chapter 8 Cross-Classified Data and Contingency Tables
-------+-------+-------+-------+-------+-------+
8-9 | 4 | 1 | 1 | 0 |6 |
 |0.67 |0.17 |0.17 |0 |0.067 |
 |0.19 |0.025 |0.043 |0 | |
 |4.5e-4 |1.1e-4 |1.1e-4 |0 | |
-------+-------+-------+-------+-------+-------+
10+ | 1 | 1 | 0 | 0 |2 |
 |0.5 |0.5 |0 |0 |0.022 |
 |0.048 |0.025 |0 |0 | |
 |1.1e-4 |1.1e-4 |0 |0 | |
-------+-------+-------+-------+-------+-------+
ColTotl|21 |40 |23 |5 |89 |
 |0.24 |0.45 |0.26 |0.056 | |
-------+-------+-------+-------+-------+-------+
208

Choosing Suitable Data Sets
CHOOSING SUITABLE DATA SETS

Cross-tabulation is a technique for categorical data. You tabulate the
number of cases for each combination of factors between your
variables. In the claims data set these numbers were already
tabulated. However, when looking at data that have been gathered as
a count, you must always keep in mind exactly what is being
counted—thus we can tell that of the 40-49 year old car owners who
submitted insurance claims, 43% owned cars of type B, and of the cars
of type B whose owners submitted insurance claims, 25% were owned
by 40-49 year olds.

The data set guayule also has a response variable which is a count,
while all the predictor variables are factors. Here, the thing being
counted is the number of rubber plants that sprouted from seeds of a
number of varieties subjected to a number of treatments. However,
this experiment was designed so that the same number of seeds were
planted for each possible combination of the factors of the controlling
variables. Since we know the exact make-up of the larger population
from which our counts are taken, we can observe the relative size of
counts with complaisance and draw conclusions with great
confidence. The difference between guayule and claims is that with
the former we can view the outcome variable as a binomial response
variable (“sprouted”/“didn’t sprout”) for which we have tabulated one
of the outcomes (“sprouted”), and in the claims data set we can’t.

Another data set in which all the controlling variables are factors is
solder.

> summary(solder)

Opening Solder Mask PadType Panel skips
S:300 Thin :450 A1.5:180 L9 : 90 1:300 Min. : 0.00
M:300 Thick:450 A3 :270 W9 : 90 2:300 1st Qu.: 0.00
L:300 A6 : 90 L8 : 90 3:300 Median : 2.00
 B3 :180 L7 : 90 Mean : 5.53
 B6 :180 D7 : 90 3rd Qu.: 7.00
 L6 : 90 Max. :48.00
 (Other):360
209

Chapter 8 Cross-Classified Data and Contingency Tables
The response variable is the number of skips appearing on a finished
circuit board. Since any skip on a board renders it unusable, we can
easily turn this into a binary response variable:

> attach(solder)
> good <- factor(skips == 0)

Then, when we want to look at the interaction between the variables,
crosstabs counts up all the cases with like levels among the factors:

> crosstabs(~ Opening + Mask + good)

Call:
crosstabs(~ Opening + Mask + good)
900 cases in table
+----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
good=FALSE
Opening|Mask
 |A1.5 |A3 |A6 |B3 |B6 |RowTotl|
-------+-------+-------+-------+-------+-------+-------+
S |49 |76 |30 |60 |60 |275 |
 |0.1782 |0.2764 |0.1091 |0.2182 |0.2182 |0.447 |
 |0.5326 |0.5033 |0.3371 |0.4444 |0.4054 | |
 |0.0544 |0.0844 |0.0333 |0.0667 |0.0667 | |
-------+-------+-------+-------+-------+-------+-------+
M |22 |35 |59 |39 |51 |206 |
 |0.1068 |0.1699 |0.2864 |0.1893 |0.2476 |0.335 |
 |0.2391 |0.2318 |0.6629 |0.2889 |0.3446 | |
 |0.0244 |0.0389 |0.0656 |0.0433 |0.0567 | |
-------+-------+-------+-------+-------+-------+-------+
L |21 |40 | 0 |36 |37 |134 |
 |0.1567 |0.2985 |0.0000 |0.2687 |0.2761 |0.218 |
 |0.2283 |0.2649 |0.0000 |0.2667 |0.2500 | |
 |0.0233 |0.0444 |0.0000 |0.0400 |0.0411 | |
-------+-------+-------+-------+-------+-------+-------+
ColTotl|92 |151 |89 |135 |148 |615 |
 |0.1496 |0.2455 |0.1447 |0.2195 |0.2407 | |
-------+-------+-------+-------+-------+-------+-------+
210

Choosing Suitable Data Sets
good=TRUE
Opening|Mask
 |A1.5 |A3 |A6 |B3 |B6 |RowTotl|
-------+-------+-------+-------+-------+-------+-------+
S |11 |14 | 0 | 0 | 0 |25 |
 |0.4400 |0.5600 |0.0000 |0.0000 |0.0000 |0.088 |
 |0.1250 |0.1176 |0.0000 |0.0000 |0.0000 | |
 |0.0122 |0.0156 |0.0000 |0.0000 |0.0000 | |
-------+-------+-------+-------+-------+-------+-------+
M |38 |25 | 1 |21 | 9 |94 |
 |0.4043 |0.2660 |0.0106 |0.2234 |0.0957 |0.330 |
 |0.4318 |0.2101 |1.0000 |0.4667 |0.2812 | |
 |0.0422 |0.0278 |0.0011 |0.0233 |0.0100 | |
-------+-------+-------+-------+-------+-------+-------+
L |39 |80 | 0 |24 |23 |166 |
 |0.2349 |0.4819 |0.0000 |0.1446 |0.1386 |0.582 |
 |0.4432 |0.6723 |0.0000 |0.5333 |0.7188 | |
 |0.0433 |0.0889 |0.0000 |0.0267 |0.0256 | |
-------+-------+-------+-------+-------+-------+-------+
ColTotl|88 |119 |1 |45 |32 |285 |
 |0.3088 |0.4175 |0.0035 |0.1579 |0.1123 | |
-------+-------+-------+-------+-------+-------+-------+
Test for independence of all factors
 Chi^2 = 377.3556 d.f.= 8 (p=0)
 Yates' correction not used

In the first example above we specified where to look for the
variables age, car.age and type by giving the data frame claims.src
as the second argument of crosstabs. In the second example, we
attached the data frame solder and let crosstabs find the variables in
the search list. Both methods work because, when crosstabs goes to
interpret a term in the formula, it looks first in the data frame
specified by the argument data and then in the search list.

You can specifiy a data set to crosstabs with the name of a data
frame, or a frame number in which to find an attached data frame.
Using a frame number gives the advantage of speed that comes from
attaching the data frame, while protecting against the possibility of
having masked the name of one of the variables with something in
your .Data directory.
211

Chapter 8 Cross-Classified Data and Contingency Tables
For example,

> attach(guayule)
> search()

[1] ".Data"
[2] "guayule" . . .

> rubber <- crosstabs(plants ~ variety + treatment,
+ data = 2)

If you specify a data frame and do not give a formula, crosstabs uses
the formula ~ ., that is, it cross-classifies all the variables in the data
frame. Any variable names not found in the specified data frame
(which is all of them if you don’t specify any) are sought in the search
list.
212

Cross-Tabulating Continuous Data
CROSS-TABULATING CONTINUOUS DATA

As seen in the example of the solder data frame above, it is fairly
easy to turn a continuous response variable into a binomial response
variable. Clearly, we could have used any logical expression that
made sense to do so; we could have chosen any cutoff point for
acceptable numbers of skips.

A somewhat harder problem is presented by the case where you want
a multinomial factor from continuous data. You can make judicious
use of the cut function to turn the continuous variables into factors,
but you need to put care and thought into the points at which to
separate the data into ranges. The quartiles given by the function
summary offer a good starting point. The data frame kyphosis
represents data on 81 children who have had corrective spinal
surgery. The variables here are whether a postoperative deformity
(kyphosis) is present, the age of the child in months, the number of
vertebrae involved in the operation, and beginning of the range of
vertebrae involved.

> summary(kyphosis)

 Kyphosis Age Number Start
absent :64 Min. : 1.00 Min. : 2.000 Min. : 1.00
present:17 1st Qu.: 26.00 1st Qu.: 3.000 1st Qu.: 9.00
 Median : 87.00 Median : 4.000 Median :13.00
 Mean : 83.65 Mean : 4.049 Mean :11.49
 3rd Qu.:130.00 3rd Qu.: 5.000 3rd Qu.:16.00
 Max. :206.00 Max. :10.000 Max. :18.00

The summary of these variables suggests that two year intervals might
be a reasonable division for the age. We use the cut function to break
the variable Age into factors at a sequence of points at 24 month
intervals and to label the resulting levels with the appropriate range of
years. Since there are at most nine values for Number we leave it alone
for the moment. Since the mean of the Start variable is close to the
first quartile, a fairly coarse division of Start is probably sufficient.
We could require that cut simply divide the data into four segments
of equal length with the command cut(Start, 4), but the results of
this, while mathematically correct, look a bit bizarre; the first level
213

Chapter 8 Cross-Classified Data and Contingency Tables
created is "0.830+ thru 5.165". The pretty function divides the
range of Start into equal intervals with whole number end points,
and the cut function makes them into levels with reasonable names:

> attach(kyphosis)
> kyphosis.fac <- data.frame(Kyphosis = Kyphosis,
+ Age = cut(Age, c(seq(from=0, to=144, by=24), 206),
+ labels = c("0-2", "2-4", "4-6", "6-8", "8-10",
+ "10-12", "12+")),
+ Number = Number, Start = cut(Start, pretty(Start, 4)))
> detach(2)
> summary(kyphosis.fac)

 Kyphosis Age Number Start
 absent :64 0-2 :20 Min. : 2.000 0+ thru 5:13
 present:17 2-4 : 7 1st Qu.: 3.000 5+ thru 10:14
 4-6 : 8 Median : 4.000 10+ thru 15:32
 6-8 : 9 Mean : 4.049 15+ thru 20:22
 8-10 :11 3rd Qu.: 5.000
 10-12:14 Max. :10.000
 12+ :12

The cross-tabulation of this data can then be easily examined:

> crosstabs(~ Age + Kyphosis, data = kyphosis.fac)

Call:
crosstabs(~ Age + Kyphosis, kyphosis.fac)
81 cases in table
+----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
Age |Kyphosis
 |absent |present|RowTotl|
-------+-------+-------+-------+
0-2 |19 | 1 |20 |
 |0.950 |0.050 |0.247 |
 |0.297 |0.059 | |
 |0.235 |0.012 | |
-------+-------+-------+-------+
214

Cross-Tabulating Continuous Data
2-4 | 6 | 1 |7 |
 | |
 . . .
 | |
-------+-------+-------+-------+
10-12 | 9 | 5 |14 |
 |0.643 |0.357 |0.173 |
 |0.141 |0.294 | |
 |0.111 |0.062 | |
-------+-------+-------+-------+
12+ |11 | 1 |12 |
 |0.917 |0.083 |0.148 |
 |0.172 |0.059 | |
 |0.136 |0.012 | |
-------+-------+-------+-------+
ColTotl|64 |17 |81 |
 |0.79 |0.21 | |
-------+-------+-------+-------+
Test for independence of all factors
 Chi^2 = 9.588004 d.f.= 6 (p=0.1431089)
 Yates' correction not used
 Some expected values are less than 5,
 don't trust stated p-value
215

Chapter 8 Cross-Classified Data and Contingency Tables
CROSS-CLASSIFYING SUBSETS OF DATA FRAMES

There are two ways to subset a data frame for cross-classification.
First, the crosstabs function cross-tabulates only those variables
specified in the formula. If there is one variable in the data frame in
which you are not interested, don’t mention it. Second, you can
choose which rows you want to consider with the subset argument.
You can use anything you would normally use to subscript the rows
of a data frame. Thus, the subset argument can be an expression that
evaluates to a logical vector, or a vector of row numbers or row
names. See the chapter Writing Functions in Spotfire S+ in the
Programmer’s Guide for details on subscripting.

As an example, recall the solder data set. You can look at the relation
between the variables without turning skips explicitly into a binomial
variable by using it to subscript the rows of the data frame:

> crosstabs(~ Solder + Opening, data = solder,
+ subset = skips < 10)

Call:
crosstabs(~ Solder+Opening, solder, subset = skips<10)
729 cases in table
+----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
Solder |Opening
 |S |M |L |RowTotl|
-------+-------+-------+-------+-------+
Thin | 50 |133 |140 |323 |
 |0.155 |0.412 |0.433 |0.44 |
 |0.294 |0.494 |0.483 | |
 |0.069 |0.182 |0.192 | |
-------+-------+-------+-------+-------+
Thick |120 |136 |150 |406 |
 |0.296 |0.335 |0.369 |0.56 |
 |0.706 |0.506 |0.517 | |
 |0.165 |0.187 |0.206 | |
216

Cross-Classifying Subsets of Data Frames
-------+-------+-------+-------+-------+
-------+-------+-------+-------+-------+
ColTotl|170 |269 |290 |729 |
 |0.23 |0.37 |0.40 | |
-------+-------+-------+-------+-------+
Test for independence of all factors
 Chi^2 = 20.01129 d.f.= 2 (p=4.514445e-05)
 Yates' correction not used

A more common use of the subscript is to look at some of the
variables while considering only a subset of the levels of another:

> crosstabs(~ Solder + Opening + good,
+ subset = Panel == "1")

Call:
crosstabs(~ Solder+Opening+good, subset = Panel == "1")
300 cases in table
+----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+----------+
good=FALSE
Solder |Opening
 |S |M |L |RowTotl|
-------+-------+-------+-------+-------+
Thin |49 |33 |31 |113 |
 |0.4336 |0.2920 |0.2743 |0.59 |
 |0.5444 |0.5410 |0.7949 | |
 |0.1633 |0.1100 |0.1033 | |
-------+-------+-------+-------+-------+
Thick |41 |28 | 8 |77 |
 |0.5325 |0.3636 |0.1039 |0.41 |
 |0.4556 |0.4590 |0.2051 | |
 |0.1367 |0.0933 |0.0267 | |
-------+-------+-------+-------+-------+
ColTotl|90 |61 |39 |190 |
 |0.474 |0.321 |0.205 | |
-------+-------+-------+-------+-------+
217

Chapter 8 Cross-Classified Data and Contingency Tables
good=TRUE
Solder |Opening
 |S |M |L |RowTotl|
-------+-------+-------+-------+-------+
Thin | 1 |17 |19 |37 |
 |0.0270 |0.4595 |0.5135 |0.34 |
 |0.1000 |0.4359 |0.3115 | |
 |0.0033 |0.0567 |0.0633 | |
-------+-------+-------+-------+-------+
Thick | 9 |22 |42 |73 |
 |0.1233 |0.3014 |0.5753 |0.66 |
 |0.9000 |0.5641 |0.6885 | |
 |0.0300 |0.0733 |0.1400 | |
-------+-------+-------+-------+-------+
ColTotl|10 |39 |61 |110 |
 |0.091 |0.355 |0.555 | |
-------+-------+-------+-------+-------+
Test for independence of all factors
 Chi^2 = 82.96651 d.f.= 2 (p=3.441691e-15)
 Yates' correction not used
218

Manipulating and Analyzing Cross-Classified Data
MANIPULATING AND ANALYZING CROSS-CLASSIFIED
DATA

When you apply crosstabs to a data frame, you get a
multidimensional array whose elements are the counts and whose
dimensions are the variables involved in the cross-tabulations. The
first factor variable is the first (or row) dimension, the second is the
second (or column) dimension, the third is the third dimension, etc. If
you wish to do more than tabulate data, say compute means or sums
of cross-classified data, you can apply functions to the elements of the
array with the function tapply; see the online help for tapply for
more information.
219

Chapter 8 Cross-Classified Data and Contingency Tables
220

Introduction 222

Power and Sample Size Theory 223

Normally Distributed Data 224
One-Sample Test of Gaussian Mean 224
Comparing Means from Two Samples 226

Binomial Data 229
One-Sample Test of Binomial Proportion 229
Comparing Proportions from Two Samples 230

References 234

POWER AND SAMPLE SIZE 9
221

Chapter 9 Power and Sample Size
INTRODUCTION

When contemplating a study, one of the first statistical questions that
arises is “How big does my sample need to be?” The required sample
size is a function of the alternative hypothesis, the probabilities of
Type I and Type II errors, and the variability of the population(s)
under study. Two functions are available in TIBCO Spotfire S+ for
computing power and sample size requirements:
normal.sample.size and binomial.sample.size. Depending on the
input, these functions provide the following:

• For given power and alternative hypothesis, the required
sample size;

• For given sample size and power, the detectable difference;

• For given sample size and alternative hypothesis, the power to
distinguish between the hypotheses.

These functions can be applied in one- and two-sample studies. They
produce tables from vectorized input that are suitable for passing to
Trellis graphics functions.
222

Power and Sample Size Theory
POWER AND SAMPLE SIZE THEORY

Intuitively, we have a sense that the sample size required for a study
depends on how small of a difference we’re trying to detect, how
much variability is inherent in our data, and how certain we want to
be of our results. In a classical hypothesis test of H0 (null hypothesis)
versus Ha (alternative hypothesis), there are four possible outcomes,
two of which are erroneous:

• Don’t reject H0 when is H0 true.

• Reject H0 when H0 is false.

• Reject H0 when H0 is true (type I error).

• Don’t reject H0 when H0 is false (type II error).

To construct a test, the distribution of the test statistic under H0 is
used to find a critical region which will ensure the probability of
committing a type I error does not exceed some predetermined level.
This probability is typically denoted α. The power of the test is its
ability to correctly reject the null hypothesis, or 1 - Pr(type II error),
which is based on the distribution of the test statistic under Ha. The
required sample size is then a function of

1. The null and alternative hypotheses;

2. The target α;

3. The desired power to detect Ha;

4. The variability within the population(s) under study.

Our objective is, for a given test, to find a relationship between the
above factors and the sample size that enables us to select a sample
size consistent with the desired α and power.
223

Chapter 9 Power and Sample Size
NORMALLY DISTRIBUTED DATA

One-Sample
Test of
Gaussian Mean

When conducting a one-sample test of a normal mean, we start by
writing our assumptions and hypotheses:

where i = 1,...,n, and σ2 is known. To perform a two-sided test of
equality the hypotheses is as follows:

Our best estimate of μ is the sample mean, which is normally
distributed:

The test statistic is

We reject H0 if , which guarantees a level α test. The
power of the test to detect μ = μ0 is

We can think of the left side of the sum as the lower power, or the
power to detect , and the right side as the upper power, or the

power to detect . Solving for n using both the upper and

lower power is difficult, but we note that when , the

upper power is negligible (< α/2). Similarly, the lower power is small
when . Therefore, the equation can be simplified by using

Xi N μ σ2,()∼

H0:μ μ0=

Ha:μ μa=

X N μ σ2

n
-----,⎝ ⎠

⎛ ⎞∼

Z n X μ0–() σ⁄=

Z N μ μ0– 1,()∼

Z N 0 1,()∼ for H0

Z Z1 α 2⁄–>

Power Φ
n μ0 μa–()

σ
----------------------------- Z1 α 2⁄––⎝ ⎠

⎛ ⎞ Φ
n μa μ0–()

σ
----------------------------- Z1 α 2⁄––⎝ ⎠

⎛ ⎞+=

μa μ0<

μa μ0>

μa μ0– 0<

μa μ0– 0>
224

Normally Distributed Data
the absolute value of the difference between μa and μ0 and
considering only one side of the sum. This results in the following
sample size formula:

Comments • While only one of the upper and lower power is used in
deriving the sample size formula, the Spotfire S+ function
normal.sample.size uses both the upper and lower power
when computing the power of a two-tailed test for a given
sample size.

• In practice, the variance of the population is seldom known
and the test statistic is based on the t distribution. Using the
t distribution to derive a sample size requires an iterative
approach, since the sample size is needed to specify the
degrees of freedom. The difference between the quantile
value for the t distribution versus the standard normal
distribution is significant only when small sample sizes are
required. Thus, the standard formula based on the normal
distribution is chosen. Keep in mind that for samples sizes less
than 10, the power of a t test could be significantly less than
the target power.

• The formula for a one-tailed test is derived along similar lines.
It is exactly the same as the two-tailed formula with the
exception that is replaced by .

Examples The function for computing sample size for normally distributed data
is normal.sample.size. This function can be used to compute sample
size, power, or minimum detectable difference, and automatically
chooses what to compute based on the input information. Here are
some simple examples:

One-sample case, using all the defaults
> normal.sample.size(mean.alt = 0.3)

 mean.null sd1 mean.alt delta alpha power n1
1 0 1 0.3 0.3 0.05 0.8 88

Reduce output with summary
> summary(normal.sample.size(mean.alt = 0.3))

n σ Z1 α 2⁄– ZPower+()() μa μo–⁄[]2
=

Z1 α– 2⁄ Z1 α–
225

Chapter 9 Power and Sample Size
 delta power n1
1 0.3 0.8 88

Upper-tail test, recomputing power
> normal.sample.size(mean = 100, mean.alt = 105, sd1 = 10,
+ power = c(0.8, 0.9, 0.95, 0.99), alt = "greater",
+ recompute.power = T)

 mean.null sd1 mean.alt delta alpha power n1
1 100 10 105 5 0.05 0.8037649 25
2 100 10 105 5 0.05 0.9054399 35
3 100 10 105 5 0.05 0.9527153 44
4 100 10 105 5 0.05 0.9907423 64

Calculate power
> normal.sample.size(mean = 100, mean.alt = 105, sd1 = 10,
+ n1 = (1:5)*20)

 mean.null sd1 mean.alt delta alpha power n1
1 100 10 105 5 0.05 0.6087795 20
2 100 10 105 5 0.05 0.8853791 40
3 100 10 105 5 0.05 0.9721272 60
4 100 10 105 5 0.05 0.9940005 80
5 100 10 105 5 0.05 0.9988173 100

Lower-tail test, minimum detectable difference
> summary(normal.sample.size(mean = 100, sd1 = 10,
+ n1 = (1:5)*20, power = 0.9, alt = "less"))

 mean.alt delta power n1
1 93.45636 -6.543641 0.9 20
2 95.37295 -4.627053 0.9 40
3 96.22203 -3.777973 0.9 60
4 96.72818 -3.271821 0.9 80
5 97.07359 -2.926405 0.9 100

See the online help files for normal.sample.size and
summary.power.table for more details.

Comparing
Means from
Two Samples

Extending the formula to two-sampled tests is relatively easy. Given
two independent samples from normal distributions
226

Normally Distributed Data
we construct a two-sided test of equality of means

This is more conveniently written as

The difference of the sample means is normally distributed:

.

Here, the constant is the ratio of the sample sizes, . This
leads to the test statistic

Derivation of the two-sample formulas proceeds along the same lines
as the one-sample case, producing the following formulas:

X1 i, N μ1 σ1
2,()∼ i 1 … n1, ,=

X2 j, N μ2 σ2
2,()∼ j 1 … n2, ,=

H0:μ1 μ2=

Ha:μ1 μ2≠

H0:μ2 μ1– 0=

Ha:μ2 μ1– 0≠

X2 X1–() N μ2 μ1–
σ1

2

n1

σ2
2

n2
-----+,⎝ ⎠

⎛ ⎞ N μ2 μ1–
1
n1
----- σ1

2 σ2
2

k
-----+⎝ ⎠

⎛ ⎞,⎝ ⎠
⎛ ⎞∼ ∼

k k n2 n1⁄=

Z
X2 X1–

σ1
2

n1

σ2
2

n2
-----+

=

n1 σ1
σ2

2

k
-----+⎝ ⎠

⎛ ⎞ Z 1 α 2⁄–() ZPower+()
μ2 μ1–

--
2

=

n2 kn1=
227

Chapter 9 Power and Sample Size
Examples For two-sample cases, use normal.sample.size with mean2 instead of
mean.alt. A few simple examples are provided below.

Don't round sample size
> summary(normal.sample.size(mean2 = 0.3, exact.n = T))

 delta power n1 n2
1 0.3 0.8 174.4195 174.4195

Round sample size, then recompute power
> summary(normal.sample.size(mean2 = 0.3, recompute = T))

 delta power n1 n2
1 0.3 0.8013024 175 175

Unequal sample sizes, lower tail test
The prop.n2 argument is equal to k from the
above derivation.
> normal.sample.size(mean = 100, mean2 = 94, sd1 = 15,
+ prop.n2 = 2, power = 0.9, alt = "less")

 mean1 sd1 mean2 sd2 delta alpha power n1 n2 prop.n2
1 100 15 94 15 -6 0.05 0.9 81 162 2
228

Binomial Data
BINOMIAL DATA

One-Sample
Test of
Binomial
Proportion

Another very common test is for a binomial proportion. Say we have
data sampled from a binomial distribution,

Here represents the number of “successes” observed in Bernoulli
trials, where the probability of a success is equal to . The mean and
variance of the random variable is

We wish to test the value of the parameter π using a two-sided test:

We could use an exact binomial test, but if is sufficiently large and
the distribution is not too skewed (π is not too close to 0 or 1), a
normal approximation can be used instead. A good rule of thumb is
that the normal distribution is a good approximation to the binomial
distribution if

When using a continuous distribution to approximate a discrete one,
a continuity correction is usually recommended; typically, a value of 1/2
is used to extend the range in either direction. This means that a
probability of for a binomial distribution becomes

when using a normal approximation.

X B n π,()∼

X n
π

X

E X() nπ=

Var X() nπ 1 π–()=

H0:π π0=

Ha:π πa=

n

nπ 1 π–() 5≥

Pr Xl X Xu≤ ≤()

Pr Xl
1
2
---– X Xu

1
2
---+≤ ≤⎝ ⎠

⎛ ⎞
229

Chapter 9 Power and Sample Size
If the continuity correction is temporarily suppressed, the sample size
formula is derived very much as in the normal case:

There have been several suggestions concerning how to best
incorporate a continuity correction into the sample-size formula. The
one adopted by the Spotfire S+ function binomial.sample.size for a
one-sample test is

Examples # One-sample case, using all the defaults
> binomial.sample.size(p.alt = 0.3)

 p.null p.alt delta alpha power n1
1 0.5 0.3 -0.2 0.05 0.8 57

Minimal output
> summary(binomial.sample.size(p.alt = 0.3))

 delta power n1
1 -0.2 0.8 57

Compute power
> binomial.sample.size(p = 0.2, p.alt = 0.12, n1 = 250)

 p.null p.alt delta alpha power n1
1 0.2 0.12 -0.08 0.05 0.8997619 250

Comparing
Proportions
from Two
Samples

The two-sample test for proportions is a bit more involved than the
others we’ve looked at. Say we have data sampled from two binomial
distributions

n*
π0 1 π0–()Z1 α 2⁄– π0 1 π0–()ZPower+

πa π0–
--

2

=

n n* 2
πa π0–
--------------------+=

X1 B n1 π1,()∼

X2 B n2 π2,()∼
230

Binomial Data
We construct a two-sided test of equality of means

which is more conveniently written as

Using our best estimators for the parameters and , we can begin
constructing a test statistic:

For large enough sample sizes, we can use a normal approximation:

Let the constant be the ratio of the sample sizes, . Then:

When the null hypothesis is true, and this can be
written as

Immediately a problem arises: namely, the variance needed to
construct the test statistic depends on the parameters being tested. It
seems reasonable to use all of the data available to estimate the
variances, and this is exactly what Spotfire S+ does. A weighted
average of the two estimates for the proportions is used to estimate
the variance under H0.

H0:π1 π2=

Ha:π1 π2≠

H0:π1 π2– 0=

Ha:π1 π2– 0≠

π1 π2

π1
ˆ 1

n1
----- X1 i,

i 1=

n1

∑=

π2
ˆ 1

n2
----- X2 j,

j 1=

n2

∑=

π2
ˆ π1

ˆ– N π2 π1–
π1 1 π1–()

n1

π2 1 π2–()
n2

-------------------------+,⎝ ⎠
⎛ ⎞∼

k k n2 n1⁄=

π2
ˆ π1

ˆ– N π2 π1–
1
n1
----- π1 1 π1–()

π2 1 π2–()
k

-------------------------+⎝ ⎠
⎛ ⎞,⎝ ⎠

⎛ ⎞∼

π2 π1 π= =

π̂2 π̂1– N 0 π 1 π–() 1
n1
----- 1

n2
-----+⎝ ⎠

⎛ ⎞,⎝ ⎠
⎛ ⎞ N 0 π 1 π–()

n1
-------------------- 1 1

k
---+⎝ ⎠

⎛ ⎞,⎝ ⎠
⎛ ⎞∼ ∼
231

Chapter 9 Power and Sample Size
When weighted averages are used to estimate the variance, the test
statistic is:

When the null hypothesis is true, this gives . We use this
to derive the formula without continuity correction:

Applying the two-sample adjustment for a continuity correction
produces the final results

Examples # For two-sample, use p2 instead of p.alt
> summary(binomial.sample.size(p2 = 0.3))

 delta power n1 n2
1 -0.2 0.8 103 103

Don't round sample size or use the continuity correction
> summary(binomial.sample.size(p2 = 0.3, exact.n = T,
+ correct = F))

 delta power n1 n2
1 -0.2 0.8 92.99884 92.99884

π
n1π̂1 n2π̂2+

n1 n2+
----------------------------- π̂1 kπ̂2+

1 k+
--------------------= =

Z
π̂2 π̂1–

π 1 π–() 1
n1
----- 1

n2
-----+⎝ ⎠

⎛ ⎞
--

=

Z N 0 1,()∼

n1
*

π1 1 π1–()
π2 1 π2–()

k
-------------------------+ ZPower π 1 π–() 1 1

k
---+⎝ ⎠

⎛ ⎞ Z1 α 2⁄–+

π2 π1–

2

=

n1 n1
* k 1+

k π2 π1–
-----------------------+=

n2 kn1=
232

Binomial Data
Round sample size, then recompute power
> summary(binomial.sample.size(p2 = 0.3, recompute = T))

 delta power n1 n2
1 -0.2 0.8000056 103 103

Unequal sample sizes, lower tail test
The prop.n2 argument is equal to k from the
above derivation.
> binomial.sample.size(p = 0.1, p2 = 0.25, prop.n2 = 2,
+ power = 0.9, alt = "less")

 p1 p2 delta alpha power n1 n2 prop.n2
1 0.1 0.25 0.15 0.05 0.9 92 184 2

Compute minimum detectable difference (delta),
given sample size and power.
> binomial.sample.size(p = 0.6, n1 = 500, prop.n2 = 0.5,
+ power = c(0.8, 0.9, 0.95))

 p1 p2 delta alpha power n1 n2 prop.n2
1 0.6 0.7063127 0.1063127 0.05 0.80 500 250 0.5
2 0.6 0.7230069 0.1230069 0.05 0.90 500 250 0.5
3 0.6 0.7367932 0.1367932 0.05 0.95 500 250 0.5

Compute power
> binomial.sample.size(p = 0.3, p2 = seq(0.31, 0.35,
+ by = 0.01), n1 = 1000, prop.n2 = 0.5)

 p1 p2 delta alpha power n1 n2 prop.n2
1 0.3 0.31 0.01 0.05 0.06346465 1000 500 0.5
2 0.3 0.32 0.02 0.05 0.11442940 1000 500 0.5
3 0.3 0.33 0.03 0.05 0.20446778 1000 500 0.5
4 0.3 0.34 0.04 0.05 0.32982868 1000 500 0.5
5 0.3 0.35 0.05 0.05 0.47748335 1000 500 0.5
233

Chapter 9 Power and Sample Size
REFERENCES

Rosner, B. (1990). Fundamentals of Biostatistics (3rd ed.). Boston: PWS-
Kent.

Fisher, L.D. & Van Belle, G. (1993). Biostatistics. New York: John
Wiley & Sons, Inc.

Fleiss, J.L. (1981). Statistical Methods for Rates and Proportions. New
York: John Wiley & Sons, Inc.
234

Introduction 237

Simple Least-Squares Regression 239
Diagnostic Plots for Linear Models 242
Other Diagnostics 245

Multiple Regression 247

Adding and Dropping Terms from a Linear Model 251

Choosing the Best Model—Stepwise Selection 257

Updating Models 260

Weighted Regression 261
Example: Weighted Linear Regression 261
Observation Weights vs. Frequencies 265

Prediction with the Model 270

Confidence Intervals 272

Polynomial Regression 275

Generalized Least Squares Regression 280
Example: The Ovary Data Set 282
Manipulating gls Objects 283

Smoothing 290
Locally Weighted Regression Smoothing 290
Using the Super Smoother 292
Using the Kernel Smoother 295
Smoothing Splines 298
Comparing Smoothers 299

REGRESSION AND
SMOOTHING FOR
CONTINUOUS RESPONSE
DATA

10
235

Chapter 10 Regression and Smoothing for Continuous Response Data
Additive Models 301

More on Nonparametric Regression 307
Alternating Conditional Expectations 307
Additivity and Variance Stabilization 312
Projection Pursuit Regression 318

References 328
236

Introduction
INTRODUCTION

Regression is a tool for exploring relationships between variables.
Linear regression explores relationships that are readily described by
straight lines, or their generalization to many dimensions. A
surprisingly large number of problems can be analyzed using the
techniques of linear regression, and even more can be attacked by
means of transformations of the original variables that result in linear
relationships among the transformed variables. In recent years, the
techniques themselves have been extended through the addition of
robust methods and generalizations of the classical linear regression
techniques. These generalizations allow familiar problems in
categorical data analysis such as logistic and Poisson regression to be
subsumed under the heading of the generalized linear model (GLM),
while still further generalizations allow a predictor to be replaced by
an arbitrary smooth function of the predictor in building a generalized
additive model (GAM).

This chapter describes regression and smoothing in the case of a
univariate, continuous response. We start with simple regression,
which is regression with a single predictor variable: fitting the model,
examining the fitted models, and analyzing the residuals. We then
examine multiple regression, varying models by adding and dropping
terms as appropriate. Again, we examine the fitted models and
analyze the residuals. We then consider the special case of weighted
regression, which underlies many of the robust techniques and
generalized regression methods.

One important reason for performing regression analysis is to get a
model useful for prediction. The section Prediction with the Model
describes how to use TIBCO Spotfire S+ to obtain predictions from
your fitted model, and the section Confidence Intervals describes
how to obtain pointwise and simultaneous confidence intervals.

The classical linear regression techniques make several strong
assumptions about the underlying data, and the data can fail to satisfy
these assumptions in different ways. For example, the regression line
may be thrown off by one or more outliers or the data may not be
fitted well by any straight line. In the first case, we can bring robust
regression methods into play; these minimize the effects of outliers
237

Chapter 10 Regression and Smoothing for Continuous Response Data
while retaining the basic form of the linear model. Conversely, the
robust methods are often useful in identifying outliers. We discuss
robust regression in detail in a later chapter.

In the second case, we can expand our notion of the linear model,
either by adding polynomial terms to our straight line model, or by
replacing one or more predictors by an arbitrary smooth function of
the predictor, converting the classical linear model into a generalized
additive model (GAM).

Scatterplot smoothers are useful tools for fitting arbitrary smooth
functions to a scatter plot of data points. The smoother summarizes
the trend of the measured response as a function of the predictor
variables. We describe several scatterplot smoothers available in
Spotfire S+, and describe how the smoothed values they return can
be incorporated into additive models.
238

Simple Least-Squares Regression
SIMPLE LEAST-SQUARES REGRESSION

Simple regression uses the method of least squares to fit a continuous,
univariate response as a linear function of a single predictor variable.
In the method of least squares, we fit a line to the data so as to
minimize the sum of the squared residuals. Given a set of n
observations of the response variable corresponding to a set of

values of the predictor and an arbitrary model , the ith

residual is defined as the difference between the ith observation

and the fitted value , that is, .

To do simple regression with Spotfire S+, use the function lm (for
linear model) with a simple formula linking your chosen response
variable to the predictor variable. In many cases, both the response
and the predictor are components of a single data frame, which can
be specified as the data argument to lm. For example, consider the air
pollution data in the built-in data set air:

> air[, c(1,3)]

 ozone temperature
 1 3.448217 67
 2 3.301927 72
 3 2.289428 74
 4 2.620741 62
 5 2.843867 65
 . . .

A scatter plot of the data is shown in Figure 10.1.

yi

xi ŷ f̂ x()=

yi

ŷi f̂ xi()= ri yi ŷi–=
239

Chapter 10 Regression and Smoothing for Continuous Response Data
From the scatter plot, we hypothesize a linear relationship between
temperature and ozone concentration. We choose ozone as the
response and temperature as the single predictor. The choice of
response and predictor variables is driven by the subject matter in
which the data arise, rather than by statistical considerations.

To fit the model, use lm as follows:

> ozone.lm <- lm(ozone ~ temperature, data = air)

The first argument, ozone ~ temperature, is the formula specifying
that the variable ozone is modeled as a function of temperature. The
second argument specifies that the data for the linear model is
contained in the data frame air.

Figure 10.1: Scatter plot of ozone against temperature.

•
•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

••
•

• •

•

•

•

•
••

•

•

•
•

•
•

•

•
•

•

•
•

•

•

•

•

•

•
••

temperature

oz
on

e

60 70 80 90

1
2

3
4

5

240

Simple Least-Squares Regression
Use the summary function to obtain a summary of the fitted model:

> summary(ozone.lm)

Call: lm(formula = ozone ~ temperature)
Residuals:
 Min 1Q Median 3Q Max
 -1.49 -0.4258 0.02521 0.3636 2.044

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) -2.2260 0.4614 -4.8243 0.0000
temperature 0.0704 0.0059 11.9511 0.0000

Residual standard error: 0.5885 on 109 degrees of freedom
Multiple R-Squared: 0.5672
F-statistic: 142.8 on 1 and 109 degrees of freedom, the
p-value is 0

Correlation of Coefficients:
 (Intercept)
temperature -0.9926

The Value column under Coefficients gives the coefficients of the
linear model, allowing us to read off the estimated regression line as
follows:

ozone = -2.2260 + 0.0704 x temperature

The column headed Std. Error gives the estimated standard error
for each coefficient. The Multiple R-Squared term from the lm
summary tells us that the model explains about 57% of the variation
in ozone. The F-statistic is the ratio of the mean square of the
regression to the estimated variance; if there is no relationship
between temperature and ozone, this ratio has an distribution with
1 and 109 degrees of freedom. The ratio here is clearly significant, so
the true slope of the regression line is probably not 0.

F

241

Chapter 10 Regression and Smoothing for Continuous Response Data
Diagnostic
Plots for
Linear Models

Suppose we have the linear model defined as follows:

> ozone.lm <- lm(ozone ~ temperature, data = air)

How good is the fitted linear regression model? Is temperature an
adequate predictor of ozone concentration? Can we do better?
Questions such as these are essential any time you try to explain data
with a statistical model. It is not enough to fit a model; you must also
assess how well that model fits the data, being ready to modify the
model or abandon it altogether if it does not satisfactorily explain the
data.

The simplest and most informative method for assessing the fit is to
look at the model graphically, using an assortment of plots that, taken
together, reveal the strengths and weaknesses of the model. For
example, a plot of the response against the fitted values gives a good
idea of how well the model has captured the broad outlines of the
data. Examining a plot of the residuals against the fitted values often
reveals unexplained structure left in the residuals, which in a strong
model should appear as nothing but noise. The default plotting
method for lm objects provides these two plots, along with the
following useful plots:

• Square root of absolute residuals against fitted values. This plot is
useful in identifying outliers and visualizing structure in the
residuals.

• Normal quantile plot of residuals. This plot provides a visual test
of the assumption that the model’s errors are normally
distributed. If the ordered residuals cluster along the
superimposed quantile-quantile line, you have strong
evidence that the errors are indeed normal.

• Residual-Fit spread plot, or r-f plot. This plot compares the
spread of the fitted values with the spread of the residuals.
Since the model is an attempt to explain the variation in the
data, you hope that the spread in the fitted values is much
greater than that in the residuals.

• Cook’s distance plot. Cook’s distance is a measure of the
influence of individual observations on the regression
coefficients.
242

Simple Least-Squares Regression
Calling plot as follows yields the six plots shown in Figure 10.2:

> par(mfrow = c(2,3))
> plot(ozone.lm)

The line is shown as a dashed line in the third plot (far right of
top row). In the case of simple regression, this line is visually
equivalent to the regression line. The regression line appears to
model the trend of the data reasonably well. The residuals plots (left
and center, top row) show no obvious pattern, although five
observations appear to be outliers. By default, as in Figure 10.2, the
three most extreme values are identified in each of the residuals plots
and the Cook’s distance plot. You can request a different number of
points by using the id.n argument in the call to plot; for this model,
id.n=5 is a good choice.

Another useful diagnostic plot is the normal plot of residuals (left plot,
bottom row). The normal plot gives no reason to doubt that the
residuals are normally distributed.

Figure 10.2: Default plots for lm objects.

•

•

•

• •

•

• •
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

Fitted : temperature

Res
idu

als

2.0 2.5 3.0 3.5 4.0 4.5

-1
0

1
2

45

23

77

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

fits

sqr
t(ab

s(R
esid

ual
s))

2.0 2.5 3.0 3.5 4.0 4.5

0.2
0.4

0.6
0.8

1.0
1.2

1.4

4523

77

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

••

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

Fitted : temperature

ozo
ne

2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

5

•

•

•

••

•

••
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

Quantiles of Standard Normal

Res
idu

als

-2 -1 0 1 2

-1
0

1
2

45

23

77

•
•
••

•••
••
•
••
••
••
•••
••••
••
•
•••
•••
••••
••
••
••••••
••••
••••
•••
•••
••••••••••

•••••••
•••
•••
•••
•••••
•••
••
••
•••
•
•••
••
••

•
•

Fitted Values

0.0 0.4 0.8

-1
0

1
2

•
•

••
•
•
••••
••••••
••
••••••••

•••••
••
••••••
••••••
••••••
••
•••
••••••
•••
••••
••••
••
•••••••••

•••••••
•••••
•••
•
•
••
•
••
•
•

•
•

•

Residuals

0.0 0.4 0.8

-1
0

1
2

f-value

ozo
ne

Coo
k’s

Dis
tan

ce

0 20 40 60 80 100
0.0

0.0
2

0.0
4

0.0
6

17
77

20

y ŷ=
243

Chapter 10 Regression and Smoothing for Continuous Response Data
The r-f plot, on the other hand (middle plot, bottom row), shows a
weakness in this model; the spread of the residuals is actually greater
than the spread in the original data. However, if we ignore the five
outlying residuals, the residuals are more tightly bunched than the
original data.

The Cook’s distance plot shows four or five heavily influential
observations. As the regression line fits the data reasonably well, the
regression is significant, and the residuals appear normally
distributed, we feel justified in using the regression line as a way to
estimate the ozone concentration for a given temperature. One
important issue remains—the regression line explains only 57% of the
variation in the data. We may be able to do somewhat better by
considering the effect of other variables on the ozone concentration.
See the section Multiple Regression for this further analysis.

At times, you are not interested in all of the plots created by the
default plotting method. To view only those plots of interest to you,
call plot with the argument ask=T. This call brings up a menu listing
the available plots:

> par(mfrow = c(1,1))
> plot(ozone.lm, id.n = 5, ask = T)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Residuals vs Fitted Values
3: plot: Sqrt of abs(Residuals) vs Fitted Values
4: plot: Response vs Fitted Values
5: plot: Normal QQplot of Residuals
6: plot: r-f spread plot
7: plot: Cook’s Distances
Selection:
Enter the number of the desired plot.

If you want to view all the plots, but want them all to appear in a full
graphics window, do not set par(mfrow=c(2,3)) before calling plot,
and do not use the ask=T argument. Instead, before calling plot, call
par(ask=T). This tells Spotfire S+ to prompt you before displaying
each additional plot.
244

Simple Least-Squares Regression
Other
Diagnostics

The Durbin-Watson statistic can be used to test for first-order
correlation in the residuals of a linear model. The statistic is defined
as:

,

where are the residuals and is their arithmetic mean.
The statistic is bounded between 0 and 4; small values indicate
possible positive autocorrelation and large values indicate possible
negative autocorrelation. For completely independent residuals,
is symmetric around 2. If the test is significant, the observations in
your data set may not be independent and you should check the
validity of your model assumptions.

The null distribution for the Durbin-Watson test statistic depends on
the data matrix used to compute the linear model. Thus, significance
tables are not built into Spotfire S+. Instead, you can obtain
approximate bounds for significance levels using the tables found in
Durbin and Watson (1950); these tables are also available in many
general statistics texts.

In Spotfire S+, the Durbin-Watson test statistic is implemented in the
function durbinWatson, which has a method for the class "lm" as well
as a default method for numeric vectors. The code used to compute
the statistic is sum((diff(x))^2)/var(x, SumSquares=T), where x is a
vector. Thus, is simply the ratio of the sum of squared, successive
differences to the sum of squared deviations from the mean.

For example, we obtain the following from durbinWatson for our
linear model ozone.lm:

> durbinWatson(ozone.lm)

Durbin-Watson Statistic: 1.819424
Number of observations: 111

DW

DW

et et 1+–()2

t 1=

n 1–

∑

et e–()2

t 1=

n

∑

-------------------------------------=

e1 e2 … en, , , e

DW

DW
245

Chapter 10 Regression and Smoothing for Continuous Response Data
The Durbin-Watson test statistic works well if the observations are
equispaced in space or time. In general, however, correlated residuals
are difficult to diagnose and it is best to analyze the data collection
process for any potential correlation.
246

Multiple Regression
MULTIPLE REGRESSION

You can construct linear models involving more than one predictor as
easily in Spotfire S+ as models with a single predictor. In general,
each predictor contributes a single term in the model formula; a single
term may contribute more than one coefficient to the fit.

For example, consider the built-in data sets stack.loss and stack.x.
Together, these data sets contain information on ammonia loss in a
manufacturing process. The stack.x data set is a matrix with three
columns representing three predictors: air flow, water temperature,
and acid concentration. The stack.loss data set is a vector
containing the response. To make our computations easier, combine
these two data sets into a single data frame, then attach the data
frame:

> stack.df <- data.frame(stack.loss, stack.x)
> stack.df

 stack.loss Air.Flow Water.Temp Acid.Conc.
 1 42 80 27 89
 2 37 80 27 88
 3 37 75 25 90
 . . .

> attach(stack.df)

For multivariate data, it is usually a good idea to view the data as a
whole using the pairwise scatter plots generated by the pairs
function:

> pairs(stack.df)

The resulting plot is shown in Figure 10.3.
247

Chapter 10 Regression and Smoothing for Continuous Response Data
Call lm as follows to model stack.loss as a linear function of the
three predictors:

> stack.lm <- lm(stack.loss ~ Air.Flow + Water.Temp +
+ Acid.Conc.)

> summary(stack.lm)

Figure 10.3: Pairwise scatter plots of stack loss data.

stack.loss

50 55 60 65 70 75 80

•

••

•

••
•

•••
••

•••
•

• •

•

••

•

• • ••

•••
• •

•• • •

•

75 80 85 90

10
20

30
40

•

• •

•

• ••

•• ••
• •

••• • •

• •

50
55

60
65

70
75

80 ••

•

••••

•••••

••••

•

•

Air.Flow

•

•

•• • •

••• • •

• • •

•

•

••

•

• •

•• ••• •

••• • •

•

•

••

•
•

•
•
••

•

•
•

•
•

••
•
• •

•

•
•

•
•
•

•

•
•
•
•

•
•
• • •

Water.Temp

18
20

22
24

26

••

•
•

•
•

•
•

• •
•

•
•

••
• •

• • •

10 20 30 40

75
80

85
90 •

•
•

••

••

•

•

•
•

•

•

•

•

•

•
•

•

•
•
•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

18 20 22 24 26

•
•

•

•• •

•

•

•

•
•

•

•

•

•

•

•
•
•

•

Acid.Conc.
248

Multiple Regression
Call: lm(formula = stack.loss ~ Air.Flow + Water.Temp +
Acid.Conc.)
Residuals:
 Min 1Q Median 3Q Max
-7.238 -1.712 -0.4551 2.361 5.698

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) -39.9197 11.8960 -3.3557 0.0038
 Air.Flow 0.7156 0.1349 5.3066 0.0001
 Water.Temp 1.2953 0.3680 3.5196 0.0026
 Acid.Conc. -0.1521 0.1563 -0.9733 0.3440

Residual standard error: 3.243 on 17 degrees of freedom
Multiple R-Squared: 0.9136
F-statistic: 59.9 on 3 and 17 degrees of freedom, the
p-value is 3.016e-09

Correlation of Coefficients:
 (Intercept) Air.Flow Water.Temp
 Air.Flow 0.1793
Water.Temp -0.1489 -0.7356
Acid.Conc. -0.9016 -0.3389 0.0002

When the response is the first variable in the data frame, as in
stack.df, and the desired model includes all the variables in the data
frame, the name of the data frame itself can be supplied in place of
the formula and data arguments:

> lm(stack.df)

Call:
lm(formula = stack.df)

Coefficients:
 (Intercept) Air.Flow Water.Temp Acid.Conc.
 -39.91967 0.7156402 1.295286 -0.1521225

Degrees of freedom: 21 total; 17 residual
Residual standard error: 3.243364

We examine the default plots to assess the quality of the model (see
Figure 10.4):
249

Chapter 10 Regression and Smoothing for Continuous Response Data
> par(mfrow = c(2,3))
> plot(stack.lm, ask = F)

Both the line and the residuals plots give support to the

model. The multiple and statistic also support the model. But
would a simpler model suffice?

To find out, let’s return to the summary of the stack.lm model. From
the values, and the associated -values, it appears that both
Air.Flow and Water.Temp contribute significantly to the fit. But can
we improve the model by dropping the Acid.Conc. term? We explore
this question further in the section Adding and Dropping Terms from
a Linear Model.

y ŷ=

R2 F

t p

Figure 10.4: Default plots of fitted model.

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

• •

•

•

Fitted : Air.Flow + Water.Temp + Acid.Conc.

Res
idua

ls

10 20 30 40

-6
-4

-2
0

2
4

6

3

4

21

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

fits

sqr
t(ab

s(R
esid

uals
))

10 20 30 40

0.5
1.0

1.5
2.0

2.5

3

4

21 •

••

•

• •
•
•

•
••

•

•
•

•
•

••
•

• •

Fitted : Air.Flow + Water.Temp + Acid.Conc.

stac
k.lo

ss
10 20 30 40

10
20

30
40

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

••

•

•

Quantiles of Standard Normal

Res
idua

ls

-2 -1 0 1 2

-6
-4

-2
0

2
4

6

3

4

21
• •

•
• •

•
•
• ••

•

•

•

•• •
• •

•

••

Fitted Values

0.0 0.4 0.8

-10
0

10
20

•

• •
• •• •••

•• •
• ••

•• ••

•
•

Residuals

0.0 0.4 0.8

-10
0

10
20

f-value

stac
k.lo

ss

Coo
k’s

Dis
tan

ce

5 10 15 20

0.0
0.2

0.4
0.6

4
1

21
250

Adding and Dropping Terms from a Linear Model
ADDING AND DROPPING TERMS FROM A LINEAR MODEL

In the section Multiple Regression, we fitted a linear model with three
predictors of which only two appeared to be significant. Can we
improve the model stack.lm by dropping one or more terms?

The drop1 function takes a fitted model and returns an ANOVA table
showing the effects of dropping in turn each term in the model:

> drop1(stack.lm)

Single term deletions
Model:
stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.
 Df Sum of Sq RSS Cp
 <none> 178.8300 262.9852
 Air.Flow 1 296.2281 475.0580 538.1745
Water.Temp 1 130.3076 309.1376 372.2541
Acid.Conc. 1 9.9654 188.7953 251.9118

The columns of the returned value show the degrees of freedom for
each deleted term, the sum of squares corresponding to the deleted
term, the residual sum of squares from the resulting model, and the

 statistic for the terms in the reduced model.

The statistic (actually, what is shown is the statistic, the

likelihood version of the statistic—the two are related by the

equation) provides a convenient criterion for

determining whether a model is improved by dropping a term. If any
term has a statistic lower than that of the current model (shown on

the line labeled <none>), the term with the lowest statistic is

dropped. If the current model has the lowest statistic, the model is
not improved by dropping any term. The regression literature
discusses many other criteria for adding and dropping terms. See, for
example, Chapter 8 of Weisberg (1985).

Cp

Cp AIC

Cp

AIC σ̂
2

Cp n+()=

Cp

Cp

Cp
251

Chapter 10 Regression and Smoothing for Continuous Response Data
In our example, the statistic shown for Acid.Conc. is lower than
that for the current model. So it is probably worthwhile dropping that
term from the model:

> stack2.lm <- lm(stack.loss ~ Air.Flow + Water.Temp)
> stack2.lm

Call:
lm(formula = stack.loss ~ Air.Flow + Water.Temp)

Coefficients:
 (Intercept) Air.Flow Water.Temp
 -50.35884 0.6711544 1.295351

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

A look at the summary shows that we have retained virtually all the
explanatory power of the more complicated model:

> summary(stack2.lm)

Call: lm(formula = stack.loss ~ Air.Flow + Water.Temp)
Residuals:
 Min 1Q Median 3Q Max
 -7.529 -1.75 0.1894 2.116 5.659

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) -50.3588 5.1383 -9.8006 0.0000
 Air.Flow 0.6712 0.1267 5.2976 0.0000
 Water.Temp 1.2954 0.3675 3.5249 0.0024

Residual standard error: 3.239 on 18 degrees of freedom
Multiple R-Squared: 0.9088
F-statistic: 89.64 on 2 and 18 degrees of freedom, the
p-value is 4.382e-10

Correlation of Coefficients:
 (Intercept) Air.Flow
 Air.Flow -0.3104
Water.Temp -0.3438 -0.7819

Cp
252

Adding and Dropping Terms from a Linear Model
The residual standard error has fallen, from 3.243 to 3.239, while the

multiple has decreased only slightly from 0.9136 to 0.9088.

We create the default set of diagnostic plots as follows:

> par(mfrow = c(2,3))
> plot(stack2.lm, ask = F)

These plots, shown in Figure 10.5, support the simplified model.

We turn next to the opposite problem: adding terms to an existing
model. Our first linear model hypothesized a relationship between
temperature and atmospheric ozone, based on a scatter plot showing
an apparent linear relationship between the two variables. The air
data set containing the two variables ozone and temperature also
includes two other variables, radiation and wind. Pairwise scatter
plots for all the variables can be constructed using the pairs function,
as illustrated in the command below.

> pairs(air)

R2

Figure 10.5: Diagnostic plots for simplified model.

•

•

•

•

•

•
•

•

•

•
•

•
•

•

•
•

•

•

•

Fitted : Air.Flow + Water.Temp

Res
idu

als

10 15 20 25 30 35

-8
-6

-4
-2

0
2

4
6

3

4

21

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

fits

sqr
t(ab

s(R
esid

ual
s))

10 15 20 25 30 35

0.5
1.0

1.5
2.0

2.5
3

4

21 •

••

•

• •
•
•

•
•

•

•
•

•
•

•
•

• •

Fitted : Air.Flow + Water.Temp

sta
ck.l

oss

10 15 20 25 30 35

10
20

30
40

•

•

•

•

•

•
•

•

•

• •
•

•
•

•

•
• •

•

•

•

Quantiles of Standard Normal

Res
idu

als

-2 -1 0 1 2

-8
-6

-4
-2

0
2

4
6

3

4

21 • •

••

•

•

•• •

• •

•

•

•

• •• •

•

••

Fitted Values

0.0 0.4 0.8

-10
-5

0
5

10
15

20

•

• ••
•
• •••

•• ••
•• •• •

•
•
•

Residuals

0.0 0.4 0.8

-10
-5

0
5

10
15

20

f-value

sta
ck.l

oss

Coo
k’s

Dis
tan

ce

5 10 15 20

0.0
0.2

0.4
0.6

0.8

3

1

21
253

Chapter 10 Regression and Smoothing for Continuous Response Data
The resulting plot is shown in Figure 10.6. The plot in the top row,
third column of Figure 10.6 corresponds to the scatter plot shown in
Figure 10.1.

From the pairwise plots, it appears that the ozone varies somewhat
linearly with each of the variables radiation, temperature, and wind,
and the dependence on wind has a negative slope.

Figure 10.6: Pairwise scatter plots for ozone data.

ozone

0 50 150 250

••

•
•

••

•

•
••

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

• •

•

•
• •

•

•

•

•

•

•
•••

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
••

•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•••
••

•

•
•

••• •

•

•
•

•
•

•

•
•

•
• •

•
•

•

•

•

•
• •

• •

•
•

••

•

•
• •

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

••

•

•
• •

•

•

•

•

•

•
••

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
••

•

•
•

•

•
•

•

•

•

•

•

•
•
•

•

•

•

•

• •

•

•••
••
•

•
•

••••

•

•
•

•
•

•

•
•

•
••

•
•

•

•

•

•
••

5 10 15 20

1
2

3
4

5

• •

•
•

• •

•

•
• •

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

• •

•

•
••

•

•

•

•

•

•
•• •

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
• •

•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

•••
••

•

•
•

••••

•

•
•

•
•

•

•
•

•
• •

•
•

•

•

•

•
• •

0
50

15
0

25
0

•

•
•

• •

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•
••

•

•

• ••

•

•

•

•

•• •

•
•

•

•

•

• •

•

•
••

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•
•

••
••

•
•

•• •

••

•
••
•

•
•

•

•

•

••

•

•

•

•

•

•

•
•

••

•

•

radiation
•

•
•

• •

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•
••

•

•

• ••

•

•

•

•

••
•

•
•

•

•

•

• •

•

•
••

•

•

•

•
•
•

•

•

•

•
•

•

•

•

•

•

•
•

• •
• •

•
•
•••

••

•
••

•
•

•
•

•

•

••

•

•

•

•

•

•

•
•

• •

•

•
•

•
•

••

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•
••

•

•

• ••

•

•

•

•

• ••

•
•

•

•

•

• •

•

•
• •

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•
•

• •
• •

•
•

•• •

• •

•
••

•
•
•

•

•

•

• •

•

•

•

•

•

•

•
•

• •

•

•

•

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•

• •

•

•
•

•

•

•
•

•

•

•

•

•
•

••
•

••

•
•

•

•

•• ••
•

•
•

•

• •
•

•
•

•
•

••• •

•• •
•

•
•

•
•

•
• ••

•

•
•

•

•
•

•
•

••• •

•
•

•
•
•
•

•

• •

• •

•

•

•

•

•

•

•

•

•

•

•

• •

• •

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•

• •

•

•
•

•

•

•
•

•

•

•

•

•
•

••
•

• •

•
••

•

•

•• • •
•

•
•

•

••
•
•

•
•

•
••• •

•••
•

•
•

•
•

•
•• •

•

•
•

•

•
•
•

•
• •••

•
•

•
•
•

•

•

••

• •

•

•

•

•

•

•

•

•

•

•

•

••

•

temperature

60
70

80
90

•

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•

• •

•

•
•

•

•

•
•

•

•

•

•

•
•

• •
•

• •

•
••

•

•

••• •
•

•
•

•

••
•

•
•
•
•

•• ••

• ••
•
•

•
•

•
•

•• •

•

•
•

•

•
•

•
•
••• •

•
•

•
•
•

•

•

••

••

•

•

•

•

•

•

•

•

•

•

•

••

•

1 2 3 4 5

5
10

15
20

••

•
•

•

•

•

••
•

•
• •

•

•
••

•

•

••

•

•
•

•

•

•

•

•

•

•

•
•

•

••

•

•

•
••

•

• ••

•

•

•
•

•

•
• ••

•

•• •
•

•

•

•

•

•

•

••
••

•
•

• •

•
•

•

•

•
•

•

•• •
•

•
•

•

•

••••

••

•

• •

•

•

• •

•

•

•
••

•

•

•

•

•

••

•
•

•

•

•

• •
•

•
••

•

•
••

•

•

••

•

•
•

•

•

•

•

•

•

•

•
•

•

••

•

•

•
••

•

•••

•

•

•
•

•

•
•••

•

• ••
•

•

•

•

•

•

•

• •
••

•
•

••

•
•

•

•

•
•

•

•••
•

•
•

•

•

••• •

• •

•

• •

•

•

• •

•

•

•
••

•

•

•

•

•

60 70 80 90

• •

•
•

•

•

•

••
•

•
• •

•

•
••

•

•

• •

•

•
•

•

•

•

•

•

•

•

•
•

•

••

•

•

•
••

•

• ••

•

•

•
•

•

•
•••

•

•••
•

•

•

•

•

•

•

••
••

•
•

••

•
•

•

•

•
•

•

•••
•

•
•

•

•

•••
•

••

•

••

•

•

••

•

•

•
••

•

•

•

•

• wind
254

Adding and Dropping Terms from a Linear Model
We can use the add1 function to add the terms wind and radiation in
turn to our previously fitted model:

> ozone.add1 <- add1(ozone.lm, ~ temperature + wind +
+ radiation)
> ozone.add1

Single term additions

Model:
ozone ~ temperature
 Df Sum of Sq RSS Cp
 <none> 37.74698 39.13219
 wind 1 5.839621 31.90736 33.98517
radiation 1 3.839049 33.90793 35.98575

The first argument to add1 is a fitted model object, the second a
formula specifying the scope; that is, the possible choices of terms to
be added to the model. A response is not necessary in the formula
supplied; the response must be the same as that in the fitted model.
The returned object is an ANOVA table like that returned by drop1,
showing the sum of squares due to the added term, the residual sum
of squares of the new model, and the modified statistic for the
terms in the augmented model. Each row of the ANOVA table
represents the effects of a single term added to the base model. In
general, it is worth adding a term if the statistic for that term is
lowest among the rows in the table, including the base model term. In
our example, we conclude that it is worthwhile adding the wind term.

Our choice of temperature as the original predictor in the model,
however, was completely arbitrary. We can gain a truer picture of the
effects of adding terms by starting from a simple intercept model:

> ozone0.lm <- lm(ozone ~ 1, data = air)
> ozone0.add1 <- add1(ozone0.lm, ~ temperature + wind +
+ radiation)

Cp

Cp
255

Chapter 10 Regression and Smoothing for Continuous Response Data
The obvious conclusion from the output is that we should start with
the temperature term, as we did originally:

> ozone0.add1

Single term additions

Model:
ozone ~ 1
 Df Sum of Sq RSS Cp
 <none> 87.20876 88.79437
temperature 1 49.46178 37.74698 40.91821
 wind 1 31.28305 55.92571 59.09694
 radiation 1 15.53144 71.67732 74.84855
256

Choosing the Best Model—Stepwise Selection
CHOOSING THE BEST MODEL—STEPWISE SELECTION

Adding and dropping terms using add1 and drop1 is a useful method
for selecting a model when only a few terms are involved, but it can
quickly become tedious. The step function provides an automatic
procedure for conducting stepwise model selection. Essentially what
step does is automate the selection process implied in the section
Adding and Dropping Terms from a Linear Model. That is, it
calculates the statistics for the current model, as well as those for
all reduced and augmented models, then adds or drops the term that
reduces the most. The step function requires an initial model,
often constructed explicitly as an intercept-only model, such as the
ozone0.lm model constructed in the last section. Because step
calculates augmented models, it requires a scope argument, just like
add1.

For example, suppose we want to find the “best” model involving the
stack loss data, we could create an intercept-only model and then call
step as follows:

> stack0.lm <- lm(stack.loss ~ 1, data = stack.df)
> step(stack0.lm, ~ Air.Flow + Water.Temp + Acid.Conc.)

Start: AIC= 2276.162
 stack.loss ~ 1

Single term additions

Model:
stack.loss ~ 1

scale: 103.4619

 Df Sum of Sq RSS Cp
 <none> 2069.238 2276.162
 Air.Flow 1 1750.122 319.116 732.964
Water.Temp 1 1586.087 483.151 896.998
Acid.Conc. 1 330.796 1738.442 2152.290

Cp

Cp
257

Chapter 10 Regression and Smoothing for Continuous Response Data
Step: AIC= 732.9637
 stack.loss ~ Air.Flow

Single term deletions

Model:
stack.loss ~ Air.Flow

scale: 103.4619

 Df Sum of Sq RSS Cp
 <none> 319.116 732.964
Air.Flow 1 1750.122 2069.238 2276.162
Single term additions

Model:
stack.loss ~ Air.Flow

scale: 103.4619

 Df Sum of Sq RSS Cp
 <none> 319.1161 732.9637
Water.Temp 1 130.3208 188.7953 809.5668
Acid.Conc. 1 9.9785 309.1376 929.9090
Call:
lm(formula = stack.loss ~ Air.Flow, data = stack.df)

Coefficients:
 (Intercept) Air.Flow
 -44.13202 1.020309

Degrees of freedom: 21 total; 19 residual
Residual standard error (on weighted scale): 4.098242
258

Choosing the Best Model—Stepwise Selection
The value returned by step is an object of class "lm", and the final
result appears in exactly the same form as the output of lm. However,
by default, step displays the output of each step of the selection
process. You can turn off this display by calling step with the trace=F
argument:

> step(stack0.lm, ~ Air.Flow + Water.Temp + Acid.Conc.,
+ trace = F)

Call:
lm(formula = stack.loss ~ Air.Flow, data = stack.df)

Coefficients:
 (Intercept) Air.Flow
 -44.13202 1.020309

Degrees of freedom: 21 total; 19 residual
Residual standard error (on weighted scale): 4.098242
259

Chapter 10 Regression and Smoothing for Continuous Response Data
UPDATING MODELS

We built our alternate model for the stack loss data by explicitly
constructing a second call to lm. For models involving only one or
two predictors, this is not usually too burdensome. However, if you
are looking at many different combinations of many different
predictors, constructing the full call repeatedly can be tedious.

The update function provides a convenient way for you to fit new
models from old models, by specifying an updated formula or other
arguments. For example, we could create the alternate model
stack2.lm using update as follows:

> stack2a.lm <- update(stack.lm, .~. - Acid.Conc.,
+ data = stack.df)
> stack2a.lm

Call:
lm(formula = stack.loss ~ Air.Flow + Water.Temp, data =
stack.df)

Coefficients:
 (Intercept) Air.Flow Water.Temp
 -50.35884 0.6711544 1.295351

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

The first argument to update is always a model object, and additional
arguments for lm are passed as necessary. The formula argument
typically makes use of the “.” notation on either side of the “~”. The
“.” indicates “as in previous model.” The “-” and “+” operators are
used to delete or add terms. See Chapter 2, Specifying Models in
Spotfire S+, for more information on formulas with update.
260

Weighted Regression
WEIGHTED REGRESSION

You can supply weights in fitting any linear model; this can
sometimes improve the fit of models with repeated values in the
predictor. Weighted regression is the appropriate method in those
cases where it is known a priori that not all observations contribute
equally to the fit.

Example:
Weighted
Linear
Regression

The claims data set contains information on the average cost of
insurance claims for automobile accidents. The 128 rows of the data
frame represent all possible combinations of three predictor
variables: age, car.age, and type. An additional variable, number,
gives the number of claims that correspond to each combination. The
outcome variable, cost, is the average cost of the claims in each
category. An insurance company may be interested in using data like
this to set premiums.

We want to fit a regression model predicting cost from age, car.age,
and type. We begin with a simple scatter plot of the number of claims
versus the average cost:

> plot(claims$number, claims$cost)

The result is displayed in Figure 10.7. The plot shows that the
variability of cost is much greater for the observations with smaller
numbers of claims. This is what we expect: if each combination of

age, car.age, and type has the same variance before averaging,

then the mean cost for a group of claims is . Thus, as the size
of a group grows, the variability decreases.

σ2

n σ2 n⁄
261

Chapter 10 Regression and Smoothing for Continuous Response Data

First, we fit an unweighted linear model to the claims data and view a
plot of the residuals:

> unweighted.claims <- lm(cost ~ age + type + car.age,
+ data = claims, na.action = na.exclude)
> unweighted.claims

Call:
lm(formula = cost ~ age + car.age + type, data = claims,

na.action = na.exclude)

Coefficients:
 (Intercept) age.L age.Q age.C age ^ 4
 239.2681 -58.27753 53.31217 -23.83734 -37.09553

 age ^ 5 age ^ 6 age ^ 7 car.age.L car.age.Q
 -51.57616 9.523087 -12.60742 -112.1761 -20.12425

 car.age.C type1 type2 type3
 -1.035686 10.46875 3.519079 25.53023

Figure 10.7: Scatter plot of the number of insurance claims versus the average cost.

••

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

• •

••

•
•

•

•

•

•

•

•
•

•

•

• •
•

•

••

•

•

•

•
•

•

•
•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•
•

•

•
••

•

••
•

•

•

•

•

•

claims$number

c
la

im
s
$
c
o
s
t

0 100 200 300 400

0
2
0
0

4
0
0

6
0
0

8
0
0

262

Weighted Regression
Degrees of freedom: 123 total; 109 residual
5 observations deleted due to missing values
Residual standard error: 103.6497

> plot(claims$number, resid(unweighted.claims))
[1] T

> abline(h = 0)

The plot is displayed in the left panel of Figure 10.8. We know the
unweighted.claims model is wrong because the observations are
based on different sample sizes, and therefore have different
variances. In the plot, we again see that the variability in the residuals
is greater for smaller group sizes.

Figure 10.8: Scatter plots of residuals for two claims models. The plot on the left is for an unweighted
model, and the plot on the right is for a model that includes weights.

•
•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•••
•

••

•

•

•

•

•

•

•• • •
•

•

•
•

•• •

•

•

•

•

•

•
•

• •
•

•

•

•
••

•
•

••

•

•

•
•

•
•

•

•
••

••

•

•

•

••
•

•

•
•••

•

•
•

• •

•

•

•
• •

•

•

•

•

•

• ••
•

• •

•

•

•

•
•

•
•

••
••

•
•

•
•

•
•

••

claims$number

re
si

d(
un

w
ei

gh
te

d.
cl

ai
m

s)

0 100 200 300 400

-2
00

0
20

0
40

0

•
•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•
•

•

•
•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•
•

•

•

•

••

•
•

•

•

•
••

•

•

•

•

•

•
•

•

• • •

•

•
•

•

•

•

•

••

•

• •

•

•
•

•

•

•
••

•

•
•

•

•

•

•

•

•

•
••

•

• ••

•
•

•
•

•

•

claims$number

re
si

d(
w

ei
gh

te
d.

cl
ai

m
s)

0 100 200 300 400

-2
00

0
20

0
40

0

263

Chapter 10 Regression and Smoothing for Continuous Response Data
To adjust for the difference in variances, we compute a weighted
linear model using number as our vector of weights. This means, for
example, that the observation based on 434 claims is weighted much
more than the 6 observations that are based on only one claim. This
makes sense, because we expect an average based on many data
points to be more stable and closer to the true group mean than one
based on only a few points.

> weighted.claims <- lm(cost ~ age + type + car.age,
+ data = claims, na.action = na.exclude, weights = number)
> weighted.claims

Call:
lm(formula = cost ~ age + car.age + type, data = claims,

weights = number, na.action = na.exclude)

Coefficients:
 (Intercept) age.L age.Q age.C age ^ 4
 250.6384 -58.26074 30.19545 5.962486 -34.10711

 age ^ 5 age ^ 6 age ^ 7 car.age.L car.age.Q
 -33.5003 -7.180729 18.667 -78.91788 -54.76935

 car.age.C type1 type2 type3
 -49.47014 2.661179 9.47081 24.2689

Degrees of freedom: 123 total; 109 residual
5 observations deleted due to missing values
Residual standard error (on weighted scale): 606.2138

> plot(claims$number, resid(weighted.claims))
[1] T

> abline(h = 0)

The plot is displayed in the right panel of Figure 10.8. The plot shows
that the weighted model fits points with large weights more accurately
than the unweighted model. The analysis with weights is more
trustworthy and matches better with standard regression assumptions.
264

Weighted Regression
Observation
Weights vs.
Frequencies

Spotfire S+ implements observation weights through the weights
argument to most regression functions. Observation weights are
appropriate when the variances of individual observations are
inversely proportional to the weights. For a set of weights , one

interpretation is that the ith observation is the average of other
observations, each having the same predictors and (unknown)
variance. This is the interpretation of the weights we include in the
claims example above.

It is important to note that an observation weight is not the same as a
frequency, or case weight, which represents the number of times a
particular observation is repeated. It is possible to include frequencies
as a weights argument to a Spotfire S+ regression function; although
this produces the correct coefficients for the model, inference tools
such as standard errors, p values, and confidence intervals are
incorrect. In the examples below, we clarify the difference between
the two types of weights using both mathematical and Spotfire S+
notation.

Let be a set of predictor variables, for , and suppose

 is a vector of response values. The classical linear model
(weighted or unweighted) is represented by an equation of the form

,

where is the intercept, is the coefficient corresponding to ,

is a vector of residuals of length , and represents the

fitted values. In this model, there are observations and
coefficients to estimate.

For , the residuals in an unweighted model are
normally distributed with zero means and identical, unknown

variances . When observation weights are included in the model,
however, the variances differ between residuals. Suppose we include
a set of weights in our linear model. The ith residual in the
weighted model is normally distributed with a zero mean, but its

variance is equal to for an unknown . This type of model is

wi

wi

Xj j 1 2 … p, , ,=

Y n

Y β0 βj Xj ε+

j 1=

p

∑+=

β0 βj Xj ε

n β0 βj Xj
j
∑+

n p 1+

i 1 2 … n, , ,= ε i

σ2

wi ε i

σ2 wi⁄ σ2
265

Chapter 10 Regression and Smoothing for Continuous Response Data
appropriate if the ith observation is the average of other

observations, each having the same variance . Another situation in
which this weighted model can be used is when the relative precision
of the observations is known in advance.

The main difference between observation weights and frequencies
lies in the degrees of freedom for a particular model. In Spotfire S+,
the degrees of freedom for both weighted and unweighted models is
equal to the number of observations minus the number of parameters
estimated. For example, a linear model with observations and one
predictor has degrees of freedom, since both a slope and an
intercept are estimated. In contrast, the degrees of freedom for a
model with frequencies is equal to the sum of the frequencies minus
the number of parameters estimated. The degrees of freedom does
not affect the coefficients in a Spotfire S+ regression, but it is used to
compute standard errors, p values, and confidence intervals. If you
use a weights argument to represent frequencies in a regression
function, you will need to exercise extreme caution in interpreting the
statistical results.

For example, consider the following three contrived linear models.
First, we create arbitrary vectors x and y, where the first five elements
in x are identical to each other. We then compute a linear model for
the vectors. For reproducibility, we use the set.seed function.

wi

σ2

Note

Spotfire S+ does not currently support weighted regression when the absolute precision of the
observations is known. This situation arises often in physics and engineering, when the
uncertainty associated with a particular measurement is known in advance due to properties of

the measuring procedure or device. In this type of regression, the individual are known,

weights are supplied, and need not be estimated. Because of the treatment of

weights in Spotfire S+, however, is always estimated. If you know the absolute precision of

your observations, it is possible to supply them as to the weights argument in a Spotfire
S+ regression function. This computes the correct coefficients for your model, but the standard

errors and other inference tools will be incorrect, since they are based on estimates of .

σi
2

wi 1 σi
2⁄= σ2

σ2

1 σi
2⁄

σ2

n
n 2–
266

Weighted Regression
> set.seed(0)
> x <- c(rep(1, 5), 2:10)
> x

 [1] 1 1 1 1 1 2 3 4 5 6 7 8 9 10

> y <- runif(14)
> y

 [1] 0.96065916 0.93746001 0.04410193 0.76461851 0.70585769
 [6] 0.50355052 0.92864822 0.84027312 0.54710167 0.48780511
[11] 0.39898473 0.26351962 0.92592463 0.42851457

> unweighted.lm1 <- lm(y ~ x)
> unweighted.lm1

Call:
lm(formula = y ~ x)

Coefficients:
 (Intercept) x
 0.7162991 -0.02188421

Degrees of freedom: 14 total; 12 residual
Residual standard error: 0.288045

Next, we create vectors x2 and y2 that are identical to x and y, only
the five repeated x values have identical y values. This simulates a
data set with repeated observations. In our example, we choose the
mean of the first five y values to be the repeated y2 value, and then
compute a linear model for the vectors:

> x2 <- x
> y2 <- c(rep(mean(y[1:5]), times=5), y[6:14])
> y2

 [1] 0.6825395 0.6825395 0.6825395 0.6825395 0.6825395
 [6] 0.5035505 0.9286482 0.8402731 0.5471017 0.4878051
[11] 0.3989847 0.2635196 0.9259246 0.4285146
267

Chapter 10 Regression and Smoothing for Continuous Response Data
> unweighted.lm2 <- lm(y2 ~ x2)
> unweighted.lm2

Call:
lm(formula = y2 ~ x2)

Coefficients:
 (Intercept) x2
 0.7162991 -0.02188421

Degrees of freedom: 14 total; 12 residual
Residual standard error: 0.1911415

Note that both of these models have fourteen observations and 12
degrees of freedom. Finally, we create vectors x3 and y3 that are
identical to x2 and y2, only the five repeated values are condensed
into one. To account for this, we assign a weight of 5 to the first
observation and compute a weighted regression for x3 and y3:

> x3 <- 1:10
> y3 <- c(y2[1], y2[6:14])
> y3

 [1] 0.6825395 0.5035505 0.9286482 0.8402731 0.5471017
 [6] 0.4878051 0.3989847 0.2635196 0.9259246 0.4285146

> w3 <- c(5, rep(1, 9))
> w3

 [1] 5 1 1 1 1 1 1 1 1 1

> weighted.lm <- lm(y3 ~ x3, weights = w3)
> weighted.lm

Call:
lm(formula = y3 ~ x3, weights = w3)

Coefficients:
 (Intercept) x3
 0.7162991 -0.02188421

Degrees of freedom: 10 total; 8 residual
Residual standard error (on weighted scale): 0.2340995
268

Weighted Regression
Unlike the first two models, weighted.lm has only 10 observations
and 8 degrees of freedom. Since Spotfire S+ implements observation
weights, we expect weighted.lm to accurately represent the first
unweighted regression. In contrast, we would expect weighted.lm to
represent the second unweighted regression if Spotfire S+ supported
frequencies.

Although the coefficients for the three linear models are the same, the
standard errors for the regression parameters are different, due to the
varying degrees of freedom. This can be seen from the following calls
to summary:

> summary(unweighted.lm1)$coefficients

 Value Std. Error t value Pr(>|t|)
(Intercept) 0.71629912 0.12816040 5.5890831 0.000118174
 x -0.02188421 0.02431325 -0.9000937 0.385777544

> summary(unweighted.lm2)$coefficients

 Value Std. Error t value Pr(>|t|)
(Intercept) 0.71629912 0.08504493 8.422596 2.211207e-006
 x2 -0.02188421 0.01613384 -1.356417 1.999384e-001

> summary(weighted.lm)$coefficients

 Value Std. Error t value Pr(>|t|)
(Intercept) 0.71629912 0.10415835 6.877021 0.0001274529
 x3 -0.02188421 0.01975983 -1.107510 0.3002587236

For weighted.lm to accurately represent unweighted.lm2, its standard
errors should be based on 12 degrees of freedom (the sum of the the
frequencies minus 2).

Depending on the field of study, different categories of weights may
be needed in regression analysis. Observation weights and
frequencies are not the only types used; we present these here simply
to illustrate how Spotfire S+ implements weights in regression
functions. Although the above discussion is specific to the lm function,
it is applicable to most Spotfire S+ regression functions that include a
weights option.
269

Chapter 10 Regression and Smoothing for Continuous Response Data
PREDICTION WITH THE MODEL

Much of the value of a linear regression model is that, if it accurately
models the underlying phenomenon, it can provide reliable predictions
about the response for a given value of the predictor. The predict
function takes a fitted model object and a data frame of new data, and
returns a vector corresponding to the predicted response. The
variable names in the new data must correspond to those of the
original predictors; the response may or may not be present, but if
present is ignored.

For example, suppose we want to predict the atmospheric ozone
concentration from the following vector of temperatures:

> newtemp <- c(60, 62, 64, 66, 68, 70, 72)

We can obtain the desired predictions using predict as follows:

> predict(ozone.lm, data.frame(temperature = newtemp))

 1 2 3 4 5 6
 1.995822 2.136549 2.277276 2.418002 2.558729 2.699456

 7
 2.840183

The predicted values do not stand apart from the original
observations.

You can use the se.fit argument to predict to obtain the standard
error of the fitted value at each of the new data points. When
se.fit=T, the output of predict is a list, with a fit component
containing the predicted values and an se.fit component containing
the standard errors
270

Prediction with the Model
For example,

> predict(ozone.lm, data.frame(temperature = newtemp),
+ se.fit = T)

$fit:
 1 2 3 4 5 6
 1.995822 2.136549 2.277276 2.418002 2.558729 2.699456

 7
 2.840183

$se.fit:
 1 2 3 4 5
 0.1187178 0.1084689 0.09856156 0.08910993 0.08027508

 6 7
 0.07228355 0.06544499

$residual.scale:
[1] 0.5884748

$df:
[1] 109

You can use this output list to compute pointwise and simultaneous
confidence intervals for the fitted regression line. See the section
Confidence Intervals for details. See the predict help file for a
description of the remaining components of the return list,
residual.scale and df, as well as a description of predict’s other
arguments.
271

Chapter 10 Regression and Smoothing for Continuous Response Data
CONFIDENCE INTERVALS

How reliable is the estimate produced by a simple regression?
Provided the standard assumptions hold (that is, normal, identically
distributed errors with constant variance), we can construct
confidence intervals for each point on the fitted regression line based
on the distribution, and simultaneous confidence bands for the
fitted regression line using the distribution.

In both cases, we need the standard error of the fitted value, se.fit,
which is computed as follows (Weisberg, 1985, p. 21):

where = a given point in the predictor space. For a fitted object of
class "lm", you can use the predict function as follows to calculate
se.fit:

> predict(ozone.lm, se.fit = T)

For a given point in the predictor space, a ()% confidence
interval for the fitted value corresponding to is the set of values
such that

,

where computes the qth quantile of the distribution with
degrees of freedom. The pointwise function takes the output of
predict (produced with the se.fit=T flag) and returns a list
containing three vectors: the vector of lower bounds, the fitted values,
and the vector of upper bounds giving the confidence intervals for the
fitted values for the predictor. The output from pointwise is suitable,
for example, as input for the error.bar function. The following
command computes pointwise prediction intervals for the ozone.lm
model.

σ

t
F

se.fit σ̂ 1
n
--- x x–()2

xi x–()2

i
∑
------------------------+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ 1

2

=

x

x 1 α–

x y

t α 2 n 2–,⁄() se.fit×– y ŷ t α 2⁄ n 2–,()+ se.f×< <

t q d,() t d
272

Confidence Intervals
> pointwise(predict(ozone.lm, se.fit = T))

$upper:
 1 2 3 4 5 6
 2.710169 3.011759 3.138615 2.42092 2.593475 2.250401

 7 8 9 10 11 12
 2.363895 2.828752 2.651621 2.769185 2.193888 2.535673

. . .

$fit:
 1 2 3 4 5 6
 2.488366 2.840183 2.98091 2.136549 2.347639 1.925458

 7 8 9 10 11 12
 2.066185 2.629093 2.418002 2.558729 1.855095 2.277276

. . .

$lower:
 1 2 3 4 5 6
 2.266563 2.668607 2.823205 1.852177 2.101803 1.600516

 7 8 9 10 11 12
 1.768476 2.429434 2.184384 2.348273 1.516301 2.018878

. . .

It is tempting to believe that the curves resulting from connecting all
the upper points and all the lower points would give a confidence
interval for the entire curve. This, however, is not the case; the
resulting curve does not have the desired confidence level across its
whole range. What is required instead is a simultaneous confidence
interval, obtained by replacing the distribution with the
distribution. A Spotfire S+ function for creating such simultaneous
confidence intervals (and by default, plotting the result) can be
defined with the code below.

t F
273

Chapter 10 Regression and Smoothing for Continuous Response Data
"confint.lm"<-
function(object, alpha = 0.05, plot.it = T, ...) {
 f <- predict(object, se.fit = T)
 p <- length(coef(object))
 fit <- f$fit
 adjust <- (p * qf(1 - alpha, p, length(fit) -
 p))^0.5 * f$se.fit
 lower <- fit - adjust
 upper <- fit + adjust
 if(plot.it) {
 y <- fit + resid(object)
 plot(fit, y)
 abline(0, 1, lty = 2)
 ord <- order(fit)
 lines(fit[ord], lower[ord])
 lines(fit[ord], upper[ord])
 invisible(list(lower=lower, upper=upper))
 }
 else list(lower = lower, upper = upper)
}

A plot of our first model of the air data, as generated by the following
command, is shown in Figure 10.9:

> confint.lm(ozone.lm)

Figure 10.9: Simultaneous confidence intervals for the ozone data.

•
•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

••
•

• •

•

•

•

•
••

•

•

•
•

•
•

•

•
•

•

•
•

•

•

•

•

•

•
••

fit

y

2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

5

274

Polynomial Regression
POLYNOMIAL REGRESSION

Thus far in this chapter, we’ve dealt with data sets for which the
graphical evidence clearly indicated a linear relationship between the
predictors and the response. For such data, the linear model is a
natural and elegant choice, providing a simple and easily analyzed
description of the data. But what about data that does not exhibit a
linear dependence? For example, consider the scatter plot shown in
Figure 10.10. Clearly, there is some functional relationship between the
predictor E (for Ethanol) and the response NOx (for Nitric Oxide), but
just as clearly the relationship is not a straight line.

Figure 10.10: Scatter plot showing nonlinear dependence.

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

275

Chapter 10 Regression and Smoothing for Continuous Response Data
How should we model such data? One approach is to add polynomial
terms to the basic linear model, then use least-squares techniques as
before. The classical linear model (with the intercept term
represented as the coefficient of a dummy variable of all 1’s) is
represented by an equation of the following form:

where the predictors enter the equation as linear terms. More
generally, classical linear regression techniques apply to any equation
of the form

where the are new variables formed as combinations of the
original predictors. For example, consider a cubic polynomial
relationship given by the following equation:

We can convert this to the desired form by the following assignments:

Once these assignments are made, the coefficients can be
determined as usual using the classical least-squares techniques.

(10.1)

(10.2)

(10.3)

X0

Y βk Xk ε+

k 0=

n

∑=

Xk

Y βkZk ε+

k 0=

n

∑=

Zk

Y βk xk ε+

k 0=

3

∑=

x0 Z0=

x1 Z1=

x2 Z2=

x3 Z3=

βk
276

Polynomial Regression
To perform a polynomial regression in Spotfire S+, use lm together
with the poly function. Use poly on the right hand side of the formula
argument to lm to specify the independent variable and degree of the
polynomial. For example, consider the following made-up data:

x <- runif(100, 0, 100)
y <- 50 - 43*x + 31*x^2 - 2*x^3 + rnorm(100)

We can fit this as a polynomial regression of degree 3 as follows:

> xylm <- lm(y ~ poly(x, 3))
> xylm

Call:
lm(formula = y ~ poly(x, 3))

Coefficients:
(Intercept) poly(x, 3)1 poly(x, 3)2 poly(x, 3)3
 -329798.8 -3681644 -1738826 -333975.4

Degrees of freedom: 100 total; 96 residual
Residual standard error: 0.9463133

The coefficients that appear in the object xylm are the coefficients for
the orthogonal form of the polynomial. To recover the simple
polynomial form, use the function poly.transform:

> poly.transform(poly(x,3), coef(xylm))

 x^0 x^1 x^2 x^3
 49.9119 -43.01118 31.00052 -2.000005

These coefficients are very close to the exact values used to create y.

If the coefficients returned from a regression involving poly are so
difficult to interpret, why not simply model the polynomial explicitly?
That is, why not use the formula y ~ x + x^2 + x^3 instead of the
formula involving poly? In our example, there is little difference.
However, in problems involving polynomials of higher degree,
severe numerical problems can arise in the model matrix. Using poly
avoids these numerical problems, because poly uses an orthogonal
set of basis functions to fit the various “powers” of the polynomial.
277

Chapter 10 Regression and Smoothing for Continuous Response Data
As a further example of the use of poly, let us consider the ethanol
data we saw at the beginning of this section. From Figure 10.10, we
are tempted by a simple quadratic polynomial. However, there is a
definite upturn at each end of the data, so we are safer fitting a quartic
polynomial, as follows:

> ethanol.poly <- lm(NOx ~ poly(E, degree = 4))
> summary(ethanol.poly)

Call: lm(formula = NOx ~ poly(E, degree = 4))
Residuals:
 Min 1Q Median 3Q Max
 -0.8125 -0.1445 -0.02927 0.1607 1.017

Coefficients:
 Value Std. Error t value
 (Intercept) 1.9574 0.0393 49.8407
poly(E, degree = 4)1 -1.0747 0.3684 -2.9170
poly(E, degree = 4)2 -9.2606 0.3684 -25.1367
poly(E, degree = 4)3 -0.4879 0.3684 -1.3243
poly(E, degree = 4)4 3.6341 0.3684 9.8644
 Pr(>|t|)
 (Intercept) 0.0000
poly(E, degree = 4)1 0.0045
poly(E, degree = 4)2 0.0000
poly(E, degree = 4)3 0.1890
poly(E, degree = 4)4 0.0000
Residual standard error: 0.3684 on 83 degrees of freedom
Multiple R-Squared: 0.8991
F-statistic: 184.9 on 4 and 83 degrees of freedom, the
p-value is 0

Correlation of Coefficients:
 (Intercept) poly(E, degree = 4)1
poly(E, degree = 4)1 0
poly(E, degree = 4)2 0 0
poly(E, degree = 4)3 0 0
poly(E, degree = 4)4 0 0
 poly(E, degree = 4)2 poly(E, degree = 4)3
poly(E, degree = 4)1
poly(E, degree = 4)2
poly(E, degree = 4)3 0
poly(E, degree = 4)4 0 0
278

Polynomial Regression
> poly.transform(poly(E, 4), coef(ethanol.poly))

 x^0 x^1 x^2 x^3 x^4
 174.3601 -872.2071 1576.735 -1211.219 335.356

In the summary output, the P(>|t|) value for the fourth order
coefficient is equal to zero. Thus, the probability that the model does
not include a fourth order term is zero, and the term is highly
significant. Although the ethanol data looks fairly quadratic in Figure
10.10, a simple quadratic model would result in more error than in the
quartic model ethanol.poly.
279

Chapter 10 Regression and Smoothing for Continuous Response Data
GENERALIZED LEAST SQUARES REGRESSION

Generalized least squares models are regression (or ANOVA) models
in which the errors have a nonstandard covariance structure. Like
simple least squares regression, the method of generalized least squares
(GLS) uses maximum likelihood or restricted maximum likelihood to
fit a continuous, univariate response as a linear function of a single
predictor variable. In GLS, however, the errors are allowed to be
correlated and/or to have unequal variances.

To fit a linear model in Spotfire S+ with generalized least squares
regression, use the function gls. Several arguments are available in
gls, but a typical call is in one of three forms:

gls(model, data, correlation) # correlated errors
gls(model, data, weights) # heteroscedastic errors
gls(model, data, correlation, weights) # both

The model argument is a two-sided linear formula specifying the
model for the expected value of the response variable; this is identical
to the model argument required by lm. In many cases, both the
response and the predictor are components of a single data frame,
which can be specified as the optional data argument to gls.

The arguments that exemplify the flexibility of gls are correlation
and weights. The optional argument correlation specifies the
within-group correlation structure for a grouped data set. In grouped
data, the values of the response variable are grouped according to one
or more factors; these data are discussed in detail in Chapter 14,
Linear and Nonlinear Mixed-Effects Models. The correlation
structures available in gls are organized into corStruct classes, as
shown in Table 10.1. The optional argument weights to gls specifies
the form of the errors variance-covariance function, which is used to
model heteroscedasticity in the within-group errors. The available
variance functions are organized into varFunc classes, as shown in
Table 10.2.
280

Generalized Least Squares Regression
Table 10.1: Classes of correlation structures.

Class Description

corAR1 AR(1)

corARMA ARMA(p,q)

corBand banded

corCAR1 continuous AR(1)

corCompSymm compound symmetry

corExp exponential spatial correlation

corGaus Gaussian spatial correlation

corIdent multiple of an identity

corLin linear spatial correlation

corRatio rational quadratic spatial correlation

corSpatial general spatial correlation

corSpher spherical spatial correlation

corStrat a different corStruct class for each level of a
stratification variable

corSymm general correlation matrix

Table 10.2: Classes of variance function structures.

Class Description

varComb combination of variance functions

varConstPower constant plus power of a variance covariate

varExp exponential of a variance covariate
281

Chapter 10 Regression and Smoothing for Continuous Response Data
You can define your own correlation and variance function classes by
specifying appropriate constructor functions and a few method
functions. For a new correlation structure, method functions must be
defined for at least corMatrix and coef. For examples of these
functions, see the methods for the corSymm and corAR1 classes. A new
variance function requires methods for at least coef, coef<-, and
initialize. For examples of these functions, see the methods for the
varPower class.

Example: The
Ovary Data Set

The Ovary data set has 308 rows and 3 columns. It contains the
number of ovarian follicles detected in different mares at different
times in their estrus cycles.

> Ovary

Grouped Data: follicles ~ Time | Mare
 Mare Time follicles
 1 1 -0.13636360 20
 2 1 -0.09090910 15
 3 1 -0.04545455 19
 4 1 0.00000000 16
 5 1 0.04545455 13
 6 1 0.09090910 10
 7 1 0.13636360 12
. . .

Biological models suggest that the number of follicles may be
modeled as a linear combination of the sin and cosine of 2*pi*Time.
The corresponding Spotfire S+ model formula is written as:

follicles ~ sin(2*pi*Time) + cos(2*pi*Time)

Let’s fit a simple linear model for the Ovary data first, to demonstrate
the need for considering dependencies among the residuals.

varFixed fixed weights, determined by a variance covariate

varIdent different variances per level of a factor

varPower power of a variance covariate

Table 10.2: Classes of variance function structures.

Class Description
282

Generalized Least Squares Regression
> Ovary.lm <- lm(follicles ~
+ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary)

We can view a plot of the residuals with the following command:

> plot(Ovary.lm, which = 1)

The result is shown in Figure 10.11, and suggests that we try a more
general variance-covariance structure for the error term in our model.

We use the gls function with a power variance structure instead of
standard linear regression. In our generalized least squares model, the
variance increases with a power of the absolute fitted values.

> Ovary.fit1 <- gls(follicles ~
+ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary,
+ weights = varPower())

Manipulating
gls Objects

The fitted objects returned by the gls function are of class "gls". A
variety of methods are available for displaying, updating, and
evaluating the estimation results.

The print method displays a brief description of the estimation
results returned by gls. For the Ovary.fit1 object, the results are

> Ovary.fit1

Figure 10.11: Residuals plot from a simple linear fit to the Ovary data set.

Fitted : sin(2 * pi * Time) + cos(2 * pi * Time)

R
es

id
ua

ls

10 12 14

-1
0

-5
0

5
10

15

47

11

82
283

Chapter 10 Regression and Smoothing for Continuous Response Data
Generalized least squares fit by REML
 Model: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
 Data: Ovary
 Log-restricted-likelihood: -895.8303

Coefficients:
 (Intercept) sin(2 * pi * Time) cos(2 * pi * Time)
 12.22151 -3.292895 -0.8973728

Variance function:
 Structure: Power of variance covariate
 Formula: ~ fitted(.)
 Parameter estimates:
 power
 0.4535912
Degrees of freedom: 308 total; 305 residual
Residual standard error: 1.451151

A more complete description of the estimation results is returned by
the summary function:

> summary(Ovary.fit1)

Generalized least squares fit by REML
 Model: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
 Data: Ovary
 AIC BIC logLik
 1801.661 1820.262 -895.8303

284

Generalized Least Squares Regression
Variance function:
 Structure: Power of variance covariate
 Formula: ~ fitted(.)
 Parameter estimates:
 power
 0.4535912

Coefficients:
 Value Std.Error t-value p-value
 (Intercept) 12.22151 0.2693741 45.37003 <.0001
sin(2 * pi * Time) -3.29290 0.3792688 -8.68222 <.0001
cos(2 * pi * Time) -0.89737 0.3591879 -2.49834 0.013

 Correlation:
 (Intr) s(2*p*T)
sin(2 * pi * Time) -0.165
cos(2 * pi * Time) -0.321 0.021

Standardized residuals:
 Min Q1 Med Q3 Max
 -2.303092 -0.7832415 -0.02163715 0.6412627 3.827058

Residual standard error: 1.451151
Degrees of freedom: 308 total; 305 residual

Diagnostic plots for assessing the quality of a fitted gls model are
obtained using the plot method. Figure 10.12 shows the plot
displayed by the command:

> plot(Ovary.fit1)
285

Chapter 10 Regression and Smoothing for Continuous Response Data
Although we included a power variance structure in Ovary.fit1, the
plot in Figure 10.12 still shows evidence of extra variation in the
model. One possibility, given that Time is a covariate in the data, is
that serial correlation exists within the groups. To test this hypothesis,
we use the ACF function as follows:

> ACF(Ovary.fit1)

 lag ACF
1 0 1.0000000
2 1 0.6604265
3 2 0.5510483
4 3 0.4410895
. . .

The ACF function computes the values of the empirical
autocorrelation function that correspond to the residuals of the gls fit.
The values are listed for several lags, and there appears to be
significant autocorrelation at the first few lags. These values,
displayed in Figure 10.13, can be plotted with a simple call to the plot
method for ACF.

> plot(.Last.value)

Figure 10.12: Residuals plot from a generalized least squares fit to the Ovary data,
using a power variance function.

-2

-1

0

1

2

3

4

10 12 14

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

286

Generalized Least Squares Regression

Figure 10.13 suggests that an autoregressive process of order 1 may be
adequate to model the serial correlation in the residuals. We use the
correlation argument in gls to re-fit the model using an AR(1)
correlation structure for the residuals. The value returned by ACF for
the first-lag correlation is used as an estimate of the autoregressive
coefficient.

> Ovary.fit2 <- gls(follicles ~
+ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary,
+ correlation = corAR1(0.66), weights = varPower())
> plot(Ovary.fit2)

The residuals, displayed in Figure 10.14, look much tighter than for
Ovary.fit1. This indicates that the extra variation we observed in
Ovary.fit1 is adequately modeled with the corAR1 correlation
structure.

Figure 10.13: Empirical autocorrelation function corresponding to the standardized
residuals of the Ovary.fit1 model object.

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Lag

A
ut

oc
or

re
la

tio
n

287

Chapter 10 Regression and Smoothing for Continuous Response Data
In addition, the anova table comparing the two fits shows great
improvement when the serial correlation is considered in the model:

> anova(Ovary.fit1, Ovary.fit2)

 Model df AIC BIC logLik Test
Ovary.fit1 1 5 1801.661 1820.262 -895.8303
Ovary.fit2 2 6 1598.496 1620.818 -793.2479 1 vs 2

 L.Ratio p-value
Ovary.fit1
Ovary.fit2 205.1648 <.0001

The final generalized least squares model for the Ovary data is:

> Ovary.fit2

Generalized least squares fit by REML
 Model: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
 Data: Ovary
 Log-restricted-likelihood: -793.2479

Coefficients:
 (Intercept) sin(2 * pi * Time) cos(2 * pi * Time)
 12.30864 -1.647776 -0.8714635

Figure 10.14: Residuals plot from a generalized least squares fit to the Ovary data,
using a power variance function and within-group AR(1) serial correlation.

-2

-1

0

1

2

11 12 13 14

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

288

Generalized Least Squares Regression
Correlation Structure: AR(1)
 Parameter estimate(s):
 Phi
 0.7479559
Variance function:
 Structure: Power of variance covariate
 Formula: ~ fitted(.)
 Parameter estimates:
 power
 -0.7613254
Degrees of freedom: 308 total; 305 residual
Residual standard error: 32.15024
289

Chapter 10 Regression and Smoothing for Continuous Response Data
SMOOTHING

Polynomial regression can be useful in many situations. However, the
choice of terms is not always obvious, and small effects can be greatly
magnified or lost completely by the wrong choice. Another approach
to analyzing nonlinear data, attractive because it relies on the data to
specify the form of the model, is to fit a curve to the data points
locally. With this technique, the curve at any point depends only on
the observations at that point and some specified neighboring points.
Because such a fit produces an estimate of the response that is less
variable than the original observed response, the result is called a
smooth, and procedures for producing such fits are called scatterplot
smoothers. Spotfire S+ offers a variety of scatterplot smoothers:

• loess.smooth, a locally weighted regression smoother.

• smooth.spline, a cubic smoothing spline, with local behavior
similar to that of kernel-type smoothers.

• ksmooth, a kernel-type scatterplot smoother.

• supsmu, a very fast variable span bivariate smoother.

Halfway between the global parametrization of a polynomial fit and
the local, nonparametric fit provided by smoothers are the parametric
fits provided by regression splines. Regression splines fit a continuous
curve to the data by piecing together polynomials fit to different
portions of the data. Thus, like smoothers, they are local fits. Like
polynomials, they provide a parametric fit. In Spotfire S+, regression
splines can be used to specify the form of a predictor in a linear or
more general model, but are not intended for top-level use.

Locally
Weighted
Regression
Smoothing

In locally weighted regression smoothing, we build the smooth
function pointwise as follows:

1. Take a point, say . Find the nearest neighbors of ,

which constitute a neighborhood . The number of

neighbors is specified as a percentage of the total number of
points. This percentage is called the span.

s x()

x0 k x0

N x0()

k

290

Smoothing
2. Calculate the largest distance between and another point
in the neighborhood:

3. Assign weights to each point in using the tri-cube
weight function:

where

4. Calculate the weighted least squares fit of on the

neighborhood . Take the fitted value .

5. Repeat for each predictor value.

Use the loess.smooth function to calculate a locally weighted
regression smooth. For example, suppose we want to smooth the
ethanol data. The following expressions produce the plot shown in
Figure 10.15:

> plot(E, NOx)
> lines(loess.smooth(E, NOx))

The figures shows the default smoothing, which uses a span of 2/3.
For most uses, you will want to specify a smaller span, typically in the
range of 0.3 to 0.5.

x0

Δ x0() maxN x0() x0 x1–=

N x0()

W
x0 x1–

Δ x0()
-------------------⎝ ⎠

⎛ ⎞

W u() 1 u3
–()

3

0⎩
⎨
⎧

= for 0 u 1<≤
otherwise

y
N x0() ŷ0 s x0()=
291

Chapter 10 Regression and Smoothing for Continuous Response Data
Using the
Super
Smoother

With loess, the span is constant over the entire range of predictor
values. However, a constant value will not be optimal if either the
error variance or the curvature of the underlying function varies
over the range of . An increase in the error variance requires an
increase in the span whereas an increase in the curvature of requires
a decrease. Local cross-validation avoids this problem by choosing a
span for the predictor values based on only the leave-one-out

residuals whose predictor values are in the neighborhood of .
The super smoother, supsmu, uses local cross-validation to choose the
span. Thus, for one-predictor data, it can be a useful adjunct to loess.

For example, Figure 10.16 shows the result of super smoothing the
response NOx as a function of E in the ethanol data (dotted line)
superimposed on a loess smooth. To create the plot, use the
following commands:

> scatter.smooth(E, NOx, span = 1/4)
> lines(supsmu(E, NOx), lty = 2)

Figure 10.15: Loess-smoothed ethanol data.

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

f
x

f

xj

xi xj
292

Smoothing
Local Cross-
Validation

Let denote the linear smoother value at when span is

used. We wish to choose so as to minimize the mean
squared error

where we are considering the joint random variable model for .
Since

we would like to choose to minimize

Figure 10.16: Super smoothed ethanol data (the dotted line).

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

s x k() x k
k k X()=

e2 k() EXY Y s X k()–[]2
=

X Y,()

EXY Y s X k()–[]2 EXEY X Y s X k()–[]2
=

k k x()=

ex
2 k() EY X x Y s X k()–[]2

= =

EY X x Y s x k()–[]2 .==
293

Chapter 10 Regression and Smoothing for Continuous Response Data
However, we have only the data , , and not the

true conditional distribution needed to compute , and so we

cannot calculate . Thus we resort to cross-validation and try to

minimize the cross-validation estimate of :

.

Here is the “leave-one-out” smooth at , that is, is

constructed using all the data , , except for ,

and then the resultant local least squares line is evaluated at

thereby giving . The leave-one-out residuals

are easily obtained from the ordinary residuals

using the standard regression model relation

.

Here , , are the diagonals of the so-called “hat” matrix,

, where, for the case at hand of local straight-line
regression, is a 2-column matrix.

xi yi,() i 1 … n, ,=

Ey X x=

ex
2 k()

ex
2 k()

êCV
2 k() yi s i() xi k()–[]2

i 1=

n

∑=

si xi k() xi s i() xi k()

xj yj,() j 1 … n, ,= xi yi,()

xi

s i() x k()

r i() k() yi s i() xi k()–=

ri k() yi s xi k()–=

r i() k()
ri k()
hii

-----------=

hii i 1 … n, ,=

H X XTX()
1–
XT=

X

294

Smoothing
Using the
Kernel
Smoother

A kernel-type smoother is a type of local average smoother that, for
each target point xi in predictor space, calculates a weighted average

of the observations in a neighborhood of the target point:

where

are weights which sum to one:

.

The function used to calculate the weights is called a kernel
function, which typically has the following properties:

• for all t

•

• for all t (symmetry)

Note that the first two properties are those of a probability density
function. The parameter in the equation for the weights is the
bandwidth parameter, which determines how large a neighborhood of
the target point is used to calculate the local average. A large
bandwidth generates a smoother curve, while a small bandwidth
generates a wigglier curve. Hastie and Tibshirani (1990) point out that
the choice of bandwidth is much more important than the choice of
kernel.

To perform kernel smoothing in Spotfire S+, use the ksmooth
function. The kernels available in ksmooth are shown in Table 10.3.

(10.4)

ŷi

ŷi wijyj

j 1=

n

∑=

wij K̃
xi xj–

b
--------------⎝ ⎠

⎛ ⎞
K

xi xj–

b
--------------⎝ ⎠

⎛ ⎞

K
xi xk–

b
---------------⎝ ⎠

⎛ ⎞

k 1=

n

∑
-----------------------------------= =

wij 1=

j 1=

n

∑

K

K t() 0≥

K t() td
∞–

∞∫ 1=

K t–() K t()m=

b

295

Chapter 10 Regression and Smoothing for Continuous Response Data
Of the available kernels, the default "box" kernel gives the crudest
smooth. For most data, the other three kernels yield virtually identical
smooths. We recommend "triangle" because it is the simplest and
fastest to calculate.

Table 10.3: Kernels available for ksmooth.

Kernel Explicit Form

"box"

"triangle"
1

"parzen"
2

"normal"

1In convolution form,

2In convolution form,

The constants shown in the explicit forms above are used to scale the
resulting kernel so that the upper and lower quartiles occur at ±0.25. Also,
the bandwidth is taken to be 1 and the dependence of the kernel on the
bandwidth is suppressed.

Kbox t()
1 , t 0.5≤
0 , t 0.5>⎩

⎨
⎧

=

Ktri t()
1 t C⁄ , – t 1

C
----≤

0 , t 1
C
---->⎩

⎪
⎨
⎪
⎧

=

Kpar t()

k1 t2–() k2⁄ , t C1≤

t2 k3⁄() k4 t k5 , +– C1 t C2≤<

0 , C2 t<⎩
⎪
⎨
⎪
⎧

=

Knor t() 1 2πk6⁄() exp t2 2k6
2⁄–(=

Ktri t() Kbox * Kbox t()=

Kpar t() Ktri * Kbox t()=
296

Smoothing
The intuitive sense of the kernel estimate is clear: Values of such

that is close to get relatively heavy weights, while values of

such that is far from get small or zero weight. The bandwidth

parameter determines the width of , and hence controls the
size of the region around for which receives relatively large
weights. Since bias increases and variance decreases with increasing
bandwidth , selection of is a compromise between bias and
variance in order to achieve small mean squared error. In practice
this is usually done by trial and error. For example, we can compute a
kernel smooth for the ethanol data as follows:

> plot(E, NOx)
> lines(ksmooth(E, NOx, kernel="triangle", bandwidth=0.2))
> lines(ksmooth(E, NOx, kernel="triangle", bandwidth=0.1),
+ lty=2)
> legend(0.54, 4.1, c("bandwidth=0.2", "bandwidth=0.1"),
+ lty = c(1,2))

The resulting plot is shown in Figure 10.17.

Figure 10.17: Kernel smooth of ethanol data for two bandwidths.

ŷi yj

xj xi yj

xj xi

b K t b⁄()
xi yj

b b

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4 bandwidth=0.2

bandwidth=0.1
297

Chapter 10 Regression and Smoothing for Continuous Response Data
Smoothing
Splines

A cubic smoothing spline behaves approximately like a kernel smoother,

but it arises as the function that minimizes the penalized residual sum
of squares given by

over all functions with continuous first and integrable second
derivatives. The parameter is the smoothing parameter,
corresponding to the span in loess or supsmu or the bandwidth in
ksmooth.

To generate a cubic smoothing spline in Spotfire S+, use the function
smooth.spline to smooth to the input data:

> plot(E, NOx)
> lines(smooth.spline(E, NOx))

You can specify a different using the spar argument, although it is
not intuitively obvious what a “good” choice of might be. When
the data is normalized to have a minimum of 0 and a maximum of 1,
and when all weights are equal to 1, = spar. More generally, the
relationship is given by λ = (max(x)-min(x))^3·mean(w)·spar. You
should either let Spotfire S+ choose the smoothing parameter, using
either ordinary or generalized cross-validation, or supply an
alternative argument, df, which specifies the degrees of freedom for the
smooth. For example, to add a smooth with approximately 5 degrees
of freedom to our previous plot, use the following:

> lines(smooth.spline(E, NOx, df = 5), lty = 2)

The resulting plot is shown in Figure 10.18.

f̂

PRSS yi f xi()–()2

i 1=

n

∑ λ f″ t()()2 td∫+=

λ

λ
λ

λ

298

Smoothing
Comparing
Smoothers

The choice of a smoother is somewhat subjective. All the smoothers
discussed in this section can generate reasonably good smooths; you
might select one or another based on theoretical considerations or the
ease with which one or another of the smoothing criteria can be
applied. For a direct comparision of these smoothers, consider the
artificial data constructed as follows:

> set.seed(14) #set the seed to reproduce the example
> e <- rnorm(200)
> x <- runif(200)
> y <- sin(2 * pi * (1-x)^2) + x * e

Figure 10.18: Smoothing spline of ethanol data with cross-validation (solid line)
and pre-specified degrees of freedom.

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

299

Chapter 10 Regression and Smoothing for Continuous Response Data
A “perfect” smooth would recapture the original signal,

, exactly. The following commands sort the
input and calculate the exact smooth:

> sx <- sort(x)
> fx <- sin(2 * pi * (1-sx)^2)

The following commands create a scatter plot of the original data,
then superimpose the exact smooth and smooths calculated using
each of the smoothers described in this chapter:

> plot(x, y)
> lines(sx, fx)
> lines(supsmu(x, y), lty = 2)
> lines(ksmooth(x, y), lty = 3)
> lines(smooth.spline(x, y), lty = 4)
> lines(loess.smooth(x, y),lty = 5)
> legend(0, 2, c("perfect", "supsmu", "ksmooth",
+ "smooth.spline", "loess"), lty = 1:5)

The resulting plot is shown in Figure 10.19. This comparison is crude
at best, because by default each of the smoothers does a different
amount of smoothing. A fairer comparison would adjust the
smoothing parameters to be roughly equivalent.

Figure 10.19: Comparison of Spotfire S+ smoothers.

f x() 2π 1 x–()2()sin=

•
•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•
•

•
•

•

•

•

•

•

• •
•

•

•

•
•

•

•

•

•

•

• •

•

•

• •
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

••

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•

•

•

••
•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

x

y

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

perfect
supsmu
ksmooth
smooth.spline
loess
300

Additive Models
ADDITIVE MODELS

An additive model extends the notion of a linear model by allowing
some or all linear functions of the predictors to be replaced by
arbitrary smooth functions of the predictors. Thus, the standard linear
model

is replaced by the additive model

.

The standard linear regression model is a simple case of an additive
model. Because the forms of the are generally unknown, they are
estimated using some form of scatterplot smoother.

To fit an additive model in Spotfire S+, use the gam function, where
gam stands for generalized additive model. You provide a formula which
may contain ordinary linear terms as well as terms fit using any of the
following:

• loess smoothers, using the lo function;

• smoothing spline smoothers, using the s function;

• natural cubic splines, using the ns function;

• B-splines, using the bs function;

• polynomials, using poly.

The three functions ns, bs, and poly result in parametric fits; additive
models involving only such terms can be analyzed in the classical
linear model framework. The lo and s functions introduce
nonparametric fitting into the model. For example, the following call
takes the ethanol data and models the response NOx as a function of
the loess-smoothed predictor E:

> attach(ethanol)
> ethanol.gam <- gam(NOx ~ lo(E, degree = 2))

Y βiXi ε+

i 0=

n

∑=

Y α fi Xi() ε+

i 1=

n

∑+=

fi
301

Chapter 10 Regression and Smoothing for Continuous Response Data
> ethanol.gam

Call:
gam(formula = NOx ~ lo(E, degree = 2))

Degrees of Freedom: 88 total; 81.1184 Residual
Residual Deviance: 9.1378

In the call to lo, we specify that the smooth is to be locally quadratic
by using the argument degree=2. For data that is less obviously
nonlinear, we would probably be satisfied with the default, which is
locally linear fitting. The printed gam object closely resembles a
printed lm object from linear regression—the call producing the model
is shown, followed by the degrees of freedom and the residual deviance
which serves the same role as the residual sum of squares in the linear
model. The deviance is a function of the log-likelihood function,
which is related to the probability mass function for the

observation given . The log-likelihood for a sample of n
observations is defined as follows:

The deviance is then defined as

where maximizes the log-likelihood over unconstrained, and
is the dispersion parameter. For a continuous response with normal
errors, as in the models we’ve been considering in this chapter, the

dispersion parameter is just the variance , and the deviance
reduces to the residual sum of squares. As with the residual sum of
squares, the deviance can be made arbitrarily small by choosing an
interpolating solution. As in the linear model case, however, we
generally have a desire to keep the model as simple as possible. In the
linear case, we try to keep the number of parameters, that is, the
quantities estimated by the model coefficients, to a minimum.
Additive models are generally nonparametric, but we can define for
nonparametric models an equivalent number of parameters, which we
would also like to keep as small as possible.

f yi μi;()

yi μi

l m; y() log f yi; μi()
i 1=

n

∑=

D y; m()

D y; m()
φ

-------------------- 2l m∗ ; y() 2l m; y()–=

μ∗ μ φ

σ2
302

Additive Models
The equivalent number of parameters for gam models is defined in
terms of degrees of freedom, or df. In fitting a parametric model, one
degree of freedom is required to estimate each parameter. For an
additive model with parametric terms, one degree of freedom is
required for each coefficient the term contributes to the model. Thus,
for example, consider a model with an intercept, one term fit as a
cubic polynomial, and one term fit as a quadratic polynomial. The
intercept term contributes one coefficient and requires one degree of
freedom, the cubic polynomial contributes three coefficients and thus
requires three degrees of freedom, and the quadratic polynomial
contributes two coefficients and requires two more degrees of
freedom. Thus, the entire model has six parameters, and uses six
degrees of freedom. A minimum of six observations is required to fit
such a model.

Models involving smoothed terms use both parametric and
nonparametric degrees of freedom; parametric degrees of freedom
result from fitting a linear (parametric) component for each smooth
term, while the nonparametric degrees of freedom result from fitting
the smooth after the linear part has been removed. The difference
between the number of observations and the degrees of freedom
required to fit the model is the residual degrees of freedom. Conversely,
the difference between the number of observations and the residual
degrees of freedom is the degrees of freedom required to fit the
model, which is the equivalent number of parameters for the model.

The summary method for gam objects shows the residual degrees of
freedom, the parametric and nonparametric degrees of freedom for
each term in the model, together with additional information:

> summary(ethanol.gam)

Call: gam(formula = NOx ~ lo(E, degree = 2))
Deviance Residuals:
 Min 1Q Median 3Q Max
 -0.6814987 -0.1882066 -0.01673293 0.1741648 0.8479226

(Dispersion Parameter for Gaussian family taken to be
0.1126477)

Null Deviance: 111.6238 on 87 degrees of freedom

Residual Deviance: 9.137801 on 81.1184 degrees of freedom
303

Chapter 10 Regression and Smoothing for Continuous Response Data
Number of Local Scoring Iterations: 1

DF for Terms and F-values for Nonparametric Effects

 Df Npar Df Npar F Pr(F)
 (Intercept) 1
lo(E, degree = 2) 2 3.9 35.61398 1.110223e-16

The Deviance Residuals are, for Gaussian models, just the ordinary
residuals . The Null Deviance is the deviance of the model

consisting solely of the intercept term.

The ethanol data set contains a third variable, C, which measures the
compression ratio of the engine. Figure 10.20 shows pairwise scatter
plots for the three variables.

Figure 10.20: Pairs plot of the ethanol data.

yi μi–

NOx

8 10 14 18

•

•

•

•

•

•

•
•

•

•

•

• • •
•

••
•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

••

•

•

•

•

•

•

•

•

•••

•
•

•

•

•

•

•

•

•

• •

•

•

•• • •
• •

•

1
2

3
4

•

•

•

•

•

•

•
•

•

•

•

•••
•

• ••

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

• •

•

•

•

•

•

•

•

•

•• •

•
•

•

•

•

•

•

•

•

••

•

•

••••••

•

8
10

14
18

••• ••

•• •

•• ••

•

•

•

• •

• •

••
••

• •

• •

• •
•

• •• ••

• •
•• •

•• ••

• •• •
• ••

•

• •

••

• ••• • ••

•• •

••

•• •

• • •••

••
•

•

••

•
•

•

•

• •

C •• •• •

• ••

• •• •

•

•

•

• •

••

• •
• •

••

• •

• •
•

•• •• •

••
• ••

• •• •

• •• •
• ••

•

••

••

• •• •• • •

• ••

• •

• ••

• • • • •

• •
•

•

• •

•
•

•

•

• •

1 2 3 4

•

•

•
•

•

•

•
•

•

•

•

••

•
• •

••

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
••

•
•

•
•

•

•
•

•

••

•
•

•

•

•
•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•••••

•

•

•

•
•

•

•

•
•

•

•

•

• •

•
• •

• •

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
••

•
•

•
•

•

•
•

•

••

•
•

•

•

•
•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

• • • • •

•

0.6 0.8 1.0 1.2

0.
6

0.
8

1.
0

1.
2

E

304

Additive Models
Let’s incorporate C as a linear term in our additive model:

> ethanol2.gam <- gam(NOx ~ C + lo(E, degree = 2))
> ethanol2.gam

Call:
gam(formula = NOx ~ C + lo(E, degree = 2))

Degrees of Freedom: 88 total; 80.1184 Residual
Residual Deviance: 5.16751

> summary(ethanol2.gam)

Call: gam(formula = NOx ~ C + lo(E, degree = 2))
Deviance Residuals:
 Min 1Q Median 3Q Max
 -0.6113908 -0.166044 0.0268504 0.1585614 0.4871313

(Dispersion Parameter for Gaussian family taken to be
0.0644985)

Null Deviance: 111.6238 on 87 degrees of freedom

Residual Deviance: 5.167513 on 80.1184 degrees of freedom

Number of Local Scoring Iterations: 1

DF for Terms and F-values for Nonparametric Effects

 Df Npar Df Npar F Pr(F)
 (Intercept) 1
 C 1
lo(E, degree = 2) 2 3.9 57.95895 0
305

Chapter 10 Regression and Smoothing for Continuous Response Data
We can use the anova function to compare this model with the
simpler model involving E only:

> anova(ethanol.gam, ethanol2.gam, test = "F")

Analysis of Deviance Table

Response: NOx
 Terms Resid. Df Resid. Dev Test Df
1 lo(E, degree = 2) 81.1184 9.137801
2 C + lo(E, degree = 2) 80.1184 5.167513 +C 1
 Deviance F Value Pr(F)
1
2 3.970288 61.55632 1.607059e-11

The model involving C is clearly better, since the residual deviance is
cut almost in half by expending only one more degree of freedom.

Is the additive model sufficient? Additive models stumble when there
are interactions among the various terms. In the case of the ethanol
data, there is a significant interaction between C and E. In such cases, a
full local regression model, fit using the loess function, is often more
satisfactory. We discuss the ethanol data more thoroughly in Chapter
13, Local Regression Models.
306

More on Nonparametric Regression
MORE ON NONPARAMETRIC REGRESSION

The additive models fitted by gam in the section Additive Models are
simple examples of nonparametric regression. The machinery of
generalized additive models, proposed by Hastie and Tibshirani
(1990), is just one approach to such nonparametric models. Spotfire
S+ includes several other functions for performing nonparametric
regression, including the ace function, which implements the first
proposed technique for nonparametric regression—alternating
conditional expectations. Spotfire S+ also includes AVAS (Additive
and VAriance Stabilizing transformations) and projection pursuit
regression. This section describes these varieties of nonparametric
regression.

Alternating
Conditional
Expectations

Alternating conditional expectations or ace, is an intuitively appealing
technique introduced by Breiman and Friedman (1985). The idea is to
find nonlinear transformations of the

response and predictors , respectively, such that the
additive model

is a good approximation for the data , . Let

 be random variables with joint distribution , and let

expectations be taken with respect to . Consider the goodness-of-fit
measure

(10.5)

(10.6)

θ y() φ1 x1() φ2 x2() … φp xp(), , , ,

y x1 x2 … x, p, ,

θ y() φ1 x1() φ2 x2() … φp xp() ε+ + + +=

yi xi1 … x, ip, , i 1 … n, ,=

yi x1 x2 … x, p, , , F

F

e2 e2 θ , φ1, ...,φp()

E θ y() φk xk()
k 1=

p

∑–

Eθ2 y()
--= =
307

Chapter 10 Regression and Smoothing for Continuous Response Data
The measure is the fraction of variance not explained by

regressing on . The data-based version of is

where and the , estimates of and the , are standardized so

that and the have mean zero: and

, . For the usual linear regression case,

where

and

with the least squares regression coefficients, we have

(10.7)

e2

θ y() φ x1() … φ xp(), , e2

ê2

θ̂ yi() φ̂k xik()
k 1=

p

∑–

i 1=

n

∑

θ̂2 yi()
i 1=

n

∑
---=

θ̂ φ̂j θ φj

θ̂ yi() φ̂j xij() θ̂ yi()
i 1=

n

∑ 0=

φ̂k xik()
i 1=

n

∑ 0= k 1 … p, ,=

θ̂ yi() yi y–=

φ̂1 xi1 x1–() xi1 x1–()β̂1 ,…, φ̂p xip xp–() xip xp–()β̂p==

β̂1 , …, β̂p

êLS
2 RSS

SSY

yi y–() xik xk–()β̂k

k 1=

p

∑–

i 1=

n

∑

yi y–()2

i 1=

n

∑
--≡=
308

More on Nonparametric Regression
The squared multiple correlation coefficient is given by

. The transformations , , …, are chosen to

maximize the correlation between and .

Although ace is a useful exploratory tool for determining which of the
response and the predictors are in need of nonlinear
transformations and what type of transformation is needed, it can

produce anomalous results if errors and the fail to satisfy the

independence and normality assumptions.

To illustrate the use of ace, construct an artificial data set with additive
errors

,

with the ’s being N(0,10) random variables (that is, normal random

variables with mean 0 and variance 10), independent of the ’s, with

the ’s being U(0, 2) random variables (that is, random variables
uniformly distributed on the interval from 0 to 2).

> set.seed(14) #set the seed to reproduce the example
> x <- 2 * runif(200)
> e <- rnorm(200, 0, sqrt(10))
> y <- exp(1+2*x) + e

Now use ace:

> a <- ace(x, y)

Set graphics for 3 x 2 layout of plots:

> par(mfrow = c(3,2))

Make plots to do the following:

1. Examine original data

2. Examine transformation of y

3. Examine transformation of x

4. Check linearity of the fitted model

5. Check residuals versus the fit

R2 1 eLS
2–= θ̂ φ̂1 φ̂p

θ̂ yi() φ̂ xi1() … φ̂ xip()+ +

y x1 … x, p,

ε φ̂1 xi()

yi e1 2xi+ ε i i+= i 1 2 … 200, , ,=

ε i

xi

xi
309

Chapter 10 Regression and Smoothing for Continuous Response Data
The following Spotfire S+ commands provide the desired plots:

> plot(x, y, sub = "Original Data")
> plot(x, a$tx, sub = "Transformed x vs. x")
> plot(y, a$ty, sub = "Transformed y vs. y")
> plot(atx, aty, sub = "Transformed y vs.
+ Continue string: Transformed x")
> plot(atx, aty - a$tx,
+ ylab = "residuals", sub = "Residuals vs. Fit")

These plots are displayed in Figure 10.21, where the transformed

values and are denoted by and , respectively. The

estimated transformation seems close to exponential, and
except for the small bend at the lower left, the estimated

transformation seems quite linear. The linearity of the
plot of versus reveals that a good additive model of the type
shown in Equation (10.5) has been achieved. Furthermore, the error
variance appears to be relatively constant, except at the very lefthand

end. The plot of residuals, versus the fit

 gives a clearer confirmation of the behavior of the

residuals’ variance.

θ̂ y() φ̂ y() ty tx

tx φ̂ x()=

ty θ̂ y()=
ty tx

ri θ̂ yi() φ̂ xi()–=

tx φ̂ xi()=
310

More on Nonparametric Regression
Figure 10.21: ace example with additive errors .

•

•

••
•

•

•

•

•

•

•

•

•
•

••
•

•

•
•

•

•
•

• •
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

• •

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•

•
•

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

• •

•
•

•

•
•

•

•

•

•

•

Original Data
x

y

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80
10

0
12

0
14

0

•

•

•
•

•
•

•

•

•

•
•

•

• •

•
•

•

•

•
•

•

•
•

•
• •

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•
•

•
•

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•• •

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•
•

•

• •

•

•

•

•

•
•

•

• •

•

• •

• •

•

•
•

•

•

•

•

•

Transformed x vs. x
x

a$
tx

0.0 0.5 1.0 1.5 2.0

-1
0

1
2

•

•

••
•

•

•

•

•

•

•

•

••

••
•

•

• •

•

•
•

••
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

••

•

• •

•

••

•

•
••

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•• •

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

••

• •

•

• ••

•

•

•

•

Transformed y vs. y
y

a$
ty

0 20 40 60 80 100 120 140

-1
0

1
2

•

•

••
•

•

•

•

•

•

•

•

••

••
•

•

• •

•

•
•

• •
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

• •

•

• •

•

••

•

•
••

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•••

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•
•

•

••

•

•

•

•

•

•

•

•
•

•

• •

••

•

• ••

•

•

•

•

Transformed y vs. Transformed x
a$tx

a$
ty

-1 0 1 2

-1
0

1
2

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

• •
•

•

•

•

•

•
•

••

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

••
•

••
•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
••

•
•

•

•

•

•

•
•

•

•

•

••

•

•
•

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

Residuals vs. Fit
a$tx

re
si

du
al

s

-1 0 1 2

-0
.1

0.
0

0.
1

0.
2

311

Chapter 10 Regression and Smoothing for Continuous Response Data
Additivity and
Variance
Stabilization

The term AVAS stands for additivity and variance stabilizing
transformation. Like ace, the Spotfire S+ function avas tries to find
transformations , such that

provides a good additive model approximation for the data
, . However, avas differs from ace in that

it chooses to achieve a special variance stabilizing feature. In
particular the goal of avas is to estimate transformations
which have the properties

and

Here is the conditional expectation of given . The
additivity structure of Equation (10.9) is the same as for ace, and
correspondingly the ’s are calculated by the backfitting algorithm

cycling through until convergence. The variance
stabilizing aspect comes from Equation (10.9). As in the case of ace,

estimates and , are computed to

approximately satisfy Equation (10.8) through Equation (10.11), with
the conditional expectations in Equation (10.8) and Equation (10.11)
estimated using the super smoother scatterplot smoother (see supsmu

(10.8)

(10.9)

(10.10)

(10.11)

θ y() φ1 x1() … φ, p xp(),

θ y() φ1 x1() φ2 x2() … φp xp() ε+ + + +=

yi xi1 … x, ip, , i 1 2 … n, , ,=

θ y()
θ φ1 … φ, p, ,

E θ y() x1 … xp, ,[] φi xi()
i 1=

p

∑=

var θ y() φi xi()
i 1=

p

∑ constant=

E z w[] z w

φi

φk xk() E θ y() φi xi() xk

i k≠

∑–=

k 1 2 … p, , ,=

θ̂ yi() φj xik() k 1 2 … p, , ,=
312

More on Nonparametric Regression
function documentation). The equality in Equation (10.9) is
approximately achieved by estimating the classic stabilizing
transformation.

To illustrate the use of avas, construct an artificial data set with
additive errors

with the ’s being N(0, 10) random variables (that is, normal random

variables with mean 0 and variance 10), independent of the ’s, with

the ’s being U(0, 2) random variables (that is, random variables
uniformly distributed on the interval from 0 to 2).

> set.seed(14) #set the seed to reproduce the example
> x <- runif(200, 0, 2)
> e <- rnorm(200, 0, sqrt(10))
> y <- exp(1+2*x) + e

Now use avas:

> a <- avas(x, y)

Set graphics for a 3 x 2 layout of plots:

> par(mfrow = c(3,2))

Make plots to: (1) examine original data; (2) examine transformation
of ; (3) examine transformation of ; (4) check linearity of the fitted
model; (5) check residuals versus the fit:

> plot(x, y, sub = "Original data")
> plot(x, a$tx, sub = "Transformed x vs. x")
> plot(y, a$ty, sub = "Transformed y vs. y")
> plot(atx, aty, sub = "Transformed y vs. Transformed x")
> plot(atx, aty - a$tx, ylab = "Residuals",
+ sub = "Residuals vs. Fit")

These plots are displayed in Figure 10.22 where the transformed

values and are denoted by and , respectively. The

estimated transformation seems close to exponential, and

the estimated transformation seems linear. The plot of

yi e1 2xi+ ε i i ,+= i 1, ..., 200=

ε i

xi

xi

x y

θ̂ y() φ̂ x() ty tx

tx φ̂ x()=

ty θ̂ y()= ty
313

Chapter 10 Regression and Smoothing for Continuous Response Data
versus reveals that a linear additive model holds; that is, we have
achieved a good additive approximation of the type in Equation
(10.8). In this plot the error variance appears to be relatively constant.

The plot of residuals, , versus the fit
gives further confirmation of this.

Figure 10.22: avas example with additive errors.

tx

ri θ̂ yi() φ̂ xi()–= tx φ̂ xi()=

•

•

••
•

•

•

•

•

•

•

•

•
•

••
•

•

•
•

•

•
•

• •
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

• •

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

• •

•
•

•

•
•

•

•

•

•

•

x

y

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80
10

0
12

0
14

0

•

•

•

•

•
•

•

•

•

•
•

•

• •

•
•

•

•

•
•

•

•
•

•
• •

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•
•

•

•

•
•

•
•

•

•
•

•

••

•

•

••

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•• •

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•
•

•

• •

•

• •

•
•

•

•

•
•

•

•

•

•

x

a$
tx

0.0 0.5 1.0 1.5 2.0

-1
0

1
2

•

•

••
•

•

•

•

•

•

•

•

•
•

••
•

•

•
•

•

•
•

••
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

••

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•

•
•

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

••

•
•

•

•
•

•

•

•

•

•

y

a$
ty

0 20 40 60 80 100 120 140

-1
0

1
2

•

•

••
•

•

•

•

•

•

•

•

•
•

••
•

•

•
•

•

•
•

• •
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

• •

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•

•
•

•

•

••

•

•

•

• •

•

••

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•
•

•

••

•

•

•

•

•

•

•

•
•

•

• •

•
•

•

•
•

•

•

•

•

•

a$tx

a$
ty

-1 0 1 2

-1
0

1
2

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
• ••

•

•

•

•

•

•

•

•

•

•

•

•• •

•

•
••

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

••

•
•

•

••

•

•

• •

•

•
•

•

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

• •

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

• •

•

•

•

•

• •

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

a$tx

R
es

id
ua

ls

-1 0 1 2

-0
.2

-0
.1

0.
0

0.
1

0.
2

314

More on Nonparametric Regression
Key Properties • Suppose that the true additive model is

with independent of , and var(ε) = constant.
Then the iterative avas algorithm for Equation
(10.9) through Equation (10.11), described below for the data
versions of Equation (10.9) through Equation (10.11), yields a

sequence of transformations , which

converge to the true transformation as the

number of iterations tends to infinity. Correspondingly, the
data-based version of this iteration yields a sequence of

transformations , which, at convergence,

provide estimates of the true model

transformations .

• avas appears not to suffer from some of the anomalies of ace,
for example, not finding good estimates of a true additive
model (Equation (10.12)) when normality of and joint
normality of fail to hold. See the example
below.

• avas is a generalization of the Box and Cox (1964) maximum-

likelihood procedure for choosing power transformation of
the response. The function avas also generalizes the Box and
Tidwell (1962) procedure for choosing transformations of the
carriers , and is much more convenient than the
Box-Tidwell procedure. See also Weisberg (1985).

• is a monotone transformation, since it is the integral of a
nonnegative function (see the section Further Details on page
316). This is important if one wants to predict by inverting

: monotone transformations are invertible, and hence we

(10.12)θ0 y() φi
0 xi()

i 1=

p

∑ ε+=

ε x1 x2 … xp, , ,

θ j() φ1
j() … φp

j(), , ,

θ0 φ1
0 … φp

0, , ,

j

θ̂
j()

φ̂1
j()

… φ̂p
j()

, , ,

θ̂ φ̂1 … φ̂p, , ,

θ0 φ1
0 … φp

0, , ,

ε
φ1 x1() … φp xp(), ,

yλ

x1 x2 … xp, , ,

θ̂ y()

y

θ̂

315

Chapter 10 Regression and Smoothing for Continuous Response Data
can predict with . This predictor

has no particular optimality property, but is simply one
straightforward way to get a prediction of once an avas
model has been fit.

Further Details Let

where is an arbitrary transformation of , will be the
“previous” estimate of in the overall iterative procedure
described below. Given the variance function , it is known that

will be constant if is computed according to the rule

for an appropriate constant . See Box and Cox (1964).

The detailed steps in the population version of the avas algorithm are
as follows:

1. Initialize:

Set and backfit on

to get . See the description of ace for details of
backfitting.

y ŷ θ̂ 1– φ̂i xi()
i 1=

p

∑=

y

(10.13)

(10.14)

v u() VAR θ̂ y() φi xi() u=

i 1=

p

∑=

θ̂ y() y θ̂ y()
θ y()

v u()

VAR g θ̂ y()() φi xi() u=

i 1=

p

∑

g

t()
ud

v1 2⁄ u(

c
t∫=

c

y() y Ey–() VAR1 2⁄ y(⁄= x1 … x, p,

φ̂1 … φ̂p, ,
316

More on Nonparametric Regression
2. Get new transformation of y:

• Compute variance function:

• Compute variance stabilizing transformation:

• Set and standardize:

3. Get new ’s:

Backfit on to obtain new estimates

.

4. Iterate steps 2 and 3 until

doesn’t change.

Of course the above algorithm is actually carried out using the sample
of data , , with expectations replaced by
sample averages, conditional expectations replaced by scatterplot
smoothing techniques and VAR’s replaced by sample variances.

In particular, super smoother is used in the backfitting step to obtain

, . An estimate of is

obtained as follows: First the scatter plot of

(10.15)

v u() VAR θ̂ y() φ̂i xi() u=

i 1=

p

∑=

t()
ud

v1 2⁄ u(

c
t∫=

θ̂ y() g θ̂ y()()–

θ̂ y() θ̂ y() Eθ̂ y()–

VAR1 2⁄ θ̂ y()
-----------------------------------–

φ̂i

θ̂ y() x1 x2 … x, p, ,

φ̂1 … φ̂, p,

R2 1 ê2
– 1 E θ̂ y() φ̂i xi()

i 1=

p

∑–

2

–= =

yi xi1 … x, ip, , i 1 … n, ,=

φ̂1 xi1() … φ̂, p xip(), i 1=() … n, , v̂ u() v u()
317

Chapter 10 Regression and Smoothing for Continuous Response Data
 versus is

smoothed using a running straight lines smoother. Then the result is
exponentiated. This gives an estimate , and is

truncated below at 10-10 to insure positivity and avoid dividing by
zero in the integral in Equation (10.14); the integration is carried out
using a trapezoidal rule.

Projection
Pursuit
Regression

The basic idea behind projection pursuit regression, ppreg, is as
follows. Let and denote the response and

explanatory vector, respectively. Suppose you have observations

and corresponding predictors , .

Let , denote p-dimensional unit vectors, as “direction”

vectors, and let . The ppreg function allows you to find

, direction vectors and good nonlinear

transformations such that

provides a “good” model for the data , , . The
“projection” part of the term projection pursuit regression indicates
that the carrier vector x is projected onto the direction vectors

 to get the lengths of the projections, and the

“pursuit” part indicates that an optimization technique is used to find
“good” direction vectors .

logri
2 log θ̂ yi() φ̂j xij()

j 1=

p

∑–

2

= ui φ̂j xij()
j 1=

p

∑=

v̂ u() 0≥ v̂ u()

(10.16)

y x x1 x2 … x, p, ,()T=

yi

xi xi1 xi2 …xip, ,()T= i 1 2 … n, , ,=

a1 a2 …, ,

y 1
n
--- yi

i 1=

n

∑=

M M0= a1 a2 … aM0
, , ,

φ1 φ2 … φ, M0
, ,

y y βmφm am
T x()

m 1=

M0

∑+≈

yi xi i 1 2 … n, , ,=

a1 a2 … aM0
, , , aTx

a1 a2 … aM0
, , ,
318

More on Nonparametric Regression
More formally, and are presumed to satisfy the conditional
expectation model

where , and the have been standardized to have mean
zero and unity variance:

The observations , , are assumed to

be independent and identically distributed random variables like
and , that is, they satisfy the model in Equation (10.17).

The true model parameters , , , in Equation
(10.17) minimize the mean squared error

over all possible , , and .

Equation (10.17) includes the additive ace models under the
restriction . This occurs when and

, , , and

the ’s are absorbed into the ’s. Furthermore, the ordinary linear

model is obtained when , assuming the predictors x are
independent with mean 0 and variance 1. Then

, , and

, where the are the regression coefficients.

(10.17)

 (10.18)

(10.19)

y x

E y x1, x2, ..., xp[] μy βmφm am
T x()

m 1=

M0

∑+=

μy E y()= φm

Eφm am
T x() 0,= Eφm

2 am
T x() 0,= m 1 ... M0, ,=

yi xi xi1 … x, ip,()T= i 1 … n, ,=

y
x

βm φm am m 1 … M, 0,=

E y μy– βmφm am
T x()

m 1=

M0

∑–

2

βm φm am

θ y() y= M0 p=

a1 1 0 … 0, , ,()T= a2 0 1 0 … 0, , , ,()T= ap 0 0 … 0 1, , , ,()T=

βm φm

M0 1=

aT b1, ..., bp() b1
2 + … + bp

2⁄= φ1 t() t=

β1 b1
2 + … + bp

2
= bj
319

Chapter 10 Regression and Smoothing for Continuous Response Data
The projection pursuit model in Equation (10.17) includes the
possibility of having interactions between the explanatory variables.
For example, suppose that

This is described by Equation (10.17) with , ,

, , , , and

. For then

so that

.

Neither ace nor avas is able to model interactions. It is this ability to
pick up interactions that led to the invention of projection pursuit
regression by Friedman and Stuetzle (1981), and it is what makes
ppreg a useful complement to ace and avas.

The two variable interactions shown above can be used to illustrate
the ppreg function. The two predictors, and are generated as

uniform random variates on the interval -1 to 1. The response, , is
the product of and plus a normal error with mean zero and
variance 0.04.

> set.seed(14) #set the seed to reproduce the example
> x1 <- runif(400, -1, 1)
> x2 <- runif(400, -1, 1)
> eps <- rnorm(400, 0, 0.2)
> y <- x1 * x2 + eps
> x <- cbind(x1, x2)

(10.20)E y x1 x2,[] x1x2=

μy 0= M0 2=

β1 β2
1
4
---= = a1

T 1 1,()= a2
T 1 1–,()= φ1 t() t2=

φ2 t() t2–=

φ1 a1
Tx() x1 x2+()2 x1

2 2x1x2 x2
2

+ += =

φ2 a2
Tx() x1 x2–()2

– x– 1
2 2x1x2 x2

2
–+= =

βmφm aTx()
m 1=

2

∑ x1x2=

x1 x2

y
x1 x2
320

More on Nonparametric Regression
Now run the projection pursuit regression with max.term set at 3,
min.term set at 2 and with the residuals returned in the ypred
component (the default if xpred is omitted).

> p <- ppreg(x, y, 2, 3)

Make plots (shown in Figure 10.23) to examine the results of the
regression.

> par(mfrow = c(3, 2))
> plot(x1, y, sub = "Y vs X1")
> plot(x2, y, sub = "Y vs X2")
> plot(p$z[,1], p$zhat[,1], sub = "1st Term:
+ Continue string: Smooth vs Projection Values z1")
> plot(p$z[,2], p$zhat[,2], sub = "2nd Term:
+ Continue string: Smooth vs Projection Values z2")
> plot(y-p$ypred, y, sub = "Response vs Fit")
> plot(y-p$ypred, p$ypred, sub = "Residuals vs Fit")

The first two plots show the response plotted against each of the
predictors. It is difficult to hypothesize a function form for the
relationship when looking at these plots. The next two plots show the
resulting smooth functions from the regression plotted against their
respective projection of the carrier variables. Both the plots have a
quadratic shape with one being positive and the other negative, the
expected result for this type of interaction function. The fifth plot
shows clearly a linear relationship between the response and the fitted
values. The residuals shown in the last plot do not display any
unusual structure.
321

Chapter 10 Regression and Smoothing for Continuous Response Data
Further Details The forward stepwise procedure

An initial M-term model of the form given by the right-hand side of
Equation (10.17), with the constraints of Equation (10.18) and ,
is estimated by a forward stepwise procedure, as described by
Friedman and Stuetzle (1981).

Figure 10.23: Projection pursuit example.

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

• ••

•
•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

••

•

•

•

••
•

•

•
• •

•

•

•

•

•

••

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• •• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•
•••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

••

•

• •

• •

•

•

•

•

•

•

•

•

•

••
•

•

•
•

•

•
•

•

•

•

•
••

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

• •
•

•

•
• •

•
•

•
•

•

•
•

•

•
•

•

•
•

••
•

•
•

•

•

•

•

•

•

• ••

•

•

•

•

•

•

•

•

•

•

Y vs X1
x1

y

-1.0 -0.5 0.0 0.5 1.0
-1

.0
-0

.5
0
.0

0
.5

1
.0

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

• ••

•
•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

••

•

•

•

• •
•

•

•
••

•

•

•

•

•

••

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • •••

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•
• ••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

••

•

• •

••

•

•

•

•

•

•

•

•

•

• •
•

•

•
•

•

•
•

•

•

•

•
• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••
•

•

•
• •

•
•

•
•

•

•
•

•

•
•

•

•
•

••
•

•
•

•

•

•

•

•

•

• ••

•

•

•

•

•

•

•

•

•

•

Y vs X2
x2

y

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

•
••
•
••
••

•
•
•
••••
•
••••
••
•••
••
•••

••••••••
••••••••
•••
••••

••••••
••••
••••••••••••••••

••••••••••
••••••••
••••••••••

•••••••••••••••••••••••
•••••••••••••

•••
••

••••••••••••••
••••••

••••••••
•••••

•
•••

•

1st Term:
Smooth vs Projection Values z1

p$z[, 1]

p
$
zh

a
t[
,
1
]

-1.0 -0.5 0.0 0.5 1.0

-4
-3

-2
-1

0
1

•
•
•
••
•
••••••

••
••
•

••••
••••••

••
•••••••••••••••

•••••••••••••••••••
••••••••

••••••••••••••••••••
••••••

•••••••••
••••••••••

•••••
••••••••

•••••
••••••
•••
•••
•••••
•••
•••
••••
•

•••
•
•••••

•
•••••
•
•

•

2nd Term:
Smooth vs Projection Values z2

p$z[, 2]

p
$
zh

a
t[
,
2
]

-1.0 -0.5 0.0 0.5 1.0
-1

0
1

2
3

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•••

•
•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

• •

•

•

•

••
•

•

•
••

•

•

•

•

•

••

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• •• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•
• • •

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

• •

•

••

••

•

•

•

•

•

•

•

•

•

••
•

•

•
•

•

•
•

•

•

•

•
• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

••
•

•

•
••

•
•

•
•

•

•
•

•

•
•

•

•
•

••
•

•
•

•

•

•

•

•

•

• ••

•

•

•

•

•

•

•

•

•

•

Response vs Fit
y - p$ypred

y

-1.0 -0.5 0.0 0.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

•

••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

• •

•

•

•

•

• •

•

• •

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•
•

•
•

•

•

• •

• •

•

•

••

•

••

•
•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

• • • •

•

•

•
•

•

•

•

•

•
•

• ••

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•
•

•

•

• •
•

•

•

•

•

•

••
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •
•

•

••

•

••

•

•

•
•

•

•
•

•
•

•

• •

•
•

•
•

•

•

•

•

•

•
•

•••

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•
•

•
•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•
•

• •
••

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

• •

•

•

•

••

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

••

•

•

• •

Residuals vs Fit
y - p$ypred

p
$
yp

re
d

-1.0 -0.5 0.0 0.5

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

M M0>
322

More on Nonparametric Regression
First, a trial direction is used to compute the values ,

, where . Then, with , you

have available a scatter plot of data , , which may

be smoothed to obtain an estimate of the conditional

expectation for the identically distributed

random variables , . Super Smoother is used for this

purpose; see the documentation for supsmu. This depends upon

the trial direction vector , so we write . Now is

varied to minimize the weighted sum of squares,

where for each a1 in the optimization procedure, a new is

computed using super smoother. The weights are user-specified,

with the default being all weights unitary: . The final results of

this optimization will be denoted simply and , where has

been standardized according to Equation (10.18) and the

corresponding value is computed. We now have the

approximation , where .

Next we treat as the response, where now

, and fit a second term , where , to

this modified response, in exactly the same manner that we fitted

 to . This gives the approximation

or .

(10.21)

a1 zi1 a1
Txi=

i 1 … n, ,= xi xi1 … x, ip,()T= ỹi
1 yi y–=

ỹi zi1,() i 1 … n, ,=

φ̂1 zi1()
E y z1[] E yi zi1[]=

yi zi1 a1
Txi=

φ̂1

a1 φ1 φ1 a1,= a1

wi yi φ̂1 a1, zi1()–[]
2

i 1=

n

∑

φ̂1 a1,

wi

wi 1≡

â1 φˆ1 φˆ1

β̂1

yi y β̂1φ̂1 â1
Txi()+≈ i 1 … n, ,=

yi
2() yi y β̂1φ̂1 zi1()––=

zi1 â1
Txi= β̂2φ̂2 zi2() zi2 â2

Txi=

β̂1φ̂1 â1
Txi() yi

1() yi
2() β̂2φ̂2 zi2()≈

yi y β̂1φ̂1 zi1() β̂2φ̂2 zi2()+ +≈
323

Chapter 10 Regression and Smoothing for Continuous Response Data
Continuing in this fashion we arrive at the forward stepwise estimated
model

where , .

The backward stepwise procedure

Having fit the M term model in Equation (10.22) in a forward stepwise
manner, ppreg fits all models of decreasing order

, where and are user-specified.
For each term in the model, the weighted sum of squared residuals

is minimized through the choice of , , , . The
initial values for these parameters, used by the optimization algorithm
which minimizes Equation (10.23), are the solution values for the m
most important out of terms in the previous order model.
Here importance is measured by

where are the optimal coefficients for the term model,

.

Model selection strategy

In order to determine a “good” number of terms for the ppreg

model, proceed as follows. First, run ppreg with and set
at a value large enough for the data analysis problem at hand. For a

, (10.22)

(10.23)

 (10.24)

yi y β̂mφ̂m zim()
m 1=

M

∑+≈ i 1 … n, ,=

zim âm
T xi= m 1 … M, ,=

m M 1– M 2– … M, min, ,= M Mmin

SSR m() wi yi y– βlφl al
Txi()

l 1=

m

∑–

2

i 1=

n

∑=

βl a1 φl l 1 … m, ,=

m 1+ m 1+

Il β̂l= l 1 … m, 1+,=

β̂l m 1+

m M 1– M 2– … Mmin, , ,=

M0

Mmin 1= M
324

More on Nonparametric Regression
relatively small number of variables , say , you might well

choose . For large , you would probably choose ,
hoping for a parsimonious representation.

For each order m, , ppreg will evaluate the fraction of
unexplained variance

A plot of versus which is decreasing in m may suggest a

good choice of . Often decreases relatively rapidly

when is smaller than a good model order (as the (bias)2

component of prediction mean-squared error is decreasing rapidly),
and then tend to flatten out and decrease more slowly for larger
than . You can choose with this in mind.

The current version of ppreg has the feature that when fitting models

having terms, all of the values , ,

, , , , and are

returned for , whereas all of these except the smoothed

values and their corresponding arguments are returned for

all . This feature conserves storage requirements. As

a consequence, you must run ppreg twice for , using

two different values of . The first time is used in order

p p 4≤
M p≥ p M p<

1 m M≤ ≤

e2 m() SSR m()

wi yi y–[]2

i 1=

n

∑
-----------------------------------=

wi yi y– β̂lφ̂l âl
Txi()

l 1=

m

∑–

2

i 1=

n

∑

wi yi y–[]2

i 1=

n

∑
--=

e2 m() m

m M0= e2 m()

m M0

m
M0 M0

m Mmin Mmin 1+ … M, , ,= β̂l âl

φ̂l zil() zil âl
Txi= i 1 … n, ,= l 1 … m, ,= e2 m()

m Mmin=

φ̂l zil() zil

m Mmin … M, ,=

m Mmin … M, ,=

Mmin Mmin 1=
325

Chapter 10 Regression and Smoothing for Continuous Response Data
to examine , (among other things) and choose a
good order . The second time is used in order obtain

all output, including and values.

Multivariate response

All of the preceding discussion has been concentrated on the case of a
single response , with observed values . In fact, ppreg is

designed to handle multivariate responses with observed

values , , . For this case, ppreg allows you
to fit a good model

by minimizing the multivariate response weighted sum of squared
residuals

and choosing a good value . Here the are user-specified

response weights (with default), the are user-specified

observation weights (with default), and . Note

that a single set of ’s is used for all responses , ,
whereas the different behavior of the different responses is modeled

by different linear combinations of the ’s by virtue of the different

sets of coefficients , .

(10.25)

(10.26)

e2 m() m 1 … M, ,=

M0 Mmin M0=

φ̂l zil() zil

y y1 … y, n,

y1 … y, q,

yij i 1 … n, ,= j 1 … q, ,=

yj yj β̂mjφ̂m âm
T x()

m 1=

M0

∑+≈

SSRq m() Wj wi yij yj– β̂ljφ̂l al
Txi()

l 1=

m

∑–

2

i 1=

n

∑
j 1=

q

∑=

m M0= Wj

Wj 1≡ wi

wi 1≡ yj
1
n
--- yij

i 1=

n

∑=

φ̂m yij j 1 … q, ,=

φ̂m

β̂j β̂ij, ..., β̂mj()
T

= j 1 … q, ,=
326

More on Nonparametric Regression
The ppreg procedure for the multivariate response case is similar to
the single response case. For given values of and , ppreg first

does a forward stepwise fitting starting with a single term ,
and ending up with terms, followed by a backward stepwise
procedure stopping with an -term model. When passing from an

 term model to an -term model in the multivariate response
case, the relative importance of a term is given by

The most important terms are the ones with the largest , and the

corresponding values of , , and are used as initial conditions

in the minimization of . Good model selection; that is, a

good choice , can be made just as in the case of a single
response, namely, through examination of the multivariate response
fraction of unexplained variation

by first using ppreg with and a suitably large . Then

ppreg is run again with and the same large .

(10.27)

Mmin M
m 1=()

M
Mmin

m 1+ m

Il Wj β̂jl

j 1=

q

∑= l 1 … m, 1+,=

Il

β̂jl φ̂l al

SSRq m()

m M0=

eq
2 m()

SSRq m()

Wj wi yij yj–[]2

i 1=

n

∑
j 1=

q

∑
---=

Mmin 1= M

Mmin M0= M
327

Chapter 10 Regression and Smoothing for Continuous Response Data
REFERENCES

Box, G.E.P. & Tidwell, P.W. (1962). Transformations of independent
variables. Technometrics 4:531-550.

Box, G.E.P. & Cox, D.R. (1964). An analysis of transformations (with
discussion). Journal of the Royal Statistical Society, Series B 26:211-246.

Breiman, L. & Friedman, J.H. (1985). Estimating optimal
transformations for multiple regression and correlation (with
discussion). Journal of the American Statistical Association 80:580-619.

Durbin, J. and Watson, G.S. (1950). Testing for serial correlation in
least squares regression I. Biometrika 37: 409-428.

Friedman, J.H. & Stuetzle, W. (1981). Projection pursuit regression.
Journal of the American Statistical Association 76:817-823.

Friedman, J.H. (1984). SMART Users Guide, no. 1. Stanford, CA:
Laboratory for Computational Statistics, Dept. of Statistics, Stanford
University .

Friedman, J.H. (1984). A Variable Span Smoother, Tech. Rept. 5. Stanford,
CA: Laboratory for Computational Statistics, Dept. of Statistics,
Stanford University.

Friedman, J.H. (1985). Classification and Multiple Regression Through
Projection Pursuit, Tech. Rept. 12. Stanford, CADept. of Statistics,
Stanford University.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., & Stahel, W.A.
(1986). Robust Statistics: The Approach Based on Influence Functions. New
York: John Wiley & Sons, Inc.

Hastie, T. & Tibshirani, R. (1990). Generalized Additive Models. London:
Chapman and Hall.

Heiberger, R.M. & Becker, R.A. (1992). Design of an S function for
robust regression using iteratively reweighted least squares. Journal of
Computational and Graphical Statistics 1:181-196.

Huber, P.J. (1973). Robust regression: Asymptotics, conjectures, and
Monte Carlo. Annals of Statistics 1:799-821.

Huber, P.J. (1981). Robust Statistics. New York: John Wiley & Sons, Inc.
328

References
Millard, S.P. and Neerchal, N.K. (2001). Environmental Statistics with
Spotfire S+. Boca Raton, Florida: CRC Press LLC.

Rousseeuw, P.J. (1984). Least median of squares regression. Journal of
the American Statistical Association 79:871-888.

Rousseeuw, P.J. & Leroy, A.M. (1987). Robust Regression and Outlier
Detection. New York: John Wiley & Sons, Inc.

Silverman, B.W. (1986). Density Estimation for Statistics and Data
Analysis. London: Chapman and Hall.

Tibshirani, R. (1988). Estimating transformations for regression via
additivity and variance stabilization. Journal of the American Statistical
Association 83:394-405.

Watson, G.S. (1966). Smooth regression analysis. Sankhya, Series A
26:359-378.

Weisberg, S. (1985). Applied Linear Regression (2nd ed.). New York:
John Wiley & Sons, Inc.
329

Chapter 10 Regression and Smoothing for Continuous Response Data
330

Introduction 333

Overview of the Robust MM Regression Method 334
Key Robustness Features of the Method 334
The Essence of the Method: A Special M-Estimate 334
The lmRobMM Function 335
Comparison of Least Squares and Robust Fits 336
Robust Model Selection 336

Computing Robust Fits 337
Example: The oilcity Data 337
Least Squares and Robust Fits 338
Least Squares and Robust Model Objects 340

Visualizing and Summarizing Robust Fits 341
The plot Function 341
The summary Function 343

Comparing Least Squares and Robust Fits 345
Comparison Objects for Least Squares and Robust

Fits 345
Visualizing Comparison Objects 346
Statistical Inference from Comparison Objects 347

Robust Model Selection 349
Robust F and Wald Tests 349
Robust FPE Criterion 351

Controlling Options for Robust Regression 353
Efficiency at Gaussian Model 353
Alternative Loss Function 353
Confidence Level of Bias Test 355
Resampling Algorithms 357

ROBUST REGRESSION 11
331

Chapter 11 Robust Regression
Theoretical Details 359
Initial Estimates 359
Loss Functions 360
Robust R-Squared 362
Robust Deviance 363
Robust F Test 364
Robust Wald Test 364
Robust FPE (RFPE) 364
Breakdown Points 365

Other Robust Regression Techniques 367
Least Trimmed Squares Regression 367
Least Median Squares Regression 370
Least Absolute Deviation Regression 370
M-Estimates of Regression 372
Comparison of Least Squares, Least Trimmed

Squares, and M-Estimates 375

References 378
332

Introduction
INTRODUCTION

Robust regression techniques are an important complement to classical
least squares regression. Robust techniques provide answers similar to
least squares regression when the data are linear and have normally
distributed errors. The results differ significantly, however, when the
errors do not satisfy the normality conditions or when the data
contain significant outliers. TIBCO Spotfire S+ includes several
robust regression techniques; this chapter focuses on robust MM
regression. This is the technique we officially recommend, as it
provides both high-quality estimates and a wealth of diagnostic and
inference tools.

Other robust regression techniques available in Spotfire S+ are least
trimmed squares (LTS) regression, least median squares (LMS) regression,
least absolute deviations (L1) regression, and M-estimates of regression.
These are discussed briefly in the section Other Robust Regression
Techniques.

Spotfire S+ also includes the S+MissingData library, which extends
the statistical modeling capabilities of Spotfire S+ to support model-
based missing data methods. You can load this library into your
Spotfire S+ session by either typing library(missing) in the
Commands window, or if you are using the Windows version,
choose File � Load Library from the main menu. For more
information, see the file library/missing/missing.pdf in your
Spotfire S+ program group or if you are on Windows, select Help �
Online Manuals � Missing Data Analysis Library.
333

Chapter 11 Robust Regression
OVERVIEW OF THE ROBUST MM REGRESSION METHOD

This section provides an overview of the Spotfire S+ tools you can
use to compute a modern linear regression model with robust MM
regression. The tools we discuss include both inference for
coefficients and model selection.

Key
Robustness
Features of the
Method

The robust MM method has the following general features:

• In data-oriented terms, a robust MM fit is minimally
influenced by outliers in the independent variables space, in
the response (dependent variable) space, or in both.

• In probability-oriented terms, the robust fit minimizes the
maximum possible bias of the coefficients estimates. The bias
minimized is due to a non-Gaussian contamination model
that generates outliers, subject to achieving a desired (large
sample size) efficiency for the coefficient estimates when the
data has a Gaussian distribution.

• Statistical inference tools produced by the robust fit are based
on large sample size approximations for such quantities as
standard errors and “t-statistics” of coefficients, R-squared
values, etc.

For further information, see the section Theoretical Details.

The Essence of
the Method: A
Special
M-Estimate

A robust MM model has the form

where is the scalar response associated with ith observation, is a
p-dimensional vector of independent predictor values,

 represents the coefficients, and the are errors.

Spotfire S+ computes a robust M-estimate that minimizes the
objective function

.

yi xi
Tβ ε i ,+= i 1 ... n, ,=

yi xi

β β1 β2 … βp, , ,()= ε i

β̂

ρ
yi xi

Tβ–

ŝ

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑

334

Overview of the Robust MM Regression Method
Here, is a robust scale estimate for the residuals and is a
symmetric, bounded loss function. Loss functions are described in the
section Theoretical Details, and two possibilities are shown

graphically in Figure 11.5. Alternatively, is a solution of the
estimating equation

,

where is a redescending (nonmonotonic) function.

Since is bounded, it is nonconvex, and the minimization algorithm
can therefore produce many local minima; correspondingly, the
estimating equation above can have multiple solutions. Spotfire S+

deals with this issue by computing highly robust initial estimates

and that have breakdown points of 0.5. The final estimate is

then the local minimum of the objective function that is nearest to .
We refer to an M-estimate computed in this way as an MM-estimate, a
term first introduced by Yohai (1987). The initial values are computed
using the S-estimate approach described in the section Theoretical
Details, and are thus referred to as initial S-estimates.

The lmRobMM
Function

The Spotfire S+ function that computes robust MM regression
estimates is called lmRobMM. The model object returned by lmRobMM is
almost identical in structure to a least-squares model object returned
by lm; that is, you obtain most of the same fitted model components
from the two functions, such as standard errors and t statistics for
coefficients. Examples using the lmRobMM function are given in the
section Computing Robust Fits.

ŝ ρ

β̂

xiψ
yi xi

Tβ–

ŝ

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑ 0=

ψ ρ′=

ρ

β0

s0 β̂

β0

Note

The theory for the robust MM method is based on Rousseeuw and Yohai (1984), Yohai, Stahel,
and Zamar (1991), and Yohai and Zamar (1998). The code is based on Alfio Marazzi’s ROBETH
library, with additional work by R. Douglas Martin, Douglas B. Clarkson, and Jeffrey Wang of
Insightful Corporation. The code development was partially supported by an SBIR Phase I grant
entitled “Usable Robust Methods,” funded by the National Institutes of Health.
335

Chapter 11 Robust Regression
Comparison of
Least Squares
and Robust
Fits

Spotfire S+ includes a special function compare.fits that is
specifically designed to facilitate the comparison of least squares fits
and robust fits for a linear regression model. Objects returned by
compare.fits can be printed, summarized, and plotted, resulting in
tabular and graphical displays that make it easy for you to compare
the two types of fits. Examples using the compare.fits function are
given in the section Comparing Least Squares and Robust Fits.

Robust Model
Selection

It is not enough to use a robust regression method when you try to
decide which of several alternative models to use. You also need a
robust model selection criterion. To this end, you might use one of the
following three tests: the robust F-test, the robust Wald test, and the
robust FPE (RFPE) criterion. See the section Robust Model Selection
for further details.
336

Computing Robust Fits
COMPUTING ROBUST FITS

Example: The
oilcity Data

The Spotfire S+ data frame oilcity contains monthly excess returns
on the stocks of Oil City Petroleum, Inc., from April 1979 to
December 1989. The data set also contains the monthly excess
returns of the market for the same time period. Returns are defined as
the relative change in the stock price over a one-month interval, and
excess returns are computed relative to the monthly return of a 90-day
U.S. Treasury bill at the risk-free rate.

A scatter plot of the oilcity data, displayed in Figure 11.1, shows that
there is one large outlier in the data. The command below produces
the graph.

> plot(oilcity$Market, oilcity$Oil,
+ xlab = "Market Returns", ylab = "Oil City Returns")

Figure 11.1: Scatter plot of the oilcity data.

•
•

•
• •

•

•

•

•

•

•

•
•

•

•
••••

•

•

• •
•

•
••

••
•

• ••

•
•

•
•••

•

•

•
•

•
•

•

•
•

•
• •• •
••

•

•

•
• ••

•
••

•

•

•
•

• •••• •••••

•

•
•• ••• •••

•

• •••

•

•
•

• •
•

•

•

•• • •

•

•

• •• ••• •••

•
•• • ••• •

•
•• •

•

Market Returns

O
il

C
ity

 R
et

ur
ns

-0.2 -0.1 0.0

0
1

2
3

4
5

337

Chapter 11 Robust Regression
Normally, financial economists use least squares to fit a straight line
predicting a particular stock return from the market return. The
estimated coefficient of the market return is called the beta, and it
measures the riskiness of the stock in terms of standard deviation and
expected returns. Large beta values indicate that the stock is risky
compared to the market, but also indicate that the expected returns
from the stock are large.

Least Squares
and Robust
Fits

We first fit a least squares model to the oilcity data as follows:

> oil.ls <- lm(Oil ~ Market, data = oilcity)
> oil.ls

Call:
lm(formula = Oil ~ Market, data = oilcity)

Coefficients:
 (Intercept) Market
 0.1474486 2.85674

Degrees of freedom: 129 total; 127 residual
Residual standard error: 0.4866656

To obtain a robust fit, you can use the lmRobMM function with the same
linear model:

> oil.robust <- lmRobMM(Oil ~ Market, data = oilcity)
> oil.robust

Final M-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oilcity)

Coefficients:
 (Intercept) Market
 -0.08395796 0.8288795

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446265
338

Computing Robust Fits
From the output of the two models, we see that the robust beta
estimate is dramatically different than the least squares estimate. The
least squares method gives a beta of 2.857, which implies that the
stock is 2.857 times as volatile as the market and has about 2.857
times the expected return. The robust MM method gives a beta of
0.829, which implies that the stock is somewhat less volatile and has a
lower expected return. Also, note that the robust scale estimate is
0.14, whereas the least-squares scale estimate is 0.49. The least-
squares scale estimate is based on the sum of squared residuals, and is
thus considerably inflated by the presence of outliers in data.

You can see both models in the same graph with the following set of
commands:

> plot(oilcity$Market, oilcity$Oil,
+ xlab = "Market Returns", ylab = "Oil City Returns")
> abline(coef(oil.robust), lty = 1)
> abline(coef(oil.ls), lty = 2)
> legend(locator(1), c("oil.robust","oil.ls"), lty=1:2)

The result is displayed in Figure 11.2. In the legend command, the
locator function allows you to interactively choose a location for the
key.

Figure 11.2: Least squares and robust fits of the oilcity data.

•
•

•

• •

•

•

•

•

•

•

•

•

•

•

•
•

••

•

•

• •
•

•
•

•
••

•

• ••

•
•

•

•••
•

•

•
•

•
•

•

•

•

•

• •
•

•
••

•

•

•
•

••
•

••

•

•

•

•
•

••• • ••
•

•
•

•

•
•• ••• •••

•

• •••

•

•
•

•
•

•

•

•

•• • •

•

•

• •• ••• ••
•

•
•• • •

•
• •

•
•• •

•

Market Returns

O
il

C
ity

 R
et

ur
ns

-0.2 -0.1 0.0

0
1

2
3

4
5

oil.robust
oil.ls
339

Chapter 11 Robust Regression
Least Squares
and Robust
Model Objects

Objects returned by the lm function are of class "lm":

> data.class(oil.ls)

[1] "lm"

On the other hand, objects returned by lmRobMM are of class
"lmRobMM":

> data.class(oil.robust)

[1] "lmRobMM"

As with objects of class "lm", you can easily visualize, print and
summarize objects of class "lmRobMM" using the generic functions
plot, print and summary. With the names function, you can see that
lmRobMM objects contain many of the same components as lm objects,
in addition to components that are needed for the robust fitting
algorithm:

> names(oil.ls)

 [1] "coefficients" "residuals" "fitted.values"
 [4] "effects" "R" "rank"
 [7] "assign" "df.residual" "contrasts"
[10] "terms" "call"

> names(oil.robust)

 [1] "coefficients" "T.coefficients"
 [3] "scale" "T.scale"
 [5] "cov" "T.cov"
 [7] "dev" "T.dev"
 [9] "residuals" "T.residuals"
[11] "r.squared" "T.r.squared"
[13] "M.weights" "T.M.weights"
[15] "fitted.values" "T.fitted.values"
[17] "mm.bias" "ls.bias"
[19] "iter.refinement" "iter.final.coef"
[21] "iter.final.scale" "df.residual"
[23] "rank" "est"
[25] "robust.control" "qr"
[27] "assign" "contrasts"
[29] "terms" "call"
340

Visualizing and Summarizing Robust Fits
VISUALIZING AND SUMMARIZING ROBUST FITS

The plot
Function

For simple linear regression models, like the ones computed for the
oilcity data in the previous section, it is easy to see outliers in a
scatter plot. In multiple regression models, however, determining
whether there are outliers in the data is not as straightforward.
Nevertheless, Spotfire S+ makes it easy for you to visualize outliers in
a multiple regression. To illustrate this point, we use the well-known
“stack loss” data, which has been analyzed by a large number of
statisticians.

The stack loss data contains the percent loss of ammonia during 21
consecutive days at an oxidation plant. Ammonia is lost when it is
dissolved in water to produce nitric acid. Three variables may
influence the loss of ammonia during this process: air flow, water
temperature, and acid concentration. The stack loss response data is
contained in the vector stack.loss, and the three independent
variables are contained in the matrix stack.x. The following
command combines the response and predictor variables into a data
frame named stack.df:

> stack.df <- data.frame(Loss = stack.loss, stack.x)

To compute a least squares fit for stack.df, use the lm function as
follows:

> stack.ls <- lm(Loss ~
+ Air.Flow + Water.Temp + Acid.Conc., data = stack.df)

To compute a robust fit for the same linear model, use:

> stack.robust <- lmRobMM(Loss ~
+ Air.Flow + Water.Temp + Acid.Conc., data = stack.df)

We now use the plot function to visualize the robust fit, as illustrated
in the command below. Note that plots of Cook's distance values are
not currently available for robust linear model objects.
341

Chapter 11 Robust Regression
> plot(stack.robust, ask = T)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Residuals vs Fitted Values
3: plot: Sqrt of abs(Residuals) vs Fitted Values
4: plot: Response vs Fitted Values
5: plot: Normal QQplot of Residuals
6: plot: r-f spread plot
Selection:

You can compare plots of the residuals versus fitted values for
stack.ls and stack.robust using the following commands:

> par(mfrow = c(1,2))
> plot(stack.ls, which.plots = 1)
> title(main = "LS Fit")
> plot(stack.robust, which.plots = 1)
> title(main = "Robust Fit")

Figure 11.3 shows the two plots. The robust fit pushes the outliers
away from the majority of the data, so that you can identify them
more easily.

Figure 11.3: Plots of the residuals vs. fitted values for the stack.loss data.
Fitted : Air.Flow + Water.Temp + Acid.Conc.

R
es

id
ua

ls

10 20 30 40

-6
-4

-2
0

2
4

6

3

4

21

LS Fit

Fitted : Air.Flow + Water.Temp + Acid.Conc.

R
es

id
ua

ls

10 15 20 25 30 35

-5
0

5

3

4

21

Robust Fit
342

Visualizing and Summarizing Robust Fits
The summary
Function

The summary function for lmRobMM objects provides the usual types of
inference tools, including t-values and p-values. In addition, it also
provides some information specific to robust models, such as tests for
bias. For example, the command below displays a detailed summary
of the oil.robust object computed in the section Least Squares and
Robust Fits.

> summary(oil.robust)

Final M-estimates.

Call: lmRobMM(formula = Oil ~ Market, data = oilcity)

Residuals:
 Min 1Q Median 3Q Max
 -0.4566 -0.08875 0.03082 0.1031 5.218

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) -0.0840 0.0281 -2.9931 0.0033
 Market 0.8289 0.2834 2.9247 0.0041

Residual scale estimate: 0.1446 on 127 degrees of freedom

Proportion of variation in response explained by model:
0.0526

Test for Bias
 Statistics P-value
 M-estimate 2.16 0.3396400
LS-estimate 22.39 0.0000138

Correlation of Coefficients:
 (Intercept)
Market 0.8169

The seed parameter is : 1313
343

Chapter 11 Robust Regression
Note that the standard errors, t-values, and p-values are displayed in
the same format as they are in lm summaries. The standard errors for
lmRobMM objects are computed from the robust covariance matrix of
the estimates. For technical details regarding the computation of
robust covariance matrices, refer to Yohai, Stahel, and Zamar (1991).

The summary method for lmRobMM provides another piece of useful
information: the Proportion of variation in response explained

by model, usually known as the R2 value. Spotfire S+ calculates a
robust version of this statistic, as described in the section Theoretical
Details.

Finally, there is a Test for Bias section in the summary output for
lmRobMM objects. This section provides the test statistics of bias for
both the final M-estimates and the least squares (LS) estimates against
the initial S-estimates. In the oil.robust example, the test for bias of
the final M-estimates yields a p-value of 0.33, which suggests that the
bias of the final M-estimates relative to the initial S-estimates is not
significant at the default 0.90 level. This is why the final M-estimates
are reported in the summary output instead of the initial estimates. The
test for bias of the least squares estimates relative to the S-estimates
yields a p-value of 0, which indicates that the LS estimate is highly
biased. This suggests that the robust MM model is preferred over the
least squares model. For technical details regarding the calculations of
the tests for bias, see Yohai, Zamar, and Stahel (1991).
344

Comparing Least Squares and Robust Fits
COMPARING LEAST SQUARES AND ROBUST FITS

Comparison
Objects for
Least Squares
and Robust
Fits

In the section The plot Function, we compared plots of the residuals
versus fitted values for least squares and robust MM fits of the same
linear model. You might have noticed that the plots in Figure 11.3 do
not have the same vertical scale. Spotfire S+ provides the function
compare.fits for comparing different fits of a given model. Objects
returned by this function are of class "compare.fits", which has
appropriate plot, print, and summary methods. The plot method
allows you to view different fits on the same scale for easy visual
comparison. In addition, the print and summary methods return
tabular displays that are conveniently aligned for comparison of
inference results.

For example, to compare the oil.ls and oil.robust fits, create a
comparison object with the following command:

> oil.cmpr <- compare.fits(oil.ls, oil.robust)
> oil.cmpr

Calls:
 oil.ls lm(formula = Oil ~ Market, data = oilcity)
oil.robust lmRobMM(formula = Oil ~ Market, data = oilcity)

Coefficients:
 oil.ls oil.robust
(Intercept) 0.1474 -0.08396
 Market 2.8567 0.82888

Residual Scale Estimates:
 oil.ls : 0.4867 on 127 degrees of freedom
oil.robust : 0.1446 on 127 degrees of freedom
345

Chapter 11 Robust Regression
Visualizing
Comparison
Objects

You can easily plot a compare.fits object to obtain a visual
comparison of least squares and robust fits. To plot the oil.cmpr
object that we created in the previous section, use the command:

> plot(oil.cmpr)

Make a plot selection (or 0 to exit):

1: All
2: Normal QQ-Plots of Residuals
3: Estimated Densities of Residuals
4: Residuals vs Fitted Values
5: Response vs Fitted Values
Selection:

The normal qqplot and estimated densities for oil.cmpr are shown in
Figure 11.4, as generated by the following commands:

> par(mfrow = c(2,1))
> plot(oil.cmpr, which.plot = 1)
> plot(oil.cmpr, which.plot = 2)

The densities of residuals are computed using a kernel density
estimator. In a “good” model fit, the probability density estimates for
the residuals are centered at zero and are as narrow as possible.
Figure 11.4 shows that the density for the oil.ls object is shifted to
the left of the origin, whereas the density for oil.robust is well-
centered. Furthermore, the outlier in the oilcity data is pushed far
from the mode of the density for the MM-estimator, and thus appears
as a pronounced bump in the plot of the residual density estimates. In
the density plot for the least squares fit, the outlier is not as visible.
346

Comparing Least Squares and Robust Fits
Statistical
Inference from
Comparison
Objects

A detailed comparison of two model fits, including t-values and
p-values, can be obtained with the summary method for compare.fits
objects. For example:

> summary(oil.cmpr)

Calls:
 oil.ls lm(formula = Oil ~ Market, data = oilcity)
oil.robust lmRobMM(formula = Oil ~ Market, data = oilcity)

Residual Statistics:
 Min 1Q Median 3Q Max

Figure 11.4: Normal qqplots and residual density estimates for the linear fits in oil.cmpr.

-2 -1 0 1 2

0
1

2
3

4
5

oil.ls oil.robust

-1 0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

oil.ls oil.robust
347

Chapter 11 Robust Regression
 oil.ls -0.6952 -0.17323 -0.05444 0.08407 4.842
oil.robust -0.4566 -0.08875 0.03082 0.10314 5.218

Coefficients:
 Value Std. Error t value
 oil.ls_(Intercept) 0.14745 0.07072 2.085
oil.robust_(Intercept) -0.08396 0.02805 -2.993
 oil.ls_Market 2.85674 0.73175 3.904
 oil.robust_Market 0.82888 0.28341 2.925

 Pr(>|t|)
 oil.ls_(Intercept) 0.0390860
oil.robust_(Intercept) 0.0033197
 oil.ls_Market 0.0001528
 oil.robust_Market 0.0040852

Residual Scale Estimates:
 oil.ls : 0.4867 on 127 degrees of freedom
oil.robust : 0.1446 on 127 degrees of freedom

Proportion of variation in response(s) explained by
model(s):
 oil.ls : 0.1071
oil.robust : 0.0526

Correlations:
 oil.ls
 Market
(Intercept) 0.7955736

oil.robust
 Market
(Intercept) 0.8168674

Warning

When the p-values for the tests of bias indicate that the final M-estimates are highly biased
relative to the initial S-estimates, the final M-estimates are not used in a lmRobMM fit. In this case,
the asymptotic approximations for the inference results may not be very good, and you should
thus not trust them.
348

Robust Model Selection
ROBUST MODEL SELECTION

Robust F and
Wald Tests

An important part of statistical inference is hypothesis testing. Spotfire
S+ provides two robust tests for determining whether a regression
coefficient is zero: the robust Wald test and the robust F test. To illustrate
how these tests are used, we generate an example data frame
simu.dat with a function called gen.data:

> gen.data <- function(coeff, n = 100, eps = 0.1,
+ sig = 3, snr = 1/20, seed = 837)
+ {
+ # coeff : 3 x 1 vector of coefficients
+ # eps : the contamination ratio, between 0 and 0.5
+ # sig : standard deviation of most observations
+ # snr : signal-to-noise ratio,
+ # Note : the regressors are generated as: rnorm(n,1),
+ # rnorm(n,1)^3, exp(rnorm(n,1)). It also
+ # generates an unused vector x4.
+ set.seed(seed)
+ x <- cbind(rnorm(n,1), rnorm(n,1)^3, exp(rnorm(n,1)))
+ ru <- runif(n)
+ n1 <- sum(ru < eps)
+ u <- numeric(n)
+ u[ru < eps] <- rnorm(n1, sd = sig/snr)
+ u[ru > eps] <- rnorm(n - n1, sd = sig)
+ data.frame(y = x %*% matrix(coeff, ncol = 1) + u,
+ x1 = x[,1], x2 = x[,2], x3 = x[,3], x4 = rnorm(n,1))
+ }

> simu.dat <- gen.data(1:3)

The gen.data function creates a data frame with five columns: y, x1,
x2, x3, and x4. The variable y is generated according to the following
equation:

.y b1x1 b2x2 b3x3 u+ + +=
349

Chapter 11 Robust Regression
Here , , and are given by the coef argument to gen.data. In

simu.dat, , , and . The term in the equation
is sampled from a N(0,3) distribution by default, with 10%
contamination. The x4 column of the resulting data frame is normally
distributed and independent of y, x1, x2, and x3.

First, we model simu.dat using x1, x2, and x3, and x4 as predictor
variables. We use a -1 in the model formula so that an intercept is not
included:

> simu.mm4 <- lmRobMM(y ~ x1+x2+x3+x4-1, data = simu.dat)
> simu.mm4

Final M-estimates.

Call:
lmRobMM(formula = y ~ x1 + x2 + x3 + x4 - 1, data=simu.dat)

Coefficients:
 x1 x2 x3 x4
 0.6335503 2.048027 3.045304 -0.05288568

Degrees of freedom: 100 total; 96 residual
Residual scale estimate: 3.281144

To test the hypothesis that the coefficient of x4 is actually zero, we fit
another model using only x1, x2, and x3 as predictor variables. We
can then use anova to test the significance of the x4 coefficient:

> simu.mm3 <- update(simu.mm4, .~.-x4)
> anova(simu.mm4, simu.mm3)

Response: y
 Terms Df Wald P(>Wald)
1 x1 + x2 + x3 + x4 - 1
2 x1 + x2 + x3 - 1 1 0.04438085 0.8331466

The p-value is greater than 0.8, which implies that you can accept the
null hypothesis that the fourth coefficient is zero.

b1 b2 b3

b1 1= b2 2= b3 3= u
350

Robust Model Selection
The default test used by the anova method for lmRobMM objects is the
robust Wald test, which is based on robust estimates of the
coefficients and covariance matrix. To use the robust F test instead,
specify the optional test argument to anova:

> anova(simu.mm4, simu.mm3, test = "RF")

Response: y
 Terms Df RobustF P(>RobustF/fH)
1 x1 + x2 + x3 + x4 - 1
2 x1 + x2 + x3 - 1 1 0.03375381 0.8507215

This gives a result similar to the one returned by the robust Wald test.

Robust FPE
Criterion

In addition to the robust Wald and F tests, Spotfire S+ provides
Robust Final Prediction Errors (RFPE) as a criterion for model
selection. This criterion is a robust analogue to the classical Final
Prediction Errors (FPE) criterion, and is defined as:

,

where denotes expectation with respect to both and , the

term is the final M-estimate of , and is the scale parameter for the
observations. The , , and terms are as defined in the section
Overview of the Robust MM Regression Method. When considering
a variety of models that have different choices of predictor variables,
choose the model with the smallest value of RFPE.

Note that when , the RFPE criterion reduces to the classical
FPE. It can also be shown that RFPE is asymptotically equivalent to
the robust version of the Akaike Information Criterion (AIC)
proposed by Ronchetti (1985). The section Theoretical Details
provides a technical discussion that supports the use of RFPE.

The RFPE criterion is used as the robust test in the drop1 and add1
methods for lmRobMM objects. For example, use of drop1 on the fitted
model object simu.mm4 gives the output below.

> drop1(simu.mm4)

Eρ
yi xi

Tβ1
–

σ

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑

E β1 yi β1

β σ
yi xi ρ

ρ u() u2=
351

Chapter 11 Robust Regression
Single term deletions

Model:
y ~ x1 + x2 + x3 + x4 - 1
 Df RFPE
<none> 24.24090
 x1 1 24.46507
 x2 1 52.19715
 x3 1 64.32581
 x4 1 23.95741

The model obtained by dropping x4 has a lower RFPE than the
model that includes all four predictor variables. This indicates that
dropping x4 results in a better model.

You can also use the add1 function to explore the relevance of
variables. For example, use the following command to investigate
whether x4 helps to predict y in the simu.mm3 model:

> add1(simu.mm3, "x4")

Single term additions

Model:
y ~ x1 + x2 + x3 - 1
 Df RFPE
<none> 24.10179
 x4 1 24.38765

As expected, the model without x4 is preferred, since the RFPE
increases when x4 is added.

Warning

When the p-values for the tests of bias indicate that the final M-estimates are highly biased
relative to the initial S-estimates, the final M-estimates are not used in a lmRobMM fit. If this applies
to any of the models considered by drop1 and add1, you should not trust the corresponding
RFPE values.
352

Controlling Options for Robust Regression
CONTROLLING OPTIONS FOR ROBUST REGRESSION

This section discusses a few of the most common control parameters
for robust MM regression. Most of the default settings for the
parameters can be changed through the functions
lmRobMM.robust.control and lmRobMM.genetic.control. For details
about parameters that are not discussed in this section, see the online
help files for the two control functions.

Efficiency at
Gaussian
Model

If the final M-estimates are returned by lmRobMM, they have a default
asymptotic efficiency of 85% compared with the least squares
estimates, when the errors are normally distributed. In some cases,
you may require an efficiency other than 85%. To change the value of
this control parameter, define the efficiency argument to
lmRobMM.robust.control. For example, the following command
computes a robust MM regression model for the oilcity data with an
efficiency of 95%:

> oil.eff <- lmRobMM(Oil ~ Market, data = oilcity,
+ robust.control = lmRobMM.robust.control(efficiency=0.95))

Note that the coefficients of oil.tmp are slightly different than those
of oil.robust, which uses the default efficiency of 85%:

> coef(oil.eff)

 (Intercept) Market
 -0.07398854 0.8491129

Alternative
Loss Function

As mentioned in the section Overview of the Robust MM Regression
Method, the final M-estimates are based on initial S-estimates of both
the regression coefficients and the scale parameter. Spotfire S+ uses a
loss function to compute initial S-estimates and final M-estimates. Two
different loss functions are available in Spotfire S+: Tukey’s bisquare
function, and the optimal loss function recently discovered by Yohai
and Zamar (1998). Figure 11.5 shows Tukey’s bisquare function in the
left panes and the optimal loss function in the right; the top two
graphs in the figure display the loss functions and the bottom two
graphs show . The mathematical forms of these functions can
be found in the section Theoretical Details.

ρ
ψ ρ'=
353

Chapter 11 Robust Regression
The optimal loss function has better combined Gaussian efficiency
and non-Gaussian bias control properties, and is therefore used as the
default in lmRobMM models. You can choose the Tukey bisquare
function instead, or a combination of the two loss functions, by
defining the weight argument to lmRobMM.robust.control
accordingly. For example, the following commands use Tukey’s
bisquare function for the initial S-estimates and the optimal loss
function for the final M-estimates:

> control.lossfun <- lmRobMM.robust.control(
+ weight = c("Bisquare","Optimal"), mxr = 100)

> oil.lossfun <- lmRobMM(Oil ~ Market, data = oilcity,
+ robust.control = control.lossfun)

Figure 11.5: Available loss functions for robust MM regression models.

Bisquare (Rho)

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Optimal (Rho)

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bisquare (Psi)

-4 -2 0 2 4

-2
-1

0
1

2

Optimal (Psi)

-4 -2 0 2 4

-2
-1

0
1

2

354

Controlling Options for Robust Regression
> coef(oil.lossfun)

 (Intercept) Market
 -0.08371941 0.8291027

In the control.lossfun definition, we define the mxr parameter to
increase the maximum number of iterations in the refinement step of
the fitting algorithm.

Confidence
Level of Bias
Test

The default level of the test for bias in lmRobMM is 10%. This means
that whenever the p-value of the test is greater than 0.10, the final
M-estimates are returned; otherwise, the initial S-estimates are
returned. To change the level of the test for bias, define the level
argument in the lmRobMM.robust.control function. A higher value of
level rejects the final M-estimates more often, and a lower value
rejects them less often. For example, you can force the fitting
algorithm to return the initial S-estimates by setting level=1, as the
following commands illustrate:

> control.s <- lmRobMM.robust.control(level = 1)
> oil.s <- lmRobMM(Oil ~ Market, data = oilcity,
+ robust.control = control.s)
> oil.s

Initial S-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oilcity,
 robust.control = control.s)

Coefficients:
 (Intercept) Market
 -0.06246073 0.8270727

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446265
Warning messages:
 Significant test at level 0%. The bias is high, and
inference based on final estimates is not recommended. Use
initial estimates as exploratory tools.
355

Chapter 11 Robust Regression
Similarly, specifying level=0 forces lmRobMM to return the final
M-estimates:

> control.mm <- lmRobMM.robust.control(level = 0)
> oil.mm <- lmRobMM(Oil ~ Market, data = oilcity,
+ robust.control = control.mm)

If you want to compute the S-estimates only, and do not require the
M-estimates, you can specify the estim argument to
lmRobMM.robust.control as follows:

> control.s2 <- lmRobMM.robust.control(estim = "S")
> oil.s2 <- lmRobMM(Oil ~ Market, data = oilcity,
+ robust.control = control.s2)
> oil.s2

Initial S-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oilcity,
 robust.control = control.s2)

Coefficients:
 (Intercept) Market
 -0.06246073 0.8270727

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446265

Similarly, you can obtain only the final M-estimates if you use
estim="MM".

Note

The above warning is only relevant when you use levels in the range of 1% to 10%.
356

Controlling Options for Robust Regression
Sometimes you may want to change the level of the test for bias after
fitting a robust regression model. For this purpose, you can use the
update function and specify a new value with the robust.control
argument. For example, to change the level for oil.s to 20%, use the
following command:

> oil.level <- update(oil.s, level = 0.2)
> oil.level

Final M-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oilcity,
robust.control = control.s)

Coefficients:
 (Intercept) Market
 -0.08395796 0.8288795

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1478398

Note that the final M-estimates are now returned. If the formula
argument is missing in the call to update, the function alternates
between the initial S-estimates and final M-estimates.

Resampling
Algorithms

Spotfire S+ uses one of three resampling schemes to compute initial
S-estimates: random resampling, exhaustive resampling, and a genetic
algorithm. You can choose which scheme to use by specifying the
sampling argument in the lmRobMM.robust.control function. Valid
choices for this control parameter are "Random", "Exhaustive" and
"Genetic"; by default, sampling="Random". Exhaustive resampling is
recommended only when the sample size is small and there are less
than ten predictor variables.

Random resampling is controlled by two parameters: a random seed
and the number of subsamples to draw. By default, the number of

subsamples is , where is the number of explanatory
variables and denotes the operation of rounding a number to its
closest integer. This number of subsamples works well if there are less
than 13 predictor variables, but it may be too large when there are
more predictors, resulting in unreasonably long computation times.

4.6 2p⋅[] p
 []
357

Chapter 11 Robust Regression
To choose a different value for the number of subsamples drawn,
define the optional argument nrep. For example, the following
command computes a robust MM regression model for the oilcity
data using 10 subsamples in the random resampling scheme:

> oil.sample <- lmRobMM(Oil ~ Market, data = oilcity,
+ nrep = 10)

You can control the seed of the random resampling by specifying the
seed argument to the lmRobMM.robust.control function.

The genetic resampling algorithm is controlled by a list of parameters
defined in the lmRobMM.genetic.control function. If you choose the
genetic resampling algorithm for your robust MM model, you can
specify control parameters by defining the genetic.control
argument in lmRobMM. This optional argument should be a list, and is
usually returned by a call to lmRobMM.genetic.control. To see the
names and default values of the lmRobMM.genetic.control
arguments, use the following command:

> args(lmRobMM.genetic.control)

function(popsize = NULL, mutate.prob = NULL,
random.n = NULL, births.n = NULL, stock = list(),
maxslen = NULL, stockprob = NULL, nkeep = 1)

For explanations of these arguments, see the online help files for
lmRobMM.genetic.control and ltsreg.default.
358

Theoretical Details
THEORETICAL DETAILS

Initial
Estimates

As mentioned in the section Overview of the Robust MM Regression
Method, the minimization algorithm that lmRobMM uses to compute
coefficients can produce many optimal solutions to the objective
function

Here is the scalar response associated with ith observation, is a
p-dimensional vector of independent predictor values, and

 represents the coefficients. Spotfire S+ deals with

this issue by computing highly robust initial estimates and for
the coefficients and scale parameter, respectively. The initial estimates
are calculated using the S-estimate method introduced by Rousseeuw
and Yohai (1984), as part of an overall computational strategy
proposed by Yohai, Stahel, and Zamar (1991).

The S-estimate approach has as its foundation an M-estimate of an
unknown scale parameter for the observations. The observations are
assumed to be robustly centered, in that a robust location estimate has

been subtracted from each for . The M-estimate is
obtained by solving the equation

where is a symmetric, bounded function. It is known that such a
scale estimate has a breakdown point of 0.5 (Huber, 1981), and that
one can find min-max bias robust M-estimates of scale (Martin and
Zamar, 1989 and 1993).

. (11.1)

(11.2)

ρ
yi xi

Tβ–

ŝ

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑

yi xi

β β1 β2 … βp, , ,()=

β0 s0

ŝ

yi i 1 2 … n, , ,= ŝ

1
n
--- ρ

yi
ŝ
----⎝ ⎠

⎛ ⎞

i 1=

n

∑ 0.5=

ρ

359

Chapter 11 Robust Regression
Consider the following modification of Equation (11.2):

For each value of , we have a corresponding robust scale estimate

. The initial S-estimate is the value that minimizes :

This presents a second nonlinear optimization problem, one for
which the solution is traditionally found by a random resampling
algorithm followed by a local search, as described in Yohai, Stahel,
and Zamar (1991). Spotfire S+ allows you to use an exhaustive form
of resampling for small problems, or a genetic algorithm in place of

the resampling scheme. Once the initial S-estimate is computed,
the The final M-estimate is the local minimum of Equation (11.1) that

is nearest to .

For details on the numerical algorithms implemented in lmRobMM, see
Marazzi (1993).

Loss Functions A robust M-estimate for the coefficients in a linear model is
obtained by minimizing Equation (11.1). The in the equation is a
loss function, which is a convex weight function of the residuals; the
derivative of is usually denoted by . In lmRobMM, two different
weight functions can be used for both the initial S-estimates and the
final M-estimates: Tukey’s bisquare function and the optimal weight
function introduced in Yohai and Zamar (1998).

(11.3)

(11.4)

1
n p–
------------ ρ

yi xi
Tβ–

ŝ β()

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑ 0.5=

β

ŝ β() β0 ŝ β()

β0 argminβŝ β()=

β0

β0

β
ρ

ρ ψ
360

Theoretical Details
Tukey’s bisquare function and its derivative are as follows:

In these equations, is a tuning constant. The Yohai and Zamar
optimal function and its derivative are:

where is a tuning constant and

,

.

See Figure 11.5 for the general shapes of these two loss functions.

ρ r()
r
c
--⎝ ⎠

⎛ ⎞ 6
3 r

c
--⎝ ⎠

⎛ ⎞ 4
– 3 r

c
--⎝ ⎠

⎛ ⎞ 2
+ if r c≤

1 if r c>⎝
⎜
⎜
⎜
⎛

=

ψ r()
6
c
--- r

c
--⎝ ⎠

⎛ ⎞ 12
c

------ r
c
--⎝ ⎠

⎛ ⎞ 3
–

6
c
--- r

c
--⎝ ⎠

⎛ ⎞ 5
+ if r c≤

1 if r c>⎝
⎜
⎜
⎜
⎛

=

c

ρ r()

3.25c2 if r
c
-- 3>

c2 1.792 h1
r
c
--⎝ ⎠

⎛ ⎞ 2
h2

r
c
--⎝ ⎠

⎛ ⎞ 4
h3

r
c
--⎝ ⎠

⎛ ⎞ 6
h4

r
c
--⎝ ⎠

⎛ ⎞ 8
+ + + + if 2 r

c
-- 3≤<

r2

2
---- if r

c
-- 2≤

⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

ψ r()

0 if r
c
-- 3>

c g1
r
c
-- g2

r
c
--⎝ ⎠

⎛ ⎞ 3
g3

r
c
--⎝ ⎠

⎛ ⎞ 5
g4

r
c
--⎝ ⎠

⎛ ⎞ 7
+ + + if 2 r

c
-- 3≤<

r if r
c
-- 2≤

⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

c

g1 1.944 g2,– 1.728 g3, 0.312 g4,– 0.016= = = =

h1
g1

2
----- h2,

g2

4
----- h3,

g3

6
----- h4,

g4

8
-----= = = =
361

Chapter 11 Robust Regression
Yohai and Zamar (1998) showed that their loss function above is
optimal in the following sense: the final M-estimate obtained using
this function has a breakdown point of 0.5. In addition, it minimizes
the maximum bias under contamination distributions (locally for
small fractions of contamination), subject to achieving a desired
efficiency when the data are Gaussian.

The Gaussian efficiency of the final M-estimate is controlled by the
choice of tuning constant in the weight function. As discussed in the
section Controlling Options for Robust Regression, you can specify a
desired Gaussian efficiency with the efficiency argument to
lmRobMM.robust.control. Once a value is chosen, Spotfire S+
automatically adjusts the tuning parameter to achieve the desired
efficiency.

Robust
R-Squared

The robust R2 statistic is calculated as follows:

• Initial S-estimator

If an intercept is included in the model, then

,

where is the number of observations, is the number of

predictor variables, and is the initial S-estimate for the

scale parameter. The term is the minimized from
Equations (11.3) and (11.4), for a regression model that has
only an intercept .

If an intercept is included in the model, then

.

c

β0

R2 n 1–()sμ
2 n p–() s0()

2
–

n 1–()sμ
2

---=

n p

s0

sμ ŝ μ()

μ

R2 nŝ 0()2 n p–() s0()
2

–

nŝ 0()2
---=
362

Theoretical Details
• Final M-estimator

If an intercept is included in the model, then

,

where is the ith response for , is a

p-dimensional vector of predictor values, and is the initial

S-estimate for the scale parameter. The term is the location
M-estimate corresponding to the local minimum of

such that

where is the sample median estimate. If an intercept is not

included in the model, replace with 0 in the above formula.

Robust
Deviance

For an M-estimate, the deviance is defined as the optimal value of the

objective function (11.1) on the scale. That is:

• Initial S-estimator

For simplicity, we use the notation where is
from Equations (11.3) and (11.4), so that

.

β1

μ

R2
ρ

yi μ̂–

s0

⎝ ⎠
⎜ ⎟
⎛ ⎞

ρ
yi xi

Tβ1
–

s0

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑–∑

ρ
yi μ̂–

s0

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑
--=

yi i 1 2 … n, , ,= xi

s0

μ̂

Qy μ() ρ
yi μ–

s0

⎝ ⎠
⎜ ⎟
⎛ ⎞

∑=

Qy μ̂() Qy μ*()≤

μ*

μ̂

σ2

β0

ŝ β0() ŝ0= ŝ β()

D ŝ0()2=
363

Chapter 11 Robust Regression
• Final M-estimator

Robust F Test See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986),
where this test is referred to as the tau test.

Robust Wald
Test

See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986).

Robust FPE
(RFPE)

In 1985, Ronchetti proposed to generalize the Akaike Information
Criterion (AIC) to robust model selection. However, Ronchetti’s
results are subject to certain restrictions: they apply only to
M-estimates with zero breakdown points, and the density of the errors
must have a certain form. Yohai (1997) proposed the following Robust
Final Prediction Errors (RFPE) criterion for model selection, which is
not subject to the same restrictions:

Here is the number of observations, is the number of predictor
variables, contains the errors for the model, and is the scale
parameter for the observations. The and terms are

,

where is the derivative of the loss function. This criterion is a
robust analogue to the classical Final Prediction Errors (FPE)
criterion.

β1

D 2 ŝ0()2 ρ
yi xi

Tβ1
–

ŝ0

⎝ ⎠
⎜ ⎟
⎛ ⎞

i
∑=

. (11.5)RFPE nEρ ε
σ
---⎝ ⎠

⎛ ⎞ p A
2B
-------+=

n p
ε σ

A B

A Eψ2 ε
σ
---⎝ ⎠

⎛ ⎞= B Eψ′ ε
σ
---⎝ ⎠

⎛ ⎞=

ψ ρ '=
364

Theoretical Details
By replacing the expectation with a summation, the first term in
Equation (11.5) can be approximated by

,

where are the residuals for the model using the final

M-estimates for the coefficients. Equation (11.5) can thus be
estimated by

where is from Equations (11.3) and (11.4). The and
terms are:

The approximation on the right-hand side of Equation (11.6) is used
as the RFPE criterion in Spotfire S+.

Breakdown
Points

The breakdown point of a regression estimator is the largest fraction of
data that may be replaced by arbitrarily large values without making
the Euclidean norm of the resulting estimate tend to infinity. The

Euclidean norm of an estimate is defined as follows:

.

Any estimator with a breakdown point of approximately 1/2 is called
a high breakdown point estimator, and is highly robust.

, (11.6)

nEρ ε
σ
---⎝ ⎠

⎛ ⎞ ρ
ri
σ
---⎝ ⎠

⎛ ⎞ p A
2B
-------+

i 1=

n

∑≈

ri yi xi
Tβ1–=

β1

RFPE ρ
yi xi

Tβ1
–

ŝ0

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑ pÂ
B̂
---+≈

ŝ0 ŝ β0()= Â B̂

Â 1
n
--- ψ2

ri
ŝ0
----⎝ ⎠

⎛ ⎞

i 1=

n

∑= B̂ 1
n
--- ψ′

ri
ŝ0
----⎝ ⎠

⎛ ⎞

i 1=

n

∑=

β̂

β̂
2

β̂i
2

i 1=

p

∑=
365

Chapter 11 Robust Regression
To illustrate the concept of breakdown point, consider the simple
problem of estimating location, where the most common estimator is

the sample mean . The breakdown point of the mean is

0, since if any single , then . On the other hand, the

sample median has breakdown point of approximately 1/2. For
convenience, consider an odd sample size : it is possible to set

 of the observations to without the median tending to
.

y 1
n
--- yi

i 1=

n

∑=

yi ∞±→ y ∞±→

n
n 1 2⁄= ∞±

∞±
366

Other Robust Regression Techniques
OTHER ROBUST REGRESSION TECHNIQUES

Least Trimmed
Squares
Regression

Least trimmed squares (LTS) regression, introduced by Rousseeuw
(1984), is a highly robust method for fitting a linear regression model.

The LTS estimate for the coefficients in a linear model
minimizes the following objective function:

where is the ith ordered residual. The value of is often set to be

slightly larger than half of , the number of observations in the

model. In contrast, the ordinary least squares estimate for the
regression coefficients minimizes the sum of all squared residuals:

Thus, LTS is equivalent to ordering the residuals from a least squares
fit, trimming the observations that correspond to the largest residuals,
and then computing a least squares regression model for the
remaining observations. The ordinary least squares estimator lacks

robustness because a single observation can cause to take on any
value. The same is true of M-estimators, which are discussed in the
section M-Estimates of Regression.

To compute a least trimmed squares regression model, use the ltsreg
function. For the stack.df data introduced in the section Visualizing
and Summarizing Robust Fits, we compute LTS estimates as follows:

> stack.lts <- ltsreg(Loss ~ ., data = stack.df)

, (11.7)

. (11.8)

β̂LTS

ri
2β

i 1=

q

∑

riβ q
n

β̂LS

ri
2β

i 1=

n

∑

β̂̂LS
367

Chapter 11 Robust Regression
> stack.lts

Method:
Least Trimmed Squares Robust Regression.

Call:
ltsreg.formula(Loss ~ ., data = stack.df)

Coefficients:
 Intercept Air.Flow Water.Temp Acid.Conc.
 -43.6607 0.9185 0.5242 -0.0623

Scale estimate of residuals: 2.05

Total number of observations: 21

Number of observations that determine the LTS estimate: 18

Comparing the LTS coefficients to those for an ordinary least squares
fit, we see that the robust values are noticeably different:

> stack.lm <- lm(Loss ~ ., data = stack.df)
> coef(stack.lm)

 (Intercept) Air.Flow Water.Temp Acid.Conc.
 -39.91967 0.7156402 1.295286 -0.1521225

> coef(stack.lts)

 Intercept Air Flow Water Temp Acid Conc.
 -43.66066 0.9185217 0.5241657 -0.0622979

Plots of the residuals versus fitted values for the two fits, shown in
Figure 11.6, are also revealing:

> par(mfrow = c(1,2))
> plot(fitted(stack.lm), resid(stack.lm),
+ ylim = range(resid(stack.lts)))
> plot(fitted(stack.lts), resid(stack.lts))
368

Other Robust Regression Techniques
The plot for the least squares fit shows the residuals scattered with no
apparent pattern. In contrast, the plot for the LTS fit shows four clear
outliers: three at the top of the graph and one at the bottom.

If is the right fraction of , the least trimmed squares estimator has
the attractive robustness property that its breakdown point is
approximately 1/2. Thus, the LTS estimator is a high-breakdown
point regression estimator. The high breakdown point means that the

values , , fit the bulk of the data well, even when

the bulk consists of only a little more than 50% of the data.

Correspondingly, the residuals reveal the

outliers quite clearly. Least squares residuals and M-estimate residuals
often fail to reveal problems in the data, as discussed in the section
Comparison of Least Squares, Least Trimmed Squares, and M-
Estimates.

Figure 11.6: Residual plots for least squares (left) and least trimmed squares (right)
regression models.

•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

• •

•

•

fitted(stack.lm)

re
si

d(
st

ac
k.

lm
)

10 20 30 40

-1
0

-5
0

5

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•
•

•
•

•

•

fitted(stack.lts)

re
si

d(
st

ac
k.

lts
)

5 10 15 20 25 30 35

-1
0

-5
0

5

q n

xi
Tβ̂LTS i 1 … n, ,=

riβ̂LTS yi xi
Tβ̂LTS–=
369

Chapter 11 Robust Regression
Least Median
Squares
Regression

Similar to least trimmed squares regression is a method called least
median of squares (LMS). Rather than minimize a sum of the squared
residuals as LTS does, LMS minimizes the median of the squared
residuals (Rousseeuw 1984). In Spotfire S+, the lmsreg function
performs least median of squares regression.

LMS regression has a high breakdown point of almost 50%. That is,
almost half of the data can be corrupted in an arbitrary fashion, and
the estimates obtained by LMS continue to model the majority of the
data well. However, least median of squares is statistically very
inefficient. It is due to this inefficiency that we recommend the
lmRobMM and ltsreg functions over lmsreg.

Least Absolute
Deviation
Regression

The idea of least absolute deviation (L1) regression is actually older than
that of least squares, but until the development of high-speed
computers, it was too cumbersome to have wide applicability. As its

name implies, L1 regression finds the coefficients estimate that
minimizes the sum of the absolute values of the residuals:

.

In Spotfire S+, the function l1fit is used to compute a least absolute
deviation regression model (note that the second character in the
function name is the number “1”, not the letter “l”). As an example,
consider again the stack loss data introduced in the section
Visualizing and Summarizing Robust Fits. We construct an L1
regression model using l1fit as follows:

> stack.l1 <- l1fit(stack.x, stack.loss)
> stack.l1

$coefficients:
 Intercept Air Flow Water Temp Acid Conc.
 -39.68986 0.8318838 0.5739132 -0.06086949

β̂L1

riβ

i 1=

n

∑

370

Other Robust Regression Techniques
$residuals:
 [1] 5.06087255 0.00000000 5.42898655 7.63478327
 [5] -1.21739066 -1.79130375 -1.00000000 0.00000000
 [9] -1.46376956 -0.02028821 0.52753741 0.04058089
[13] -2.89854980 -1.80289757 1.18260884 0.00000000
[17] -0.42608649 0.00000000 0.48695672 1.61739194
[21] -9.48115635

Plots of the residuals against the fitted values for statck.l1 show the
outliers more clearly than the least squares regression model, but not
as clearly as ltsreg does in Figure 11.6:

> par(mfrow = c(1,2))
> plot(fitted(stack.lm), resid(stack.lm),
+ ylim = range(resid(stack.l1)))
> plot(stack.loss - resid(stack.l1), resid(stack.l1))

The resulting plot is shown in Figure 11.7.

Figure 11.7: Residual plots for least squares (left) and least absolute deviation
(right) regression models.

•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

• •

•

•

fitted(stack.lm)

re
si

d(
st

ac
k.

lm
)

10 20 30 40

-1
0

-5
0

5 •

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•
•

•
•

•

•

stack.loss - resid(stack.l1)

re
si

d(
st

ac
k.

l1
)

10 15 20 25 30 35

-1
0

-5
0

5

371

Chapter 11 Robust Regression
M-Estimates of
Regression

The M-estimator of regression was first introduced by Huber in 1973. For

a given function, an M-estimate of regression minimizes the
objective function:

Least squares regression corresponds to and L1 regression

corresponds to . Generally, the value of is dependent

on the value of , which is usually unknown.

Although M-estimates are protected against wild values in the
response variable, they are sensitive to high leverage points, which have
very different values compared to the other data points in a model.
In particular, a typographical error in an explanatory variable can
have a dramatic affect on an M-estimate, while least trimmed squares
handles this situation easily. One advantage of M-estimates is that
they can be computed in much less time than LTS or other high-
breakdown point estimators. For more discussion about high leverage
points, see the section Comparison of Least Squares, Least Trimmed
Squares, and M-Estimates.

In Spotfire S+, you can calculate M-estimates of regression using the
rreg function, which computes iteratively reweighted least-squares fits. In
the fitting algorithm, an initial model is calculated using traditional
weighted least squares by default. The algorithm computes a new set
of weights based on the results of the initial fit. The new weights are
then used in another weighted least squares fit, and so on. Spotfire S+
continues iteratively until some convergence criteria are satisfied or a
specified maximum number of iterations is reached.

To use the rreg function, the only required arguments are x, the
vector or matrix of explanatory variables, and y, the vector response.
For example, a typical call to rreg using the stack loss data is:

> stack.M <- rreg(stack.x, stack.loss)

. (11.9)

ρ β̂M

ρ
riβ
σ

-------⎝ ⎠
⎛ ⎞

i 1=

n

∑

ρ x() x2=

ρ x() x= β̂M

σ

x

372

Other Robust Regression Techniques
> stack.M

$coefficients:
 (Intercept) Air Flow Water Temp Acid Conc.
 -42.07438 0.8978265 0.731816 -0.1142602

$residuals:
 [1] 2.65838630 -2.45587390 3.72541082 6.78619020
 [5] -1.75017776 -2.48199378 -1.52824862 -0.52824862
 [9] -1.89068795 -0.03142924 0.99691253 0.61446835
[13] -2.80290885 -1.27786270 2.17952419 0.83674360
[17] -0.49471517 0.30510621 0.68755039 1.52911203
[21] -10.01211661

$fitted.values:
 [1] 39.341614 39.455874 33.274589 21.213810 19.750178
 [6] 20.481994 20.528249 20.528249 16.890688 14.031429
[11] 13.003087 12.385532 13.802909 13.277863 5.820476
[16] 6.163256 8.494715 7.694894 8.312450 13.470888
[21] 25.012117

$w:
 [1] 0.87721539 0.91831885 0.77235329 0.41742415 0.95387576
 [6] 0.90178786 0.95897484 0.99398847 0.93525890 0.99958817
[11] 0.97640677 0.98691782 0.89529949 0.98052477 0.92540436
[16] 0.98897286 0.99387986 0.99933718 0.99574820 0.96320721
[21] 0.07204303

$int:
[1] T

$conv:
[1] 0.175777921 0.036317063 0.021733577 0.013181419
[5] 0.007426725 0.003341872 0.093998053 0.055029889

$status:
[1] "converged"

You can control the choice of by specifying a weight function as the
method argument to rreg. Currently, there are eleven weight
functions built into Spotfire S+, and there is not yet a consensus on
which method is the “best.” See the rreg help file for details on each

ρ

373

Chapter 11 Robust Regression
of the weight functions available. The default weight function uses
Huber’s function until convergence, and then a bisquare function for
two more iterations. Huber’s function is defined as:

where is a tuning constant. The bisquare function implemented in
rreg is:

.

Here again, is a tuning parameter.

The following call to rreg defines a simple weight function for the

stack loss data that corresponds to the least squares choice :

> stack.MLS <- rreg(stack.x, stack.loss,
+ method = function(u) 2*abs(u), iter = 100)

Warning messages:
 failed to converge in 100 steps

> coef(stack.MLS)

 (Intercept) Air Flow Water Temp Acid Conc.
 -39.68049 0.7166834 1.298541 -0.156553

> coef(stack.lm)

 (Intercept) Air.Flow Water.Temp Acid.Conc.
 -39.91967 0.7156402 1.295286 -0.1521225

ρ x()
1 abs x() c<
c

abs x()
---------------- abs x() c≥

⎩
⎪
⎨
⎪
⎧

=

c

ρ x()
1 x

c
--⎝ ⎠

⎛ ⎞ 2
–⎝ ⎠

⎛ ⎞ 2
x c<

0 x c≥⎩
⎪
⎨
⎪
⎧

=

c

ρ x() x2=
374

Other Robust Regression Techniques
Comparison of
Least Squares,
Least Trimmed
Squares, and
M-Estimates

Plots of residuals are often used to reveal outliers in linear models. As
discussed in the section Least Trimmed Squares Regression, LTS is an
robust method that isolates outliers quite clearly in plots. However,
residuals from least squares and M-estimator regression models often
fail to reveal problems in the data. We illustrate this point with a
contrived example.

First, we construct an artificial data set with sixty percent of the data
scattered about the line , and the remaining forty percent in an
outlying cluster centered at .

set the seed to reproduce this example
> set.seed(14)
> x30 <- runif(30, mean = 0.5, sd = 4.5)
> e30 <- rnorm(30, mean = 0, sd = 0.2)
> y30 <- 2 + x30 + e30
> x20 <- rnorm(20, mean = 6, sd = 0.5)
> y20 <- rnorm(20, mean = 2, sd = 0.5)
> x <- c(x30, x20)
> y <- c(y30, y20)

We plot the data, and then fit three different regression lines: the
ordinary least squares line, an M-estimate line, and the least trimmed
squared line.

> plot(x, y)
> abline(lm(y ~ x))
> text(5, 3.4, "LS")
> abline(rreg(x, y))
> text(4, 3.2, "M")
> abline(ltsreg(x, y))
> text(4, 6.5, "LTS")

The resulting plot is shown in Figure 11.8. Note that all three
regression lines are influenced by the leverage points in the outlying
cluster.

y x=

6 2(,)
375

Chapter 11 Robust Regression
The ltsreg function has a quan argument that allows you to specify
the number of residuals included in the least trimmed squares
calculations. The default value of quan includes approximately 90% of
the data points. However, we can change this value to include only a
little more than 50% of the data, since LTS regression has a
breakdown point of nearly . In the commands below, we use
about 60% of the data in the LTS fit:

> plot(x, y)
> abline(lm(y ~ x))
> text(5, 3.4, "LS")
> abline(rreg(x, y))
> text(4, 3.2, "M")
> abline(ltsreg(x, y, quan = floor(0.6*length(x))))
> text(3.7, 6.0, "LTS")

Figure 11.8: Least trimmed squares, least squares, and M-estimates regression. Note that the outlying cluster of
leverage points influences all three fits.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•
••

•

•

•

•
•

••

•

•

•

•

•

•
•

•

x

y

1 2 3 4 5 6 7

1
2

3
4

5
6

LS
M

LTS

1 2⁄
376

Other Robust Regression Techniques
The result is shown in Figure 11.9. Note that the outlying cluster of
points pulls both the ordinary least squares line and the M-estimate
away from the bulk of the data. Neither of these two fitting methods is
robust to leverage points (i.e., outliers in the x direction). The LTS line
recovers the linear structure in the bulk of the data and essentially
ignores the outlying cluster. In higher dimensions, such outlying
clusters are extremely hard to identify using classical regression
techniques, which makes least trimmed squares an attractive robust
method.

Figure 11.9: Least trimmed squares regression, as compared to least squares and
M-estimates regression.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•
••

•

•

•

•
•

••

•

•

•

•

•

•
•

•

x

y

1 2 3 4 5 6 7

1
2

3
4

5
6

LS
M

LTS
377

Chapter 11 Robust Regression
REFERENCES

Hampel, F., Ronchetti, E.M., Rousseeuw, P.J., & Stahel, W.A. (1986).
Robust Statistics: the Approach Based on Influence Functions. New York:
John Wiley & Sons, Inc.

Huber, P.J. (1981). Robust Statistics. New York: John Wiley & Sons, Inc.

Marazzi, A. (1993). Algorithms, Routines, and S Functions for Robust
Statistics. Pacific Grove, CA: Wadsworth & Brooks/Cole.

Martin, R.D. & Zamar, R.H. (1989). Asymptotically min-max robust
M-estimates of scale for positive random variables. Journal of the
American Statistical Association 84: 494-501.

Martin, R.D. & Zamar, R.H. (1993). Bias robust estimates of scale.
Annals of Statistics 21: 991-1017.

Ronchetti, E. (1985). Robust model selection in regression. Spotfire S+
Statistics & Probability Letters 3: 21-23.

Rousseeuw, P.J. (1984). Least median of squares regression. Journal of
the American Statistical Association 79: 871-881.

Rousseeuw, P.J. & Yohai, V. (1984). Robust regression by means of
S-estimators. In Robust and Nonlinear Time Series Analysis, J. Franke, W.
Hardle, & R.D. Martin (Eds.). Lecture Notes in Statistics, 26: 256-272.
New York: Springer-Verlag.

Wilcox, R.R. (1997). Introduction to Robust Estimation and Hypothesis
Testing. San Diego: Academic Press.

Yohai, V.J. (1987). High Breakdown-Point and High Efficiency
Estimates for Regression. Annals of Statistics 15: 642-665.

Yohai, V.J. (1997). A New Robust Model Selection Criterion for
Linear Models: RFPE (unpublished note).

Yohai, V., Stahel, W.A., & Zamar, R.H. (1991). A procedure for robust
estimation and inference in linear regression. In Directions in Robust
Statistics and Diagnostics, Part II, W.A. Stahel & S.W. Weisberg (Eds.).
New York: Springer-Verlag.

Yohai, V.J. & Zamar, R.H. (1998). Optimal locally robust M-estimates
of regression. Journal of Statistical Planning and Inference 64: 309-323.
378

Introduction 380

Generalized Linear Models 381

Generalized Additive Models 385

Logistic Regression 387
Fitting a Linear Model 388
Fitting an Additive Model 394
Returning to the Linear Model 398
Legal Forms of the Response Variable 402

Probit Regression 404

Poisson Regression 407

Quasi-Likelihood Estimation 415

Residuals 418

Prediction from the Model 420
Predicting the Additive Model of Kyphosis 420
Safe Prediction 422

Advanced Topics 424
Fixed Coefficients 424
Family Objects 425

References 432

GENERALIZING THE LINEAR
MODEL 12
379

Chapter 12 Generalizing the Linear Model
INTRODUCTION

Least squares estimation of regression coefficients for linear models
dates back to the early nineteenth century. It met with immediate
success as a simple way of mathematically summarizing relationships
between observed variables of real phenomena. It quickly became
and remains one of the most widely used statistical methods of
practicing statisticians and scientific researchers.

Because of the simplicity, elegance, and widespread use of the linear
model, researchers and statisticians have tried to adapt its
methodology to different data configurations. For example, it should
be possible to relate a categorical response (or some transformation of
it) to a set of predictor variables, similar to the role a continuous
response takes in the linear model. Although conceptually plausible,
the development of regression models for categorical responses
lacked solid theoretical foundation until the introduction of the
generalized linear model by Nelder and Wedderburn (1972).

This chapter focuses on generalized linear models and generalized
additive models, as they apply to categorical responses. In particular,
we focus on logistic, probit, and Poisson regressions. We also include
a brief discussion on the quasi-likelihood method, which fits models
when an exact likelihood cannot be specified.
380

Generalized Linear Models
GENERALIZED LINEAR MODELS

The linear model discussed in Chapter 10, Regression and Smoothing
for Continuous Response Data, is a special case of the generalized
linear model. A linear model provides a way of estimating the
response variable , conditional on a linear function of the values

 of some set of predictors variables, .
Mathematically, we write this as:

For the linear model, the variance of is assumed to be constant, and

is denoted by .

A generalized linear model (GLM) provides a way of estimating a
function of the mean response as a linear combination of some set of
predictors. This is written as:

The function of the mean response, , is called the link function,
and the linear function of the predictors, , is called the linear
predictor. For the generalized linear model, the variance of may be a
function of the mean response :

.

To compute generalized linear models in TIBCO Spotfire S+, we can
use the glm function.

. (12.1)

. (12.2)

Y
x1 x2 … x, p, , X1 X2 … X, p, ,

E Y x() β0 βixi
i 1=

p

∑+=

Y

var Y() σ2=

g E Y x()() g μ() β0 βixi
i 1=

p

∑+ η x()= = =

g μ()
η x()

Y
μ

var Y() φV μ()=
381

Chapter 12 Generalizing the Linear Model
Three special cases of generalized linear models are the logistic,
probit, and Poisson regressions. Logistic regression models data in
which the response variable is categorical and follows a binomial
distribution. To do a logistic regression in Spotfire S+, we declare the
binomial family in glm. This uses the logit link function

,

and the variance function defined by

.

Here, is the probability of an event occurring, and corresponds to
the mean response of a binary (0-1) variable. In logistic regression, we
model the probability of some event occurring as a linear function of
a set of predictors. The most common examples of logistic response
variables include the presence/absence of AIDS, the presence/
absence of a plant species in a vegetation sample, and the failure/non-
failure of a electronic component in a radio.

Like logistic regression, probit regression models data in which the
response variable follows a binomial distribution. It describes the
probability of some event occurring as a linear function of predictors,
and therefore uses the same variance function as logistic models:

.

However, probit regression uses the probit link function

,

where is the Gaussian cumulative distribution function, and is
its inverse. To do a probit regression in Spotfire S+, we declare the
binomial(link=probit) family in glm. This kind of regression is
popular in bioassay problems.

g p() logit p() p
1 p–
------------log= =

var Y() φ p
1 p–
------------=

p

var Y() φ p
1 p–
------------=

g p() F 1– p()=

F F 1–
382

Generalized Linear Models
Poisson regression models data in which the response variable
represents counts. To do a Poisson regression in Spotfire S+, we
declare the poisson family in glm. This uses the log link function

,

and the variance function defined by

.

The Poisson family is useful for modeling count data that typically
follows a Poisson distribution. Common examples include tables of
rates, in which the rate of a particular event is classified according to a
number of categorical predictors. The example we present in the
section Poisson Regression models the number of soldering skips as a
function of various controlled factors in a solder experiment.

Usually, is fixed to be 1 in the variance function of a generalized
linear model. When we cannot assume that , we must use the
quasi family in glm for quasi-likelihood estimation. This is the case of
over- or under-dispersion, as discussed in McCullagh and Nelder
(1989). The quasi-likelihood family allows us to estimate the
parameters in a model without specifying the underlying distribution
function. In this case, the link and variance functions are all that are
used to fit the model. Once these are known, the same iterative
procedure used for fitting the other families can be used to estimate
the model parameters. For more details, see Chambers and Hastie
(1992) and McCullagh and Nelder (1989).

Other families are available in glm for modeling various kinds of data
as linear functions of predictors. For example, normal and inverse
normal distributions are specified with the gaussian and
inverse.gaussian families. Table 12.1 lists the distribution families
available for use with the glm function.

g μ() μ()log=

var Y() φμ=

φ
φ 1=
383

Chapter 12 Generalizing the Linear Model
Each of these distributions belongs to the one-parameter exponential
family of distributions. The link function for each family listed in
Table 12.1 is referred to as the canonical link, because it relates the
canonical parameter of the distribution family to the linear predictor,

. For more details on the parameterization of these distributions,
see McCullagh and Nelder (1989).

The estimates of regression parameters in a generalized linear model
are maximum likelihood estimates, produced by iteratively
reweighted least-squares (IRLS). Essentially, the log-likelihood
is maximized by solving the score equations:

Since the score equations are nonlinear in , they are solved
iteratively. For more details, see Chambers and Hastie (1992) or
McCullagh and Nelder (1989).

Table 12.1: Link and variance functions for the generalized linear and generalized
additive models.

Distribution Family Link Variance

Normal/Gaussian gaussian μ 1

Binomial binomial log(μ/(1-μ)) μ(1-μ)/n

Poisson poisson log(μ) μ

Gamma gamma 1/μ μ2

Inverse Normal/
Gaussian

inverse.gaussian 1/μ2 μ3

Quasi quasi g(μ) V(μ)

. (12.3)

η x()

l β y,()

∂l β y,() ∂β⁄ 0=

β

384

Generalized Additive Models
GENERALIZED ADDITIVE MODELS

The section Generalized Linear Models discusses an extension of
linear models to data with error distributions other than normal
(Gaussian). By using the glm function, we can fit data with Gaussian,
binomial, Poisson, gamma, or inverse Gaussian errors. This
dramatically broadens the kind of data for which we can build
regression models.

The primary restriction of a GLM is the fact that the linear predictor
 is still a linear function of the parameters in the model. The

generalized additive model (GAM) extends the generalized linear
model by fitting nonparametric functions to estimate relationships
between the response and the predictors. The nonparametric
functions are estimated from the data using smoothing operations. To
compute generalized additive models in Spotfire S+, we can use the
gam function. Because GLMs are a special instance of GAMs, we can
fit genearlized linear models using the gam function as well.

The form of a generalized additive model is:

where is the link function and is a constant intercept term. In
Equation (12.4), corresponds to the nonparametric function
describing the relationship between the transformed mean response

 and the ith predictor. In this context, is referred to as the
additive predictor, and is entirely analogous to the linear predictor of a
GLM as defined in Equation (12.2). As for the generalized linear
model, the variance of in a GAM may be function of the mean
response :

.

, (12.4)

η x()

g E Y(x)() g μ() α fi xi()
i 1=

p

∑+ η x()= = =

g μ() α
fi

g μ() η x()

Y
μ

var Y() φV μ()=
385

Chapter 12 Generalizing the Linear Model
All of the distribution families listed in Table 12.1 are available for
generalized additive models. Thus fully nonparametric, nonlinear
additive regression models can be fit to binomial data (logistic and
probit regression) and count data (Poisson regression), as well as to
data with error distributions given by the other families in Table 12.1.

Two functions that are useful for fitting a gam are s and lo. Both of
these functions are used to fit smooth relationships between the
transformed response and the predictors. The s function fits cubic
B-splines to estimate the smooth, and lo fits a locally weighted least-
squares regression to estimate the smooth. For more details on using
these functions, see their help files.
386

Logistic Regression
LOGISTIC REGRESSION

To fit a logistic regression model, use either the glm function or the
gam function with a formula to specify the model, and set the family
argument to binomial. As an example, consider the built-in data
frame kyphosis. A summary of the data frame produces the
following:

> attach(kyphosis)
> summary(kyphosis)

 Kyphosis Age Number Start
absent :64 Min. : 1.00 Min. : 2.000 Min. : 1.00
present:17 1st Qu.: 26.00 1st Qu.: 3.000 1st Qu.: 9.00
 Median : 87.00 Median : 4.000 Median :13.00
 Mean : 83.65 Mean : 4.049 Mean :11.49
 3rd Qu.:130.00 3rd Qu.: 5.000 3rd Qu.:16.00
 Max. :206.00 Max. :10.000 Max. :18.00

The list below describes the four variables in the kyphosis data set.

• Kyphosis: a binary variable indicating the presence/absence
of a postoperative spinal deformity called Kyphosis.

• Age: the age of the child in months.

• Number: the number of vertebrae involved in the spinal
operation.

• Start: the beginning of the range of the vertebrae involved in
the operation.

A convenient way of examining the bivariate relationship between
each predictor and the binary response, Kyphosis, is with a set of
boxplots produced by plot.factor:

> par(mfrow = c(1,3), cex = 0.7)
> plot.factor(kyphosis)

Setting the mfrow parameter to c(1,3) produces three plots in a row.
The character expansion is set to 0.7 times the normal size using the
cex parameter of the par function. Figure 12.1 displays the result.
387

Chapter 12 Generalizing the Linear Model
Both Start and Number show strong location shifts with respect to the
presence or absence of Kyphosis. The Age variable does not show
such a shift in location.

Fitting a
Linear Model

The logistic model we start with relates the probability of developing
Kyphosis to the three predictor variables, Age, Number, and Start. We
fit the model using glm as follows:

> kyph.glm.all <- glm(Kyphosis ~ Age + Number + Start,
+ family = binomial, data = kyphosis)

The summary function produces a summary of the resulting fit:

> summary(kyph.glm.all)

Call: glm(formula = Kyphosis ~ Age + Number + Start,
family = binomial, data = kyphosis)
Deviance Residuals:
 Min 1Q Median 3Q Max
-2.312363 -0.5484308 -0.3631876 -0.1658653 2.16133

Coefficients:
 Value Std. Error t value
(Intercept) -2.03693225 1.44918287 -1.405573
Age 0.01093048 0.00644419 1.696175
Number 0.41060098 0.22478659 1.826626
Start -0.20651000 0.06768504 -3.051043

Figure 12.1: Boxplots of the predictors of kyphosis versus Kyphosis.
0

50
10

0
15

0
20

0

A
ge

absent present

Kyphosis

2
4

6
8

10

N
um

be
r

absent present

Kyphosis

5
10

15

S
ta

rt

absent present

Kyphosis
388

Logistic Regression
(Dispersion Parameter for Binomial family taken to be 1)

 Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 61.37993 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 5

Correlation of Coefficients:
 (Intercept) Age Number
 Age -0.4633715
Number -0.8480574 0.2321004
 Start -0.3784028 -0.2849547 0.1107516

The summary includes:

1. a replica of the call that generated the fit,

2. a summary of the deviance residuals (we discuss residuals
later in this chapter),

3. a table of estimated regression coefficients, their standard
errors, and the partial t-test of their significance,

4. estimates of the null and residual deviances, and

5. a correlation matrix of the coefficient estimates.

The partial t-tests indicate that Start is important even after adjusting
for Age and Number, but they provide little information on the other
two variables.

You can produce an analysis of deviance for the sequential addition
of each variable by using the anova function, specifying the chi-square
test to test for differences between models. The command below
shows this test for the kyph.glm.all model object.

> anova(kyph.glm.all, test = "Chi")

Analysis of Deviance Table

Binomial model

Response: Kyphosis

Terms added sequentially (first to last)
389

Chapter 12 Generalizing the Linear Model
 Df Deviance Resid. Df Resid. Dev Pr(Chi)
 NULL 80 83.23447
 Age 1 1.30198 79 81.93249 0.2538510
Number 1 10.30593 78 71.62656 0.0013260
Start 1 10.24663 77 61.37993 0.0013693

Here we see that Number is important after adjusting for Age. We
already know that Number loses its importance after adjusting for Age
and Start. In addition, Age does not appear to be important as a
linear predictor.

You can examine the bivariate relationships between the probability
of Kyphosis and each of the predictors by fitting a “null” model and
then adding each of the terms, one at a time. The null model in this
example has a single intercept term, and is specified with the formula
Kyphosis ~ 1:

> kyph.glm.null <- glm(Kyphosis ~ 1, family = binomial,
+ data = kyphosis)
> add1(kyph.glm.null, ~ . + Age + Number + Start)

Single term additions

Model: Kyphosis ~ 1
 Df Sum of Sq RSS Cp
<none> 81.00000 83.02500
Age 1 1.29546 79.70454 83.75454
Number 1 10.55222 70.44778 74.49778
Start 1 16.10805 64.89195 68.94195

The Cp statistic is used to compare models that are not nested. A small
Cp value corresponds to a better model, in the sense of a smaller
residual deviance penalized by the number of parameters that are
estimated in fitting the model.

From the above analysis, Start is clearly the best single variable to
use in a linear model. These statistical conclusions, however, should
be verified by looking at graphical displays of the fitted values and
residuals. The plot method for generalized linear models is called
plot.glm, and produces four diagnostic plots:

1. a plot of deviance residuals versus the fitted values,

2. a plot of the square root of the absolute deviance residuals
versus the linear predictor values,
390

Logistic Regression
3. a plot of the response versus the fitted values, and

4. a normal quantile plot of the Pearson residuals.

This set of plots is similar to those produced by the plot method for lm
objects.

Systematic curvature in the residual plots might be indicative of
problems in the choice of link, the wrong scale for one of the
predictors, or omission of a quadratic term in a predictor. Large
residuals can also be detected in these plots, and may be indicative of
outlying observations that need to be removed from the analysis. The
plot of the absolute residuals against predicted values gives a visual
check on the adequacy of the assumed variance function. The normal
quantile plot is useful in detecting extreme observations deviating
from a general trend. However, one should exercise caution in not
over-interpreting the shape of this plot, which is not necessarily of
interest in the nonlinear context.

Figure 12.2 displays the four plots for the model involving all three
predictor variables: Age, Number, and Start. The plots are produced
with the following commands:

> par(mfrow = c(2,2))
> plot(kyph.glm.all)
391

Chapter 12 Generalizing the Linear Model
Residual plots are not useful for binary data such as Kyphosis,
because all of the points lie on one of two curves depending on
whether the response is 0 or 1. A more useful diagnostic plot is
produced by the plot.gam function. By default, plot.gam plots the
estimated relationship between the individual fitted terms and each of
the corresponding predictors. You can request that partial residuals
be added to the plot by specifying the argument resid=T. The scale
argument can be used to keep all of the plots on the same scale for
ease of comparison. Figure 12.3 is produced with the following
commands:

> par(mfrow = c(1,3))
> plot.gam(kyph.glm.all, resid = T, scale = 6)

Figure 12.2: Plots of the generalized linear model of Kyphosis predicted by Age,
Start, and Number.

••

•

•

•••••

••

•

•

•••
•

•
• •

•

•

•

•

•

• ••• •• • •
•

•
••

•

•

•

•

•

•

•

•

•

• •

•

• •
•

•
•

•••

•

•
•

••

•

•••• •
••

••
•

•

•
•

•

••

•

•

Fitted : Age + Number + Start
D

ev
ia

nc
e

R
es

id
ua

ls

0.0 0.2 0.4 0.6 0.8

-2
-1

0
1

2

•
•

••

•
• • • •

•
•

•

•

••

•

•

•

•
•

•

•

•

• •

•
•

•

•
•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

••
•

•
•

•

•
•
•

• •••

•

•
•

••

•

•

•

•

•

•
•

•

•

Predicted : Age + Number + Start

sq
rt

(a
bs

(r
es

id
(k

yp
h.

gl
m

.a
ll)

))

-4 -2 0 2

0.
4

0.
8

1.
2

••

•

••••••

••

• •••• • •• ••

••

•

•

• ••• •• • •• •••

•

•

• •

• •••

•

• •

•

• ••

•

• •••

•

••

••

••••• ••• ••• •• •

•

••

•

•

Fitted : Age + Number + Start

K
yp

ho
si

s

0.0 0.4 0.8

0.
0

0.
4

0.
8

• •

•

•
• ••••

•
•

•
•

•• ••• •• •
•

•

•

•

•• • •• ••• •
•

••

•

•

•

•
•

•

•
•

•

••

•

••
•
••• • •

•

•
•

• •

•
••• •• • •• • •

•
••

•

• •

•

•

Quantiles of Standard Normal
P

ea
rs

on
 R

es
id

ua
ls

-2 -1 0 1 2

-2
0

2

392

Logistic Regression
These plots give a quick assessment of how well the model fits the
data by examining the fit of each term in the formula. The plots are of
the adjusted relationship for each predictor, versus each predictor.
When the relationship is linear, the label on the vertical axis reduces
to the variable name. We will see the utility of this plot method and
the reason for the labels in the next section, where we plot additive
models produced by gam.

Both plot.glm and plot.gam produce multiple plots. You can,
however, choose which plots you look at by using the argument
ask=T. This option produces a menu of available plots from which
you select the number of the plot that you would like to see. For
example, here is the menu of default GLM plots:

> plot(kyph.glm.all, ask = T)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Residuals vs Fitted Values
3: plot: Sqrt of abs(Residuals) vs Predictions
4: plot: Response vs Fitted Values
5: plot: Normal QQplot of Std. Residuals
Selection:

Figure 12.3: Additional plots of the generalized linear model of Kyphosis
predicted by Age, Number, and Start.

Age
A

ge

0 100 200

-2
0

1
2

3

•

•

•

•
••

••
•

•
•

•

•
•

•

•
•

•
•

••

•

•

•
•

••

•
•

•

•
••• ••

•

•

•

•

•

•
••

•

•

••

•

•

••

•

•

•
•

•

•

•

•

••

•

••

•

•
•

••

•••
•

•

•

•

•

•
•

•

Number

N
um

be
r

2 4 6 8 10

-2
0

1
2

3

••

•

•
•

••
•

•

••

• •
•

••

•
•
•

•
•

••

•

•

•

••••
•

•

•
• •••

•

•

•

•

•
•

•
•

•

• •

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•
• ••

•
••

•
•••

•
• •

•

•

•

•

•

Start

S
ta

rt

0 5 10

-2
0

1
2

3

•

•

•

•

•••••

• •

•

•

•

•
••• •

•

•

• •

•

•

•

•

• •••
•

• •
•

•

•

•

•

•

•

••

•

•

•

••

•

•
•

•

•

•••
•

•

• •

•

•

•

••

•

•
•

•

••
•

•
• •

•

•

••

•

•

393

Chapter 12 Generalizing the Linear Model
Fitting an
Additive Model

So far we have examined only linear relationships between the
predictors and the probability of developing Kyphosis. We can assess
the validity of the linear assumption by fitting an additive model with
relationships estimated by smoothing operations, and then comparing
it to the linear fit. We use the gam function to fit an additive model as
follows:

> kyph.gam.all <-
+ gam(Kyphosis ~ s(Age) + s(Number) + s(Start),
+ family = binomial, data = kyphosis)

Including each variable as an argument to the s function instructs gam
to estimate the “smoothed” relationships with each predictor by using
cubic B-splines. Alternatively, we can use the lo function for local
regression smoothing. A summary of the fit is:

> summary(kyph.gam.all)

Call: gam(formula = Kyphosis ~ s(Age) +s(Number)+ s(Start),
family = binomial, data = kyphosis)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.351358 -0.4439636 -0.1666238 -0.01061843 2.10851

(Dispersion Parameter for Binomial family taken to be 1)

 Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 40.75732 on 68.1913 degrees of freedom

Number of Local Scoring Iterations: 7

DF for Terms and Chi-squares for Nonparametric Effects

 Df Npar Df Npar Chisq P(Chi)
(Intercept) 1
 s(Age) 1 2.9 5.782245 0.1161106
 s(Number) 1 3.0 5.649706 0.1289318
 s(Start) 1 2.9 5.802950 0.1139286
394

Logistic Regression
The summary of a gam fit is similar to the summary of a glm fit. One
noticeable difference, however, is in the analysis of deviance table.
For an additive fit, the tests correspond to approximate partial tests for
the importance of the smooth for each term in the model. These tests
are typically used to screen variables for inclusion in the model. For a
single-variable model, this is equivalent to testing for a difference
between a linear fit and a smooth fit that includes both linear and
smooth terms. The approximate nature of the partial tests is discussed
in detail in Hastie and Tibshirani (1990).

Since Start is the best single variable to use in the Kyphosis model,
we fit a base GAM with a smooth of Start. For comparison, we fit
two additional models that build on the base model: one with a
smooth of the Age variable and one with a smooth of the Number
variable.

> kyph.gam.start <- gam(Kyphosis ~ s(Start),
+ family = binomial, data = kyphosis)

> kyph.gam.start.age <-
+ gam(Kyphosis ~ s(Start) + s(Age),
+ family = binomial, data = kyphosis)

> kyph.gam.start.number <-
+ gam(Kyphosis ~ s(Start) + s(Number),
+ family = binomial, data = kyphosis)

We produce the following analysis of deviance tables:

> anova(kyph.gam.start, kyph.gam.start.age, test = "Chi")

Analysis of Deviance Table

Response: Kyphosis

 Terms Resid. Df Resid. Dev
1 s(Start) 76.24543 59.11262
2 s(Start) + s(Age) 72.09458 48.41713
 Test Df Deviance Pr(Chi)
1
2 +s(Age) 4.150842 10.69548 0.0336071

> anova(kyph.gam.start, kyph.gam.start.number,
+ test = "Chi")
395

Chapter 12 Generalizing the Linear Model
Analysis of Deviance Table

Response: Kyphosis

 Terms Res.Df Res.Dev
1 s(Start) 76.24543 59.11262
2 s(Start)+s(Number) 72.18047 54.17895
 Test Df Deviance Pr(Chi)
1
2 +s(Number) 4.064954 4.933668 0.3023856

The indication is that Age is important in the model even with Start
included, whereas Number is not important under the same conditions.

With the following commands, we plot the fit that includes the Age
and Start variables, adding partial residuals and maintaining the
same scale for all figures:

> par(mfrow = c(2,2))
> plot(kyph.gam.start.age, resid = T, scale = 8)

The result is displayed in the top two plots of Figure 12.4. With the
following command, we plot the fit and add pointwise confidence
intervals:

> plot(kyph.gam.start.age, se = T, scale = 10)

The result is displayed in the bottom two plots of Figure 12.4. Notice
the labels on the vertical axes, which reflect the smoothing operation
included in the modeling.
396

Logistic Regression
The summary of the additive fit with smooths of Age and Start
appears as follows:

> summary(kyph.gam.start.age)

Call: gam(formula = Kyphosis ~ s(Start) + s(Age),
family = binomial, data = kyphosis)

Figure 12.4: The partial fits for the generalized additive logistic regression model of
Kyphosis with Age and Start as predictors.

Start

s(
S

ta
rt

)

5 10 15

-6
-4

-2
0

2

•

•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•••

•
•

•

•

•

•

•

•
•

•

•
••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•

••

•

•
•

•

•

Age

s(
A

ge
)

0 50 100 150 200

-4
-2

0
2

4

•
•

•

•••

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
••

•

•

•

•

•

•

•
•

• ••

•
•

•
•

•

•
•

•

•

•

•
•

•

•

•

•

••

•

•

•
•

•

••

••

•

•
•

•

•

•

•
•

•

Start

s(
S

ta
rt

)

5 10 15

-1
0

-5
0

Age

s(
A

ge
)

0 50 100 150 200

-6
-4

-2
0

2

397

Chapter 12 Generalizing the Linear Model
Deviance Residuals:
 Min 1Q Median 3Q Max
 -1.694389 -0.4212112 -0.1930565 -0.02753535 2.087434

(Dispersion Parameter for Binomial family taken to be 1)

 Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 48.41713 on 72.09458 degrees of freedom

Number of Local Scoring Iterations: 6

DF for Terms and Chi-squares for Nonparametric Effects
 Df Npar Df Npar Chisq P(Chi)
(Intercept) 1
 s(Start) 1 2.9 7.729677 0.0497712
 s(Age) 1 3.0 6.100143 0.1039656

Returning to
the Linear
Model

The plots displayed in Figure 12.4 suggest a quadratic relationship for
Age and a piecewise linear relationship for Start. We return to a
generalized linear model to fit these relationships instead of relying
on the more complicated additive models. In general, it is best to fit
relationships with a linear model if possible, as it results in a simpler
model without losing too much precision in predicting the response.

For Age, we fit a second degree polynomial. For Start, recall that its
values indicate the beginning of the range of the vertebrae involved
in the operation. Values less than or equal to 12 correspond to the
thoracic region of the spine, and values greater than 12 correspond to
the lumbar region. From Figure 12.4, we see that the relationship for
Start is fairly flat for values approximately less than or equal to 12,
and then drops off linearly for values greater than 12. Because of this,
we try fitting a linear model with the term I((Start -
12) * (Start > 12)):

> kyph.glm.istart.age2 <-
+ glm(Kyphosis ~ poly(Age,2) + I((Start-12) * (Start>12)),
+ family = binomial, data = kyphosis)
398

Logistic Regression
The I function is used here to prevent the "*" from being used for
factor expansion in the formula sense. Figure 12.5 displays the
resulting fit, along with the partial residuals and pointwise confidence
intervals. To generate these plots, we use the plot.gam function in the
same way that we did for Figure 12.4:

> par(mfrow = c(2,2))
> plot.gam(kyph.glm.istart.age2, resid = T, scale = 8)
> plot.gam(kyph.glm.istart.age2, se = T, scale = 10)

Figure 12.5: The partial fits for the generalized linear logistic regression model of
Kyphosis with quadratic fit for Age and piecewise linear fit for Start.

Age

po
ly

(A
ge

, 2
)

0 50 100 150 200

-4
-2

0
2

4

• •

•

•••

•
•

•
•

•

•

•
•

•

•

•

•

•

••

••

•

•

••

•

•

•
• •

•

•

•

•

•

•

•

••

• ••

•
•

•
•

•

•
•

•

•

•

••

•

•

•

•

••

•

•

• •

•

••

••

•

•

•
•

•

•

•

•

•

Start
I((

S
ta

rt
- 1

2)
 *

 (S
ta

rt
>

12
))

0 5 10 15

-6
-4

-2
0

2
4

•

•

•

•

•

•

•

••

•

•

•

• •

•

•

•

•

•

•

•

• •

•

•

•

•

•

•••

•
•

•

•

•

•

•

•

••

•
••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

••

•

•
•

•

•

Age

po
ly

(A
ge

, 2
)

0 50 100 150 200

-8
-6

-4
-2

0
2

4

Start

I((
S

ta
rt

- 1
2)

 *
 (S

ta
rt

>
12

))

5 10 15

-8
-6

-4
-2

0
2

4

399

Chapter 12 Generalizing the Linear Model
The summary of the fit follows:

> summary(kyph.glm.istart.age2)

Call: glm(formula = Kyphosis ~ poly(Age, 2) +
 I((Start - 12) * (Start > 12)), family = binomial,
 data = kyphosis)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.42301 -0.5014355 -0.1328078 -0.01416602 2.116452
Coefficients:
 Value Std. Error t value
 (Intercept) -0.6849607 0.4570976 -1.498500
 poly(Age, 2)1 5.7719269 4.1315471 1.397038
 poly(Age, 2)2 -10.3247767 4.9540479 -2.084109
I((Start-12)*(Start>12)) -1.3510122 0.5072018 -2.663658

(Dispersion Parameter for Binomial family taken to be 1)

 Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 51.95327 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 6

Correlation of Coefficients:
 (Intercept) poly(Age,2)1 poly(Age,2)2
 poly(Age, 2)1 -0.1133772
 poly(Age, 2)2 0.5625194 0.0130579
I((Start-12)*(Start>12)) -0.3261937 -0.1507199 -0.0325155

Contrasting the summary of the linear fit kyph.glm.istart.age2 with
the additive fit kyph.gam.start.age, we can see the following
important details:

1. The linear fit is more parsimonious. The effective number of
parameters estimated in the linear model is approximately 5
less than for the additive model with smooths.
400

Logistic Regression
2. The residual deviance in the linear fit is not significantly
higher than the residual deviance in the additive fit. The
deviance in the linear fit is only about 3.5 more, even though
the effective number of parameters in the linear model is
lower.

3. With a linear fit, we can produce an analytical expression for
the model, which cannot be done for an additive model with
smooth fits. This is because the coefficients in a linear model
are estimated for a parametric relationship, whereas the
smooths in an additive model are nonparametric estimates. In
general, these nonparametric estimates have no analytical
form and are based on an iterative computer algorithm. This
is an important distinction to consider when choosing
between linear models and additive models with smooth
terms.

Finally, we can use the anova function to verify that there is no
difference between the two models kyph.glm.istart.age2 and
kyph.gam.start.age:

> anova(kyph.glm.istart.age2, kyph.gam.start.age,
+ test = "Chi")

Analysis of Deviance Table

Response: Kyphosis

 Terms Res. Df Res. Dev
1 poly(Age,2)+I((Start-12)*(Start>12)) 77.00000 51.95327
2 s(Start) + s(Age) 72.09458 48.41713

 Test Df Deviance Pr(Chi)
1
2 1 vs. 2 4.905415 3.536134 0.6050618
401

Chapter 12 Generalizing the Linear Model
Legal Forms of
the Response
Variable

The required formula argument to glm is in the same format as most
other formulas in Spotfire S+, with the response on the left side of a
tilde (~) and the predictor variables on the right. In logistic regression,
however, the response can assume a few different forms:

1. If the response is a logical vector or a two-level factor, it is
treated as a 0/1 binary vector. The zero values correspond to
failures and the ones correspond to successes. This is the form
of the response variable in all of the example kyphosis
models above.

2. If the response is a multilevel factor, Spotfire S+ assumes the
first level codes failures (0) and all of the remaining levels
code successes (1).

3. If the response is a two-column matrix, Spotfire S+ assumes
the first column holds the number of successes for each trial
and the second column holds the number of failures.

4. If the response is a general numeric vector, Spotfire S+
assumes that it holds the proportion of successes. That is, the
ith value in the response vector is , where denotes the

number of successes out of total trials. In this case, the
must be given as weights to the weights argument in glm.

As an simple example of a two-column response, we tabulate the data
in the Kyphosis variable of the kyphosis data set:

> kyph.table <- table(kyphosis$Kyphosis)
> kyph.mat <- t(as.matrix(kyph.table))
> kyph.mat

 absent present
[1,] 64 17

The following call to glm creates a generalized linear model using the
first column of kyph.mat as the response. Because it is the first column
of the matrix, absent is assumed to be a success in the model:

> kyph1.glm <- glm(kyph.mat ~ 1, family = binomial)

si ni⁄ si

ni ni
402

Logistic Regression
> kyph1.glm

Call:
glm(formula = kyph.mat ~ 1, family = binomial)

Coefficients:
 (Intercept)
 1.32567

Degrees of Freedom: 1 Total; 0 Residual
Residual Deviance: 0

If we use the full vector Kyphosis in a similar call, Spotfire S+
assumes that present is a success in the model. This is because
present is the second level of the factor variable and is therefore
coded to the binary value 1 (success). Likewise, absent is the first
level of Kyphosis, and is therefore coded to 0 (failure):

> levels(kyphosis$Kyphosis)

[1] "absent" "present"

> kyph2.glm <- glm(Kyphosis ~ 1, family = binomial,
+ data = kyphosis)
> kyph2.glm

Call:
glm(formula = Kyphosis ~ 1, family = binomial, data =

kyphosis)

Coefficients:
 (Intercept)
 -1.32567

Degrees of Freedom: 81 Total; 80 Residual
Residual Deviance: 83.23447

We can rename absent to be the success indicator with the following
command:

> kyph3.glm <- glm(Kyphosis=="absent" ~ 1,
+ family = binomial, data = kyphosis)
403

Chapter 12 Generalizing the Linear Model
PROBIT REGRESSION

To fit a probit regression model, use either the glm function or the gam
function with a formula to specify the model, and set the family
argument to binomial(link=probit). As an example, consider the
data frame kyphosis. In the previous section, we computed various
logistic regression models for the variables in kyphosis. From our
analysis, we determined that the best model was
kyph.glm.istart.age2:

> kyph.glm.istart.age2

Call:
glm(formula = Kyphosis ~ poly(Age, 2) + I((Start - 12) *
(Start > 12)),

family = binomial, data = kyphosis)

Coefficients:
 (Intercept) poly(Age, 2)1 poly(Age, 2)2
 -0.6849607 5.771927 -10.32478
 I((Start - 12) * (Start > 12))
 -1.351012

Degrees of Freedom: 81 Total; 77 Residual
Residual Deviance: 51.95327

To compute the same model as a probit regression, use the probit
link function as follows:

> kyph.probit <- glm(Kyphosis ~ poly(Age, 2) +
+ I((Start - 12) * (Start > 12)),
+ family = binomial(link=probit), data = kyphosis)

> summary(kyph.probit)

Call: glm(formula = Kyphosis ~ poly(Age, 2) + I((Start - 12)
* (Start > 12)), family = binomial(link = probit), data
= kyphosis)

Deviance Residuals:
 Min 1Q Median 3Q Max
 -1.413873 -0.5227573 -0.09664452 -0.0005086466 2.090332
404

Probit Regression
Coefficients:
 Value Std. Error
 (Intercept) -0.3990572 0.2516421
 poly(Age, 2)1 3.4305340 2.2995511
 poly(Age, 2)2 -6.1003327 2.6288017
I((Start - 12) * (Start > 12)) -0.7516299 0.2564483

 t value
 (Intercept) -1.585813
 poly(Age, 2)1 1.491828
 poly(Age, 2)2 -2.320575
I((Start - 12) * (Start > 12)) -2.930922

(Dispersion Parameter for Binomial family taken to be 1)

 Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 51.63156 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 6

Correlation of Coefficients:
 (Intercept) poly(Age, 2)1
 poly(Age, 2)1 -0.0536714
 poly(Age, 2)2 0.4527154 0.0306960
I((Start - 12) * (Start > 12)) -0.3762806 -0.1765981

 poly(Age, 2)2
 poly(Age, 2)1
 poly(Age, 2)2
I((Start - 12) * (Start > 12)) 0.00393

Often, it is difficult to distinguish between logistic and probit models,
since the underlying distributions approximate each other well in
many circumstances. That is, the logistic distribution is similar to the
Gaussian distribution, only with longer tails. Unless the sample size is
extremely large, the subtle differences between the two distributions
can be difficult to see. If a substantial proportion of responses are
concentrated in the tails of the distribution, where the logistic and
Gaussian distributions differ, then the probit and logit links can give
significantly different results. When both models fit well, the
405

Chapter 12 Generalizing the Linear Model
parameter estimates in a logistic model are about 1.6 to 1.8 times the
esimates in the probit model. For more details, see either Venables &
Ripley (1997) or Agresti (1990).
406

Poisson Regression
POISSON REGRESSION

To fit a Poisson regression model use either the glm function or the
gam function with a formula to specify the model, and set the family
argument to poisson. In this case, the response variable is discrete
and takes on non-negative integer values. Count data is frequently
modeled as a Poisson distribution. As an example, consider the built-
in data frame solder.balance. A summary of the data frame
produces the following:

> attach(solder.balance)
> summary(solder.balance)

Opening Solder Mask PadType Panel skips
S:240 Thin :360 A1.5:180 L9 : 72 1:240 Min. : 0.000
M:240 Thick:360 A3 :180 W9 : 72 2:240 1st Qu.: 0.000
L:240 B3 :180 L8 : 72 3:240 Median : 2.000
 B6 :180 L7 : 72 Mean : 4.965
 D7 : 72 3rd Qu.: 6.000
 L6 : 72 Max. :48.000
 (Other):288

The solder experiment, contained in solder.balance, was designed
and implemented in one of AT&T’s factories to investigate
alternatives in the “wave-soldering” procedure for mounting
electronic components on circuit boards. Five different factors were
considered as having an effect on the number of solder skips. A brief
description of each of the factors follows. For more details, see the
paper by Comizzoli, Landwehr, and Sinclair (1990).

• Opening: The amount of clearance around the mounting pad.

• Solder: The amount of solder.

• Mask: The type and thickness of the material used for the
solder mask.

• PadType: The geometry and size of the mounting pad.

• Panel: The panel number. In the experiment, each board was
divided into three panels, with three runs on a board.

• skips: The number of visible solder skips on a circuit board.
407

Chapter 12 Generalizing the Linear Model
Two useful preliminary plots of the data are a histogram of the
response variable skips, and plots of the mean response for each
level of the predictor. Figure 12.6 and Figure 12.7 display the plots, as
generated by the commands below. Figure 12.6 shows the skewness
and long-tailedness typical of count data. We model this behavior
using a Poisson distribution.

> par(mfrow = c(1,1))
> hist(skips)
> plot(solder.balance)

Figure 12.6: A histogram of skips for the solder.balance data.

0 10 20 30 40 50

0
10

0
20

0
30

0
40

0
50

0

skips
408

Poisson Regression
The plot of the mean skips for different levels of the factors displayed
in Figure 12.7 shows a very strong effect due to Opening. For levels M
and L, only about two skips were seen on average, whereas for level S,
more then 10 skips were seen. Effects almost as strong were seen for
different levels of Mask.

If we do boxplots of skips for each level of the two factors, Opening
and Mask, we get an idea of the distribution of the data across levels of
the factors. Figure 12.8 displays the results of doing “factor” plots on
these two factors.

> par(mfrow = c(1, 2))
> plot.factor(skips ~ Opening + Mask)

Examining Figure 12.8, it is clear that the variance of skips increases
as its mean increases. This is typical of Poisson distributed data.

Figure 12.7: A plot of the mean response for each level of each factor.

Factors

m
ea

n
of

 s
ki

ps

2
4

6
8

10

S

M
L

Thin

Thick

A1.5

A3

B3

B6

W4
D4

L4

D6

L6

D7

L7

L8

W9

L9
1

2
3

Opening Solder Mask PadType Panel
409

Chapter 12 Generalizing the Linear Model
We proceed now to model skips as a function of the controlled
factors in the experiment. We start with a simple-effects model for
skips as follows:

> paov <- glm(skips ~ ., family = poisson,
+ data = solder.balance)

> anova(paov, test = "Chi")

Analysis of Deviance Table

Poisson model

Response: skips

Terms added sequentially (first to last)
 Df Deviance Resid. Df Resid. Dev Pr(Chi)
 NULL 719 6855.690
Opening 2 2524.562 717 4331.128 0.000000e+00
 Solder 1 936.955 716 3394.173 0.000000e+00
 Mask 3 1653.093 713 1741.080 0.000000e+00
PadType 9 542.463 704 1198.617 0.000000e+00
 Panel 2 68.137 702 1130.480 1.554312e-15

Figure 12.8: Boxplots for each level of the two factors Opening and Mask.

0
10

20
30

40

sk
ip

s

S M L

Opening

0
10

20
30

40

sk
ip

s

A1.5 A3 B3 B6

Mask
410

Poisson Regression
The chi-squared test is requested in this case because glm assumes that
the dispersion parameter in the variance function; in other
words, glm assumes that there is no under- or over-dispersion in the
model. We use the quasi-likelihood family in glm when we want to
estimate the dispersion parameter as part of the model fitting
computations. We could also set the argument disp to 0 in the
summary function to obtain chi-squared estimates of :

> summary(paov, disp = 0)

According to the analysis of deviance, it appears that all of the factors
considered have a very significant influence on the number of solder
skips. The solder experiment contained in solder.balance is
balanced, so we need not be concerned with the sequential nature of
the analysis of deviance table; the tests of a sequential analysis are
identical to the partial tests of a regression analysis when the
experiment is balanced.

Now we fit a second order model. We fit all the simple effects and all
the second order terms except those including Panel (we have looked
ahead and discovered that the interactions with Panel are non-
significant, marginal, or of less importance than the other
interactions). The analysis of deviance table follows:

> paov2 <- glm(skips ~ . +
+ (Opening + Solder + Mask + PadType) ^ 2,
+ family = poisson, data = solder.balance)

> anova(paov2, test = "Chi")

Analysis of Deviance Table

Poisson model

Response: skips

Terms added sequentially (first to last)
 Df Deviance Res.Df Resid. Dev Pr(Chi)
 NULL 719 6855.690
 Opening 2 2524.562 717 4331.128 0.0000000000
 Solder 1 936.955 716 3394.173 0.0000000000
 Mask 3 1653.093 713 1741.080 0.0000000000
 PadType 9 542.463 704 1198.617 0.0000000000

φ 1=

φ

411

Chapter 12 Generalizing the Linear Model
 Panel 2 68.137 702 1130.480 0.0000000000
 Opening:Solder 2 27.978 700 1102.502 0.0000008409
 Opening:Mask 6 70.984 694 1031.519 0.0000000000
Opening:PadType 18 47.419 676 984.100 0.0001836068
 Solder:Mask 3 59.806 673 924.294 0.0000000000
 Solder:PadType 9 43.431 664 880.863 0.0000017967
 Mask:PadType 27 61.457 637 819.407 0.0001694012

All of the interactions estimated in paov2 are quite significant.

To verify the fit, we do several different kinds of plots. The first four
are displayed in Figure 12.9, and result from the standard plotting
method for a glm object.

> par(mfrow = c(2, 2))
> plot(paov2)

The plot of the observations versus the fitted values shows no great
departures from the model. The plot of the absolute deviance
residuals shows striations due to the discrete nature of the data.
Otherwise, the deviance residual plot does not reveal anything to
make us uneasy about the fit.

Figure 12.9: Plots of the second order model of skips.

•••••••
••••••••••••••••••••••

•

••

•
•

••••••

•

•

••

••••

•

•••••

•

•

•

••

•

•

•

••

•

•

••

••
•
•••

••

••

•

•••

•••••
•
••

•

•••

••••

•

••

•

•

•

•••

••

•
•

•••

•

•

•

•••••

•
•••

•

•

•

•

•

•
•
•

•

•

•

•

•

••••

•
•

•
••
• •

•

•

•

••

•

•
•

•

•

•

•
•

••
•

•
•

•
•

•

•
•

••

•

•

•

••••

•

•
•••••••••••

•

••••••••

•

•

••••

•
•

•
••••

•

••

•

••

•

•

•

•

•

•

•

•
••

•
••
•
•

•

•
•

•

•
••

•
••
•

•

•
•
•

•••

•
••

••
•••

•

•

••
•
•
•
•

•
••

•

•••

••

•

•

•

••••

•••
•
•

••
•
•

•

•

•

•
•

•

•

•

•

•
•

•

••

•

•••

•

•

••

••

•

•

•

•

•

•
•

••• •

••
•
••
••
• ••

•

•

•
•

•

•

•

•

•

•
••

••

•

•••
•

•

•

•

•

•••

•

••

•

•

•

•

•

••

•••••••

•

•

•

•••

•

••••

••
•
••
•

•

•

•

••

•

••

•
•
•
•

•

••

•
•
•

• •

•

•

••

•
•

••
•

•

•

•
•

•

••

•

•• ••
•

•
•
•

•

••

•

•
•

•

••

•

•
•

•

•

•
•
•

•

•

••
•

••

•••
•
•

•

•

•

•

•

•
•••

•

•

•
•••
••••
•

•

••••
••

•

•
•

•

•
••

• •••
•

•

•

•
•

•
••

•

•

•

• •

•

•

•
•

•
•

•

••

•
•

•

•

•••

••••••••••••

•

••

••

••

•

•
•

•••

•

•

•
•
•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•
••

•
•

•

••
•

•

•

•

•

•

• •••
•

•

•
•

••
••

•

•
• •

•

•

•

•

•

•

•

•
•
•

•
••

•

•
••

•
•

•
•

•
•

•

••

••

•• •
•

•

•

•
•

••

•

•

•

•

•• •

•

•

•
•

•

•

•

•
••
•

•

•
• •

••
•

•
•

•

•
•

• •

•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•

•

•

 Opening + Solder + Mask + PadType + Panel +

D
ev

ia
nc

e
R

es
id

ua
ls

0 10 20 30 40 50

-2
0

2

• ••• ••
• ••

• •• • ••• ••• ••• ••

• •• • •• • •• •

•

•
•

•

•

• •• • ••

•

•
•

•

••• •
•

• •• • •

•

•

•

•
•

•

•

•

•

•

•

•

••

••

•

•
••

••

•

•

•

• ••
•

••• •

•

•
•

•

•

••
•
•••

•

•
•

•

••

•••

•••

•

•
• •
•

•
•
•

• •••

•

•• •

•

•
•

•

•

••
•

••

•

•

•• ••
• •

•
•

•

•

• •

•

•

•••
•

•

• •

•

•

•

•
•
•

•
•

•
•

•

•

•

•
••

•

•

•

• ••
•
••

• •• • ••• ••• •

•

• ••

• ••
• ••

•

•

••
•• •

•

•
• ••

•
•
••

•

•
•
•

•

•

•

•

•

•

•

• •

•

•
••

• •

•

•

•

•
• •

•

•

••

•

•

•

•
•••
•

••

••

• ••

•

•

•
•

•
•

•

•

•

• ••

•
••

• •

•
•
•
• • ••

• ••
•

•

•
•

•

•

•

•

••
•
•

•

••

•

•

•

•
•

•
• ••

•

•

••
••

•

•

•
•

•
•

•

•••
•
•

•
•
•

•

••

• ••

•

•

•
•

•

•

•

•

•

•

•
•

• •

•
• ••

•

•

••
•

• • •

•
• •
•
•
••

•

••

• ••
• •• •

•
•
• ••

•

•
•• ••

•
•

•

•
•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•

• • ••

•

•
•

•
•

•

•

•
•

•

•
•

•

•
••

•• • •

•

•
•

•

•

••
•
•

•

• ••

•

•

•

•

•
•

•
•

•
•

•
•

• ••

• ••
•

•

•

•

•

•
•

•

••

•
•

•

••
•
•
•

•

••

• •
•

• ••
• ••

•

•
•

• •
•

•
••

•

•

•

• •

••
•
•

•

•

•

• ••
• •

•
• •
•

• •

•

•

•

•

•
••

• •••
••• ••

• ••

•

••
• •
•

•

•

•

•

••• •

•

• •
•

•

•

••
•• •

•

•

•

•

•

•

•
••

•

••

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•
•

•

•
••

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•
•

•
•

•

•

••

•

•
•

•

•
•

•

•• •
•

•
• ••

•
•

•

•

•
•

•

•

•

•
•
• •

••
•

•••

•
•

• •

•

•

•

• •

••
•

•

••

•

••

•

•

•
•

•

•

•

•

•

•
•

•

•
•

•

•

•

• ••

d : Opening + Solder + Mask + PadType + Panel
sq

rt(
ab

s(
re

si
d(

pa
ov

2)
))

-4 -2 0 2 4

0.
0

1.
0

•••••••••••••••••••••••••
•••••••••••••••••
•

•••
• ••• •

•

• •
•

•
••••• •

••

•••• •

•

•
••
•••••••••••••••••••••

••••••••••••••••••••••••••• •••••••••••••••••
•••••••••••••
•
•••••••••••••••••••••••
••• •

•

••
••••••
•

•••••
•

•• ••
• •

•

••

•••
•

•

•
•••

•••
•••

•••
•
•

•••
•

••

•••••••
•• •

••
• •• •

•
•

•
••

• •
•• ••
•

••• ••
••• •••••••

•••
••••••

••••
•••••••••••••••

•
••
•
••
••••••••••••••
•••••••

•

•

•••
•

••

••

•

•
•

•
••

•
••• •

•

•
•

•

•••

• ••

••••••••••••••••••••••••••••••••
•
•
•
••

•••
•••
••••••
•
•

•••••••

•
•••

•
•

• ••

• •
•

•
•

•
•

••
•

•

•• •
•

•••
• ••

• •
•

•
•
•

•

•
•

••
••••
•

••
••••

••

•••
•••• •••

•
•

•

••

•
••••• •

•
••••

• •
•

••••
••

• ••
•

••
• ••

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

•

•

•

 Opening + Solder + Mask + PadType + Panel +

sk
ip

s

0 10 20 30 40 50

0
10

30
50

••••••••• •••••••••••••• ••••••••••

•

••

•
•

••••••

•

•

•
•

••••

•

•••••

•

•
•

••
•

•
•

••
•

•
••

•• ••••
••

••

•

•••
•••••

•••
•

•••

••••

•
••

•

•

•
•••

••

•

•

•••

•

•

•

•••••
•

•••

•

•

•
•

•
•

•
•

•

•
•

•

•
••••

•
•

• ••
••

•

•
•

••

•
•

•

•
•

•
• •

••
•

•
•

••

•

• •

••

•

•

•

••••

•

• •••••••••••

•

••• ••••••

•

•

••••

•
•

•
••••

•
••

•
• •

•

•

•
•

•

•

•

•••

•
••

•
•

•
••

•
•

••

•
••

•

•

••
•

•••
•

• •

•••••

•

•

•• •
•

•
•

•••

•

•••
••

•
•

•

••••
••• •

•

•• •
•

•

•
•

••

•
•

•

•

•
•

•
••

•

•••
•

•

••

••
•

•
•

•

•

•
•

••••
••

•
• • ••
•••

•

•
•

•

•
•

•
•

•
•

••
••

•
•••

•

•

•
•

•

•
•

•

•
••

•

•

•

•

•

••

•••••••
•

•

•

•••

•
• •••

••
•

••
•

•
•

•
••

•
••

•
•

•
•

•
••

•
• •

••

•

•
• •

••

••
•

•

•

••

•
• •

•
••• •

•

• • ••

••
•

•
•

•

•••

••

•
•

•
••

•

•
•••

••

••• • •

•

•
•

•

•
•

•••
•

•
•

•• •
••••

•

•

••••••

•

•
•

•
•

••
••••

•
•

•

•
• •••

•

•
•

••

•

•

•
• •

•
•

••

••
•

•
•••

••••••••• •••
•

••

••

••
•

•
•

•••
•

•

•
•

••
•

•

•

••

•
•

•

•
•

•

•

•

• •

•

••
•

•

•

•
• •

•
•

•

••
•

•

•

•
•

•
•• ••

•

•
•

•
••

••

•

• ••

•

•

•

•

•

•

•
•••

•
••

•
• ••

••
••

••
•

••

••

•••
•

•

•

•
•

••
•

•
•

•
• ••

•

•

•
•

•
•

•

•
••

•

•

•
••

••
•

•
•

•

•
•

••

•
•

•
•

•
•

•
•

•
•

•

•• •
•

•

•

•

•

Quantiles of Standard Normal

Pe
ar

so
n

R
es

id
ua

ls

-3 -2 -1 0 1 2 3

-2
0

2
4

6
8

412

Poisson Regression
The other plots that are useful for examining the fit are produced by
plot.gam. Figure 12.10 displays plots of the adjusted fit with partial
residuals overlaid for each predictor variable. Since all the variables
are factors, the resulting fit is a step function; a constant is fitted for
each level of a factor. Figure 12.10 is produced by the following
commands:

> par(mfrow = c(2,3))
> plot.gam(paov2, resid = T)

The plot.gam function adds a bit of random noise to the coded factor
levels to spread the plotted points out. This allows you to see their
vertical locations more clearly.

Figure 12.10: Partial residual plots of the second order model of skips.

O
pe

ni
ng

-2
0

2
4

Opening

S M L

•••••••••
•• •••••••••• •• •••••••

••••

•

••

•

•

••••••

•

•

••

••••

•

•••••

•
•

•

••

•

•

•

••

•

•

••

••
•
•••

••

•
•

•

•••

•••

•
•

•
••

•

•
••

••••

•

••

•

•

•

•••

••

•

•

•
••

•

•

•

•
••••

•
•••

•

•

•

•

•

•
•

•

•

•

•

•

•

••••

•

•

•
••

••

•

•

•

••

•

•
•

•

•

•

•
•
••

•

•
•

•
•

•

•
•

••

•

•

•

••••

•

•
••• •••• ••••

•

•••
••••••

•

•

••••

•
•

•
•• ••

•

• •

•

••

•

•

•

•

•

•

•

•
• •

•

•
•

•

•

•

•

•

•

•
••

•

•
•

•

•

•
•
•

•••

•
••

••
•• • •

•

••
•
•

•

•

•
••

•

•
••

••

•

•

•

••••

•••
•
•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•

• ••

•

•

••

••

•

•

••

•

•

•

• •••

••
•

••
••
•••

•

•

•
•

•

•

•

•

•

•

•
•

••

•

•••

•

•

•

•

•

•
•
•

•

••

•

•

•

•

•

••

•••• ••
•

•

•

•

••
•

•

••••

••

•
•
•
•

•

•

•

•
•

•

• •

•
•
•

•
•

••

•

•
•

••

•

•

••

•
•

••

•

•

•

•
•

•

••

•

•••
•
•

•
•

•

•

••

•

•

•
•

••

•

•
•

•

•

•

•
•

•

•

•
•
•

••

•••

•

•

•

•

•

•

•

•
••

•

•

•

•
•
••
••• •

•

•

••• •
••

••

•
•

•
•

•
••••

•
•

•

•

•
•
••

•

•

•

••

•

•

•
•
•
•

•
••

•
•

•

•

•
••

•••••• •••
•••

•

• •

••

••

•

••

•••

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•

••

•
•

•

••

•

•

•

•

•

•

••
••
•

•

•

•
••

••

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•
••

•

•
••

•
•

•
•

•
•

•

••

•
•

•
••

•

•

•

•

•

••

•

•

•

•

•••

•

•

•
•

•

•

•

•

••
•

•

•
•

•

••
•

•
•

•

•
•

•
•

•

•

•
•
•

•
•

•

•

•

•

•
•

•
•

•

•

•

• S
ol

de
r

-2
0

2
4

Solder

Thin Thic
k

• •••• ••••
••••••••••••••• ••••• •••• •

•

••

•

•

• •• •• •

•

•

••

••• •

•

•••• •

•

•

•

• •

•

•

•

••

•

•

••

••
•
•• •

••

•
•

•

•••

•••

••

•
••

•

•
••

• •••

•

••

•

•

•

•••

••

•

•

•
••

•

•

•

•
• •••

•
•••

•

•

•

•

•

•
•

•

•

•

•

•

•

••••

•
•

•
••

• •

•

•

•

••

•

•
•

•

•

•

•
•

••

•

•
•

•
•

•

•
•

••

•

•

•

• •••

•

•
••• •••• ••••

•

•••
• •••••

•

•

••••

•
•

•
• •••

•

••

•

••

•

•

•

•

•

•

•

•
••

•

•
•
•

•

•

•
•

•

•
••

•
•
•

•

•

•
•

•

•••

•
• •

••
• ••

•

•

••
•

•

•

•

•
••

•

• ••

••

•

•

•

••••

•••
•
•

•
•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

• ••

•

•

••

••

•

•

•

•

•

•

•

••••

••
•
••

• •
•• •

•

•

•
•

•

•

•

•

•

•

••

••

•

•••

•

•

•

•

•

• •
•

•

••

•

•

•

•

•

••

•••••••

•

•

•

• •
•

•

•• ••

••

•
•
•
•

•

•

•

•
•

•

••

•
•
•

•

•

••

•

•
•

••

•

•

••

•
•

••

•

•

•

•
•

•

• •

•

•••
•

•

•
•
•

•

••

•

•

•
•

••

•

•
•

•

•

•

•
•

•

•

•
•
•

••

•••
•

•

•

•

•

•

•

•
••
•

•

•

•
•
••

•• ••

•

•

•• ••
••

•

•

•
•

•
••

••••
•
•

•

•

•
•

• •

•

•

•

••

•

•

•
•

•
•
• ••

•
•

•

•

•
••

•• •••••••
• ••

•

••

••

••

•

•

•

•••

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

• •

•

••

•

•

•

•

••

•
•

•

• •

•

•

•

•

•

•

••
••

•

•

•

•
••

••

•

•
•

•

•

•

•

•

•

•

•

•
•
•

•
• •

•

•
••

•
•

•
•

•
•

•

••

••

•• •

•

•

•

•
•

••

•

•

•

•

• ••

•

•

•
•

•

•

•

•

••
•

•

•
• •

••
•

•
•

•

•
•

•
•

•

•

•
•

•

•
•
•

•

•
•

•
•

•
•

•

•

•

•

M
as

k

-2
0

2
4

Mask

A1.
5

A3 B3 B6

••• ••••••
•• ••••••••••• ••••••••••••

•

••

•

•

••••••

•

•

••

••••

•

•••••

•

•

•

••

•

•

•

••

•

•

••

••
•

•••

••

•
•

•

•••

•••••

•
••

•

•
••

••••

•

••

•

•

•

•••

••

•

•

•
••

•

•

•

•
••••

•
•••

•

•

•

•

•

•
•

•

•

•

•

•

•

••••

•

•
•
••

••

•

•

•

••

•

•
•

•

•

•

•
•
••

•

•
•

•
•

•

•
•

••

•

•

•

••••

•

•
•••••••••••

•

•••
••••••

•

•

••••

•
•

•
•• ••

•

••

•

••

•

•

•

•

•

•

•

•
••

•

•
•
•

•

•

•

•

•

•
••

•

•
•

•

•

•
•
•

•••

•
••

••
•••

•

•

••
•

•

•

•

•
••

•

•
••

••

•

•

•

••••

•••
•
•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•••

•

•

••

••

•

•

•

•

•

•

•

••••

••
•
••

••
•••

•

•

•
•

•

•

•

•

•

•

•
•

••

•

•••

•

•

•

•

•

•
•
•

•

••

•

•

•

•

•

••

•••••••

•

•

•

••
•

•

••••

•
•

•
•
•

•

•

•

•

•
•

•

••

•
•
•

•

•

••

•

•
•

••

•

•

••

•
•

••

•

•

•

•
•

•

••

•

•••
•

•

•
•

•

•

••

•

•

•
•

••

•

•
•

•

•

•

•
•

•

•

•
•
•

••

•••
•

•

•

•

•

•

•

•
••
•

•

•

•
•
••
••••

•

•

••••
••

•

•

•
•

•
•

•
••••
•
•

•

•

•
•

••

•

•

•

••

•

•

•
•
•
•

•

••

•
•

•

•

•
••

•••••••••
•••

•

••

••

••

•

•

•

•••

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•

••

•
•

•

••

•

•

•

•

•

•

••
••
•

•

•

•
••

••

•

•
••

•

•

•

•

•

•

•

•
•
•

•
••

•

•
••

•
•

•
•

•
•

•

••

•
•

•••

•

•

•

•

•

••

•

•

•

•

•••

•

•

•
•

•

•

•

•

••
•

•

•
••

••
•

•
•

•

•
•

•
•

•

•

•
•

•

•
•
•

•

•

•

•
•

•
•

•

•

•

•

P
ad

T
yp

e

-4
-2

0
2

4

PadType

W
4

L4 L6 L7 W
9

••• •••
•••

••• •••
••• •••

•••

•••

•••••• •

•

•
•

•

•

••• •••

•

•

• •

••
••

•

•••

••

•

•

•

• •

•

•

•

••

•

•

•
•

••

•
••

•

••

•
•

•

•••

•••
•
•

•
••

•

•
•• ••• •

•

• •

•

•

•

•• •

••

•

•

•

••

•

•

•

• •••
•

•
•

••

•

•

•

•

•

•
•

•

•

•
•

•

•

•••

•

•

•
•
••

••

•

•

•

•

•

•

•

•

•

•

•

•
•

••

•

•
•

•

•

•

•

•

••

•

•

•

•••
•

•

•
••• •••

••• ••

•

•••

•••

•••

•

•

• •••

•
•

•

••• •

•

•
•

•

• •

•

•

•

•

•

•

•

•
••

•
•
•
•

•

•

• •

•

•
••

•
•
•

•

•

•
• •

••
•

•
•

•

••
•••

•

•

• •
•
•

•

•

•

••

•

•
••

••

•

•

•

• •••
•••

•
•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•••

•

•

•

•

•• •

•

•

•

•

•

•

••
••

•

•
•
•

•
•• •••

•

•

• •

•

•

•

•

•

•

•
•

••

•

•••

•

•

•

•

•

• •
•

•

••

•

•

•

•

•

••

•••

••••

•

•

•

•• •

•

•

•••

•
•

•

•
•
•

•

•

•

•
•

•
••

•
•
•

•

•

••

•

•
•

••

•

•

••

•
•

• •

•

•

•

•
•

•

•• •

••

•
•
•

•
•

•

•

••
•

•

•
•

••

•

•
•

•

•

•

•
•

•

•

•
•

•

••

•••
•

•

•

•

•

•

•

•
•

•
•

•

•

•
• ••

• •
••

•

•

•

•••
••

•

•

•
•

•
•
•

•••

•
•
•

•

•

•

•
••

•

•

•

••

• •

•
•

•
•

•

••

• •

•

•

•
•• ••• •••

••• •••

•

••

••

•

•

•

•
•

•• •

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

••
•

•

•

•

•

•

••
• •

•

•

•

•
•

•

••

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
••

•

•
••

•
•

• •

•
•

•

••

•
•

•••

•

•

•

• •

••

•

•

•

•

••
•

•

•

•
•

•

•

•

•

••
•

•

•
•

•

••
•

•
•

•

•
• •

•

•

•

•
•

•

•
•

•

•

•
•

•
•

•
•

•
•

•

•

P
an

el

-2
0

2
4

Panel

1 2 3

• • •• • •
• • ••

• •
• • •• • •• • •• • ••

• •
• • •

• • •
•

•

•
•

•

•

• • •
• • •

•

•

••

• •• •

•

• • •
• •

•

•

•

•
•

•

•

•

• •

•

•

••

• •• • •
•

• •

• •

•

• • •

• • •
• •

•

• •

•

• • •

• • •
•

•

•
•

•

•

•

• •
•

• •

•

•

•
• •

•

•

•

•
• • ••

•

•
• •

•

•

•

•

•

•

•
•

•

•

•

•

•

• • •
•

•

•

•

• •

•
•

•

•
•

•
•

•

•
•

•

•

•

•
•

•
•

•

•
•

•

•

•

••

• •

•

•

•

• • •
•

•

•• • •
• • •• • •• •

•

• • ••
• •

• • •

•

•

•
• • •

•

•

•

• • •
•

•

••

•

••

•

•

•

•

•

•

•

•
• •

•

• •

•
•

•

•

•

•

•
• •

•

• •

•

•

•
•

•

• ••

•
••

• •

• • •

•

•

•
•

•

•
•

•

•

• •

•

• • •

• •

•

•

•

•
• • •

• • •
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•

• • •

•

•

•
•

• •

•

•

•

•

•

•
•

• •
•

•

••

•

••

• •

•
• •

•

•

•

•

•

•

•

•

•

•

•
•

• •

•

• • •
•

•

•

•

•

•
• •

•

• •

•

•

•

•

•

• •

• • •
• • •
•

•

•

•

• •
•

•

•• • •

• •

•
• •

•

•

•

•

• •

•

• •

•

•

•

•

•

• •

•
•

•

• •

•

•

• •

•
•

•
•

•

•

•

•
•

•

• •

•

• ••
•

•

•

•
•

•

• •

•

•

•
•

• •

•

•
•

•

•

•

• •

•

•

•
•

•

• •

• • ••

•

•

•

•

•

•

•
•• •

•

•

•

•
•

•
•• • •

•

•

•
• • •

• •

•

•

•
•

•
•

•
•

• •
•

•
•

•

•

•
• • •

•

•

•

•
•

•

•

•
••

•

•

•
•

•
•

•

•

• • •

• • •
• • •• • •• • •

•

• •

• •

•
•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

••

•
•

•

• •
•

•

•

•

•

•

•
• ••

•

•

•
•

••

• •

•

•
••

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

• •

• •

•
•

•
•

•

• •

• •

•
• •

•

•

•

•

•

• •

•

•

•

•

• •
•

•

•

•
•

•

•

•

•

• •
•

•

•
••

• •
•

•
•

•

•
•

• •

•

•

•

•
•

•

•

•

•

•

•

•
••

•

•

•

•

•

413

Chapter 12 Generalizing the Linear Model
These plots produced by plot.gam indicate that the data is modeled
reasonably well. Please note, however, that the default plots will show
only glaring lack of fit.

Note

The warning message about interaction terms not being saved can be safely ignored here.
414

Quasi-Likelihood Estimation
QUASI-LIKELIHOOD ESTIMATION

Quasi-likelihood estimation allows you to estimate regression
relationships without fully knowing the error distribution of the
response variable. Essentially, you provide link and variance
functions that are used in the estimation of the regression coefficients.
Although the link and variance functions are typically associated with
a theoretical likelihood, the likelihood need not be specified, and fewer
assumptions are made in estimation and inference.

As a simple analogy, there is a connection between normal-theory
regression models and least-squares regression estimates. Least-
squares estimation gives identical parameter estimates to those
produced from normal-theory models. However, least-squares
estimation assumes far less; only second moment assumptions are
made by least-squares, compared to full distribution assumptions of
normal-theory models.

Quasi-likelihood estimation for the distributions of Table 12.1 is
analogous to least-squares estimation for the normal distribution. For
the Gaussian family, IRLS is equivalent to standard least-squares
estimation. Used in this context, quasi-likelihood estimation allows us
to estimate the dispersion parameter in under- or over-dispersed
regression models. For example, an under- or over-dispersed logistic
regression model can be estimated using quasi-likelihood
methodology, by supplying the appropriate link and variance
functions for the binomial family.

However, quasi-likelihood estimation extends beyond the families
represented in Table 12.1. Any modeling situation for which suitable
link and variance functions can be derived can be modeled using the
quasi-likelihood methodology. Several good examples of this kind of
application are presented in McCullagh and Nelder (1989).
415

Chapter 12 Generalizing the Linear Model
As an example of quasi-likelihood estimation, we return to a Poisson
regression model for the solder.balance data frame. Recall that we
modeled skips as a function of all the factors, plus all the two-way
interactions except those including Panel. The modeling call was:

> paov2$call

glm(formula = skips ~ . + (Opening + Solder +
Mask + PadType)^2, family = poisson, data
 = solder.balance)

When we declare the family argument to be Poisson, the dispersion
parameter is set to 1. In many problems, this assumption is not valid.
We can use the quasi-likelihood methodology to force the estimation
of the dispersion parameter. For the solder experiment, we
accomplish this as follows:

> paov3 <-glm(formula = skips ~ . +
+ (Opening + Solder + Mask + PadType) ^ 2,
+ family = quasi(link="log", var="mu"),
+ data = solder.balance)

A summary of the fit reveals that the dispersion parameter is
estimated to be 1.4, suggesting over-dispersion:

> summary(paov3)$dispersion

 Quasi-likelihood
 1.400785

We now recompute the ANOVA table, computing F-statistics to test
for effects:

> anova(paov3, test = "F")

Analysis of Deviance Table

Quasi-likelihood model

Response: skips

Terms added sequentially (first to last)
 Df Deviance R.Df Res. Dev F Value Pr(F)
 NULL 719 6855.690
 Opening 2 2524.562 717 4331.128 901.1240 0.00000000
 Solder 1 936.955 716 3394.173 668.8786 0.00000000
416

Quasi-Likelihood Estimation
 Mask 3 1653.093 713 1741.080 393.3729 0.00000000
 PadType 9 542.463 704 1198.617 43.0285 0.00000000
 Panel 2 68.137 702 1130.480 24.3210 0.00000000
 Opening:Solder 2 27.978 700 1102.502 9.9864 0.00005365
 Opening:Mask 6 70.984 694 1031.519 8.4457 0.00000001
Opening:PadType 18 47.419 676 984.100 1.8806 0.01494805
 Solder:Mask 3 59.806 673 924.294 14.2316 0.00000001
 Solder:PadType 9 43.431 664 880.863 3.4449 0.00036929
 Mask:PadType 27 61.457 637 819.407 1.6249 0.02466031

All of the factors and interactions are still significant even when we
model the over-dispersion. This gives us more assurance in our
previous conclusions.
417

Chapter 12 Generalizing the Linear Model
RESIDUALS

Residuals are the principal tool for assessing how well a model fits the
data. For regression models, residuals are used to assess the
importance and relationship of a term in the model, as well as to
search for anomalous values. For generalized models, we have the
additional task of assessing and verifying the form of the variance as a
function of the mean response.

Generalized models require a generalization of the residual, so that it
can be used in the same way as the Gaussian residuals of a linear
model. In fact, four different kinds of residuals are defined to assess
how well a generalized model fits, to determine the form of the
variance function, and to diagnose problem observations.

• "deviance": Deviance residuals are defined as

where is the contribution of the ith observation to the
deviance.

The deviance itself is . Consequently,

deviance residuals are reasonable for detecting observations
with unduly large influence in the fitting process, since they
reflect the same criterion that is used in the fitting.

• "working": Working residuals are the difference between the
working response and the linear predictor at the final iteration
of the IRLS algorithm. They are defined as:

.

These residuals are returned when you extract the residuals
component directly from a glm object.

• "pearson": The Pearson residuals are defined as

.

ri
D sign yi μ̂i–() di=

di

D i ri
D()

2
∑=

ri
W yi μ̂i–()

ηi∂
μ̂i∂

-------=

ri
P yi μi–

V μ̂i()
------------------=
418

Residuals
Their sum-of-squares

is the chi-squared statistic. Pearson residuals are a rescaled
version of the working residuals. When proper account is

taken of the associated weights, .

• "response": The response residuals are simply .

You compute residuals for glm and gam objects with the residuals
function, or resid for short. The type argument allows you to specify
one of "deviance", "working", "pearson", or "response". By default,
deviance residuals are computed. To plot the deviance residuals
versus the fitted values of a model, type the following command:

> plot(fitted(glmobj), resid(glmobj))

Alternatively, to plot the Pearson residuals versus the fitted values,
type:

> plot(fitted(glmobj), resid(glmobj, type = "pearson"))

Selecting which residuals to plot is somewhat a matter of personal
preference. The deviance residual is the default because a large
deviance residual corresponds to an observation that does not fit the
model well, in the same sense that a large residual for the linear
model does not fit well. You can find additional detail on residuals in
McCullagh and Nelder (1989).

χ2 yi μ̂i–()
2

V μ̂i()

i 1=

n

∑=

ri
P wiri

W
=

yi μi–
419

Chapter 12 Generalizing the Linear Model
PREDICTION FROM THE MODEL

Prediction for generalized linear models and generalized additive
models is similar to prediction for linear models. An important point
to remember, however, is that for either of the generalized models,
predictions can be on one of two scales. You can predict:

• on the scale of the linear predictor, which is the transformed
scale after applying the link function, or

• on the scale of the original response variable.

Since prediction is based on the linear predictor , computing
predicted values on the scale of the original response effectively
transforms (evaluated at the predictor data) via the inverse link
function.

The type argument to either predict.glm or predict.gam allows you
to choose one of three options for predictions.

1. "link": Computes predictions on the scale of the linear
predictor (the link scale).

2. "response": Computes predictions on the scale of the
response.

3. "terms": Computes a matrix of predictions on the scale of the
linear predictor, one column for each term in the model.

Specifying type="terms" allows you to compute the component of
the prediction for each term separately. Summing the columns of the
matrix and adding the intercept term is equivalent to specifying
type="link".

Predicting the
Additive Model
of Kyphosis

As an example, consider the additive model with Kyphosis modeled
as smooths of Start and Age:

> kyph.gam.start.age

Call:
gam(formula = Kyphosis ~ s(Start) + s(Age),
family = binomial, data = kyphosis)
Degrees of Freedom: 81 total; 72.09458 Residual
Residual Deviance: 48.41713

η x()

η x()
420

Prediction from the Model
If we are interested in plotting the prediction surface over the range of
the data, we start by generating appropriate sequences of values for
each predictor. We then store the sequences in a data frame with
variable labels that correspond to the variables in the model:

> attach(kyphosis)
> kyph.margin <- data.frame(
+ Start = seq(from=min(Start), to=max(Start), length=40),
+ Age = seq(from=min(Age), to=max(Age), length=40))

Since a GAM is additive, we need to do predictions only at the
margins and then sum them together to form the entire prediction
surface. We produce the marginal fits by specifying type="terms".

> margin.fit <- predict(kyph.gam.start.age, kyph.margin,
+ type = "terms")

Now generate the surface for the marginal fits.

> kyph.surf <- outer(margin.fit[,1], margin.fit[,2], "+")
> kyph.surf <- kyph.surf + attr(margin.fit, "constant")
> kyph.surf <- binomial()$inverse(kyph.surf)

The first line adds the marginal pieces of the predictions together to
create a matrix of surface values, the second line adds in the constant
intercept term, and the third line applies the inverse link function to
transform the predictions back to the scale of the original response.
Now we produce the plot using the persp function (or contour or
image if we wish):

> persp(kyph.margin[,1], kyph.margin[,2], kyph.surf,
+ xlab = "Start", ylab = "Age", zlab = "Kyphosis")

Figure 12.11 displays the resulting plot.
421

Chapter 12 Generalizing the Linear Model
Safe Prediction Prediction for linear and generalized linear models is a two-step
procedure.

1. Compute a model matrix using the new data where you want
predictions.

2. Multiply the model matrix by the coefficients extracted from
the fitted model.

This procedure works perfectly fine as long as the model has no
composite terms that are dependent on some overall summary of a
variable. For example:

(x - mean(x))/sqrt(var(x))
(x - min(x))/diff(range(x))
poly(x)
bs(x)
ns(x)

The reason that the prediction procedure does not work for such
composite terms is that the resulting coefficients are dependent on the
summaries used in computing the terms. If the new data are different
from the original data used to fit the model (which is more than likely
when you provide new data), the coefficients are inappropriate. One
way around this problem is to eliminate such dependencies on data

Figure 12.11: Plot of the probability surface for developing Kyphosis based age in
months and start position.

5
10

15

Start
50

100

150

200

Age

 0
0.

2
0.

4
0.

6
0.

8
1

K
yp

ho
si

s

422

Prediction from the Model
summaries. For example, change mean(x) and var(x) to their
numeric values, rather than computing them from the data at the time
of fitting the model. For the spline functions bs and ns, provide the
knots explicity in the call to the function, rather than letting the
function compute them from the overall data. If the removal of
dependencies on the overall data is possible, prediction can be made
safe for new data. However, when the dependencies cannot be
removed, as is the case when using s or lo in gam, use the
predict.gam function explicitly. This function computes predictions
in as safe a way as possible, given the need for generality. To illustrate
this method, suppose that the data used to produce a generalized fit is
named old.data, and new.data is supplied for predictions:

1. A new data frame, both.data, is constructed by combining
old.data and new.data.

2. The model frame and model matrix are constructed from the
combined data frame both.data. The model matrix is

separated into two pieces and , corresponding to
old.data and new.data.

3. The parametric part of fit is refit using .

4. The coefficients from this new fit are then applied to to
obtain the new predictions.

5. For gam objects with both parametric and nonparametric
components, an additional step is taken to evaluate the fitted
nonlinear functions at the new data values.

This procedure works perfectly for terms with mean and var in them,
as well as for poly. For other kinds of composite terms, such as bs
knots placed at equally spaced (in terms of percentiles) quantiles of
the distribution of the predictor, predict.gam works approximately.
Because the knots produced by the combined data will, in general, be
different from the knots produced by the original data, there will be
some error in predicting the new data. If the old data and the new
data have roughly the same distribution, the error in predicting the
new data should be small.

XO Xn

XO

Xn
423

Chapter 12 Generalizing the Linear Model
ADVANCED TOPICS

Fixed
Coefficients

A commonly used device in generalized linear models is the offset,
which is a component of the linear predictor that has a fixed
coefficient. The effect of these components is to offset the value of the
linear predictor by a certain fixed amount. In Spotfire S+, you can
specify offsets in GLMs by including offset terms directly in the
model formula. For example, consider the following simple logistic
regression model for the kyphosis data set:

> fit1 <- glm(Kyphosis ~ Age + Start,
+ family=binomial, data=kyphosis)

The coef function returns the coefficients of the model:

> coef(fit1)

 (Intercept) Age Start
 0.2250435 0.009507095 -0.237923

With the following syntax, we can force the intercept to be 0.25 and
the coefficient for Age to be 0.01:

> fit2 <- glm(Kyphosis ~
+ offset(0.25 + 0.01*Age) + Start - 1,
+ family=binomial, data=kyphosis)

> coef(fit2)

 Start
 -0.2443723

The -1 in the model formula is needed to prevent the fitting of an
intercept term, since it is already included in the offset component.

Offsets allow for a kind of residual analysis in generalized linear
models. By specifying offsets, you can evaluate the contribution of
particular terms to a fit, while holding other terms constant. In
addition, a variable can be included as both a regression term and an
offset in a model formula. With this kind of model, you can test the
hypothesis that the variable’s regression coefficient is any fixed value.
424

Advanced Topics
Family Objects The combination of a link and variance function comprise a family in
generalized linear models and generalized additive models. A
Spotfire S+ family object includes the link function, its derivative, the
variance and deviance functions, and a method for obtaining starting
values in the fitting algorithm. There are many combinations of link
and variance functions that are common in GLMs, but only some are
included in Spotfire S+. If you would like to use a family in your
analysis that is not yet part of Spotfire S+, you will need to use the
make.family function. This constructor requires the arguments listed
below.

• name: A character string giving the name of the family.

• link: A list containing information about the link function,
including its inverse, derivative, and initialization expression.

• variance: A list supplying the variance and deviance
functions.

The data sets glm.links and glm.variances provide the necessary
information for the link and variance functions included in Spotfire
S+. The information in these data sets can be used as templates when
defining custom links and variances. For example, the following
command lists the necessary information for the probit link:

> glm.links[, "probit"]

$names:
[1] "Probit: qnorm(mu)"

$link:
function(mu)
qnorm(mu)

$inverse:
function(eta)
pnorm(eta)

$deriv:
function(mu)
sqrt(2 * pi) * exp((qnorm(mu)^2)/2)
425

Chapter 12 Generalizing the Linear Model
$initialize:
expression({

if(is.matrix(y)) {
if(dim(y)[2] > 2)

stop("only binomial response matrices (2
columns)")

n <- drop(y %*% c(1, 1))
y <- y[, 1]

}
else {

if(is.category(y))
y <- y != levels(y)[1]

else y <- as.vector(y)
n <- rep(1, length(y))

}
w <- w * n
n[n == 0] <- 1
y <- y/n
mu <- y + (0.5 - y)/n

}
)

We provide two examples below: one defines a new variance
function for quasi-likelihood estimation, and one defines a new family
for the negative binomial distribution.

Example: quasi-likelihood estimation

In Spotfire S+, quasi-likelihood estimation is performed with the
family=quasi option in glm and gam. This option allows you to
specify any combination of the link and variance functions from
Table 12.1. No distributional assumptions are made, and the model is
fit directly from the combination of the link and variance. If you
require a link or variance function for your quasi-likelihood model
that is not included in Table 12.1, you will need to create a new one.
We use the leaf blotch example from McCullagh and Nelder (1989) to
illustrate one approach for doing this.

The data in Table 12.2 is from a 1965 experiment concerning the
incidence of Rhynchosporium secalis, or leaf blotch. Ten varieties of
barley were grown at each of nine sites, and the percentage of total
leaf area affected by the disease was recorded.
426

Advanced Topics
Wedderburn (1974) suggested a linear logistic model for these data,
with a variance function given by the square of the variance for the
binomial distribution:

.

As this variance is not included in Spotfire S+, we must first define it
before continuing with the analysis.

To build a new variance function, a set of names, a variance, and a
deviance are all needed. We use the binomial variance, stored in the
"mu(1-mu)" column of glm.variances, as a template for creating our
squared.binomial variance function.

Table 12.2: Percentage of total leaf area affected by Rhynchosporium secalis, for ten varieties of barley grown at
nine different sites.

Variety

Site 1 2 3 4 5 6 7 8 9 10

1 0.05 0.00 0.00 0.10 0.25 0.05 0.50 1.30 1.50 1.50

2 0.00 0.05 0.05 0.30 0.75 0.30 3.00 7.50 1.00 12.70

3 1.25 1.25 2.50 16.60 2.50 2.50 0.00 20.00 37.50 26.25

4 2.50 0.50 0.01 3.00 2.50 0.01 25.00 55.00 5.00 40.00

5 5.50 1.00 6.00 1.10 2.50 8.00 16.50 29.50 20.00 43.50

6 1.00 5.00 5.00 5.00 5.00 5.00 10.00 5.00 50.00 75.00

7 5.00 0.10 5.00 5.00 50.00 10.00 50.00 25.00 50.00 75.00

8 5.00 10.00 5.00 5.00 25.00 75.00 50.00 75.00 75.00 75.00

9 17.50 25.00 42.50 50.00 37.50 95.00 62.50 95.00 95.00 95.00

var Y() μ2 1 μ–()2=
427

Chapter 12 Generalizing the Linear Model
> squared.binomial <- list(
+ name = "Binomial Squared: mu^2*(1-mu)^2",
+ variance = function(mu) mu^2 * (1 - mu)^2,
+ deviance = function(mu, y, w, residuals = F)
+ {
+ devy <- y
+ nz <- y != 0
+ devy[nz] <- (2*y[nz]-1) * log(y[nz] / (1-y[nz])) - 2
+ devmu <- (2*y-1)*log(mu/(1-mu)) - y/mu - (1-y)/(1-mu)
+ if(any(small <- mu^2*(1-mu^2) < .Machine$double.eps))
+ {
+ warning("fitted values close to 0 or 1")
+ smu <- mu[small]
+ sy <- y[small]
+ smu <- ifelse(smu < .Machine$double.eps,
+ .Machine$double.eps, smu)
+ onemsmu <- ifelse((1 - smu) < .Machine$double.eps,
+ .Machine$double.eps, 1 - smu)
+ devmu[small] <- (2*sy-1)*(log(smu)-log(onesmu)) -
+ sy/smu - (1 - sy)/(onesmu)
+ }
+ devi <- 2 * (devy - devmu)
+ if(residuals) sign(y - mu) * sqrt(abs(devi) * w)
+ else sum(devi)
+ }
+)

We can now use the squared binomial variance when computing
quasi-likelihood models. For example, the commands below compute
Wedderburn’s model for the leaf blotch data. We create an R.secalis
data set containing the information from Table 12.2, and then call glm
with the family=quasi option. For clarity, we convert the data values
to decimal percentages.

> R.secalis <- data.frame(
+ fac.design(c(9,10), factor.names = list(
+ site = 1:9, variety = 1:10)),
+ incidence = scan())
1: 0.0005 0 0.0125 0.025 0.055 0.01 0.05 0.05 0.175
10: 0 0.0005 0.0125 0.005 0.01 0.05 0.001 0.1 0.25
19: 0 0.0005 0.025 0.0001 0.06 0.05 0.05 0.05 0.425
28: 0.001 0.003 0.166 0.03 0.011 0.05 0.05 0.05 0.5
428

Advanced Topics
37: 0.0025 0.0075 0.025 0.025 0.025 0.05 0.5 0.25 0.375
46: 0.0005 0.003 0.025 0.0001 0.08 0.05 0.1 0.75 0.95
55: 0.005 0.03 0 0.25 0.165 0.1 0.5 0.5 0.625
64: 0.013 0.075 0.2 0.55 0.295 0.05 0.25 0.75 0.95
73: 0.015 0.01 0.375 0.05 0.2 0.5 0.5 0.75 0.95
82: 0.015 0.127 0.2625 0.4 0.435 0.75 0.75 0.75 0.95
91:

> R.secalis

 site variety incidence
 1 1 1 0.0005
 2 2 1 0.0000
 3 3 1 0.0125
 4 4 1 0.0250
 5 5 1 0.0550
 6 6 1 0.0100
 7 7 1 0.0500
 8 8 1 0.0500
 9 9 1 0.1750
10 1 2 0.0000
. . .

Set treatment contrasts before calling glm.
> options(contrasts = c("contr.treatment", "contr.poly"))

> secalis.quasi <- glm(incidence ~ site + variety,
+ data = R.secalis,
+ family = quasi(link=logit, variance=squared.binomial),
+ control = glm.control(maxit = 50))

The coefficients and standard errors for our model match those
originally computed by Wedderburn:

> coef(secalis.quasi)

 (Intercept) site2 site3 site4 site5 site6
 -7.920978 1.382404 3.857455 3.557023 4.10487 4.30132

 site7 site8 site9 variety2 variety3 variety4
 4.917166 5.691471 7.065438 -0.4641615 0.0816659 0.9547215

 variety5 variety6 variety7 variety8 variety9 variety10
 1.352033 1.333007 2.339617 3.262141 3.135984 3.887684
429

Chapter 12 Generalizing the Linear Model
Example: negative binomial distribution

The negative binomial distribution arises when modeling
“overdispersed Poisson data,” which is frequency data in which the
variance is greater than mean. This type of data can arise in Poisson
processes that have variable length, or in processes where each event
contributes a variable amount to the total. The negative binomial
distribution assumes many forms in these contexts; we create a new
family for a particular form in which the variance is quadratic. For
additional technical details, see Venables and Ripley (1997) and
McCullagh and Nelder (1989).

Suppose we have a response variable that is Poisson with a mean of
. We assume that itself is random, and follows a gamma

distribution with mean and variance , for a parameter .
Thus, the variance of is proportional to the square of its mean. This
mixture of distributions results in the following negative binomial
distribution for :

,

where and is the gamma function. For fixed , the
negative binomial distribution in this form has a canonical link given
by

and the variance function .

We use the make.family function to create a family for the negative
binomial distribution. For simplicity, we use the code for the log and
logit link functions as templates for creating the negative binomial
link. The code for the variance function below is taken from Venables
and Ripley (1997).

> neg.binomial <- function(theta =
+ stop("theta must be given")) {
+ nb.link <- list(
+ names = "log(mu/(mu + theta))",
+ link = substitute(function(mu, th = .Theta)

Y
Z Z

μ μ μ2 θ⁄+ θ
Z

Y

fμ θ, y() Γ θ y+()μyθθ

Γ θ()y! μ θ+()θ y+
--=

y 1 2 …, ,= Γ θ

η μ() μ
μ θ+
------------⎝ ⎠

⎛ ⎞log=

var Y() μ μ2 θ⁄+=
430

Advanced Topics
+ log(mu/(mu + th)),
+ frame = list(.Theta = theta)),
+ inverse = substitute(function(eta, th = .Theta)
+ {
+ tmp <- care.exp(eta)
+ return((tmp * th) / (1 - tmp))
+ },
+ frame = list(.Theta = theta)),
+ deriv = substitute(function(mu, th = .Theta)
+ {
+ d <- mu * (mu + th)
+ if(any(tiny <- (d < .Machine$double.eps))) {
+ warning("Model unstable")
+ d[tiny] <- .Machine$double.eps
+ }
+ return(th / d)
+ },
+ frame = list(.Theta = theta)),
+ initialize = expression(mu <- y + (y==0)/6)
+)
+ nb.variance <- list(
+ names = "mu + mu^2/theta",
+ variance = substitute(function(mu, th = .Theta)
+ mu * (1 - mu/th),
+ frame = list(.Theta = theta)),
+ deviance = substitute(
+ function(mu, y, w, residuals = F, th = .Theta)
+ {
+ devi <- 2 * w * (y * log(pmax(1,y) / mu) -
+ (y + th) * log((y + th) / (mu + th)))
+ if(residuals)
+ return(sign(y - mu) * sqrt(abs(devi)))
+ else
+ return(sum(devi))
+ },
+ frame = list(.Theta = theta))
+)
+ make.family(
+ name = "Negative binomial",
+ link = nb.link,
+ variance = nb.variance) }
431

Chapter 12 Generalizing the Linear Model
REFERENCES

Agresti, Alan. (1990). Categorical Data Analysis. New York: John &
Sons.

Chambers, J.M. and Hastie, T.J. (Eds.) (1993). Statistical Models in S.
London: Chapman and Hall.

Comizzoli R.B., Landwehr J.M., and Sinclair J.D. (1990). Robust
materials and processes: Key to reliability. AT&T Technical Journal,
69(6): 113--128.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models.
London: Chapman and Hall.

McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models (2nd
ed.). London: Chapman and Hall.

Nelder, J.A. and Wedderburn, R.W.M. (1972). Generalized linear
models. Journal of the Royal Statistical Society (Series A) 135: 370-384.

Venables, W.N. and Ripley, B.D. (1997). Modern Applied Statistics with
Spotfire S+ (2nd ed.). New York: Springer-Verlag, Inc.

Wedderburn, R.W.M. (1974). Quasilikelihood functions, generalized
linear models and the Gauss-Newton method. Biometrika 61: 439-447.
432

Introduction 434

Fitting a Simple Model 435

Diagnostics: Evaluating the Fit 436

Exploring Data with Multiple Predictors 439
Conditioning Plots 439
Creating Conditioning Values 441
Constructing a Conditioning Plot 441
Analyzing Conditioning Plots 443

Fitting a Multivariate Loess Model 446

Looking at the Fitted Model 452

Improving the Model 455

LOCAL REGRESSION MODELS 13
433

Chapter 13 Local Regression Models
INTRODUCTION

In both Chapter 10, Regression and Smoothing for Continuous
Response Data, and Chapter 12, Generalizing the Linear Model, we
discuss fitting curves or surfaces to data. In both of these earlier
chapters, a significant limitation on the surfaces considered was that
the effects of the terms in the model were expected to enter the model
additively, without interactions between terms.

Local regression models provide much greater flexibility in that the
model is fitted as a single smooth function of all the predictors. There
are no restrictions on the relationships among the predictors.

Local regression models in TIBCO Spotfire S+ are created using the
loess function, which uses locally weighted regression smoothing, as
described in the section Smoothing on page 290. In that section, the
focus was on the smoothing function as an estimate of one predictor’s
contribution to the model. In this chapter, we use locally weighted
regression to fit the complete regression surface.
434

Fitting a Simple Model
FITTING A SIMPLE MODEL

As a simple example of a local regression model, we return to the
ethanol data discussed in Chapter 10, Regression and Smoothing for
Continuous Response Data. We start by considering only the two
variables NOx and E. We smoothed these data with loess.smooth in
the section Smoothing on page 290. Now we use loess to create a
complete local regression model for the data.

We fit an initial model to the ethanol data as follows, using the
argument span=1/2 to specify that each local neighborhood should
contain about half of the observations:

> ethanol.loess <- loess(NOx ~ E, data = ethanol,
+ span = 1/2)
> ethanol.loess

Call:
loess(formula = NOx ~ E, data = ethanol, span = 1/2)

Number of Observations: 88
Equivalent Number of Parameters: 6.2
Residual Standard Error: 0.3373
Multiple R-squared: 0.92
Residuals:
 min 1st Q median 3rd Q max
-0.6656 -0.1805 -0.02148 0.1855 0.8656

The equivalent number of parameters gives an estimate of the complexity
of the model. The number here, 6.2, indicates that the local regression
model is somewhere between a fifth and sixth degree polynomial in
complexity. The default print method for "loess" objects also

includes the residual standard error, multiple R2, and a five number
summary of the residuals.
435

Chapter 13 Local Regression Models
DIAGNOSTICS: EVALUATING THE FIT

How good is our initial fit? The following function calls plot the loess
object against a scatter plot of the original data:

> attach(ethanol)
> plot(ethanol.loess, xlim = range(E),
+ ylim = range(NOx, fitted(ethanol.loess)))
> points(E, NOx)

The resulting plot, shown in Figure 13.1, captures the trend
reasonably well. The following expressions plot the residuals against
the predictor E to check for lack of fit:

> scatter.smooth(E, resid(ethanol.loess), span = 1,
+ degree = 1)
> abline(h = 0)

The resulting plot, shown in Figure 13.2, indicates no lack of fit.

Figure 13.1: Locally weighted smooth of ethanol data.

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

436

Diagnostics: Evaluating the Fit
Is there a surplus of fit? That is, can we increase the span of the data
and still get a good fit? To see, let’s refit our model, using update:

> ethanol.loess2 <- update(ethanol.loess, span = 1)
> ethanol.loess2

Call:
loess(formula = NOx ~ E, data = ethanol, span = 1)
Number of Observations: 88
Equivalent Number of Parameters: 3.5
Residual Standard Error: 0.5126
Multiple R-squared: 0.81
Residuals:
 min 1st Q median 3rd Q max
-0.9791 -0.4868 -0.064 0.3471 0.9863

Figure 13.2: Residual plot for loess smooth.

•
• •

• ••
•

•• ••
•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

••
•

•
•

•

••

•

•

•

•

•

•
•

•

•

•

•

•

•
••

•

•

•
•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

E

re
si

d(
et

ha
no

l.l
oe

ss
)

0.6 0.8 1.0 1.2

-0
.5

0.
0

0.
5

437

Chapter 13 Local Regression Models
By increasing the span, we reduce somewhat the equivalent number
of parameters; this model is thus more parsimonious than our first
model. We do seem to have lost some fit and gained some residual
error. The diagnostic plots, shown in Figure 13.3, reveal a less
satisfying fit in the main plot, and much obvious structure left in the
residuals.

The residuals are also more broadly spread than those of the first
model. We confirm this with a call to anova as follows:

> anova(ethanol.loess2, ethanol.loess)

Model 1:
loess(formula = NOx ~ E, data = ethanol, span = 1)
Model 2:
loess(formula = NOx ~ E, data = ethanol, span = 1/2)
Analysis of Variance Table
 ENP RSS Test F Value Pr(F)
1 3.5 22.0840 1 vs 2 32.79 8.2157e-15
2 6.2 9.1685

The difference between the models is highly significant, so we stick
with our original model.

Figure 13.3: Diagnostic plots for loess fit with span 1.

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
••

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

• •

•

•

•

•

•

•

•

•

••
•

•
•

•

•

•

•

•

•

•

••

•

•

••••••

•

•

•
•

• •
•

•

•

•

••

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

••

•

•

••

•

•

••

•

••

•

•

•

•

•

•

•

•

•
•

••

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

E

re
si

d(
et

ha
no

l.l
oe

ss
2)

0.6 0.8 1.0 1.2

-1
.0

0.
0

1.
0

438

Exploring Data with Multiple Predictors
EXPLORING DATA WITH MULTIPLE PREDICTORS

Conditioning
Plots

The ethanol data set actually has three variables, with the
compression ratio, C, of the engine as another predictor joining the
equivalence ratio E and the response, nitric oxide emissions, NOx. A
summary of the data is shown below:

> summary(ethanol)

 NOx C E
Min. :0.370 Min. : 7.500 Min. :0.5350
1st Qu.:0.953 1st Qu.: 8.625 1st Qu.:0.7618
Median :1.754 Median :12.000 Median :0.9320
Mean :1.957 Mean :12.030 Mean :0.9265
3rd Qu.:3.003 3rd Qu.:15.000 3rd Qu.:1.1100
Max. :4.028 Max. :18.000 Max. :1.2320

A good place to start an analysis with two or more predictors is a
pairwise scatter plot, as generated by the pairs function:

> pairs(ethanol)

The resulting plot is shown in Figure 13.4. The top row shows the
nonlinear dependence of NOx on E, and no apparent dependence of
NOx on C. The middle plot in the bottom row shows E plotted against
C. This plot reveals no apparent correlation between the predictors,
and shows that the compression ratio C takes on only 5 distinct values.

Another useful plot for data with two predictors is the perspective
plot. This lets us view the response as a surface over the predictor
plane.

> persp(interp(E, C, NOx), xlab = "E", ylab = "C",
+ zlab = "NOx")

The resulting plot is shown in Figure 13.5.
439

Chapter 13 Local Regression Models
Figure 13.4: Pairs plot of ethanol data.

Figure 13.5: Perspective plot of ethanol data.

NOx

8 10 14 18

•

•

•

•

•

•

•
•

•

•

•

• • •
•

••
•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

••

•

•

•

•

•

•

•

•

•••

•
•

•

•

•

•

•

•

•

• •

•

•

•• • •
• •

•

1
2

3
4

•

•

•

•

•

•

•
•

•

•

•

•••
•

• ••

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

• •

•

•

•

•

•

•

•

•

•• •

•
•

•

•

•

•

•

•

•

••

•

•

••••••

•

8
10

14
18

••• ••

•• •

•• ••

•

•

•

• •

• •

••
••

• •

• •

• •
•

• •• ••

• •
•• •

•• ••

• •• •
• ••

•

• •

••

• ••• • ••

•• •

••

•• •

• • •••

••
•

•

••

•
•

•

•

• •

C •• •• •

• ••

• •• •

•

•

•

• •

••

• •
• •

••

• •

• •
•

•• •• •

••
• ••

• •• •

• •• •
• ••

•

••

••

• •• •• • •

• ••

• •

• ••

• • • • •

• •
•

•

• •

•
•

•

•

• •

1 2 3 4

•

•

•
•

•

•

•
•

•

•

•

••

•
• •

••

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
••

•
•

•
•

•

•
•

•

••

•
•

•

•

•
•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•••••

•

•

•

•
•

•

•

•
•

•

•

•

• •

•
• •

• •

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
••

•
•

•
•

•

•
•

•

••

•
•

•

•

•
•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

• • • • •

•

0.6 0.8 1.0 1.2

0.
6

0.
8

1.
0

1.
2

E

0.6
0.7

0.8
0.9

1
1.1 1.2

E8

10

12

14

16

18

C

 0
1

2
3

4
5

N
O

x

440

Exploring Data with Multiple Predictors
One conclusion we cannot draw from the pairwise scatter plot is that
there is no effect of C on NOx. Such an effect might well exist, but be
masked by the strong effect of E. Another type of plot, the conditioning
plot, or coplot, can reveal such hidden effects.

A coplot shows how a response depends upon a predictor given other
predictors. Basically, the idea is to create a matrix of conditioning
panels; each panel graphs the response against the predictor for those
observations whose value of the given predictor lie in an interval.

To create a coplot:

1. (Optional) Create the conditioning values. The coplot
function creates default values if conditioning values are
omitted, but they are not usually as good as those created
specifically for the data at hand.

2. Use the coplot function to create the plot.

We discuss these steps in detail in the following subsections.

Creating
Conditioning
Values

How you create conditioning values depends on the nature of the
values taken on by the predictor, whether continuous or discrete.

For continuous data, the conditioning values are intervals, created
using the function co.intervals. For example, the following call
creates nine intervals for the predictor E:

> E.intervals <- co.intervals(E, number = 9, overlap = 1/4)

For data taking on discrete values, the conditioning values are the
sorted, unique values. For example, the following call creates the
conditioning values for the predictor C:

> C.points <- sort(unique(C))

Constructing a
Conditioning
Plot

To construct a conditioning plot, use coplot using a formula with the
special form A ~ B | C, where A is the response, B is the predictor of
interest, and C is the given predictor. Thus, to see the effect of C on
NOx given E, use the formula NOx ~ C | E.
441

Chapter 13 Local Regression Models
In most cases, you also want to specify one or both of the following
arguments:

• given.values: The conditioning values created above.

• panel: A function of x and y used to determine the method of
plotting in the dependence panels. The default is points.

To create the conditioning plot shown in Figure 13.6:

> coplot(NOx ~ C | E, given.values = E.intervals)

Figure 13.6: Conditioning plot of ethanol data.

•
•

••

••

•
• • •

• •

•

8 10 12 14 16 18

1
2

3
4

•

•

•
•

•

•
•••

•

•
•

•
•

•

•
•

•

•
•

•
•

•

•

•

8 10 12 14 16 18

•
•••

•

•

•

•

• •
• ••

•

•

•
•
••

•
••

•
•

•
•

•
•

•

•• •

•
•

•
•

•

•

•

1
2

3
4

•
•

•

• ••

•

•
•

•

•

•

1
2

3
4

•
• • ••

••
••

•

•
••

8 10 12 14 16 18

•• • •
•

•
•
••

•
• •

•

0.6 0.8 1.0 1.2

C

N
O

x
Given : E
442

Exploring Data with Multiple Predictors
Analyzing
Conditioning
Plots

To read the coplot, move from left to right, bottom to top. The scatter
plots on the bottom row show an upward trend, while those on the
upper two rows show a flat trend. We can more easily see the trend
by using a smoothing function inside the conditioning panels, which
we can do by specifying the panel argument to coplot as follows:

> coplot(NOx ~ C | E, given.values = E.intervals,
+ panel = function(x, y) panel.smooth(x, y,
+ degree = 1, span = 1))

The resulting plot is shown in Figure 13.7.

Figure 13.7: Smooth conditioning plot of ethanol data.

•
•

••

••

•
• • •

• •

•

8 10 12 14 16 18

1
2

3
4

•

•

•
•

•

•
•••

•

•
•

•
•

•

•
•

•

•
•

•
•

•

•

•

8 10 12 14 16 18

•
•••

•

•

•

•

• •
• ••

•

•

•
•
••

•
••

•
•

•
•

•
•

•

•• •

•
•

•
•

•

•

•

1
2

3
4

•
•

•

• ••

•

•
•

•

•

•

1
2

3
4

•
• • ••

••
••

•

•
••

8 10 12 14 16 18

•• • •
•

•
•
••

•
• •

•

0.6 0.8 1.0 1.2

C

N
O

x

Given : E
443

Chapter 13 Local Regression Models
This plot clearly shows that for low values of E, NOx increases linearly
with C, while for higher values of E, NOx remains constant with C.

Conversely, the coplot for the effects of E on NOx given C is created
with the following call to coplot, and shown in Figure 13.8:

> coplot(NOx ~ E | C, given.values = C.points,
+ panel = function(x, y) panel.smooth(x, y, degree = 2,
+ span = 2/3))

Figure 13.8: Smooth conditioning plot of ethanol data, conditioned on C.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0.6 0.8 1.0 1.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

0.6 0.8 1.0 1.2

1
2

3
4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1
2

3
4

•

•

•

•

•

•

•

•

•
•

•

• •

••

•

0.6 0.8 1.0 1.2

8 10 12 14 16 18

E

N
O

x
Given : C
444

Exploring Data with Multiple Predictors
Comparing the two coplots, we can see that NOx changes more rapidly
as a function of E with C fixed than as a function of C with E fixed.
Also, the variability of the residuals is small compared to the effect of
E, but noticeable compared to the effect of C.
445

Chapter 13 Local Regression Models
FITTING A MULTIVARIATE LOESS MODEL

We have learned quite a bit about the ethanol data without fitting a
model: there is a strong nonlinear dependence of NOx on E and there
is an interaction between C and E. We can use this knowledge to
shape our initial local regression model. First, we specify a formula
that includes as predictors both E and C, namely NOx ~ C * E. Then,
we accept the default of local quadratic fitting to better model the
nonlinear dependence.

> ethanol.m <- loess(NOx ~ C * E, data = ethanol)
> ethanol.m

Call:
loess(formula = NOx ~ C * E, data = ethanol)

Number of Observations: 88
Equivalent Number of Parameters: 9.4
Residual Standard Error: 0.3611
Multiple R-squared: 0.92
Residuals:
 min 1st Q median 3rd Q max
-0.7782 -0.3517 -0.05283 0.195 0.6338

We search for lack of fit by plotting the residuals against each of the
predictors:

> par(mfrow = c(1,2))
> scatter.smooth(C, residuals(ethanol.m), span = 1, deg=2)
> abline(h = 0)
> scatter.smooth(E, residuals(ethanol.m), span = 1, deg=2)
> abline(h = 0)

The resulting plot is shown in Figure 13.9. The right-hand plot in the
figure shows considerable lack of fit, so we reduce the span from the
default 0.75 to 0.4:

> ethanol.m2 <- update(ethanol.m, span = .4)
446

Fitting a Multivariate Loess Model
> ethanol.m2

Call: loess(formula = NOx ~ C * E, data = ethanol,
span = 0.4)

Number of Observations: 88
Equivalent Number of Parameters: 15.3
Residual Standard Error: 0.2241
Multiple R-squared: 0.97
Residuals:
 min 1st Q median 3rd Q max
-0.4693 -0.1865 -0.03518 0.1027 0.3739

Repeating the commands for generating the diagnostic plots with
ethanol.m2 replacing ethanol.m yields the plot shown in Figure
13.10.

Figure 13.9: Diagnostic plot for loess model of ethanol data.

Figure 13.10: Diagnostic plot for first revised model.

•

•

•

••
•
•

•

•

•
•
•

•

•
• •• •

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•••
•

••

•

•

•

•

•

•

•

• •
•

••

•
•

•

•••

•

• •
•
••

•

•

•
•

•

•

•

•

•

••

•

•

•

•

• • •

•

•

•

C

re
si

d(
et

ha
no

l.m
)

8 10 14 18

-0
.8

-0
.2

0.
4

•

•

•

• •
•

•

•

•

•
•

•

•

•
•• ••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

• ••
•

••

•

•

•

•

•

•

•

••
•

••

•
•

•

• ••

•

••
•

••
•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•••

•

•

•

E

re
si

d(
et

ha
no

l.m
)

0.6 0.8 1.0 1.2
-0

.8
-0

.2
0.

4

•

•

•

•
•

•

•
•

•••
•

• ••
•

•

•

•
•

•

•

• ••
•

•

•
•

•

•

•

•

•

•••
••• •

••

•

•

•

•

•
•

•

•

•

•
•

•
•

•

••

•

•

• •••

••

•

•
• •

•

•

•

••
•

•

•

•

•

•

•

•

•

•

•

C

re
si

d(
et

ha
no

l.m
2)

8 10 14 18

-0
.4

0.
0

0.
4

•

•

•

•
•

•

•
•

• ••
•

•• •
•

•

•

•
•

•

•

• ••
•

•

•
•

•

•

•

•

•

•••
• •••

••

•

•

•

•

•
•

••

•

•

•
•

•
•

•

• •

•

•

•• ••

• •

•

•
••

•

•

•

••
•

•

•

•

•

•

•

•

•

•

•

E

re
si

d(
et

ha
no

l.m
2)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
4

447

Chapter 13 Local Regression Models
The right-hand plot in Figure 13.10 looks better but still has some
quadratic structure, so we shrink the span still further, and try again:

> ethanol.m3 <- update(ethanol.m, span = .25)
> ethanol.m3

Call:
loess(formula = NOx ~ C * E, data = ethanol, span = 0.25)

Number of Observations: 88
Equivalent Number of Parameters: 21.6
Residual Standard Error: 0.1761
Multiple R-squared: 0.98
Residuals:
 min 1st Q median 3rd Q max
-0.3975 -0.09077 0.00862 0.06205 0.3382

Again, we create the appropriate residuals plots to check for lack of
fit. The result is shown in Figure 13.11. This time the fit is much better.

Another check on the fit is provided by coplots using the residuals as
the response variable:

> coplot(residuals(ethanol.m3) ~ C | E,
+ given = E.intervals,
+ panel= function(x, y)
+ panel.smooth(x, y, degree = 1, span = 1,
+ zero.line = TRUE))

Figure 13.11: Diagnostic plot for second revised model.

•

•

••
•

•

•• •
••
•

•

•
•

•

•

•
•

•

•

••

•

••

•

•
• •

•

•

•

•

•
•••

•

• •

•
•

•

•

•

•

•
•
•

•

•

•

•
•

•••

•
•

•

•

• •
••

•

•

•

••

•

•
•

•

•

•• •

•

•

•

•
•

•

• •

•

C

re
si

d(
et

ha
no

l.m
3)

8 10 14 18

-0
.4

0.
0

0.
2

•

•

••
•

•

•••
••

•

•

•
•

•

•

•
•

•

•

• •

•

••

•

•
••

•

•

•

•

•
••

•

•

••

•
•

•

•

•

•

•
•

•

•

•

•

•
•

• • •

•
•

•

•

••
•••

•

•

••

•

•
•

•

•

• ••

•

•

•

•
•

•

••

•

E

re
si

d(
et

ha
no

l.m
3)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
2

448

Fitting a Multivariate Loess Model
> coplot(residuals(ethanol.m3) ~ E | C, given = C.points,
+ panel= function(x, y)
+ panel.smooth(x, y, degree = 1, span = 1,
+ zero.line = TRUE))

The resulting plots are shown in Figure 13.12 and Figure 13.13. The
middle row of Figure 13.12 shows some anomalies—the residuals are
virtually all positive. However, the effect is small, and limited in
scope, so it can probably be ignored.

Figure 13.12: Conditioning plot on E for second revised model.

•

•

•

•

•

•

•

•
•

•

• •

•

8 10 12 14 16 18

-0
.4

0.
0

0.
2

•

•

•

•

•

•

•

•••

• •

•

•

•
•

•
•

•

•

•

•

• •

•

8 10 12 14 16 18

•

•
•
•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

-0
.4

0.
0

0.
2

•

• •
•

•

•
•

•

•

•
•

•

-0
.4

0.
0

0.
2

•
•

•

•

•
•

•
•

•
••

•

•

8 10 12 14 16 18

•
• •

•

••

•

••

•

• •

•

0.6 0.8 1.0 1.2

C

re
si

du
al

s(
et

ha
no

l.m
3)

Given : E
449

Chapter 13 Local Regression Models
As a final test, we create several additional diagnostic plots to check
the distribution of the error terms. The plots generated by the
following commands are shown in Figure 13.14.

> par(mfrow=c(2, 2))
> plot(fitted(ethanol.m3), sqrt(abs(resid(ethanol.m3))))
> plot(C, sqrt(abs(resid(ethanol.m3))))
> plot(E, sqrt(abs(resid(ethanol.m3))))

Figure 13.13: Conditioning plot on C for second revised model.

•

• •
•

•

•

•

•

•
•

•• •

•

•

•

•

•
• •

•

•

0.6 0.8 1.0 1.2

•

••

•

•

•

•
•

•

•

•

•

•

•• •

• •

•

••
•

•
•

•

•

•

•

•

•

•

0.6 0.8 1.0 1.2

-0
.4

-0
.2

0.
0

0.
2

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

-0
.4

-0
.2

0.
0

0.
2

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

0.6 0.8 1.0 1.2

8 10 12 14 16 18

E

re
si

du
al

s(
et

ha
no

l.m
3)

Given : C
450

Fitting a Multivariate Loess Model
> qqnorm(resid(ethanol.m3))
> qqline(resid(ethanol.m3))

NULL

The model passes these checks; the errors appear to be Gaussian, or
nearly so.

Figure 13.14: Diagnostic plots for second revised model.

•

•

• •

•

•

•
•

•

•
•

•

•

•

•
• •

•

•

•
•

•
•

•

•
•

•

•

• •

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
• •

•

•

•

•

•
•

•
•

•

•

•

•
•

• •

•

•

•

•••

•

•

•

•

•
•

•

•

•

fitted(ethanol.m3)

sq
rt

(a
bs

(r
es

id
(e

th
an

ol
.m

3)
))

1 2 3 4

0.
1

0.
3

0.
5

•

•

••

•

•

•
•

•

•
•

•

•

•

•
•• •

•

•
•

•
•

•

•
•

•

•

• •

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
••

•

•

•

•

•
•

•
•

•

•

•

•
•

••

•

•

•

•• •

•

•

•

•

•
•

•

•

•

C

sq
rt

(a
bs

(r
es

id
(e

th
an

ol
.m

3)
))

8 10 12 14 16 18

0.
1

0.
3

0.
5

•

•

••

•

•

•
•

•

•
•

•

•

•

•
• •

•

•

•
•

•
•

•

•
•

•

•

••

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
• •

•

•

•

•

•
•

•
•
•

•

•

•
•

• •

•

•

•

• ••

•

•

•

•

•
•

•

•

•

E

sq
rt

(a
bs

(r
es

id
(e

th
an

ol
.m

3)
))

0.6 0.8 1.0 1.2

0.
1

0.
3

0.
5

•

•

••
•

•

•••
••
•

•

•
•

•

•

•
•

•

•

••

•

••

•

•
••

•

•

•

•

•
• •

•

•

••

•
•

•

•

•

•

•
•

•

•

•

•

•
•

• ••

•
•

•

•

••••
•

•

•

••

•

•
•

•

•

•••

•

•

•

•
•

•

••

•

Quantiles of Standard Normal

re
si

d(
et

ha
no

l.m
3)

-2 -1 0 1 2

-0
.4

0.
0

0.
2

451

Chapter 13 Local Regression Models
LOOKING AT THE FITTED MODEL

Examining the fitted model graphically is no less important than
graphically examining the data. One way to test the model is to
compare the predicted surface with the data surface shown in Figure
13.5 . We can create the corresponding perspective plot for the model
as follows. First, define an evenly-spaced grid of points spanning the
range of E and C:

> newC <- seq(from = min(C), to = max(C), length = 40)
> newE <- seq(from = min(E), to = max(E), length = 40)
> new.ethanol <- expand.grid(E = newE, C = newC)

The expand.grid function returns a data frame with 1600 rows and 2
columns, corresponding to all possible combinations of newC and
newE. We can then use predict with the fitted model and these new
data points to calculate predicted values for each of these grid points:

> eth.surf <- predict(ethanol.m3, new.ethanol)

The perspective plot of the surface is then created readily as follows:

> persp(newE, newC, eth.surf, xlab = "E",
+ ylab = "C")

The resulting plot is shown in Figure 13.15.

Figure 13.15: Perspective plot of the model.

0.6
0.7

0.8
0.9

1
1.1 1.2

E8

10

12

14

16

18

C

 0
1

2
3

4
5

Z

452

Looking at the Fitted Model
Not surprisingly, the surfaces look quite similar, with the model
surface somewhat smoother than the data surface. The data surface
has a noticeable wrinkle for E � 0.7, C � 14. This wrinkle is smoothed
out in the model surface. Another graphical view is probably
worthwhile.

The default graphical view for "loess" objects with multiple
predictors is a set of coplots, one per predictor, created using the plot
function.

> par(ask=T)
> plot(ethanol.m3, confidence = 7)

The resulting plots are shown in Figure 13.16 and Figure 13.17. One
feature that is immediately apparent, and somewhat puzzling, is the
curvy form of the bottom row of Figure 13.16. Our preliminary
coplots revealed that the dependence of NOx on C was approximately
linear for small values of E. Thus, the model as fitted has a noticeable
departure from our understanding of the data.

Figure 13.16: Default conditioning plot of the model, first predictor.

8 10 12 14 16 18 8 10 12 14 16 18

-1
0

1
2

3
4

-1
0

1
2

3
4

8 10 12 14 16 18

0.6 0.8 1.0 1.2

C

N
O

x

Given : E
453

Chapter 13 Local Regression Models
Figure 13.17: Default conditioning plot of the model, second predictor.

0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2

-1
0

1
2

3
4

-1
0

1
2

3
4

0.6 0.8 1.0 1.2

8 10 12 14 16 18

E

NO
x

Given : C
454

Improving the Model
IMPROVING THE MODEL

The model in ethanol.m3 is fit using local quadratic fitting for all
terms corresponding to C*E. This means that the model contains the

following fitting variables: a constant, E, C, EC, C2, and E2. However,
our original look at the data led us to believe that the effect of C was
piecewise linear; it thus makes sense to fit C parametrically, and drop
the quadratic term. We can make these changes using the update
function as follows:

> ethanol.m4 <- update(ethanol.m3, drop.square = "C",
+ parametric = "C")
> ethanol.m4

Call:
loess(formula = NOx ~ C * E, span = 0.25, parametric = "C",
drop.square = "C")

Number of Observations: 88
Equivalent Number of Parameters: 18.2
Residual Standard Error: 0.1808
Multiple R-squared: 0.98
Residuals:
 min 1st Q median 3rd Q max
-0.4388 -0.07358 -0.009093 0.06616 0.5485

The coplot, Figure 13.18 and Figure 13.19, now shows the appropriate
linear fit, and we have introduced no lack of fit, as shown by the
residuals plots in Figure 13.20.
455

Chapter 13 Local Regression Models
Figure 13.18: Default conditioning plot of improved model, first predictor.

8 10 12 14 16 18 8 10 12 14 16 18

-2
-1

0
1

2
3

4

-2
-1

0
1

2
3

4
8 10 12 14 16 18

0.6 0.8 1.0 1.2

C

N
O

x

Given : E
456

Improving the Model
Figure 13.19: Default conditioning plot of improved model, second predictor.

0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2

-2
0

2
4

-2
0

2
4

0.6 0.8 1.0 1.2

8 10 12 14 16 18

E

N
O

x

Given : C
457

Chapter 13 Local Regression Models
In fact, comparing the plot of residuals against E for the latest model
with that for ethanol.m3 (Figure 13.21) indicates we may be able to
increase the span for the latest model and not introduce any lack of
fit:

> ethanol.m5 <- update(ethanol.m4, span = 1/2)
> ethanol.m5

Call:
loess(formula = NOx ~ C * E, span = 1/2, parametric = "C",
drop.square = "C")

Number of Observations: 88
Equivalent Number of Parameters: 9.2
Residual Standard Error: 0.1842
Multiple R-squared: 0.98
Residuals:
 min 1st Q median 3rd Q max
-0.5236 -0.0972 0.01386 0.07326 0.5584

We gain a much more parsimonious model—the Equivalent Number
of Parameters drop from approximately 18 to about 9. An F-test using
anova shows no significant difference between our first acceptable
model and the latest, more parsimonious model.

Figure 13.20: Residual plot of improved model.

•
•
•
••

•
•• •

••

•

•
•

•

•

•
••

•

•••

•

•

•
•

•
•

•
•

•

•

•

••
•

•

••

•

•
•

•

•

•

•••
•
•

•
•
•

•
••

•

•

••

•

• •
••

•

•

••
•

•

••

•

•

•
•

•

•

•

•

•
•

•

•

•
•

C

re
si

d(
et

ha
no

l.m
4)

8 10 14 18

-0
.4

0.
0

0.
4

•
•

•
• •
•

•••
••

•

•
•

•

•

•
••

•

•• •

•

•

•
•

•
•

•
•

•

•

•

••
•

•

••

•

•
•

•

•

•

• •
•

•
•

•
•

•
•

• •
•

•

••

•

••
••

•

•

• •
•

•

• •

•

•

•
•

•

•

•

•

•
•

•

•

•
•

E

re
si

d(
et

ha
no

l.m
4)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
4

458

Improving the Model
> anova(ethanol.m3, ethanol.m5)

Model 1:
loess(formula = NOx ~ C * E, span = 0.25)
Model 2:
loess(formula = NOx ~ C * E, span = 1/2, parametric = "C",
drop.square = "C")
Analysis of Variance Table
 ENP RSS Test F Value Pr(F)
1 21.6 1.7999 1 vs 2 1.42 0.16486
2 9.2 2.5433

Figure 13.21: Comparison of residual plots for original and improved models.

•

•

••
•

•

•••
••

•

•

•
•

•

•

•
•

•

•

• •

•

••

•

•
••

•

•

•

•

•
••

•

•

••

•
•

•

•

•

•

•
•

•

•

•

•

•
•

• • •

•
•

•

•

••
•••

•

•

••

•

•
•

•

•

• ••

•

•

•

•
•

•

••

•

E

re
si

d(
et

ha
no

l.m
3)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
2

Fitted model ethanol.m3

•
•

•
• •
•

•••
••

•

•
•

•

•

•
••

•

•• •

•

•

•
•

•
•

•
•

•

•

•

••
•

•

••

•

•
•

•

•

•

• •
•

•
•

•
•

•
•

• •
•

•

••

•

••
••

•

•

• •
•

•

• •

•

•

•
•

•

•

•

•

•
•

•

•

•
•

E

re
si

d(
et

ha
no

l.m
4)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
4

Fitted model ethanol.m4
459

Chapter 13 Local Regression Models
460

Introduction 463

Representing Grouped Data Sets 465
The groupedData Class 465
Example: The Orthodont Data Set 466
Example: The Pixel Data Set 470
Example: The CO2 Data Set 472
Example: The Soybean Data Set 476

Fitting Models Using the lme Function 479
Model Definitions 479
Arguments 481

Manipulating lme Objects 483
The print Method 483
The summary Method 484
The anova Method 486
The plot method 487
Other Methods 489

Fitting Models Using the nlme Function 493
Model Definition 493
Arguments 494

Manipulating nlme Objects 497
The print Method 497
The summary Method 499
The anova Method 501
The plot Method 501
Other Methods 502

Advanced Model Fitting 505
Positive-Definite Matrix Structures 505
Correlation Structures and Variance Functions 507

LINEAR AND NONLINEAR
MIXED-EFFECTS MODELS 14
461

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Self-Starting Functions 513
Modeling Spatial Dependence 520

References 523
462

Introduction
INTRODUCTION

Mixed-effects models provide a powerful and flexible tool for
analyzing grouped data, which is data that can be classified according
to one or more grouping variables. Mixed-effects models incorporate
both fixed and random effects:

• Fixed effects are parameters associated with an entire
population, or with repeatable levels of experimental factors.

• Random effects are parameters associated with experimental
units drawn at random from a population.

Such models typically describe relationships between a response
variable and covariates that are grouped according to one or more
classification factors. Common applications are longitudinal data,
repeated measures data, multilevel data, and block designs. By
associating common random effects to observations sharing the same
level of a classification factor, mixed-effects models flexibly represent
the covariance structure induced by grouping.

This chapter describes a set of functions, classes, and methods for the
analysis of linear and nonlinear mixed-effects models in Spotfire S+.
The methods provide a comprehensive set of tools for analyzing
linear and nonlinear mixed-effects models with an arbitrary number
of nested grouping levels. They supersede the modeling facilities
available in release 3 of S (Chambers and Hastie, 1992) and releases
5.1 (Unix) and 2000 (Windows) of S-PLUS.

This chapter illustrates how to:

• Represent grouped data sets using the groupedData class.

• Fit basic linear mixed-effects models using the lme function
and manipulate the returned objects.

• Fit basic nonlinear mixed-effects models using the nlme
function and manipulate the returned objects.

• Fit advanced linear and nonlinear mixed-effects models by
defining positive-definite matrices, correlation structures, and
variance functions.

The analysis of several sample data sets illustrates many of the
available features. A detailed description of all functions, classes, and
methods can be found in the on-line help files.
463

Chapter 14 Linear and Nonlinear Mixed-Effects Models
The code for the methods discussed in this chapter was contributed
by Douglas M. Bates of the University of Wisconsin and José C.
Pinheiro of Bell Laboratories. Their book, Mixed Effects Models in S and
Spotfire S+ (2000), contains a careful description of the statistical
theory behind mixed-effects models, as well as detailed examples of
the software for fitting and displaying them. For discussions of
advanced topics not presented in this chapter, we refer the reader to
the Pinheiro and Bates text.
464

Representing Grouped Data Sets
REPRESENTING GROUPED DATA SETS

The data sets used for fitting mixed-effects models have several
characteristics in common. They consist of measurements of a
continuous response at several levels of a covariate (for example,
time, dose, or treatment). The measurements are grouped according
to one or more factors. Additional covariates may also be present,
some of which may vary within a group (inner covariates) and some of
which may not (outer covariates).

A natural way to represent such data in Spotfire S+ is as a data frame
containing the response, the primary covariate, the grouping factor(s),
and any additional factors or continuous covariates. The different
roles of the variables in the data frame can be described by a formula
of the form

response ~ primary | grouping1/grouping2/...

This is similar to the display formula in a Trellis plot, as discussed in
Becker, Cleveland, and Shyu (1996).

The
groupedData
Class

The formula and the data for a grouped data set are packaged
together in a groupedData object. The constructor (the function used
to create objects of a given class) for groupedData takes a formula and
a data frame as arguments. The call to the constructor establishes the
roles of the variables, stores descriptive labels for plots, and converts
the grouping factors to ordered factors so the panels in plots are
ordered in a natural way. By default, the order of the grouping factors
is determined by a summary function applied to the response and
split according to the groups, taking into account the nesting order.
The default summary function is the maximum. Additionally, labels
can be given for the response and the primary covariate, and their
units can be specified as arbitrary strings. The reason for separating
the labels and the units is to allow the units to propagate to derived
quantities, such as the residuals from a fitted model.

When outer factors are present, they are given by a formula such as
outer = ~Sex or outer = ~ Treatment*Type. When multiple
grouping factors are present, a list of such formulas must be supplied.
Inner factors are described in a similar way. When establishing the
465

Chapter 14 Linear and Nonlinear Mixed-Effects Models
order of the levels of the grouping factor, and hence the order of
panels in a plot, re-ordering is only permitted within combinations of
levels for the outer factors.

Trellis parameters can be used to control the graphical presentation of
grouped data. See the online help files for plot.nffGroupedData,
plot.nfnGroupedData and plot.nmGroupedData for details. The first
two functions plot groupedData objects with single levels of grouping,
and plot.nmGroupedData displays objects with multiple grouping
levels.

Extractor functions can be used on groupedData objects to obtain the
different components of the display formula. Functions such as
getGroups, getCovariate, and getResponse can be applied to extract
the corresponding element in the data set. In addition, groupedData
objects can be summarized by group using the function gsummary.

Example: The
Orthodont
Data Set

As a first example of grouped data, consider the orthodontic study
presented in Potthoff and Roy (1964). These data consist of four
distance measurements (in millimeters) made at ages 8, 10, 12, and 14
years, on 16 boys and 11 girls. The measurements represent the
distance from the center of the pituitary to the pterygomaxillary
fissure.

The data from the orthodontic study are stored in the example data
set Orthodont, which has the following variables:

• The 108 observations in the data set are grouped into 27
categories by Subject.

• The 27 subjects are classified into two groups by Sex, an
indicator variable assuming the value "Male" for boys and
"Female" for girls.

• Each of the subjects has four measures of distance,
corresponding to the four age values.

This is an example of balanced repeated measures data, with a single
level of grouping (Subject). We wish to predict distance from age,
using Subject as a grouping variable and Sex as an outer covariate.

To create a new groupedData object for Orthodont, use the class
constructor as follows:

Assign Orthodont to your working directory.
466

Representing Grouped Data Sets
> Orthodont <- Orthodont
> Orthodont <- groupedData(distance ~ age | Subject,
+ data = Orthodont, outer = ~ Sex,
+ labels = list(x = "Age",
+ y="Distance from pituitary to pterygomaxillary fissure"),
+ units = list(x = "(yr)", y = "(mm)"))

The print method returns the display formula and the data frame
associated with a groupedData object.

> print(Orthodont)

Grouped Data: distance ~ age | Subject
 distance age Subject Sex
 1 26.0 8 M01 Male
 2 25.0 10 M01 Male
 3 29.0 12 M01 Male
 4 31.0 14 M01 Male
...
105 24.5 8 F11 Female
106 25.0 10 F11 Female
107 28.0 12 F11 Female
108 28.0 14 F11 Female

You can also use the names and formula methods to return the
variable names and their roles in a groupedData object.

> names(Orthodont)

[1] "distance" "age" "Subject" "Sex"

> formula(Orthodont)

distance ~ age | Subject
467

Chapter 14 Linear and Nonlinear Mixed-Effects Models
One advantage of using a formula to describe the roles of variables in
a groupedData object is that this information can be used within the
model-fitting functions to make the model specification easier. For
example, obtaining preliminary linear regression fits by Subject is as
simple as the following command:

> Ortho.lis <- lmList(Orthodont)

The lmList function partitions data according to the levels of a
grouping factor, and individual linear models are fit for each data
partition. The linear models use the formula defined in the
groupedData object; in this example, lmList fits models for each
Subject according to the formula distance~age.

You can plot the Orthodont data with:

> plot(Orthodont, layout = c(8,4),
+ between = list(y = c(0, 0.5, 0)))

The result is displayed in Figure 14.1. When establishing the order of
the levels of the grouping factor, and hence the order of panels in a
plot, re-ordering is only permitted within combinations of levels for
the outer factors. In the Orthodont data, Sex is an outer factor, which
is why the panels for males and females are grouped separately in
Figure 14.1. Within each gender group, panels are ordered by
maximum distance measurements.

The plot method for the groupedData class allows an optional
argument outer which can be given a logical value or a formula. A
logical value of TRUE (or T) indicates that the outer formula stored with
the data should be used in the plot. The right side of the explicit or
inferred formula replaces the grouping factor in the trellis formula.
The grouping factor is then used to determine which points are joined
with lines. For example:

> plot(Orthodont, outer = T)

The plot is displayed in Figure 14.2. The two panels in the figure
correspond to males and females. Within the panels, the four
measurements for each Subject are joined with lines.
468

Representing Grouped Data Sets
Figure 14.1: Orthodontic growth patterns in 16 boys (M) and 11 girls (F) between 8
and 14 years of age. Panels within each gender group are ordered by maximum
response.

20

25

30

M11

8 10 12 14

M16 M08

8 10 12 14

M05 M14

8 10 12 14

M02 M07

8 10 12 14

M03

M04 M12 M06 M13 M15 M01 M09

20

25

30

M10

20

25

30

F10 F09 F06 F01 F05 F08 F07 F02

F03 F04

8 10 12 14

20

25

30

F11

Age (yr)

D
is

ta
nc

e
fr

om
 p

itu
ita

ry
 to

 p
te

ry
go

m
ax

ill
ar

y
fis

su
re

 (
m

m
)

469

Chapter 14 Linear and Nonlinear Mixed-Effects Models

Example: The
Pixel Data Set

An example of grouped data with two levels of grouping is from an
experiment conducted by Deborah Darien at the School of Veterinary
Medicine, University of Wisconsin at Madison. The radiology study
consisted of repeated measures of mean pixel values from CT scans of
10 dogs. The pixel values were recorded over a period of 14 days after
the application of a contrast, and measurements were taken from both
the right and left lymph nodes in the axillary region of the dogs.

The data from the radiology study are stored in the example data set
Pixel, which has the following variables:

• The observations in the data set are grouped into 10
categories by Dog.

• The 10 dogs have two measurements (Side) for each day a
pixel value was recorded: "L" indicates that the CT scan was
on the left lymph node, and "R" indicates that it was on the
right lymph node.

• The mean pixel values are recorded in the pixel column of
the data set.

Figure 14.2: Orthodontic growth patterns in 16 boys and 11 girls between 8 and 14
years of age, with different panels per gender.

20

25

30

Male

8 9 10 11 12 13 14

Female

8 9 10 11 12 13 14

Age (yr)

D
is

ta
nc

e
fr

om
 p

itu
ita

ry
 to

 p
te

ry
go

m
ax

ill
ar

y
fis

su
re

 (
m

m
)

470

Representing Grouped Data Sets
The purpose of the experiment was to model the mean pixel value as
a function of time, in order to estimate the time when the maximum
mean pixel value was attained. We therefore wish to predict pixel
from day, using both Dog and Side as grouping variables.

To create a new groupedData object for the Pixel data, use the class
constructor as follows:

Assign Pixel to your working directory.
> Pixel <- Pixel
> Pixel <- groupedData(pixel ~ day | Dog/Side,
+ data = Pixel, labels = list(
+ x = "Time post injection", y = "Pixel intensity"),
+ units = list(x = "(days)"))

> Pixel

Grouped Data: pixel ~ day | Dog/Side
 Dog Side day pixel
 1 1 R 0 1045.8
 2 1 R 1 1044.5
 3 1 R 2 1042.9
 4 1 R 4 1050.4
 5 1 R 6 1045.2
 6 1 R 10 1038.9
 7 1 R 14 1039.8
 8 2 R 0 1041.8
 9 2 R 1 1045.6
10 2 R 2 1051.0
11 2 R 4 1054.1
12 2 R 6 1052.7
13 2 R 10 1062.0
14 2 R 14 1050.8
15 3 R 0 1039.8
. . .

Plot the grouped data with the following command:

> plot(Pixel, displayLevel = 1, inner = ~Side)

The result is displayed in Figure 14.3. The grouping variable Dog
determines the number of panels in the plot, and the inner factor Side
determines which points in a panel are joined by lines. Thus, there
471

Chapter 14 Linear and Nonlinear Mixed-Effects Models
are 10 panels in Figure 14.3, and each panel contains a set of
connected points for the left and right lymph nodes. The panels are
ordered according to maximum pixel values.

When multiple levels of grouping are present, the plot method allows
two optional arguments: displayLevel and collapseLevel. These
arguments specify, respectively, the grouping level that determines
the panels in the Trellis plot, and the grouping level over which to
collapse the data.

Example: The
CO2 Data Set

As an example of grouped data with a nonlinear response, consider
an experiment on the cold tolerance of a C4 grass species, Echinochloa
crus-galli, described in Potvin, Lechowicz, and Tardif (1990). A total of
twelve four-week-old plants, six from Quebec and six from
Mississippi, were divided into two groups: control plants that were
kept at 26° C, and chilled plants that were subject to 14 hours of
chilling at 7° C. After 10 hours of recovery at 20° C, CO2 uptake rates

(in μmol/m2s) were measured for each plant at seven concentrations of

Figure 14.3: Mean pixel intensity of the right (R) and left (L) lymph nodes in the
axillary region, versus time from intravenous application of a contrast. The pixel
intensities were obtained from CT scans.

1040

1060

1080

1100

1120

1140

1160

0 5 10 15 20

1 2

0 5 10 15 20

3 9

8 6 4

1040

1060

1080

1100

1120

1140

1160
5

1040

1060

1080

1100

1120

1140

1160
7

0 5 10 15 20

10

Time post injection (days)

P
ix

e
l i

n
te

n
si

ty

L R
472

Representing Grouped Data Sets
ambient CO2: 100, 175, 250, 350, 500, 675, and 1000 μL/L. Each
plant was subjected to the seven concentrations of CO2 in increasing,
consecutive order.

The data from the CO2 study are stored in the example data set CO2,
which has the following variables:

• The 84 observations in the data set are grouped into 12
categories by Plant.

• The 12 plants are classified into two groups by Type, an
indicator variable assuming the values "Quebec" and
"Mississippi".

• The 12 plants are classified into two additional groups
according to Treatment, which indicates whether a plant was
"nonchilled" or "chilled".

• Each plant has seven uptake measurements, corresponding to
the seven concentration (conc) values.

The objective of the experiment was to evaluate the effect of plant
type and chilling treatment on the CO2 uptake. We therefore wish to
predict uptake from conc, using Plant as a grouping variable and
both Treatment and Type as outer covariates.

To create a new groupedData object for the CO2 data, use the class
constructor as follows:

Assign CO2 to your working directory.
> CO2 <- CO2
> CO2 <- groupedData(uptake ~ conc | Plant, data = CO2,
+ outer = ~ Treatment * Type,
+ labels = list(x = "Ambient carbon dioxide concentration",
+ y = "CO2 uptake rate"),
+ units = list(x = "(uL/L)", y = "(umol/m^2 s)"))

> CO2

Grouped Data: uptake ~ conc | Plant
 Plant Type Treatment conc uptake
 1 Qn1 Quebec nonchilled 95 16.0
 2 Qn1 Quebec nonchilled 175 30.4
 3 Qn1 Quebec nonchilled 250 34.8
 . . .
473

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Plot the grouped data with the following command:

> plot(CO2)

The result is shown in Figure 14.4. As in the Orthodont example, you
can use the optional argument outer=T to indicate that the outer
formula stored with the data should be used in the plot. For example:

> plot(CO2, outer = T)

The plot is displayed in Figure 14.5. The outer covariates, Treatment
and Type, determine the number of plots in the figure. The grouping
variable Plant determines the points that are connected by lines in
each panel.

Figure 14.4: CO2 uptake versus ambient CO2 concentration for Echinochloa crus-
galli plants, six from Quebec and six from Mississippi. Half the plants of each type
were chilled overnight before the measurements were taken.

10

20

30

40

Qn1

200 400 600 800

Qn2 Qn3

200 400 600 800

Qc1 Qc3

200 400 600 800

Qc2

Mn3 Mn2

200 400 600 800

Mn1 Mc2

200 400 600 800

Mc3

10

20

30

40

Mc1

200 400 600 800

Ambient carbon dioxide concentration (uL/L)

C
O

2
up

ta
ke

 r
at

e
(u

m
ol

/m
^2

 s
)

474

Representing Grouped Data Sets
Figure 14.5: CO2 uptake versus ambient CO2 by Treatment and Type.

10

20

30

40

nonchilled
Quebec

200 400 600 800

chilled
Quebec

nonchilled
Mississippi

10

20

30

40

chilled
Mississippi

200 400 600 800

Ambient carbon dioxide concentration (uL/L)

C
O

2
up

ta
ke

 r
at

e
(u

m
ol

/m
^2

 s
)

475

Chapter 14 Linear and Nonlinear Mixed-Effects Models
We can also obtain a numeric summary of the CO2 data by group,
using the gsummary function as follows:

> gsummary(CO2)

 Plant Type Treatment conc uptake
Qn1 Qn1 Quebec nonchilled 435 33.22857
Qn2 Qn2 Quebec nonchilled 435 35.15714
Qn3 Qn3 Quebec nonchilled 435 37.61429
Qc1 Qc1 Quebec chilled 435 29.97143
Qc3 Qc3 Quebec chilled 435 32.58571
Qc2 Qc2 Quebec chilled 435 32.70000
Mn3 Mn3 Mississippi nonchilled 435 24.11429
Mn2 Mn2 Mississippi nonchilled 435 27.34286
Mn1 Mn1 Mississippi nonchilled 435 26.40000
Mc2 Mc2 Mississippi chilled 435 12.14286
Mc3 Mc3 Mississippi chilled 435 17.30000
Mc1 Mc1 Mississippi chilled 435 18.00000

Example: The
Soybean Data
Set

Another example of grouped data with a nonlinear response comes
from an experiment described in Davidian and Giltinan (1995),
which compares growth patterns of two genotypes of soybean. One
genotype is a commercial variety, Forrest, and the other is an
experimental strain, Plant Introduction #416937. The data were
collected in the three years from 1988 to 1990. At the beginning of the
growing season in each year, 16 plots were planted with seeds (8 plots
with each genotype). Each plot was sampled eight to ten times at
approximately weekly intervals. At sampling time, six plants were
randomly selected from each plot, leaves from these plants were
weighed, and the average leaf weight per plant was calculated for the
plot. Different plots in different sites were used in different years.

The data from the soybean study are stored in the example data set
Soybean, which has the following variables:

• The observations in the data set are grouped into 48
categories by Plot, a variable that provides unique labels for
the 16 plots planted in each of the 3 years.

• The 48 plots are classified into three groups by Year, which
indicates whether the plot was planted in "1988", "1989", or
"1990".
476

Representing Grouped Data Sets
• The 48 plots are classified into two additional groups
according to Variety, which indicates whether a plot
contained the commercial strain of plants (F) or the
experimental strain (P).

• The average leaf weight at each Time for the plots is recorded
in the weight column of the data set.

The objective of the soybean experiment was to model the growth
pattern in terms of average leaf weight. We therefore wish to predict
weight from Time, using Plot as a grouping variable and both
Variety and Year as outer covariates.

To create a new groupedData object for the Soybean data, use the class
constructor as follows:

Assign Soybean to your working directory.
> Soybean <- Soybean
> Soybean <- groupedData(weight ~ Time | Plot,
+ data = Soybean, outer = ~ Variety * Year,
+ labels = list(x = "Time since planting",
+ y = "Leaf weight/plant"),
+ units = list(x = "(days)", y = "(g)"))

> Soybean

Grouped Data: weight ~ Time | Plot
 Plot Variety Year Time weight
 1 1988F1 F 1988 14 0.10600
 2 1988F1 F 1988 21 0.26100
 3 1988F1 F 1988 28 0.66600
 4 1988F1 F 1988 35 2.11000
 5 1988F1 F 1988 42 3.56000
 6 1988F1 F 1988 49 6.23000
 7 1988F1 F 1988 56 8.71000
 8 1988F1 F 1988 63 13.35000
 9 1988F1 F 1988 70 16.34170
10 1988F1 F 1988 77 17.75083
11 1988F2 F 1988 14 0.10400
12 1988F2 F 1988 21 0.26900
. . .
477

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Plot the grouped data with the following command:

> plot(Soybean, outer= ~ Year * Variety)

The result is shown in Figure 14.6.

Figure 14.6: Average leaf weight in plots of soybeans, versus time since planting. The
plots are from three different years and represent two different genotypes of soybeans.

0

5

10

15

20

25

30

1988
F

20 40 60 80

1989
F

1990
F

20 40 60 80

1988
P

1989
P

20 40 60 80

0

5

10

15

20

25

30

1990
P

Time since planting (days)

L
e
a
f
w

e
ig

h
t/
p
la

n
t
(g

)

478

Fitting Models Using the lme Function
FITTING MODELS USING THE LME FUNCTION

The Spotfire S+ function lme fits a linear mixed-effects model as
described in Laird and Ware (1982), or a multilevel linear mixed-
effects model as described in Longford (1993) and Goldstein (1995).
The models are fitted using either maximum likelihood or restricted
maximum likelihood. The lme function produces objects of class
"lme".

Model
Definitions

Example: the Orthodont data

The plot of the individual growth curves in Figure 14.1 suggests that a
linear model might adequately explain the orthodontic distance as a
function of age. However, the intercepts and slopes of the lines seem
to vary with the individual patient. The corresponding linear mixed-
effects model is given by the following equation:

where represents the distance for the ith individual at age , and
β0 and β1 are the population average intercept and the population

average slope, respectively. The and terms are the effects in

intercept and slope associated with the ith individual, and is the

within-subject error term. It is assumed that the bi = (bi0,bi1)T are

independent and identically distributed with a N(0,σ2D) distribution,

where represents the covariance matrix for the random effects.
Furthermore, we assume that the ε ij are independent and identically

distributed with a N(0,σ2) distribution, independent of the bi.

(14.1)dij β0 bi0+() β1 bi1+()agej ε ij++=

dij j

bi0 bi1

ε ij

σ2D
479

Chapter 14 Linear and Nonlinear Mixed-Effects Models
One of the questions of interest for these data is whether the curves
show significant differences between boys and girls. The model given
by Equation (14.1) can be modified as

to test for sex-related differences in intercept and slope. In Equation
(14.2), sexi is an indicator variable assuming the value 0 if the ith
individual is a boy and 1 if she is a girl. The β00 and β10 terms
represent the population average intercept and slope for the boys; β01
and β11 are the changes (with respect to β00 and β10) in population
average intercept and slope for girls. Differences between boys and
girls can be evaluated by testing whether β01 and β11 are significantly
different from zero. The remaining terms in Equation (14.2) are
defined as in Equation (14.1).

Example: the Pixel data

In Figure 14.3, a second order polynomial seems to adequately
explain the evolution of pixel intensity with time. Preliminary
analyses indicated that the intercept varies with Dog, as well as with
Side nested in Dog. In addition, the linear term varies with Dog, but
not with Side. The corresponding multilevel linear mixed-effects
model is given by the following equation:

where refers to the dog number, refers to
the lymph node side (corresponds to the right side and
corresponds to the left), and k refers to time. The β0, β1, and β2 terms
denote, respectively, the intercept, the linear term, and the quadratic
term fixed effects. The b0i term denotes the intercept random effect at
the Dog level, b0i,j denotes the intercept random effect at the Side
within Dog level, and b1i denotes the linear term random effect at the

(14.2)

(14.3)

dij β00 β01sexi bi0+ +() +=

β10 β11sexi bi1+ +()agej ε ij+

yijk β0 b0i b0i j,+ +() β1 b1i+()tijk β2tijk
2 ε ijk+ + +=

i 1 2 … 10, , ,= j 1 2,=

j 1= j 2=
480

Fitting Models Using the lme Function
Dog level. The y variable is the pixel intensity, t is the time since
contrast injection, and ε ijk is the error term. It is assumed that the

bi = (b0i ,b1i)
T are independent and identically distributed with a

N(0,σ2D1) distribution, where represents the covariance matrix
for random effects at the Dog level. The bi,j = [b0i,j] are independent of

the bi, and independent and identically distributed with a N(0,σ2D2)

distribution, where represents the covariance matrix for
random effects at the Side within Dog level. The ε ijk are independent

and identically distributed with a N(0,σ2) distribution, independent of
the bi and the bi,j .

Arguments The typical call to the lme function is of the form

lme(fixed, data, random)

Only the first argument is required. The arguments fixed and random
are generally given as formulas. Any linear formula is allowed for
both arguments, giving the model formulation considerable
flexibility. The optional argument data specifies the data frame in
which the model’s variables are available.

Other arguments in the lme function allow for flexible definitions of
the within-group correlation and heteroscedasticity structures, the
subset of the data to be modeled, the method to use when fitting the
model, and the list of control values for the estimation algorithm. See
the lme online help file for specific details on each argument.

Example: the Orthodont data

For the model given by Equation (14.1), the fixed and random
formulas are written as follows:

fixed = distance ~ age, random = ~ age

For the model given by Equation (14.2), these formulas are:

fixed = distance ~ age * Sex, random = ~ age

Note that the response variable is given only in the formula for the
fixed argument, and that random is usually a one-sided linear
formula. If the random argument is omitted, it is assumed to be the
same as the right side of the fixed formula.

σ2D1

σ2D2
481

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Because Orthodont is a groupedData object, the grouping structure is
extracted from the groupedData display formula, and does not need
to be explicitly included in random. Alternatively, the grouping
structure can be included in the formula as a conditioning expression:

random = ~ age | Subject

A simple call to lme that fits the model in Equation (14.1) is as follows:

> Ortho.fit1 <- lme(fixed = distance ~ age,
+ data = Orthodont, random = ~ age | Subject)

To fit the model given by Equation (14.2), you can update Ortho.fit1
as follows:

set contrasts for desired parameterization
> options(contrasts = c("contr.treatment", "contr.poly"))
> Ortho.fit2 <- update(Ortho.fit1,
+ fixed = distance ~ age * Sex)

Example: the Pixel data

When multiple levels of grouping are present, as in the Pixel
example, random must be given as a list of formulas. For the model
given by Equation (14.3), the fixed and random formulas are:

fixed = pixel ~ day + day^2
random = list(Dog = ~ day, Side = ~ 1)

Note that the names of the elements in the random list correspond to
the names of the grouping factors; they are assumed to be in
outermost to innermost order. As with all Spotfire S+ formulas, a
model with a single intercept is represented by ~ 1.

The multilevel model given by Equation (14.3) is fitted with the
following command:

> Pixel.fit1 <- lme(fixed = pixel ~ day + day^2,
+ data = Pixel, random = list(Dog = ~ day, Side = ~1))
482

Manipulating lme Objects
MANIPULATING LME OBJECTS

A call to the lme function returns an object of class "lme". The online
help file for lmeObject contains a description of the returned object
and each of its components. There are several methods available for
lme objects, including print, summary, anova, and plot. These
methods are described in the following sections.

The print
Method

A brief description of the lme estimation results is returned by the
print method. It displays estimates of the fixed effects, as well as
standard deviations and correlations of random effects. If fitted, the
within-group correlation and variance function parameters are also
printed. For the Ortho.fit1 object defined in the section Arguments
on page 481, the results are as follows:

> print(Ortho.fit1)

Linear mixed-effects model fit by REML
 Data: Orthodont
 Log-restricted-likelihood: -221.3183
 Fixed: distance ~ age
 (Intercept) age
 16.76111 0.6601852

Random effects:
 Formula: ~ age | Subject
 Structure: General positive-definite
 StdDev Corr
(Intercept) 2.3270357 (Inter
 age 0.2264279 -0.609
 Residual 1.3100396

Number of Observations: 108
Number of Groups: 27
483

Chapter 14 Linear and Nonlinear Mixed-Effects Models
The summary
Method

A complete description of the lme estimation results is returned by the
summary function. For the Ortho.fit2 object defined in the section
Arguments on page 481, the results are given by the following
command:

> summary(Ortho.fit2)
Linear mixed-effects model fit by REML
 Data: Orthodont
 AIC BIC logLik
 448.5817 469.7368 -216.2908

Random effects:
 Formula: ~ age | Subject
 Structure: General positive-definite
 StdDev Corr
(Intercept) 2.4055020 (Inter
 age 0.1803458 -0.668
 Residual 1.3100393

Fixed effects: distance ~ age + Sex + age:Sex
 Value Std.Error DF t-value p-value
(Intercept) 16.34062 1.018532 79 16.04331 <.0001
 age 0.78438 0.086000 79 9.12069 <.0001
 Sex 1.03210 1.595733 25 0.64679 0.5237
 age:Sex -0.30483 0.134735 79 -2.26243 0.0264
 Correlation:
 (Intr) age Sex
 age -0.880
 Sex -0.638 0.562
age:Sex 0.562 -0.638 -0.880

Standardized Within-Group Residuals:
 Min Q1 Med Q3 Max
 -3.168077 -0.3859386 0.007103473 0.4451539 3.849464

Number of Observations: 108
Number of Groups: 27

The approximate standard errors for the fixed effects are computed
using an algorithm based on the asymptotic theory described in
Pinheiro (1994). In the results for Ortho.fit2, the significant, negative
fixed effect between age and Sex indicate that the orthodontic
484

Manipulating lme Objects
distance increases faster in boys than in girls. However, the non-
significant fixed effect for Sex indicates that the average intercept is
common to boys and girls.

To summarize the estimation results for the Pixel.fit1 object defined
on page 482, use the following:

> summary(Pixel.fit1)
Linear mixed-effects model fit by REML
 Data: Pixel
 AIC BIC logLik
 841.2102 861.9712 -412.6051

Random effects:
 Formula: ~ day | Dog
 Structure: General positive-definite
 StdDev Corr
(Intercept) 28.36994 (Inter
 day 1.84375 -0.555

 Formula: ~ 1 | Side %in% Dog
 (Intercept) Residual
StdDev: 16.82424 8.989609

Fixed effects: pixel ~ day + day^2
 Value Std.Error DF t-value p-value
(Intercept) 1073.339 10.17169 80 105.5222 <.0001
 day 6.130 0.87932 80 6.9708 <.0001
 I(day^2) -0.367 0.03395 80 -10.8218 <.0001
 Correlation:
 (Intr) day
 day -0.517
I(day^2) 0.186 -0.668

Standardized Within-Group Residuals:
 Min Q1 Med Q3 Max
 -2.829056 -0.4491807 0.02554919 0.557216 2.751964

Number of Observations: 102
Number of Groups:
 Dog Side %in% Dog
 10 20
485

Chapter 14 Linear and Nonlinear Mixed-Effects Models
The anova
Method

A likelihood ratio test can be used to test the difference between fixed
effects in different lme models. The anova method provides this
capability for lme objects.

As an example, we compare the Ortho.fit1 and Ortho.fit2 objects
defined for the Orthodont data set. Since the two models have
different fixed effects structures, we must re-fit them using maximum
likelihood estimation before calling the anova function. Use the
update function to re-fit the objects as follows:

> Ortho.fit1.ML <- update(Ortho.fit1, method = "ML")
> Ortho.fit2.ML <- update(Ortho.fit2, method = "ML")

The call to anova produces:

> anova(Ortho.fit1.ML, Ortho.fit2.ML)

 Model df AIC BIC logLik
Ortho.fit1.ML 1 6 451.2116 467.3044 -219.6058
Ortho.fit2.ML 2 8 443.8060 465.2630 -213.9030

 Test L.Ratio p-value
Ortho.fit1.ML
Ortho.fit2.ML 1 vs 2 11.40565 0.0033

Recall that Ortho.fit2.ML includes terms that test for sex-related
differences in the data. The likelihood ratio test strongly rejects the
null hypothesis of no differences between boys and girls. For small
sample sizes, likelihood ratio tests tend to be too liberal when
comparing models with nested fixed effects structures, and should
therefore be used with caution. We recommend using the Wald-type
tests provided by the anova method (when a single model object is
passed to the function), as these tend to have significance levels close
to nominal, even for small samples.

Warning

Likelihood comparisons between restricted maximum likelihood (REML) fits with different
fixed effects structures are not meaningful. To compare such models, you should re-fit the objects
using maximum likelihood (ML) before calling anova.
486

Manipulating lme Objects
The plot
method

Diagnostic plots for assessing the quality of a fitted lme model are
obtained with the plot method. This method takes several optional
arguments, but a typical call is of the form

plot(object, form)

The first argument is an lme object and the second is a display
formula for the Trellis graphic to be produced. The fitted object can
be referenced by the period symbol ‘‘.’’ in the form argument. For
example, the following command produces a plot of the standardized
residuals versus the fitted values for the Ortho.fit2 object, grouped
by gender:

> plot(Ortho.fit2,
+ form = resid(., type = "p") ~ fitted(.) | Sex)

The result is displayed in Figure 14.7.

The form expression above introduces two other common methods
for lme objects: resid and fitted, which are abbreviations for
residuals and fitted.values. The resid and fitted functions are
standard Spotfire S+ extractors, and return the residuals and fitted
values for a model object, respectively. The argument type for the
residuals.lme method accepts the strings "pearson" (or "p"),
"normalized", and "response"; the standardized residuals are
returned when type="p". By default the raw or "response" (or
standardized) residuals are calculated.

Figure 14.7 provides some evidence that the variability of the
orthodontic distance is greater in boys than in girls. In addition, it
appears that a few outliers are present in the data. To assess the
predictive power of the Ortho.fit2 model, consider the plot of the
observed values versus the fitted values for each Subject. The plots,
shown in Figure 14.8, are obtained with the following command:

> plot(Ortho.fit2, form = distance ~ fitted(.) | Subject,
+ layout = c(4,7), between = list(y = c(0, 0, 0, 0.5)),
+ aspect = 1.0, abline = c(0,1))
487

Chapter 14 Linear and Nonlinear Mixed-Effects Models

Figure 14.7: Standardized residuals versus fitted values for the Ortho.fit2 model
object, grouped by gender.

Figure 14.8: Observed distances versus fitted values by Subject for the
Ortho.fit2 model object.

-2

0

2

4
Male

18 20 22 24 26 28 30 32

Female

18 20 22 24 26 28 30 32

Fitted values (mm)

S
ta

nd
ar

di
ze

d
re

si
du

al
s

20

25

30

M16

18 22 26 30

M05 M02

18 22 26 30

M11

M07 M08 M03

20

25

30

M12

20

25

30

M13 M14 M09 M15

M06 M04 M01

20

25

30

M10

20

25

30

F10 F09 F06 F01

F05 F07 F02

20

25

30

F08

20

25

30

F03 F04

18 22 26 30

F11

Fitted values (mm)

D
is

ta
nc

e
fr

om
 p

itu
ita

ry
 to

 p
te

ry
go

m
ax

ill
ar

y
fis

su
re

 (
m

m
)

488

Manipulating lme Objects
For most of the subjects, there is very good agreement between the
observed and fitted values, indicating that the fit is adequate.

The form argument to the plot method for lme objects provides
virtually unlimited flexibility in generating customized diagnostic
plots. As a final example, consider the plot of the standardized
residuals (at the Side within Dog level) for the Pixel.fit1 object,
grouped by Dog. The plot, similar to the one shown in Figure 14.9, is
obtained with the following command:

> plot(Pixel.fit1, form = Dog ~ resid(., type = "p"))

The residuals seem to be symmetrically scattered around zero with
similar variabilities, except possibly for dog number 4.

Other Methods Standard Spotfire S+ methods for extracting components of fitted
objects, such as residuals, fitted.values, and coefficients, can
also be used on lme objects. In addition, lme includes the methods
fixed.effects and random.effects for extracting the fixed effects
and the random effects estimates; abbreviations for these functions
are fixef and ranef, respectively. For example, the two commands
below return coefficients and fixed effects.

Figure 14.9: Standardized residuals by Dog for the Pixel.fit1 model object.

1

10

2

3

4

5

6

7

8

9

-3 -2 -1 0 1 2

Standardized residuals

D
og
489

Chapter 14 Linear and Nonlinear Mixed-Effects Models
> coef(Ortho.fit2)

 (Intercept) age Sex age:Sex
M16 15.55737 0.6957276 1.032102 -0.3048295
M05 14.69529 0.7759009 1.032102 -0.3048295
...
F04 18.00174 0.8125880 1.032102 -0.3048295
F11 18.53692 0.8858555 1.032102 -0.3048295

> fixef(Pixel.fit1)

 (Intercept) day I(day^2)
 1073.339 6.129597 -0.3673503

The next command returns the random effects at the Dog level for the
Pixel.fit1 object:

> ranef(Pixel.fit1, level = 1)

 1 -24.714229 -1.19537074
10 19.365854 -0.09936872
 2 -23.582059 -0.43243128
 3 -27.080310 2.19475596
 4 -16.658544 3.09597260
 5 25.299771 -0.56127136
 6 10.823243 -1.03699983
 7 49.353938 -2.27445838
 8 -7.053961 0.99025533
 9 -5.753702 -0.68108358

Random effects estimates can be visualized with the Spotfire S+
function plot.ranef.lme, designed specifically for this purpose. This
function offers great flexibility for the display of random effects. The
simplest display produces a dot plot of the random effects for each
coefficient, as in the following example:

> plot(ranef(Pixel.fit1, level = 1))
490

Manipulating lme Objects
Predicted values for lme objects are returned by the predict method.
For example, if you are interested in predicting the average
orthodontic measurement for both boys and girls at ages 14, 15, and
16, as well as for subjects M01 and F10 at age 13, first create a new data
frame as follows:

> Orthodont.new <- data.frame(
+ Sex = c("Male", "Male", "Male", "Female", "Female",
+ "Female", "Male", "Female"),
+ age = c(14, 15, 16, 14, 15, 16, 13, 13),
+ Subject = c(NA, NA, NA, NA, NA, NA, "M01", "F10"))

You can then use the following command to compute the subject-
specific and population predictions:

> predict(Ortho.fit2, Orthodont.new, level = c(0,1))

 Subject predict.fixed predict.Subject
1 NA 27.32188 NA
2 NA 28.10625 NA
3 NA 28.89063 NA
4 NA 24.08636 NA
5 NA 24.56591 NA
6 NA 25.04545 NA
7 M01 26.53750 29.17264
8 F10 23.60682 19.80758

The level argument is used to define the desired prediction levels,
with zero referring to the population predictions.

Finally, the intervals method for lme objects computes confidence
intervals for the parameters in a mixed-effects model:

> intervals(Ortho.fit2)

Approximate 95% confidence intervals

 Fixed effects:
 lower est. upper
(Intercept) 14.3132878 16.3406250 18.36796224
 age 0.6131972 0.7843750 0.95555282
 Sex -2.2543713 1.0321023 4.31857585
 age:Sex -0.5730137 -0.3048295 -0.03664544
491

Chapter 14 Linear and Nonlinear Mixed-Effects Models
 Random Effects:
 Level: Subject
 lower est. upper
 sd((Intercept)) 1.00636826 2.4055020 5.7498233
 sd(age) 0.05845914 0.1803458 0.5563649
cor((Intercept),age) -0.96063585 -0.6676196 0.3285589

 Within-group standard error:
 lower est. upper
 1.084768 1.310039 1.582092

The models considered so far do not assume any special form for the
random effects variance-covariance matrix. See the section Advanced
Model Fitting for a variety of specifications of both the random effects
covariance matrix and the within-group correlation structure. Beyond
the available covariance structures, customized structures can be
designed by the user; this topic is also addressed in the section
Advanced Model Fitting.
492

Fitting Models Using the nlme Function
FITTING MODELS USING THE NLME FUNCTION

Nonlinear mixed-effects models, which generalize nonlinear models
as well as linear mixed-effects models, can be analyzed with the
Spotfire S+ function nlme. The nlme function fits nonlinear mixed-
effects models as defined in Lindstrom and Bates (1990), using either
maximum likelihood or restricted maximum likelihood. These
models are of class "nlme" and inherit from the class "lme", so
methods for lme objects apply to nlme objects as well.

There are many advantages to using nonlinear mixed-effects models.
For example, the model or expectation function is usually based on
sound theory about the mechanism generating the data. Hence, the
model parameters usually have a physical meaning of interest to the
investigator.

Model
Definition

Example: the CO2 data

Recall the CO2 data set, which was introduced in the section
Representing Grouped Data Sets as an example of grouped data with
a nonlinear response. The objective of the data collection was to
evaluate the effect of plant type and chilling treatment on their CO2
uptake. The model used in Potvin, et al. (1990) is

where Uij denotes the CO2 uptake rate of the ith plant at the jth CO2
ambient concentration. The φ1i , φ2i , and φ3i terms denote the
asymptotic uptake rate, the uptake growth rate, and the maximum
ambient CO2 concentration at which no uptake is verified for the ith
plant, respectively. The Cj term denotes the jth ambient CO2 level,
and the ε ij are independent and identically distributed error terms

with a common N(0,σ2) distribution.

(14.4)Uij φ1i 1 exp φ– 2i Cj φ3i–()[]–{ } ε ij+=
493

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Arguments Several optional arguments can be used with the nlme function, but a
typical call is of the form

nlme(model, data, fixed, random, start)

The model argument is required and consists of a formula specifying
the nonlinear model to be fitted. Any Spotfire S+ nonlinear formula
can be used, giving the function considerable flexibility.

The arguments fixed and random are formulas (or lists of formulas)
that define the structures of the fixed and random effects in the
model. Only the fixed argument is required; by default, random is
equivalent to fixed, so the random argument can be omitted. As in all
Spotfire S+ formulas, a 1 on the right side of the fixed or random
formulas indicates that a single intercept is associated with the effect.
However, any linear formula can be used instead. Again, this gives
the model considerable flexibility, as time-dependent parameters can
be easily incorporated. This occurs, for example, when a fixed
formula involves a covariate that changes with time.

Usually, every parameter in a mixed-effects model has an associated
fixed effect, but it may or may not have an associated random effect.
Since we assume that all random effects have zero means, the
inclusion of a random effect without a corresponding fixed effect is
unusual. Note that the fixed and random formulas can be
incorporated directly into the model declaration, but the approach
used in nlme allows for more efficient derivative calculations.

The data argument to nlme is optional and names a data frame in
which the variables for the model, fixed, and random formulas are
found. The optional start argument provides a list of starting values
for the iterative algorithm. Only the fixed effects starting estimates are
required; the default starting estimates for the random effects are zero.

Example: the CO2 data

For the CO2 uptake data, we obtain the following model formula
from Equation (14.4):

uptake ~ A * (1 - exp(-B * (conc - C)))

where A = φ1, B = φ2, and C = φ3. To force the rate parameter φ2 to be
positive while preserving an unrestricted parametrization, you can
transform with as follows:

uptake ~ A * (1 - exp(-exp(lB) * (conc - C)))

B lB B()log=
494

Fitting Models Using the nlme Function
Alternatively, you can define a Spotfire S+ function that contains the
model formula:

> CO2.func <-
+ function(conc, A, lB, C) A*(1 - exp(-exp(lB)*(conc - C)))

The model argument in nlme then looks like

uptake ~ CO2.func(conc, A, lB, C)

The advantage of the latter approach is that the analytic derivatives of
the model function can be passed to nlme as a gradient attribute of
the value returned by CO2.func. The analytic derivatives can then be
used in the optimization algorithm. For example, we use the Spotfire
S+ function deriv to create expressions for the derivatives:

> CO2.func <-
+ deriv(~ A * (1 - exp(-exp(lB) * (conc - C))),
+ c("A", "lB", "C"), function(conc, A, lB, C){})

If the value returned by a function like CO2.func does not have a
gradient attribute, numerical derivatives are used in the optimization
algorithm.

To fit a model for the CO2 data in which all parameters are random
and no covariates are included, use the following fixed and random
formulas:

fixed = A + lB + C ~ 1, random = A + lB + C ~ 1

Alternatively, the random argument can be omitted since it is
equivalent to the fixed formula by default. Because CO2 is a
groupedData object, the grouping structure does not need to be
explicitly given in random, as it is extracted from the groupedData
display formula. However, it is possible to include the grouping
structure as a conditioning expression in the formula:

random = A + lB + C ~ 1 | Plant

If you want to estimate the (fixed) effects of plant type and chilling
treatment on the parameters in the model, use

fixed = A + lB + C ~ Type * Treatment,
random = A + lB + C ~ 1
495

Chapter 14 Linear and Nonlinear Mixed-Effects Models
The following simple call to nlme fits the model given by Equation
(14.4):

> CO2.fit1 <-
+ nlme(model = uptake ~ CO2.func(conc, A, lB, C),
+ fixed = A + lB + C ~ 1, data = CO2,
+ start = c(30, log(0.01), 50))

The initial values for the fixed effects are obtained from Potvin, et al.
(1990).
496

Manipulating nlme Objects
MANIPULATING NLME OBJECTS

Objects returned by the nlme function are of class "nlme". The online
help file for nlmeObject contains a description of the returned object
and each of its components. The nlme class inherits from the lme class,
so that all methods described for lme objects are also available for
nlme objects. In fact, with the exception of the predict method, all
methods are common to both classes. We illustrate their uses here
with the CO2 uptake data.

The print
Method

The print method provides a brief description of the nlme estimation
results. It displays estimates of the standard deviations and
correlations of random effects, the within-group standard deviation,
and the fixed effects. For the CO2.fit1 object defined in the section
Arguments on page 494, the results are as follows:

> print(CO2.fit1)

Nonlinear mixed-effects model fit by maximum likelihood
 Model: uptake ~ CO2.func(conc, A, lB, C)
 Data: CO2
 Log-likelihood: -201.3103
 Fixed: A + lB + C ~ 1
 A lB C
 32.47374 -4.636204 43.5424

Random effects:
 Formula: list(A ~ 1 , lB ~ 1 , C ~ 1)
 Level: Plant
 Structure: General positive-definite
 StdDev Corr
 A 9.5100551 A lB
 lB 0.1283327 -0.160
 C 10.4010223 0.999 -0.139
Residual 1.7664129

Number of Observations: 84
Number of Groups: 12
497

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Note that there is strong correlation between the A and the C random
effects, and that both of these have small correlations with the lB
random effect. A scatterplot matrix provides a graphical description
of the random effects correlation structure. We generate a scatterplot
matrix with the pairs method:

> pairs(CO2.fit1, ~ranef(.))

The result is shown in Figure 14.10.

The correlation between A and C may be due to the fact that the plant
type and chilling treatment, which are not included in the CO2.fit1
model, affect A and C in similar ways. The plot.ranef.lme function
can be used to explore the dependence of individual parameters on
plant type and chilling factor. The following command produces the
plot displayed in Figure 14.11.

> plot(ranef(CO2.fit1, augFrame = T),
+ form = ~Type*Treatment, layout = c(3,1))

Figure 14.10: Scatterplot matrix of the estimated random effects in CO2.fit1.

-15 -10 -5

 0 5 10

 0

 5

 10

-15

-10

 -5
A

-0.15 -0.10 -0.05

 0.00 0.05 0.10

 0.00

 0.05

 0.10

-0.15

-0.10

-0.05
lB

-20 -15 -10 -5

 -5 0 5 10

 -5

 0

 5

 10

-20

-15

-10

 -5C
498

Manipulating nlme Objects
These plots indicate that chilled plants tend to have smaller values of
A and C. However, the Mississippi plants seem to be much more
affected than the Quebec plants, suggesting an interaction effect
between plant type and chilling treatment. There is no clear pattern of
dependence between lB and the treatment factors, suggesting that lB
is not significantly affected by either plant type or chilling treatment.

We can update CO2.fit1, allowing the A and C fixed effects to depend
on the treatment factors, as follows:

> CO2.fit2 <- update(CO2.fit1,
+ fixed = list(A+C ~ Treatment * Type, lB ~ 1),
+ start = c(32.55, 0, 0, 0, 41.56, 0, 0, 0, -4.6))

The summary
Method

The summary method provides detailed information for fitted nlme
objects. For the CO2.fit2 object defined in the previous section, the
results are as follows:

> summary(CO2.fit2)

Figure 14.11: Estimated random effects versus plant type and chilling treatment.

Quebec nonchilled

Quebec chilled

Mississippi nonchilled

Mississippi chilled

-15 -10 -5 0 5 10

A

0.2 -0.1 0.0 0.1

lB

-20 -10 0 10

C

Random effects

T
yp

e
 *

 T
re

a
tm

e
n
t

499

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Nonlinear mixed-effects model fit by maximum likelihood
 Model: uptake ~ CO2.func(conc, A, lB, C)
 Data: CO2
 AIC BIC logLik
 392.4073 431.3004 -180.2037

Random effects:
 Formula: list(A ~ 1 , lB ~ 1 , C ~ 1)
 Level: Plant
 Structure: General positive-definite
 StdDev Corr
A.(Intercept) 2.3709337 A.(In) lB
 lB 0.1475418 -0.336
C.(Intercept) 8.1630618 0.355 0.761
 Residual 1.7113057

Fixed effects: list(A + C ~ Treatment * Type, lB ~ 1)
 Value Std.Error DF t-value
 A.(Intercept) 42.24934 1.49761 64 28.21125
 A.Treatment -3.69231 2.05807 64 -1.79407
 A.Type -11.07858 2.06458 64 -5.36603
A.Treatment:Type -9.57430 2.94275 64 -3.25352
 C.(Intercept) 46.30206 6.43499 64 7.19536
 C.Treatment 8.82823 7.22978 64 1.22109
 C.Type 3.00775 8.04748 64 0.37375
C.Treatment:Type -49.01624 17.68013 64 -2.77239
 lB -4.65063 0.08010 64 -58.06061

 p-value
 A.(Intercept) <.0001
 A.Treatment 0.0775
 A.Type <.0001
A.Treatment:Type 0.0018
 C.(Intercept) <.0001
 C.Treatment 0.2265
 C.Type 0.7098
C.Treatment:Type 0.0073
 lB <.0001
 Correlation:
. . .

The small p-values of the t-statistics associated with the
Treatment:Type effects indicate that both factors have a significant
effect on parameters A and C. This implies that their joint effect is not
just the sum of the individual effects.
500

Manipulating nlme Objects
The anova
Method

For the fitted object CO2.fit2, you can investigate the joint effect of
Treatment and Type on both A and C using the anova method.

> anova(CO2.fit2,
+ Terms = c("A.Treatment", "A.Type", "A.Treatment:Type"))

F-test for: A.Treatment, A.Type, A.Treatment:Type
 numDF denDF F-value p-value
1 3 64 51.77643 <.0001

> anova(CO2.fit2,
+ Terms = c("C.Treatment", "C.Type", "C.Treatment:Type"))

F-test for: C.Treatment, C.Type, C.Treatment:Type
 numDF denDF F-value p-value
1 3 64 2.939699 0.0397

The p-values of the Wald F-tests suggest that Treatment and Type have
a stronger influence on A than on C.

The plot
Method

Diagnostic plots for nlme objects can be obtained with the plot
method, in the same way that they are generated for lme objects. For
the CO2.fit2 model, plots grouped by Treatment and Type of the
standardized residuals versus fitted values are shown in Figure 14.12.
The figure is obtained with the following command:

> plot(CO2.fit2, form =
+ resid(., type = "p") ~ fitted(.) | Type * Treatment,
+ abline = 0)

The plots do not indicate any departures from the assumptions in the
model: no outliers seem to be present and the residuals are
symmetrically scattered around the line, with constant spread
for different levels of the fitted values.

y 0=
501

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Other Methods Predictions for nlme objects are returned by the predict method. For
example, to obtain population predictions of the CO2 uptake rate for
Quebec and Mississippi plants under chilling and no chilling, at
ambient CO2 concentrations of 75, 100, 200, and 500 μL/L, first
define a new data frame as follows:

> CO2.new <- data.frame(
+ Type = rep(c("Quebec", "Mississippi"), c(8, 8)),
+ Treatment=rep(rep(c("chilled","nonchilled"),c(4,4)),2),
+ conc = rep(c(75, 100, 200, 500), 4))

You can then use the following command to compute the desired
predictions:

> predict(CO2.fit2, CO2.new, level = 0)

Figure 14.12: Standardized residuals versus fitted values for the CO2.fit2 model,
grouped by plant type and chilling treatment.

-3

-2

-1

0

1

2

3

Quebec
nonchilled

10 20 30 40

Mississippi
nonchilled

Quebec
chilled

-3

-2

-1

0

1

2

3

Mississippi
chilled

10 20 30 40

Fitted values (umol/m^2 s)

S
ta

nd
ar

di
ze

d
re

si
du

al
s

502

Manipulating nlme Objects
 [1] 6.667665 13.444072 28.898614 38.007573 10.133021
 [6] 16.957656 32.522187 41.695974 8.363796 10.391096
[11] 15.014636 17.739766 6.785064 11.966962 23.785004
[16] 30.750597
attr(, "label"):
[1] "Predicted values (umol/m^2 s)"

The augPred method can be used to plot smooth fitted curves for
predicted values. The method works by calculating fitted values at
closely spaced points. For example, Figure 14.13 presents fitted curves
for the CO2.fit2 model. Individual curves are plotted for all twelve
plants in the CO2 data, evaluated at 51 concentrations between 50 and
1000 μL/L. The curves are obtained with the following command:

> plot(augPred(CO2.fit2))

The CO2.fit2 model explains the data reasonably well, as evidenced
by the close agreement between its fitted values and the observed
uptake rates.

Figure 14.13: Individual fitted curves for the twelve plants in the CO2 uptake data,
based on the CO2.fit2 object.

10

20

30

40

Qn1

200 400 600 800 1000

Qn2 Qn3

200 400 600 800 1000

Qc1

Qc3 Qc2 Mn3

10

20

30

40

Mn2

10

20

30

40

Mn1 Mc2

200 400 600 800 1000

Mc3 Mc1

200 400 600 800 1000

Ambient carbon dioxide concentration (uL/L)

C
O

2
up

ta
ke

 r
at

e
(u

m
ol

/m
^2

 s
)

503

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Methods for extracting components from a fitted nlme object are also
available, and are identical to those for lme objects. Some of the most
commonly used methods are coef, fitted, fixef, ranef, resid, and
intervals. For more details on these extractors, see the online help
files and the section Other Methods on page 489.
504

Advanced Model Fitting
ADVANCED MODEL FITTING

In many practical applications, we want to restrict the random effects
variance-covariance matrix to special forms that have fewer
parameters. For example, we may want to assume that the random
effects are independent so that their variance-covariance matrix is
diagonal. We may also want to make specific assumptions about the
within-group error structure. Both the lme and nlme functions include
advanced options for defining positive-definite matrices, correlation
structures, and variance functions.

Positive-
Definite Matrix
Structures

Different positive-definite matrices can be used to represent the
random effects variance-covariance structures in mixed-effects
models. The available matrices, listed in Table 14.1, are organized in
Spotfire S+ as different pdMat classes. To use a pdMat class when fitting
mixed-effects models, specify it with the random argument to either
lme or nlme.
Table 14.1: Classes of positive-definite matrices.

Class Description

pdBand band diagonal

pdBlocked block diagonal

pdCompSymm compound symmetry

pdDiag diagonal

pdIdent multiple of an identity

pdKron Kronecker product

pdStrat a different pdMat class for each level of
a stratification variable

pdSymm general positive-definite
505

Chapter 14 Linear and Nonlinear Mixed-Effects Models
By default, the pdSymm class is used to represent a random effects
covariance matrix. You can define your own pdMat class by specifying
a constructor function and, at a minimum, methods for the functions
pdConstruct, pdMatrix and coef. For examples of these functions, see
the methods for the pdSymm and pdDiag classes.

Example: the Orthodont data

We return to the Ortho.fit2 model that we created in the section
Arguments on page 494. To fit a model with independent slope and
intercept random effects, we include a diagonal variance-covariance
matrix using the pdDiag class:

> Ortho.fit3 <- update(Ortho.fit2, random = pdDiag(~age))
> Ortho.fit3

Linear mixed-effects model fit by REML
 Data: Orthodont
 Log-restricted-likelihood: -216.5755
 Fixed: distance ~ age + Sex + age:Sex
 (Intercept) age Sex age:Sex
 16.34062 0.784375 1.032102 -0.3048295

Random effects:
 Formula: ~ age | Subject
 Structure: Diagonal
 (Intercept) age Residual
StdDev: 1.554607 0.08801665 1.365502

Number of Observations: 108
Number of Groups: 27

The grouping structure is inferred from the groupedData display
formula in the Orthodont data. Alternatively, the grouping structure
can be passed to the random argument as follows:

random = list(Subject = pdDiag(~age))

Example: the CO2 data

Recall the CO2.fit2 object defined in the section The print Method
on page 497. We wish to test whether we can assume that the random
effects in CO2.fit2 are independent. To do this, use the commands
below.
506

Advanced Model Fitting
> CO2.fit3 <- update(CO2.fit2, random = pdDiag(A+lB+C~1))
> anova(CO2.fit2, CO2.fit3)

 Model df AIC BIC logLik Test
CO2.fit2 1 16 392.4073 431.3004 -180.2037
CO2.fit3 2 13 391.3921 422.9927 -182.6961 1 vs 2

 L.Ratio p-value
CO2.fit2
CO2.fit3 4.984779 0.1729

As evidenced by the large p-value for the likelihood ratio test in the
anova output, the independence of the random effects seems
plausible. Note that because the two models have the same fixed
effects structure, the test based on restricted maximum likelihood is
meaningful.

Correlation
Structures and
Variance
Functions

The within-group error covariance structure can be flexibly modeled
by combining correlation structures and variance functions.
Correlation structures are used to model within-group correlations
that are not captured by the random effects. These are generally
associated with temporal or spatial dependencies. The variance
functions are used to model heteroscedasticity in the within-group
errors.

Similar to the positive-definite matrices described in the previous
section, the available correlation structures and variance functions are
organized into corStruct and varFunc classes. Table 14.2 and Table
14.3 list the standard classes for each structure.
Table 14.2: Classes of correlation structures.

Class Description

corAR1 AR(1)

corARMA ARMA(p,q)

corBand banded

corCAR1 continuous AR(1)
507

Chapter 14 Linear and Nonlinear Mixed-Effects Models
corCompSymm compound symmetry

corExp exponential spatial correlation

corGaus Gaussian spatial correlation

corIdent multiple of an identity

corLin linear spatial correlation

corRatio rational quadratic spatial correlation

corSpatial general spatial correlation

corSpher spherical spatial correlation

corStrat a different corStruct class for each level of a
stratification variable

corSymm general correlation matrix

Table 14.3: Classes of variance function structures.

Class Description

varComb combination of variance functions

varConstPower constant plus power of a variance covariate

varExp exponential of a variance covariate

varFixed fixed weights, determined by a variance covariate

Table 14.2: Classes of correlation structures. (Continued)

Class Description
508

Advanced Model Fitting
In either lme or nlme, the optional argument correlation specifies a
correlation structure, and the optional argument weights is used for
variance functions. By default, the within-group errors are assumed to
be independent and homoscedastic.

You can define your own correlation and variance function classes by
specifying appropriate constructor functions and a few method
functions. For a new correlation structure, method functions must be
defined for at least corMatrix and coef. For examples of these
functions, see the methods for the corSymm and corAR1 classes. A new
variance function requires methods for at least coef, coef<-, and
initialize. For examples of these functions, see the methods for the
varPower class.

Example: the Orthodont data

Figure 14.7 displays a plot of the residuals versus fitted values for the
Ortho.fit2 model. It suggests that different variance structures
should be allowed for boys and girls. We test this by updating the
Ortho.fit3 model (defined in the previous section) with the varIdent
variance function:

> Ortho.fit4 <- update(Ortho.fit3,
+ weights = varIdent(form = ~ 1|Sex))
> Ortho.fit4

Linear mixed-effects model fit by REML
 Data: Orthodont
 Log-restricted-likelihood: -206.0841
 Fixed: distance ~ age + Sex + age:Sex
 (Intercept) age Sex age:Sex
 16.34062 0.784375 1.032102 -0.3048295

varIdent different variances per level of a factor

varPower power of a variance covariate

Table 14.3: Classes of variance function structures.

Class Description
509

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Random effects:
 Formula: ~ age | Subject
 Structure: Diagonal
 (Intercept) age Residual
StdDev: 1.448708 0.1094042 1.65842

Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~ 1 | Sex
 Parameter estimates:
 Male Female
 1 0.425368
Number of Observations: 108
Number of Groups: 27

> anova(Ortho.fit3, Ortho.fit4)

 Model df AIC BIC logLik
Ortho.fit3 1 7 449.9235 468.4343 -217.9618
Ortho.fit4 2 8 430.9407 452.0958 -207.4704
 Test L.Ratio p-value
Ortho.fit3
Ortho.fit4 1 vs 2 20.98281 <.0001

There is strong indication that the orthodontic distance is less variable
in girls than in boys.

We can test for the presence of an autocorrelation of lag 1 in the by
updating Ortho.fit4 as follows:

> Ortho.fit5 <- update(Ortho.fit4, corr = corAR1())
> Ortho.fit5

Linear mixed-effects model fit by REML
 Data: Orthodont
 Log-restricted-likelihood: -206.037
 Fixed: distance ~ age + Sex + age:Sex
 (Intercept) age Sex age:Sex
 16.31726 0.7859872 1.060799 -0.3068977
510

Advanced Model Fitting
Random effects:
 Formula: ~ age | Subject
 Structure: Diagonal
 (Intercept) age Residual
StdDev: 1.451008 0.1121105 1.630654

Correlation Structure: AR(1)
 Formula: ~ 1 | Subject
 Parameter estimate(s):
 Phi
 -0.05702521
Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~ 1 | Sex
 Parameter estimates:
 Male Female
 1 0.4250633
Number of Observations: 108
Number of Groups: 27

> anova(Ortho.fit4, Ortho.fit5)

 Model df AIC BIC logLik Test
Ortho.fit4 1 8 428.1681 449.3233 -206.0841
Ortho.fit5 2 9 430.0741 453.8736 -206.0370 1 vs 2

 L.Ratio p-value
Ortho.fit4
Ortho.fit5 0.094035 0.7591

The large p-value of the likelihood ratio test indicates that the
autocorrelation is not present.

Note that the correlation structure is used together with the variance
function, representing a heterogeneous AR(1) process (Littel, et al .,
1996). Because the two structures are defined and constructed
separately, a given correlation structure can be combined with any of
the available variance functions.
511

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Example: the Pixel data

In the form argument of the varFunc constructors, a fitted lme or nlme
object can be referenced with the period ‘‘.’’ symbol. For example,
recall the Pixel.fit1 object defined in the section Arguments on
page 481. To use a variance function that is an arbitrary power of the
fitted values in the model, update Pixel.fit1 as follows:

> Pixel.fit2 <- update(Pixel.fit1,
+ weights = varPower(form = ~ fitted(.)))
> Pixel.fit2

Linear mixed-effects model fit by REML
 Data: Pixel
 Log-restricted-likelihood: -412.4593
 Fixed: pixel ~ day + day^2
 (Intercept) day I(day^2)
 1073.314 6.10128 -0.3663864

Random effects:
 Formula: ~ day | Dog
 Structure: General positive-definite
 StdDev Corr
(Intercept) 28.503164 (Inter
 day 1.872961 -0.566

 Formula: ~ 1 | Side %in% Dog
 (Intercept) Residual
StdDev: 16.66015 4.4518e-006

Variance function:
 Structure: Power of variance covariate
 Formula: ~ fitted(.)
 Parameter estimates:
 power
 2.076777
Number of Observations: 102
Number of Groups:
 Dog Side %in% Dog
 10 20

> anova(Pixel.fit1, Pixel.fit2)
512

Advanced Model Fitting
 Model df AIC BIC logLik Test
Pixel.fit1 1 8 841.2102 861.9712 -412.6051
Pixel.fit2 2 9 842.9187 866.2747 -412.4593 1 vs 2

 L.Ratio p-value
Pixel.fit1
Pixel.fit2 0.2915376 0.5892

There is no evidence of heteroscedasticity in this case, as evidenced
by the large p-value of the likelihood ratio test in the anova output.
Because the default value for form in varPower is ~fitted(.), it
suffices to use weights = varPower() in this example.

Example: the CO2 data

As a final example, we test for the presence of serial correlation in the
within-group errors of the nonlinear CO2.fit3 model (defined in the
previous section). To do this, we use the corAR1 class as follows:

> CO2.fit4 <- update(CO2.fit3, correlation = corAR1())
> anova(CO2.fit3, CO2.fit4)

 Model df AIC BIC logLik Test
CO2.fit3 1 13 391.3921 422.9927 -182.6961
CO2.fit4 2 14 393.2980 427.3295 -182.6490 1 vs 2

 L.Ratio p-value
CO2.fit3
CO2.fit4 0.09407508 0.7591

There does not appear to be evidence of within-group serial
correlation.

Self-Starting
Functions

The SPOTFIRE S+ function nlsList can be used to create a list of
nonlinear fits for each group of a groupedData object. This function is
an extension of nls, which is discussed in detail in the chapter
Nonlinear Models. As with nlme, you must provide initial estimates
for the fixed effects parameters when using nlsList. You can either
provide the starting values explicitly, or compute them using a self-
starting function. A self-starting function is a class of models useful for
particular applications. We describe below several self-starting
functions that are provided with Spotfire S+.
513

Chapter 14 Linear and Nonlinear Mixed-Effects Models
One way of providing initial values to nlsList is to include them in
the data set as a parameters attribute. In addition, both nlsList and
nlme have optional start arguments that can be used to provide the
initial estimates as input. Alternatively, a function that derives initial
estimates can be added to the model formula itself as an attribute.
This constitutes a selfStart function in Spotfire S+. When a self-
starting function is used in calls to nlsList and nlme, initial estimates
for the parameters are taken directly from the initial attribute of the
function.

The following four self-starting functions are useful in biostatistics
applications.

• Biexponential model:

The corresponding Spotfire S+ function is
SSbiexp(input, A1, lrc1, A2, lrc2), where input=t is a
covariate and A1=α1, A2=α2, lrc1=β1, and lrc2=β2 are
parameters.

• First-order Compartment model:

The corresponding Spotfire S+ function is
SSfol(Dose, input, lCl, lKa, lKe), where Dose=d is a
covariate representing the initial dose, input=t is a covariate
representing the time at which to evaluate the model, and
lCl=α, lKa=β, and lKe=γ are parameters.

• Four-parameter Logistic model:

The corresponding Spotfire S+ function is
SSfpl(input, A, B, xmid, scal), where input=x is a
covariate and A=α, B=β, xmid=γ , and scal=θ are parameters.

α1e e–
β1t α2e e–

β2t
+

eβ eγ e eγ t– e eβ–
–(⋅ ⋅ ⋅

eα eβ eγ
–()⋅

--

α β α–

1 e x γ–()– θ⁄
+

-----------------------------------+
514

Advanced Model Fitting
• Logistic model:

The corresponding Spotfire S+ function is
SSlogis(time, Asym, xmid, scal), where time=t is a
covariate and Asym=α, xmid=β, and scal=γ are parameters.

Other Spotfire S+ self-starting functions are listed in Table 14.4.
Details about each function can be found in its corresponding online
help file. You can define your own self-starting function by using the
selfStart constructor.

Example: The Soybean data

We apply the self-starting function SSlogis to the Soybean data
introduced in the section Representing Grouped Data Sets. We want
to verify the hypothesis that a logistic model can be used represent
leaf growth.

Table 14.4: Self-starting models available in Spotfire S+.

Function Model

SSasymp asymptotic regression

SSasympOff asymptotic regression with an offset

SSasympOrig asymptotic regression through the origin

SSbiexp biexponential model

SSfol first-order compartment model

SSfpl four-parameter logistic model

SSlogis logistic model

SSmicmen Michaelis-Menten relationship

α
1 e t β–()– γ⁄

+

515

Chapter 14 Linear and Nonlinear Mixed-Effects Models
The nlsList call is as follows:

> Soybean.nlsList <- nlsList(weight ~
+ SSlogis(Time, Asym, xmid, scal) | Plot, data = Soybean)

Error in nls(y ~ 1/(1 + exp((xmid - x)/scal)), data ..:
singular gradient matrix

The error message indicates that nls could not compute a fit for one
of the groups in the data set. The object Soybean.nlsList is
nevertheless created.

The results in Soybean.nlsList show that the 1989P8 group in the
Soybean data could not be fitted appropriately with the logistic model.
We can see this directly by using the coef function.

> coef(Soybean.nlsList)

 Asym xmid scal
1988F4 15.151338 52.83361 5.176641
1988F2 19.745503 56.57514 8.406720
1988F1 20.338576 57.40265 9.604870
1988F7 19.871706 56.16236 8.069718
1988F5 30.647205 64.12857 11.262351
1988F8 22.776430 59.32964 9.000267
. . .
1989P2 28.294391 67.17185 12.522720
1989P8 NA NA NA
1990F2 19.459767 66.28652 13.158397
. . .
1990P5 19.543787 51.14830 7.291976
1990P2 25.787317 62.35974 11.657019
1990P4 26.132712 61.20345 10.973765

An nlme method exists for nlsList objects, which allows you to fit
population parameters and individual random effects for an nlsList
model. For example, the following simple call computes a mixed-
effects model from the Soybean.nlsList object.

Warning

On occasion, nlsList returns errors when it cannot adequately fit one or more groups in the
data set. When this occurs, fits for the remaining groups are still computed.
516

Advanced Model Fitting
> Soybean.fit1 <- nlme(Soybean.nlsList)
> summary(Soybean.fit1)

Nonlinear mixed-effects model fit by maximum likelihood
 Model: weight ~ SSlogis(Time, Asym, xmid, scal)
 Data: Soybean
 AIC BIC logLik
 1499.667 1539.877 -739.8334

Random effects:
 Formula: list(Asym ~ 1 , xmid ~ 1 , scal ~ 1)
 Level: Plot
 Structure: General positive-definite
 StdDev Corr
 Asym 5.200969 Asym xmid
 xmid 4.196918 0.721
 scal 1.403934 0.711 0.959
Residual 1.123517

Fixed effects: list(Asym ~ 1 , xmid ~ 1 , scal ~ 1)
 Value Std.Error DF t-value p-value
Asym 19.25326 0.8031745 362 23.97145 <.0001
xmid 55.02012 0.7272288 362 75.65724 <.0001
scal 8.40362 0.3152215 362 26.65941 <.0001
 Correlation:
 Asym xmid
xmid 0.724
scal 0.620 0.807

Standardized Within-Group Residuals:
 Min Q1 Med Q3 Max
 -6.086247 -0.2217542 -0.03385827 0.2974177 4.845216

Number of Observations: 412
Number of Groups: 48

The Soybean.fit1 object does not incorporate covariates or within-
group errors. Comparing the estimated standard deviations and
means of Asym, xmid, and scal, the asymptotic weight Asym has the
highest coefficient of variation (5.2/19.25 = 0.27). Modeling this
random effects parameter is the focus of the following analyses.
517

Chapter 14 Linear and Nonlinear Mixed-Effects Models
We first attempt to model the asymptotic weight as a function of the
genotype variety and the planting year. To model the within-group
errors, we assume the serial correlation follows an AR(1) process.
Given that the observations are not equally spaced in time, we need
to use the continuous form of the AR process and provide the time
variable explicitly. From Figure 14.14, we conclude that the within-
group variance is proportional to some power of the absolute value of
the predictions. The figure is obtained with the following command:

> plot(Soybean.fit1)

We fit an improved model to the Soybean data below. In the new fit,
we model the within-group errors using the corCAR1 correlation
structure and the varPower variance function. Initial estimates for the
parameterization of Asym are derived from the results of
Soybean.nlsList.

Figure 14.14: A plot of the standardized residuals for the Soybean.fit1 model.

-6

-4

-2

0

2

4

0 5 10 15 20 25

Fitted values (g)

S
ta

nd
ar

di
ze

d
re

si
du

al
s

518

Advanced Model Fitting
> Soybean.fit2 <- nlme(weight ~
+ SSlogis(Time, Asym, xmid, scal), data = Soybean,
+ fixed = list(Asym ~ Variety * Year, xmid ~ 1, scal ~ 1),
+ random = list(Asym ~ 1, xmid ~ 1, scal ~ 1),
+ start = c(20.08425, 2.03699, -3.785161, 0.3036094,
+ 1.497311, -1.084704, 55.02058, 8.402632),
+ correlation = corCAR1(form = ~Time),
+ weights = varPower())

Figure 14.15 displays a plot the residuals for the updated model,
obtained with the following command:

> plot(Soybean.fit2)

The residuals plot confirms our choice of variance structure. The
anova function is used to compare the Soybean.fit1 and
Soybean.fit2 models. The progress in the log-likelihood, AIC, and
BIC is tremendous.

> anova(Soybean.fit1, Soybean.fit2)

 Model df AIC BIC logLik
Soybean.fit1 1 10 1499.667 1539.877 -739.8334
Soybean.fit2 2 17 678.592 746.950 -322.2962

 Test L.Ratio p-value
Soybean.fit1
Soybean.fit2 1 vs 2 835.0744 <.0001

We conclude that both the genotype variety and planting year have a
large impact on the limiting leaf weight of the plants. The
experimental strain gains 2.5 grams in the limit.
519

Chapter 14 Linear and Nonlinear Mixed-Effects Models

Modeling
Spatial
Dependence

Two main classes of dependence among within-group errors can be
modeled using the mixed-effects tools Spotfire S+: temporal and
spatial. To model serial correlation, or temporal dependence, several
correlation structures were introduced in Table 14.2. To assess and
model spatial dependence among the within-group errors, we use the
Variogram function.

The Variogram method for the lme and nlme classes estimates the
sample semivariogram from the residuals of a fitted object. The
semivariogram can then be plotted with its corresponding plot
method. If the residuals show evidence of spatial dependence, then
you need to determine either a model for the dependence or its
correlation structure.

We use the corSpatial function to model spatial dependence in the
within-group errors. This function is a constructor for the corSpatial
class, which represents a spatial correlation structure. This class is
virtual, having five real classes corresponding to five specific spatial
correlation structures: corExp, corGaus, corLin, corRatio, and
corSpher. An object returned by corSpatial inherits from one of

Figure 14.15: A plot of the standardized residuals for Soybean.fit2.

-2

-1

0

1

2

3

4

0 5 10 15 20

Fitted values (g)

S
ta

nd
ar

di
ze

d
re

si
du

al
s

520

Advanced Model Fitting
these real classes, as determined by the type argument. Objects
created with this constructor need to be initialized using the
appropriate initialize method.

Example: the Soybean data

A typical call to the Variogram function for a mixed-effects model
looks like:

> plot(Variogram(Soybean.fit1, form = ~ Time))

The resulting plot, shown in Figure 14.16, does not show a strong
pattern in the semivariogram of the residuals from Soybean.fit1, in
terms of time distance. This implies that spatial correlation may not
be present in the model.

Figure 14.16: Estimate of the sample semivariogram for the Soybean.fit1 model
object.

0.0

0.5

1.0

1.5

10 20 30 40 50 60

Distance

S
e

m
iv

a
ri
o

g
ra

m

521

Chapter 14 Linear and Nonlinear Mixed-Effects Models
Refitting Soybean.fit2 without the AR(1) correlation structure shows
that the model may indeed be overparameterized:

> Soybean.fit3 <- update(Soybean.fit2, correlation = NULL)
> anova(Soybean.fit1, Soybean.fit3, Soybean.fit2)

 Model df AIC BIC logLik
Soybean.fit1 1 10 1499.667 1539.877 -739.8334
Soybean.fit3 2 16 674.669 739.005 -321.3344
Soybean.fit2 3 17 678.592 746.950 -322.2962

 Test L.Ratio p-value
Soybean.fit1
Soybean.fit3 1 vs 2 836.9981 <.0001
Soybean.fit2 2 vs 3 1.9237 0.1654

This indicates that only the change in the fixed effects model and the
use of a variance function explain the improvement we see in
Soybean.fit2. The model without the correlation structure is simpler,
and therefore preferred.
522

References
REFERENCES

Becker, R.A., Cleveland, W.S., & Shyu, M.J. (1996). The visual design
and control of trellis graphics displays. Journal of Computational and
Graphical Statistics, 5(2): 123-156.

Chambers, J.M. & Hastie, T.J. (Eds.) (1992). Statistical Models in S.
London: Chapman and Hall.

Davidian, M. & Giltinan, D.M. (1995). Nonlinear Models for Repeated
Measurement Data. London: Chapman & Hall.

Goldstein, H. (1995). Multilevel Statistical Models. New York: Halsted
Press.

Laird, N.M. & Ware, J.H. (1982). Random-effects models for
longitudinal data. Biometrics 38: 963-974.

Lindstrom, M.J. & Bates, D.M. (1990). Nonlinear mixed effects
models for repeated measures data. Biometrics 46: 673-687.

Littel, R.C., Milliken, G.A., Stroup, W.W., & Wolfinger, R.D. (1996).
SAS Systems for Mixed Models. Cary, NC: SAS Institute Inc..

Longford, N.T. (1993). Random Coefficient Models. New York: Oxford
University Press.

Milliken, G.A. & Johnson, D.E. (1992). Analysis of Messy Data, Volume
1: Designed Experiments. London: Chapman & Hall.

Pinheiro, J.C. (1994). Topics in Mixed Effect Models. Ph.D. thesis,
Department of Statistics, University of Wisconsin-Madison.

Pinheiro, J.C. & Bates, D.M. (2000). Mixed-Effects Models in S and
Spotfire S+ . New York: Springer-Verlag.

Potthoff, R.F. & Roy, S.N. (1964). A generalized multivariate analysis
of variance model useful especially for growth curve problems.
Biometrika 51: 313-326.

Potvin, C., Lechowicz, M.J., & Tardif, S. (1990). The statistical analysis
of ecophysiological response curves obtained from experiments
involving repeated measures. Ecology 71: 1389-1400.

Venables, W.N. & Ripley, B.D. (1997) Modern Applied Statistics with
Spotfire S+, 2nd Edition. New York: Springer-Verlag.
523

Chapter 14 Linear and Nonlinear Mixed-Effects Models
524

Introduction 526

Optimization Functions 527
Finding Roots 528
Finding Local Maxima and Minima of Univariate

Functions 529
Finding Maxima and Minima of Multivariate

Functions 530
Solving Nonnegative Least Squares Problems 535
Solving Nonlinear Least Squares Problems 537

Examples of Nonlinear Models 539
Maximum Likelihood Estimation 539
Nonlinear Regression 542

Inference for Nonlinear Models 544
Likelihood Models 544
Least Squares Models 544
The Fitting Algorithms 544
Specifying Models 545
Parametrized Data Frames 547
Derivatives 548
Fitting Models 554
Profiling the Objective Function 560

References 565

NONLINEAR MODELS 15
525

Chapter 15 Nonlinear Models
INTRODUCTION

This chapter covers the fitting of nonlinear models such as in
nonlinear regression, likelihood models, and Bayesian estimation.
Nonlinear models are more general than the linear models usually
discussed. Specifying nonlinear models typically requires one or
more of the following: more general formulas, extended data frames,
starting values, and derivatives.

The two most common fitting criteria for nonlinear models
considered are Minimum sum and Minimum sum-of-squares.
Minimum sum minimizes the sum of contributions from observations
(the maximum likelihood problem). Minimum sum-of-squares
minimizes the sum of squared residuals (the nonlinear least-squares
regression problem).

The first sections of this chapter summarize the use of the nonlinear
optimization functions. Starting with the section Examples of
Nonlinear Models, the use of the ms and nls functions are examined,
along with corresponding examples and theory, in much more detail.
526

Optimization Functions
OPTIMIZATION FUNCTIONS

TIBCO Spotfire S+ has several functions for finding roots of
equations and local maxima and minima of functions, as shown in
Table 15.1.

Table 15.1: The range of Spotfire S+ functions for finding roots, maxima, and minima.

Function Description

polyroot Finds the roots of a complex polynomial equation.

uniroot Finds the root of a univariate real-valued function in a user-supplied interval.

peaks Finds local maxima in a set of discrete points.

optimize Approximates a local optimum of a continuous univariate function within a
given interval.

ms Finds a local minimum of a multivariate function.

nlmin Finds a local minimum of a nonlinear function using a general quasi-Newton
optimizer.

nlminb Finds a local minimum for smooth nonlinear functions subject to bound-
constrained parameters.

nls Finds a local minimum of the sums of squares of one or more multivariate
functions.

nlregb Finds a local minimum for sums of squares of nonlinear functions subject to
bound-constrained parameters.

nnls Finds the least-squares solution subject to the constraint that the coefficients
be nonnegative.
527

Chapter 15 Nonlinear Models
Finding Roots The function polyroot finds the roots (zeros) of the complex-valued

polynomial equation . The input to

polyroot is the vector of coefficients . For example, to

solve the equation , use polyroot as follows:

> polyroot(c(6, 5, 1))

[1] -2+2.584939e-26i -3-2.584939e-26i

Since 2.584939e-26i is equivalent to zero in machine arithmetic,
polyroot returns -2 and -3 for the roots of the polynomial, as
expected.

The function uniroot finds a zero of a continuous, univariate, real-
valued function within a user-specified interval for which the function
has opposite signs at the endpoints. The input to uniroot includes the
function, the lower and upper endpoints of the interval, and any
additional arguments to the function. For example, suppose you have
the function:

> my.fcn

function(x, amp=1, per=2*pi, horshft=0, vershft=0)
{
 amp * sin(((2*pi)/per) * (x-horshft)) + vershft
}

This is the sine function with amplitude abs(amp), period abs(per),
horizontal (phase) shift horshft and vertical shift vershft. To find a
root of the function my.fcn in the interval using its
default arguments, type:

> uniroot(my.fcn, interval = c(pi/2, 3*pi/2))

$root
[1] 3.141593
. . .

To find a root of my.fcn in the interval with the period
set to , type the following command.

> uniroot(my.fcn, interval = c(pi/4, 3*pi/4), per = pi)

akz
k … a1z a0+ + + 0=

c a0 … a, k,()

z2 5z 6+ + 0=

π 2⁄ 3π 2⁄,

π 4⁄ 3π 4⁄,

π

528

Optimization Functions
$root:
[1] 1.570796
. . .
> pi/2

[1] 1.570796

See the help file for uniroot for information on other arguments to
this function.

Finding Local
Maxima and
Minima of
Univariate
Functions

The peaks function takes a data object x and returns an object of the
same type with logical values: T if a point is a local maximum;
otherwise, F:

> peaks(corn.rain)

1890: F T F F F F T F F F T F T F F F F T F F F F T F F T F
1917: T F F F T F F T F T F

Use peaks on the data object -x to find local minima:

> peaks(-corn.rain)

1890: F F F F T F F F F F F T F F F T F F F F F T F T F F T
1917: F T F F F T F F T F F

To find a local optimum (maximum or minimum) of a continuous
univariate function within a particular interval, use the optimize
function. The input to optimize includes the function to optimize, the
lower and upper endpoints of the interval, which optimum to look for
(maximum versus minimum), and any additional arguments to the
function.

> optimize(my.fcn, c(0, pi), maximum = T)

$maximum:
[1] 1.570799

$objective:
[1] -1

$nf:
[1] 10

$interval:
529

Chapter 15 Nonlinear Models
[1] 1.570759 1.570840
. . .

> pi/2

[1] 1.570799

> optimize(my.fcn, c(0, pi), maximum = F, per = pi)

$minimum:
[1] 2.356196

$objective:
[1] -1

$nf:
[1] 9

$interval:
[1] 2.356155 2.356236
. . .

> 3*pi/4

[1] 2.356194

See the help file for optimize for information on other arguments to
this function.

Finding
Maxima and
Minima of
Multivariate
Functions

Spotfire S+ has two functions to find the local minimum of a
multivariate function: nlminb (Nonlinear Minimization with Box
Constraints) and ms (Minimize Sums).

The two required arguments to nlminb are objective (the function
to minimize) and start (a vector of starting values for the
minimization). The function must take as its first argument a vector
of parameters over which the minimization is carried out. By default,
there are no boundary constraints on the parameters. The nlminb
function, however, also takes the optional arguments lower and upper
that specify bounds on the parameters. Additional arguments to can
be passed in the call to nlminb.

f

f

f

530

Optimization Functions
1. Example: using nlminb to find a local minimum

> my.multvar.fcn

function(xvec, ctr = rep(0, length(xvec)))
{
 if(length(xvec) != length(ctr))
 stop("lengths of xvec and ctr do not match")
 sum((xvec - ctr)^2)
}

> nlminb(start = c(0,0), objective = my.multvar.fcn,
+ ctr = c(1,2))

$parameters:
[1] 1 2

$objective:
[1] 3.019858e-30

$message:
[1] "ABSOLUTE FUNCTION CONVERGENCE"
. . .

2. Example: using nlminb to find a local maximum

To find a local maximum of , use nlminb on . Since unary minus
cannot be performed on a function, you must define a new function
that returns -1 times the value of the function you want to maximize:

> fcn.to.maximize

function(xvec)
{
 - xvec[1]^2 + 2 * xvec[1] - xvec[2]^2 + 20 * xvec[2] + 40
}

> fcn.to.minimize

function(xvec)
{
 - fcn.to.maximize(xvec)
}

f f–
531

Chapter 15 Nonlinear Models
> nlminb(start = c(0, 0), objective = fcn.to.minimize)

$parameters:
[1] 1 10

$objective:
[1] -141

$message:
[1] "RELATIVE FUNCTION CONVERGENCE"
. . .

3. Example: using nlminb to find a constrained minimum

To find the local minimum of a multivariate function subject to
constraints, use nlminb with the lower and/or upper arguments. As an
example of constrained minimization, consider the following function
norm.neg.2.ll, which is (minus a constant) -2 times the log-likelihood
function of a Gaussian distribution:

> norm.neg.2.ll <-
+ function(theta, y)
+ {
+ length(y) * log(theta[2]) +
+ (1/theta[2]) * sum((y - theta[1])^2)
+ }

This function assumes that observations from a normal distribution
are stored in the vector y. The vector theta contains the mean
(theta[1]) and variance (theta[2]) of this distribution. To find the
maximum likelihood estimates of the mean and variance, we need to
find the values of theta[1] and theta[2] that minimize
norm.neg.2.ll for a given set of observations stored in y. We must
use the lower argument to nlminb because the estimate of variance
must be greater than zero:

> set.seed(12)
> my.obs <- rnorm(100, mean = 10, sd = 2)
> nlminb(start = c(0,1), objective = norm.neg.2.ll,
+ lower = c(-Inf, 0), y = my.obs)

$parameters:
[1] 9.863812 3.477773
532

Optimization Functions
$objective:
[1] 224.6392

$message:
[1] "RELATIVE FUNCTION CONVERGENCE"
. . .

> mean(my.obs)

[1] 9.863812

> (99/100) * var(my.obs)

[1] 3.477774

4. Example: using ms

The Minimum Sums function ms also minimizes a multivariate
function, but in the context of the modeling paradigm. It therefore
expects a formula rather than a function as its main argument. Here,
the last example is redone with ms, where mu is the estimate of the
population mean and ss is the estimate of the population variance

.

> ms(~length(y) * log(ss) + (1/ss) * sum((y - mu)^2),
+ data = data.frame(y = my.obs),
+ start = list(mu = 0, ss = 1))

value: 224.6392
parameters:
 mu ss
9.863813 3.477776

formula: ~length(y) * log(ss) + (1/ss) * sum((y-mu)^2)

1 observations

call: ms(formula = ~length(y) * log(ss) + (1/ss) *
 sum((y - mu)^2),
data = data.frame(y=my.obs), start=list(mu=0, ss=1))

μ

σ2
533

Chapter 15 Nonlinear Models
5. Example: using ms with several observations

> ms(~log(ss) + (1/ss) * (y - mu)^2,
+ data = data.frame(y = my.obs),
+ start = list(mu = 0, ss = 1))

value: 224.6392

parameters:
 mu ss
9.863813 3.477776

formula: ~log(ss) + (1/ss) * (y - mu)^2

100 observations
call: ms(formula = ~log(ss) + (1/ss) * (y - mu)^2,
data = data.frame(y=my.obs), start=list(mu=0,ss=1))

6. Example: using ms with a formula function

If the function you want to minimize is fairly complicated, then it is
usually easier to write a function and supply it in the formula.

> ms(~norm.neg.2.ll(theta,y), data = data.frame(y =
+ my.obs), start = list(theta = c(0,1)))

value: 224.6392

parameters:
 theta1 theta2
9.863813 3.477776

Hint

The ms function does not do minimization subject to constraints on the parameters.

If there are multiple solutions to your minimization problem, you may not get the answer you
want using ms. In the above example, the ms function tells us we have “1 observations” because
the whole vector y was used at once in the formula. The Minimum Sum function minimizes the
sum of contributions to the formula, so we could have gotten the same estimates mu and ss with
the formula shown in example 5.
534

Optimization Functions
formula: ~norm.neg.2.ll(theta, y)

1 observations

call: ms(formula = ~norm.neg.2.ll(theta, y), data =
 data.frame(y = my.obs),
start = list(theta = c(0, 1)))

Solving
Nonnegative
Least Squares
Problems

Given an matrix and a vector of length , the linear
nonnegative least squares problem is to find the vector of length

that minimizes , subject to the constraint that for in

.

To solve nonnegative least squares problems in Spotfire S+, use the
nnls.fit function. For example, consider the following fit using the
stack data:

$coefficients
 Air Flow Water Temp Acid Conc.
0.2858057 0.05715152 0

$residuals:
[1] 17.59245246 12.59245246 14.13578403
[4] 8.90840973 -0.97728723 -1.03443875
[7] -0.09159027 0.90840973 -2.89121593
[10] -3.60545832 -3.60545832 -4.54830680
[13] -6.60545832 -5.66260984 -7.31901267
[16] -8.31901267 -7.37616419 -7.37616419
[19] -6.43331572 -2.14814995 -6.14942983

$dual:
 Air Flow Water Temp Acid Conc.
3.637979e-12 5.400125e-13 -1438.359
$rkappa:
 final minimum
0.02488167 0.02488167

$call:
nnls.fit(x = stack.x, y = stack.loss)

m n× A b m
x n

Ax b– xi 0≥ i

1 … n, ,
535

Chapter 15 Nonlinear Models
You can also use nlregb to solve the nonnegative least squares
problem, since the nonnegativity constraint is just a simple box
constraint. To pose the problem to nlregb, define two functions,
lin.res and lin.jac, of the form f(x,params) that represent the
residual function and the Jacobian of the residual function,
respectively:

> lin.res <- function(x, b, A) A %*% x - b
> lin.jac <- function(x, A) A
> nlregb(n = length(stack.loss), start = rnorm(3),
+ res = lin.res, jac = lin.jac, lower = 0,
+ A = stack.x, b = stack.loss)

$parameters:
[1] 0.28580571 0.05715152 0.00000000

$objective:
[1] 1196.252
. . .

Generally, nnls.fit is preferred to nlregb for reasons of efficiency,
since nlregb is primarily designed for nonlinear problems. However,
nlregb can solve degenerate problems that can not be handled by
nnls.fit. You may also want to compare the results of nnls.fit with
those of lm. Remember that lm requires a formula and fits an intercept
term by default (which nnls.fit does not). Keeping this in mind, you
can construct the comparable call to lm as follows:

> lm(stack.loss ~ stack.x - 1)

Call:
lm(formula = stack.loss ~ stack.x - 1)
Coefficients:
stack.xAir Flow stack.xWater Temp stack.xAcid Conc.
 0.7967652 1.111422 -0.6249933

Degrees of freedom: 21 total; 18 residual
Residual standard error: 4.063987

For the stack loss data, the results of the constrained optimization
methods nnls.fit and nlregb agree completely. The linear model
produced by lm includes a negative coefficient.
536

Optimization Functions
You can use nnls.fit to solve the weighted nonnegative least squares
problem by providing a vector of weights as the weights argument.
The weights used by lm are the square roots of the weights used by
nnls.fit; you must keep this in mind if you are trying to solve a
problem using both functions.

Solving
Nonlinear
Least Squares
Problems

Two functions, nls and nlregb, are available for solving the special
minimization problem of nonlinear least squares. The function nls is
used in the context of the modeling paradigm, so it expects a formula
rather than a function as its main argument. The function nlregb
expects a function rather than a formula (the argument name is
residuals), and, unlike nls, it can perform the minimization subject
to constraints on the parameters.

1. Example: using nls

In this example, we create 100 observations where the underlying
signal is a sine function with an amplitude of 4 and a horizontal
(phase) shift of . Noise is added in the form of Gaussian random
numbers. We then use the nls function to estimate the true values of
amplitude and horizontal shift.

> set.seed(20)
> noise <- rnorm(100, sd = 0.5)
> x <- seq(0, 2*pi, length = 100)
> my.nl.obs <- 4 * sin(x - pi) + noise
> plot(x, my.nl.obs)
> nls(y ~ amp * sin(x - horshft),
+ data = data.frame(y = my.nl.obs, x = x),
+ start = list(amp = 1, horshft = 0))

Residual sum of squares : 20.25668
parameters:
 amp horshft
 -4.112227 0.01059317
formula: y ~ amp * sin(x - horshft)
100 observations

2. Example: using nls with better starting values

The above example illustrates the importance of finding appropriate
starting values. The nls function returns an estimate of amp close to -4
and an estimate of horshft close to 0 because of the cyclical nature of

π

537

Chapter 15 Nonlinear Models
the sine function: . If we start with initial
estimates of amp and horshft closer to their true values, nls gives us
the estimates we want.

> nls(y ~ amp * sin(x - horshft),
+ data = data.frame(y = my.nl.obs, x = x),
+ start = list(amp = 3, horshft = pi/2))

Residual sum of squares : 20.25668
parameters:
 amp horshft
 4.112227 -3.131
formula: y ~ amp * sin(x - horshft)
100 observations

3. Example: creating my.new.func and using nlregb

We can use the nlregb function to redo the above example and
specify that the value of amp must be greater than 0:

> my.new.fcn

function(param, x, y)
{
 amp <- param[1]
 horshft <- param[2]
 y - amp * sin(x - horshft)
}

> nlregb(n = 100, start = c(3,pi/2),
+ residuals = my.new.fcn,
+ lower = c(0, -Inf), x = x, y = my.nl.obs)

$parameters:
[1] 4.112227 3.152186

$objective:
[1] 20.25668

$message:
[1] "BOTH X AND RELATIVE FUNCTION CONVERGENCE"

$grad.norm:
[1] 5.960581e-09

x π–()sin x()sin–=
538

Examples of Nonlinear Models
EXAMPLES OF NONLINEAR MODELS

Maximum
Likelihood
Estimation

Parameters are estimated by maximizing the likelihood function.
Suppose independent observations are distributed with probability
densities , where is a vector of parameters. The
likelihood function is defined as

The problem is to find the estimate that maximizes the likelihood
function for the observed data. Maximizing the likelihood is
equivalent to minimizing the negative of the log-likelihood:

Example One:
Ping-Pong

Each member of the U.S. Table Tennis Association is assigned a
rating based on the member’s performance in tournaments. Winning
a match boosts the winner’s rating and lowers the loser’s rating some
number of points depending on the current ratings of the two players.
Using these data, two questions we might like to ask are the following:

1. Do players with a higher rating tend to win over players with
a lower rating?

2. Does a larger difference in rating imply that the higher-rated
player is more likely to win?

Assuming a logistic distribution in which is
proportional to the difference in rating and the average rating of the
two players, we get:

. (15.1)

. (15.2)

n
pi θ() p yi θ,()= θ

L y θ;() pi θ()
i 1=

n

∏=

θ̃

l θ() L y θ;()()log– pi θ()()log–

i 1=

n

∑= =

. (15.3)

p 1 p–()⁄()log

pi
e

Diα Riβ+

1 e
Diα Riβ++

------------------------------=
539

Chapter 15 Nonlinear Models
In Equation (15.3), is the difference in rating between

the winner and loser and is the average rating for the

two players. To fit the model, we need to find and which
minimize the negative log-likelihood

Example Two:
Wave-Soldering
Skips

In a 1988 AT&T wave-soldering experiment, several factors were
varied.

The results of the experiment gave the number of visible soldering
skips (faults) on a board. Physical theory and intuition suggest a
model in which the process is in one of two states:

1. A “perfect” state where no defects occur;

2. An “imperfect” state where there may or may not be defects.

Both the probability of being in the imperfect state and the
distribution of skips in that state depend on the factors in the
experiment. Assume that some “stress” induces the process to be in
the imperfect state and also increases the tendency to generate skips
when in the imperfect state.

. (15.4)

Di Wi Li–=

Ri
1
2
--- Wi Li+()=

α β

pi()log–∑ D– iα Riβ 1 e
Diα Riβ+

+()log+–
⎩ ⎭
⎨ ⎬
⎧ ⎫

∑=

Factor Description

opening Amount of clearance around the mounting pad

solder Amount of solder

mask Type and thickness of the material used for the solder mask

padtype The geometry and size of the mounting pad

panel Each board was divided into three panels, with three runs on a board

S

540

Examples of Nonlinear Models
Assume depends linearly on the levels of the factors , for

:

where is the vector of parameters to be estimated.

Assume the probability of being in the imperfect state is
monotonically related to the stress by a logistic distribution:

As the stress increases, the above function approaches 1.

Given that the process is in an imperfect state, assume the probability
of skips is modeled by the Poisson distribution with mean :

The probability of zero skips is the probability of being in the perfect
state plus the probability of being in the imperfect state and having
zero skips. The probability of one or more skips is the probability of
being in the imperfect state and having one or more skips.
Mathematically the probabilities may be written as:

, (15.5)

(15.6)

(15.7)

(15.8)

S xj

j 1 … p, ,=

Si xijβj

j 1=

p

∑=

β

Pi

Pi
1

1 e
τ–()Si+

------------------------=

ki λ i

P ki() e
λ– i λ

ki
i

ki!
--------⋅=

P y yi=()

e
τ–()Si

1 e
τ–()Si+

------------------------ e
λ– i

1 e
τ–()Si+

------------------------+ if yi 0=

1

1 e
τ–()Si+

------------------------e
λ– i λ

yi
i

yi!
-------- if yi 0>

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

541

Chapter 15 Nonlinear Models
The mean number of skips in the imperfect state is always positive

and modeled in terms of the stress by . The parameters,

and , can be estimated by minimizing the negative log-likelihood.
The ith element of the negative log-likelihood can be written (to
within a constant) as:

The model depicted above does not reduce to any simple linear
model.

Nonlinear
Regression

Parameters are estimated by minimizing the sum of squared residuals.
Suppose independent observations can be modeled as a
nonlinear parametric function of a vector of predictor variables
and a vector of parameters:

,

where the errors, , are assumed to be normally distributed. The

nonlinear least-squares problem finds parameter estimates that
minimize:

Example Three:
Puromycin

A biochemical experiment measured reaction velocity in cells with
and without treatment by Puromycin. The data from this experiment
is stored in the example data frame Puromycin, which contains the
three variables described in the table below.

(15.9)

λ i e
Si= τ

β

li β τ,() 1 e
τ–()Si+()log

e
τ–()Si e e–

Si
+⎝ ⎠

⎛ ⎞log if yi 0=

yiSi e–
Si if yi 0>

⎩
⎪
⎪
⎨
⎪
⎪
⎧

–=

. (15.10)

n y
f x

β

y f x β;() ε+=

ε

β

yi f x β;()–()2

i 1=

n

∑

542

Examples of Nonlinear Models
Assume a Michaelis-Menten relationship between velocity and
concentration:

where is the velocity, is the enzyme concentration, is a

parameter representing the asymptotic velocity as , is the
Michaelis parameter, and is experimental error. Assuming the
treatment with the drug changes but not , the optimization
function is

where is the function indicating if the cell was treated with
Puromycin.

Variable Description

conc The substrate concentration

vel The reaction velocity

state Indicator of treated or untreated

, (15.11)

, (15.12)

V
Vmaxc
K c+
-------------- ε+=

V c Vmax

c ∞→ K
ε

Vmax K

S Vmax K,() Vi
Vmax ΔVmaxI treated{ } state()+()ci

K ci+
---–⎝ ⎠

⎛ ⎞ 2

∑=

I treated{ }
543

Chapter 15 Nonlinear Models
INFERENCE FOR NONLINEAR MODELS

Likelihood
Models

With likelihood models, distributional results are asymptotic.
Maximum likelihood estimates tend toward a normal distribution
with a mean equal to the true parameter and a variance matrix given
by the inverse of the information matrix (i.e., the negative of the
second derivatives of the log-likelihood).

Least Squares
Models

In least-squares models approximations to quantities such as standard
errors or correlations of parameter estimates are used. The
approximation proceeds as follows:

1. Replace the nonlinear model with its linear Taylor series
approximation at the parameter estimates.

2. Use the methods for linear statistical inference on the
approximation.

Consequently, the nonlinear inference results are called linear
approximation results.

The Fitting
Algorithms

Minimum-sum algorithm

This section deals with the general optimization of an objective
function modeled as a sum. The algorithm is a version of Newton’s
method based on a quadratic approximation of the objective function.
If both first and second derivatives are supplied, the approximation is
a local one using the derivatives. If no derivatives or only the first
derivative are supplied, the algorithm approximates the second
derivative information. It does this in a way specifically designed for
minimization.

The algorithm actually used is taken from the PORT subroutine
library which evolved from the published algorithm by Gay (1983).
Two key features of this algorithm are:

1. A quasi-Newton approximation for second derivatives.

2. A “trust region” approach controlling the size of the region in
which the quadratic approximation is believed to be accurate.

The algorithm is capable of working with user models specifying 0, 1,
or 2 orders of derivatives.
544

Inference for Nonlinear Models
Nonlinear least-squares algorithm

The Gauss-Newton algorithm is used with a step factor to ensure that
the sum of squares decreases at each iteration. A line-search method
is used, as opposed to the trust region employed in the minimum-sum
algorithm. The step direction is determined by a quadratic model.
The algorithm proceeds as follows:

1. The residuals are calculated, and the gradient is calculated or
approximated (depending on the data) at the current
parameter values.

2. A linear least-squares fit of the residual on the gradient gives
the parameter increment.

3. If applying the full parameter increment increases the sum of
squares rather than decreasing it, the length of the increment
is successively halved until the sum of squares is decreased.

4. The step factor is retained between iterations and started at
min{2*(previous step factor), 1}.

If the gradient is not specified analytically, it is calculated using finite
differences with forward differencing. For partially linear models, the
increment is calculated using the Golub-Pereyra method (Golub and
Pereyra, 1973) as implemented by Bates and Lindstrom (1986).

Specifying
Models

Nonlinear models typically require specifying more details than
models of other types. The information typically required to fit a
nonlinear model, using the Spotfire S+ functions ms or nls, is:

1. A formula

2. Data

3. Starting values

Formulas For nonlinear models a formula is a Spotfire S+ expression involving
data, parameters in the model, and any other relevant quantities. The
parameters must be specified in the formula because there is no
assumption about where they are to be placed (as in linear models, for
example). Formulas are typically specified differently depending on
whether you have a minimum-sum problem or nonlinear least-
squares problem.
545

Chapter 15 Nonlinear Models
In the puromycin example, you would specify a formula for the
simple model (described in Equation (15.11)) by:

vel ~ Vm*conc / (K + conc)

The parameters Vm and K are specified along with the data vel and
conc. Since there is no explicit response for minimum-sum models
(for example, likelihood models), it is left off in the formula.

In the ping-pong example (ignoring the average rating effect), the
formula for Equation (15.4) is:

~ -D*alpha + log(1 + exp(D*alpha))

where D is a variable in the data and alpha is the parameter to fit.
Note that the model here is based only on the difference in ratings,
ignoring for the moment the average rating.

Simplifying
Formulas

Some models can be organized as simple expressions involving one
or more Spotfire S+ functions that do all the work. Note that D*alpha
occurs twice in the formula for the ping-pong model. You can write a
general function for the log-likelihood in terms of D*alpha.

> lprob <- function(lp) log(1 + exp(lp)) - lp

Recall that lp is the linear predictor for the GLM. A simpler
expression for the model is now:

~ lprob(D * alpha)

Having lprob now makes it easy to add additional terms or
parameters.

Implications of
the Formulas

For nonlinear least-squares formulas the response on the left of ~ and
the predictor on the right must evaluate to numeric vectors of the
same length. The fitting algorithm tries to estimate parameters to
minimize the sum of squared differences between response and
prediction. If the response is left out the formula is interpreted as a
residual vector.

For Minimum-Sum formulas, the right of ~ must evaluate to a
numeric vector. The fitting algorithm tries to estimate parameters to
minimize the sum of this “predictor” vector. The concept here is
linked to maximum-likelihood models. The computational form does
not depend on an MLE concept. The elements of the vector may be
anything and there need not be more than one.
546

Inference for Nonlinear Models
The evaluated formulas can include derivatives with respect to the
parameters. The derivatives are supplied as attributes to the vector
that results when the predictor side of the formula is evaluated. When
explicit derivatives are not supplied, the algorithms use numeric
approximations.

Parametrized
Data Frames

Relevant data for nonlinear modeling includes:

• Variables

• Initial estimates of parameters

• Fixed values occurring in a model formula

Parametrized data frames allow you to “attach” relevant data to a data
frame when the data do not occupy an entire column. Information is
attached as a "parameter" attribute of the data frame. The parameter
function returns or modifies the entire list of parameters and is
analogous to the attributes function. Similarly the param function
returns or modifies one parameter at a time and is analogous to the
attr function. You could supply values for Vm and K to the Puromycin
data frame with:

Assign Puromycin to your working directory.
> Puromycin <- Puromycin
> parameters(Puromycin) <- list(Vm = 200, K = 0.1)

The parameter values can be retrieved with:

> parameters(Puromycin)

$Vm:
[1] 200

$K:
[1] 0.1

The class of Puromycin is now:

> class(Puromycin)

[1] "pframe"

Now, when Puromycin is attached, the parameters Vm and K are
available when referred to in formulas.
547

Chapter 15 Nonlinear Models
Starting Values;
Identifying
Parameters

Before the formulas can be evaluated, the fitting functions must know
which names in the formula are parameters to be estimated and must
have starting values for these parameters. The fitting functions
determine this in the following way:

1. If the start argument is supplied, its names are the names of
the parameters to be estimated, and its values are the
corresponding starting values.

2. If start is missing, the parameters attribute of the data
argument defines the parameter names and values.

Derivatives Supplying derivatives of the predictor side of the formula with respect
to the parameters along with the formula can reduce the number of
iterations (thus speeding up the computations), increase numerical
accuracy, and improve the chance of convergence. In general
derivatives should be used whenever possible.

The fitting algorithms can use both first derivatives (the gradient) and
second derivatives (the Hessian). The derivatives are supplied to the
fitting functions as attributes to the formula. Recall that evaluating the
formula gives a vector of values. Evaluating the first derivative
expression should give values for each of the parameters, that is
an matrix. Evaluating the second derivative expression should
give n values for each of the partial derivatives, that is, an

 array.

First Derivatives The negative log-likelihood for the simple ping-pong model is:

Hint

Explicitly use the start argument to name and initialize parameters.

You can easily see what the starting values are in the call component of the fit and you can
arrange to keep particular parameters constant when that makes sense.

n
n p

n p×
p p×

n p× p×

(15.13)l α() 1 e
Diα+()log Diα–[]∑=
548

Inference for Nonlinear Models
Differentiating with respect to and simplifying gives the gradient:

The gradient is supplied to the fitting function as the gradient
attribute of the formula:

> form.pp <- ~log(1 + exp(D*alpha)) - D*alpha
> attr(form.pp, "gradient") <-
+ ~ -D / (1 + exp(D*alpha))
> form.pp

 ~ log(1 + exp(D * alpha)) - D * alpha
Gradient: ~ - D/(1 + exp(D * alpha))

When a function is used to simplify a formula, build the gradient into
the function. The lprob function is used to simplify the formula
expression to ~lprob(D*alpha):

> lprob <- function(lp) log(1 + exp(lp)) - lp

An improved version of lprob adds the gradient:

> lprob2 <- function(lp, X)
+ {
+ elp <- exp(lp)
+ z <- 1 + elp
+ value <- log(z) - lp
+ attr(value, "gradient") <- -X/z
+ value
+ }

Note lp is again the linear predictor and is the data in the linear
predictor. With the gradient built into the function, you don’t need to
add it as an attribute to the formula; it is already an attribute to the
object hence used in the formula.

(15.14)

α

∂l
∂α

Di–

1 e
Diα+()

------------------------∑=

X

549

Chapter 15 Nonlinear Models
Second
Derivatives

The second derivatives may be added as the hessian attribute of the
formula. In the ping-pong example, the second derivative of the
negative log-likelihood with respect to is:

The lprob2 function is now modified to add the Hessian as follows.
The Hessian is added in a general enough form to allow for multiple
predictors.

> lprob3 <- function(lp, X)
+ {
+ elp <- exp(lp)
+ z <- 1 + elp
+ value <- log(z) - lp
+ attr(value, "gradient") <- -X/z
+ if(length(dx <- dim(X)) == 2)
+ {
+ n <- dx[1]; p <- dx[2]
+ } else
+{
+ n <- length(X); p <- 1
+ }
+ xx <- array(X, c(n, p, p))
+ attr(value, "hessian") <- (xx * aperm(xx, c(1, 3, 2)) *
+ elp)/z^2
+ value
+ }

Interesting points of the added code are:

• The second derivative computations are performed at the
time of the assignment of the hessian attribute.

• The rest of the code (starting with if(length(...))) is to
make the Hessian general enough for multiple predictors.

• The aperm function does the equivalent of a transpose on the
second and third dimensions to produce the proper cross
products when multiple predictors are in the model.

(15.15)

α

∂2l

∂α2

Di
2e

Diα

1 e
Diα+()

2
--------------------------∑=
550

Inference for Nonlinear Models
Symbolic
Differentiation

A symbolic differentiation function D is available to aid in taking
derivatives.

The function D is used primarily as a support routine to deriv.

Again referring to the ping-pong example, form contains the
expression of the negative log-likelihood:

> form

expression(log((1 + exp(D * alpha))) - D * alpha)

The first derivative is computed as:

> D(form, "alpha")

(exp(D * alpha) * D)/(1 + exp(D * alpha)) - D

And the second derivative is computed as:

> D(D(form, "alpha"), "alpha")

(exp(D * alpha) * D * D)/(1 + exp(D * alpha))
- (exp(D * alpha) * D * (exp(D * alpha) * D))
/(1 + exp(D * alpha))^2

Table 15.2: Arguments to D.

Argument Purpose

expr Expression to be differentiated

name Which parameters to differentiate with respect to
551

Chapter 15 Nonlinear Models
Improved
Derivatives

The deriv function takes an expression, computes a derivative,
simplifies the result, then returns an expression or function for
computing the original expression along with its derivative(s).

Periods are used in front of created object names to avoid conflict
with user-chosen names. The deriv function returns an expression in
the form expected for nonlinear models.

> deriv(form, "alpha")

expression(
{

.expr1 <- D * alpha

.expr2 <- exp(.expr1)

.expr3 <- 1 + .expr2

.value <- (log(.expr3)) - .expr1

.grad <- array(0, c(length(.value), 1), list(NULL,
"alpha"))

.grad[, "alpha"] <- ((.expr2 * D)/.expr3) - D
attr(.value, "gradient") <- .grad
.value

})

Table 15.3: Arguments to deriv.

Argument Purpose

expr Expression to be differentiated, typically a formula, in
which case the expression returned computes the
right side of the ~ and its derivatives.

namevec Character vector of names of parameters.

function.arg Optional argument vector or prototype for a function.

tag Base of the names to be given to intermediate results.
Default is ".expr".
552

Inference for Nonlinear Models
If the function.arg argument is supplied, a function is returned:

> deriv(form, "alpha", c("D", "alpha"))

function(D, alpha)
{

.expr1 <- D * alpha

.expr2 <- exp(.expr1)

.expr3 <- 1 + .expr2

.value <- (log(.expr3)) - .expr1

.actualArgs <- match.call()["alpha"]
if(all(unlist(lapply(as.list(.actualArgs), is,name))))
{

.grad <- array(0, c(length(.value), 1), list(NULL,
"alpha"))

.grad[, "alpha"] <- ((.expr2 * D)/.expr3) - D
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad

}
.value

}

The namevec argument can be a vector:

> deriv(vel ~ Vm * (conc/(K + conc)), c("Vm", "K"))

expression(
{ .expr1 <- K + conc

.expr2 <- conc/.expr1

.value <- Vm * .expr2

.grad <- array(0, c(length(.value), 2), list(NULL,
c("Vm","K")))

.grad[, "Vm"] <- .expr2

.grad[, "K"] <- - (Vm * (conc/(.expr1^2)))
attr(.value, "gradient") <- .grad
.value

})

The symbolic differentiation interprets each parameter as a scalar.
Generalization from scalar to vector parameters (for example, lprob2)
must be done by hand. Use parentheses to help deriv find relevant
subexpressions. Without the redundant parentheses around conc/
(K + conc) the expression returned by deriv is not as simple as
possible.
553

Chapter 15 Nonlinear Models
Fitting Models There are two different fitting functions for nonlinear models. The ms
function minimizes the sum of the vector supplied as the right side of
the formula. The nls function minimizes the sum of squared
differences between the left and right sides of the formula.
Table 15.4: Arguments to ms.

Argument Purpose

formula The nonlinear model formula (without a left side).

data A data frame in which to do the computations.

start Numeric vector of initial parameter values.

scale Parameter scaling.

control List of control values to be used in the iteration.

trace Indicates whether intermediate estimates are printed.

Table 15.5: Arguments to nls.

Argument Purpose

formula The nonlinear regression model as a formula.

data A data frame in which to do the computations.

start Numeric vector of initial parameter values.

control List of control values to be used in the iteration.

algorithm Which algorithm to use. The default is a Gauss-
Newton algorithm. If algorithm = "plinear", the
Golub-Pereyra algorithm for partially linear least-
squares models is used.

trace Indicates whether intermediate estimates are printed.
554

Inference for Nonlinear Models
Fitting a Model
to the Puromycin
Data

Before fitting a model, take a look at the data displayed in Figure 15.1.

> attach(Puromycin)
> plot(conc,vel, type = "n")
> text(conc, vel, ifelse(state == "treated", "T", "U"))

1. Estimating starting values

Obtain an estimate of for each group as the maximum value
each group attains.

• The treated group has a maximum of about 200.

• The untreated group has a maximum of about 160.

The value of is the concentration at which reaches ,
roughly 0.1 for each group.

Figure 15.1: vel versus conc for treated (T) and untreated (U) groups.

conc

ve
l

0.0 0.2 0.4 0.6 0.8 1.0

50
10

0
15

0
20

0

T

T

T

T

T

T

T
T

T

T
T
T

U

U

UU

U

U

U
U

U

U U

Vmax

K V Vmax 2⁄
555

Chapter 15 Nonlinear Models
2. A simple model

Start by fitting a simple model for the treated group only.

> Treated <- Puromycin[Puromycin$state == "treated",]
> Purfit.1 <- nls(vel ~ Vm*conc/(K + conc), data = Treated,
+ start = list(Vm = 200, K = 0.1))
> Purfit.1

residual sum of squares: 1195.449
parameters:
 Vm K
212.6826 0.06411945
formula: vel~(Vm * conc)/(K + conc)
12 observations

Fit a model for the untreated group similarly but with Vm=160.

> Purfit.2

residual sum of squares: 859.6043
parameters:
 Vm K
160.2769 0.04770334
formula: vel ~ (Vm * conc)/(K + conc)
11 observations

3. A more complicated model

Obtain summaries of the fits with the summary function:

> summary(Purfit.1)

Formula: vel ~ (Vm * conc)/(K + conc)

Parameters:
 Value Std. Error t value
Vm 212.6830000 6.94709000 30.61460
 K 0.0641194 0.00828075 7.74319

Residual standard error: 10.9337 on 10 degrees of freedom

Correlation of Parameter Estimates:
 Vm
K 0.765
556

Inference for Nonlinear Models
> summary(Purfit.2)

Formula: vel ~ (Vm * conc)/(K + conc)

Parameters:
 Value Std. Error t value
Vm 160.2770000 6.48003000 24.73400
 K 0.0477033 0.00778125 6.13055

Residual standard error: 9.773 on 9 degrees of freedom

Correlation of Parameter Estimates:
 Vm
K 0.777

An approximate t-test for the difference in between the two models
suggests there is no difference:

> (0.06412 - 0.0477)/sqrt(0.00828^2 + 0.00778^2)

[1] 1.445214

The correct test of whether the s should be different:

> Purboth <- nls(vel ~ (Vm + delV*(state == "treated")) *
+ conc/(K + conc), data = Puromycin,
+ start = list(Vm = 160, delV = 40, K = 0.05))
> summary(Purboth)

Formula: vel ~ ((Vm + delV * (state == "treated")) * conc)/
(K + conc)

Parameters:
 Value Std. Error t value
 Vm 166.6030000 5.80737000 28.68820
delV 42.0254000 6.27209000 6.70038
 K 0.0579696 0.00590999 9.80875

Residual standard error: 10.5851 on 20 degrees of freedom

Correlation of Parameter Estimates:
 Vm delV
delV -0.5410
 K 0.6110 0.0644

K

K

557

Chapter 15 Nonlinear Models
> combinedSS <- sum(Purfit.1$res^2) + sum(Purfit.2$res^2)
> Fval <- (sum(Purboth$res^2) - combinedSS)/(combinedSS/19)
> Fval

[1] 1.718169

> 1 - pf(Fval, 1, 19)

[1] 0.2055523

Using a single appears to be reasonable.

Fitting a Model
to the Ping-Pong
Data

The example here develops a model based only on the difference in
ratings, ignoring, for the moment, the average rating. The model to fit
is:

~ ,

where is a variable representing the difference in rating, and is
the parameter to fit. There are four stages to the development of the
model.

1. Estimating starting values

A very crude initial estimate for can be found with the following
process:

• Replace all the differences in ratings by , where is the
mean difference.

• For each match, the probability from the model that the
winner had a higher rating satisfies:

.

• Substitute for the observed frequency with which the
higher-rated player wins, and then solve the above equation
for .

The computations in Spotfire S+ proceed as follows:

> pingpong <- pingpong
> param(pingpong, "p") <- 0 # make pingpong a "pframe"
> attach(pingpong,1)
> D <- winner - loser
> p <- sum(winner > loser) / length(winner)

K

D– α log(1 exp Dα)()+ +

D α

α

d± d

dα p 1 p–()⁄()log=

p

α

558

Inference for Nonlinear Models
> p

[1] 0.8223401

> alpha <- log(p/(1-p))/mean(D)
> alpha

[1] 0.007660995

> detach(1, save = "pingpong")

2. A simple model

Recall the lprob function which calculates the log-likelihood for the
ping-pong problem:

> lprob

function(lp)
log(1 + exp(lp)) - lp

The model is fitted as follows:

> attach(pingpong)
> fit.alpha <- ms(~ lprob(D * alpha),
+ start = list(alpha = 0.0077))
> fit.alpha

value: 1127.635

parameters:
 alpha
0.01114251

formula: ~ lprob(D * alpha)
3017 observations
call: ms(formula= ~lprob(D * alpha),
start = list(alpha = 0.0077))

3. Adding the gradient

To fit the model with the gradient added to the formula, use lprob2.

> fit.alpha.2 <- ms(~ lprob2(D*alpha, D),
+ start = list(alpha = 0.0077))
> fit.alpha.2
559

Chapter 15 Nonlinear Models
value: 1127.635
parameters:
 alpha
 0.01114251
formula: ~ lprob2(D * alpha, D)
3017 observations
call: ms(formula = ~ lprob2(DV * alpha, DV), start =
list(alpha = 0.0077))

Even for this simple problem, providing the derivative has decreased
the computation time by 20%.

4. Adding the Hessian

To fit the model with the gradient and the Hessian added to the
formula, use lprob3.

> fit.alpha.3 <- ms(~ lprob3(D*alpha, D),
+ start = list(alpha = .0077))
> fit.alpha.3

value: 1127.635
parameters:
 alpha
 0.01114251
formula: ~ lprob3(DV * alpha, DV)
3017 observations
call: ms(formula = ~ lprob3(DV * alpha, DV), start =
list(alpha = 0.0077))

Profiling the
Objective
Function

Profiling provides a more accurate picture of the uncertainty in the
parameter estimates than simple standard errors do. When there are
only two parameters, contours of the objective function can be
plotted by generating a grid of values. When there are more than two
parameters, examination of the objective function is usually done in
one of two ways, as listed below.

• Slices: fix all but two of the parameters at their estimated values
and create a grid of the objective function by varying the
remaining two parameters of interest.

• Projections: vary two parameters of interest over fixed values,
optimizing the objective function over the other parameters.
560

Inference for Nonlinear Models
Two-dimensional projections are often too time consuming to
compute. One-dimensional projections are called profiles. Profiles are
plots of a statistic equivalent, called the profile t function, for a
parameter of interest against a range of values for the parameter.

The Profile t
Function

For nls, the profile function for a given parameter is denoted by

 and is computed as follows:

where is the model estimate of , is the sum of squares

based on optimizing all parameters except the fixed , and is
the sum of squares based on optimizing all parameters.

The profile function is directly related to confidence intervals for
the corresponding parameter. It can be shown that is
equivalent to the studentized parameter

for which a confidence interval can be constructed as follows:

The profile
Function in
Spotfire S+

The profile function produces profiles for nls and ms objects.
Profiles show confidence intervals for parameters as well as the
nonlinearity of the objective function. If a model is linear, the profile
is a straight line through the origin with a slope of 1. You can produce
the profile plots for the Puromycin fit Purboth as follows:

> Purboth.prof <- profile(Purboth)
> plot(Purboth.prof)

t

, (15.16)

, (15.17)

(15.18)

t θp

τ θp()

τ θp() sign θp θ̃p–()
S̃ θp() S θ̃()–

s
-------------------------------=

θ̃p θp S̃ θp()

θp S θ̃()

t
τ θp()

δ θp()
θp θ̃p–

se θ̃p()
-----------------=

1 α–

t N P a
2
---;–⎝ ⎠

⎛ ⎞– δ θp() t N P a
2
---;–⎝ ⎠

⎛ ⎞≤ ≤
561

Chapter 15 Nonlinear Models
The object returned by profile has a component for each parameter
that contains the evaluations of the profile function, plus some
additional attributes. The component for the Vm parameter is:

> Purboth.prof$Vm

 tau par.vals.Vm par.vals.delV par.vals.K
 1 -3.9021051 144.6497 54.60190 0.04501306
 2 -3.1186052 148.8994 52.07216 0.04725929
 3 -2.3346358 153.2273 49.54358 0.04967189
 4 -1.5501820 157.6376 47.01846 0.05226722
 5 -0.7654516 162.1334 44.50315 0.05506789
 6 0.0000000 166.6040 42.02591 0.05797157
 7 0.7548910 171.0998 39.57446 0.06103225
 8 1.5094670 175.6845 37.12565 0.06431820
 9 2.2635410 180.3616 34.67194 0.06783693
10 3.0171065 185.1362 32.20981 0.07160305
11 3.7701349 190.0136 29.73812 0.07563630
12 4.5225948 194.9997 27.25599 0.07995897

Figure 15.2 shows profile plots for the three-parameter Puromycin fit.
Each plot shows the profile function (), when the parameter on the
x-axis ranges over the values shown and the other parameters are
optimized. The surface is quite linear with respect to these three
parameters.

t

t τ
562

Inference for Nonlinear Models
Figure 15.2: The profile plots for the Puromycin fit.

Vm

ta
u

150 170 190

-4
-2

0
2

4

delV

ta
u

20 30 40 50 60 70

-4
-2

0
2

4

K

ta
u

0.04 0.06 0.08

-4
-2

0
2

4

563

Chapter 15 Nonlinear Models
Computing
Confidence
Intervals

An example of a simple function to compute the confidence intervals
from the output of profile follows:

> conf.int <- function(profile.obj, variable.name,
+ confidence.level = 0.95) {
+ if(is.na(match(variable.name, names(profile.obj))))
+ stop(paste("Variable", variable.name,
+ "not in the model"))
+ resid.df <- attr(profile.obj, "summary")[["df"]][2]
+ tstat <- qt(1 - (1 - confidence.level)/2, resid.df)
+ prof <- profile.obj[[variable.name]]
+ approx(prof[, "tau"], prof[, "par.vals"]
+ [, variable.name],
+ c(-tstat, tstat))[[2]] }

The tricky line in conf.int is the last one which calls approx. The
Purboth.prof$Vm component is a data frame with two columns. The
first column is the vector of values that we can pick off using
prof[, "tau"]. The second column is named par.vals and contains
a matrix with as many columns as there are parameters in the model.
This results in the strange looking subscripting given by
prof[, "par.vals"][, variable.name]. The first subscript removes
the matrix from the par.vals component, and the second subscript
removes the appropriate column. Three examples using conf.int
and the profile object Purboth.prof follow:

> conf.int(Purboth.prof, "delV", conf = .99)

[1] 24.20945 60.03857

> conf.int(Purboth.prof, "Vm", conf = .99)

[1] 150.4079 184.0479

> conf.int(Purboth.prof, "K", conf = .99)

[1] 0.04217613 0.07826822

The conf.int function can be improved by doing a cubic spline
interpolation rather than the linear interpolation that approx does. A
marginal confidence interval computed from the profile function is
exact, disregarding any approximations due to interpolation, whereas
the marginal confidence interval computed with the coefficient and its
standard error is only a linear approximation.

τ

t

564

References
REFERENCES

Bates D.M. & Lindstrom M.J. (1986). Nonlinear least squares with
conditionally linear parametrics. Proceedings of the American Statistical
Computing Section, 152-157.

Comizzoli R.B., Landwehr J.M., & Sinclair J.D. (1990). Robust
materials and processes: Key to reliability. AT&T Technical Journal,
69(6):113--128.

Gay D.M. (1983). Algorithm 611: Subroutines for unconstrained
minimization using a model/trust-region approach. ACM Transactions
on Mathematical Software 9:503-524.

Golub G.H. & Pereyra V. (1973). The differentiation of pseudo-
inverses and nonlinear least squares problems whose variables
separate. SIAM Journal on Numerical Analysis 10:413-432.
565

Chapter 15 Nonlinear Models
566

Introduction 568
Setting Up the Data Frame 568
The Model and Analysis of Variance 569

Experiments with One Factor 570
Setting Up the Data Frame 571
A First Look at the Data 572
The One-Way Layout Model and Analysis of Variance 574

The Unreplicated Two-Way Layout 578
Setting Up the Data Frame 579
A First Look at the Data 580
The Two-Way Model and ANOVA (One Observation

Per Cell) 583

The Two-Way Layout with Replicates 591
Setting Up the Data Frame 592
A First Look at the Data 593
The Two-Way Model and ANOVA (with Replicates) 594
Method for Two-Factor Experiments with Replicates 597
Method for Unreplicated Two-Factor Experiments 599
Alternative Formal Methods 601

Many Factors at Two Levels: 2k Designs 602
Setting Up the Data Frame 602
A First Look at the Data 604

Estimating All Effects in the 2k Model 605
Using Half-Normal Plots to Choose a Model 610

References 615

DESIGNED EXPERIMENTS
AND ANALYSIS OF VARIANCE 16
567

Chapter 16 Designed Experiments and Analysis of Variance
INTRODUCTION

This chapter discusses how to analyze designed experiments.
Typically, the data have a numeric response and one or more
categorical variables (factors) that are under the control of the
experimenter. For example, an engineer may measure the yield of
some process using each combination of four catalysts and three
specific temperatures. This experiment has two factors, catalyst and
temperature, and the response is the yield.

Traditionally, the analysis of experiments has centered on the
performance of an Analysis of Variance (ANOVA). In more recent
years graphics have played an increasingly important role. There is a
large literature on the design and analysis of experiments; Box,
Hunter, and Hunter is an example.

This chapter consists of sections which show you how to use TIBCO
Spotfire S+ to analyze experimental data for each of the following
situations:

• Experiments with one factor

• Experiments with two factors and a single replicate

• Experiments with two factors and two or more replicates

• Experiments with many factors at two levels: designs

Each of these sections stands alone. You can read whichever section
is appropriate to your problem, and get the analysis done without
having to read the other sections. This chapter uses examples from
Box, Hunter, and Hunter (1978) and thus is a useful supplement in a
course which covers the material of Chapters 6, 7, 9, 10, and 11 of
Box, Hunter, and Hunter.

Setting Up the
Data Frame

In analyzing experimental data using Spotfire S+, the first thing you
do is set up an appropriate data frame for your experimental data. You
may think of the data frame as a matrix, with the columns containing
values of the variables. Each row of the data frame contains an
observed value of the response (or responses), and the corresponding
values of the experimental factors.

2k
568

Introduction
A First Look at
the Data

Use the functions plot.design, plot.factor, and possibly
interaction.plot to graphically explore your data.

The Model and
Analysis of
Variance

It is important that you have a clear understanding of exactly what
model is being considered when you carry out the analysis of
variance. Use aov to carry out the analysis of variance, and use
summary to display the results.

In using aov, you use formulas to specify your model. The examples in
this chapter introduce you to simple uses of formulas. You may
supplement your understanding of how to use formulas in Spotfire S+
by reading Chapter 2, Specifying Models in Spotfire S+ (in this book),
or Chapter 2, Statistical Models, and Chapter 5, Analysis of Variance;
Designed Experiments (in Chambers and Hastie (1992)).

Diagnostic Plots For each analysis, you should make the following minimal set of plots
to convince yourself that the model being entertained is adequate:

• Histogram of residuals (using hist)

• Normal qq-plot of residuals (using qqnorm)

• Plot of residuals versus fit (using plot)

When you know the time order of the observations, you should also
make plots of the original data and the residuals in the order in which
the data were collected.

The diagnostic plots may indicate inadequacies in the model from
one or more of the following sources: existence of interactions,
existence of outliers, and existence of nonhomogeneous error
variance.
569

Chapter 16 Designed Experiments and Analysis of Variance
EXPERIMENTS WITH ONE FACTOR

The simplest kind of experiments are those in which a single
continuous response variable is measured a number of times for each
of several levels of some experimental factor.

For example, consider the data in Table 16.1 (from Box, Hunter, and
Hunter (1978)), which consists of numerical values of blood
coagulation times for each of four diets. Coagulation time is the
continuous response variable, and diet is a qualitative variable, or
factor, having four levels: A, B, C, and D. The diets corresponding to
the levels A, B, C, and D were determined by the experimenter.

Your main interest is to see whether or not the factor “diet” has any
effect on the mean value of blood coagulation time. The experimental
factor, “diet” in this case, is often called the treatment.

Table 16.1: Blood coagulation times for four diets.

Diet

A B C D

62 63 68 56

60 67 66 62

63 71 71 60

59 64 67 61

65 68 63

66 68 64

63

59
570

Experiments with One Factor
Formal statistical testing for whether or not the factor level affects the
mean is carried out using the method of analysis of variance
(ANOVA). This needs to be complemented by exploratory graphics
to provide confirmation that the model assumptions are sufficiently
correct to validate the formal ANOVA conclusion. Spotfire S+
provides tools for you to do both the data exploration and formal
ANOVA.

Setting Up the
Data Frame

In order to analyze the data, you need to get it into a form that
Spotfire S+ can use for the analysis of variance. You do this by setting
up a data frame. First create a numeric vector coag:

> coag <- scan()

1: 62 60 63 59
5: 63 67 71 64 65 66
11: 68 66 71 67 68 68
17: 56 62 60 61 63 64 63 59
25:

Next, create a factor called diet, that corresponds to coag:

> diet <- factor(rep(LETTERS[1:4], c(4,6,6,8)))
> diet

[1] A A A A B B B B B B C C C C C C D D D D D D D D

Now create a data frame with columns diet and coag:

> coag.df <- data.frame(diet,coag)

The data frame object coag.df is a matrix-like object, so it looks like a
matrix when you display it on your screen:

> coag.df

 diet coag
 1 A 62
 2 A 60
 3 A 63
 .
 .
 .
23 D 63
24 D 59
571

Chapter 16 Designed Experiments and Analysis of Variance
A First Look at
the Data

For each level of the treatment factor, you make an initial graphical
exploration of the response data by using the functions
plot.design and plot.factor.

You can make plots of the treatment means and treatment medians
for each level of the experimental factor diet by using the function
plot.design twice, as follows:

> par(mfrow = c(1,2))
> plot.design(coag.df)
> plot.design(coag.df, fun = median)
> par(mfrow = c(1,1))

The results are shown in the two plots of Figure 16.1. In the left-hand
plot, the tick marks on the vertical line are located at the treatment
means for the diets A, B, C, and D, respectively. The mean values of
coagulation time for diets A and D happen to have the same value,
61, and so the labels A and D are overlaid. The horizontal line,
located at 64, indicates the overall mean of all the data. In the right-
hand plot of Figure 16.1, medians rather than means are indicated.
There is not much difference between the treatment means and the
treatment medians, so you should not be too concerned about
adverse effects due to outliers.

Figure 16.1: Treatment means and medians.

yij

Factors

m
ea

n
of

 c
oa

g

62
64

66
68

A

B

C

D

diet

Factors

m
ed

ia
n

of
 c

oa
g

62
64

66
68

A

B

C

D

diet
572

Experiments with One Factor
The function plot.factor produces a box plotbox plot of the
response data for each level of the experimental factor:

> plot.factor(coag.df)

The resulting plot is shown in Figure 16.2. This plot indicates that the
responses for diets A and D are quite similar, while the median
responses for diets B and C are considerably larger relative to the
variability reflected by the heights of the boxes. Thus, you suspect
that diet has an effect on blood coagulation time.

If the exploratory graphical display of the response using
plot.factor indicates that the interquartile distance of the box plots
depends upon the median, then a transformation to make the error
variance constant is called for. The transformation may be selected
with a “spread versus level” plot. See, for example, the section The
Two-Way Layout with Replicates, or Hoaglin, Mosteller, and Tukey
(1983).

Figure 16.2: Box plots for each treatment.

6
0

6
5

7
0

c
o

a
g

A B C D

diet
573

Chapter 16 Designed Experiments and Analysis of Variance
The One-Way
Layout Model
and Analysis of
Variance

The classical model for experiments with a single factor is

where is the mean value of the response for the th level of the

experimental factor. There are levels of the experimental factor,
and measurements are taken on the response

variable for level of the experimental factor.

Using the treatment terminology, there are treatments, and is

called the th treatment mean. The above model is often called the
one-way layout model. For the blood coagulation experiment, there are

 diets, and the means μ1, μ2, μ3, and μ4 correspond to diets A,

B, C, and D, respectively. The numbers of observations are ,

, and .

You carry out the analysis of variance with the function aov:

> aov.coag <- aov(coag ~ diet, coag.df)

The first argument to aov above is the formula coag ~ diet. This
formula is a symbolic representation of the one-way layout model
equation; the formula excludes the error term . The second
argument to aov is the data frame you created, coag.df, which
provides the data needed to carry out the ANOVA. The names diet
and coag, used in the formula coag ~ diet, need to match the names
of the variables in the data frame coag.df.

To display the ANOVA table, use summary. The p-value returned by
summary for aov.coag is 0.000047, which is highly significant.

> summary(aov.coag)

 Df Sum of Sq Mean Sq F Value Pr(F)
 diet 3 228 76.0 13.5714 4.65847e-05
Residuals 20 112 5.6

yij μi ε ij+=
j 1 ... Ji, ,=

i 1 ... I, ,=

μi i
I

Ji yi1 yi2 … y, iJ, ,

i

I μi

i

I 4=

JA 4=

JB JC 6= = JD 8=

ε ij
574

Experiments with One Factor
Diagnostic Plots You obtain the fitted values and residuals using the fitted.values
and residuals functions on the result of aov. Thus, for example, you
get the fitted values with the following:

> fitted.values(aov.coag)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
61 61 61 61 66 66 66 66 66 66 68 68 68 68 68 68 61 61 61 61 61 61 61 61

The resid and fitted functions are shorter names for residuals and
fitted.values, respectively.

You can check the residuals for distributional shape and outliers by
using hist and qqnorm, with the residuals component of aov.coag as
argument:

> hist(resid(aov.coag))
> qqnorm(resid(aov.coag))

Figure 16.3 shows the resulting histogram and Figure 16.4 shows the
quantile-quantile plot.

Figure 16.3: Histogram of residuals.

-6 -4 -2 0 2 4 6

0
2

4
6

8

resid(aov.coag)
575

Chapter 16 Designed Experiments and Analysis of Variance
The shape of the histogram, and the linearity of the normal qq-plot,
both indicate that the error distribution is quite Gaussian. The flat
sections in the qq-plot are a consequence of tied values in the data.

You can check for nonhomogeneity of error variance and possible
outliers by plotting the residuals versus the fit:

> plot(fitted(aov.coag), resid(aov.coag))

 This plot reveals no unusual features and is not shown.

Details An alternate form of the one-way layout model is the overall mean plus
effects form:

where is the overall mean and is the effect for level (or

treatment) . The ith treatment mean in the one-way layout

formulation is related to and by

.

Figure 16.4: Normal qq-plot of residuals.

•

•

•

•

•

•

•

•

•

• •

•

•

•

• •

•

•

•

•

•

•

•

•

Quantiles of Standard Normal

re
si

d
(a

o
v.

co
a
g
)

-2 -1 0 1 2

-4
-2

0
2

4

yij μ αi ε ij+ +=

μ αi

i μi

μ αi

μi μ αi+=
576

Experiments with One Factor
The effects satisfy the constraint

,

where is the number of replications for the ith treatment. The
function aov fits the one-way model in the overall mean plus effects
form:

.

See the section Model Coefficients and Contrasts for more on this.

To obtain the effects, use model.tables as follows:

> model.tables(aov.coag)

Tables of effects

 diet
 A B C D
 -3 2 4 -3
 rep 4 6 6 8
Warning messages:
Model was refit to allow projection in:
model.tables(aov.coag)

You can get the treatment means as follows:

> model.tables(aov.coag, type = "means")

Tables of means

Grand mean

 64

 diet
 A B C D
 61 66 68 61
rep 4 6 6 8
Warning messages:
Model was refit to allow projection in:
model.tables(aov.coag, type = "means")

αi

n1α1 n2α2 … nIαI+ + + 0=

ni

yij μ αi rij+ +=
577

Chapter 16 Designed Experiments and Analysis of Variance
THE UNREPLICATED TWO-WAY LAYOUT

The data in Table 16.2 (used by Box, Hunter, and Hunter (1978)) were
collected to determine the effect of treatments A, B, C, and D on the
yield of penicillin in a penicillin manufacturing process.

The values of the response variable “yield” are the numbers in the
table, and the columns of the table correspond to the levels A, B, C,
and D of the treatment factor. There was a second factor, namely the
blend factor, since a separate blend of the corn-steep liquor had to be
made for each application of the treatments.

Your main interest is in determining whether the treatment factor
affects yield. The blend factor is of only secondary interest; it is a
blocking variable introduced to increase the sensitivity of the
inference for treatments. The order of the treatments within blocks
was chosen at random. Hence, this is a randomized blocks experiment.

The methods we use in this section apply equally well to two-factor
experiments in which both factors are experimentally controlled and
of equal interest.

Table 16.2: Effect of four treatments on penicillin yield.

Treatment

Block A B C D

Blend 1 89 88 97 94

Blend 2 84 77 92 79

Blend 3 81 87 87 85

Blend 4 87 92 89 84

Blend 5 79 81 80 88
578

The Unreplicated Two-Way Layout
Setting Up the
Data Frame

Table 16.2 is balanced :each entry or cell of the table (that is, each row
and column combination) has the same number of observations (one
observation per cell, in the present example). With balanced data,
you can use fac.design to create the data frame.

First, create a list fnames with two components named blend and
treatment, where blend contains the level names of the blend factor
and treatment contains the level names of the treatment factor:

> fnames <- list(blend = paste("Blend ", 1:5),
+ treatment = LETTERS[1:4])

Then use fac.design to create the design data frame pen.design

> pen.design <- fac.design(c(5,4), fnames)

The first argument, c(5,4), to fac.design specifies the design as
having two factors because its length is two. The 5 specifies five levels
for the first factor, blend, and the 4 specifies four levels for the second
factor, treatment. The second argument, fnames, specifies the factor
names and the labels for their levels.

The design data frame pen.design that you just created contains the
factors blend and treatment as its first and second columns,
respectively.

Now create yield to match pen.design:

> yield <- scan()

1: 89 84 81 87 79
6: 88 77 87 92 81
11: 97 92 87 89 80
16: 94 79 85 84 88
21:

You can now use data.frame to combine the design data frame
pen.design and the response yield into the data frame pen.df:

> pen.df <- data.frame(pen.design, yield)

Now look at pen.df:

> pen.df
579

Chapter 16 Designed Experiments and Analysis of Variance
 blend treatment yield
 1 Blend 1 A 89
 2 Blend 2 A 84
 3 Blend 3 A 81
 4 Blend 4 A 87
 5 Blend 5 A 79
 6 Blend 1 B 88
 .
 .
 .
19 Blend 4 D 84
20 Blend 5 D 88

Alternatively, you could build the model data frame directly from
pen.design as follows:

> pen.design[,"yield"] <- yield

When you plot the object pen.design, Spotfire S+ uses the method
plot.design, because the object pen.design is of class "design".
Thus, you obtain the same results as if you called plot.design
explicitly on the object pen.df.

A First Look at
the Data

You can look at the (comparative) values of the sample means of the
data for each level of each factor using plot.design:

> plot.design(pen.df)

This function produces the plot shown in Figure 16.5. For the blend
factor, each tick mark is located at the mean of the corresponding row
of Table 16.2. For the treatment factor, each tick mark is located at the
mean of the corresponding column of Table 16.2. The horizontal line
is located at the sample mean of all the data. Figure 16.5 suggests that
the blend has a greater effect on yield than does the treatment.
580

The Unreplicated Two-Way Layout
Since sample medians are insensitive to outliers, and sample means
are not, you may want to make a plot similar to Figure 16.5 using
sample medians instead of sample means. You can do this with
plot.design, using the second argument fun=median:

> plot.design(pen.df, fun = median)

In this case, the plot does not indicate great differences between
sample means and sample medians.

Use plot.factor to get a more complete exploratory look at the data.
But first use par to get a one row by two column layout for two plots:

> par(mfrow = c(1,2))
> plot.factor(pen.df)
> par(mfrow = c(1,1))

This command produces the plot shown in Figure 16.6.

Figure 16.5: Sample means in penicillin yield experiment.

Factors

me
an

 of
 yie

ld

82
84

86
88

90
92 Blend 1

Blend 2

Blend 3

Blend 4

Blend 5

A

B

C

D

blend treatment
581

Chapter 16 Designed Experiments and Analysis of Variance
The box plots for factors, produced by plot.factor, give additional
information about the data besides the location given by
plot.design. The box plots indicate variability, skewness, and
outliers in the response, for each fixed level of each factor. For this
particular data, the box plots for both blends and treatments indicate
rather constant variability, relatively little overall skewness, and no
evidence of outliers.

For two-factor experiments, you should use interaction.plot to
check for possible interactions (that is, nonadditivity). The
interaction.plot function does not accept a data frame as an
argument. Instead, you must supply appropriate factor names and the
response name. To make these factor and response data objects
available to interaction.plot, you must first attach the data frame
pen.df:

> attach(pen.df)
> interaction.plot(treatment, blend, yield)

These commands produce the plot shown in Figure 16.7. The first
argument to interaction.plot specifies which factor appears along
the x-axis (in this case, treatment). The second argument specifies
which factor is associated with each line plot, or “trace” (in this case,
blend). The third argument is the response variable (in this case,
yield).

Figure 16.6: Factor plot for penicillin yield experiment.

80
85

90
95

yi
el

d

Blend 1 Blend 2 Blend 3 Blend 4 Blend 5

blend

80
85

90
95

yi
el

d

A B C D

treatment
582

The Unreplicated Two-Way Layout
Without replication it is often difficult to interpret an interaction plot
since random error tends to dominate. There is nothing striking in
this plot.

The Two-Way
Model and
ANOVA (One
Observation
Per Cell)

The additive model for experiments with two factors, A and B, and
one observation per cell is:

where is the overall mean, is the effect of the th level of factor

A and is the effect of the th level of factor B.

For the penicillin data above, factor A is “blend” and factor B is
“treatment.” Blend has levels and treatment has levels.

To estimate the additive model, use aov:

> aov.pen <- aov(yield ~ blend + treatment, pen.df)

The formula yield ~ blend + treatment specifies that a two factor
additive model is fit, with yield the response, and blend and
treatment the factors.

Figure 16.7: Interaction plot of penicillin experiment.

treatment

me
an

of y
ield

80
85

90
95

A B C D

 blend

Blend 1
Blend 5
Blend 3
Blend 4
Blend 2

yij μ αi
A αi

B ε ij+ + +=
i 1 … I, ,=

j 1 … J, ,=

μ αi
A i

αj
B j

I 5= J 5=
583

Chapter 16 Designed Experiments and Analysis of Variance
Display the analysis of variance table with summary:

> summary(aov.pen)

 Df Sum of Sq Mean Sq F Value Pr(F)
 blend 4 264 66.0000 3.50442 0.040746
treatment 3 70 23.3333 1.23894 0.338658
Residuals 12 226 18.8333

The p-value for blend is moderately significant, while the p-value for
treatment is insignificant.

Diagnostic Plots Make a histogram of the residuals.

> hist(resid(aov.pen))

The resulting histogram is shown in Figure 16.8.

Now make a normal qq-plot of residuals:

> qqnorm(resid(aov.pen))

The resulting plot is shown in Figure 16.9.

Figure 16.8: Histogram of residuals for penicillin yield experiment.

-6 -4 -2 0 2 4 6 8

0
1

2
3

4
5

resid(aov.pen)
584

The Unreplicated Two-Way Layout
The central four cells of the histogram in Figure 16.8 are consistent
with a fairly normal distribution in the middle. The linearity of the
normal qq-plot in Figure 16.9, except near the ends, also suggests that
the distribution is normal in the middle. The relatively larger values
of the outer two cells of the histogram, and the flattening of the
normal qq-plot near the ends, both suggest that the error distribution
is slightly more short-tailed than a normal distribution. This is not a
matter of great concern for the ANOVA F tests.

Make a plot of residuals versus the fit:

> plot(fitted(aov.pen), resid(aov.pen))

The resulting plot is shown in Figure 16.10. The plot of residuals
versus fit gives some slight indication that smaller error variance is
associated with larger values of the fit.

Figure 16.9: Quantile-quantile plot of residuals for penicillin yield experiment.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Quantiles of Standard Normal

re
si

d(
ao

v.
pe

n)

-2 -1 0 1 2

-4
-2

0
2

4
6

585

Chapter 16 Designed Experiments and Analysis of Variance
Guidance Since there is some indication of inhomogeneity of error variance, we
now consider transforming the response, yield.

You may want to test for the existence of a multiplicative interaction,
specified by the model

.

When the unknown parameter is not zero, multiplicative
interaction exists. A test for the null hypothesis of no interaction may
be carried out using the test statistic for Tukey’s one degree of
freedom for nonadditivity.

A Spotfire S+ function, tukey.1, is provided in the section Details.
You can use it to compute and the p-value. For the penicillin
data:

> tukey.1(aov.pen, pen.df)

$T.1df:
[1] 0.09826791

$p.value:
[1] 0.7597822

Figure 16.10: Residuals vs. fitted values for penicillin yield experiment.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

fitted(aov.pen)

re
si

d(
ao

v.
pe

n)

80 85 90 95

-4
-2

0
2

4
6

yij μ αi
A αj

B θαi
Aαj

B ε ij+ + + +=

θ

T1df

T1df
586

The Unreplicated Two-Way Layout
The statistic has a p-value of , which is not
significant. Therefore, there is no indication of a multiplicative
interaction.

Assuming that the response values are positive, you can find out
whether or not the data suggest a specific transformation to remove
multiplicative interaction as follows: Plot the residuals for the
additive fit versus the comparison values

.

If this plot reveals a linear relationship with estimated slope , then
you should analyze the data again, using as new response values the

power transformation of the original response variables , with

exponent

.

(If , use log().) See Hoaglin, Mosteller, and Tukey (1983) for
details.

A Spotfire S+ function called comp.plot, for computing the

comparison values , plotting versus , and computing , is
provided in the section Details. Applying comp.plot to the penicillin
data gives the results shown below and in Figure 16.11:

> comp.plot(aov.pen, pen.df)

$theta.hat:
[1] 4.002165

$std.error:
[1] 9.980428

$R.squared:
 R2
 0.008854346

T1df 0.098= p 0.76=

rij

cij
α̂i

A
α̂j

B

μ̂
------------=

θ̂

yij
λ yij

λ 1 θ̂–=

λ 0= yij

cij rij cij θ̂
587

Chapter 16 Designed Experiments and Analysis of Variance
In this case, the estimated slope is , which gives .
However, this is not a very sensible exponent for a power

transformation. The standard deviation of is nearly 10 and the
is only .009, which indicates that may be zero. Thus, we do not
recommend using a power transformation.

Details The test statistic for Tukey’s one degree of freedom is given by:

where

Figure 16.11: Display from comp.plot.

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cij

a
s
.v

e
c
to

r(
r.

m
a
t)

-0.1 0.0 0.1 0.2

-4
-2

0
2

4
6

θ̂ 4= λ 3–=

θ̂ R2

θ

T1df

T1df IJ I– J–()
SSθ

SSres.1
----------------=

SSθ

α̂i
A

α̂j
B
yij

j 1=

J

∑
i 1=

I

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

α̂i
A

()
2

i 1=

I

∑ α̂j
B

()
2

j 1=

J

∑
---=
588

The Unreplicated Two-Way Layout
with the , the additive model estimates of the and , and

 the residuals from the additive model fit. The statistic has an
F1,IJ-I-J distribution.

Here is a function tukey.1 to compute the Tukey one degree of
freedom for nonadditivity test. You can create your own version of
this function by typing tukey.1 <- and then the definition of the
function.

> tukey.1 <- function(aov.obj, data) {
+ vnames <- names(aov.obj$contrasts)
+ if(length(vnames) != 2)
+ stop("the model must be two-way")
+ vara <- data[, vnames[1]]
+ varb <- data[, vnames[2]]
+ na <- length(levels(vara))
+ nb <- length(levels(varb))
+ resp <- data[, as.character(attr(aov.obj$terms,
+ "variables")[attr(aov.obj$terms, "response")])]
+ cfs <- coef(aov.obj)
+ alpha.A <- aov.obj$contrasts[[vnames[1]]] %*% cfs[
+ aov.obj$assign[[vnames[1]]]]
+ alpha.B <- aov.obj$contrasts[[vnames[2]]] %*% cfs[
+ aov.obj$assign[[vnames[2]]]]
+ r.mat <- matrix(0, nb, na)
+ r.mat[cbind(as.vector(unclass(varb)), as.vector(
+ unclass(vara)))] <- resp
+ SS.theta.num <- sum((alpha.B %*% t(alpha.A)) * r.mat)^2
+ SS.theta.den <- sum(alpha.A^2) * sum(alpha.B^2)
+ SS.theta <- SS.theta.num/SS.theta.den
+ SS.res <- sum(resid(aov.obj)^2)
+ SS.res.1 <- SS.res - SS.theta
+ T.1df <- ((na * nb - na - nb) * SS.theta)/SS.res.1
+ p.value <- 1 - pf(T.1df, 1, na * nb - na - nb)
+ list(T.1df = T.1df, p.value = p.value) }

SSres.1 SSres SSθ–=

SSres rij
2

j 1=

J

∑
i 1=

I

∑=

α̂i
A

α̂j
B

αi
A αj

B

rij T1df
589

Chapter 16 Designed Experiments and Analysis of Variance
Here is a function comp.plot for computing a least-squares fit to the
plot of residuals versus comparison values:

> comp.plot <- function(aov.obj, data)
+ {
+ vnames <- names(aov.obj$contrasts)
+ if(length(vnames) != 2)
+ stop("the model must be two-way")
+ vara <- data[, vnames[1]]
+ varb <- data[, vnames[2]]
+ cfs <- coef(aov.obj)
+ alpha.A <- aov.obj$contrasts[[vnames[1]]] %*% cfs[
+ aov.obj$assign[[vnames[1]]]]
+ alpha.B <- aov.obj$contrasts[[vnames[2]]] %*% cfs[
+ aov.obj$assign[[vnames[2]]]]
+ cij <- alpha.B %*% t(alpha.A)
+ cij <- c(cij)/cfs[aov.obj$assign$"(Intercept)"]
+ na <- length(levels(vara))
+ nb <- length(levels(varb))
+ r.mat <- matrix(NA, nb, na)
+ r.mat[cbind(as.vector(unclass(varb)), as.vector(
+ unclass(vara)))] <- resid(aov.obj)
+ plot(cij, as.vector(r.mat))
+ ls.fit <- lsfit(as.vector(cij), as.vector(r.mat))
+ abline(ls.fit)
+ output <- ls.print(ls.fit, print.it = F)
+ list(theta.hat = output$coef.table[2, 1],
+ std.error = output$coef.table[2, 2],
+ R.squared = output$summary[2])
+ }
590

The Two-Way Layout with Replicates
THE TWO-WAY LAYOUT WITH REPLICATES

The data in Table 16.3 (used by Box, Hunter, and Hunter (1978))
displays the survival times, in units of 10 hours, of animals in a 3 x 4
replicated factorial experiment. In this experiment, each animal was
given one of three poisons, labeled I, II, and III, and one of four
treatments, labeled A, B, C, and D. Four animals were used for each
combination of poison and treatment, making four replicates.

Table 16.3: A replicated factorial experiment.

Treatment

Poison A B C D

I 0.31 0.82 0.43 0.45

0.45 1.10 0.45 0.71

0.46 0.88 0.63 0.66

0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56

0.29 0.61 0.35 1.02

0.40 0.49 0.31 0.71

0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30

0.21 0.37 0.25 0.36

0.18 0.38 0.24 0.31

0.23 0.29 0.22 0.33
591

Chapter 16 Designed Experiments and Analysis of Variance
Setting Up the
Data Frame

To set up the data frame, first make a list, fnames, with components
treatment and poison, containing the level names of these two
factors:

> fnames <- list(treatment = LETTERS[1:4],
+ poison=c("I", "II", "III"))

Use fac.design, with optional argument rep = 4, to create the design
data frame poisons.design:

> poisons.design <- fac.design(c(4,3), fnames, rep = 4)

Note that since treatments is the first factor in the fnames list and
treatments has 4 levels, 4 is the first argument of c(4,3).

You now need to create the vector surv.time to match
poisons.design. Each replicate of the experiment consists of data in
three rows of Table 16.3. Rows 1, 5, and 9 make up the first replicate,
and so on. The command to get what we want is:

> surv.time <- scan()

1: .31 .82 .43 .45
5: .36 .92 .44 .56
9: .22 .30 .23 .30
13: .45 1.10 .45 .71
17: .29 .61 .35 1.02
21: .21 .37 .25 .36
25: .46 .88 .63 .66
29: .40 .49 .31 .71
33: .18 .38 .24 .31
37: .43 .72 .76 .62
41: .23 1.24 .40 .38
45: .23 .29 .22 .33
49:

Finally, make the data frame poisons.df:

> poisons.df <- data.frame(poisons.design, surv.time)
592

The Two-Way Layout with Replicates
A First Look at
the Data

Use plot.design, plot.factor, and interaction.plot to get a first
look at the data through summary statistics.

Set par(mfrow = c(3,2)) and use the above three functions to get the
three row and two column layout of plots displayed in Figure 16.12:

> par(mfrow = c(3,2))

Figure 16.12: Initial plots of the data.

Factors

m
ea

n
of

 s
ur

v.
tim

e

0.
3

0.
5

A

B

C

D

I

II

III

treatment poison

Factors

m
ed

ia
n

of
 s

ur
v.

tim
e

0.
3

0.
5

A

B

C

D

I

II

III

treatment poison

0.
2

0.
6

1.
0

su
rv

.ti
m

e

A B C D

treatment

0.
2

0.
6

1.
0

su
rv

.ti
m

e

I II III

poison

treatment

m
ea

n
of

 s
ur

v.
tim

e

0.
2

0.
4

0.
6

0.
8

A B C D

 poison

I
II
III

treatment

m
ed

ia
n

of
 s

ur
v.

tim
e

0.
2

0.
4

0.
6

0.
8

A B C D

 poison

I
II
III
593

Chapter 16 Designed Experiments and Analysis of Variance
To obtain the design plot of sample means shown in the upper left
plot of Figure 16.12, use plot.design as follows:

> plot.design(poisons.df)

To obtain the design plot of sample medians shown in the upper
right-hand plot of Figure 16.12, use plot.design again:

> plot.design(poisons.df, fun = median)

The two sets of box plots shown in the middle row of Figure 16.12 are
obtained with:

> plot.factor(poisons.df)

To obtain the bottom row of Figure 16.12, use interaction.plot:

> attach(poisons.df)
> interaction.plot(treatment,poison, surv.time)
> interaction.plot(treatment,poison, surv.time,
+ fun = median)

The main differences between the plots obtained with plot.design
using means and medians are as follows:

• the difference between the horizontal lines which represents
the mean and median, respectively, for all the data;

• the difference between the tick marks for the poison factor at
level II.

The box plots resulting from the use of plot.factor indicate a clear
tendency for variability to increase with the (median) level of
response.

The plots made with interaction.plot show stronger treatment
effects for the two poisons with large levels than for the lowest level
poison. This is an indication of an interaction.

The Two-Way
Model and
ANOVA (with
Replicates)

When you have replicates, you can consider a model which includes

an interaction term :αij
AB

yijk μ αi
A αj

B αij
AB ε ijk+ + + +=

i 1 … I, ,=

j 1 … J, ,=

k 1 … K, ,=
594

The Two-Way Layout with Replicates
You can now carry out an ANOVA for the above model using aov as
follows:

> aov.poisons <- aov(surv.time ~ poison * treatment,
+ data = poisons.df)

The expression poison*treatment on the right-hand side of the
formula specifies that aov fit the above model with interaction. This
contrasts with the formula surv.time ~ poison + treatment, which

tells aov to fit an additive model for which is assumed to be zero

for all levels .

You now display the ANOVA table with summary:

> summary(aov.poisons)

 Df Sum of Sq Mean Sq F Value Pr(F)
poison 2 1.033013 0.5165063 23.22174 0.0000003
treatment 3 0.921206 0.3070688 13.80558 0.0000038
poison:treatment 6 0.250138 0.0416896 1.87433 0.1122506
Residuals 36 0.800725 0.0222424

The p-values for both poisons and treatment are highly significant,
while the p-value for interaction is insignificant.

The colon in poison:treatment denotes an interaction, in this case
the poison-treatment interaction.

Diagnostic Plots Make a histogram and a normal qq-plot of residuals, arranging the
plots side by side in a single figure with par(mfrow = c(1,2)) before
using hist and qqnorm:

> par(mfrow = c(1,2))
> hist(resid(aov.poisons))
> qqnorm(resid(aov.poisons))
> par(mfrow = c(1,1))

The call par(mfrow = c(1,1)), resets the plot layout to a single plot
per figure.

The histogram in the left-hand plot of Figure 16.13 reveals a marked
asymmetry, which is reflected in the normal qq-plot in the right-hand
side of Figure 16.13. The latter shows a curved departure from

αij
AB

i j,
595

Chapter 16 Designed Experiments and Analysis of Variance
linearity toward the lower left part of the plot, and a break in linearity
in the upper right part of the plot. Evidently, all is not well (see the
discussion on transforming the data in the Guidance section below).

Make a plot of residuals versus fit:

> plot(fitted(aov.poisons), resid(aov.poisons))

The result, displayed in Figure 16.14, clearly reveals a strong
relationship between the residuals and the fitted values. The
variability of the residuals increases with increasing fitted values. This
is another indication that transformation would be useful.

Guidance When the error variance for an experiment varies with the expected
value of the observations, a variance stabilizing transformation will
often reduce or eliminate such behavior.

We shall show two methods for determining an appropriate variance
stabilizing transformation, one which requires replicates and one
which does not.

Figure 16.13: Histogram and normal qq-plot of residuals.

-0.4 -0.2 0.0 0.2 0.4

0
5

1
0

1
5

2
0

resid(aov.poisons)

•
•

••

•
•

•

•

•
• ••

•

•

•

•

•

•

•

•

• •• • •
•

•• •

•

•

•
•

•
•• •

•

•

•

•

•

•

•

•
• • •

Quantiles of Standard Normal

re
si

d
(a

o
v.

p
o

is
o

n
s)

-2 -1 0 1 2

-0
.2

0
.0

0
.2

0
.4
596

The Two-Way Layout with Replicates
Method for
Two-Factor
Experiments
with
Replicates

For two-factor experiments with replicates, you can gain insight into
an appropriate variance stabilizing transformation by carrying out the
following informal procedure. First, calculate the within-cell standard
deviations and means :

> std.poison <- tapply(poisons.df$surv.time,
+ list(poisons.df$treatment,
+ poisons.df$poison), stdev)
> std.poison <- as.vector(std.poison)
> means.poison <- tapply(poisons.df$surv.time,
+ list(poisons.df$treatment,
+ poisons.df$poison), mean)
> means.poison <- as.vector(means.poison)

Then plot versus and use the slope of the

regression line to estimate the variance stabilizing transform:

> plot(log(means.poison), log(std.poison))
> var.fit <- lsfit(log(means.poison),
+ log(std.poison))
> abline(var.fit)

Figure 16.14: Plot of residuals versus fit.

•
•

• •

•

•
•

•

•
•

• •

•

•

•

•

•

•

•

•

•
•• • •

•

• •
•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•
• •

fitted(aov.poisons)

re
si

d(
ao

v.
po

is
on

s)

0.2 0.4 0.6 0.8

-0
.2

0.
0

0.
2

0.
4

σij yij

log σij() log yij()
597

Chapter 16 Designed Experiments and Analysis of Variance
> theta <- var.fit$coef[2]
> theta

 X
 1.97704

Now let and choose to be that value among the set of

values which is closest to . If , then make

the transformation . Otherwise, make the power

transformation . Now you should repeat the complete

analysis described in the previous subsections, using the response

in place of .

Since for the poisons experiment you get , you choose .

This gives a reciprocal transformation , where are the

values you used in the response with surv.time. You can think of the
new response as representing the rate of dying.

The model can be refit using the transformed response:

> summary(aov(1/surv.time ~ poison*treatment,
+ data = poisons.df))

 Df Sum of Sq Mean Sq F Value Pr(F)
poison 2 34.87712 17.43856 72.63475 0.0000000
treatment 3 20.41429 6.80476 28.34307 0.0000000
poison:treatment 6 1.57077 0.26180 1.09042 0.3867329
Residuals 36 8.64308 0.24009

With the transformation the p-values for the main effects have
decreased while the p-value for the interaction has increased—a more
satisfactory fit. The diagnostic plots with the new response are much
improved also.

λˆ 1 θ̂–= λ

1 1
2
---– 0 1

2
--- 1, , , ,–

⎭

⎫
λ̂ λ 0=

ỹij log yij=

ỹijk yijk
λ

=

ỹijk

yijk

θ̂ 2≈ λ 1–=

ỹijk yijk
1–

= yijk

ỹijk
598

The Two-Way Layout with Replicates
Method for
Unreplicated
Two-Factor
Experiments

An alternative simple method for estimating the variance stabilizing
transformation is based on the relationship between the log of the
absolute residuals and the log of the fitted values. This method has the
advantage that it can be used for unreplicated designs. This method is
also often preferred to that of plotting against even for

cases with replication, because and are not always adequately

good estimates of the mean and standard deviation for small values of
.

This method consists of plotting log of absolute residuals versus log of

fitted values, and computing the slope of the regression line. You

then set . Residuals with very small absolute values should
usually be omitted before applying this method. Here is some sample
code.

> plot(log(abs(fitted(aov.poisons)[
+ abs(resid(aov.poisons)) > exp(-10)])),
+ log(abs(resid(aov.poisons)[
+ abs(resid(aov.poisons)) > exp(-10)])))
> logrij.fit <- lsfit(
+ log(abs(fitted(aov.poisons)[
+ abs(resid(aov.poisons)) > exp(-10)])),
+ log(abs(resid(aov.poisons)[
+ abs(resid(aov.poisons)) > exp(-10)])))
> abline(logrij.fit)
> theta <- logrij.fit$coef[2]
> theta

 X
 1.930791

You get .

Note that the two simple methods described above both lead to
nearly identical choices of power transformation to stabilize variance.

σijlog yij

yij σij

K K 8<()

θ̂

λ̂ 1 θ̂–=

λ̂ 1 θ̂ 1–≈–=
599

Chapter 16 Designed Experiments and Analysis of Variance
Details You will find that a nonconstant standard deviation for observations
 (for the two-factor experiment with replicates) is well-

explained by a power law relationship in many data sets. In
particular, for some constant and some exponent , we have

where is the standard deviation of the and is the mean of the

. If you then use a power law transformation

for some fixed exponent , it can be shown that the standard

deviation for the transformed data , is given by

.

You can therefore make have a constant value, independent of

the mean of the original data (and independent of the

approximate mean of the transformed data), by choosing

.

Note that

.

Suppose you plot log versus log for a two-factor experiment

with replicates and find that this plot results in a fairly good straight

line fit with slope , where is an estimate of and is an

estimate of . Then the slope provides an estimate of , and so

you set . Since a fractional exponent is not very natural,

one often chooses the closest value in the following “natural” set.

yi yijk

B θ

σy Bηθ≈

σy yi η

yi

ỹi yi
λ

=

λ
σỹ ỹi

σỹ Kληλ 1 θ–()–
=

σỹ

η yi

ηλ ỹi

λ 1 θ–=

log σy log K θ log η+≈

σij ŷij

θ̂ σij σy ŷij

η θ̂ θ

λ̂ 1 θ̂–= λ̂

λ̂

600

The Two-Way Layout with Replicates
Alternative
Formal
Methods

There are two alternative formal approaches to stabilizing the
variance. One approach is to select the power transformation that
minimizes the residual squared error. This is equivalent to
maximizing the log-likelihood function and is sometimes referred to
as a Box-Cox analysis (see, for example, Weisberg (1985); Box
(1988); Haaland (1989)).

The second approach seeks to stabilize the variance without the use of
a transformation, by including the variance function directly in the
model. This approach is called generalized least squares/variance
function estimation (see, for example, Carroll and Ruppert (1988);
Davidian and Haaland (1990)).

Transformations are easy to use and may provide a simpler, more
parsimonious model (Box (1988)). On the other hand, modeling the
variance function directly allows the analysis to proceed on the
original scale and allows more direct insight into the nature of the
variance function. In cases when the stability of the variance is
critical, either of these methods have better statistical properties than
the simple informal graphical methods described above.

1– Reciprocal
1
2
---– Reciprocal square root

0 Log
1
2
--- Square root

1 No transformation
601

Chapter 16 Designed Experiments and Analysis of Variance
MANY FACTORS AT TWO LEVELS: 2K DESIGNS

The data in Table 16.4 come from an industrial product development
experiment in which a response variable called conversion is measured
(in percent) for each possible combination of two levels of four
factors, listed below.

• K: catalyst charge (10 or 15 pounds)

• Te: temperature ()

• P: pressure (50 or 80 pounds per square inch)

• C: concentration (10% or 12%)

The levels are labeled “-” and “+” in the table. All the factors in the
experiment are quantitative, so the “-” indicates the “low” level and
the “+” indicates the “high” level for each factor. This data set was
used by Box, Hunter, and Hunter (1978).

The design for this experiment is called a 24 design because there are

24 = 16 possible combinations of two levels for four factors.

Setting Up the
Data Frame

To set up the data frame first create a list of the four factor names with
the corresponding pairs of levels labels:

> fnames <- list(K = c("10","15"), Te = c("220","240"),
+ P = c("50","80"), C = c("10","12"))

Now use fac.design to create the 2k design data frame devel.design:

> devel.design <- fac.design(rep(2,4), fnames)

The first argument to fac.design is a vector of length four, which
specifies that there are four factors. Each entry of the vector is a 2,
which specifies that there are two levels for each factor.

Since devel.design matches Table 16.4, you can simply scan in the
coversion data:

> conversion <- scan()
1: 71 61 90 82 68 61 87 80
9: 61 50 89 83 59 51 85 78
17:

220 or 240° C
602

Many Factors at Two Levels: 2k Designs
Table 16.4: Data from product development experiment.

Factor

Observation
Number K Te P C Conversion(%) Run Order

1 – – – – 71 (8)

2 + – – – 61 (2)

3 – + – – 90 (10)

4 + + – – 82 (4)

5 – – + – 68 (15)

6 + – + – 61 (9)

7 – + + – 87 (1)

8 + + + – 80 (13)

9 – – – + 61 (16)

10 + – – + 50 (5)

11 – + – + 89 (11)

12 + + – + 83 (14)

13 – – + + 59 (3)

14 + – + + 51 (12)

15 – + + + 85 (6)

16 + + + + 78 (7)
603

Chapter 16 Designed Experiments and Analysis of Variance
Finally, create the data frame devel.df:

> devel.df <- data.frame(devel.design, conversion)
> devel.df

 K Te P C conversion
 1 10 220 50 10 71
 2 15 220 50 10 61
 3 10 240 50 10 90
 .
 .
 .
15 10 240 80 12 85
16 15 240 80 12 78

A First Look at
the Data

Use plot.design and plot.factor to make an initial graphical
exploration of the data. To see the design plot with sample means, use
the following command, which yields the plot shown in Figure 16.15:

> plot.design(devel.df)

To see the design plot with sample medians, use:

> plot.design(devel.df, fun = median)

Figure 16.15: Sample means for product development experiment.

Factors

m
ea

n
of

 c
on

ve
rs

io
n

60
65

70
75

80
85

10

15

220

240

50
80

10

12

K Te P C
604

Many Factors at Two Levels: 2k Designs
To see box plots of the factors, use the following commands, which
yield the plots shown in Figure 16.16:

> par(mfrow = c(2,2))
> plot.factor(devel.df)
> par(mfrow = c(1,1))

Estimating All
Effects in the

2k Model

You can use aov to estimate all effects (main effects and all
interactions), and carry out the analysis of variance. Let’s do so, and
store the results in aov.devel:

> aov.devel <- aov(conversion ~ K*Te*P*C, data = devel.df)

Figure 16.16: Factor plot for product development experiment.

50
60

70
80

90

co
nv

er
si

on

10 15

K

50
60

70
80

90

co
nv

er
si

on

220 240

Te

50
60

70
80

90

co
nv

er
si

on

50 80

P

50
60

70
80

90

co
nv

er
si

on

10 12

C

605

Chapter 16 Designed Experiments and Analysis of Variance
The product form K*Te*P*C on the right-hand side of the formula tells

Spotfire S+ to fit the above 24 design model with all main effects and
all interactions included. You can accomplish the same thing by using
the power function ^ to raise the expression K+Te+P+C to the fourth
power:

> aov.devel <- aov(conversion ~ (K+Te+P+C)^4,
+ data = devel.df)

This second method is useful when you want to specify only main
effects plus certain low-order interactions. For example, replacing 4
by 2 above results in a model with all main effects and all second-
order interactions.

You can obtain the estimated coefficients using the coef function on
the aov output:

> coef(aov.devel)

 (Intercept) K Te P C K:Te K:P Te:P K:C
 72.25 -4 12 -1.125 -2.75 0.5 0.375 -0.625 -5.464379e-17
 Te:C P:C K:Te:P K:Te:C K:P:C Te:P:C K:Te:P:C
 2.25 -0.125 -0.375 0.25 -0.125 -0.375 -0.125

Notice that colons are used to connect factor names to represent
interactions, for example, K:P:C is the three factor interaction
between the factors K, P, and C. For more on the relationship between
coefficients, contrasts, and effects, see the section Experiments with
One Factor and the section The Unreplicated Two-Way Layout.

You can get the analysis of variance table with the summary
command:

> summary(aov.devel)

 Df Sum of Sq Mean Sq
K 1 256.00 256.00
Te 1 2304.00 2304.00
P 1 20.25 20.25
C 1 121.00 121.00
K:Te 1 4.00 4.00
K:P 1 2.25 2.25
Te:P 1 6.25 6.25
K:C 1 0.00 0.00
Te:C 1 81.00 81.00
606

Many Factors at Two Levels: 2k Designs
P:C 1 0.25 0.25
K:Te:P 1 2.25 2.25
K:Te:C 1 1.00 1.00
K:P:C 1 0.25 0.25
Te:P:C 1 2.25 2.25
K:Te:P:C 1 0.25 0.25

The ANOVA table does not provide any statistics. This is because
you have estimated 16 parameters with 16 observations. There are no
degrees of freedom left for estimating the error variance, and hence
there is no error mean square to use as the denominator of the
statistics. However, the ANOVA table can give you some idea of
which effects are the main contributors to the response variation.

Estimating All

Effects in the 2k
Model With
Replicates

On some occasions, you may have replicates of a design. In this

case, you can estimate the error variance as well as all effects. For

example, the data in Table 16.5 is from a replicated 23 pilot plant

F

F

2k

σ2
607

Chapter 16 Designed Experiments and Analysis of Variance
example used by Box, Hunter, and Hunter (1978). The three factors
are temperature (Te), concentration (C) and catalyst (K), and the response is
yield.

To set up the data frame, first make the factor names list:

> fnames <- list(Te = c("Tl", "Th"), C = c("Cl", "Ch"),
+ K = c("Kl", "Kh"))

Because T is a constant in Spotfire S+ which stands for the logical
value true, you can not use T as a factor name for temperature.
Instead, use Te, or some such alternative abbreviation. Then make the
design data frame, pilot.design, with M=2 replicates, by using
fac.design with the optional argument rep=2:

> pilot.design <- fac.design(c(2,2,2), fnames, rep = 2)

Now, create the response vector pilot.yield as a vector of length 16,
with the second replicate values following the first replicate values:

> pilot.yield <- scan()
1: 59 74 50 69 50 81 46 79
9: 61 70 58 67 54 85 44 81

Table 16.5: Replicated pilot plant experiment.

Te C K Rep 1 Rep 2

– – – 59 61

+ – – 74 70

– + – 50 58

+ + – 69 67

– – + 50 54

+ – + 81 85

– + + 46 44

+ + + 79 81
608

Many Factors at Two Levels: 2k Designs
17:

Finally, use data.frame:

> pilot.df <- data.frame(pilot.design, pilot.yield)

You can now carry out the ANOVA, and because the observations
are replicated, the ANOVA table has an error variance estimate, that
is, mean square for error, and statistics:

> aov.pilot <- aov(pilot.yield ~ (Te + C + K)^3, pilot.df)
> summary(aov.pilot)

 Df Sum of Sq Mean Sq F Value Pr(F)
 Te 1 2116 2116 264.500 0.000000
 C 1 100 100 12.500 0.007670
 K 1 9 9 1.125 0.319813
 Te:C 1 9 9 1.125 0.319813
 Te:K 1 400 400 50.000 0.000105
 C:K 1 0 0 0.000 1.000000
 Te:C:K 1 1 1 0.125 0.732810
Residuals 8 64 8

Temperature is clearly highly significant, as is the temperature-
catalyst interaction, and concentration is quite significant.

Estimating All
Small Order
Interactions

In cases where you are confident that high-order interactions are
unlikely, you can fit a model which includes interactions only up to a
fixed order, through the use of the power function ^ with an
appropriate exponent. For example, in the product development
experiment of Table 16.4, you may wish to estimate only the main
effects and all second-order interactions. In this case, use the
command:

> aov.devel.2 <- aov(conversion ~ (K+Te+P+C)^2,devel.df)

Now you are using 16 observations to estimate 11 parameters: the
mean, the four main effects, and the six two-factor interactions. Since
you only use 11 degrees of freedom for the parameters, out of a total
of 16, you still have 5 degrees of freedom to estimate the error
variance. So the command

> summary(aov.devel.2)

F

609

Chapter 16 Designed Experiments and Analysis of Variance
produces an ANOVA table with an error variance estimate and
statistics.

Using Half-
Normal Plots
to Choose a
Model

You are usually treading on thin ice if you assume that higher-order
interactions are zero, unless you have extensive first-hand knowledge

of the process you are studying with a design. When you are not
sure whether or not higher-order interactions are zero, you should use
a half-normal quantile-quantile plot to judge which effects, including
interactions of any order, are significant. Use the function qqnorm as
follows to produce a half-normal plot on which you can identify
points:

> qqnorm(aov.devel, label = 6)

The resulting figure, with six points labeled, is shown in Figure 16.17.

In general, there are points in the half-normal plot, since there

are effects and the estimate of the overall mean is not included in
this plot. The y-axis positions of the labeled points are the absolute
values of the estimated effects. The messages you get from this plot
are:

• The effects for temperature, catalyst, concentration, and
temperature by concentration are clearly nonzero.

• The effect for pressure is also very likely nonzero.

F

Figure 16.17: Half-normal plot for product development experiment.

2k

• • • • • • • • • • •
• •

•

•

Half-normal Quantiles

E
ffe

ct
s

0.0 0.5 1.0 1.5 2.0

0
10

20
30

40

Te

K
C Te:C

P Te:P

2k 1–

2k
610

Many Factors at Two Levels: 2k Designs
You can examine the marginal effects better by creating a plot with a
smaller y-range:

> qqnorm(aov.devel, label = 6, ylim = c(0,20))

A full qq-plot of the effects can give you somewhat more information.
To get this type of plot, use the following:

> qqnorm(aov.devel, full = T, label = 6)

Having determined from the half-normal plot which effects are
nonzero, now fit a model having terms for the main effects plus the
interaction between temperature and concentration:

> aov.devel.small <- aov(conversion ~ K+P+Te*C,
+ data = devel.df)

You can now get an ANOVA summary, including an error variance
estimate:

> summary(aov.devel.small)

 Df Sum of Sq Mean Sq F Value Pr(F)
K 1 256.00 256.000 136.533 0.000000375
P 1 20.25 20.250 10.800 0.008200654
Te 1 2304.00 2304.000 1228.800 0.000000000
C 1 121.00 121.000 64.533 0.000011354
Te:C 1 81.00 81.000 43.200 0.000062906
Residuals 10 18.75 1.875

Diagnostic Plots Once you have tentatively identified a model for a experiment,
you should make the usual graphical checks based on the residuals
and fitted values. In the product development example, you should
examine the following plots:

> hist(resid(aov.devel.small))
> qqnorm(resid(aov.devel.small))
> plot(fitted(aov.devel.small), resid(aov.devel.small))

2k
611

Chapter 16 Designed Experiments and Analysis of Variance
The latter two plots are shown in Figure 16.18 and Figure 16.19.

You should also make plots using the time order of the runs:

> run.ord <- scan()

1: 8 2 10 4 15 9 1 13 16 5 11 14 3 12 6 7
17:

> plot(run.ord, resid(aov.devel.small))
> plot(run.ord, fitted(aov.devel.small))

This gives a slight hint that the first runs were more variable than the
latter runs.

Figure 16.18: Quantile-quantile plot of residuals, product development example.

•

•

••
•

•

•

•
•

•

•

•

• •

•

•

Quantiles of Standard Normal

re
si

d(
ao

v.
de

ve
l.s

m
al

l)

-2 -1 0 1 2

-2
-1

0
1

2

612

Many Factors at Two Levels: 2k Designs
Details The function aov returns, by default, coefficients corresponding to the
following usual ANOVA form for the ηi:

In this form of the model, each takes on just two values: 1 and

2. There are values of the -tuple index , and the

parameter is the overall mean. The parameters correspond to

the main effects, for . The parameters correspond to

the two-factor interactions, the parameters correspond to the

three-factor interactions, and the remaining coefficients are the higher-
order interactions.

Figure 16.19: Fitted values vs. residuals, product development example.

•

•

••
•

•

•

•
•

•

•

•

••

•

•

fitted(aov.devel.small)

re
si

d(
ao

v.
de

ve
l.s

m
al

l)

50 60 70 80 90

-2
-1

0
1

2

ηi ηi1…ik
μ + αi1

1 αi2

2 … αik

k
+ + += =

+ αi1i2

12 αi1i3

13 … αik 1– ik

k 1– k,
+ + +

+ …

+ αi1i2…ik

123…k

2k im

2k k i1 i2 … i, k, ,

μ αim

m

m 1 … k, ,= αimin

mn

αilimin

lmn
613

Chapter 16 Designed Experiments and Analysis of Variance
The coefficients for the main effects satisfy the constraint

 for , where the denote the

number of replications for the ith treatment. All higher-order
interactions satisfy the constraint that the weighted sum over any
individual subscript index is zero. For example,

, , etc. Because

of the constraints on the parameters in this form of the model, it
suffices to specify one of the two values for each effect. The function

aov returns estimates for the “high” levels (for example,).

An estimated effect (in the sense usually used in models) is equal
to the difference between the estimate at the high level minus the
estimate at the low level:

.

Since , we have

.

In the case of a balanced design, and the estimated effect

simplifies to .

n1
i α1

i
n2

i α2
i

+ 0= i 1 2 … k, , ,= ni

ni11
12

αi11
12

ni12
12

αi12
12

+ 0= n1i2i4

124
α1i2i4

124
n2i2i4

124
α2i2i4

124
+ 0=

α̂2
i α̂2

12,

2k

α̂1 α̂2
1 α̂1

1
–=

n1
1
α̂1

1
n2

1
α̂2

1
+ 0=

α̂1 α̂2
1

1
n2

1

n1
1

-----+
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

n1
1 n2

1=

α̂1
2α̂2

1
=

614

References
REFERENCES

Box, G.E.P., Hunter, W.G., and Hunter, J.S. (1978). Statistics for
Experimenters: An Introduction to Design, Data Analysis. New York: John
Wiley & Sons, Inc.

Box, G.E.P. (1988). Signal-to-noise ratios, performance criteria, and
transformations. Technometrics 30:1-17.

Carroll, R.J. & Ruppert, D. (1988). Transformation and Weighting in
Regression. New York: Chapman and Hall.

Chambers, J.M. & Hastie, T.J. (Eds.) (1992). Statistical Models in S.
London: Chapman and Hall.

Davidian, M. & Haaland, P.D. (1990). Regression and calibration
with non-constant error variance. Chemometrics and Intelligent
Laboratory Systems 9:231-248.

Haaland, P. (1989). Experimental Design in Biotechnology. New York:
Marcel Dekker.

Hoaglin, D.C., Mosteller, F., & Tukey, J.W. (1983). Understanding
Robust and Exploratory Data Analysis. New York: John Wiley & Sons,
Inc.

Weisberg, S. (1985). Applied Linear Regression (2nd ed.). New York:
John Wiley & Sons, Inc.
615

Chapter 16 Designed Experiments and Analysis of Variance
616

Introduction 618

Model Coefficients and Contrasts 619

Summarizing ANOVA Results 626
Splitting Treatment Sums of Squares Into

Contrast Terms 626
Treatment Means and Standard Errors 629
Balanced Designs 629

2k Factorial Designs 633
Unbalanced Designs 634
Analysis of Unweighted Means 637

Multivariate Analysis of Variance 654

Split-Plot Designs 656

Repeated-Measures Designs 658

Rank Tests for One-Way and Two-Way Layouts 662
The Kruskal-Wallis Rank Sum Test 662
The Friedman Rank Sum Test 663

Variance Components Models 664
Estimating the Model 664
Estimation Methods 665
Random Slope Example 666

Appendix: Type I Estimable Functions 668

References 670

FURTHER TOPICS IN
ANALYSIS OF VARIANCE 17
617

Chapter 17 Further Topics in Analysis of Variance
INTRODUCTION

Chapter 16, Designed Experiments and Analysis of Variance,
describes the basic techniques for using TIBCO Spotfire S+ for
analysis of variance. This chapter extends the concepts to several
related topics as follows:

• Multivariate analysis of variance (MANOVA);

• Split-plot designs;

• Repeated measures;

• Nonparametric tests for one-way and blocked two-way
designs;

• Variance components models.

These topics are preceded by a discussion of model coefficients and
contrasts. This information is important in interpreting the available
ANOVA summaries.
618

Model Coefficients and Contrasts
MODEL COEFFICIENTS AND CONTRASTS

This section explains what the coefficients mean in ANOVA models,
and how to get more meaningful coefficients for particular cases.

Suppose we have 5 measurements of a response variable scores for
each of three treatments, "A", "B", and "C", as shown below:

> scores <- scan()
1: 4 5 4 5 4 10 7 7 7 7 7 7 8 7 6

> scores.treat <- factor(c(rep("A",5), rep("B",5),
+ rep("C",5)))
> scores.treat

[1] A A A A A B B B B B C C C C C

In solving the basic ANOVA problem, we are trying to solve the
following simple system of equations:

μ̂A μ̂ α̂A+=

μ̂B μ̂ α̂B+=

μ̂C μ̂ α̂C+=
619

Chapter 17 Further Topics in Analysis of Variance
Consider:

The problem is that the matrix is singular. That is, we cannot

solve for the alphas.

Use the Helmert contrast matrix .

y

4
5
4
5
4
10
7
7
7
7
7
7
8
7
6

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

μ̂

α̂A

α̂B

α̂C

ε 1 Xa

μ̂

α̂A

α̂B

α̂C

ε+=+==

1 Xa

Ca

1– 1–

1 1–

0 2

=

620

Model Coefficients and Contrasts
The matrix X*= is nonsingular. Thus, we solve the new

system (using betas rather than alphas):

1 Xa Ca

4
5
4
5
4
10
7
7
7
7
7
7
8
7
6

1 1– 1–

1 1– 1–

1 1– 1–

1 1– 1–

1 1– 1–

1 1 1–

1 1 1–

1 1 1–

1 1 1–

1 1 1–

1 0 2
1 0 2
1 0 2
1 0 2
1 0 2

μ
β1

β2

ε 1 Xa Ca

μ
β1

β2

=+=
621

Chapter 17 Further Topics in Analysis of Variance
The matrix is nonsingular; therefore, we can solve for the

the solution .

Because y = , it follows that

 or simply .

Thus, we can calculate the original alphas:

If we use aov as usual to create the aov object scores.aov, we can use

the coef function to look at the solved values , , and :

> scores.aov <- aov(scores ~ scores.treat)
> coef(scores.aov)

(Intercept) scores.treat1 scores.treat2
 6.333333 1.6 0.3333333

In our example, the contrast matrix is as follows:

1 Xa Ca

μ
β1

β2

6.333
1.6

0.333

=

1 Xa

μ̂

α̂A

α̂B

α̂C

1 Xa Ca

μ
β1

β2

=

Xa

αA

αB

αC

XaCa
β1

β2

= α Caβ=

Caβ
1– 1–

1 1–

0 2

1.6
0.333

1.933–

1.266
0.667

α===

μ̂ β̂1 β̂2

1– 1–

1 1–

0 2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞
622

Model Coefficients and Contrasts
You can obtain the contrast matrix for any factor object using the
contrasts function. For unordered factors such as scores.treat,
contrasts returns the Helmert contrast matrix of the appropriate
size:

> contrasts(scores.treat)

 [,1] [,2]
A -1 -1
B 1 -1
C 0 2

The contrast matrix, together with the treatment coefficients returned
by coef, provides an alternative to using model.tables to calculate
effects:

> contrasts(scores.treat) %*% coef(scores.aov)[-1]

 [,1]
A -1.9333333
B 1.2666667
C 0.6666667

For ordered factors, the Helmert contrasts are replaced, by default,
with polynomial contrasts that model the response as a polynomial
through equally spaced points. For example, suppose we define an
ordered factor water.temp as follows:

> water.temp <- ordered(c(65, 95, 120))
> water.temp

[1] 65 95 120
 65 < 95 < 120

The contrast matrix for water.temp uses polynomial contrasts:

> contrasts(water.temp)

 .L .Q
 65 -0.7071068 0.4082483
 95 0.0000000 -0.8164966
120 0.7071068 0.4082483
623

Chapter 17 Further Topics in Analysis of Variance
For the polynomial contrasts, represents the linear component of

the response, represents the quadratic component, and so on.
When examining ANOVA summaries, you can split a factor’s effects
into contrast terms to examine each component’s contribution to the
model. See the section Splitting Treatment Sums of Squares Into
Contrast Terms for complete details.

β̂1

β̂2
624

Model Coefficients and Contrasts
At times it is desirable to give particular contrasts to some of the
coefficients. In our example, you might be interested in a contrast that
has A equal to a weighted average of B and C. This might occur, for
instance, if the treatments were really doses. You can add a contrast
attribute to the factor using the assignment form of the contrasts
function:

> contrasts(scores.treat) <- c(4, -1, -3)
> contrasts(scores.treat)

 [,1] [,2]
A 4 0.2264554
B -1 -0.7925939
C -3 0.5661385

Note that a second contrast was automatically added.

Refitting the model, we now get different coefficients, but the fit
remains the same.

> scores.aov2 <- aov(scores ~ scores.treat)
> coef(scores.aov2)

 (Intercept) scores.treat1 scores.treat2
 6.333333 -0.4230769 -1.06434

More details on working with contrasts can be found in the section
Contrasts: The Coding of Factors in Chapter 2.
625

Chapter 17 Further Topics in Analysis of Variance
SUMMARIZING ANOVA RESULTS

Results from an analysis of variance are typically displayed in an
analysis of variance table, which shows a decomposition of the variation
in the response: the total sum of squares of the response is split into
sums of squares for each treatment and interaction and a residual sum
of squares. You can obtain the ANOVA table, as we have throughout
this chapter, by using summary on the result of a call to aov, such as
this overly simple model for the wafer data:

> attach(wafer, pos = 2)
> wafer.aov <- aov(pre.mean ~ visc.tem + devtime +
+ etchtime)

> summary(wafer.aov)

 Df Sum of Sq Mean Sq F Value Pr(F)
visc.tem 2 1.343361 0.6716807 3.678485 0.0598073
devtime 2 0.280239 0.1401194 0.767369 0.4875574
etchtime 2 0.103323 0.0516617 0.282927 0.7588959
Residuals 11 2.008568 0.1825971

Splitting
Treatment
Sums of
Squares Into
Contrast
Terms

Each treatment sum of squares in the ANOVA table can be further
split into terms corresponding to the treatment contrasts. By default,
the treatment contrasts are used for unordered factors and polynomial
contrasts for ordered factors. In this example, we continue to use the
Helmert contrasts for unordered factors and polynomial contrasts for
ordered factors.

For instance, with ordered factors you can assess whether the
response is fairly linear in the factor by listing the polynomial
contrasts separately. In the data set wafer, you can examine the linear
and quadratic contrasts of devtime and etchtime by using the split
argument to the summary function:

> summary(wafer.aov, split = list(
+ etchtime = list(L = 1, Q = 2),
+ devtime = list(L = 1, Q = 2)))

 Df Sum of Sq Mean Sq F Value Pr(F)
visc.tem 2 1.343361 0.6716807 3.678485 0.0598073
devtime 2 0.280239 0.1401194 0.767369 0.4875574
626

Summarizing ANOVA Results
 devtime: L 1 0.220865 0.2208653 1.209577 0.2949025
 devtime: Q 1 0.059373 0.0593734 0.325161 0.5799830
etchtime 2 0.103323 0.0516617 0.282927 0.7588959
 etchtime: L 1 0.094519 0.0945188 0.517636 0.4868567
 etchtime: Q 1 0.008805 0.0088047 0.048219 0.8302131
Residuals 11 2.008568 0.1825971

Each of the (indented) split terms sum to their overall sum of squares.

The split argument can evaluate only the effects of the contrasts
used to specify the ANOVA model: if you wish to test a specific
contrast, you need to set it explicitly before fitting the model. Thus, if
you want to test a polynomial contrast for an unordered factor, you
must specify polynomial contrasts for the factor before fitting the
model. The same is true for other nondefault contrasts. For instance,
the variable visc.tem in the wafer data set is a three-level factor
constructed by combining two levels of viscosity (204 and 206) with
two levels of temperature (90 and 105).

> levels(visc.tem)

[1] "204,90" "206,90" "204,105"

To assess viscosity, supposing temperature has no effect, we define a
contrast that takes the difference of the middle and the sum of the first
and third levels of visc.tem; the contrast matrix is automatically
completed:

Assign visc.tem to your working directory.
> visc.tem <- visc.tem
> contrasts(visc.tem) <- c(-1, 2, -1)
> contrasts(visc.tem)

 [,1] [,2]
204,90 -1 -7.071068e-01
206,90 2 -1.110223e-16
204,105 -1 7.071068e-01

> wafer.aov <- aov(pre.mean ~ visc.tem + devtime +
+ etchtime)

Detach the data set.
> detach(2)
627

Chapter 17 Further Topics in Analysis of Variance
In this fitted model, the first contrast for visc.aov reflects the effect of
viscosity, as the summary shows below.
628

Summarizing ANOVA Results
> summary(wafer.aov, split = list(
+ visc.tem = list(visc = 1)))

 Df Sum of Sq Mean Sq F Value Pr(F)
visc.tem 2 1.343361 0.671681 3.678485 0.0598073
 visc.tem: visc 1 1.326336 1.326336 7.263730 0.0208372
devtime 2 0.280239 0.140119 0.767369 0.4875574
etchtime 2 0.103323 0.051662 0.282927 0.7588959
Residuals 11 2.008568 0.182597

Treatment
Means and
Standard
Errors

Commonly the ANOVA model is written in the form grand mean plus
treatment effects,

The treatment effects, , , and , reflect changes in the
response due to the combination of treatments. In this
parametrization, the effects (weighted by the replications) are
constrained to sum to zero.

Unfortunately, the use of the term effect in ANOVA is not
standardized: in factorial experiments an effect is the difference
between treatment levels, in balanced designs it is the difference from
the grand mean, and in unbalanced designs there are (at least) two
different standardizations that make sense.

The coefficients of an aov object returned by coef(aov.object) are
coefficients for the contrast variables derived by the aov function,
rather than the grand-mean-plus-effects decomposition. The functions
dummy.coef and model.tables translate the internal coefficients into
the more natural treatment effects.

Balanced
Designs

In a balanced design, both computing and interpreting effects are
straightforward. The following example uses the gun data frame,
which is a design object with 36 rows representing runs of teams of
three men loading and firing naval guns, attempting to get off as
many rounds per minute as possible. The three predictor variables
specify the team, the physiques of the men on it, and the loading
method used. The outcome variable is the rounds fired per minute.

yijk μ αi βj αβ()ij ε ijk+ + + +=

αi βj αβ()ij
629

Chapter 17 Further Topics in Analysis of Variance
> gun.aov <- aov(Rounds ~ Method + Physique/Team,
+ data = gun)
> coef(gun.aov)

 (Intercept) Method Physique.L Physique.Q
 19.33333 -4.255556 -1.154941 -0.06123724
 PhysiqueSTeam1 PhysiqueATeam1 PhysiqueHTeam1
 1.9375 0.45 -0.45
 PhysiqueSTeam2 PhysiqueATeam2 PhysiqueHTeam2
 -0.4875 0.008333333 -0.1083333

The dummy.coef function translates the coefficients into the more
natural effects:

> dummy.coef(gun.aov)

$"(Intercept)":
 (Intercept)
 19.33333

$Method:
 M1 M2
 4.255556 -4.255556

$Physique:
[1] 0.7916667 0.0500000 -0.8416667

$"Team %in% Physique":
 1T1 2T1 3T1 1T2 2T2
 -1.45 -0.4583333 0.5583333 2.425 0.4416667
 3T2 1T3 2T3 3T3
 -0.3416667 -0.975 0.01666667 -0.2166667

For the default contrasts, these effects always sum to zero.

The same information is returned in a tabulated form by
model.tables. Note that model.tables calls proj; hence, it is helpful
to use qr=T in the call to aov.
630

Summarizing ANOVA Results
> model.tables(gun.aov, se = T)

Tables of effects

 Method
 M1 M2
 4.256 -4.256

 Physique
 S A H
 0.7917 0.05 -0.8417

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
 T1 T2 T3
S -1.450 2.425 -0.975
A -0.458 0.442 0.017
H 0.558 -0.342 -0.217

Standard errors of effects
 Method Physique Team %in% Physique
 0.3381 0.4141 0.7172
rep 18.0000 12.0000 4.0000
Warning messages:
Model was refit to allow projection in:
model.tables(gun.aov, se = T)

Using the first method, the gunners fired on average 4.26 more
rounds than the overall mean. The standard errors for the effects are
simply the residual standard error scaled by the replication factor,
rep, the number of observations at each level of the treatment. For
instance, the standard error for the Method effect is:

The model.tables function also computes cell means for each of the
treatments. This provides a useful summary of the analysis that is
more easily related to the original data.

se Method() se Residual()

replication Method()
-- 1.434

18
-------------- 0.3381= = =
631

Chapter 17 Further Topics in Analysis of Variance
> model.tables(gun.aov, type = "means", se = T)

Tables of means

Grand mean
 19.33

 Method
 M1 M2
 23.59 15.08

 Physique
 S A H
 20.13 19.38 18.49

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
 T1 T2 T3
S 18.68 22.55 19.15
A 18.93 19.83 19.40
H 19.05 18.15 18.28
Standard errors for differences of means
 Method Physique Team %in% Physique
 0.4782 0.5856 1.014
rep 18.0000 12.0000 4.000
Model was refit to allow projection in:
model.tables(gun.aov, type = "means", se = T)

The first method had an average firing rate of 23.6 rounds. For the
tables of means, standard errors of differences between means are
given, as these are usually of most interest to the experimenter. For
instance the standard error of differences for Team %in% Physique is:

To gauge the statistical significance of the difference between the first
and second small physique teams, we can compute the least significant
difference (LSD) for the Team %in% Physique interaction. The validity
of the statistical significance is based on the assumption that the
model is correct and the residuals are Gaussian. The plots of the

SED 2 2.0576
4

-----------------× 1.014= =
632

Summarizing ANOVA Results
residuals indicate these are not unreasonable assumptions for this
data set. You can verify this by creating a histogram and normal
qq-plot of the residuals as follows:

> hist(resid(gun.aov))
> qqnorm(resid(gun.aov))

The LSD at the 95% level is:

We use the t-distribution with 26 degrees of freedom because the
residual sum of squares has 26 degrees of freedom. In Spotfire S+, we
type the following:

> qt(0.975, 26) * 1.014

[1] 2.084307

Since the means of the two teams differ by more than 2.08, the teams
are different at the 95% level of significance. From an interaction plot
it is clear that the results for teams of small physique are unusually
high.

2k Factorial
Designs

In factorial experiments, where each experimental treatment has only
two levels, a treatment effect is, by convention, the difference between
the high and low levels. Interaction effects are half the average
difference between paired levels of an interaction. These factorial
effects are computed when type="feffects" is used in the
model.tables function:

> catalyst.aov <- aov(Yield ~ ., data = catalyst, qr = T)
> model.tables(catalyst.aov, type = "feffects", se = T)

Table of factorial effects
 Effects se
Temp 23.0 5.062
Conc -5.0 5.062
Cat 1.5 5.062

t 0.975 26,() SED Team %*% Physique()×
633

Chapter 17 Further Topics in Analysis of Variance
Unbalanced
Designs

When designs are unbalanced (there are unequal numbers of
observations in some cells of the experiment), the effects associated
with different treatment levels can be standardized in different ways.
For instance, suppose we use only the first 35 observations of the gun
data set:

> gunsmall.aov <- aov(Rounds ~ Method + Physique/Team,
+ data = gun, subset = 1:35, qr = T)

The dummy.coef function standardizes treatment effects to sum to
zero:

> dummy.coef(gunsmall.aov)

$"(Intercept)":
 (Intercept)
 19.29177

$Method:
 M1 M2
 4.297115 -4.297115

$Physique:
[1] 0.83322650 0.09155983 -0.92478632

$"Team %in% Physique":
 1T1 2T1 3T1 1T2 2T2
 -1.45 -0.4583333 0.6830128 2.425 0.4416667

 3T2 1T3 2T3 3T3
 -0.2169872 -0.975 0.01666667 -0.466025

The model.tables function computes effects that are standardized so
the weighted effects sum to zero:

,

where is the replication of level and the effect. The
model.tables effects are identical to the values of the projection
vectors computed by proj(gunsmall.aov), as the command below
shows.

niτ i

i 1=

T

∑ 0=

ni i τ i
634

Summarizing ANOVA Results
> model.tables(gunsmall.aov)

Tables of effects

 Method
 M1 M2
 4.135 -4.378
rep 18.000 17.000

 Physique
 S A H
 0.7923 0.05065 -0.9196
rep 12.0000 12.00000 11.0000

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
 T1 T2 T3
S -1.450 2.425 -0.975
rep 4.000 4.000 4.000
A -0.458 0.442 0.017
rep 4.000 4.000 4.000
H 0.639 -0.261 -0.505
rep 4.000 4.000 3.000

With this standardization, treatment effects are orthogonal:
consequently cell means can be computed by simply adding effects to
the grand mean; standard errors are also more readily computed.

> model.tables(gunsmall.aov, type = "means", se = T)

Standard error information not returned as design is
unbalanced.
Standard errors can be obtained through se.contrast.
Tables of means
Grand mean

 19.45

 Method
 M1 M2
 23.59 15.08
rep 18.00 17.00
635

Chapter 17 Further Topics in Analysis of Variance
 Physique
 S A H
 20.25 19.5 18.53
rep 12.00 12.0 11.00

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
 T1 T2 T3
S 18.80 22.67 19.27
rep 4.00 4.00 4.00
A 19.05 19.95 19.52
rep 4.00 4.00 4.00
H 19.17 18.27 18.04
rep 4.00 4.00 3.00

Note that the (Intercept) value returned by dummy.coef is not the
grand mean of the data, and the coefficients returned are not a
decomposition of the cell means. This is a difference that occurs only
with unbalanced designs. In balanced designs the functions
dummy.coef and model.tables return identical values for the effects.

In the unbalanced case, the standard errors for comparing two means
depend on the replication factors, hence it could be very complex to
tabulate all combinations. Instead, they can be computed directly
with se.contrast. For instance, to compare the first and third teams
of heavy physique:

> se.contrast(gunsmall.aov, contrast = list(
+ Physique == "S" & Team == "T1",
+ Physique == "S" & Team == "T3"),
+ data = gun[1:35,])

[1] 1.018648

By default, the standard error of the difference of the means specified
by contrast is computed. Other contrasts are specified by the
argument coef. For instance, to compute the standard error of the
contrast tested in the section Splitting Treatment Sums of Squares Into
Contrast Terms for the variable visc.tem, use the commands below.
636

Summarizing ANOVA Results
> attach(wafer)
> se.contrast(wafer.aov, contrast = list(
+ visc.tem ==levels(visc.tem)[1],
+ visc.tem == levels(visc.tem)[2],
+ visc.tem == levels(visc.tem)[3]),
+ coef = c(-1,2,-1), data = wafer)

Refitting model to allow projection
[1] 0.4273138

Detach the data set.
> detach(2)

The value of the contrast can be computed from
model.tables(wafer.aov). The effects for visc.tem are:

visc.tem
204,90 206,90 204,105
0.1543 -0.3839 0.2296

The contrast is -0.3839 - mean(c(0.1543,0.2296)) = -0.5758. The
standard error for testing whether the contrast is zero is 0.0779;
clearly, the contrast is nonzero.

Analysis of
Unweighted
Means

Researchers implementing an experimental design frequently lose
experimental units and find themselves with unbalanced, but
complete data. The data are unbalanced in that the number of
replications is not constant for each treatment combination; the data
are complete in that at least one experimental unit exists for each
treatment combination. In this type of circumstance, an experimenter
may find the analysis of unweighted means is appropriate, and that the
unweighted means are of more interest than the weighted means. In
such an analysis, the Type III sum of squares is computed instead of
the Type I (sequential) sum of squares.

In a Type I analysis, the model sum of squares is partitioned into its
term components, where the sum of squares for each term listed in
the ANOVA table is adjusted for the terms listed in the previous
rows. For unbalanced data, the sequential sums of squares (and the
hypotheses they test) depend on the order in which the terms are
specified in the model formula. In a Type III analysis, however, the
sum of squares for each term listed in the ANOVA table is adjusted
for all other terms in the model. These sums of squares are
637

Chapter 17 Further Topics in Analysis of Variance
independent of the order that the terms are specified in the model
formula. If the data are balanced, the sequential sum of squares equals
the Type III sum of squares. If the data are unbalanced but complete,
then the Type III sums of squares are those obtained from Yates'
weighted squares-of-means technique. In this case, the hypotheses
tested by the Type III sums of squares for the main effects is that the
levels of the unweighted means are equal.

For general observational studies, the sequential sum of squares may
be of more interest to an analyst. For a designed experiment, an
analyst may find the Type III sum of squares of more use.

The argument ssType to the methods anova.lm and summary.aov
compute the Type III sums of squares. To obtain the Type III
analysis for an aov object, use the option ssType=3 in the call to anova
or summary. In addition, the multicomp function can be used to
compute unweighted means. In this section, we provide examples to
demonstrate these capabilities in an analysis of a designed
experiment.

The Baking Data The fat-surfactant example below is taken from Milliken and Johnson
(1984, p. 166), where they analyze an unbalanced randomized block
factorial design. Here, the specific volume of bread loaves baked from
dough that is mixed from each of nine Fat and Surfactant treatment
combinations is measured. The experimenters blocked on four Flour
types. Ten loaves had to be removed from the experiment, but at
least one loaf existed for each Fat x Surfactant combination and all
marginal means are estimable. Therefore, the Type III hypotheses are
testable. The data are given in Table 17.1.

The commands below create a Baking data set from the information
in Table 17.1.

> Baking <- data.frame(
+ Fat = factor(
+ c(rep(1,times=12), rep(2,times=12), rep(3,times=12))),
+ Surfactant = factor(
+ rep(c(1,1,1,1,2,2,2,2,3,3,3,3), times=3)),
+ Flour = factor(rep(1:4, times=9)),
+ Specific.Vol = c(6.7, 4.3, 5.7, NA, 7.1, NA, 5.9, 5.6,
+ NA, 5.5, 6.4, 5.8, NA, 5.9, 7.4, 7.1, NA, 5.6, NA, 6.8,
+ 6.4, 5.1, 6.2, 6.3, 7.1, 5.9, NA, NA, 7.3, 6.6,
+ 8.1, 6.8, NA, 7.5, 9.1, NA))
638

Summarizing ANOVA Results
> Baking

 Fat Surfactant Flour Specific.Vol
 1 1 1 1 6.7
 2 1 1 2 4.3
 3 1 1 3 5.7
 4 1 1 4 NA
 5 1 2 1 7.1
 6 1 2 2 NA
 7 1 2 3 5.9
 8 1 2 4 5.6
 9 1 3 1 NA
10 1 3 2 5.5
. . .

The overparametrized model is:

for , , and . In this model, the

are coefficients corresponding to the levels in Fat, the correspond

to Flour, the correspond to Surfactant, and the are

Table 17.1: Specific volumes from a baking experiment.

Fat Surfactant Flour 1 Flour 2 Flour 3 Flour 4

1

1

2

3

6.7

7.1

4.3

5.5

5.7

5.9

6.4

5.6

5.8

2

1

2

3 6.4

5.9

5.6

5.1

7.4

6.2

7.1

6.8

6.3

3

1

2

3

7.1

7.3

5.9

6.6

7.5

8.1

9.1

6.8

μijk μ bi fj sk fs()jk+ + + +=

i 1 … 4, ,= j 1 2 3, ,= k 1 2 3, ,= bi

fj

sk fs()jk
639

Chapter 17 Further Topics in Analysis of Variance
coefficients for the Fat x Surfactant interaction. Because the data
are unbalanced, the Type III sums of squares for Flour, Fat, and
Surfactant test more useful hypotheses than the Type I analysis.
Specifically, the Type III hypotheses are that the unweighted means
are equal:

where

The hypotheses tested by the Type I sums of squares are not easily
interpreted, since they depend on the order in which the terms are
specified. In addition, the Type I sums of squares involve the cell
replications, which can be viewed as random variables when the data
are unbalanced in a truly random fashion. Moreover, the hypothesis
tested by the blocking term, Flour, involves parameters of the Fat,
Flour, and Fat x Flour terms.

The following command computes an analysis of variance model for
the Baking data.

> Baking.aov <- aov(Specific.Vol ~ Flour + Fat*Surfactant,
+ data = Baking, contrasts = list(Flour = contr.sum(4),
+ Fat = contr.sum(3), Surfactant = contr.sum(3)),
+ na.action = na.exclude)

ANOVA Tables The ANOVA tables for both the Type I and Type III sums of squares
are given below for comparison. Using the Type III sums of squares
for the Baking.aov object, we see that the block effect, Flour, is

HFlour: μ1.. μ2.. μ3.. μ4..= = =

HFat: μ.1. μ.2. μ.3.= =

HSurfactant: μ..1 μ..2 μ..3= =

μi..

μikj
j k,
∑
3 3⋅
---------------=

μ.j.

μijk
i k,
∑
4 3⋅
---------------=

μ..k

μijk
i j,
∑
4 3
---------------=
640

Summarizing ANOVA Results
significant. In addition, Fat appears to be significant, but Surfactant
is not (at a test size of). In the presence of a significant
interaction, however, the test of the marginal means probably has
little meaning for Fat and Surfactant.

> anova(Baking.aov)

Analysis of Variance Table

Response: Specific.Vol

Terms added sequentially (first to last)
 Df Sum of Sq Mean Sq F Value Pr(F)
 Flour 3 6.39310 2.131033 12.88269 0.0002587
 Fat 2 10.33042 5.165208 31.22514 0.0000069
 Surfactant 2 0.15725 0.078625 0.47531 0.6313678
Fat:Surfactant 4 5.63876 1.409691 8.52198 0.0010569
 Residuals 14 2.31586 0.165418

> anova(Baking.aov, ssType = 3)

Analysis of Variance Table

Response: Specific.Vol

Type III Sum of Squares
 Df Sum of Sq Mean Sq F Value Pr(F)
 Flour 3 8.69081 2.896937 17.51280 0.00005181
 Fat 2 10.11785 5.058925 30.58263 0.00000778
 Surfactant 2 0.99721 0.498605 3.01421 0.08153989
Fat:Surfactant 4 5.63876 1.409691 8.52198 0.00105692
 Residuals 14 2.31586 0.165418

Unweighted
Means

The unweighted means computed below estimate the means given in
the Type III hypotheses for Flour, Fat, and Surfactant. The means
for Flour x Surfactant in the overparametrized model are

.

α 0.05=

μ.jk

μijk
i
∑

4
------------=
641

Chapter 17 Further Topics in Analysis of Variance
We use the multicomp function with the argument
comparisons="none" to compute the unweighted means and their
standard errors.

Unweighted means for Flour.
> multicomp(Baking.aov, comparisons="none", focus="Flour")

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method

critical point: 2.8297
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound
1 7.30 0.199 6.74 7.87 ****
2 5.71 0.147 5.29 6.12 ****
3 6.98 0.162 6.52 7.44 ****
4 6.54 0.179 6.04 7.05 ****

Unweighted means for Fat.
> multicomp(Baking.aov, comparisons="none", focus="Fat")

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.6177
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound
1 5.85 0.136 5.49 6.21 ****
2 6.58 0.148 6.19 6.96 ****
3 7.47 0.156 7.06 7.88 ****
642

Summarizing ANOVA Results
Unweighted means for Surfactant.
> multicomp(Baking.aov, comparisons = "none",
+ focus = "Surfactant")

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.6177
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound
1 6.4 0.150 6.00 6.79 ****
2 6.6 0.143 6.22 6.97 ****
3 6.9 0.147 6.52 7.29 ****

Unweighted means for Fat x Surfactant.
> multicomp(Baking.aov, comparisons="none", focus="Fat",
+ adjust = list(Surfactant = seq(3)))

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method

critical point: 3.2117
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound
1.adj1 5.54 0.240 4.76 6.31 ****
2.adj1 7.02 0.241 6.25 7.80 ****
3.adj1 6.63 0.301 5.66 7.59 ****
1.adj2 5.89 0.239 5.12 6.66 ****
2.adj2 6.71 0.301 5.74 7.67 ****
3.adj2 7.20 0.203 6.55 7.85 ****
1.adj3 6.12 0.241 5.35 6.90 ****
2.adj3 6.00 0.203 5.35 6.65 ****
3.adj3 8.59 0.300 7.62 9.55 ****
643

Chapter 17 Further Topics in Analysis of Variance
In the output from multicomp, the unweighted means are given in the
Estimate column. In the table for the Fat x Surfactant interaction,
the adjX labels represent the levels in Surfactant. Thus, the value
7.02 is the estimated mean specific volume at the second level in Fat
and the first level in Surfactant.

Multiple
Comparisons

The statistic for the Fat x Surfactant interaction in the Type III
ANOVA table is significant, so the tests for the marginal means of Fat
and Surfactant have little meaning. We can, however, use multicomp
to find all pairwise comparisons of the mean Fat levels for each level
of Surfactant, and those of Surfactant for each level of Fat.

> multicomp(Baking.aov, focus = "Fat",
+ adjust = list(Surfactant = seq(3)))

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method

critical point: 3.2117
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound
1.adj1-2.adj1 -1.490 0.344 -2.590 -0.381 ****
1.adj1-3.adj1 -1.090 0.377 -2.300 0.120
2.adj1-3.adj1 0.394 0.394 -0.872 1.660
1.adj2-2.adj2 -0.817 0.390 -2.070 0.434
1.adj2-3.adj2 -1.310 0.314 -2.320 -0.300 ****
2.adj2-3.adj2 -0.492 0.363 -1.660 0.674
1.adj3-2.adj3 0.123 0.316 -0.891 1.140
1.adj3-3.adj3 -2.470 0.378 -3.680 -1.250 ****
2.adj3-3.adj3 -2.590 0.363 -3.750 -1.420 ****

> multicomp(Baking.aov, focus = "Surfactant",
+ adjust = list(Fat = seq(3)))

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method

critical point: 3.2117
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

F

644

Summarizing ANOVA Results
 Estimate Std.Error Lower Bound Upper Bound
1.adj1-2.adj1 -0.355 0.341 -1.45000 0.740
1.adj1-3.adj1 -0.587 0.344 -1.69000 0.519
2.adj1-3.adj1 -0.232 0.342 -1.33000 0.868
1.adj2-2.adj2 0.314 0.377 -0.89700 1.530
1.adj2-3.adj2 1.020 0.316 0.00922 2.040 ****
2.adj2-3.adj2 0.708 0.363 -0.45700 1.870
1.adj3-2.adj3 -0.571 0.363 -1.74000 0.594
1.adj3-3.adj3 -1.960 0.427 -3.33000 -0.590 ****
2.adj3-3.adj3 -1.390 0.363 -2.55000 -0.225 ****

The levels for both the Fat and Surfactant factors are labeled 1, 2,
and 3, so the rows in the multicomp tables require explanation. For
the first table, the label 1.adj1-2.adj1 refers to the difference
between levels 1 and 2 of Fat (the focus variable) at level 1 of
Surfactant (the adjust variable). For the second table, the label
refers to the difference between levels 1 and 2 of Surfactant at level 1
of Fat. Significant differences are flagged with four stars, ****. As a
result of the Fat x Surfactant interaction, the test for the
equivalence of the Surfactant marginal means is not significant.
However, there exist significant differences between the mean of
Surfactant levels 1-3 at a Fat level of 2, and also between the means
of Surfactant levels 1-3 and 2-3 at a Fat level of 3.

Estimable
Functions

The Type I and Type III estimable functions for the
overparametrized model show the linear combinations of the model
parameters, tested by each sum of squares. The Type I estimable
functions can be obtained by performing row reductions on the cross

products of the overparameterized model matrix . The row

operations reduce to upper triangular form with ones along its
diagonal (SAS Institute, Inc., 1978). The Spotfire S+ code for this
algorithm, used to compute the matrix TypeI.estim below, is given in
the Appendix. In the following command, we print only four digits of
each entry in TypeI.estim.

> round(TypeI.estim, 4)
 L2 L3 L4 L6 L7 L9 L10 L12 L13 L15 L16
 (Intercept) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour3 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour4 -1.0000 -1.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Fat1 0.0667 -0.0833 0.0952 1.0000 0.0000 0.0000 0.0000 0 0 0 0
 Fat2 -0.3000 -0.1250 -0.2143 0.0000 1.0000 0.0000 0.0000 0 0 0 0
 Fat3 0.2333 0.2083 0.1190 -1.0000 -1.0000 0.0000 0.0000 0 0 0 0
 Surfactant1 0.2333 0.2083 0.1190 0.1152 0.1338 1.0000 0.0000 0 0 0 0

F

XtX

XtX
645

Chapter 17 Further Topics in Analysis of Variance
 Surfactant2 -0.1000 -0.2500 -0.2143 -0.1966 -0.3235 0.0000 1.0000 0 0 0 0
 Surfactant3 -0.1333 0.0417 0.0952 0.0814 0.1896 -1.0000 -1.0000 0 0 0 0
Fat1Surfactant1 0.2000 0.1250 0.1429 0.3531 0.0359 0.3507 0.0037 1 0 0 0
Fat1Surfactant2 0.0333 -0.1667 -0.0238 0.3167 -0.0060 -0.0149 0.3499 0 1 0 0
Fat1Surfactant3 -0.1667 -0.0417 -0.0238 0.3302 -0.0299 -0.3358 -0.3536 -1 -1 0 0
Fat2Surfactant1 -0.1667 -0.0417 -0.0238 -0.0060 0.3250 0.4242 0.0760 0 0 1 0
Fat2Surfactant2 -0.1667 -0.0417 -0.1667 0.0049 0.2034 0.0190 0.2971 0 0 0 1
Fat2Surfactant3 0.0333 -0.0417 -0.0238 0.0011 0.4716 -0.4432 -0.3731 0 0 -1 -1
Fat3Surfactant1 0.2000 0.1250 0.0000 -0.2319 -0.2271 0.2251 -0.0797 -1 0 -1 0
Fat3Surfactant2 0.0333 -0.0417 -0.0238 -0.5182 -0.5209 -0.0041 0.3530 0 -1 0 -1
Fat3Surfactant3 0.0000 0.1250 0.1429 -0.2499 -0.2520 -0.2210 -0.2733 1 1 1 1

The columns labeled L2, L3, and L4 in the above output are for the
Flour hypothesis. Columns L6 and L7 are for the Fat hypothesis, L9
and L10 are for the Surfactant hypothesis, and the last four columns
are for the Fat x Surfactant hypothesis.

The Type III estimable functions can be obtained from the generating

set , where is the inverse, or generalized inverse
of the cross product matrix (Kennedy & Gentle, 1980). We can then
perform the steps outlined in the SAS/STAT User’s Guide on the
generating set (SAS Institute, Inc., 1990). This algorithm is
implemented in the function print.ssType3, through the option
est.fun=TRUE.

> TypeIII.estim <- print(ssType3(Baking.aov), est.fun = T)

Type III Sum of Squares
 Df Sum of Sq Mean Sq F Value Pr(F)
 Flour 3 8.69081 2.896937 17.51280 0.00005181
 Fat 2 10.11785 5.058925 30.58263 0.00000778
 Surfactant 2 0.99721 0.498605 3.01421 0.08153989
Fat:Surfactant 4 5.63876 1.409691 8.52198 0.00105692
 Residuals 14 2.31586 0.165418

Estimable function coefficients:
 Flour : L2, L3, L4
 Fat : L6, L7
 Surfactant : L9, L10
 Fat:Surfactant : L12, L13, L15, L16
. . .

XtX()∗ XtX() XtX()∗ g2
646

Summarizing ANOVA Results
The TypeIII.estim object is a list of lists. We can extract the
overparameterized form of the estimable functions by examining the
names of the list components:

> names(TypeIII.estim)

[1] "ANOVA" "est.fun"

> names(TypeIII.estim$est.fun)

[1] "gen.form" "over.par" "assign"

The estimable functions we want are located in the over.par
component of est.fun:

> round(TypeIII.estim$est.fun$over.par, 4)
 L2 L3 L4 L6 L7 L9 L10 L12 L13 L15 L16
 (Intercept) 0 0 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour1 1 0 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour2 0 1 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour3 0 0 1 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour4 -1 -1 -1 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Fat1 0 0 0 1.0000 0.0000 0.0000 0.0000 0 0 0 0
 Fat2 0 0 0 0.0000 1.0000 0.0000 0.0000 0 0 0 0
 Fat3 0 0 0 -1.0000 -1.0000 0.0000 0.0000 0 0 0 0
 Surfactant1 0 0 0 0.0000 0.0000 1.0000 0.0000 0 0 0 0
 Surfactant2 0 0 0 0.0000 0.0000 0.0000 1.0000 0 0 0 0
 Surfactant3 0 0 0 0.0000 0.0000 -1.0000 -1.0000 0 0 0 0
Fat1Surfactant1 0 0 0 0.3333 0.0000 0.3333 0.0000 1 0 0 0
Fat1Surfactant2 0 0 0 0.3333 0.0000 0.0000 0.3333 0 1 0 0
Fat1Surfactant3 0 0 0 0.3333 0.0000 -0.3333 -0.3333 -1 -1 0 0
Fat2Surfactant1 0 0 0 0.0000 0.3333 0.3333 0.0000 0 0 1 0
Fat2Surfactant2 0 0 0 0.0000 0.3333 0.0000 0.3333 0 0 0 1
Fat2Surfactant3 0 0 0 0.0000 0.3333 -0.3333 -0.3333 0 0 -1 -1
Fat3Surfactant1 0 0 0 -0.3333 -0.3333 0.3333 0.0000 -1 0 -1 0
Fat3Surfactant2 0 0 0 -0.3333 -0.3333 0.0000 0.3333 0 -1 0 -1
Fat3Surfactant3 0 0 0 -0.3333 -0.3333 -0.3333 -0.3333 1 1 1 1

Here we see one of the appealing properties of the Type III analysis:
the hypothesis tested by the Type III sum of squares for Flour
involves parameters of the Flour term only, whereas the hypothesis
tested by the Type I sum of squares involves parameters of the Fat,
Surfactant and Fat x Surfactant terms.

As we show in the section Unweighted Means on page 641,
unweighted means can be obtained from multicomp using the
argument comparisons="none". In doing so, we obtain the estimable
functions for the marginal means of the overparametrized model. For
example, the estimable functions for the Fat marginal means are
computed by the following command.
647

Chapter 17 Further Topics in Analysis of Variance
> Fat.mcomp <- multicomp(Baking.aov, focus = "Fat",
+ comparisons = "none")
> round(Fat.mcomp$lmat, 4)

 1 2 3
 (Intercept) 1.0000 1.0000 1.0000
 Flour1 0.2500 0.2500 0.2500
 Flour2 0.2500 0.2500 0.2500
 Flour3 0.2500 0.2500 0.2500
 Flour4 0.2500 0.2500 0.2500
 Fat1 1.0000 0.0000 0.0000
 Fat2 0.0000 1.0000 0.0000
 Fat3 0.0000 0.0000 1.0000
 Surfactant1 0.3333 0.3333 0.3333
 Surfactant2 0.3333 0.3333 0.3333
 Surfactant3 0.3333 0.3333 0.3333
Fat1Surfactant1 0.3333 0.0000 0.0000
Fat1Surfactant2 0.3333 0.0000 0.0000
Fat1Surfactant3 0.3333 0.0000 0.0000
Fat2Surfactant1 0.0000 0.3333 0.0000
Fat2Surfactant2 0.0000 0.3333 0.0000
Fat2Surfactant3 0.0000 0.3333 0.0000
Fat3Surfactant1 0.0000 0.0000 0.3333
Fat3Surfactant2 0.0000 0.0000 0.3333
Fat3Surfactant3 0.0000 0.0000 0.3333

The reader can verify that the Type III estimable functions for Fat are
the differences between columns 1 and 3, and between columns 2 and
3. Thus, the L6 column in the over.par component of TypeIII.estim
is the difference between the first and third columns of the
Fat.mcomp$lmat object above. Likewise, the L7 column in the output
from TypeIII.estim is the difference between the second and third
columns of Fat.mcomp$lmat.

Sigma Restricted
Parametrization

The function lm reparametrizes a linear model in an attempt to make
the model matrix full column rank. In this section, we explore the
analysis of the unweighted means for Fat using the sigma restricted
linear model. In the sigma restricted parameterization, the sum of the
level estimates of each effect is constrained to be zero. That is,

.bi
i
∑ fj

j
∑ sk

k
∑ fs()jk

j
∑ fs()jk

k
∑ 0= = = = =
648

Summarizing ANOVA Results
Therefore, any effect that we sum over in the mean estimate vanishes.
Specifically, we have for the Fat variable in
Baking.aov. We use the sigma restrictions to compute Baking.aov on
page 640, since we specify contr.sum in the contrasts argument to
aov. For clarity, the command is repeated here:

> Baking.aov <- aov(Specific.Vol ~ Flour + Fat*Surfactant,
+ data = Baking, contrasts = list(Flour = contr.sum(4),
+ Fat = contr.sum(3), Surfactant = contr.sum(3)),
+ na.action = na.exclude)

In this setting, the unweighted means for Fat can be computed with
the estimable functions given in L below.

Define a vector of descriptive row names.
> my.rownames <- c("(Intercept)",
+ "Flour1", "Flour2", "Flour3", "Fat1", "Fat2",
+ "Surfactant1", "Surfactant2",
+ "Fat1Surfactant1", "Fat2Surfactant1",
+ "Fat1Surfactant2", "Fat2Surfactant2")

> L <- as.matrix(data.frame(
+ Fat.1 = c(1,0,0,0,1,rep(0,7)),
+ Fat.2 = c(1,0,0,0,0,1,rep(0,6)),
+ Fat.3 = c(1,0,0,0,-1,-1,rep(0,6)),
+ row.names = my.rownames))

> L

 Fat.1 Fat.2 Fat.3
 (Intercept) 1 1 1
 Flour1 0 0 0
 Flour2 0 0 0
 Flour3 0 0 0
 Fat1 1 0 -1
 Fat2 0 1 -1
 Surfactant1 0 0 0
 Surfactant2 0 0 0
Fat1Surfactant1 0 0 0
Fat2Surfactant1 0 0 0
Fat1Surfactant2 0 0 0
Fat2Surfactant2 0 0 0

f1 f2 f3+ + 0=
649

Chapter 17 Further Topics in Analysis of Variance
The intercept in the least squares fit estimates . The two coefficients
for the Fat effect (labeled Fat1 and Fat2 in L above) estimate and

, respectively, and .

We can check that each function is, in fact, estimable by first ensuring
it is in the row space of the model matrix , and then computing the
unweighted means. The commands below show this process.

> X <- model.matrix(Baking.aov)
> ls.fit <- lsfit(t(X) %*% X, L, intercept = F)
> apply(abs(ls.fit$residuals), 2, max) < 0.0001

 Fat.1 Fat.2 Fat.3
 T T T

The residuals of ls.fit are small, so the estimable functions are in
the row space of . The next command uses L and the coefficients
from Baking.aov to compute the unweighted means for Fat. Note
that these are the same values returned by multicomp in the section
Unweighted Means.

> m <- t(L) %*% Baking.aov$coefficients
> m

 [,1]
Fat.1 5.850197
Fat.2 6.577131
Fat.3 7.472514

To compute Type III sums of squares, we first use the summary

method to obtain and . The summary method also helps us
compute the standard errors of the unweighted means, as shown in
the second command below. Again, note that these values are
identical to the ones returned by multicomp.

> Baking.summ <- summary.lm(Baking.aov)
> Baking.summ$sigma *
+ sqrt(diag(t(L) %*% Baking.summ$cov.unscaled %*% L))

[1] 0.1364894 0.1477127 0.1564843

μ
f1

f2 f3 f1– f2–=

X

X

XtX()
1–

σ̂

650

Summarizing ANOVA Results
A set of Type III estimable functions for Fat can be obtained using
the orthogonal contrasts generated by contr.helmert. We use these

types of contrasts to test and , which is

equivalent to .

> contr.helmert(3)

 [,1] [,2]
1 -1 -1
2 1 -1
3 0 2

> L.typeIII <- L %*% contr.helmert(3)
> dimnames(L.typeIII)[[2]] = c("Fat.1", "Fat.2")
> L.typeIII

 Fat.1 Fat.2
 (Intercept) 0 0
 Flour1 0 0
 Flour2 0 0
 Flour3 0 0
 Fat1 -1 -3
 Fat2 1 -3
 Surfactant1 0 0
 Surfactant2 0 0
Fat1Surfactant1 0 0
Fat2Surfactant1 0 0
Fat1Surfactant2 0 0
Fat2Surfactant2 0 0

Finally, the Type III sum of squares is computed for Fat. Note that
this is the same value that is returned by anova in the section ANOVA
Tables on page 640.

> h.m <- t(contr.helmert(3)) %*% m
> t(h.m) %*% solve(
+ t(L.typeIII) %*% Baking.summ$cov.unscaled %*%
+ L.typeIII) %*% h.m

 [,1]
[1,] 10.11785

μ.1. μ.2.= μ.1. μ.2.+ 2μ.3.=

HFat
651

Chapter 17 Further Topics in Analysis of Variance
Alternative computations

Through the sum contrasts provided by contr.sum, we use the sigma
restrictions to compute Baking.aov. Since the Baking data are
complete, we can therefore use drop1 as an alternative way of
obtaining the Type III sum of squares. In general, this fact applies to
any aov model fit with factor coding matrices that are true contrasts;
sum contrasts, Helmert contrasts, and orthogonal polynomials fall
into this category, but treatment contrasts do not. For more details
about true contrasts, see the chapter Specifying Models in Spotfire
S+.

> drop1(Baking.aov, ~.)

Single term deletions
Model:
Specific.Vol ~ Flour + Fat * Surfactant
 Df Sum of Sq RSS F Value Pr(F)
 <none> 2.31586
 Flour 3 8.69081 11.00667 17.51280 0.00005181
 Fat 2 10.11785 12.43371 30.58263 0.00000778
 Surfactant 2 0.99721 3.31307 3.01421 0.08153989
Fat:Surfactant 4 5.63876 7.95462 8.52198 0.00105692

For the sigma restricted model, the hypotheses and
can also be expressed as

The row for Fat in the drop1 ANOVA table is the reduction in sum of
squares due to Fat, given that all other terms are in the model. This
simultaneously tests that the least squares coefficients and

 are zero, and hence (Searle, 1987).
The same argument applies to Surfactant. It follows that the
following Type III estimable functions for Fat can be used to test

 (or equivalently):

> L.typeIII <- as.matrix(data.frame(
+ Fat.1 = c(rep(0,4), 1, rep(0,7)),
+ Fat.2 = c(rep(0,5), 1, rep(0,6)),

HFat HSurfactant

HFat
* : f1 f2 0= =

HSurfactant
* : s1 s2 s3 0= = =

βFat1 f1=

βFat2 f2= f3 f1 f2+()– 0= =

H∗
Fat

HFat
652

Summarizing ANOVA Results
+ row.names = my.rownames))

> L.typeIII

 Fat.1 Fat.2
 (Intercept) 0 0
 Flour1 0 0
 Flour2 0 0
 Flour3 0 0
 Fat1 1 0
 Fat2 0 1
 Surfactant1 0 0
 Surfactant2 0 0
Fat1Surfactant1 0 0
Fat2Surfactant1 0 0
Fat1Surfactant2 0 0
Fat2Surfactant2 0 0

> h.c <- t(L.typeIII) %*% Baking.aov$coef
> t(h.c) %*% solve(t(L.typeIII) %*%
+ Baking.summ$cov.unscaled %*% L.typeIII) %*% h.c

 [,1]
[1,] 10.11785

Again, this is the same value for the Type III sum of squares that both
anova and drop1 return.
653

Chapter 17 Further Topics in Analysis of Variance
MULTIVARIATE ANALYSIS OF VARIANCE

Multivariate analysis of variance, known as MANOVA, is the
extension of analysis of variance techniques to multiple responses.
The responses for an observation are considered as one multivariate
observation, rather than as a collection of univariate responses.

If the responses are independent, then it is sensible to just perform
univariate analyses. However, if the responses are correlated, then
MANOVA can be more informative than the univariate analyses as
well as less repetitive.

In Spotfire S+ the manova function is used to estimate the model. The
formula needs to have a matrix as the response:

> wafer.manova <- manova(cbind(pre.mean, post.mean) ~ .,
+ data = wafer[, c(1:9, 11)])

The manova function creates an object of class "manova". This class of
an object has methods specific to it for a few generic functions. The
most important function is the "manova" method for summary, which
produces a MANOVA table:

> summary(wafer.manova)

 Df Pillai Trace approx. F num df den df P-value
 maskdim 1 0.9863 36.00761 2 1 0.11703
 visc.tem 2 1.00879 1.01773 4 4 0.49341
 spinsp 2 1.30002 1.85724 4 4 0.28173
 baketime 2 0.80133 0.66851 4 4 0.64704
 aperture 2 0.96765 0.93733 4 4 0.52425
 exptime 2 1.63457 4.47305 4 4 0.08795
 devtime 2 0.99023 0.98065 4 4 0.50733
 etchtime 2 1.26094 1.70614 4 4 0.30874
Residuals 2

There are four common types of test in MANOVA. The example
above shows the Pillai-Bartlett trace test, which is the default test in
Spotfire S+. The last four columns show an approximate test (since
the distributions of the four test statistics are not implemented). The
other available tests are Wilks’ Lambda, Hotelling-Lawley trace, and
Roy’s maximum eigenvalue.

F

654

Multivariate Analysis of Variance
You can view the results of another test by using the test argument.
The following command shows you Wilks’ lambda test:

> summary(wafer.manova, test = "wilk")

Below is an example of how to see the results of all four of the
multivariate tests:

> wafer.manova2 <- manova(cbind(pre.mean, post.mean,
+ log(pre.dev), log(post.dev)) ~
+ maskdim + visc.tem + spinsp, data = wafer)
> wafer.ms2 <- summary(wafer.manova2)
> for(i in c("p", "w", "h", "r")) print(wafer.ms2, test=i)

You can also look at the univariate ANOVA tables for each response
with a command like:

> summary(wafer.manova, univariate = T)

Hand and Taylor (1987) provide a nice introduction to MANOVA.
Many books on multivariate statistics contain a chapter on
MANOVA. Examples include Mardia, Kent and Bibby (1979), and
Seber (1984).

Note

A model with a few residual degrees of freedom as wafer.manova is not likely to produce
informative tests.
655

Chapter 17 Further Topics in Analysis of Variance
SPLIT-PLOT DESIGNS

A split-plot design contains more than one source of error. This can
arise because factors are applied at different scales, as in the guayule
example below.

Split-plots are also encountered because of restrictions on the
randomization. For example, an experiment involving oven
temperature and baking time will probably not randomize the oven
temperature totally, but rather only change the temperature after all
of the runs for that temperature have been made. This type of design
is often mistakenly analyzed as if there were no restrictions on the
randomization (an indication of this can be p-values that are close to
1). See Hicks (1973) and Daniel (1976).

Spotfire S+ includes the guayule data frame which is also discussed in
Chambers and Hastie (1992). This experiment was on eight varieties
of guayule (a rubber producing shrub) and four treatments on the
seeds. Since a flat (a shallow box for starting seedlings) was not large
enough to contain all 32 combinations of variety and treatment, the
design was to use only a single variety in each flat and to apply each
treatment within each flat. Thus the flats each consist of four sub-
plots. This is a split-plot design since flats are the experimental unit
for varieties, but the sub-plots are the experimental unit for the
treatments. The response is the number of plants that germinated in
each sub-plot.

To analyze a split-plot design like this, put the variable that
corresponds to the whole plot in an Error term in the formula of the
aov call:

> gua.aov1 <- aov(plants ~ variety * treatment +
+ Error(flats), data = guayule)

As usual, you can get an ANOVA table with summary:

> summary(gua.aov1)

Error: flats
 Df Sum of Sq Mean Sq F Value Pr(F)
variety 7 763.156 109.0223 1.232036 0.3420697
Residuals 16 1415.833 88.4896
656

Split-Plot Designs
Error: Within
 Df Sum of Sq Mean Sq F Value Pr(F)
treatment 3 30774.28 10258.09 423.4386 0.00000e+00
variety:treatment 21 2620.14 124.77 5.1502 1.32674e-06
Residuals 48 1162.83 24.23

This shows varieties tested with the error from flats, while treatment
and its interaction with variety are tested with the within-flat error,
which is substantially smaller.

The guayule data actually represent an experiment in which the flats
were grouped into replicates, resulting in three sources of error or a
split-split-plot design . To model this we put more than one term inside
the Error term:

> gua.aov2 <- aov(plants ~ variety * treatment +
+ Error(reps/flats), data = guayule)
> summary(gua.aov2)

Error: reps
 Df Sum of Sq Mean Sq F Value Pr(F)
Residuals 2 38.58333 19.29167

Error: flats %in% reps
 Df Sum of Sq Mean Sq F Value Pr(F)
variety 7 763.156 109.0223 1.108232 0.4099625
Residuals 14 1377.250 98.3750

Error: Within
 Df Sum of Sq Mean Sq F Value Pr(F)
treatment 3 30774.28 10258.09 423.4386 0.00000e+00
variety:treatment 21 2620.14 124.77 5.1502 1.32674e-06
Residuals 48 1162.83 24.23

The Error term could also have been specified as
Error(reps + Flats). However, the specification
Error(flats + reps) would not give the desired result (the sequence
within the Error term is significant); explicitly stating the nesting is
preferred. Note that only one Error term is allowed.
657

Chapter 17 Further Topics in Analysis of Variance
REPEATED-MEASURES DESIGNS

Repeated-measures designs are those that contain a sequence of
observations on each subject—for example, a medical experiment in
which each patient is given a drug, and observations are taken at zero,
one, two, and three weeks after taking the drug. Although this
description is too simplistic to encompass all repeated-measures
designs, it nevertheless captures the spirit.

Repeated-measures designs are similar to split-plot designs in that
there is more than one source of error (between subjects and within
subjects), but there is correlation in the within-subjects observations.
In the example we expect that the observations in week three will be
more similar to week two observations than to week zero
observations. Because of this, the split-plot analysis (referred to as the
univariate approach) is valid only under certain restrictive conditions.

We will use the artificial data set drug.mult, which has the following
form:

> drug.mult

 subject gender Y.1 Y.2 Y.3 Y.4
1 S1 F 75.9 74.3 80.0 78.9
2 S2 F 78.3 75.5 79.6 79.2
3 S3 F 80.3 78.2 80.4 76.2
4 S4 M 80.7 77.2 82.0 83.8
5 S5 M 80.3 78.6 81.4 81.5
6 S6 M 80.1 81.1 81.9 86.4

The data set consists of the two factors subject and gender, and the
matrix Y which contains 4 columns. The first thing to do is stretch this
out into a form suitable for the univariate analysis:

> drug.uni <- drug.mult[rep(1:6, rep(4,6)), 1:2]
> ymat <- data.matrix(drug.mult[, paste("Y.",1:4, sep="")])
> drug.uni <- cbind(drug.uni,
+ time = ordered(rep(paste("Week", 0:3, sep = ""), 6)),
+ y = as.vector(t(ymat)))
658

Repeated-Measures Designs
The univariate analysis treats the data as a split-plot design:

> summary(aov(y ~ gender*time + Error(subject),
+ data = drug.uni))

Error: subject
 Df Sum of Sq Mean Sq F Value Pr(F)
gender 1 60.80167 60.80167 19.32256 0.01173
Residuals 4 12.58667 3.14667

Error: Within
 Df Sum of Sq Mean Sq F Value Pr(F)
time 3 49.10833 16.36944 6.316184 0.0081378
gender:time 3 14.80167 4.93389 1.903751 0.1828514
Residuals 12 31.10000 2.59167

Tests in the Within stratum are valid only if the data satisfy the
circularity property, in addition to the usual conditions. Circularity
means that the variance of the difference of measures at different
times is constant; for example, the variance of the difference between
the measures at week 0 and week 3 should be the same as the
variance of the difference between week 2 and week 3. We also need
the assumption that actual contrasts are used; for example, the
contr.treatment function should not be used. When circularity does
not hold, then the p-values for the tests will be too small.

One approach is to perform tests which are as conservative as
possible. Conservative tests are formed by dividing the degrees of
freedom in both the numerator and denominator of the F test by the
number of repeated measures minus one. In our example there are
four repeated measures on each subject, so we divide by 3. The split-
plot and the conservative tests are:

> 1 - pf(6.316184, 3, 12) # usual univariate test

[1] 0.008137789

> 1 - pf(6.316184, 1, 4) # conservative test

[1] 0.06583211

These two tests are telling fairly different tales, so the data analyst
would probably move on to one of two alternatives. A Huynh-Feldt
adjustment of the degrees of freedom provides a middle ground
659

Chapter 17 Further Topics in Analysis of Variance
between the tests above—see Winer, Brown and Michels (1991), for
instance. The multivariate approach, discussed below, substantially
relaxes the assumptions.

The univariate test for time was really a test on three contrasts. In the
multivariate setting we want to do the same thing, so we need to use
contrasts in the response:

> drug.man <- manova(ymat %*% contr.poly(4) ~ gender,
+ data = drug.mult)
> summary(drug.man, intercept = T)
 Df Pillai Trace approx. F num df den df P-value
(Intercept) 1 0.832005 3.301706 3 2 0.241092
 gender 1 0.694097 1.512671 3 2 0.421731
 Residuals 4

The line marked (Intercept) corresponds to time in the univariate
approach, and similarly the gender line here corresponds to
gender:time. The p-value of 0.24 is larger than either of the
univariate tests; the price of the multivariate analysis being more
generally valid is that quite a lot of power is lost. Although the
multivariate approach is preferred when the data do not conform to
the required conditions, the univariate approach is preferred when
they do. The trick, of course, is knowing which is which.

Let’s look at the univariate summaries that this MANOVA produces:

> summary(drug.man, intercept = T, univar = T)
Response: .L
 Df Sum of Sq Mean Sq F Value Pr(F)
(Intercept) 1 22.188 22.1880 4.327255 0.1059983
gender 1 6.912 6.9120 1.348025 0.3101900
Residuals 4 20.510 5.1275
Response: .Q
 Df Sum of Sq Mean Sq F Value Pr(F)
(Intercept) 1 5.415000 5.415000 5.30449 0.0826524
gender 1 4.001667 4.001667 3.92000 0.1188153
Residuals 4 4.083333 1.020833

Response: .C
 Df Sum of Sq Mean Sq F Value Pr(F)
(Intercept) 1 21.50533 21.50533 13.22049 0.0220425
gender 1 3.88800 3.88800 2.39016 0.1969986
Residuals 4 6.50667 1.62667
660

Repeated-Measures Designs
If you add up the respective degrees of freedom and sums of squares,
you will find that the result is the same as the univariate Within
stratum. For this reason, the univariate test is sometimes referred to as
the average F test.

The above discussion has focused on classical inference, which
should not be done before graphical exploration of the data.

Many books discuss repeated measures. Some examples are Hand
and Taylor (1987), Milliken and Johnson (1984), Crowder and Hand
(1990), and Winer, Brown, and Michels (1991).
661

Chapter 17 Further Topics in Analysis of Variance
RANK TESTS FOR ONE-WAY AND TWO-WAY LAYOUTS

This section briefly describes how to use two nonparametric rank
tests for ANOVA: the Kruskal-Wallis rank sum test for a one-way
layout and the Friedman test for unreplicated two-way layout with
(randomized) blocks.

Since these tests are based on ranks, they are robust with regard to the
presence of outliers in the data; that is, they are not affected very
much by outliers. This is not the case for the classical tests.

You can find detailed discussions of the Kruskal-Wallis and Friedman
rank-based tests in a number of books on nonparametric tests; for
example, Lehmann (1975) and Hettmansperger (1984).

The Kruskal-
Wallis Rank
Sum Test

When you have a one-way layout, as in the section Experiments with
One Factor in Chapter 16, you can use the Kruskal-Wallis rank sum test
kruskal.test to test the null hypothesis that all group means are
equal.

We illustrate how to use kruskal.test for the blood coagulation data
of Table 16.1. First you set up your data as for a one-factor experiment
(or one-way layout). You create a vector object coag, arranged by
factor level (or treatment), and you create a factor object diet whose
levels correspond to the factor levels of vector object coag. Then use
kruskal.test:

> kruskal.test(coag, diet)

 Kruskal-Wallis rank sum test

data: coag and diet
Kruskal-Wallis chi-square = 17.0154, df = 3,
 p-value = 7e-04
alternative hypothesis: two.sided

The p-value of p = 0.0007 is highly significant. This p-value is
computed using an asymptotic chi-squared approximation. See the
online help file for more details.

F

662

Rank Tests for One-Way and Two-Way Layouts
You may find it helpful to note that kruskal.test and friedman.test
return the results of its computations, and associated information, in
the same style as the functions in Chapter 5, Statistical Inference for
One- and Two-Sample Problems.

The Friedman
Rank Sum Test

 When you have a two-way layout with one blocking variable and one
treatment variable, you can use the Friedman rank sum test
friedman.test to test the null hypothesis that there is no treatment
effect.

We illustrate how you use friedman.test for the penicillin yield data
described in Table 16.2 of Chapter 16. The general form of the usage
is

friedman.test(y, groups, blocks)

where y is a numeric vector, groups contains the levels of the
treatment factor and block contains the levels of the blocking factor.
Thus, you can do:

Make treatment and blend available.
> attach(pen.df, pos = 2)
> friedman.test(yield, treatment, blend)

 Friedman rank sum test

data: yield and treatment and blend
Friedman chi-square = 3.4898, df = 3, p-value = 0.3221
alternative hypothesis: two.sided

Detach the data set.
> detach(2)

The p-value is p = 0.32, which is not significant. This p-value is
computed using an asymptotic chi-squared approximation. For
further details on friedman.test, see the help file.
663

Chapter 17 Further Topics in Analysis of Variance
VARIANCE COMPONENTS MODELS

Variance components models are used when there is interest in the
variability of one or more variables other than the residual error. For
example, manufacturers often run experiments to see which parts of
the manufacturing process contribute most to the variability of the
final product. In this situation variability is undesirable, and attention
is focused on improving those parts of the process that are most
variable. Animal breeding is another area in which variance
components models are routinely used. Some data, from surveys for
example, that have traditionally been analyzed using regression can
more profitably be analyzed using variance component models.

Estimating the
Model

To estimate a variance component model, you first need to use
is.random to state which factors in your data are random. A variable
that is marked as being random will have a variance component in
any models that contain it. Only variables that inherit from class
"factor" can be declared random. Although is.random works on
individual factors, it is often more practical to use it on the columns of
a data frame. You can see if variables are declared random by using
is.random on the data frame:

> is.random(pigment)

Batch Sample Test
 F F F

Declare variables to be random by using the assignment form of
is.random:

> pigment <- pigment
> is.random(pigment) <- c(T, T, T)
> is.random(pigment)

Batch Sample Test
 T T T
664

Variance Components Models
Because we want all of the factors to be random, we could have
simply done the following:

> is.random(pigment) <- T

The value on the right is replicated to be the length of the number of
factors in the data frame.

Once you have declared your random variables, you are ready to
estimate the model using the varcomp function. This function takes a
formula and other arguments very much like lm or aov. Because the
pigment data are from a nested design, the call has the following
form:

> pigment.vc <- varcomp(Moisture ~ Batch/Sample,
+ data = pigment)
> pigment.vc

Variances:
 Batch Sample %in% Batch Residuals
 7.127976 28.53333 0.9166667
Call:
varcomp(formula = Moisture ~ Batch/Sample, data = pigment)

The result of varcomp is an object of class "varcomp". You can use
summary on "varcomp" objects to get more details about the fit, and
you can use plot to get qq-plots for the normal distribution on the
estimated effects for each random term in the model.

Estimation
Methods

The method argument to varcomp allows you to choose the type of
variance component estimator. Maximum likelihood and REML
(restricted maximum likelihood) are two of the choices. REML is very
similar to maximum likelihood but takes the number of fixed effects
into account; the usual unbiased estimate of variance in the one-
sample model is an REML estimate. See Harville (1977) for more
details on these estimators.

The default method is a MINQUE (minimum norm quadratic
unbiased estimate); this class of estimator is locally best at a particular
spot in the parameter space. The MINQUE option in Spotfire S+ is
locally best if all of the variance components (except that for the
residuals) are zero. The MINQUE estimate agrees with REML for
balanced data. See Rao (1971) for details. This method was made the
665

Chapter 17 Further Topics in Analysis of Variance
default because it is less computationally intense than the other
methods, however, it can do significantly worse for severely
unbalanced data (Swallow and Monahan (1984)).

You can get robust estimates by using method="winsor". This method
creates new data by moving outlying points or groups of points
toward the rest of the data. One of the standard estimators is then
applied to this possibly revised data. Burns (1992) gives details of the
algorithm along with simulation results. This method uses much
larger amounts of memory than the other methods if there are a large
number of random levels, such as in a deeply nested design.

Random Slope
Example

We now produce a more complicated example in which there are
random slopes and intercepts. The data consist of several pairs of
observations on each of several individuals in the study. An example
might be that the y values represent the score on a test and the x
values are the time at which the test was taken.

Let’s start by creating simulated data of this form. We create data for
30 subjects and 10 observations per subject:

> subject <- factor(rep(1:30, rep(10,30)))
> set.seed(357) # makes these numbers reproducible
> trueslope <- rnorm(30, mean = 1)
> trueint <- rnorm(30, sd = 0.5)
> times <- rchisq(300, 3)
> scores <- rep(trueint, rep(10,30)) +
+ times * rep(trueslope, rep(10,30)) + rnorm(300)
> test.df <- data.frame(subject, times, scores)
> is.random(test.df) <- T
> is.random(test.df)

subject
T

Even though we want to estimate random slopes and random
intercepts, the only variable that is declared random is subject. Our
model for the data has two coefficients: the mean slope (averaged
over subjects) and the mean intercept. It also has three variances: the
variance for the slope, the variance for the intercept, and the residual
variance.
666

Variance Components Models
The following command estimates this model using Maximum
Likelihood, as the default MINQUE is not recommended for this
type of model:

> test.vc <- varcomp(scores ~ times * subject,
+ data = test.df, method = "ml")

This seems very simple. We can see how it works by looking at how
the formula get expanded. The right side of the formula is expanded
into four terms:

scores ~ 1 + times + subject + times:subject

The intercept term in the formula, represented by 1, gives the mean
intercept. The variable times is fixed and produces the mean slope.
The subject variable is random and produces the variance
component for the random intercept. Since any interaction
containing a random variable is considered random, the last term,
times:subject, is also random; this term gives the variance
component for the random slope. Finally, there is always a residual
variance.

Now we can look at the estimates:

> test.vc

Variances:
 subject times:subject Residuals
 0.3162704 1.161243 0.8801149
Message:
[1] "RELATIVE FUNCTION CONVERGENCE"
Call:
varcomp(formula = scores ~ times*subject, data=test.df,
 method = "ml")

This shows the three variance components. The variance of the
intercept, which has true value 0.25, is estimated as 0.32. Next,
labeled times:subject is the variance of the slope, and finally the
residual variance. We can also view the estimates for the coefficients
of the model, which have true values of 0 and 1.

> coef(test.vc)

 (Intercept) times
 0.1447211 1.02713
667

Chapter 17 Further Topics in Analysis of Variance
APPENDIX: TYPE I ESTIMABLE FUNCTIONS

In the section Estimable Functions on page 645, we discuss the Type I
estimable functions for the overparameterized model of the Baking
data. This appendix provides the Spotfire S+ code for the
TypeI.estim object shown in that section. For more details on the
algorithm used to compute Type I estimable functions, see the SAS
Technical Report R-101 (1978).

The commands below are designed to be easily incorporated into a
script or source file, so that they can be modified to suit your
modeling needs. To reproduce TypeI.estim exactly, you must first
define the Baking data and the Baking.aov model in your Spotfire S+
session (see page 638).

Get crossproduct matrix for overparameterized model.
XtX <- crossprod(.Call("S_ModelMatrix",

model.frame(Baking.aov), F)$X)
n <- as.integer(nrow(XtX))

Call LAPACK routine for LU decomposition.
LU <- .Fortran("dgetrf", n, n, as.numeric(XtX), n,

integer(n), integer(1))[[3]]
U <- matrix(LU, nrow = n, dimnames = list(

paste("L", seq(n), sep=""), dimnames(XtX)[[1]]))

Zero out the lower triangular part of U.
U[row(U) > col(U)] <- 0

Create 1's on the diagonal, as prescribed
by the SAS technical report.
d <- diag(U)
d[abs(d) < sqrt(.Machine$double.eps)] <- 1
L <- diag(1/d) %*% U
dimnames(L) <- dimnames(U)
L <- t(L)

Do column operations to produce "pretty" output.

Flour hypothesis.
L[,2] <- L[,2] - L[3,2]*L[,3]
L[,2] <- L[,2] - L[4,2]*L[,4]
L[,3] <- L[,3] - L[4,3]*L[,4]
668

Appendix: Type I Estimable Functions
Fat hypothesis.
L[,6] <- L[,6] - L[7,6]*L[,7]

Surfactant hypothesis.
L[,9] <- L[,9] - L[10,9]*L[,10]

Fat x Surfactant hypothesis.
L[,12] <- L[,12] - L[13,12]*L[,13]
L[,12] <- L[,12] - L[15,12]*L[,15]
L[,12] <- L[,12] - L[16,12]*L[,16]
L[,13] <- L[,13] - L[15,13]*L[,15]
L[,13] <- L[,13] - L[16,13]*L[,16]
L[,15] <- L[,15] - L[16,15]*L[,16]

Take only those columns that correspond to a hypothesis.
TypeI.estim <- L[, c("L2", "L3", "L4", "L6", "L7",

"L9", "L10", "L12", "L13", "L15", "L16")]
669

Chapter 17 Further Topics in Analysis of Variance
REFERENCES

Burns, P.J. (1992). Winsorized REML estimates of variance components.
Technical report, Statistical Sciences, Inc.

Chambers, J.M. & Hastie, T.J. (Eds.) (1992). Statistical Models in S.
London: Chapman and Hall.

Crowder, M.J. & Hand, D.J. (1990). Analysis of Repeated Measures.
London: Chapman and Hall.

Daniel, C. (1976). Applications of Statistics to Industrial Experimentation.
New York: John Wiley & Sons, Inc.

Hand, D.J. & Taylor, C.C. (1987). Multivariate Analysis of Variance and
Repeated Measures. London: Chapman and Hall.

Harville, D.A. (1977). Maximum likelihood approaches to variance
component estimation and to related problems (with discussion).
Journal of the American Statistical Association 72:320-340.

Hettmansperger, T.P. (1984). Statistical Inference Based on Ranks. New
York: John Wiley & Sons, Inc.

Hicks, C.R. (1973). Fundamental Concepts in the Design of Experiments.
New York: Holt, Rinehart and Winston.

Kennedy, W.J., Gentle, J.E., (1980), Statistical Computing. New York:
Marcel Dekker, (p. 396).

Lehmann, E.L. (1975). Nonparametrics: Statistical Methods Based on
Ranks. San Francisco: Holden-Day.

Mardia, K.V., Kent, J.T., & Bibby, J.M. (1979). Multivariate Analysis.
London: Academic Press.

Milliken, G.A. & Johnson, D.E., (1984), Analysis of Messy Data Volume
I: Designed Experiments. New York: Van Norstrand Reinhold Co. (p.
473).

Rao, C.R. (1971). Estimation of variance and covariance
components—MINQUE theory. Journal of Multivariate Analysis 1:257-
275.

SAS Institute, Inc. (1978). Tests of Hypotheses in Fixed-Effects Linear
Models. SAS Technical Report R-101. Cary, NC: SAS Institute, Inc..
670

References
SAS Institute, Inc. (1990). SAS/Stat User’s Guide, Fourth Edition. Cary,
NC: SAS Institute, Inc., (pp. 120-121).

Searle, S.R., (1987), Linear Models for Unbalanced Data. New York:
John Wiley & Sons, (p. 536).

Seber, G.A.F. (1984). Multivariate Observations. New York: John Wiley
& Sons, Inc.

Swallow, W.H. & Monahan, J.F. (1984). Monte Carlo comparison of
ANOVA, MIVQUE, REML, and ML estimators of variance
components. Technometrics 26:47-57.

Winer, B.J., Brown, D.R., & Michels, K.M. (1991). Statistical Principles
in Experimental Design. New York: McGraw-Hill.
671

Chapter 17 Further Topics in Analysis of Variance
672

Overview 674
The fuel.frame Data 674
Honestly Significant Differences 677
Rat Growth Hormone Treatments 678
Upper and Lower Bounds 681
Calculation of Critical Points 682
Error Rates for Confidence Intervals 683

Advanced Applications 684
Adjustment Schemes 685
Toothaker’s Two-Factor Design 686
Setting Linear Combinations of Effects 689
Textbook Parameterization 689
Overparameterized Models 691
Multicomp Methods Compared 692

Capabilities and Limits 694

References 696

MULTIPLE COMPARISONS 18
673

Chapter 18 Multiple Comparisons
OVERVIEW

This chapter describes the use of the function multicomp in the
analysis of multiple comparisons. This particular section describes
simple calls to multicomp for standard comparisons in one-way
layouts. The section Advanced Applications tells how to use
multicomp for nonstandard designs and comparisons. In the section
Capabilities and Limits, the capabilities and limitations of this
function are summarized.

The fuel.frame
Data

When an experiment has been carried out in order to compare effects
of several treatments, a classical analytical approach is to begin with a
test for equality of those effects. Regardless of whether you embrace
this classical strategy, and regardless of the outcome of this test, you
are usually not finished with the analysis until determining where any
differences exist, and how large the differences are (or might be); that
is, until you do multiple comparisons of the treatment effects.

As a simple start, consider the built-in TIBCO Spotfire S+ data frame
on fuel consumption of vehicles, fuel.frame. Each row provides the
fuel consumption (Fuel) in 100*gallons/mile for a vehicle model, as
well as the Type group of the model: Compact, Large, Medium, Small,
Sporty, or Van. There is also information available on the Weight and
Displacement of the vehicle. Figure 18.1 shows a box plot of fuel
consumption, the result of the following commands.

> attach(fuel.frame, pos = 2)
> boxplot(split(Fuel, Type))
> detach(2)
674

Overview
Not surprisingly, the plot suggests that there are differences between
vehicle types in terms of mean fuel consumption. This is confirmed
by a one-factor analysis of variance test of equality obtained by a call
to aov.

> aovout.fuel <- aov(Fuel ~ Type, data = fuel.frame)
> anova(aovout.fuel)

Analysis of Variance Table
Response: Fuel
Terms added sequentially (first to last)

 Df Sum of Sq Mean Sq F Value Pr(F)
Type 5 24.23960 4.847921 27.22058 1.220135e-13
Residuals 54 9.61727 0.178098

The box plots show some surprising patterns, and inspire some
questions. Do small cars really have lower mean fuel consumption
than compact cars? If so, by what amount? What about small versus
sporty cars? Vans versus large cars? Answers to these questions are
offered by an analysis of all pairwise differences in mean fuel
consumption, which can be obtained from a call to multicomp.

> mca.fuel <- multicomp(aovout.fuel, focus = "Type")

Figure 18.1: Fuel consumption box plot.

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Compact Large Medium Small Sporty Van
675

Chapter 18 Multiple Comparisons
> plot(mca.fuel)
> mca.fuel

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method
critical point: 2.9545
response variable: Fuel
intervals excluding 0 are flagged by '****'

 Estimate Std. Lower Upper
 Error Bound Bound
Compact-Large -0.800 0.267 -1.590 -0.0116 ****
Compact-Medium -0.434 0.160 -0.906 0.0387
Compact-Small 0.894 0.160 0.422 1.3700 ****
Compact-Sporty 0.210 0.178 -0.316 0.7360
Compact-Van -1.150 0.193 -1.720 -0.5750 ****
Large-Medium 0.366 0.270 -0.432 1.1600
Large-Small 1.690 0.270 0.896 2.4900 ****
Large-Sporty 1.010 0.281 0.179 1.8400 ****
Large-Van -0.345 0.291 -1.210 0.5150
Medium-Small 1.330 0.166 0.839 1.8200 ****
Medium-Sporty 0.644 0.183 0.103 1.1800 ****
Medium-Van -0.712 0.198 -1.300 -0.1270 ****
Small-Sporty -0.684 0.183 -1.220 -0.1440 ****
Small-Van -2.040 0.198 -2.620 -1.4600 ****
Sporty-Van -1.360 0.213 -1.980 -0.7270 ****

Figure 18.2: Fuel consumption ANOVA.

(
(

(
(

(
(

(
(

(
(

(
(
(

(
(

)
)

)
)

)
)

)
)

)
)

)
)
)

)
)

Compact-Large
Compact-Medium

Compact-Small
Compact-Sporty

Compact-Van
Large-Medium

Large-Small
Large-Sporty

Large-Van
Medium-Small

Medium-Sporty
Medium-Van
Small-Sporty

Small-Van
Sporty-Van

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

simultaneous 95 % confidence limits, Tukey method
response variable: Fuel
676

Overview
As the output and plot in Figure 18.2 indicate, this default call to
multicomp has resulted in the calculation of simultaneous 95%
confidence intervals for all pairwise differences between vehicle Fuel
means, based on the levels of Type, sometimes referred to as MCA
comparisons (Hsu, 1996). The labeling states that Tukey’s method
(Tukey, 1953) has been used; since group sample sizes are unequal,
this is actually equivalent to what is commonly known as the Tukey-
Kramer (Kramer, 1956) multiple comparison method.

Honestly
Significant
Differences

The output indicates via asterisks the confidence intervals which
exclude zero; in the plot, these can be identified by noting intervals
that do not intersect the vertical reference line at zero. These
identified statistically significant comparisons correspond to pairs of
(long run) means which can be declared different by Tukey’s HSD
(honestly significant difference) method. Not surprisingly, we can assert
that most of the vehicle types have different mean fuel consumption
rates. If we require 95% confidence in all of our statements, we cannot
claim different mean fuel consumption rates between the compact
and medium types, the compact and sporty types, the large and
medium types, and the large and van types.

Note we should not assert that these pairs have equal mean
consumption rates. For example, the interval for Compact-Medium
states that this particular difference in mean fuel consumption is
between -0.906 and 0.0387 units. Hence, the medium vehicle type
may have larger mean fuel consumption than the compact, by as
much as 0.9 units. Only an engineer can judge the importance of a
difference of this size; if it is considered trivial, then using these
intervals we can claim that for all practical purposes these two types
have equal mean consumption rates. If not, there may still be an
important difference between these types, and we would need more
data to resolve the question.

The point to the above discussion is that there is more information in
these simultaneous intervals than is provided by a collection of
significance tests for differences. This is true whether the tests are
reported via conclusions “Reject”/“Do not reject”, or via p-values or
adjusted p-values. This superior level of information using confidence
intervals has been acknowledged by virtually all modern texts on
multiple comparisons (Hsu, 1996; Bechhofer, Santner, and
677

Chapter 18 Multiple Comparisons
Goldsman, 1995; Hochberg and Tamhane, 1987; Toothaker, 1993).
All multiple comparison analyses using multicomp are represented by
using confidence intervals or bounds.

Rat Growth
Hormone
Treatments

If all the intervals are to hold simultaneously with a given confidence
level, it is important to calculate intervals only for those comparisons
which are truly of interest. For example, consider the summary data
in Table 2.5 from Hsu (Hsu, 1996). The data concerns a study by
Juskevich and Guyer (1990) in which rat growth was studied under
several growth-hormone treatments.

In this setting, it may only be necessary to compare each hormone
treatment’s mean growth with that of the placebo (that is, the oral
administration with zero dose). These all-to-one comparisons are
usually referred to as multiple comparisons with a control (MCC)
(Dunnett, 1955). Suppse that the raw data for each rat were available
in a data frame hormone.dfr, with a numeric variable growth and a
factor variable treatment for each rat. The following statements
calculate, print, and plot Dunnett’s intervals for hormone.dfr:

> aovout.growth <- aov(growth ~ treatment, data =
+ hormone.dfr)
> multicomp(aovout.growth, focus = "treatment",
+ comparisons = "mcc", control = 1, plot = T)

Table 18.1: Mean weight gain in rats under hormone treatments.

Method/Dose
Mean

Growth (g)
Standard
Deviation

Sample
Size

oral, 0 324 39.2 30

inject,1.0 432 60.3 30

oral,0.1 327 39.1 30

oral,0.5 318 53.0 30

oral,5 325 46.3 30

oral,50 328 43.0 30
678

Overview
The results are shown graphically in Figure 18.3. The intervals clearly
show that only the injection method is distinguishable from the
placebo in terms of long run mean weight gain.

Alternatively, we can compute Dunnett’s intervals directly from the
summary statistics that appear in Table 18.1. This allows us to use
multicomp even when we do not have access to the raw data. To
illustrate this, we first generate the data in Table 18.1 with the
commands below.

> method.dose <- c("oral,0", "inject,1.0", "oral,0.1",
+ "oral,0.5", "oral,5.0", "oral,50")
> mean.growth <- c(324,432,327,318,325,328)
> names(mean.growth) <- method.dose
> std.dev <- c(39.2, 60.3, 39.1, 53.0, 46.3, 43.0)
> sample.size <- rep(30,6)

Note that we assigned names to the mean.growth vector. This allows
us to take advantage of the plot labeling in multicomp, as we see
below.

To use multicomp with summary data, we need to specify the x, vmat,
and df.residual arguments. For the default implementation of
multicomp, the x argument is a numeric vector of estimates. This
corresponds to the mean.growth variable in our example. The vmat
argument is the estimated covariance matrix for x, which is diagonal
due to the independence of means in the rat growth hormone
example. To compute the entries of vmat for the data in Table 18.1, we
square the std.dev variable and then divide by 30 (i.e., sample.size)
to obtain variances for the means. The df.residual argument
specifies the number of degrees of freedom for the residuals, and is

Figure 18.3: MCC for rat hormone treatments.

(
(

(
(
(

)
)

)
)
)

inject.,1.0-oral,0
oral,0.1-oral,0
oral,0.5-oral,0
oral,5.0-oral,0
oral,50-oral,0

-40 -20 0 20 40 60 80 100 120 140
simultaneous 95 % confidence limits, Dunnett method

response variable: growth

Table 4: MCC for hormone treatments
679

Chapter 18 Multiple Comparisons
equal to the total number of observations minus the number of
categories. In our example, this is . For more details
on any of these arguments, see the help file for multicomp.default.

The commands below reproduce the plot displayed in Figure 18.3:

> multicomp(mean.growth, diag(std.dev^2/30),
+ df.residual = 174, comparisons = "mcc", control = 1,
+ plot = T, ylabel = "growth")
> title("Table 4: MCC for hormone treatments")

95 % simultaneous confidence intervals for specified
linear combinations, by the Dunnett method

critical point: 2.5584
response variable: mean.growth

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound
inject,1.0-oral,0 108 13.1 74.4
 oral,0.1-oral,0 3 10.1 -22.9
 oral,0.5-oral,0 -6 12.0 -36.8
 oral,5.0-oral,0 1 11.1 -27.3
 oral,50-oral,0 4 10.6 -23.2
 Upper Bound
inject,1.0-oral,0 142.0 ****
 oral,0.1-oral,0 28.9
 oral,0.5-oral,0 24.8
 oral,5.0-oral,0 29.3
 oral,50-oral,0 31.2

Since we assigned names to the mean.growth vector, multicomp
automatically produces labels on the vertical axis of the plot. The
ylabel argument in our call to multicomp fills in the “response
variable” label on the horizontal axis.

More Detail on
multicomp

The first and only required argument to multicomp is an aov object (or
equivalent), the results of a fixed-effects linear model fit by aov or a
similar model-fitting function. The focus argument, when specified,
names a factor (a main effect) in the fitted aov model. Comparisons
will then be calculated on (adjusted) means for levels of the focus
factor. The comparisons argument is an optional argument which can

30 6 6–× 174=
680

Overview
specify a standard family of comparisons for the levels of the focus
factor. The default is comparisons="mca", which creates all pairwise
comparisons. Setting comparisons="mcc" creates all-to-one
comparisons relative to the level specified by the control argument.
The only other comparisons option available is "none", which states
that the adjusted means themselves are of interest (with no
differencing), in which case the default method for interval
calculation is known as the studentized maximum modulus method.
Other kinds of comparisons and different varieties of adjusted means
can be specified through the lmat and adjust options discussed
below.

Upper and
Lower Bounds

Confidence intervals provide both upper and lower bounds for each
difference or adjusted mean of interest. In some instances, only the
lower bounds, or only the upper bounds, may be of interest.

For instance, in the fuel consumption example earlier, we may only
be interested in determining which types of vehicle clearly have
greater fuel consumption than compacts, and in calculating lower
bounds for the difference. This can be accomplished through lower
mcc bounds:

> aovout.fuel <- aov(Fuel ~ Type, data = fuel.frame)
> multicomp(aovout.fuel, focus = "Type",
+ comparison = "mcc", bounds = "lower", control = 1,
+ plot = T)

95 % simultaneous confidence bounds for specified
linear combinations, by the Dunnett method

critical point: 2.3332000000000002
response variable: Fuel

bounds excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound
 Large-Compact 0.800 0.267 0.1770 ****
Medium-Compact 0.434 0.160 0.0606 ****
 Small-Compact -0.894 0.160 -1.2700
Sporty-Compact -0.210 0.178 -0.6250
 Van-Compact 1.150 0.193 0.6950 ****
681

Chapter 18 Multiple Comparisons
The intervals or bounds computed by multicomp are always of the
form

You have probably already noticed that the estimates and standard
errors are supplied in the output table. The critical point used
depends on the specified or implied multiple comparison method.

Calculation of
Critical Points

The multicomp function can calculate critical points for simultaneous
intervals or bounds by the following methods:

• Tukey (method = "tukey"),

• Dunnett (method = "dunnett"),

• Sidak (method = "sidak"),

• Bonferroni (method = "bon"),

• Scheffé (method = "scheffe")

• Simulation-based (method = "sim").

Non-simultaneous intervals use the ordinary Student’s-t critical point,
method="lsd". If a method is specified, the function will check its
validity in view of the model fit and the types of comparisons
requested. For example, method="dunnett" will be invalid if
comparisons="mca". If the specified method does not satisfy the
validity criterion, the function terminates with a message to that
effect. This safety feature can be disabled by specifying the optional
argument valid.check = F. If no method is specified, the function

Figure 18.4: Lower mcc bounds for fuel consumption.

(estimate) (critical point)± (standard error of estimate)×
682

Overview
uses the smallest critical point among the valid non-simulation-based
methods. If you specify method="best", the function uses the smallest
critical point among all valid methods including simulation; this latter
method may take a few moments of computer time.

The simulation-based method generates a near-exact critical point via
Monte Carlo simulation, as discussed by Edwards and Berry (1987).
For nonstandard families of comparisons or unbalanced designs, this
method will often be substantially more efficient than other valid
methods. The simulation size is set by default to provide a critical
point whose actual error rate is within 10% of the nominal α (with
99% confidence). This amounts to simulation sizes in the tens of
thousands for most choices of α. You may directly specify a
simulation size via the simsize argument to multicomp, but smaller
simulation sizes than the default are not advisable.

It is important to note that if the simulation-based method is used, the
critical point (and hence the intervals) will vary slightly over repeated
calls; recalculating the intervals repeatedly searching for some
desirable outcome will usually be fruitless, and will result in intervals
which do not provide the desired confidence level.

Error Rates for
Confidence
Intervals

Other multicomp arguments of interest are the alpha argument which
specifies the error rate for the intervals or bounds, with default
alpha=0.05. By default, alpha is a familywise error rate, that is, you
may be (1 - alpha) x 100% confident that every calculated bound
holds. If you desire confidence intervals or bounds without
simultaneous coverage, specify error.type="cwe", meaning
comparisonwise error rate protection; in this case you must also
specify method="lsd". Finally, for those familiar with the Scheffé
(1953) method, the critical point is of the form:

sqrt(Srank * qf(1-alpha, Srank, df.residual))

The numerator degrees of freedom Srank may be directly specified as
an option. If omitted, it is computed based on the specified
comparisons and aov object.
683

Chapter 18 Multiple Comparisons
ADVANCED APPLICATIONS

In the first example, the Fuel consumption differences found between
vehicle types are almost surely attributable to differences in Weight
and/or Displacement. Figure 18.5 shows a plot of Fuel versus Weight
with plotting symbols identifying the various model types:

> plot(Weight, Fuel, type = "n")
> text(Weight, Fuel, abbreviate(as.character(Type)))

This plot shows a strong, roughly linear relationship between Fuel
consumption and Weight, suggesting the addition of Weight as a
covariate in the model. Though it may be inappropriate to compare
adjusted means for all six vehicle types (see below), for the sake of
example the following calls fit this model and calculate simultaneous
confidence intervals for all pairwise differences of adjusted means,
requesting the best valid method.

Figure 18.5: Consumption of Fuel versus Weight.

Weight

F
ue

l

2000 2500 3000 3500

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

SmllSmll

Smll

Smll Smll

Smll

Smll

Smll

Smll

Smll

Smll

Smll

Smll

Sprt

Sprt

Sprt

Sprt

Sprt

Sprt

Sprt

Sprt

Sprt
Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

CmpcCmpc

Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

Medm

Medm

Medm MedmMedmMedm

MedmMedm

Medm

Medm

Medm Medm

MedmLarg

Larg

Larg

Van VanVan

Van

VanVan

Van
684

Advanced Applications
> lmout.fuel.ancova <- lm(Fuel ~ Type + Weight,
+ data = fuel.frame)
> multicomp(lmout.fuel.ancova, focus = "Type",
+ method = "best", plot = T)

The “best” valid method for this particular setting is the simulation-
based method; Tukey’s method has not been shown to be valid in the
presence of covariates when there are more than three treatments.
The intervals show that, adjusting for weight, the mean fuel
consumption of the various vehicle types are in most cases within one
unit of each other. The most notable exception is the van type, which
is showing higher mean fuel consumption than the small and sporty
types, and most likely higher than the compact, medium and large
types.

Adjustment
Schemes

When there is more than one term in the lm model, multicomp
calculates standard adjusted means for levels of the focus factor and
then takes differences as specified by the comparisons argument.
Covariates are adjusted to their grand mean value. If there are other
factors in the model, the standard adjusted means for levels of the
focus factor use the average effect over the levels of any other (non-
nested) factors. This adjustment scheme can be changed using the
adjust argument, which specifies a list of adjustment levels for non-
focus terms in the model. Any terms excluded from the adjust list

Figure 18.6: Fuel consumption ANCOVA (adjusted for Weight).

(
(

(
(

(
(

(
(

(
(

(
(

(
(

(

)
)

)
)

)
)

)
)

)
)

)
)

)
)
)

Compact-Large
Compact-Medium

Compact-Small
Compact-Sporty

Compact-Van
Large-Medium

Large-Small
Large-Sporty

Large-Van
Medium-Small

Medium-Sporty
Medium-Van
Small-Sporty

Small-Van
Sporty-Van

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

simultaneous 95 % confidence limits, simulation-based method
response variable: Fuel
685

Chapter 18 Multiple Comparisons
are adjusted in the standard way. The adjust list may include
multiple adjustment values for each term; a full set of adjusted means
for the focus factor is calculated for each combination of values
specified by the adjust list. Differences (if any) specified by the
comparisons argument are then calculated for each combination of
values specified by the adjust list.

Toothaker’s
Two-Factor
Design

Besides allowing you to specify covariate values for adjustment, the
adjust argument can be used to calculate simple effects comparisons
when factors interact, or (analogously) when covariate slopes are
different. This is best illustrated by an example: Toothaker (1993)
discusses a two-factor design, using the data collected by Frank
(1984). Subjects are female undergraduates, with response the score
on a 20-item multiple choice test over a taped lecture. Factors are
cognitive style (cogstyle, levels FI = Field independent and FD = Field
dependent) and study technique (studytech, levels NN = no notes,
SN = student notes, PO = partial outline supplied, CO = complete
outline). The following code fits the model and performs a standard
two-factor analysis of variance.

> score <- c(13, 13, 10, 16, 14, 11, 13, 13, 11, 16, 15, 16,
+ 10, 15, 19, 19, 17, 19, 17, 20, 17, 18, 17, 18, 18, 19,
+ 19, 18, 17, 19, 17, 19, 17, 19, 17, 15, 18, 17, 15, 15,
+ 19, 16, 17, 19, 15, 20, 16, 19, 16, 19, 19, 18, 11, 14,
+ 11, 10, 15, 10, 16, 16, 17, 11, 16, 11, 10, 12, 16, 16,
+ 17, 16, 16, 16, 14, 14, 16, 15, 15, 15, 18, 15, 15, 14,
+ 15, 18, 19, 18, 18, 16, 16, 18, 16, 18, 19, 15, 16, 19,
+ 18, 19, 19, 18, 17, 16, 17, 15)

> cogstyle <- factor(c(rep("FI", 52), rep("FD", 52)))
> studytec <- factor(c(rep("NN", 13), rep("SN", 13),
+ rep("PO", 13), rep("CO", 13), rep("NN", 13),
+ rep("SN", 13), rep("PO",13), rep("CO",13)))

> interaction.plot(cogstyle, studytec, score)
> aovout.students <- aov(score ~ cogstyle * studytec)

> anova(aovout.students)
686

Advanced Applications
Analysis of Variance Table
Response: score
Terms added sequentially (first to last)
 Df Sum of Sq Mean Sq F Value Pr(F)
cogstyle 1 25.0096 25.0096 7.78354 0.00635967
studytec 3 320.1827 106.7276 33.21596 0.00000000
cogstyle:studytec 3 27.2596 9.0865 2.82793 0.04259714
Residuals 96 308.4615 3.2131

It is apparent from the test for interaction and the profile plot that
there is non-negligible interaction between these factors. In such cases
it is often of interest to follow the tests with an analysis of “simple
effects.” In the following example, a comparison of the four study
techniques is performed separately for each cognitive style group.
The following call calculates simultaneous 95% intervals for these
differences by the best valid method, which is again simulation.

Figure 18.7: Two-factor design test scores.

cogstyle

m
ea

n
of

 s
co

re

13
14

15
16

17
18

FD FI

 studytec

SN
CO
PO
NN
687

Chapter 18 Multiple Comparisons
> mcout.students <- multicomp(aovout.students,
+ focus = "studytec", adjust = list(cogstyle =
+ c("FI", "FD")), method = "best")

> plot(mcout.students)
> mcout.students

95 % simultaneous confidence intervals for specified
linear combinations, by the simulation-based method

critical point: 2.8526
response variable: score
simulation size= 12616

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound
CO.adj1-NN.adj1 4.4600 0.703 2.460 6.470
CO.adj1-PO.adj1 0.7690 0.703 -1.240 2.770
CO.adj1-SN.adj1 2.1500 0.703 0.148 4.160
NN.adj1-PO.adj1 -3.6900 0.703 -5.700 -1.690
NN.adj1-SN.adj1 -2.3100 0.703 -4.310 -0.302
PO.adj1-SN.adj1 1.3800 0.703 -0.621 3.390
CO.adj2-NN.adj2 4.3800 0.703 2.380 6.390
CO.adj2-PO.adj2 0.0769 0.703 -1.930 2.080
CO.adj2-SN.adj2 -0.3850 0.703 -2.390 1.620
NN.adj2-PO.adj2 -4.3100 0.703 -6.310 -2.300
NN.adj2-SN.adj2 -4.7700 0.703 -6.770 -2.760
PO.adj2-SN.adj2 -0.4620 0.703 -2.470 1.540

CO.adj1-NN.adj1 ****
CO.adj1-PO.adj1
CO.adj1-SN.adj1 ****
NN.adj1-PO.adj1 ****
NN.adj1-SN.adj1 ****
PO.adj1-SN.adj1
CO.adj2-NN.adj2 ****
CO.adj2-PO.adj2
CO.adj2-SN.adj2
NN.adj2-PO.adj2 ****
NN.adj2-SN.adj2 ****
PO.adj2-SN.adj2
688

Advanced Applications
Setting Linear
Combinations
of Effects

In many situations, the setting calls for inference on a collection of
comparisons or linear combinations other than those available
through specifications of the focus, adjust, and comparisons
arguments. The lmat argument to multicomp allows you to directly
specify any collection of linear combinations of the model effects for
inference. It is a matrix (or an expression evaluating to a matrix)
whose columns specify linear combinations of the model effects for
which confidence intervals or bounds are desired. Specified linear
combinations are checked for estimability; if inestimable, the function
terminates with a message to that effect. You may disable this safety
feature by specifying the optional argument est.check=F.
Specification of lmat overrides any focus or adjust arguments; at
least one of lmat or focus must be specified. Differences requested or
implied by the comparisons argument are taken over the columns of
lmat. In many instances no such further differencing would be
desired, in which case you should specify comparisons="none".

Textbook
Parameteriza-
tion

Linear combinations in lmat use the textbook parameterization of the
model. For example, the fuel consumption analysis of covariance
model parameterization has eight parameters: an Intercept, six
coefficients for the factor Type (Compact, Large, Medium, Small,
Sporty, Van) and a coefficient for the covariate Weight. Note that the
levels of the factor object Type are listed in alphabetical order in the
parameter vector.

Figure 18.8: Simple effects for study techniques.

(
(

(
(

(
(

(
(

(
(

(
(

)
)

)
)

)
)

)
)

)
)

)
)

CO.adj1-NN.adj1
CO.adj1-PO.adj1
CO.adj1-SN.adj1
NN.adj1-PO.adj1
NN.adj1-SN.adj1
PO.adj1-SN.adj1
CO.adj2-NN.adj2
CO.adj2-PO.adj2
CO.adj2-SN.adj2
NN.adj2-PO.adj2
NN.adj2-SN.adj2
PO.adj2-SN.adj2

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

simultaneous 95 % confidence limits, simulation-based method
response variable: score
689

Chapter 18 Multiple Comparisons
In the fuel consumption problem, many would argue that it is not
appropriate to compare, for example, adjusted means of Small
vehicles and Large vehicles, since these two groups’ weights do not
overlap. Inspection of Figure 18.5 shows that, under this
consideration, comparisons are probably only appropriate within two
weight groups: Small, Sporty, and Compact as a small weight group;
Medium, Large, and Van as a large weight group. We can accomplish
comparisons within the two Weight groups using the following matrix,
which is assumed to be in the object lmat.fuel. Note the column
labels, which will be used to identify the intervals in the created figure
and plot.

The code below creates the intervals. If we restrict attention to these
comparisons only, we cannot assert any differences in adjusted mean
fuel consumption.

> multicomp.lm(lmout.fuel.ancova, lmat = lmat.fuel,
+ comparisons = "none", method = "best", plot = T)

Table 18.2: The Weight comparison matrix in the file lmat.fuel.

Com-Sma Com-Spo Sma-Spo Lar-Med Lar-Van Med-Van

Intercept 0 0 0 0 0 0

Compact 1 1 0 0 0 0

Large 0 0 0 1 1 0

Medium 0 0 0 -1 0 1

Small -1 0 1 0 0 0

Sporty 0 -1 -1 0 0 0

Van 0 0 0 0 -1 -1

Weight 0 0 0 0 0 0
690

Advanced Applications
The textbook parameterization for linear models are created
according to the following algorithm:

1. An intercept parameter is included first, if the model contains
one.

2. For each “main effect” term in the model (terms of order one),
groups of parameters are included in the order the terms are
listed in the model specification. If the term is a factor, a
parameter is included for each level. If the term is numeric, a
parameter is included for each column of its matrix
representation.

3. Parameters for terms of order 2 are created by “multiplying”
the parameters of each main effect in the term, in left-to-right
order. For example, if A has levels A1, A2 and B has levels B1,
B2, B3, the parameters for A:B are A1B1, A1B2, A1B3, A2B1, A2B2,
A2B3.

4. Parameters for higher level terms are created by multiplying
the parameterization of lower level terms two at a time, left to
right. For example, the parameters for A:B:C are those of A:B
multiplied by C.

Overparame-
terized Models

The textbook parameterization will often be awkwardly
overparameterized. For example, the 2 x 4 factorial model specified
in the student study techniques example has the following
parameters, in order (note the alphabetical rearrangement of the
factor levels).

Figure 18.9: Using lmat for specialized contrasts.

(
(

(
(

(
(

)
)

)
)

)
)

Com.Sma
Com.Spo
Sma.Spo
Lar.Med
Lar.Van

Med.Van.

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

simultaneous 95 % confidence limits, simulation-based method
response variable: Fuel
691

Chapter 18 Multiple Comparisons
• Intercept

• FD, FI

• CO, NN, PO, SN

• FDCO, FDNN, FDPO, FDSN, FICO, FINN, FIPO, FISN

Clearly, care must be taken in creating an lmat for factorial designs,
especially with crossed and/or nested terms. The flexibility lmat
provides for creating study-specific linear combinations can be
extremely valuable, though. If you are in doubt about the actual
textbook parameterization of a given linear model, it may help to run
a standard analysis and inspect the lmat created, which is part of the
output list of multicomp. For example, for the simple effects analysis
of the student test scores of Figure 18.8, the implied lmat can be seen
using the command:

> mcout.students$lmat

Multicomp
Methods
Compared

The function multicomp.lm, after checking estimability of specified
linear combinations and creating a vector of estimates, a covariance
matrix, and degrees of freedom, calls the base function
multicomp.default. The function multicomp.default will be directly
valuable in many settings. It uses a vector of estimates bvec and
associated covariance matrix vmat as required arguments, with
optional degrees of freedom df.residual (possibly Inf, the default) to
calculate confidence intervals on linear combinations of bvec. These
linear combinations can be specified through an optional lmat
argument and/or comparisons argument; there is neither a focus nor
an adjust argument. Linear combinations of bvec defined by
columns of lmat (if any; the default lmat is an identity matrix) are
calculated, followed by any differences specified or implied by the
comparisons argument. The multicomp.lm options method, bounds,
alpha, error.type, crit.point, sim.size, Srank, valid.check, and
plot are also available in multicomp.default.

The function multicomp.default can be very useful as a means of
calculating intervals based on summary data, or using the results of
some model-fitting program other than lm; bvec must be considered
as a realization of a multivariate normal vector. If the matrix vmat
incorporates any estimate of variance considered to be a realized chi-
square variable, the degrees of freedom df.residual must be
specified.
692

Advanced Applications
The rat growth data discussed earlier (Table 18.1) provides a simple
example of the use of multicomp.default. Here, the first few
statements create the vector of estimates bvec and covariance matrix
vmat assuming that a single factor analysis of variance model is
appropriate for the data, followed by the statement that produced the
lower mcc bounds of Figure 18.10:

> growth <- c(324, 432, 327, 318, 325, 328)
> stddev <- c(39.2, 60.3, 39.1, 53.0, 46.3, 43.0)
> samp.size <- rep(30, 6)
> names(growth) <- c("oral,0", "inject,1.0", "oral,0.1",
+ "oral,0.5", "oral,5", "oral,50")
> mse <- mean(stddev^2)
> vmat <-mse * diag(1/samp.size)
> multicomp.default(growth, vmat, df.residual =
+ sum(samp.size-1), comparisons = "mcc", bounds = "lower",
+ control = 1, plot = T)

Figure 18.10: Lower mcc bounds for rat hormone treatment.

(
(

(
(

(

inject,1.0-oral,0
oral,0.1-oral,0
oral,0.5-oral,0

oral,5-oral,0
oral,50-oral,0

-40 -20 0 20 40 60 80 100 120
simultaneous 95 % confidence limits, Dunnett method

response variable:
693

Chapter 18 Multiple Comparisons
CAPABILITIES AND LIMITS

In summary, the function multicomp uses the information in a linear
model; that is, a fitted fixed effects linear model. Through some
combination of the focus, adjust, comparisons and lmat arguments,
any collection of estimable linear combinations of the fixed effects
may be estimated, and simultaneous or non-simultaneous intervals or
bounds computed by any of the applicable methods mentioned
above. Specified linear combinations are checked for estimability
unless you specify est.check=F. Specified methods are checked for
validity unless you specify valid.check=F.

The function multicomp.default uses a specified vector of parameter
estimates bvec and a covariance matrix vmat, which will usually have
some associated degrees of freedom df.residual specified. Possibly
through some combination of the comparisons or lmat arguments,
any collection of linear combinations of the parameters may be
estimated, and simultaneous or non-simultaneous intervals or bounds
computed by any of the applicable methods discussed above.
Specified methods are checked for validity unless you specify
valid.check=F.

The output from either procedure is an object of class "multicomp", a
list containing elements table (a matrix of calculated linear
combination estimates, standard errors, and lower and/or upper
bounds), alpha, error.type, method, crit.point, lmat (the final
matrix of linear combinations specified or implied), and other
ancillary information pertaining to the intervals. If the argument
plot=T is specified, the intervals/bounds are plotted on the active
device. If not, the created multicomp object can be used as an
argument to plot (see plot.multicomp).

The critical points for the methods of Tukey and Dunnett are
calculated by numerically using the Spotfire S+ quantile functions
qtukey, qdunnett, qmvt, and qmvt.sim, which may be directly useful
to advanced users for their own applications.
694

Capabilities and Limits
What the function multicomp does not do:

1. Any stagewise or multiple range test. The simultaneous testing
procedures attributed to Fisher, Tukey, Scheffé, Sidak and
Bonferroni are implied by the use of the corresponding
method and noting which of the calculated intervals excludes
zero. The multiple range tests of Duncan(1955) and Newman-
Keuls (Newman, 1939; Keuls, 1952) do not provide
familywise error protection, and are not very efficient for
comparisonwise error protection; modern texts on multiple
comparisons recommend uniformly against these two
multiple range tests (Hsu, 1996; Hochberg and Tamhane,
1987; Bechofer et al., 1996; Toothaker 1993).

2. Multiple comparisons with the “best” treatment (MCB; Hsu,
1996, chapter 4), or any ranking and selection procedure
(Bechofer, et al., 1995) other than selection of treatments
better than a control implied by Dunnett’s one-sided
methods. Users familiar with these methods and reasonably
proficient at Spotfire S+ programming will be able to code
many of these procedures through creative use of multicomp
with the comparisons="mcc" option.
695

Chapter 18 Multiple Comparisons
REFERENCES

Bechhofer R.E., Santner T.J., & Goldsman D.M. (1995). Design and
Analysis of Experiments for Statistical Selection, Screening, and Multiple
Comparisons. New York: John Wiley & Sons, Inc.

Duncan D.B. (1955). Multiple range and multiple F tests. Biometrics
11:1-42.

Dunnett C.W. (1955). A multiple comparison procedure for
comparing several treatments with a control. Journal of the American
Statistical Association 50:1096-1121.

Edwards D. & Berry J.J. (1987). The efficiency of simulation-based
multiple comparisons. Biometrics 43:913-928.

Frank, B.M. (1984). Effect of field independence-dependence and
study technique on learning from a lecture. American Education
Research Journal 21, 669-678.

Hsu J.C. (1996). Multiple Comparisons: Theory and Methods. London:
Chapman and Hall.

Hochberg, Y. & Tamhane, A.C. (1987). Multiple Comparison
Procedures. New York: John Wiley & Sons, Inc.

Juskevich J.C. & Guyer C.G. (1990). Bovine growth hormone: human
food safety evaluation. Science 249:875-884.

Kramer C.Y. (1956). Extension of multiple range tests to group means
with unequal numbers of replications. Biometrics 12:309-310.

Keuls M. (1952). The use of the ‘studentized range’ in connection
with an analysis of variance. Euphytica 1:112-122.

Newman D. (1939). The distribution of the range in samples from a
normal population, expressed in terms of an independent estimate of
standard deviation. Biometrika 31:20-30.

Scheffé H. (1953). A method for judging all contrasts in the analysis of
variance. Biometrika 40:87-104.

Sidak A. (1967). Rectangular confidence regions for the means of
multivariate normal distributions. Journal of the Amererican Statistical
Association 62:626-633.
696

References
Toothaker L.E. (1993). Multiple Comparison Procedures. London: Sage
Publications.

Tukey J.W. (1953). Unpublished report, Princeton University.
697

Chapter 18 Multiple Comparisons
698

Index
INDEX

Symbols
%in% operator

formula 34
* operator

formula 32, 34
formulas 595, 606

+ operator
formulas 595

. operator
formula 36

/ operator
formula 34

: operator
variable interaction 32

^ operator
formulas 32, 606, 609

~ operator 29

Numerics
2k designs

creating design data frame 602
details of ANOVA 613
diagnostic plots 610, 611
EDA 604
estimating effects 605, 607, 609
example of 24 design 602
replicates 607
small order interactions 609

A
ace

algorithm 307
compared to avas 312
example 309

ace function 309

ace goodness-of-fit measure 307
acf function 124, 152
add1 function

generalized linear models 390
add1 function 45

linear models 255
additive models

see generalized additive models
additive predictor

mathematical definition 385
additivity and variance stabilizing

transformation
see avas 312

A estimates of scale 112
AIC

related to Cp statistic 251
air data set 239, 253
algorithms

ace 307
ANOVA 629
avas 312
backfitting 312
correlation coefficient 150
cubic smoothing splines 298
deviance 302
generalized additive models 12
generalized linear models 11
glm function 384, 415
goodness-of-fit measure 307
kernel-type smoothers 295
L1 regression 370
least squares regression 367
least trimmed squares

regression 367
linear models 10
local cross-validation for

variable span smoothers 293
699

Index
locally weighted regression
smoothing 291

Tukey’s one degree of freedom
588

alternating conditional expectations
see ace

alternative hypothesis 126
 analysis of deviance tables, see

ANOVA tables
analysis of variance see ANOVA
ANOVA

2k designs 604–614
checking for interaction 594
data type of predictors 10
diagnostic plots 575
diagnostic plots for 584, 595,

611
EDA 572, 580, 593, 604
effects table 577
estimating effects 605, 607, 609
factorial effects 633
fitting functions 8
grand mean plus treatment

effects form 629
interaction 582
one-way layout 574–577
rank sum tests 662
repeated-measures designs 659
robust methods 662
small-order interactions 609
split-plot designs 656
treatment means 577
two-way additive model 583
two-way replicated 594–601
two-way unreplicated 578–590
unbalanced designs 634
variance stabilizing 597, 599,

601
ANOVA, see also MANOVA
anova function

chi-squared test 389, 411
F test 416
generalized additive models 395
generalized linear models 389,

410, 411, 416

anova function 519
anova function 9
anova function

additive models 306
ANOVA models

residuals 584, 595
ANOVA tables 9, 595, 606, 609, 626

F statistics 416
generalized additive models 306
logistic regression 389, 395
Poisson regression 410, 411
quasi-likelihood estimation 416

aov.coag data set
created 574

aov.devel.2 data set
created 609

aov.devel.small data set
created 611

aov.devel data set
created 605

aov.pilot data set
created 609

aov function 8
2k model 605
arguments 574
default coefficients returned 613
estimating effects 609
extracting output 606
one-way layout 574, 577
two-way layout 595
two-way layout additive model

583
aov function

repeated-measures designs 659
split-plot designs 656

approx function 564
auto.stats data set 15
autocorrelation function

plot 124, 152
avas

algorithm for population
version 316

avas
algorithm 312
backfitting algorithm 312
700

Index
compared to ace 312
example 313
key properties 315

avas function 313

B
backfitting 317
Bernoulli trial 69, 71, 84

definition 69
beta distribution 57, 76
beta function 76
binom.test function 184
binomial coefficients 74

definition 70
binomial distribution 57, 69, 182

relation to geometric
distribution 84

relation to hypergeometric
distribution 74

relation to Poisson distribution
71

binomial family 387, 404
inverse link function 421
logit link 382
probit link 382

blocking variable 578
Box-Cox maximum-likelihood

procedure 315
boxplot function

used to compute quartiles 101
boxplots 123, 387, 409, 573, 582,

594
Box-Tidwell procedure 315
breakdown point 365
B-splines 394
B-splines 298

C
cancer study data 196
canonical links 384
catalyst data set 10
catalyst data set 633
categorical data

cross-classification 204
categorical data see also factors
categorical variables 30

interactions 33
Cauchy distribution 57, 79

stable 82
cdf.compare function 160, 161, 170,

175, 178
 CDF. See cumulative distribution

functions
Central Limit Theorem 63, 106
central moments

of a probability distribution 55
of a sample 103

C function 41
chisq.gof function 160, 165, 170

cut.points argument 166
distribution argument 166
estimating parameters 175
n.classes argument 166
n.param.est argument 176
warning messages 177

chisq.test function 192
chi-square distribution 57, 64
chi-squared test 192, 195, 206, 389,

411
chi-square goodness of fit test 160

choice of partition 166
comparison with other one-

sample tests 174
continuous variables 167
distributions 166
large sample theory 177
mathematical definition 165

claims data set 204
classification trees see also tree-

based models
coag.df data frame

created 571
coagulation data 570
coefficients

converting to treatment effects
629

estimated 606
extracting 8
701

Index
fixing 424
coefficients function

abbreviated coef 8
coef function 424
coef function 8, 23, 606
cognitive style study 686
comp.plot function

defined 590
comparative study 143
comparing means

two samples 226
comparing proportions

two samples 230
comparison values 587
conditioning plots 7, 9

analyzing 443
conditioning panels 441
conditioning values 441
constructing 441
local regression models 453
residuals as response variable

448
conditioning values 441
confidence intervals 120, 191, 564,

681
binomial distribution 185
confidence level 126, 185
correlation coefficient 157
error rate 125
for the sample mean 106, 107
pointwise 272
simultaneous 272
two-sample 188

confint.lm function
defined 273

contingency tables 183, 192, 195
choosing suitable data 209
continuous data 213
creating 204
reading 206
subsetting data 216

continuous data 4
converting to factors 213
cross-tabulating 213

continuous random variable 52, 60,
76

continuous response variable 570
continuous variables

interactions 33
contr.helmert function 40
contr.poly function 40
contr.sum function 40
contr.treatment function 39
contrasts

adding to factors 625
creating contrast functions 41
Helmert 39
polynomial 40
specifying 41, 42, 43
sum 40
treatment 39

contrasts function 42
contrasts function 625
coplot function 7, 9
coplots

see conditioning plots
cor.confint function

created 157
cor.test function 154
corelation

serial 120
cor function 156
correlation

example 149
serial 124, 245
shown by scatterplots 120

correlation coefficient 119
algorithm 150
Kendall’s t measure 154, 155
Pearson product-moment 154
p-values

p-values 154
rank-based measure 154, 155
Spearman’s r measure 154, 155

correlation structures 505
correlation structures and variance

functions 507
corStruct classes 280, 507
counts 182
702

Index
Cp statistic 390
Cp statistic 251, 257
cross-classification 204
crosstabs function 204, 219

arguments 206, 216
return object 206

cross-validation
algorithm 293

cubic smoothing splines 298
algorithm 298

cumulative distribution functions
53, 161

See also probability
distributions

cut function 213

D
data

categorical 4
continuous 4
organizing see data frames
summaries 5

data frames
attaching to search list 247
design data frame 579, 592, 602

degrees of freedom 134, 303
nonparametric 303
parametric 303
smoothing splines 298

density function. See probability
density function

density plot 123
derivatives 548
deriv function 552
design data frames 579, 592, 602
designed experiments

one factor 570–577
randomized blocks 578
replicated 591
two-way layout 578

devel.design data frame
created 602

devel.df data frame
created 604

deviance 418
algorithm 302

deviance residuals 418
D function 551
diagnostic plots

ANOVA 584
linear regression 242
local regression models 436
multiple regression 249
outliers 575

diff.hs data set 151
discrete random variable 52, 69, 84
dispersion parameter 383, 416

obtaining chi-squared estimates
411

distribution functions. See
probability distributions

double exponential distribution
random number generation 87

drop1 function 44
linear models 251

drug.fac data set 195
drug.mult data set 658
drug data set 194
dummy.coef function 630
Dunnett’s intervals 678, 679
durbinWatson function 245
Durbin-Watson statistic 245
dwilcox function 57

E
EDA

see exploratory data analysis
eda.shape

defined 124
eda.ts function 124
EDA functions

interaction.plot 582
plot.design 572, 580, 594
plot.factor 573, 581

empirical distribution function 161
ethanol data set 275
Euclidean norm 365
example functions
703

Index
comp.plot 590
confint.lm 273
cor.confint function 157
eda.shape 124
eda.ts 124
tukey.1 589

examples
2k design of pilot plant data 607
2k design of product

development data 602
ace example with artificial data

set 309
ANOVA of coagulation data

570
ANOVA of gun data 629
ANOVA of penicillin yield data

578
ANOVA of poison data 591
ANOVA table of wafer data

626
avas with artificial data set 313
binomial model of Salk vaccine

trial data 186
binomial test with roulette 184
chi-squared test on propranolol

drug data 196
chi-squared test on Salk vaccine

data 195
coplot of ethanol data 441
correlation of phone and

housing starts data 149
developing a model of auto data

14
Fisher’s exact test on

propranolol drug data 196
goodness of fit tests for the

Michelson data 175
hypothesis testing of lung

cancer data 190
linear model of air pollution

data 239
logistic regression model of

kyphosis data 387
MANOVA of wafer data 654

Mantel-Haenszel test on cancer
study data 196

McNemar chi-squared test on
cancer study data 199

multiple regression with
ammonia loss data 247

new family for the negative
binomial distribution 430

new variance function for quasi-
likelihood estimation 426

one-sample speed of light data
129

paired samples of shoe wear
data 144

parameterization of scores data
619

perspective plot of fitted data
452

Poisson regression model of
solder.balance data 407

probit regression model of
kyphosis data 404

proportions test with roulette
185

quasi-likelihood estimation of
leaf blotch data 426

quasi-likelihood estimation of
solder.balance data 416

repeated-measure design
ANOVA of drug data 658

split-plot design ANOVA of
rubber plant data 656

two-sample weight gain data
137

variance components model of
pigment data 665

weighted regression of course
revenue data 261

expected value 112
of a random variable 54

exploratory data analysis 121
four plot function 124
interaction 582
phone and housing starts data

151
704

Index
plots 5
serial correlation 124
shoe wear data 145
speed of light data 130
time series function 124
weight gain data 137

exponential distribution 57, 76
random number generation 86
relation to gamma distribution

77
relation to Weibull distribution

77

F
fac.design function 579, 602
factorial effects 633
factors 4

adding contrasts 625
creating from continuous data

213
levels 4
parametrization 39
plotting 387, 409, 582
setting contrasts 42, 43

family functions 383, 425
binomial 382, 387, 404
creating a new family 425
in generalized additive models

386
inverse link function 421
Poisson 383, 407
quasi 383

F distribution 57, 67
first derivatives 548
fisher.test function 192
Fisher’s exact test 193, 196
fitted.values function

abbreviated fitted 575
fitted function 8, 575, 576, 585,

596, 612
fitted values

ANOVA models 585, 596, 599,
611

extracting 8

lm models 242
fitting methods

formulas 37
functions, listed 8
missing data filter functions 47
optional arguments to functions

46
specifiying data frame 46
subsetting rows of data frames

46
weights 46

fitting models 554
 fixed coefficients, See offsets
formula function 31
formulas 28–45, 545

automatically generating 249
categorical variables 30, 33, 34
changing terms 44, 45
conditioning plots 441
continuous variables 30, 33, 34
contrasts 39
expressions 30
fitting procedures 37
generating function 31
implications 546
interactions 32, 33, 34
intercept term 30
linear models 239
matrix terms 30
nesting 33, 34, 35
no intercept 424
offsets 424
operators 29, 31, 32, 34, 36
polynomial elements 277
simplifying 546
specifying interactions 595, 606,

609
syntax 31, 36
updating 44, 45
variables 29, 30

friedman.test function 663
Friedman rank sum test 662, 663
F-statistic

linear models 241
F statistics 416
705

Index
F test 416
F-test

local regression models 458
fuel.frame data 674
fuel consumption problem 690

G
gain.high data set 137
gain.low data set 137
gam function 385, 387, 404, 407

available families 386
binomial family 394
family argument 387, 404, 407

gam function 8, 24
gam function

returned object 303
gamma distribution 57, 77
gamma function 66, 67, 77

definition 64
 GAMs, see generalized additive

models
Gaussian distribution. See normal

distribution
Gaussian mean

one-sample test of 224
generalized additive models

algorithm 12, 301
analysis of deviance tables 395
ANOVA tables 306
contrasted with generalized

linear models 400
degrees of freedom 303
deviance 418
fitting function 8
link function 385
lo function 386
logistic regression 394
marginal fits 421
mathematical definition 385
plotting 396
prediction 420
residual deviance 302
residuals 418
s function 386

smoothing functions 385, 386
summary of fit 394, 395, 397

generalized linear models
adding terms 390
algorithm 11
analysis of deviance tables 416
canonical links 384
composite terms 422
contrasted with generalized

additive models 400
deviance 418
dispersion parameter 383, 411,

416
fitting function 8
fixing coefficients 424
logistic regression 387
logit link function 382
log link function 383
mathematical definition 381
plotting 390, 412
Poisson regression 407
prediction 420
probit link function 382
probit regression 404
quasi-likelihood estimation 383,

415
residuals 418
safe prediction 422
specifying offsets 424
summary of fit 388, 400
using the gam function 385

geometric distribution 57, 84
relation to negative binomial

distribution 84
glm.links data set 425
glm.variances data set 425
glm function 387, 404, 407

algorithm 384, 415
available families 383
binomial family 382
family argument 387, 404, 407
Poisson family 383
quasi family 383
residuals component 418

glm function 8
706

Index
 GLMs, see generalized linear
models

 GOF. See goodness of fit tests
goodness-of-fit measure

algorithm 307
goodness of fit tests 160

chi-square 160, 165, 174, 177
comparison of one-sample tests

174
composite 174
conservative tests 175
Kolmogorov-Smirnov 160, 168,

174, 178
one-sample 160, 165, 168, 172
Shapiro-Wilk 160, 172, 174, 175
two-sample 160, 168, 178

gradient attribute 549
groupData class 465
grouped datasets 465
guayule data set 209, 656
gun data set 629, 634

H
half-normal QQ-plots 610
Helmert contrasts 39
hessian attribute 550
hist function 408
hist function 5, 575, 584, 595
histograms 5, 123, 575, 584, 595
horshft argument 528
Hotelling-Lawley trace test 654
Huber psi functions

for M estimates of location 110
Huber rho functions

for tau estimates of scale 113
hypergeometric distribution 57, 74
hypothesis testing 120, 126

goodness of fit 160
one sample proportions 184
p-values 154
three sample proportions 190
two sample proportions 186

I
identify function 20
identifying plotted points 20
I function 398
importance

in ppreg 324
inner covariates 465
interaction.plot function 582,

594
interactions 320

checking for 582, 594
specifying 32, 595, 606
specifying order 609

intercept 30
no-intercept model 424

intercept-only model 255
interquartile range

of a probability distribution 55
of a sample 101

IQR. See interquartile range
is.random function 664
iteratively reweighted least squares

384, 415
score equations 384

K
Kendall’s t measure 154, 155
kernel functions 295, 296
kernel-type smoother

algorithm 295
Kolmogorov-Smirnov goodness of

fit test 160
comparison with other one-

sample tests 174
distributions 169
hypotheses tested 168
interpretation 168
mathematical definition 168
one-sample 168
two-sample 168, 178

kruskal.test function 662
Kruskal-Wallis rank sum test 662
ks.gof function 160, 176
707

Index
alternative argument 169
distribution argument 169
estimating parameters 175
one-sample 169
two-sample 178

ksmooth function 295
kernels available 295

 KS test. See Kolmogorov-Smirnov
goodness of fit test

kurtosis
of a probability distribution 55
of a sample 104

kurtosis function 104
kyphosis data set 387, 404
kyphosis data set 5
kyphosis data set 213

L
l1fit function 370
L1 regression 370

algorithm 370
Laplace distribution. See double

exponential distribution
least absolute deviation regression

see L1 regression
least squares regression 239

algorithm 367
least squares regression,

mathematical representation 276
least squares vs. robust fitted model

objects 340
least trimmed squares regression

algorithm 367
breakdown point 369

leave-one-out residuals 294
level of significance 126
levels

experimental factor 570
likelihood models 544
linear dependency, see correlation
linear mixed-effects models

fitting 479
model definitions 479

linear models

adding terms 255
algorithm 10
confidence intervals 272
diagnostic plots 242, 243, 249,

253
dropping terms 251
fitting function 8, 239, 280
intercept-only model 255
mathematical definition 381
modifying 251, 260
pointwise confidence intervals

272
polynomial regression 275
predicted values 270
selecting 251, 257
serial correlation in 245
simultaneous confidence

intervals 272
stepwise selection 257
summary of fitted model 241
updating 260

linear models see also generalized
linear models

linear predictor 385, 420
mathematical definition 381

linear regression 237
link functions

canonical 384
in generalized additive models

385
in generalized linear models

425
log 383
logit 382
mathematical definition 381
probit 382, 425

lme function
advanced fitting 505
arguments 481

lme objects
analysis of variance 486
extracting components 489
ploting 487
predicting values 491
printing 483
708

Index
summarizing 484
lm function 8, 18, 240

multiple regression 248
subset argument 21

lm function 239, 280
arguments 249
polynomial regression 277

lmRobMM function 335
locally weighted regression

smoothing 290, 434
algorithm 291

local maxima and minima 529
local regression models 12, 434

diagnostic plots 446
diagnostic plots for 436
dropping terms 455
fitting function 8
improving the model 455
multiple predictors 446
one predictor 435
parametric terms 455
plotting 452
predicted values 452
returned values 435

local regression smoothing 394
location.m function 111
loess 290

scatterplot smoother 290
scatterplot smoothing 291

loess.smooth function 291
loess function 8, 435, 436, 453
loess models see local regression

models
loess smoother function 301
lo function 386, 394
lo function 301
logistic distribution 57, 78
logistic regression 387

analysis of deviance tables 389,
395

binary response 402
contrasted with probit

regression 405
Cp statistic 390
factor response 402

logit link function 382
numeric response 402
tabulated response 402
t-tests 389
using the gam function 386, 394

logit link function
mathematical definition 382

log link function
mathematical definition 383

lognormal distribution 57, 80
lprob function 546, 549
ltsreg function 367
lung cancer study 189

M
MAD. See median absolute

deviation
mad function 101
make.family function 425, 430
Mann-Whitney test statistic. See

Wilcoxon test
MANOVA 654

repeated-measures designs 660
test types available 654

manova function 654
Mantel-Haenszel test 193, 196
maximum

of a sample 98, 105
maximum likelihood estimate

for variance components
models 665

maximum likelihood method 479,
486

mcnemar.test function 199
McNemar chi-squared test 193, 199
mean 119

computing median absolute
deviation 100

computing sample moments
103

computing sample variance 99
confidence intervals 107
of a probability distribution 54
of a sample 95, 105, 110
709

Index
of Poisson distribution 72
standard deviation 106
standard error 106, 107
trimmed mean 96

mean absolute deviation
of a random variable 54

mean function 95
trimmed mean 96

median 124
computing median absolute

deviation 100
of a probability distribution 55
of a sample 96, 105, 110

median absolute deviation (MAD)
100

computing A estimates of scale
112

computing M estimates of
location 111

computing tau estimates of scale
113

median function 97
M estimates of location 110

asymptotic variance 112
computing A estimates of scale

112
computing tau estimates of scale

113
M-estimates of regression 372

fitting function 372
Michaelis-Menten relationship 543
mich data set 175
mich data set

created 130
Michelson speed-of-light data 129,

175
minimum

of a sample 98, 105
minimum sum 526
minimum-sum algorithm 544
minimum sum function 534
minimum sum-of-squares 526
missing data

filters 47
mixed-effects model 463

MM-estimate 335
mode

of a probability distribution 55
of a sample 97

model
mixed-effects 463
nonlinear mixed-effects 493

model.tables function 577
model.tables function 630
model data frame 579, 592, 604
models 28–45

data format 4
data type of variables 9
development steps 3
example 14
extracting information 8
fitting functions 8
iterative process 14
missing data 47
modifying 9
nesting formulas 33, 34
paradigm for creating 8
parameterization 34
plotting 9
prediction 9
specifying all terms 32
specifying interactions 32
types available in Spotfire S+ 3

models see also fitting methods
moments

of a probability distribution 55
ms function 526, 534

arguments to 554
multicomp

Lmat argument 689
multicomp function

df.residual argument 679
using summary data 679
vmat argument 679

multicomp function 675
alpha argument 683
comparisons argument 680
control argument 681
est.check argument 694
focus argument 680
710

Index
simsize argument 683
valid.check option 682

multilevel linear mixed-effects
models 479

multiple comparisons 674
from summary data 679
with a control (MCC) 678

multiple regression 247
diagnostic plots 249

multiple R-squared
linear models 241

multivariate analysis of variance
see MANOVA

multivariate normal distribution 57,
82

N
namevec argument 553
negative binomial distribution 57,

84
in generalized linear models

430
nesting formulas 33, 34
nlimb function 530
nlme function

advanced fitting 505
Arguments 494

nlme function 493, ??–520
nlme objects

analysis of variance 501
extractnig components 504
plotting 501
predicting values 502
printing 497
summarizing 499

nlminb function 532
nlregb function 538
nls function 526, 537

arguments to 554
nlsList function 513
nlsList function ??–520
nnls.fit 536
nnls.fit function 535

nonlinear least-squares algorithm
545

nonlinear mixed-effects models
fitting 493
model definition 493

nonlinear models 526
nonnegative least squares problem

535
nonparametric methods 121
nonparametric regression

ace 307
normal (Gaussian) distribution 57,

61
Central Limit Theorem 63, 106
in probit regression 382
lognormal 80
multivariate 57, 82
random number generation 89
stable 82
standard 62

nregb function 536
null hypothesis 126

completely specified
probabilities 186, 187

equal-probabilities 186, 187
null model 255, 390

O
observation weights

in ppreg 326
offset function 424
offsets

in generalized linear models
424

oil.df data set 337
one-sample test

binomial proportion 229
Gaussian mean 224

one-way layout 570, 574
overall mean plus effects form

576
robust methods 662

- operator
formula 32
711

Index
operators
formula 29, 31, 32, 34, 36, 595,

606, 609
optimise function 529
optimization functions 527
options function 43
outer covariates 465
outer function 421
outliers 118

checking for 575, 576, 582
identifying 20
sensitivity to 581

over-dispersion 416
in regression models 415

overparameterized models 691

P
paired comparisons 144
paired t-test 148
pairs function 5, 439

linear models 253
pairs function 247
pairwise scatter plots

see scatterplot matrices
parameter function 547
parametrized data frames 547
param function 547
PDF. See probability density

function
pdMat classes 505
peaks function 529
Pearson product-moment

correlation 154
Pearson residuals 418
pen.design data frame

converted to model data frame
580

created 579
pen.df data frame

created 579
penicillin yield data 578, 579
perspective plots 439

local regression models 452
perspective plots, creating grid 452

persp function 421
phone.gain data set 151
phone increase data 149
pigment data 665
pigment data set 665
Pillai-Bartlett trace test 654
pilot.design data frame

created 608
pilot.df data frame

created 609
pilot.yield vector 608
pilot plant data 608
ping-pong example 539, 548, 551,

558
plot.design function 572, 580,

581, 594, 604
plot.factor function 387, 409
plot.factor function 573, 581,

594, 605
plot.gam function 392, 396, 413
plot.glm function 390, 412

ask argument 393
plot function 5, 9
plots

autocorrelation plot 152
boxplots 123, 387, 409, 573,

582, 594
conditioning plots 7, 9, 441
density plot 123
density plots 123
diagnostic 436

for ANOVA 595, 611
diagnostic for ANOVA 575
exploratory data analysis 5, 123
factor plots 387, 409
histograms 5, 123, 575, 584, 595
interactively selecting points 20
normal probability plot 9
perspective 439
qq-plots 123
quantile-quantile 5, 584, 595,

610, 611
quantile-quantile plot 123
quantile-quantile plots 575
scatterplot matrices 5, 439
712

Index
surface plots 421
plotting

design data frames 580
factors 387, 409, 582
fitted models 9
generalized additive models 396
generalized linear models 390,

412
linear models 243
local regression models 436,

453
residuals in linear models 243

point estimates 156
pointwise confidence intervals

linear models 272
pointwise function 272
poison data 591, 592
poisons.design data set

created 592
poisons.df data frame

created 592
Poisson distribution 57, 71

in Poisson regression 383
mean 72

Poisson family 407
log link function 383

Poisson process 72, 76, 77, 430
Poisson regression 407

analysis of deviance tables 410,
411

log link function 383
using the gam function 386

poly.transform function 277
poly function 277
polynomial contrasts 40
polynomial regression 277
polynomials

formula elements 277
orthogonal form transformed to

simple form 277
polyroot function 528
positive-definite matrices 505
power law 600
ppreg

backward stepwise procedure
324

forward stepwise procedure 322
model selection strategy 324
multivariate response 326

ppreg function 318
examples 320

predict.gam function
safe prediction 423
type argument 420

predict.glm function
type argument 420

predicted response 9
predicted values 452
predict function 9, 25

linear models 270, 272
returned value 270

prediction 25
generalized additive models 420
generalized linear models 420
linear models 270
safe 422

predictor variable 5
probability

definition 51
probability density curves 123
probability density function 52

computing 57
See also probability

distributions
probability distributions 51, 53

beta 76
binomial 69, 182
Cauchy 79
chi-square 57, 64
comparing graphically 161
computing 56
empirical 161
exponential 76, 86
F 67
gamma 77
geometric 84
hypergeometric 74
listed 57
logistic 78
713

Index
lognormal 80
multivariate normal 82
negative binomial 84
normal (Gaussian) 61, 89, 118
Poisson 71
range of standard normals 81
stable 82
t 65
uniform 56, 60
Weibull 77
Wilcoxon rank sum statistic 56,

57, 85
probit link function 425

mathematical definition 382
probit regression 404

contrasted with logistic
regression 405

probit link function 382
using the gam function 386

product development data 602
profile function 561
profile projections 560
profiles for ms 561
profiles for nls 561
profile slices 560
profile t function 561
profiling 560
projection pursuit regression

algorithm 318, 320
prop.test function 185, 186
proportions 182

confidence intervals 185, 188
one sample 184
three or more samples 189
two samples 186

propranolol data 194
puromycin experiment 542
p-values 126, 128
pwilcox function 56

Q
qchisq function 57
qqnorm function 5, 9, 575, 584, 595,

610

qqnorm function
linear models 243

qqplot function 178
qq-plots

see quantile-quantile plots
quantile function

used to compute quartiles 101
quantile-quantile plots 5, 123

full 611
half-normal 610
residuals 575, 584, 595, 611

quantiles
computing 57
of a probability distribution 55

quartiles 124
of a probability distribution 55
of a sample 101, 105

quasi family 383
quasi-likelihood estimation 383, 415

defining a new variance
function 426

R
randomized blocks 578
random number generation 56, 86

double exponential (Laplace) 87
exponential 86
normal (Gaussian) 89

random variable 52
continuous 52, 60, 76
discrete 52, 69, 84

range
of a sample 98, 105
of standard normal random

variables 81
range function 98
rat growth-hormone study 678, 693
regression

diagnostic plots 242
generalized additive models 385
generalized linear models 381
least absolute deviation 370
least squares 239
linear models 8, 10
714

Index
logistic 382, 386, 387
M-estimates 372
multiple predictors 247
one variable 239
overview 237
Poisson 383, 386, 407
polynomial terms 275
probit 382, 386, 404
quasi-likelihood estimation 383,

415
robust techniques 333
simple 239
stepwise model selection 257
updating models 260
weighted 261

regression line 243
confidence intervals 272

regression splines 290
regression trees see also tree-based

models
repeated-measures designs 658
replicated factorial experiments 591
resid function 8, 575, 576, 585,

596, 612
 resid function, see residuals

function
residual deviance 302
residuals

ANOVA models 575, 584, 595,
599, 611

definition 239
deviance 418
extracting 8
generalized additive models 418
generalized linear models 418
local regression models 436
normal plots 243
Pearson 418
plotting in linear models 243
response 419
serial correlation in 245
working 418

residuals function 419
type argument 419

residuals function

abbreviated resid 8, 575
response

lm models 242
response residuals 419
response variable 5

logistic regression 402
response weights

in ppreg 326
restricted maximum likelihood

method (REML) 479
robust estimates 96, 100, 111

A estimates of scale 112
interquartile range (IQR) 101
median 96
median absolute deviation 100,

111, 112, 113
M estimates of location 110,

112, 113
mode 97
tau estimates of scale 113
trimmed mean 96

robust methods 121
robust regression 333

least absolute deviation 370
M-estimates 372

Roy’s maximum eigenvalue test 654
rreg function 372

weight functions 374
runif function 56

S
salk.mat data set 193
Salk vaccine trials data 186, 192, 193
sample function 60, 69
sample mean. See mean
sample sum of squares. See sum of

squares
sample variance. See variance
scale.a function 114
scale.tau function 114
scatterplot matrices 5, 247, 253, 439
scatter plots 146
scatterplot smoothers 237, 290

locally weighted regression 291
715

Index
score equations 384
scores.treat data set 619
scores data set 619
second derivatives 550
self-starting function ??–520

biexponential model 514
first-order compartment model

514
four-parameter logistic model

514
logistic model 515

SEM. See standard error
s function 386, 394
s function 301
shapiro.test function 172, 177

allowable sample size 172
Shapiro-Wilk test for normality 160,

175
comparison with other one-

sample tests 174
interpretation 172
mathematical definition 172

shoe wear data 143
simple effects comparisons 686
simultaneous confidence intervals

273
linear models 272

skewness
of a probability distribution 55
of a sample 103

skewness function 103
smooth.spline function 298
smoothers 237

comparing 299
cubic smoothing spline 290
cubic spline 298
kernel-type 290, 295
locally weighted regression 290
variable span 290, 292

smoothing functions 385
cubic B-splines 394
local regression smoothing 394

solder.balance data set 407
solder data set 209
soybean data 476–520

Spearman’s r measure 154, 155
splines

B-splines 298
cubic smoothing splines 298
degrees of freedom 298
regression 290

split-plot designs 656
stable distribution 57, 82
stack.df data set

defined 247
stack.loss data set 247
stack.x data set 247
standard deviation 119

of a probability distribution 54
of a sample 99
of the sample mean 106

standard error
linear models 241
of the sample mean 106, 107
predicted values 270

statistical inference 125
alternative hypothesis 126
assumptions 121
confidence intervals 125
counts and proportions 182
difference of the two sample

means 139
equality of variances 139
hypothesis tests 125
null hypothesis 126

status.fac data set 195
status data set 194
stdev function 99

used to compute standard error
107

step function 257
displaying each step 259

stepwise model selection 257
straight line regression 237
Student’s t-test 127

one-sample 133
paired test 147
two-sample 139

sum contrasts 40
summarizing data 5
716

Index
summary.gam function 394, 397
summary.glm function 388, 400

disp argument 411
dispersion component 416

summary function 105
generalized additive models

394, 397
generalized linear models 388,

400
summary function 5, 9, 23, 241

ANOVA models 606
sum of squares

of a sample 99, 100
super smoother 312, 317, 323
supersmoother 292
supsm function 292
supsmu

use with ppreg 323
surface plots 421
symbolic differentiation 551

T
t.test function 108
t.test function 133, 139, 147
table function 402

used to compute modes 97
table function 195
tau estimates of scale 113
t distribution 57, 65

computing confidence intervals
108

relation to Cauchy distribution
79

test.vc data set 667
textbook parameterization of the lm

model 689
t measure of correlation 154, 155
Toothaker’s two-factor design 686
transformations

variance stabilizing 312
treatment 570

ANOVA models 574
treatment contrasts 39

tree-based models
fitting function 8

tree function 8
tri-cube weight function 291
trimmed mean 96
t-tests

see Student’s t-test
tukey.1 function 586

defined 589
Tukey’s bisquare functions

for A estimates of scale 112
for M estimates of location 110

Tukey’s method 677
Tukey’s one degree of freedom 586,

588
Tukey-Kramer multiple comparison

method 677
two-way layout

additive model 583
details 600
multiplicative interaction 586
power law 600
replicated 591–601
replicates 594, 596
robust methods 663
unreplicated 578–590
variance stabilizing 597, 599

U
unbiased estimates

sample mean 95
sample variance 99, 100

under-dispersion
in regression models 415

uniform distribution 56, 57, 60
random number generation 86

uniroot function 528
update function 9, 44, 437, 455

linear models 260
updating models 9

linear models 260
local regression models 437,

455
717

Index
V
var.test function 139
varcomp function 8
varcomp function 665
varFunc classes 280, 507
var function 99

computing biased/unbiased
estimates 100

computing the sum of squares
100

SumSquares argument 100
variables

continuous 30
variance 119

biased/unbiased estimates 99
of a probability distribution 54
of a sample 99, 106

variance components models 664
estimation methods 665
maximum likelihood estimate

665
MINQUE estimate 665
random slope example 666
restricted maximum likelihood

(REML) estimate 665
winsorized REML estimates

666
variance functions 505

in generalized additive models
385

in generalized linear models
381, 425

in logistic regression 382

in Poisson regression 383
in probit regression 382

variance stabilizing 597, 599
Box-Cox analysis 601
least squares 601

vershft argument 528

W
wafer data 626
wafer data set 626
wave-soldering skips experiment

540
wear.Ascom data set 145
wear.Bscom data set 145
Weibull distribution 57, 77
weighted regression 46, 237, 261
weight gain data 136
wilcox.test 128
wilcox.test function 135, 139, 141,

148
Wilcoxon test 128, 129

one-sample 135
paired test 148
two-sample 85, 141

Wilks’ lambda test 655
working residuals 418
 W-statistic. See Shapiro-Wilk test

for normality

Y
yield data set

created 579
718

	Important Information
	TIBCO Spotfire S+ Books
	Guide to Statistics Contents Overview
	Volume 1 Introduction
	Estimation and Inference
	Regression and Smoothing
	Analysis of Variance
	Volume 2 Multivariate Techniques
	Survival Analysis
	Other Topics

	Preface
	Introduction to Statistical Analysis in Spotfire S+
	Introduction
	Developing Statistical Models
	Data Used for Models
	Data Frame Objects
	Continuous and Discrete Data
	Summaries and Plots for Examining Data

	Statistical Models in Spotfire S+
	The Unity of Models in Data Analysis

	Example of Data Analysis
	The Iterative Process of Model Building
	Exploring the Data
	Fitting the Model
	Fitting an Alternative Model
	Conclusions

	Specifying Models in Spotfire S+
	Introduction
	Basic Formulas
	Continuous Data
	Categorical Data
	General Formula Syntax

	Interactions
	Continuous Data
	Categorical Data
	Nesting
	Interactions Between Continuous and Categorical Variables

	The Period Operator
	Combining Formulas with Fitting Procedures
	The data Argument
	Composite Terms in Formulas

	Contrasts: The Coding of Factors
	Built-In Contrasts
	Specifying Contrasts

	Useful Functions for Model Fitting
	Optional Arguments to Model-Fitting Functions
	References

	Probability
	Introduction
	Important Concepts
	Random Variables
	Probability Density and Cumulative Distribution Functions
	Mean
	Variance and Deviation
	Quantiles
	Moments

	Spotfire S+ Probability Functions
	Random Number Generator r
	Probability Function p
	Density Function d
	Quantile Function q

	Common Probability Distributions for Continuous Variables
	Uniform Distribution
	Normal Distribution
	Chi-Square Distribution
	t Distribution
	F Distribution

	Common Probability Distributions for Discrete Variables
	Binomial Distribution
	Poisson Distribution
	Hypergeometric Distribution

	Other Continuous Distribution Functions in Spotfire S+
	Beta Distribution
	Exponential Distribution
	Gamma Distribution
	Weibull Distribution
	Logistic Distribution
	Cauchy Distribution
	Lognormal Distribution
	Distribution of the Range of Standard Normals
	Multivariate Normal Distribution
	Stable Family of Distributions

	Other Discrete Distribution Functions in Spotfire S+
	Geometric Distribution
	Negative Binomial Distribution
	Distribution of Wilcoxon Rank Sum Statistic

	Examples: Random Number Generation
	Inverse Distribution Functions
	The Polar Method

	References

	Descriptive Statistics
	Introduction
	Summary Statistics
	Measures of Central Tendency
	Measures of Dispersion
	Measures of Shape
	The summary Function

	Measuring Error in Summary Statistics
	Standard Error of the Mean
	Confidence Intervals

	Robust Measures of Location and Scale
	M Estimators of Location
	Measures of Scale Based on M Estimators

	References

	Statistical Inference for One- and Two-Sample Problems
	Introduction
	Background
	Exploratory Data Analysis
	Statistical Inference
	Robust and Nonparametric Methods

	One Sample: Distribution Shape, Location, and Scale
	Setting Up the Data
	Exploratory Data Analysis
	Statistical Inference

	Two Samples: Distribution Shapes, Locations, and Scales
	Setting Up the Data
	Exploratory Data Analysis
	Statistical Inference

	Two Paired Samples
	Setting Up the Data
	Exploratory Data Analysis
	Statistical Inference

	Correlation
	Setting Up the Data
	Exploratory Data Analysis
	Statistical Inference

	References

	Goodness of Fit Tests
	Introduction
	Cumulative Distribution Functions
	The Chi-Square Goodness-of-Fit Test
	The Kolmogorov-Smirnov Goodness-of-Fit Test
	The Shapiro-Wilk Test for Normality
	One-Sample Tests
	Comparison of Tests
	Composite Tests for a Family of Distributions

	Two-Sample Tests
	References

	Statistical Inference for Counts and Proportions
	Introduction
	Proportion Parameter for One Sample
	Setting Up the Data
	Hypothesis Testing
	Confidence Intervals

	Proportion Parameters for Two Samples
	Setting Up the Data
	Hypothesis Testing
	Confidence Intervals

	Proportion Parameters for Three or More Samples
	Setting Up the Data
	Hypothesis Testing
	Confidence Intervals

	Contingency Tables and Tests for Independence
	The Chi-Square and Fisher Tests of Independence
	The Chi-Square Test of Independence
	Fisher’s Exact Test of Independence
	The Mantel- Haenszel Test of Independence
	McNemar’s Test for Symmetry Using Matched Pairs

	References

	Cross-Classified Data and Contingency Tables
	Introduction
	Choosing Suitable Data Sets
	Cross-Tabulating Continuous Data
	Cross-Classifying Subsets of Data Frames
	Manipulating and Analyzing Cross-Classified Data

	Power and Sample Size
	Introduction
	Power and Sample Size Theory
	Normally Distributed Data
	One-Sample Test of Gaussian Mean
	Comparing Means from Two Samples

	Binomial Data
	One-Sample Test of Binomial Proportion
	Comparing Proportions from Two Samples

	References

	Regression and Smoothing for Continuous Response Data
	Introduction
	Simple Least-Squares Regression
	Diagnostic Plots for Linear Models
	Other Diagnostics

	Multiple Regression
	Adding and Dropping Terms from a Linear Model
	Choosing the Best Model-Stepwise Selection
	Updating Models
	Weighted Regression
	Example: Weighted Linear Regression
	Observation Weights vs. Frequencies

	Prediction with the Model
	Confidence Intervals
	Polynomial Regression
	Generalized Least Squares Regression
	Example: The Ovary Data Set
	Manipulating gls Objects

	Smoothing
	Locally Weighted Regression Smoothing
	Using the Super Smoother
	Using the Kernel Smoother
	Smoothing Splines
	Comparing Smoothers

	Additive Models
	More on Nonparametric Regression
	Alternating Conditional Expectations
	Additivity and Variance Stabilization
	Projection Pursuit Regression

	References

	Robust Regression
	Introduction
	Overview of the Robust MM Regression Method
	Key Robustness Features of the Method
	The Essence of the Method: A Special M-Estimate
	The lmRobMM Function
	Comparison of Least Squares and Robust Fits
	Robust Model Selection

	Computing Robust Fits
	Example: The oilcity Data
	Least Squares and Robust Fits
	Least Squares and Robust Model Objects

	Visualizing and Summarizing Robust Fits
	The plot Function
	The summary Function

	Comparing Least Squares and Robust Fits
	Comparison Objects for Least Squares and Robust Fits
	Visualizing Comparison Objects
	Statistical Inference from Comparison Objects

	Robust Model Selection
	Robust F and Wald Tests
	Robust FPE Criterion

	Controlling Options for Robust Regression
	Efficiency at Gaussian Model
	Alternative Loss Function
	Confidence Level of Bias Test
	Resampling Algorithms

	Theoretical Details
	Initial Estimates
	Loss Functions
	Robust R-Squared
	Robust Deviance
	Robust F Test
	Robust Wald Test
	Robust FPE (RFPE)
	Breakdown Points

	Other Robust Regression Techniques
	Least Trimmed Squares Regression
	Least Median Squares Regression
	Least Absolute Deviation Regression
	M-Estimates of Regression
	Comparison of Least Squares, Least Trimmed Squares, and M-Estimates

	References

	Generalizing the Linear Model
	Introduction
	Generalized Linear Models
	Generalized Additive Models
	Logistic Regression
	Fitting a Linear Model
	Fitting an Additive Model
	Returning to the Linear Model
	Legal Forms of the Response Variable

	Probit Regression
	Poisson Regression
	Quasi-Likelihood Estimation
	Residuals
	Prediction from the Model
	Predicting the Additive Model of Kyphosis
	Safe Prediction

	Advanced Topics
	Fixed Coefficients
	Family Objects

	References

	Local Regression Models
	Introduction
	Fitting a Simple Model
	Diagnostics: Evaluating the Fit
	Exploring Data with Multiple Predictors
	Conditioning Plots
	Creating Conditioning Values
	Constructing a Conditioning Plot
	Analyzing Conditioning Plots

	Fitting a Multivariate Loess Model
	Looking at the Fitted Model
	Improving the Model

	Linear and Nonlinear Mixed-Effects Models
	Introduction
	Representing Grouped Data Sets
	The groupedData Class
	Example: The Orthodont Data Set
	Example: The Pixel Data Set
	Example: The CO2 Data Set
	Example: The Soybean Data Set

	Fitting Models Using the lme Function
	Model Definitions
	Arguments

	Manipulating lme Objects
	The print Method
	The summary Method
	The anova Method
	The plot method
	Other Methods

	Fitting Models Using the nlme Function
	Model Definition
	Arguments

	Manipulating nlme Objects
	The print Method
	The summary Method
	The anova Method
	The plot Method
	Other Methods

	Advanced Model Fitting
	Positive- Definite Matrix Structures
	Correlation Structures and Variance Functions
	Self-Starting Functions
	Modeling Spatial Dependence

	References

	Nonlinear Models
	Introduction
	Optimization Functions
	Finding Roots
	Finding Local Maxima and Minima of Univariate Functions
	Finding Maxima and Minima of Multivariate Functions
	Solving Nonnegative Least Squares Problems
	Solving Nonlinear Least Squares Problems

	Examples of Nonlinear Models
	Maximum Likelihood Estimation
	Nonlinear Regression

	Inference for Nonlinear Models
	Likelihood Models
	Least Squares Models
	The Fitting Algorithms
	Specifying Models
	Parametrized Data Frames
	Derivatives
	Fitting Models
	Profiling the Objective Function

	References

	Designed Experiments and Analysis of Variance
	Introduction
	Setting Up the Data Frame
	The Model and Analysis of Variance

	Experiments with One Factor
	Setting Up the Data Frame
	A First Look at the Data
	The One-Way Layout Model and Analysis of Variance

	The Unreplicated Two-Way Layout
	Setting Up the Data Frame
	A First Look at the Data
	The Two-Way Model and ANOVA (One Observation Per Cell)

	The Two-Way Layout with Replicates
	Setting Up the Data Frame
	A First Look at the Data
	The Two-Way Model and ANOVA (with Replicates)
	Method for Two-Factor Experiments with Replicates
	Method for Unreplicated Two-Factor Experiments
	Alternative Formal Methods

	Many Factors at Two Levels: 2k Designs
	Setting Up the Data Frame
	A First Look at the Data
	Estimating All Effects in the 2k Model
	Using Half- Normal Plots to Choose a Model

	References

	Further Topics in Analysis of Variance
	Introduction
	Model Coefficients and Contrasts
	Summarizing ANOVA Results
	Splitting Treatment Sums of Squares Into Contrast Terms
	Treatment Means and Standard Errors
	Balanced Designs
	2k Factorial Designs
	Unbalanced Designs
	Analysis of Unweighted Means

	Multivariate Analysis of Variance
	Split-Plot Designs
	Repeated-Measures Designs
	Rank Tests for One-Way and Two-Way Layouts
	The Kruskal- Wallis Rank Sum Test
	The Friedman Rank Sum Test

	Variance Components Models
	Estimating the Model
	Estimation Methods
	Random Slope Example

	Appendix: Type I Estimable Functions
	References

	Multiple Comparisons
	Overview
	The fuel.frame Data
	Honestly Significant Differences
	Rat Growth Hormone Treatments
	Upper and Lower Bounds
	Calculation of Critical Points
	Error Rates for Confidence Intervals

	Advanced Applications
	Adjustment Schemes
	Toothaker’s Two-Factor Design
	Setting Linear Combinations of Effects
	Textbook Parameterization
	Overparameterized Models
	Multicomp Methods Compared

	Capabilities and Limits
	References

	Index

