SPATIALSTATS
Version 1.5 Supplement

November 2008

TIBCO Spotfire Inc.

Proprietary
Notice

Copyright
Notice

ii

TIBCO Software Inc. owns both this software program and its
documentation. Both the program and documentation are
copyrighted with all rights reserved by TIBCO.

The correct bibliographical reference for this document is as follows:

SPATIALSTATS Version 1.5 Supplement, Data Analysis Products
Division, TIBCO Software Inc.

Printed in the United States.

Copyright © 2000, 2008 TIBCO Software Inc. All rights reserved.

CONTENTS

Chapter 1 Fitting Variograms

Chapter 2 Block Kriging
Block Kriging with the Coal Ash Data

Chapter 3 Summarizing and Plotting Spatial
Neighbor Objects

Chapter 4 Simulating Nonhomogeneous
Poisson Patterns

Appendix A: Data and Function Reference

13

iii

Contents

iv

Welcome to SPATIALSTATS 1.5 for UNIX

Congratulations on acquiring Version 1.5 of the SPATIALSTATS
package of Spotfire S+. This new version includes the following
functionality:

Variogram Fitting

Block Kriging

Summary and plot methods for spatial neighbor objects
Simulation of Nonhomogenous Poisson Point Patterns
New data set: G1asgow.SMR

Numerous Bug fixes: find.neighbor, quad.tree, sids
dataset names

Use this supplemental guide to:

Get started using the new features in SPATIALSTATS,

Access new help files for the new functions and for those that
were modified.

vi

FITTING VARIOGRAMS

Use the function variogram.fit to fit a theoretical variogram model
to an empirical variogram. The function uses the bounded non-linear
optimizer in Spotfire S+, nlminb, to ensure that the esti-
mated parameters are valid (typically non-negative). The objective

function that is minimized is the following weighted least squares

estimator proposed by Cressie (1985):

z w1 |

i=1
where |N(h)| is the number of distinct pairs in lag j, K is the number
of lags, y(h;) is the value of the empirical variogram at lag j, and
y(h;;8) is the known theoretical variogram model with unknown

parameters 0.

The variogram.fit function requires an object of class
"variogram" as its first argument. This is typically created by the
function variogram. Other arguments, all optional, include: param, a
named vector of parameters to optimize over; fun, the theoretical
variogram function; and Tower and upper, which specify the upper
and lower limits of parameters.

The function assumes that the first argument to fun is distance and all
the other arguments to fun are parameters to be estimated.

If the param argument is not provided then the function gets the
parameter names from fun. If fun is one of the known variogram
functions included with SPATIALSTATS (exp.vgram,
spher.vgram, gauss.vgram, power.vgram, or linear.vgram) and
initial parameter values are not supplied the function will set special
starting values appropriate for those functions. If fun is some other
variogram function and paramis not provided then it is set to a vector
of ones.

Chapter 1 Fitting Variograms

Here is how you would fit a spherical variogram model to the
iron.ore data set:

1. First compute and plot the empirical variogram:

> vg.iron <- variogram(residuals ~ loc(easting, northing),
+ data=iron.ore)
> plot(vg.iron)

2. From the plot you can guess at initial values for the variogram
model and use them when calling variogram.fit:

> vfit.iron <- variogram.fit(vg.iron, param=c(range=8.7,
+ si11=3.5, nugget=4.8), fun=spher.vgram)

3. Examine the resulting fit using the print and plot methods for
objects created by variogram.fit:

> vfit.iron
Function: spher.vgram
Parameters:

range sill nugget
5.184546 2.593336 5.722811
Objective function value: 26.69099
> plot(vfit.iron, add=T)

© o0
e) O
(o0] B O O O
/@/@/Q/@m ;0
@)
© © A
S
e
] <t -
(@)
N -
o -
0 2 4 6 8
distance

BLOCK KRIGING

Block kriging is the general term used for the prediction of the average
value of a random field over a segment, surface, or volume. The term
point kriging refers to prediction of the field at a point. The block value

over a block A at location X, is:

z(x,) = ﬁj’z(u)du
A

O z(u)

1

Zl—

”MZ

i
where | A | is the length, area or volume of the block A.

In SPATIALSTATS, block kriging is computed by the predict
method for objects of call "krige", thatis, predict.krige.

Block kriging is restricted to prediction of the average value over a
rectangular area. The integral over the rectangular block is
approximated by the average of the point prediction. You control the
number of points in the average by the nxy argument to
predict.krige.

The nxy argument consists of two values: the number of points in the
x direction, and the number of points in the y direction. Thus the
total number of points in the block average is nxy[11*nxy[2].

The size of the block is specifed by the b1ocksize argument which is
a vector of length two: the dimension of the block in the x direction
and the dimension in the y direction.

The predictions are calculated with the supplied prediction locations
in the center of the block.

Block Kriging
with the Coal
Ash Data

Whether you are using point or block kriging, you create the krige
object in the same way:

> kcoal <- krige(coal ~ Toc(x, y) + x + x*2, data =
+ coal.ash, covfun = spher.cov, range = 4.31, sill = 0.14,
+ nugget = 0.89)

Create a small data frame of prediction locations and compute both
block (over 2 x 2 blocks) and point kriging predictions at them:

> newdf <- data.frame(x = c(4.5,5.5,9.5,10.5), y =
+ ¢(7.5,13.5,9.5,18.5))
Block Kriging:
predict(kcoal, newdata = newdf, blocksize = c(2,2),
nxy = c(5,5))
X y fit se.fit
4.5 7.5 10.774804 0.2250666
5.5 13.5 10.061807 0.2239514
9.5 9.5 9.475169 0.2256258
10.5 18.5 8.838148 0.2247773
Point Kriging:
predict(kcoal, newdata = newdf)
X y fit se.fit
1 4.5 7.5 10.799256 0.9905583
2 5.5 13.5 10.068892 0.9903889
3 9.5 9.5 9.454931 0.9907360
4 10.5 18.5 8.811028 0.9905622

+ Vv

~ w o

A

The predicted values (fit) are very similar between the two as we
would expect. The standard errors are much smaller for the block
kriging since the predictions are averages.

SUMMARIZING AND
PLOTTING SPATIAL
NEIGHBOR OBJECTS

Functions for plotting (plot.spatial.neighbor) and summarizing
(summary.spatial.neighbor) were added to SPATIALSTATS.

The help files for these functions contain details for the new functions.
These functions are methods for the generic functions plot and
summary. They can be called as plot and summary if the first
argument given to them is an object of class "spatial.neighbor".

We illustrate these new functions here using the new spatial neighbor
data set Glasgow.neighbor and its associated data set,
Glasgow.SMR.

The data set consists of standardized mortality rates (SMR) for a
number of diseases in 87 community medicine areas in Glasgow,
Scotland. The neighbor relationships in Glasgow.neighbor are
based on contiguous community medicine areas. The GTlasgow.SMR
data frame also has columns labeled Easting and Northing
containing the coordinates for the center of each community
medicine area.

> summary(Glasgow.neighbor)

Matrix was NOT defined as symmetric

Number of Regions: 87

Average Number of Connections: 5.172414

Average Weight: 1

Least Number of Connections: 1 for Regions with Indices:
[1] 81

Maximum Number of Connections: 11 for Regions with Indices:
[1] 39

Missing Row Indices:

[1]1 "none"

Missing Column Indices:

[1]1 "none"

Indices of Regions with No Connections (islands):

[1]1 "none"

Chapter 3 Summarizing and Plotting Spatial Neighbor Objects

A spatial neighbor object contains indices only for points that are
neighbors; it does not contain the actual spatial locations. To use
plot.spatial.neighbor you need to supply the x and y
coordinates along with an object of class “spatial.neighbor”. For
plotting the Glasgow.neighbor use the Easting and Northing
values from Glasgow.SMR:

The plot draws line segments between locations that are defined as
neighbors.

> plot(Glasgow.neighbor, xcoord=Glasgow.SMR$Easting,
+ ycoord=Glasgow.SMR$Northing)

You can also use the add argument to plot.spatial.neighbor to
add the neighbor line segments to an existing plot.

ycoord

0.0 02 04 06 0.8

xcoord

The example below uses the scaled.plot function to first draw the
locations of the county seats from the North Carolina SIDS data
using an equal scales plot and then adds the lines connecting the
neighbors. There is also a scaled argument to
plot.spatial.neighbor to request an equal scaled plot to be
drawn directly.

> scaled.plot(sids$easting, sids$northing, pch=16)

> plot(sids.neighbor, xcoord=sids$easting,
+ ycoord=sids$northing, add=T, line.col=2)

o
s
N
e T s o o 8 o o0 o o 4
Q o e 4 ® o
[% e\ . oS8y | Sy 1'3 2 L
x @ = 2 o
& o @ o © o
o P p i\ - .n pe .
> § 7.“ ° e e e ae e < b © «
L3 e = °
e ¢ o [)
© ° °
g =t e
°
°
L
o A
100 200 300 400

Looking at the summary of the SPATIALSTATS object
sids.neighbor you can see that the two counties with no neighbors
shown in the plot are counties 28 and 48:

> summary(sids.neighbor)

Matrix was NOT defined as symmetric

Number of Regions: 100

Average Number of Connections: 4.020408

Average Weight: 0.1306507

Least Number of Connections: 1 for Regions with Indices:
[1] 10 16 67

Maximum Number of Connections: 8 for Regions with Indices:
[1] 21

Missing Row Indices:

[1] 28 48

Missing Column Indices:

[1] 28 48

Indices of Regions with No Connections (islands):

[1] 28 48

Chapter 3 Summarizing and Plotting Spatial Neighbor Objects

SIMULATING
NONHOMOGENEOUS
POISSON PATTERNS

The make.pattern function can simulate nonhomogeneous Poisson
patterns over rectangular regions. To do this you set the process
argument to be "poisson" and then supply the intensity function for
the Poisson process as the Tambda argument.

This should be a function of two arguments that is non-negative over
the rectangular region specified in boundary.

To simulate a nonhomogeneous Poisson with linear rate in the x
direction over a 10 x 10 square you use:

> linx <- function(x, y) 1.5%*x

> xy <- make.pattern(proc="poisson",
+ boundary=bbox(x=c(0,10),
+ y=c(0,10)), Tambda=Tinx)
> plot(xy)
S o
[c o IS OO@
O
O
© —OOO@O
> oX!
< T o
o O
~ |2 3
@] S
o 1 ©°08%

Chapter 4 Simulating Nonhomogeneous Poisson Patterns

10

The expected number of points for a Poisson process is the integral of
the intensity over the region. For the above example the integral over
the 10 x 10 square is 750.

Here is a homogeneous Poisson process with the same expected
number of points:

> plot(make.pattern(proc="poisson",
+ boundary=bbox(x=c(0,10),
+ y=c(0,10)), Tambda=7.5))

The nonhomogeneous Poisson process is simulated by a rejection
sampling method (Diggle, 1983). The algorithm requires the
maximum value of the intensity function over the region. This can be
supplied as the argument maxTambda to make.pattern. If it is not
supplied, a nonlinear optimization (using n1minb) is done to find this
maximum.

The algorithm proceeds by generating a homogenous Poisson process
with intensity max1ambda over the region. Then points are retained
with probability Tambda(x, y)/maxTambda.

Reference:

Diggle, Peter J. (1983). Statistical Analysis of Spatial Point Patterns.
Academic Press, London.

11

Chapter 4 Simulating Nonhomogeneous Poisson Patterns

12

Appendix: Data and Function Reference

APPENDIX A: DATA AND
FUNCTION REFERENCE

The functions and data sets described in this appendix are included
with SPATIALSTATS. The information in this appendix is also found
in the online help.

13

Appendix: Data and Function Reference

14

Appendix: Data and Function Reference

anisotropy.plot Explore Corrections For Geometric Anisotrag@gisotropy.plot

DESCRIPTION
Computes corrections for geometric anisotropy for two dimensional spatial data and plots variograms
based on the corrections.

USAGE
anisotropy.plot(formula=formula(data), data=sys.parent(),
subset, na.action, lag= <<see below>>
nlag=20, tol.lag=lag/2, maxdist= <<see below>>

angle=c(0, 45, 90, 135),

ratio=seq(1.25, 2, length = 4),

minpairs=6, method="classical",
smooth=T, plot.it=T, panel=panel.xyplot, ...)

REQUIRED ARGUMENTS
formula formula defining the response and the predictors. In general, its form is:

zZ"xX+y

Thez variable is a numeric response. Variableandy are the locations. All variables in the formula
must be vectors of equal length with no missing valtigs)(The formula may also contain expres-
sions for the variables, for examplgyt(count) , log(age+1) ori(2*x) . (Thel() is required
since ther operator has a special meaning on the right side of a formula.)

OPTIONAL ARGUMENTS
data an optional data frame in which to find the objects mentionégrimla
subset expression saying which subset of the rows of the data should be used in the fit. This can be a logical
vector (which is replicated to have length equal to the number of observations), or a numeric vector in-
dicating which observation numbers are to be included, or a character vector of the row names to be in-
cluded.
na.action a function to filter missing data. This is applied to th@lel.frame after anysubset argument has
been used. The default (witla.fail) is to create an error if any missing values are found. A possi-
ble alternative ima.omit , which deletes observations that contain one or more missing values.
lag anumeric value, the width of the lags. If missilag, is set tomaxdist/ nlag
nlag an integer, the maximum number of lags to calculate.
tol.lag a numeric value, the distance tolerance.
maxdist the maximum distance to include in the returned output. The default is half the maximum distance in
the transformed data.
angle a vector of direction angles (in degrees, clockwise from North) to consider as directions of anisotropy.
ratio a vector of ratios of anisotropy. These should all be greater than 1.
minpairs the minimum number of pairs of points (minimum valuerfey that must be used in calculating a vari-
ogram value. Ifp is less thaminpairs , that value is dropped from the variogram.
method a character string to select the method for estimating the variogram. The possible valdes-are
sical" for Matheron’s (1963) estimate atdbust" for Cressie and Hawkins (1980) robust estima-
tor. Only the first character of the string needs to be given.
smooth a logical flag, ifTRUE a loess smooth line is drawn for each variogram panglanél is supplied
then this value is ignored.
panel a panel function to be used in plotting the variogramslotfit=FALSE , this value is ignored.
plot.it a logical flag, ifTRUE a plot of all the variogram is drawn.
additional arguments to be passed down to the panel function for plotting.

15

Appendix: Data and Function Reference

16

VALUE
a data frame with columns:
distance the average distance for pairs in the lag.
gamma the variogram estimate.
np the number of pairs in each lag.
angle a factor denoting the angle for the geometric anisotropy.
ratio a factor with levels denoting the ratio for the geometric anisotropy.

SIDE EFFECTS
If plotit=TRUE (the default) the variogram for each combinatioramfle andratio is plotted.
The plot is drawn usingyplot

DETAILS
For each combination afngle andratio the locations are corrected for geometric anisotropy. The
correction consists of multipling each location paif] (,y[i]) by the symmetric 2 x 2 matria
whereA[1,1] =cos(angle)"2+ratio*sin(angle)"2 , A[1,2] =(1- ratio) * sin(angle) *
cos(angle) and A[2,2] =sin(angle)"2+ratio*cos(angle)"2 . See Journel and Huijbregts
(1978, pp 179-181). The variogram is then estimated using these corrected locations.
REFERENCES
Cressie, N. and Hawkins, D. M. (1980). Robust estimation of the variogvtathematical Geology
12, 115-125.
Journel, A. G. and Huijbregts, Ch. J. (197B)ining Geostatistics Academic Press, New York.
Matheron, G. (1963). Principles of geostatistiExonomic Geolog$8, 1246-1266.
SEE ALSO
loc , variogram , xyplot
EXAMPLES
anisotropy.plot(log(tcatch+1) ~ long + lat, data=scallops, lag=.075)
check.islands Detect Isolated Spatial Regions check.islands
DESCRIPTION
Given an object of classpatial.neighbor" detects spatial units that have no neighbors (islands).
USAGE

check.islands(x, remap=F)

REQUIRED ARGUMENTS
X an object of classpatial.neighbor"

OPTIONAL ARGUMENTS
remap logical flag: if there is an island, should we recode the indexing of the spatial contiguity matrix to elim-
inate the rows and columns with all zeroes? That is, should we renumber compowedts and
colid of the spatial neighbor object?

VALUE
if remap=FALSE the list of existing islands is returned. Otherwise, an object of ckss
tial.neighbor" with remappedow.id andcol.id

Appendix: Data and Function Reference

SIDE EFFECTS

the attribute'nregion” of the output may differ from that afwherremap=T.

SEE ALSO
spatial.neighbor , spatial.subset , Spatial.weights

EXAMPLES
sids.nhbr2 <- check.islands(sids.neighbor,remap=T)

find.neighbor Find the Nearest Neighbors of a Point find.neighbor

DESCRIPTION
Find the k nearest neighbors of a vectoin a matrix of data contained in an object of class
"quad.tree"

USAGE

find.neighbor(x, quadtree=quad.tree(x), k=1, metric="euclidean",
max.dist=NULL, drop.self=F)

REQUIRED ARGUMENTS

x a vector (or matrix) containing the multidimensional point(s) at which the nearest neighbors are de-
sired. The vector must have the same number of elements as the number of columns in the numeric
matrix used to construcfuadtree . If a matrix is used, the matrix must have the same number of
columns as the numeric matrix used to constyjuatitree , and nearest neighbors are found for each
row in the matrix.

OPTIONAL ARGUMENTS

quadtree

metric

max.dist

drop.self

VALUE

an object of classquad.tree” containing the sorted matrix of data for which a nearest neighbor
search is desired. Defaultsdoad.tree(x) if x is a matrix but it is required whenis a vector.

k the number of nearest neighbors to be found. If thexd&ahe same data that was used to construct
the 'guad.tree " object, therk = 1 results in each element having itself as its own nearest neighbor.

a character string giving the metric to be used when finding "nearest" neighbors. Partial matching is al-
lowed. Possible values aruclidean" , "city block" , and"maximum absolute value" for
thel,, |1, andl, norm, respectively. For two vectoxsandy, these are defined as:

lL=3Ix -yl

o= X0,
1
loo = miaXP(i =il

if max.dist is given, argumenk is ignored, and all of the neighbors within distane.dist of

each row inx are found.

a logical value, iffRUEthen rows wittdistances ~ equal to0 andindexl ==index2 (self neighbors)

are dropped from the returned object. This definition retains coincident points as neighbors although
their distance apart is zero. dfiadtree is not suppliedk=1, anddrop.self=T , a warning is printed

(since this results in nothing being returned) and the valkésodet ta2.

a matrix with three named columns:

17

Appendix: Data and Function Reference

index1
index2

distances

DETAILS

if x is a matrix, the row i for this nearest neighbor. *fis not a matrix, the value 1.

the row in the matrix from which the quad tree was formed for this nearest neighbor. If the quad tree
was formed from a matrix, then x[index1[i],] and y[index2[i],] are neighbors.

the corresponding nearest neighbor distances.

An efficient recursive algorithm is used to find all nearest neighbors. First the quad tree is traversed to
find the leaf with medians nearest the point for which neighbors are desired. Then all observations in
the leaf are searched to find nearest neighbors. Finally, if necessary, adjoining leaves are searched for
nearest neighbors.

REFERENCES

SEE ALSO

EXAMPLES

Friedman, J., Bentley, J. L., and Finkel, R. A. (1977). An algorithm for finding best matches in loga-
rithmic expected timeACM Transactions on Mathematical Softw&re&09-226.

guad.tree

X <- chind(sids$easting, sids$northing)
sids.nhbr <- find.neighbor(x, max.dist = 30)

Find the nearest neighbors for the Lansing hickories
hickory <- lansing[lansing[,3] == "hickory", 1:2]
hickory.nhbrl <- find.neighbor(hickory, k=2, drop.self=T)

Now find the closest maple for each hickory

maple <- lansing[lansing[,3] == "maple", 1:2]

hmn <- find.neighbor(hickory, quad.tree(maple))

and plot the tree locations with lines joing the neighbors

par(pty='s’)

plot(maple[,1], maple[,2], pch=16)

points(hickory[,1], hickoryl[,2], pch=1, col=2)

segments(hickory[hmn[,1],1], hickory[hmn[,1],2],
maple[hmn[,2],1], maple[hmn[,2],2])

Glasgow.neighbor Neighbors for Glasgow Mortality Rate DataGlasgow.neighbor

SUMMARY

An object of classspatial.neighbor" containing the neighbor specification among the 87 com-
munity medicine areas in Glasgow, Scotland. The standardized mortality rate (SMR) values for this
data are contained Blasgow.SMR .

DATA DESCRIPTION

SOURCE

18

Four hundred and fifty neighbor relationships are specified. The neighbor relationships are not sym-
metric. Seespatial.neighbor.object for a description of the data within an object of class
"spatial.neighbor”

The data are presented and analyzed in Haining (1990).

Appendix: Data and Function Reference

REFERENCES
Haining, R. (1990).Spatial Data Analysis in the Social and Environmental ScienCambridge Uni-
versity Press. Cambridge.

SEE ALSO
Glasgow.SMR .

Glasgow.SMR Standardized Mortality Rates for Glasgow Glasgow.SMR

SUMMARY
The Glasgow.SMR data frame contains standardized mortality rates for 87 community medicine areas
in Glasgow, Scotland for 1980-1982.

DATA DESCRIPTION
This data frame contains the following columns:
AllDeaths the standardized mortality rate (SMR) for all deaths.
Accidents the SMR for death by accidents.
Cancer the SMR for deaths due to cancer.
Respiratory the SMR for deaths due to respiratory disease accidents.
Heart the SMR for deaths due to ischaemic heart disease.
Cerebrovascular the SMR for deaths due to cerebrovascular disease.
Population the population (in 1000's).
Easting the x coordinate of the community medicine area (CMA) relative to an arbitrary origin, where the x-ax-
is is parallel to the latitude.
Northing the y coordinate of the CMA relative to an arbitrary origin, where the y-axis is parallel to the longitude.

DETAILS
The standardized mortality rate for a community medicine area is the observed deaths due to that cause
divided by the expected number of deaths given the age and sex combination in that area multiplied by
100.

SOURCE
The data are presented and analyzed in Haining (1990).

REFERENCES
Haining, R. (1990).Spatial Data Analysis in the Social and Environmental Scien€ambridge Uni-
versity Press. Cambridge.

SEE ALSO

Glasgow.neighbor

19

Appendix: Data and Function Reference

20

Kenv Compute Simulations ofhat Kenv

DESCRIPTION
Computeskhat (Lhat) for simulations of point processes. Returns upper and lower bounds, as well
as the average of all simulated values.

USAGE
Kenv(object, nsims=100, maxdist= <<see below>> ndist=100,
process="binomial", boundary=bbox(object), add=T, ...)
Lenv(object, nsims=100, maxdist= <<see below>> ndist=100,

process="binomial", boundary=bbox(object), add=T, ...)

REQUIRED ARGUMENTS
object an object of clas$pp" representing a spatial point pattern, or a data frame or matrix with first two
columns containing locations of a point pattern.

OPTIONAL ARGUMENTS
nsims integer. Number of desired simulations.
maxdist numeric value indicating the maximum distance at wixisht (or Lhat) should be estimated. De-
faults to half the length of a diagonal of the sample’s bounding box.
ndist desired number of default distances at which to comghuge (or Lhat). Default is100.
process a character string with one of five possible processes for the spatial arrangement of the resulting pat-
tern. This must be one dbinomial® , "poisson" , "cluster" , "Strauss" , or"SSI" . See the
help file formake.pattern for information on parameters for each process.
add logical flag: should the envelope be added to an already existing plisato{or Lhat for Lenv)? De-
faults toTRUE
other parameters as needed by the requested process.

VALUE
invisibly returns a list with 4 numeric vectors each representing:
dist the distances at which all values were computed.
lower the minimum of all resultinghat (or Lhat for Lenv) for the simulations.
upper the maximum of all resultinghat (or Lhat for Lenv) for the simulations.
average the average of all resultinghat (or Lhat for Lenv) for the simulations.

SIDE EFFECTS
if add=TRUEan envelope is added to an existing plokiat .

SEE ALSO
Khat , Lhat , make.pattern

EXAMPLES
Khat(bramble)
Kenv(bramble,nsims=50)
Lhat(lansing)
Lenv(lansing,nsims=50)

Appendix: Data and Function Reference

Khat Ripley’s K Function for a Spatial Point Pattern Object Khat
DESCRIPTION
Calculatex(t) , Ripley’s K function for a spatial point pattern.
USAGE
Khat(object, maxdist= <<see below>> ndist=100, boundary=bbox(object),
plot.it=T)

REQUIRED ARGUMENTS
object an object of clas%spp" representing a spatial point pattern, or a data frame or matrix with first two
columns containing locations of a point pattern.

OPTIONAL ARGUMENTS
maxdist numeric value indicating the maximum distance at wiicat should be estimated. Defaults to half
the length of a diagonal of the sample’s bounding box.
ndist desired number of default distances at which to comghée. Default is100. The distances for
which Khat will be estimated are calculated s&g)(0,maxdist,ndist) , bothmaxdist andndist
will change if not reasonable for the givelrject
boundary points defining the boundary polygon for the spatial point pattern. This version accepts only rectan-
gles, for whichboundary should be given as a list with named componexitsand"y" denoting the
corners of the rectangular region. For example, for the unit square the boundary could be given as
bbox(x=c(0,1),y=c(0,1)) , the bounding box of two diagonally opposed points. Defaults to a
rectangle covering the range of points.
plot.it logical flag: should the resultingestimates be plotted? DefaulflRUE

VALUE

a list containing components :

values atwo column matrix. The first column, namdiet , contains the distances at whichat was com-
puted, and the second column, narkadt , contains the values &fdist)

ndist number of distances returned. This could be smaller than its input value if the extent of the distances is
too large.
mindist ~minimum distance between any pair of points.
maxdev maximum deviation fronk(t)=t . See DETAILS.

SIDE EFFECTS
if plot.it=TRUE , a plot of the value oK(t) against distance will be produced on the current graph-

ics device.
DETAILS
Khat computes Ripley’s (1976) estimate of K(t) for a spatial point pattern:
K(t) = A*E[number of events distance t of an arbitrary eveht
whereA is the intensity of the spatial point pattern.
The theoretical K-function for a Poisson (completely spatially random) procesgt)is nt?, so
L(t) =VK(@)/ is equal tot, the distances. The default platg) versust. See functiorLhat for
estimation oL (t)
REFERENCES

Ripley, Brian D. (1976). The second-order analysis of stationary point procdsseaal of Applied

21

Appendix: Data and Function Reference

Probability, 13,255-266.

SEE ALSO
Kenv, Lhat .
EXAMPLES
lansing.spp <- as.spp(lansing)
lansing.khat <- Khat(lansing.spp)
Khat(wheat)
abline(0,1)
krige Ordinary and Universal Kriging krige
DESCRIPTION

Performs ordinary or universal kriging for two dimensional spatial data. The funpti®n
dict.krige can then be called to compute interpolation surfaces and prediction errors.

USAGE
krige(formula, data=sys.parent(), subset, na.action=na.fail,
covfun, nc=10000, ...)

REQUIRED ARGUMENTS
formula a formula describing the kriging variable and the spatial location variables and optionally a polynomial
trend surface. Its simplest form is:

z 7 loc(x,y)

wherez is the kriging variable and andy are the spatial locations, thatifi] is observed at the lo-
cation &i],y[i]). The right hand side must contain a call to the fundtion A polynomial trend
surface is of the form:

z " loc(x,y) + x+y+Xx2+y2

The polynomial must be in the same variables as the first two arguments usethén thection. A
constant term is always fit. All terms on the right hand side must be entered wigra Theloc
call can include argumendsigle andratio to correct for geometric anisotropy; see itiee help file.
Note that an evaluatéac object cannot be used formula
covfun a function that returns the distanced based covariance between two points. The first argument to the
function must be the distance. Additional parameters will be passed through the

OPTIONAL ARGUMENTS
data an optional data frame in which to find the objects mentionéuritula
subset expression saying which subset of the rows of the data should be used in the fit. This can be a logical
vector (which is replicated to have length equal to the number of observations), or a numeric vector in-
dicating which observation numbers are to be included, or a character vector of the row names to be in-
cluded.
na.action a function to filter missing data. This is applied to the datarinula after anysubset argument
has been used. The default (witlfail) is to create an error if any missing values are found. A
possible alternative isa.omit , which deletes observations that contain one or more missing values.
nc the number of points to use internally by the algorithm in approximating the distance-based covariance
function. Note: this argument has nothing to do with the number of observed points used in computing
the kriging. All observed points are used in computing kriging predictions.

22

Appendix: Data and Function Reference

additional named arguments can be passedvfan .

VALUE
an object of clas&rige" with components:
x the first spatial location vector i.e. the first argumeiddn function call informula .
y the second spatial location vector i.e. the second argumient ifunction call informula
coefficients the vector of coefficients for the trend surface. These are for the polynomial based on the scaled spatial
location vectors (see the DETAILS section).
residuals the vector of residuals from the trend surface.
call animage of the call that produced the object.

Other components are included that are usegtdajjct krige for computing interpolations.

DETAILS
The kriging system is solved using generalized least squares (see Ripley, 1981). The polynomial terms
are scaled to (-1, 1) internally to avoid numeric problemsgdhéicients component returned is
for these scaled terms.

This implementation of kriging does not handle multiple observations at a point.
Methods for objects of claskrige” includepredict andprint

REFERENCES
Cressie, Noel A. C. (1993)tatistics for Spatial Dat&Revised Edition. Wiley, New York.

Ripley, Brian D. (1981).Spatial StatisticsWiley, New York

SEE ALSO
exp.cov , loc , predict.krige

EXAMPLES
krige the Coal Ash data with a quadratic trend in the x direction
using a spherical covariance function:
kcoal <- krige(coal ~ loc(x, y) + x + X2, data = coal.ash,
covfun = spher.cov, range = 4.31, sill = 0.14, nugget = 0.89)
predictions over default 30 x 30 grid
pcoal <- predict(kcoal)
plot prediction surface
wireframe(fit ” x * y, data = pcoal,
screen = list(z = 300, x = -60, y = 0), drape = T)

Lhat Ripley’s K Function for a Spatial Point Pattern Object Lhat

DESCRIPTION
Calculated_(t)=sqrt(K(t)/pi) , whereK(t) is Ripley’s K function for a spatial point pattern and
L(t) is linear for a completely random point process.

USAGE
Lhat(object, maxdist= <<see below>> ndist=100, boundary=bbox(object),
plot.it=T)

REQUIRED ARGUMENTS

23

Appendix: Data and Function Reference

object an object of clas$spp" representing a spatial point pattern, or a data frame or matrix with first two
columns containing locations of a point pattern.

OPTIONAL ARGUMENTS
maxdist numeric value indicating the maximum distance at whicit should be estimated. Defaults to half
the length of a diagonal of the sample’s bounding box.
ndist desired number of default distances at which to compude. Default is100. The distances for
which Lhat will be estimated are calculated s&%(0,maxdist,ndist) , bothmaxdist andndist
will change if not reasonable for the givelject
boundary points defining the boundary polygon for the spatial point pattern. This version accepts only rectan-
gles, for whichboundary should be given as a list with named componexitsand"y" denoting the
corners of the rectangular region. For example, for the unit square the boundary could be given as
bbox(x=c(0,1),y=c(0,1)) , the bounding box of two diagonally opposed points. Defaults to a
rectangle covering the range of points.
plot.it logical flag: should the resultingestimates be plotted? DefaulfTRUE

VALUE

a list containing components :

values a two column matrix. The first column, callddt , contains the distances at whicat was com-
puted, and the second column, callédt , contains the values afdist)

ndist number of distances returned. This could be smaller than its input value if the extent of the distances is
too large.
mindist ~minimum distance between any pair of points.
maxdev maximum deviation froni(t)=t . See DETAILS.

SIDE EFFECTS
if plot.it=TRUE , a plot of the value of(t) against distance will be produced on the current graph-

ics device.
DETAILS
Khat computes Ripley’s (1976) estimate of K(t) for a spatial point pattern:
K (t) = A*E[number of events distance t of an arbitrary eveht
whereA is the intensity of the spatial point pattern.
The theoretical K-function for a Poisson (completely spatially random) procesét)is nt?, so
L(t) =VK(@)/is equal ta , the distances. The default plai$) versust which should approximate
a straight line for a homogeneous process with no spatial dependence. See firattifor estima-
tion of K(t)
REFERENCES
Ripley, Brian D. (1976). The second-order analysis of stationary point procdsseral of Applied
Probability 13,255-266.
SEE ALSO
Lenv, Khat .
EXAMPLES

lansing.spp <- as.spp(lansing)
lansing.khat <- Lhat(lansing.spp)

Lhat(wheat)
abline(0,1)

24

Appendix: Data and Function Reference

make.pattern Generate a Spatial Point Process make.pattern

DESCRIPTION

USAGE

Generates points in two-dimensional space given their desired spatial distribution.

make.pattern(n, process="binomial", object, boundary=bbox(x=c(0,1),
y=c(0,1)), lambda, maxlambda, radius, cpar)

REQUIRED ARGUMENTS
n integer denoting the desired number of points in the resulting object.

OPTIONAL ARGUMENTS

process

object

boundary

lambda

maxlambda

radius

cpar

VALUE

DETAILS

a character string with one of five possible processes for the spatial arrangement of the resulting pat-
tern. This must be one dbinomial" , "poisson" , "cluster" , "Strauss" , or "SSI" . See the
DETAILS section for each definition. Defaults"tonomial® for a completely spatially random pro-

cess conditioned to points withinboundary . Partial matching is allowed.

a spatial point pattern object. An object of cl&gs" . When this is given, the resulting pattern has

the samen and itsboundary is that same as the bounding boxbject

points defining the boundary polygon for the spatial point pattern. This version accepts only rectan-
gles, for whichboundary should be given as a list with named componetitsand"y" denoting the

corners of the rectangular region. For example, for the unit square the boundary could be given as

bbox(x=c(0,1),y=c(0,1)) , the bounding box of two diagonally opposed points. Defaults to
bbox(object) if object is given or to the unit square otherwise.
the intensity whemprocess="poisson" . If lambda is a numerical value thenake.pattern ~ simu-

lates a two dimensional homogeneous Poisson process with that constant inkemnbity. can also

be a function with two arguments that defines the intensity over the regidrgiven, will be ignored

if this argument is provided.

if lambda is a function then this should be the maximum value of the function over the region. If this
is not supplied, a nonlinear optimization will be run (usiminb) to find the maximum. Supplying

this value will speed up the simulation and avoid any possible problems with the nonlinear optimiza-
tion. maxlambda is used only ifambda is a function.

the inhibition distance. This is needed for proct&sauss” , "SSI" and'cluster" . Options
"Strauss” and"SSI" will NOT generate points closer thaadius . For this reason, this parameter
needs to be reasonably small. The exception is wwhemess="cluster" in which case it should
contain the desired size of the clusters. See DETAILS section for more information.

the inhibition parameter needed whencess="Strauss" . This parameter is also requirecoib-
cess="cluster" . In that case, it represents the intensity of the "parent" Poisson process which will
determine the random placement of clusters and their number. See the DETAILS section for more in-
formation.

an object of clas%spp" whosen points are distributed according ftocess . If process="pois-
son" results on a process with zero points, the returned value will be a classless matrix with zero rows
and a warning will be issued.

The "binomial" process option generates a spatially random pattermnpafints within the given
boundary . This is in essence a homogeneous Poisson process conditional on the given number of
pointsn.

25

Appendix: Data and Function Reference

26

The"poisson" process option generates a Poisson process with intemsitya . This argument is
required for this option. Ifambda is a function the Poisson process is generated by a rejection sam-
pling algorithm (Diggle, 1983): a homogeneous Poisson process with inteaslynbda is generat-

ed over the region and then points are retained with probabhitibda(x, y)/maxlambda

The"SSI" process generates a random pattern where no two points are within the inhibition distance
determined by its parameterdius . This process is equivalent to sequentially laying down discs of
radiusradius which will not overlap.

The"Strauss" process accepts each randomly generated point with probabiits wheres is

the number of existing points within radiuglius of the potential new point. The parametear
must be in [0,1] for this process, whexsar=0 corresponds to complete inhibition at distances up to
radius

The user should exercise caution when determining the vahadia$ |, for if it is too big in relation
to the area defined youndary , the algorithm will run out of possible area to place the subsequent
disc and the generation of the desired process may be impossible or very slow.

The option"cluster" generates a Poisson cluster process. This is defined by generating a "parent”
Poisson process with intensitgar and a "daughter” process of clusters with radii determined by the
value ofradius

WARNING
If radius is too large, it may be impossible or nearly impossible to generate the number of requested
points. The call may "hang" in some extreme cases.

REFERENCES
Diggle, Peter J. (1983)Statistical Analysis of Spatial Point Patterrscademic Press, London.
Ripley, Brian D. (1981).Spatial StatisticsJohn Wiley & Sons, New York.
Ripley, Brian D. (1976). The second-order analysis of stationary point procdsseral of Applied
Probability 13,255-266.

SEE ALSO
runif , rnorm , rpois , rbinom .

EXAMPLES

A completely random process in the unit square
rand <- make.pattern(100)

plot(make.pattern(100, process="Strauss", rad=0.1, c=0.5))

plot(make.pattern(500, proc="cluster", rad=20, c=10,
boundary=list(x=c(0,200), y=c(0,200))))

A nonhomogeneous Poisson pattern with a linear trend in x

over al10 x 10 square

Ixy <- function(x, y) 1.5*x

Xy <- make.pattern(proc="poisson", boundary=bbox(x=c(0,10),
y=c(0,10)), lambda=Ixy)

plot(xy)

Appendix: Data and Function Reference

model.variogram Display a Variogram Object and Theoretical Modebdel.variogram

DESCRIPTION
Plots an empirical variogram object and displays the fit of a theoretical variogram model on that plot.
Optionally allows interactive parameter updates to the theoretical model and displays the new fit.

USAGE
model.variogram(object, fun, ..., ask=T, objective.fun= <<see below>>
plot.it=T)

REQUIRED ARGUMENTS
object an object that inherits from classriogram” (this includes classésovariogram" and"correl-
ogram”). Theazimuth column should have only one level.
fun a theoretical variogram function (or covariogram or correlogram function, depending on the class of
"object"). Its first argument should be distance. Its remaining arguments are considered parameters
that can be changed to update the fitiof to object

OPTIONAL ARGUMENTS
... additional arguments tan that do not have default values must be specified here by full name.
ask a logical value, ifTRUE a command line menu is displayed allowing the user to change the values of
the parameters tiun . After changing a value the plot is updated.FALSE, the data irobject is

plotted, the value ofun evaluated abbject$distance is added to the graph, and the function re-
turns.
objective.fun a function with three arguments, yf , andn that gives a measure of the fitydf to y with weightsn.

It is used as a measure of fitfofi to the data imbject . The default is the sum of squared residuals,

sum((y-yf)°2)
plot.it a logical value, ifTRUE a plot of the variogram and its fitted model is displayed.

VALUE
invisibly returns a named list of the final parameters used. This list has the last value of the objective
function as an attribute.
DETAILS
This function can be used to fit a variogram or covariogram model "by eye". The valbjemf
tive.fun is displayed on the plot.
A weighted least squares objective function for variograms (Cressie, 1993, p. 97) is:
objective.fun <- function(y,yh,n) sum(n*(y/yh-1)"2)
REFERENCES
Cressie, Noel. (1993)Statistics For Spatial Datd&Revised Edition. Wiley, New York.
SEE ALSO
correlogram , plot.variogram , variogram
EXAMPLES

vg.iron <- variogram(residuals ~ loc(easting, northing), data=iron.ore)
model.variogram(vg.iron, spher.vgram, range=8.7, sill=3.5, nugget=4.8)

27

Appendix: Data and Function Reference

plot.spatial.neighbor Plot aspatial.neighbor Plgespatial.neighbor
DESCRIPTION
Plot an object of classpatial.neighbor" with lines connecting points that are neighbors.
USAGE

plot.spatial.neighbor(x, xcoord, ycoord, line.col=1, line.type=1,
line.width=1, matrix.id=1, add=F, arrows=F,
size.arrow=0.1, scaled=T, ...)

REQUIRED ARGUMENTS
X an object of claspatial.neighbor"

xcoord
ycoord

a numeric vector containing the x-coordinates of the data whose neighbor relations are defined in
a numeric vector containing the y-coordinates of the data whose neighbor relations are defined in
Must be the same lengthaoord .

OPTIONAL ARGUMENTS

line.col
line.type
line.width

matrix.id

add

arrows

size.arrows
scaled

a numeric value indicating the color to draw the lines connecting the points that are neighbors. See the
col parameter in thpar help file.

a numeric value indicating the line type to use for the lines connecting the points that are neighbors.
See théty parameter in thpar help file.

a numeric value indicating the line width to use for the lines connecting the points that are neighbors.
See thewd parameter in thpar help file.

a positive integer indicating which spatial neighbor matrix is to be plotted. Only one spatial neighbor
matrix can be plotted per call to the function but objects of téassial.neightbor" can contain

more than one matrix.

a logical value, ifTRUENO initial plot is drawn, only the lines joining the neighbors are added to the
current plot.

a logical value, ifTRUE arrows are drawn from each point to its neighboEAfSE, segments are
drawn from each point to its neighbor. Plotting with arrows can be useful when there are one way
neighbor relations im i.e. point B is a neighbor of point A but point A is not a neighbor of point B. If

x IS a symmetric spatial neighbor objeetttr(x,symmetric) is TRUB then all neighbor relations

are bi-directional and settirggrows=TRUE just results in a messy graph.

the size of the arrowhead width in inches. Seattwvs help file for details.

a logical value, ifTRUEthenscaled.plot is used to set up the plot coordinates instegoof. This
produces an equally scaled plot which is often useful whesrd andycoord are geographic loca-

tions.

Graphical parameters may also be supplied as arguments to this functiper (see

SIDE EFFECTS

DETAILS

28

a plot is produced on the current graphics device or lines are added to the currenaqdet (jif

The coordinate system for the plot is drawn based on the valuesoini , ycoord . The graphical
parameters specified in are used to draw this initial graph. déaled=TRUE the scale.ratio
parameter tacaled.plot can also be passed in the arguments. The lines are added through a
call tosegments orarrows . The graphical parameteise.col , line.type andline.width are
used in the call teegments or arrows .

This function is a method for the generic functpget for classspatial.neighbor . It can be in-
voked by callingplot for an object of the appropriate class, or directly by calpteg.spa-

Appendix: Data and Function Reference

tial.neighbor regardless of the class of the object.
BUGS

With S-PLUS 5.1, if you are calling this function as a plot method ice.) you must specify the

xcoord andycoord arguments by name (not by position) otherwise the wrong method will be called.
SEE ALSO

spatial.neighbor , spatial.neighbor.object , plot , scaled.plot , par , segments .
EXAMPLES

Plot the sids.neighbor object using the easting and northing

values from sids as the coordinates

plot(sids.neighbor, xc=sids$easting, yc=sids$northing, scaled=T)

Create a second order spatial neighbor object on a 10 x 10 grid

ng10 <- neighbor.grid(10, 10, neighbor.type="second.order")

sn10 <- spatial.neighbor(ng10)

Generate a 10 x 10 set of coordinates

xy <- expand.grid(x=1:10, y=1:10)

Plot the spatial neighbor object

plot(sn10, xc=xy$x, yc=xy$y)

Create and plot spatial neighbor object for the bramble canes

nearest neighbors

nb <- find.neighbor(bramble, k=2, drop.self=T)

sn <- spatial.neighbor(nb)

plot(sn, xc=bramble$x, yc=bramble$y)

plot.vgram.fit Plot Results fronvariogram.fit plot.vgram.fit

DESCRIPTION

Plot avgram.fit object, ustually the result from a callvariogram.fit
USAGE

plot.vgram.fit(x, line.col=1, line.type=1, line.width=1, add=T,
npoints=100, ...)

REQUIRED ARGUMENTS

X

an object of clast/gram.fit"

OPTIONAL ARGUMENTS

line.col

line.type

line.width
add

npoints

a numeric value indicating the color for the variogram fit line. Seedheparameter in thear help

file.

a numeric value indicating the line type for the variogram fit line. Seg&ythgarameter in thear

help file.

a numeric value indicating the line width for the variogram fit line. Seévthgparameter in thear

help file.

a logical value, ifTRUENo initial plot is drawn, only the variogram fitted line is added to the current
plot.

a numeric value, the number of to evalute the variogram function at.

29

Appendix: Data and Function Reference

30

Graphical parameters may also be supplied as arguments to this functipar (see

SIDE EFFECTS

a plot is produced on the current graphics device or lines are added to the currenaqdet (jif

DETAILS
The function specified by$funName must exist. It is evaluated apoints between0 andx$dis-
tRange[2]
This function is a method for the generic functet for classvgram.fit . It can be invoked by
callingplot for an object of the appropriate class, or directly by capingvgram.fit regardless
of the class of the object.

SEE ALSO
variogram.fit , variogram

EXAMPLES
vg.iron <- variogram(residuals ~ loc(easting, northing), data=iron.ore)
Vfit.iron <- variogram.fit(vg.iron, param=c(range=8.7, sill=3.5,

nugget=4.8), fun=spher.vgram)
plot(vg.iron)
plot(vfit.iron, add=T)
points.in.poly Find Points Inside a Given Polygon points.in.poly

DESCRIPTION
Determine whether points are inside a polygon.

USAGE

points.in.poly(x, y, polygon)

REQUIRED ARGUMENTS

X

y
polygon

VALUE

BUG

SEE ALSO

EXAMPLES

the X-coordinates of the points
the Y-coordinates of the points. Must be the same length as
a list with named components "x" and "y".

a logical vector the same lengthxasIf TRUEthen the corresponding point is inside the given polygon
and so on.

if a ray from a point to an edge intersects a horizontal edge, i.e. is collinear with it, the C program will
returnTRUEeven if such point is not in the polygon.

poly.grid , poly.area

100 points on a unit square

X <- runif(100); y <- runif(100)

A square polygon in the center:

pcenter <- list(x=c(.25,.25,.75,.75), y=c(.25,.75,.75,.25))

Appendix: Data and Function Reference

pin <- points.in.poly(x, y, pcenter)

Plot the unit square and the center square:

plot(x, y, type="n’); polygon(pcenter, density=0, col=2)
Plot only the points in the center square:
points(x[pin], y[pin], col=3)

poly.grid Generate a Grid Inside a Given Polygonal Boundary poly.grid

DESCRIPTION
Generates a grid of points and then clips them to lie within a given boundary.

USAGE
poly.grid(boundary, nx, ny, size)

REQUIRED ARGUMENTS
boundary a list with components namég' and"y" or a matrix with 2 columns representing the vertices of a
convexpolygon. Endpoint need not be repeated.
nx integer representing the number of cells in the horizontal direction.
ny integer representing the number of cells in the vertical direction.

OPTIONAL ARGUMENTS
size numeric vector containing the size of each cell. If it has length one then the cells will be squared with
the same side sizes. If it has length two then the cells will have wird{tt] and heightize[2]

VALUE
a two-column matrix containing the coordinates of the resulting grid.

DETAILS
A rectangulanx by ny grid is overlaid on the polygon defined byundary and then those points that
fall outside are dropped. $ize is given then the valuesc andny are redundant and if given will be
ignored.

SEE ALSO
points.in.poly

EXAMPLES
plot(as.spp(bramble))

bramble.chull <- bramble[chull(bramble),]
polygon(bramble.chull, den=0)
points(poly.grid(bramble.chull, size=c(.1,.1)), col=2)

31

Appendix: Data and Function Reference

predict.krige Point and Block Kriging Prediction predict.krige

DESCRIPTION
Computes point or block kriging predictions and standard errors at locatioesdata using an ob-
ject returned bkrige

USAGE
predict.krige(object, newdata, se.fit=T, grid= <<see below>>
blocksize=c(1, 1), nxy=c(1, 1))

REQUIRED ARGUMENTS
object an object of claskrige” as returned by the functidmige

OPTIONAL ARGUMENTS
newdata a data frame or list containing the spatial locations for the predictions. The names must match the
names of the locations used in the cakrige (seeattr(object,"call")).

se it a logical value, ifTRUE the standard errors of the predictions are returned. Currently the standard er-
rors are always computed internally. Thésfit only determines if the returned data frame includes
these column.
grid a list containing two vectors, the names of the vectors must match the names of the locations used in
the call tokrige . The vectors are each of length 3 and specify the minimum, maximum and number
of locations in that spatial coordinate, respectively. A grid is then computing egiagd.grid
The default value is to use the range of the original location data for the minimum and maximum, and
30 points. This argument is ignorechéwdata is supplied.
blocksize for block kriging, a numeric vector of length 2 specifying the size of the block in x (first value) and y
(second value) direction. The locations specifieddwdata orgrid are at the center of the blocks.
nxy for block kriging, a numeric vector of length 2 specifying the number of discretization points inside the
block. If both values are set 10(the default) then point kriging predictions are computed.

VALUE
a data frame where the first two columns are the locations of the prediction along with:
fit the predicted values.
sefit the standard error of the prediction. Only includeskifit = TRUE

DETAILS

This function is a method for the generic functipadict for classkrige . It can be invoked by
calling predict ~ for an object of the appropriate class, or directly by capirdict.krige regard-
less of the class of the object.

REFERENCES
Ripley, Brian D. (1981).Spatial Statistics Wiley, New York.

SEE ALSO
krige , loc .

EXAMPLES
krige the Coal Ash data
kcoal <- krige(coal ~ loc(x, y) + x + X2, data = coal.ash,
covfun = spher.cov, range = 4.31, sill = 0.14, nugget = 0.89)
predictions over default 30 x 30 grid
pcoal <- predict(kcoal)

Appendix: Data and Function Reference

plot prediction surface
wireframe(fit ” x * y, data = pcoal,
screen = list(z = 300, x = -60, y = 0), drape = T)
block kriging predictions with block of size 2 x 2 at 4 locations
predict(kcoal, data.frame(x=c(4,5,9,11), y=c(7,13,9,18)),
blocksize=c(2,2), nxy=c(5,5))

spatial.neighbor Create dspatial.neighbor" Object spatial.neighbor
DESCRIPTION
Function used to create an object of clapatial.neighbor" given its component parts.
USAGE

spatial.neighbor(row.id, col.id, weights=rep(1, length(row.id)),
neighbor.matrix, nregion=max(c(row.id,col.id)),
symmetric=F, matrix.id= <<see below>>)

REQUIRED ARGUMENTS

row.id

col.id

neighbor.matrix

an integer vector containing the row indices of the non-zero elements of the neighbor weight matrix.
Thei -th element ofow.id and thei -th element ofol.id specify two regions which are spatial
neighbors. Two regions are spatial neighbors if observations from the two regions have a non-zero spa-
tial weight and vice-versarow.id can also be a two column matrix containing the row indices (the
first column) and the column indices (the second column). This argument is ignareidhif

bor.matrix s given.

integer vector (of the same lengthras.id) with the column indices of the non-zero elements of the
neighbor weight matrix. This is ignoredniéighbor.matrix is given or ifrow.id is a matrix.

It is important to note that even if a pair of regi@g®w.id[i],col.id[i]) are spatial neighbors,

the permuted pait(col.id[i],row.id[i]) does not have to define spatial neighbors (correspond-
ing contiguity matrix element can be zero). For example, consider two regions on a river, and suppose
that a region corresponding tow.id[i] is downstream from the region @ol.id[i] and neigh-

bors. By this definition, "downstream of" the transpose pairing need not satisfy a neighbor relation-
ship. See argumerymmetric below.

a matrix of neighbor weights (where all weights are oftgfrom which the object of classpa-
tial.neighbor" is to be constructed. This must be a square matrix such that if elgjhent is
non-zero, then spatial regionsandj are considered neighbors, and its value is used as a weight in
measures of correlation or in further model-fitting. This is also known as the contiguity matrix.

OPTIONAL ARGUMENTS
weights numeric vector of the same lengthras.id andcol.id . weights[i] gives a weight for the corre-
sponding neighbor pair relationship, givenc{row.id[i],col.id[i]) . If weights is not speci-
fied (and argumenteighbor.matrix is not used), then the spatial weights are all set equal to
Each spatial weight defines the strength of the association between two neighbors. This argument is
ignored ifneighbor.matrix is given as each of the matrix elements are then considered to be neigh-
bor weights.

nregion

symmetric

integer stating the total number of regions or spatial units. If not given, this value is computed from the
number of unique elementsiow.id andcolid as the maximum of all the regions given therein
max(c(row.id,col.id))

logical flag: should the neighbor matrix be considered symmetric™RUE the spatial weights matrix

is computed by assuming that if the i-th neighbor péiw.id[i],col.id[i]) has neighbor
weight given byw=weights[i] then so does the matrix eleme(dol.id[i],row.id[i]) . Only
half of the weights need be specified in this cas@RUE routinespatial.condense is called to re-

33

Appendix: Data and Function Reference

34

matrix.id

VALUE

DETAILS

SEE ALSO

EXAMPLES

move redundant values. Whateighbor.matrix is given, its symmetry is determined within the
function, otherwise, it defaults fALSE

integer vector of length equal to the total number of spatial neighbors. This can be used to differentiate
various types of neighbors. For example, spatial regression models may differentiate between north-
south neighbors as compared to east-west neighbors. The values ofnaadtdd should then in-

dicate the neighbor types. If missing, a single neighbor type is assumed (with one neighbor matrix).

an object of claséspatial.neighbor" . This object inherits from classlata.frame" and de-

scribes the relationship among spatial regions using a sparse representation of the Weight or Contiguity
matrix (or matrices). It has colummsw.id , colid , weights andmatrix (determined byma-

trix.id).

Objects of clas&spatial.neighbor" are required by the spatial regression, spatial correlation, and
other functions in SPATIALSTATS. Two methods for constructing a spatial neighbor object are
available. A matrix of weights (where all weights are oft¢rcan be given as input, and ttspa-
tial.neighbor" object is constructed from its non-negative elements. In this case argwigéent
bor.matrix must be a square matrix such that if elencérj} of the matrix is non-zero, then spa-

tial regions andj are neighbors, with weight given by the value of the element (usuajly a

Another method for constructing an object of clagsmtial.neighbor" is by directly specifying

the row and column numbers (and the weight value) of the non-zero elements of the contiguity matrix
which is usually a sparse matrix. A sparse representation is usually preferred in practice. In this case,
row.id[i] gives the row of thé -th non-negative element of the neighbor matrix, and the correspond-
ing elementol.id[i] gives its column index. Thus, each pedow.id[i],col.id[i]) repre-

sents a pair of neighboring spatial units. The strength of their association can then be given by
weights][i]

Notice thatow.id andcolid contain INDICES of the contiguity matrix and NOT the region identi-

fiers which could be character strings or some such. These are used to expand the full contiguity ma-
trix, so we should have representation for all indicéisroughnregion , though it is possible to have
islands in between. Use the functicimeck.islands to check for these islands, and remap their in-
dexing if that is desirable.

It is possible to specify two or more types of neighbor relationships. For example, the user may want

to model a spatial relationship depending upon the angle of the line connecting neighbor centers i.e.
considering directional relationships. For this example, let Type-1 neighbors be north-south neighbors,

and let Type-2 neighbors be east-west neighbors; neighbors along a diagonal could be modeled with
weights proportional to707 (the sine of 45 degrees), for instance.

Consider the elements afw.id , col.id , andweights corresponding to a distinct value, of the

vector matrix.id . The spatial neighbor matrix can be expressed as a mfkix such that
A[K][row.id,col.id]=weights , and all other elements are zero. Consider a parameter wector

of lengthg, many spatial covariance matrices used in spatial regression models can be expressed as a
weighted linear combination of the contiguity matrieg , rho[k]*A[K] , for values ofk varying

inlg .

check.islands , plot.spatial.neighbor , summary.spatial.neighbor

row.index <- ¢(1,1,2,2,3)
col.index <- ¢(2,3,1,3,4)

Appendix: Data and Function Reference

Assume we have no information about the strength of the spatial

association. All weights are 1.
nghb <- spatial.neighbor(row.id=row.index, col.id=col.index)
summary(nghb)

Another way to create the same spatial.neighbor object:
nmat <- matrix(c(0, 1, 1, 0,

1,0,1,0,

0,0,0,1,

0, 0, 0, 0), ncol=4, byrow=T)
nghb?2 <- spatial.neighbor(neighbor.matrix=nmat)

spatial.neighbor.object Class'spatial.neighborspatial.neighbor.object

DESCRIPTION

Class of objects used to define neighbor relationships for spatial data on a regular or irregular lattice.

GENERATION

This class of objects is constructed using the funcfetial.neighbor . Alternatively, the func-
tionsread.neighbor , or neighbor.grid may be used. In general, the user must construct these ob-
jects whenever estimates of spatial correlation and spatial regression are desired.

An object of clas$spatial.neighbor" contains all the information required to determine which
spatial units on a region of interest are neighbors, as well as the strength of their relationship.

METHODS
The class'spatial.neighbor" has associated methogsint.spatial.neighbor , plot.spa-
tial.neighbor , andsummary.spatial.neighbor
INHERITANCE
Class'spatial.neighbor" inherits from clas&data.frame"
STRUCTURE
The "spatial.neighbor" object is in essence a data frame with additional attributes. Each row of

row.id
col.id
weights

matrix

the data frame denotes a pair of neighboring spatial units. The data frame contains the following
columns:

the row index in the neighbor matrix that corresponds to a region or spatial unit. This implies a num-
bering of regions from to the total number of regions.

the column index in the neighbor matrix that corresponds to the neighbor of the region defined by the
corresponding element afw.id

a numeric value giving the relative strength of the neighbor relationship. The larger the value, the
stronger the relationship.

if multiple types of neighbor matrices are possible, this column contains the type of the neighbor this
weight represents - it gives a numeric identifier for each spatial neighbor [contiguity] matrix.

SPECIAL ATTRIBUTES

nregion

the number of total regions in the study. The row and column identifiers given.ih andcol.id

might not include ALL the spatial units in the area of interest. This happens when units are isolated,
i.e. have no neighboring regions. In this casegion must be used to determine the total number of
rows and columns in the contiguity matrix.

35

Appendix: Data and Function Reference

symmetric logical flag. It provides an indication of whether the contiguity matrix is symm@atRUH or not
(FALSE). If TRUE only the weights for the upper (or lower) triangle of the contiguity matrix need to be

specified in the object. Use the functispatial.weights to expand the full symmetric weights ma-
trix.

DETAILS
An object of classspatial.neighbor" is a sparse matrix representation of a square matrix (or a
number of square matrices).
The functionplot.spatial.neighbor will show a graphical view of the spatial.neighbor object and
summary.spatial.neighbor will compute summary statistics on the object.
The functionsspatial.multiply , and spatial.cg.solve can be used to form products of the
form rho[i]*N[i]*x and (rho[i]*N[i])"(-1)*x , for neighbor weight matriceis[i] , vector of
constants or parameterbp[i] , and arbitrary vectors, should that be needed to form a neighbor or
contiguity matrix as a weighted linear combination of others.

SEE ALSO
spatial.neighbor plot.spatial.neighbor , summary.spatial.neighbor , read.neigh-
bor , neighbor.grid , Spatial.multiply , Spatial.cg.solve , Spatial.weights

spatial.solve SolveSh=x spatial.solve

DESCRIPTION
SolvesSb=x for b, whereS is a sparse matrix obtained from an object of ctagatial.neigh-
bor"

USAGE

spatial.solve(neighbor, X, transpose=F, rho=0, product=F,
weights=NULL, region.id=NULL, absThreshold=0,
relThreshold=0, diagPivoting=0, shareMemory=F)

REQUIRED ARGUMENTS
neighbor an object of classspatial.neighbor" containing the sparse matrix representation of the spatial
neighbor matrix (or matrices, see functigratial.neighbor).
x the right hand side for which a solution is desired. Alternativebgn be a matrix. In this case, a so-
lution is obtained for each columnsin

OPTIONAL ARGUMENTS
transpose with the default arguments, is taken as minus the sum over i aholi] * A[i] . Herel is an
identity matrix,rho[i] is a scalar, and[i] is thei -th weight matrix imeighbor . If transpose is
TRUE then the transpose of this matrix is usedafor
rho a scalar (or vector) of constants used in defining the n&{sge argumentanspose).
product let B=I minus the sum ofho[i]*A[i] as described in argumemanspose . Whenproduct is
FALSE, S=B. Whenproduct is TRUE S is t(B)%*%B .
weights if provided, the inverse weights are included along the diagonal mwxixd incorporated into the
model forS as follows: LetRbel minus the sum aholi]*Ali] . Then
product | transpose | S

F | F |R%%W
F | T |tR%%W
T | F | (R)%*%W%%R

36

Appendix: Data and Function Reference

T | T | R %%W%%tR)
region.id a vector with length equal to the number of regions in the spatial lattice. If variablés and
colid of argumenteighbor are not integer valued variables with sequential values from 1 to the
number or regions in the lattice, then argunregion.id must be specified and is used to obtain a
sequential coding of the lattice regions.
absThreshold the pivot threshold (between zero and 1). Values near 1 result in complete pivoting, while values near
zero result in a strict Markowitz solution. In general, you should choose a value as close to zero as
roundoff error will permit. A value of 0.001 has been recommended by Kundert (1988) in some cases.
relThreshold the absolute magnitude an element must have to be considered as a pivot candidate, except as a last re-
sort. This should be set to a small fraction of the smallest (absolute) diagonal element.
diagPivoting if TRUE pivot selection should be confined to the diagonal if possible.
shareMemory if TRUE the in-memory representation of the sparse matrix will be shared by other routines. If memo-
ry is shared, it needs to be released later. One way to release the memory is.@¢'deall
stroy_sparse_matrix") after the in-memory representation of the matrix is no long needed. Most
users should use the default valBel SE
VALUE
a matrix (or vector)p, solving the linear systesb=x.
DETAILS
This routine uses the sparse matrix code of Kenneth Kundert and Alberto Sangiovanni-Vincentelli
(1988). The University of California, Berkeley, holds the copyright for these routines.
REFERENCES
Kundert, Kenneth S. and Sangiovanni-Vincentelli, Alberto (1988). A Sparse Linear Equation Solver.
Department of EE and CS, University of California, Berkeley.
SEE ALSO
spatial.cg.solve , Spatial.multiply , Spatial.neighbor , Spatial.neighbor.object
EXAMPLES
X <- 1:4
row.id <- ¢(1,1,2,2,3)
col.id <-¢(1,3,1,3,4)
alpha <- 0.3
neighbor <- spatial.neighbor(row.id=row.id, col.id=col.id, symmetric=T)
a <- solve(diag(attr(neighbor, "nregion"))-alpha*
spatial.weights(neighbor), x)
b <- spatial.solve(neighbor, X, rho=alpha)$result
print(max(abs(a-b)) < 1e-14)
summary.spatial.neighbor Summary Methedimmary.spatial.neighbor
DESCRIPTION
Returns a summary list for objects of clagsmtial.neighbor"
USAGE

summary.spatial.neighbor(object)

REQUIRED ARGUMENTS

37

Appendix: Data and Function Reference

object

VALUE

nregion
symmetric

minConnected

maxConnected

aveNumLinks

aveWeight

rowMissing

colMissing

islands

DETAILS

SEE ALSO

EXAMPLES

38

an object that inherits from clagpatial.neighbor"

an object of clasg&summary.spatial.neighbor" which is a list of lists, one list for each unique
value ofmatrix in object . The sublists each contain the components that summarize the particular
spatial neighbor matrix:

an integer indicating the number of regiabfect covers. This is the same as(object,"nre-

gion")

a logical value, ifTRUEthe object is assumed to be symmetric. This is the samattgsb-
ject,"symmetric")

a named vector of the least connected regions. The names are the row indices that have the smallest
number of connections for the i-th matrixdbject . The values (all the same) are the minimum num-
ber of neighbors.

a named vector of the most connected regions. The names are the row indices that have the largest
number of connections for the i-th matrix abject . The values (all the same) are the maximum
number of neighbors.

a single value giving the mean number of neighbors each region has.

a single value giving the mean weight value for this matrix.

a vector of indices that are not presentliject$row.id for the i-th matrix. This will be printed as
"none" by the print method if there are no missing row indices and it is not printed ab@daf is

a symmetric spatial neighbor matrix since all missing row indices will be islands (see below).

a vector of indices that are not presentliject$col.id for the i-th matrix. This will be printed as
"none" by the print method if there are no missing column indices and it is not printed adtall if

ject is a symmetric spatial neighbor matrix since all missing column indices will be islands (see be-
low).

the indices for regions that have no neighbors. These indices do not appear in eitber the
ject$col.id or object$row.id for the i-th matrix. This will be printed a@®one" by the print
method if there are no islands.

This function is a method for the generic functémmary for classspatial.neighbor . It can be
invoked by callingsummary for an object of the appropriate class, or directly by caliagma-
ry.spatial.neighbor regardless of the class of the object.

spatial.neighbor , check.islands

summary(sids.neighbor)

Create two symmetric spatial neighbor matrices with one island
in the second matrix:

ri<-¢(1,1,2,3,4,5,1,1,2,5,5)

ci<-¢(2,3,3,4,5,6,2,3,3,3,6)

mat <-¢(1,1,1,1,1,1,2,2,2,2,2)

sn <- spatial.neighbor(ri, ci, symm=T, matrix=mat)

summary(sn)

Appendix: Data and Function Reference

triangulate Delaunay’s Triangulation triangulate

DESCRIPTION
Calculate Delaunay’s triangulation for points with given coordinatasdy .

USAGE
triangulate(x, y, plot.it=T, shrink=0.1)

REQUIRED ARGUMENTS
x a list with component&" and"y" , a 2-column matrix, or a vector containing the horizontal coordi-
nates of the vertices that form the polygon of interest.

OPTIONAL ARGUMENTS
y if x is a vector of X-coordinates thgrmust contain the corresponding vertical or Y-coordinates.
plot.it logical flag: should the resulting triangulation be plotted? DefalilRisE
shrink fraction by which the triangles will be shrunken for better discrimination of the individual triangles in
the plot, no edges overlapstfirink > 0

VALUE
invisibly returns a list with 2 components:
ipt a matrix with 3 rows, for each column the 3 row-values can be used toxiredely and extract corre-
sponding triangle vertices. This provides an ordering of the triangles as well.
ipl another integer matrix with 3 rows. These are the point numbers of the end points of the border line
segments and their corresponding triangle number.

SIDE EFFECTS
if plot.it = TRUE a colorful representation of the triangulation is produced.

DETAILS
A Delaunay triangulation of a point set is a triangulation whose vertices are the point set, with the
property that no point in the point set falls in the interior of the circumcircle (circle that passes through
all three vertices) of any triangle in the triangulation.

EXAMPLES
triangulate(scallops|,c("lat","long")])

variogram.cloud Calculate Variogram Cloud variogram.cloud

DESCRIPTION
Calculates all pairwise differences in a random field data set.

USAGE

variogram.cloud(formula, data= <<see below>> subset= <<see below>>
na.action= <<see below>> azimuth=0, tol.azimuth=90,
maxdist= <<see below>> bandwidth=1e+307,
FUN=function(zi, zj) (zi - zj)"2/2))

REQUIRED ARGUMENTS

39

Appendix: Data and Function Reference

formula formula defining the response and the predictors. In general, its form is:

z X +y

Thez variable is a numeric response. Variableendy are the locations. All variables in the formula
must be vectors of equal length with no missing valtigs)(The formula may also contain expres-
sions for the variables, e.ggrt(count) orlog(age+1) . The right hand side may also be a call to
theloc function e.gloc(x,y) . Theloc function can be used to correct for geometric anisotropy,
see thaoc help file.

OPTIONAL ARGUMENTS
data an optional data frame in which to find the objects mentionéstrinula
subset expression saying which subset of the rows of the data should be used in the fit. This can be a logical
vector (which is replicated to have length equal to the number of observations), or a numeric vector in-
dicating which observation numbers are to be included, or a character vector of the row names to be in-
cluded.
na.action a function to filter missing data. This is applied to thalel.frame after anysubset argument has
been used. The default (witla.fail) is to create an error if any missing values are found. A possi-
ble alternative i®a.omit , which deletes observations that contain one or more missing values.
azimuth the clockwise direction angle in degrees from North-South. Only pairs of points in this direction plus
or minustol.azimuth will be included in the output.
tol.azimuth the tolerance angle, in degreesl.azimuth greater than or equal to 90 implies the of use all direc-
tions.
maxdist the maximum distance to consider. The default is half the maximum observed distance.
bandwidth the maximum perpendicular distance to consider.
FUN a function of two variables that is to be computed. The default function is the contribution to the clas-
sical empirical variogram for the paii] , z[j]

VALUE
an object of class/gram.cloud" that inherits frontdata.frame” . The columns are:
distance the distance between the two points.
gamma the value ofFUNfor thezfiindex] , z[jindex]
iindex the index into the original data for the first value of the pair.
jindex the index into the original data for the second value of the pair.

The return object has an attribetél with an image of the call that produced the object.

DETAILS
Methods for clas$/gram.cloud" includeboxplot , plot andidentify
If all directions and distances are included the return object will have n*(n-1)/2 rows where n is the
number of observations. This can get very large, even for relatively small n. The arguareist
can be used to limit the size. Typically values beyond half the maximum distance in the data are not
used in estimating the variogram function.
REFERENCES
Cressie, Noel. (1993)Statistics For Spatial Dat&Revised Edition. Wiley, New York.
SEE ALSO
boxplot.vgram.cloud , identify.vgram.cloud , plot.vgram.cloud , variogram
EXAMPLES

v1 <- variogram.cloud(coal ~ x + y, data=coal.ash)
plot(vl)

40

Appendix: Data and Function Reference

boxplot(v1)

variogram.fit Fit a Variogram Model variogram.fit

DESCRIPTION
Fits a theoretical variogram model to an empirical variogram object using a local minimizer for smooth
non-linear functions subject to bounded parameters.

USAGE
variogram.fit(vobj, param, fun=spher.vgram, lower=rep(0, n.param),
upper=Inf)

REQUIRED ARGUMENTS
vobj an object that inherits from classriogram” representing an empirical variogram. Usually, the re-
sult of thevariogram function.

OPTIONAL ARGUMENTS

param a named vector with initial values for the parameters to fit. Usually, these &reigbet” |, "sill"
and'range” or a subset of these. If missing, the function will try to determine the parameter names
and initial values based on the arguments to the function specified.in

fun a theoretical variogram function The first argument should be distance. The remaining arguments are

considered parameters that can be changed to update the fit of fun to object.

lower either a single numeric value or a vector of length equal to the number of parameters giving lower
bounds for the parameter values. If it is a single value then all parameters have that as their lower
bound. See the help page fdminb for more information.

upper either a single numeric value or a vector of length equal to the number of parameters giving upper
bounds for the parameter values. If it is a single value then all parameters have that as their upper
bound. See the help page fdminb for more information.

VALUE
an object of claswgram.fit " with components:
parameters a named vector with the fitted values for the parameters.
objective the final value of the objective function.
funName thefun argument as a character string.
distRange a numeric vector containing the minimum and maximum distance valuesdtgm

DETAILS
If fun is one ofexp.vgram , gauss.vgram , linear.vgram , power.vgram Or spher.vgram and
param is not supplied the function sets special initial starting valuegaiam. Otherwise, ifparam
is not supplied it is set to a vector of ones.
The weighted least squares objective function used in the fitting process (Cressie, 1993, p. 97) is:
objective.fun <- function(y,yh,n) sum(n*(y/yh-1)"2)
Thenlminb function is used for the optimization.
REFERENCES
Cressie, Noel. (1993)Statistics For Spatial Dat&Revised Edition. Wiley, New York.
SEE ALSO

variogram , plot.vgram.fit , model.variogram , niminb .

41

Appendix: Data and Function Reference

42

EXAMPLES

vg.iron <- variogram(residuals ~ loc(easting, northing), data=iron.ore)

vfit.iron <- variogram.fit(vg.iron, param=c(range=8.7, sill=3.5,
nugget=4.8), fun=spher.vgram)

plot(vg.iron)

plot(vfit.iron, add=T)

	Contents
	Chapter 1 Fitting Variograms 1
	Chapter 2 Block Kriging 3
	Chapter 3 Summarizing and Plotting Spatial Neighbor Objects 5
	Chapter 4 Simulating Nonhomogeneous Poisson Patterns 9

	Welcome to S+SpatialStats 1.5 for UNIX
	Fitting Variograms
	Block Kriging
	Block Kriging with the Coal Ash Data

	Summarizing and Plotting Spatial Neighbor Objects
	Simulating Nonhomogeneous Poisson Patterns
	Appendix A: Data and Function Reference

