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PREFACE

Introduction

Online Version

Preface

Welcome to the Spotfire S+ Guide to Statistics, Volume 1.

This book is designed as a reference tool for TIBCO Spotfire S+ users
who want to use the powerful statistical techniques in Spotfire S+.
The Guide to Statistics, Volume 1 covers a wide range of statistical and
mathematical modeling. No single user is likely to tap all of these
resources, since advanced topics such as survival analysis and time
series are complete fields of study in themselves.

All examples in this guide are run using input through the
Commands window, which is the traditional method of accessing the
power of Spotfire S+. Many of the functions can also be run through
the Statistics dialogs available in the graphical user interface. We
hope that you find this book a valuable aid for exploring both the
theory and practice of statistical modeling.

The Guide to Statistics, Volume 1 is also available online:

* In Windows, through the Online Manuals entry of the main
Help menu, or in the /help/statman1.pdf file of your
Spotfire S+ home directory.

* In Solaris or Linux, in the /doc/statmanl.pdf file of your
home directory.

You can view it using an Adobe Acrobat Reader, which is required
for reading any of the Spotfire S+manuals.

The online version of the Guide to Statistics, Volume 7 has particular
advantages over print. For example, you can copy and paste example
Spotfire S+ code into the Commands window and run it without
having to type the function calls explicitly. (When doing this, be
careful not to paste the greater-than “>” prompt character, and note
that distinct colors differentiate between input and output in the
online manual.)

A second advantage to the online guide is that you can perform full-
text searches. To find information on a certain function, first search,
and then browse through all occurrences of the function’s name in the
guide. A third advantage is in the contents and index entries: all
entries are links; click an entry to go to the selected page.

Xix
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Spotfire S+ has evolved from its beginnings as a research tool. The
contents of this guide have grown, and will continue to grow, as the
Spotfire S+ language is improved and expanded. This means that
some examples in the text might not exactly match the formatting of
the output you obtain; however, the underlying theory and
computations are as described here.

In addition to the range of functionality covered in this guide, there
are additional modules, libraries, and user-written functions available
from a number of sources. Refer to the User’s Guide for more details.

The Guide to Statistics, Volume 2, together with Guide to Statistics,
Volume 1, is a companion volume to the User’s Guide , the Programmer’s
Guide, and the Application Developer’s Guide. These manuals, as well as
the rest of the manual set, are available in electronic form. For a

complete list of manuals, see the section Spotfire S—I—® Books in the
introductory material.

This volume covers the following topics:
*  Overview of statistical modeling in Spotfire S+
+ The Spotfire S+ statistical modeling framework
* Review of probability and descriptive statistics

* Statistical inference for one, two, and many sample problems,
both continuous and discrete

*  Cross-classified data and contingency tables

*  Power and sample size calculations

*  Regression models

*  Analysis of variance and multiple comparisons

The Guide to Statistics, Volume 2 covers tree models, multivariate
analysis techniques, cluster analysis, survival analysis, quality control
charts, resampling techniques, and mathematical computing.
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Chapter 1 Introduction to Statistical Analysis in Spotfire S+

INTRODUCTION

All statistical analysis has, at its heart, a model which attempts to
describe the structure or relationships in some objects or phenomena
on which measurements (the data) are taken. Estimation, hypothesis
testing, and inference, in general, are based on the data at hand and a
conjectured model which you may define implicitly or explicitly. You
specify many types of models in TIBCO Spotfire S+ using formulas,
which express the conjectured relationships between observed
variables in a natural way. The power of Spotfire S+ as a statistical
modeling language lies in its convenient and useful way of organizing
data, its wide variety of classical and modern modeling techniques,
and its way of specifying models.

The goal of this chapter is to give you a feel for data analysis in
Spotfire S+: examining the data, selecting a model, and displaying
and summarizing the fitted model.



Developing Statistical Models

DEVELOPING STATISTICAL MODELS

The process of developing a statistical model varies depending on
whether you follow a classical, hypothesis-driven approach
(confirmatory data analysis) or a more modern, data-driven approach
(exploratory data analysis). In many data analysis projects, both
approaches are frequently used. For example, in classical regression
analysis, you usually examine residuals using exploratory data
analytic methods for verifying whether underlying assumptions of the
model hold. The goal of either approach is a model which imitates, as
closely as possible, in as simple a way as possible, the properties of
the objects or phenomena being modeled. Creating a model usually
involves the following steps:

1. Determine the variables to observe. In a study involving a
classical modeling approach, these variables correspond to
the hypothesis being tested. For data-driven modeling, these
variables are the link to the phenomena being modeled.

2. Collect and record the data observations.

3. Study graphics and summaries of the collected data to
discover and remove mistakes and to reveal low-dimensional
relationships between variables.

4. Choose a model describing the important relationships seen
or hypothesized in the data.

5. Fit the model using the appropriate modeling technique.
6. Examine the fit using model summaries and diagnostic plots.
7. Repeat steps 4-6 until you are satisfied with the model.

There are a wide range of possible modeling techniques to choose
from when developing statistical models in Spotfire S+. Among these
are linear models (1m), analysis of variance models (aov), generalized
linear models (g1m), generalized additive models (gam), local
regression models (1oess), and tree-based models (tree).
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DATA USED FOR MODELS

Data Frame
Objects

Continuous
and Discrete
Data

This section provides descriptions of the most common types of data
objects used when developing models in Spotfire S+. There are also
brief descriptions and examples of common Spotfire S+ functions
used for developing and displaying models.

Statistical models allow inferences to be made about objects by
modeling associated observational or experimental data, organized
by variables. A data frame is an object that represents a sequence of
observations on some chosen set of variables. Data frames are like
matrices, with variables as columns and observations as rows. They
allow computations where variables can act as separate objects and can
be referenced simply by naming them. This makes data frames very
useful in modeling.

Variables in data frames are generally of three forms:
e Numeric vectors
*  Factors and ordered factors

e Numeric matrices

The type of data you have when developing a model is important for
deciding which modeling technique best suits your data. Continuous
data represent quantitative data having a continuous range of values.
Categorical data, by contrast, represent gqualitative data and are
discrete, meaning they can assume only certain fixed numeric or
nonnumeric values.

In Spotfire S+, you represent categorical data with factors, which keep
track of the levels or different values contained in the data and the
level each data point corresponds to. For example, you might have a
factor gender in which every element assumed one of the two values
"male" and "female". You represent continuous data with numeric
objects. Numeric objects are vectors, matrices, or arrays of numbers.
Numbers can take the form of decimal numbers (such as 11, -2.32, or
14.955) and exponential numbers expressed in scientific notation
(such as .002 expressed as 2e-3).



Summaries
and Plots for
Examining
Data

Data Used for Models

A statistical model expresses a response variable as some function of a
set of one or more predictor variables. The type of model you select
depends on whether the response and predictor variables are
continuous (numeric) or categorical (factor). For example, the
classical regression problem has a continuous response and
continuous predictors, but the classical ANOVA problem has a
continuous response and categorical predictors.

Before you fit a model, you should examine the data. Plots provide
important information on mistakes, outliers, distributions, and
relationships between variables. Numerical summaries provide a
statistical synopsis of the data in a tabular format.

Among the most common functions to use for generating plots and
summaries are the following:

* summary: provides a synopsis of an object. The following
example displays a summary of the kyphosis data frame:

> summary(kyphosis)

Kyphosis Age Number Start
absent:64 Min.: 1.00 Min.: 2.000 Min.: 1.00
present:17 1st Qu.: 26.00 1st Qu.: 3.000 1st Qu.: 9.00
Median: 87.00 Median: 4.000 Median:13.00

Mean: 83.65 Mean: 4.049 Mean:11.49
3rd Qu.:130.00 3rd Qu.: 5.000 3rd Qu.:16.00
Max.:206.00 Max.:10.000 Max.:18.00

* plot: a generic plotting function, plot produces different
kinds of plots depending on the data passed to it. In its most
common use, it produces a scatter plot of two numeric
objects.

* hist: creates histograms.
* qggnorm: creates quantile-quantile plots.

* pairs: creates, for multivariate data, a matrix of scatter plots
showing each variable plotted against each of the other
variables. To create the pairwise scatter plots for the data in
the matrix longley.x, use pairs as follows:

> pairs(longley.x)
The resulting plot appears as in Figure 1.1.
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Data Used for Models

* coplot: provides a graphical look at cross-sectional
relationships, which enable you to assess potential interaction
effects. The following example shows the effect of the
interaction between C and E on values of NOx. The resulting
plots appear as in Figure 1.2.

> attach(ethanol)

> E.intervals <- co.intervals(E, 9, 0.25)

> coplot(NOx ~ C | E, given.values = E.intervals,
+ data = ethanol, panel = function(x,y) {

+ panel.smooth(x, y, span = 1, degree = 1)) }

Given: E
0.6 0.8 1.0 1.2
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Figure 1.2: Coplot of response and predictors.
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STATISTICAL MODELS IN SPOTFIRE S+

The development of statistical models is, in many ways, data
dependent. The choice of the modeling technique you use depends on
the type and structure of your data and what you want the model to
test or explain. A model may predict new responses, show general
trends, or uncover underlying phenomena. This section gives general
selection criteria to help you develop a statistical model.

The fitting procedure for each model is based on a unified modeling
paradigm in which:

e A data frame contains the data for the model.

* A formula object specifies the relationship between the
response and predictor variables.

* The formula and data frame are passed to the fitting function.

+  The fitting function returns a fit object.

There is a relatively small number of functions to help you fit and
analyze statistical models in Spotfire S+.

+  Fitting models:

m: linear (regression) models.

aov and varcomp: analysis of variance models.
g1m: generalized linear models.

gam: generalized additive models.

Toess: local regression models.

tree: tree models.

+ Extracting information from a fitted object:

fitted: returns fitted values.
coefficients or coef: returns the coefficients (if present).

residuals or resid: returns the residuals.



The Unity of
Models in Data
Analysis

Statistical Models in Spotfire S+

* summary: provides a synopsis of the fit.

+ anova: for a single fit object, produces a table with rows
corresponding to each of the terms in the object, plus a
row for residuals. If two or more fit objects are used as
arguments, anova returns a table showing the tests for
differences between the models, sequentially, from first to
last.

*+ Plotting the fitted object:
* plot: plot a fitted object.

* qgnorm: produces a normal probability plot, frequently
used in analysis of residuals.

* coplot: provides a graphical look at cross-sectional
relationships for examining interaction effects.

*  For minor modifications in a model, use the update function
(adding and deleting variables, transforming the response,
etc.).

* To compute the predicted response from the model, use the
predict function.

Because there is usually more than one way to model your data, you
should learn which type(s) of model are best suited to various types of
response and predictor data. When deciding on a modeling
technique, it helps to ask: “What do I want the data to explain? What
hypothesis do I want to test? What am I trying to show?”

Some methods should or should not be used depending on whether
the response and predictors are continuous, factors, or a combination
of both. Table 1.1 organizes the methods by the type of data they can
handle.
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10

Table 1.1: Criteria for developing models.

Model Response Predictors
m Continuous Both
aov Continuous Factors
glm Both Both
gam Both Both
loess Continuous Both
tree Both Both

Linear regression models a continuous response variable, y, as a
linear combination of predictor variables x for j= 1,....p. For a single

predictor, the data fit by a linear model scatter about a straight line or
curve. A linear regression model has the mathematical form

|J
Vi = Bo+ X BjXijtei
i=1
where €, referred to, generally, as the error, is the difference between

the ith observation and the model. On average, for given values of the
predictors, you predict the response best with the following equation:

v
y =Bo+ ZBij-
j=1

Analysis of variance models are also linear models, but all predictors
are categorical, which contrasts with the typically continuous
predictors of regression. For designed experiments, use analysis of
variance to estimate and test for effects due to the factor predictors.
For example, consider the catalyst data frame, which contains the
data below.
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> catalyst

Temp Conc Cat Yield

1 160 20 A 60
2 180 20 A 72
3 160 40 A 54
4 180 40 A 68
5 160 20 B 52
6 180 20 B 83
7 160 40 B 45
8 180 40 B 80

Each of the predictor terms, Temp, Conc, and Cat, is a factor with two
possible levels, and the response term, Yield, contains numeric data.
Use analysis of variance to estimate and test for the effect of the
predictors on the response.

Linear models produce estimates with good statistical properties
when the relationships are, in fact, linear, and the errors are normally
distributed. In some cases, when the distribution of the response is
skewed, you can transform the response, using, for example, square
root, logarithm, or reciprocal transformations, and produce a better
fit. In other cases, you may need to include polynomial terms of the
predictors in the model. However, if linearity or normality does not
hold, or if the variance of the observations is not constant, and
transformations of the response and predictors do not help, you
should explore other techniques such as generalized linear models,
generalized additive models, or classification and regression trees.

Generalized linear models assume a transformation of the expected (or
average) response is a linear function of the predictors, and the
variance of the response is a function of the mean response:

v
NEW)) = Bo+ ZBij
j=1
VAR(y) = ¢V(W).
Generalized linear models, fitted using the gim function, allow you to
model data with distributions including normal, binomial, Poisson,

gamma, and inverse normal, but still require a linear relationship in
the parameters.

11
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When the linear fit provided by gim does not produce a good fit, an
alternative is the generalized additive model, fit with the gam function.
In contrast to gim, gam allows you to fit nonlinear data-dependent
functions of the predictors. The mathematical form of a generalized
additive model is:

Y]
nE(y)) = ij(xj)
i=1
where the ]§ term represents functions to be estimated from the data.

The form of the model assumes a low-dimensional additive structure.
That is, the pieces represented by functions, f, of each predictor

added together predict the response without interaction.

In the presence of interactions, if the response is continuous and the
errors about the fit are normally distributed, local regression (or /loess)
models, allow you to fit a multivariate function which include
interaction relationships. The form of the model is:

li = 9> Xjg - Xjp) + €
where grepresents the regression surface.

Tree-based models have gained in popularity because of their
flexibility in fitting all types of data. Tree models are generally used
for exploratory analysis. They allow you to study the structure of
data, creating nodes or clusters of data with similar characteristics.
The variance of the data within each node is relatively small, since the
characteristics of the contained data is similar. The following example
displays a tree-based model using the data frame car.test. frame:

> car.tree <- tree(Mileage ~ Weight, car.test.frame)
> plot(car.tree, type = "u")

> text(car.tree)

> title("Tree-based Model")

The resulting plot appears as in Figure 1.3.



Statistical Models in Spotfire S+

Tree-based Model

Weight<2567.5

T

Weight<2280 Weight<3087.5
Weight<2747.5 Weight<3637.5

34.00 28.89

Weight£2882.5 Weight«3322.5

25.62 18.67
Weight«3197.5
23.33 24.11 22.00

20.60 20.40

Figure 1.3: A tree-based model for Mileage versus Weight.
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EXAMPLE OF DATA ANALYSIS

The Iterative
Process of
Model Building
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The example that follows describes only one way of analyzing data
through the use of statistical modeling. There is no perfect cookbook
approach to building models, as different techniques do different
things, and not all of them use the same arguments when doing the
actual fitting.

As discussed at the beginning of this chapter, there are some general
steps you can take when building a model:

1. Determine the variables to observe. In a study involving a
classical modeling approach, these variables correspond
directly to the hypothesis being tested. For data-driven
modeling, these variables are the link to the phenomena
being modeled.

2. Collect and record the data observations.

3. Study graphics and summaries of the collected data to
discover and remove mistakes and to reveal low-dimensional
relationships between variables.

4. Choose a model describing the important relationships seen
or hypothesized in the data.

5. Fit the model using the appropriate modeling technique.

6. Examine the fit through model summaries and diagnostic
plots.

7. Repeat steps 4-6 until you are satisfied with the model.

At any point in the modeling process, you may find that your choice
of model does not appropriately fit the data. In some cases, diagnostic
plots may give you clues to improve the fit. Sometimes you may need
to try transformed variables or entirely different variables. You may
need to try a different modeling technique that will, for example,
allow you to fit nonlinear relationships, interactions, or different error
structures. At times, all you need to do is remove outlying, influential
data, or fit the model robustly. A point to remember is that there is no
one answer on how to build good statistical models. By iteratively
fitting, plotting, testing, changing, and then refitting, you arrive at the
best model for your data.



Exploring the
Data

Example of Data Analysis

The following analysis uses the built-in data set auto.stats, which
contains a variety of data for car models between the years 1970-
1982, including price, miles per gallon, weight, and more. Suppose
we want to model the effect that Weight has on the gas mileage of a
car. The object, auto.stats, is not a data frame, so we start by
coercing it into a data frame object:

> auto.dat <- data.frame(auto.stats)

Attach the data frame to treat each variable as a separate object:

> attach(auto.dat)
Look at the distribution of the data by plotting a histogram of the two
variables, Weight and Miles.per.gallon. First, split the graphics
screen into two portions to display both graphs:

> par(mfrow = c(1, 2))
Plot the histograms:

> hist(Weight)

> hist(Miles.per.gallon)
The resulting histograms appear in Figure 1.4.
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Weight Miles.per.gallon

Figure 1.4: Histograms of Weight and Miles.per.gallon.

Subsetting (or subscripting) gives you the ability to look at only a
portion of the data. For example, type the command below to look at
only those cars with mileage greater than 34 miles per gallon.

> auto.dat[Miles.per.gallon > 34,]

15
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Price Miles.per.gallon Repair (1978)

Datsun 210 4589 35 5
Subaru 3798 35 5
Volk Rabbit(d) 5397 41 5

Repair (1977) Headroom Rear.Seat Trunk Weight

Datsun 210 5 2.0 23.5 8 2020
Subaru 4 2.5 25.5 11 2050

Volk Rabbit(d) 4 3.0 25.5 15 2040
Length Turning.Circle Displacement Gear.Ratio

Datsun 210 165 32 85 3.70
Subaru 164 36 97 3.81

Volk Rabbit(d) 155 35 90 3.78

Suppose you want to predict the gas mileage of a particular auto
based upon its weight. Create a scatter plot of Weight versus
Miles.per.gallon to examine the relationship between the variables.
First, reset the graphics window to display only one graph, and then
create the scatter plot:

> par(mfrow = c(1,1))
> plot(Weight, Miles.per.gallon)

The plot appears in Figure 1.5. The figure displays a curved scattering
of the data, which might suggest a nonlinear relationship. Create a
plot from a different perspective, giving gallons per mile (1/
Miles.per.gallon) as the vertical axis:

> plot(Weight, 1/Miles.per.gallon)
The resulting scatter plot appears in Figure 1.6.
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Fitting the Gallons per mile is more linear with respect to weight, suggesting that

Model you can fit a linear model to Weight and 1/Miles.per.gallon. The
formula 1/Miles.per.gallon ~ Weight describes this model. Fit the
model by using the 1m function, and name the fitted object fit1:

> fitl <- Tm(1/Miles.per.gallon ~ Weight)

As with any Spotfire S+ object, when you type the name, fitl,
Spotfire S+ prints the object. In this case, Spotfire S+ uses the specific
print method for 1m objects:

> fitl

Call:
Im(formula = 1/Miles.per.gallon ~ Weight)

Coefficients:
(Intercept) Weight
0.007447302 1.419734e-05
Degrees of freedom: 74 total; 72 residual
Residual standard error: 0.006363808
Plot the regression line to see how well it fits the data. The resulting
line appears in Figure 1.7.

> abline(fitl)

18
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Figure 1.7: Regression line of fitl.

Judging from Figure 1.7, the regression line does not fit well in the
upper range of Weight. Plot the residuals versus the fitted values to see
more clearly where the model does not fit well.

> plot(fitted(fitl), residuals(fitl))

The plot appears as in Figure 1.8.
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Figure 1.8: Plot of residuals for fitl.

Note that with the exception of two outliers in the lower right corner,
the residuals become more positive as the fitted values increase. You
can identify the outliers by typing the following command, then
interactively clicking on the outliers with your mouse:

> outliers <- identify(fitted(fitl), residuals(fitl),
+ n=2, labels = names(Weight))

To stop the interactive process, click on either the middle or right
mouse button. The resulting plot with the identified outliers appears
in Figure 1.9. The identify function allows you to interactively select
points on a plot. The Tabels argument and names function label the
points with their names in the fitted object. For more information on
the identify function, see the chapter Traditional Graphics in the
Guide to Graphics.
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Figure 1.9: Plot with labeled outliers.
The outliers in Figure 1.9 correspond to cars with better gas mileage

than other cars in the study with similar weights. You can remove the
outliers using the subset argument to 1m.

> fit2 <- Tm(1/Miles.per.gallon ~ Weight,
+ subset = -outliers)

Plot Weight versus 1/Miles.per.gallon with two regression lines:
one for the fitl object and one for the fit2 object. Use the Tty
graphics parameter to differentiate between the regression lines:

> plot(Weight, 1/Miles.per.gallon)
> abline(fitl, 1ty=2)
> abline(fit2)

The two lines appear with the data in Figure 1.10.

A plot of the residuals versus the fitted values shows a better fit. The
plot appears in Figure 1.11.

> plot(fitted(fit2), residuals(fit2))
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Figure 1.10: Regression lines of f1t1 versus fit2.
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Figure 1.11: Plot of residuals for fit2.
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To see a synopsis of the fit contained in fit2, use summary as follows:
> summary (fit2)

Call: ITm(formula = 1/Miles.per.gallon ~ Weight,
subset = - outliers)
Residuals:

Min 1Q Median 3Q Max
-0.01152 -0.004257 -0.0008586 0.003686 0.01441

Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) 0.0047 0.0026 1.8103 0.0745
Weight 0.0000 0.0000 18.0625 0.0000

Residual standard error: 0.00549 on 70 degrees of freedom
Multiple R-squared: 0.8233

F-statistic: 326.3 on 1 and 70 degrees of freedom, the
p-value is 0

Correlation of Coefficients:
(Intercept)
Weight -0.9686

The summary displays information on the spread of the residuals,
coefficients, standard errors, and tests of significance for each of the
variables in the model (which includes an intercept by default). In
addition, the summary displays overall regression statistics for the fit.
As expected, Weight is a very significant predictor of 1/
Miles.per.gallon. The amount of the wvariability of 1/
Miles.per.gallon explained by Weight is about 82%, and the
residual standard error is .0055, down about 14% from that of fit1.

To see the individual coefficients for fit2, use coef as follows:
> coef(fit2)

(Intercept) Weight
0.004713079 1.529348e-05
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Fitting an Now consider an alternative approach. Recall the plot in Figure 1.5,
Alternative which showed curvature in the scatter plot of Weight versus
Model Miles.per.gallon. This indicates that a straight line fit may be an
ode inappropriate model. You can fit a nonparametric nonlinear model to
the data using gam with a cubic spline smoother:

> fit3 <- gam(Miles.per.gallon ~ s(Weight))
> fit3

Call:
gam(formula = Miles.per.gallon ~ s(Weight))

Degrees of Freedom: 74 total; 69.00244 Residual
Residual Deviance: 704.7922

The plot of fit3 in Figure 1.12 is created as follows:

> plot(fit3, residuals =T, scale =
+ diff(range(Miles.per.gallon)))
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Figure 1.12: Plot of additive model with smoothed spline term.
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Conclusions

Example of Data Analysis

The cubic spline smoother in the plot appears to give a good fit to the
data. You can check the fit with diagnostic plots of the residuals as we
did for the linear models. You should also compare the gam model
with a linear model using aov to produce a statistical test.

Use the predict function to make predictions from models. The
newdata argument to predict specifies a data frame containing the
values at which the predictions are required. If newdata is not
supplied, the predict function makes predictions at the data
originally supplied to fit the gam model, as in the following example:

> predict.fit3 <- predict(fit3)

Create a new object predict.high and print it to display cars with
predicted miles per gallon greater than 30:

> predict.high <- predict.fit3[predict.fit3 > 30]
> predict.high

Ford Fiesta Honda Civic Plym Champ
30.17946 30.49947 30.17946

The previous example shows a few simple methods for taking data
and iteratively fitting models until the desired results are achieved.
The chapters that follow discuss in far greater detail the modeling
techniques mentioned in this section. Before proceeding further, it is
good to remember that:

e General formulas define the structure of models.

+ Data used in model-fitting are generally in the form of data
frames.

« Different methods can be used on the same data.

* A variety of functions are available for diagnostic study of the
fitted models.

* The Spotfire S+ functions, like model-fitting in general, are
designed to be very flexible for users. Handling different
preferences and procedures in model-fitting are what make
Spotfire S+ very effective for data analysis.
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Models are specified in TIBCO Spotfire S+ using formulas, which
express the conjectured relationships between observed variables in a
natural way. Formulas specify models for the wide variety of
modeling techniques available in Spotfire S+. You can use the same
formula to specify a model for linear regression (1m), analysis of
variance (aov), generalized linear modeling (g1m), generalized
additive modeling (gam), local regression (loess), and tree-based
regression (tree).

For example, consider the following formula:

mpg ~ weight + displ

This formula can specify a least squares regression with mpg regressed
on two predictors, weight and disp1, or a generalized additive model
with purely linear effects. You can also specify smoothed fits for
weight and displ in the generalized additive model as follows:

mpg ~ s(weight) + s(displ)

You can then compare the resulting fit with the purely linear fit to see
if some nonlinear structure must be built into the model.

Formulas provide the means for you to specify models for all
modeling techniques: parametric or nonparametric, classical or
modern. This chapter provides you with an introduction to the syntax
used for specifying statistical models. The chapters that follow make
use of this syntax in a wide variety of specific examples.



Basic Formulas

BASIC FORMULAS

A formula is a Spotfire S+ expression that specifies the form of a
model in terms of the variables involved. For example, to specify that
mpg is modeled as a linear model of the two predictors weight and
disp1, use the following formula:

mpg ~ weight + displ

The tilde (~) character separates the response variable from the
explanatory variables. For something to be interpreted as a variable,
it must be one of the following:

*  Numeric vector, for continuous data
*  Factor or ordered factor, for categorical data
*  Matrix

For each numeric vector in a model, Spotfire S+ fits one coefficient.
For each matrix, Spotfire S+ fits one coefficient for each column. For
factors, the equivalent of one coefficient is fit for each level of the
factor; see the section Contrasts: The Coding of Factors on page 39
for more details.

If your data set includes a character variable, you should convert it to
a factor before including it in a model formula. You can do this with
the factor function, as follows:

> test.char <- c(rep("Green™,2), rep("Blue",2),

+ rep("Red",2))

> test.char

[1] "Green" "Green" "Blue" "Blue"™ "Red" "Red"

> data.class(test.char)
[1] "character"

> test.fac <- factor(test.char)
> test.fac
[1] Green Green Blue Blue Red Red

29



Chapter 2 Specifying Models in Spotfire S+

Continuous
Data

Categorical
Data

30

> data.class(test.fac)
[1] "factor"

> Tevels(test.fac)
[11 "Blue" "Green" "Red"

You can use any acceptable Spotfire S+ expression in place of a
variable, provided the expression evaluates to something
interpretable as one or more variables. Thus, the formula

log(mpg) ~ weight + poly(displ, 2)

specifies that the natural logarithm of mpg is modeled as a linear
function of weight and a quadratic polynomial of disp1.

Each continuous variable you provide in a formula generates one
coefficient in the fitted model. Thus, the formula

mpg ~ weight + displ
fits the model
mpg = B, + By weight + By displ +¢€

Implicitly, a Spotfire S+ formula always includes an intercept term,
which is B, in the above formula. You can, however, remove the

intercept by specifying the model with -1 as an explicit predictor:

mpg ~ -1 + weight + displ

Similarly, you can include an intercept by including +1 as an
explicitly predictor.

When you provide a numeric matrix as one term in a formula,
Spotfire S+ interprets each column of the matrix as a separate
variable in the model. Any names associated with the columns are
carried along as labels in the subsequent fits.

When you specify categorical variables (factors or ordered factors) as
predictors in formulas, the modeling functions fit the equivalent of a
coefficient for each level of the variable. For example, to model
salary as a linear function of age (continuous) and gender (factor),
specify the following formula:

salary ~ age + gender



General
Formula
Syntax

Basic Formulas

Different parameters are computed for the two levels of gender. This
is equivalent to fitting two dummy variables: one for males and one for
females. Thus, you need not create and specify dummy variables in
the model.

Although multiple dummy variables are returned, only one
additional parameter is computed for each factor variable in a
formula. This because the parameters are not independent of the
intercept term; more details are provided in the section Contrasts:
The Coding of Factors.

Table 2.1, based on page 29 of Chambers and Hastie (1992),
summarizes the syntax of Spotfire S+ formulas. You can create and
save formulas as objects using the formula function:

> form.eg.1l <- formula(Fuel ~ poly(Weight, 2) + Disp. +
+ Type)
> form.eg.1

Fuel ~ poly(Weight, 2) + Disp. + Type

Table 2.1: A summary of formula syntax.

Expression | Meaning

T~F T is modeled as a function of

F,+F Include both F, and F in the model

F, -F Include all of F, in the model, except what is in F,
F,:F, The interaction between F, and F},

F, *F Shorthand notation for F, + Fy+ F, : I

Fy%in% F, Fy is nested within £,

F,/ F, Shorthand notation for F, + Fy %in% F,

F m All terms in F crossed to order m
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You can specify interactions for categorical data (factors), continuous
data, or a mixture of the two. In each case, additional parameters are
computed that are appropriate for the different types of variables
specified in the model. The syntax for specifying an interaction is the
same in each case, but the interpretation varies depending on the data

types.

To specify a particular interaction between two or more variables, use
a colon (:) between the variable names. Thus, to specify the
interaction between gender and race, use the following term:
gender:race
You can use an asterisk (*) to specify all terms in the model created
by subsets of the named variables. Thus,
salary ~ age * gender

is equivalent to

salary ~ age + gender + age:gender
You can remove terms with a minus or hyphen (-). For example, the
formula
salary ~ gender*race*education - gender:race:education
is equivalent to
salary ~ gender + race + education + gender:race +
gender:education + race:education

This is a model consisting of all terms in the full model except the
three-way interaction. Another way to specify this model is by using
the power notation. The following formula includes all terms of order
two or less:

salary ~ (gender + race + education) *~ 2



Continuous
Data

Categorical
Data

Nesting

Interactions

By specifying interactions between continuous variables in a formula,
you include multiplicative terms in the corresponding model. Thus,
the formula

mpg ~ weight * displ
fits the model

mpg = By + Byweight + Bodispl + Py(weight)(displ) + ¢

For categorical data, interactions add coefficients for each
combination of the levels in the named factors. For example, consider
two factors, Opening and Mask, with three and five levels, respectively.
The Opening:Mask term in a formula adds 15 additional parameters to
the model. For example, you can specify a two-way analysis of
variance with the following notation:

skips ~ Opening + Mask + Opening:Mask

Using the asterisk operator *, this simplifies to:

skips ~ Opening*Mask
Either formula fits the following model:
skips =W+ Opening, + Mask; + (Opening : Mask)ij+ €

In practice, because of dependencies among the parameters, only
some of the total number of parameters specified by a model are
computed.

Nesting arises in models when the levels of one or more factors make
sense only within the levels of other factors. For example, in sampling
the U.S. population, a sample of states is drawn, from which a sample
of counties is drawn, from which a sample of cities is drawn, from
which a sample of families or households is drawn. Counties are
nested within states, cities are nested within counties, and households
are nested within cities.
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In Spotfire S+ formulas, there is special syntax to specify the nesting
of factors within other factors. For example, you can write the county-
within-state model using the term

county %in% state

You can state the model more succinctly with

state / county

This syntax means “state and county within state,” and is thus
equivalent to the following formula terms:

state + county %in% state

The slash operator (/) in nested models is the counterpart of the
asterisk (*), which is used for factorial models, see the previous section
for examples of formulas for factorial models.

The syntax for nested models can be extended to included multiple
levels of nesting. For example, you can specify the full state-county-
city-household model as follows:

state / county / city / household

For continuous data combined with categorical data, interactions add
one coefficient for the continuous variable for each level of the
categorical variable. This arises, for example, in models that have
different slope estimates for different groups, where the categorical
variables specify the groups.

When you combine continuous and categorical data using the nesting
syntax, it is possible to specify analysis of covariance models. For
example, suppose gender (categorical) and age (continuous) are
predictors in a model. You can fit separate slopes for each gender
using the following nesting syntax:

salary ~ gender / age
This fits an analysis of covariance model equivalent to:
U+ gender; + B;age
Note that this is also equivalent to a model with the term gender*age.

However, the parametrization for the two models is different. When
you fit the nested model, Spotfire S+ computes estimates of the



Interactions

individual slopes for each group. When you fit the factorial model,
you obtain an overall slope estimate plus the deviations in the slope
for the different group contrasts.

For example, with the term gender/age, the formula expands into
main effects for gender followed by age within each level of gender.
One coefficient is computed for age from each level of gender, and
another coefficient estimates the contrast between the two levels of
gender. Thus, the nested formula fits the following type of model:

H+ 0y + By X age

H‘%"‘BQX age

Salary,

Salary

The intercept is 4, the contrast is 0y, and the model has coefficients 3,

for age within each level of gender. Thus, you obtain separate slope
estimates for each group.

Conversely, the formula with the term gender*age fits the following
model:

Salaryy = M- o+ P x age—7v X age
Salaryp = {1+ 0+ P X age +v X age

You obtain the overall slope estimate f, plus the deviations in the
slope for the different group contrasts.

You can fit the equal slope, separate intercept model by specifying:

salary ~ gender + age

This fits a model equivalent to:

W+ gender; + 3 x age
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The single period (.) operator can act as a default left or right side of a
formula. There are numerous ways you can use periods in formulas.
For example, consider the function update, which allows you to
modify existing models. The following example uses the data frame

fuel.frame to display the usage of the single “.” in formulas. First, we
define a model that includes only an intercept term:

> fuel.null <- Tm(Fuel ~ 1, data = fuel.frame)

Next, we use update to add the Weight variable to the model:

> fuel.wt <- update(fuel.null, . ~ . + Weight)
> fuel.wt

Call:
Im(formula = Fuel ~ Weight, data = fuel.frame)

Coefficients:
(Intercept) Weight
0.3914324 0.00131638
Degrees of freedom: 60 total; 58 residual
Residual standard error: 0.3877015

The periods on either side of the tilde (~) in the above example are
replaced by the left and right sides of the formula used to fit the object
fuel.null.

Another use of the period operator arises when referencing data
frame objects in formulas. In the following example, we fit a linear
model for the data frame fuel.frame:

> Im(Fuel ~ ., data = fuel.frame)

Here, the new model includes all columns in fuel.frame as
predictors, with the exception of the response variable Fuel. In the
example

> Im(skips ~ .72, data = solder.balance)

all columns in solder.balance enter the model as both main effects
and second-order interactions.



Combining Formulas with Fitting Procedures

COMBINING FORMULAS WITH FITTING PROCEDURES

The data Once you specify a model with its associated formula, you can fit it to
Argument a given data set by passing the formula and the data to the

appropriate fitting procedure. For the following example, create the
data frame auto.dat from the data set auto.stats by typing

> auto.dat <- data.frame(auto.stats)
The auto.dat data frame contains numeric columns named
Miles.per.gallon, Weight, and Displacement, among others. You
can fit a linear model using these three columns as follows:

> Im(Miles.per.gallon ~ Weight + Displacement,

+ data = auto.dat)
You can fit a smoothed model to the same data with the call:

> lToess(Miles.per.gallon ~ s(Weight) + s(Displacement),

+ data = auto.dat)
All Spotfire S+ fitting procedures accept a formula and an optional
data frame as the first two arguments. If the individual variables are in
your search path, you can omit the data specification:

> ITm(Miles.per.gallon ~ Weight + Displacement)

> loess(Miles.per.gallon ~ s(Weight) + s(Displacement))
This occurs, for example, when you create the variables explicitly in
your working directory, or when you attach a data frame to your
search path using the attach function.

Warning

If you attach a data frame for fitting models and have objects in your .Data directory with names
that match those in the data frame, the data frame variables are masked and are not used in the
actual model fitting. For more details, see the help file for the masked function.
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As we previously mention, certain operators such as +, -, *, and /
have special meanings when used in formula expressions. Because of
this, the operators must appear at the top level in a formula and only
on the right side of the tilde (~). However, if the operators appear
within arguments to functions in the formula, they work as they
normally do in Spotfire S+. For example:

Kyphosis ~ poly(Age, 2) + I((Start > 12) * (Start - 12))

Here, the * and - operators appear within arguments to the I
function, and thus evaluate as normal arithmetic operators. The sole
purpose of the I function is, in fact, to protect special operators on the
right sides of formulas.

You can use any acceptable Spotfire S+ expression in place of any
variable within a formula, provided the expression evaluates to
something interpretable as one or more variables. The expression
must evaluate to one of the following:

¢  Numeric vector
e Factor or ordered factor
*  Matrix

Thus, certain composite terms, including poly, I, and bs, can be used
as formula variables. For details, see the help files for these functions.



Contrasts: The Coding of Factors

CONTRASTS: THE CODING OF FACTORS

Built-In
Contrasts

A coefficient for each level of a factor cannot usually be estimated
because of dependencies among the coefficients in the overall model.
An example of this is the sum of all dummy variables for a factor, which
is a vector of all ones that has length equal to the number of levels in
the factor. Overparameterization induced by dummy variables is
removed prior to fitting, by replacing the dummy variables with a set
of linear combinations of the dummy variables, which are

1. functionally independent of each other, and

2. functionally independent of the sum of the dummy variables.

A factor with k levels has k-1 possible independent linear
combinations. A particular choice of linear combinations of the
dummy variables is called a set of contrasts. Any choice of contrasts for
a factor alters the specific individual coefficients in the model, but
does not change the overall contribution of the factor to the fit.
Contrasts are represented in Spotfire S+ as matrices in which the
columns sum to zero, and the columns are linearly independent of
both each other and a vector of all ones.

Spotfire S+ provides four different kinds of contrasts as built-in
functions

1. Treatment contrasts

The default setting in Spotfire S+ options. The function
contr.treatment implements treatment contrasts. Note that
these are not true contrasts, but simply include each level of a
factor as a dummy variable, excluding the first one. This
generates statistically dependent coefficients, even in
balanced experiments.

> contr.treatment(4)

2 34
1000
2100
3010
4001

2. Helmert contrasts
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The function contr.helmert implements Helmert contrasts.
The jth linear combination is the difference between the
j + 1stlevel and the average of the first j levels. The

following example returns a Helmert parametrization based
upon four levels:

> contr.helmert(4)

[,11 [,2]1 [.3]
1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3
Orthogonal polynomials

The function contr.poly implements polynomial contrasts.
Individual coefficients represent orthogonal polynomials if
the levels of the factor are equally spaced numeric values. In

general, contr.poly produces k — 1 orthogonal contrasts for a
factor with k levels, representing polynomials of degree 1 to

k— 1. The following example uses four levels:

> contr.poly(4)

L Q C
[1,] -0.6708204 0.5 -0.2236068
[2,] -0.2236068 -0.5 0.6708204
[3,] 0.2236068 -0.5 -0.6708204
[4,] 0.6708204 0.5 0.2236068

Sum contrasts

The function contr. sum implements sum contrasts. This
produces contrasts between the kth level and each of the first
k-1 levels:

> contr.sum(4)

[,11 [.21 [,3]
1 1 0 0
2 0 1 0
3 0 0 1
4 -1 -1 -1



Specifying
Contrasts

The C Function

Contrasts: The Coding of Factors

Use the functions C, contrasts, and options to specify contrasts. Use
C to specify a contrast as you type a formula; it is the simplest way to
alter the choice of contrasts. Use contrasts to specify a contrast
attribute for a factor variable. Use options to specify the default
choice of contrasts for all factor variables. We discuss each of these
three approaches below.

Many fitting functions also include a contrast argument, which
allows you to fit a model using a particular set of contrasts, without
altering the factor variables involved or your session options. See the
help files for individual fitting functions such as 1m for more details.

As previously stated, the C function is the simplest way to alter the
choice of contrasts. A typical call to the function is C(object, contr),
where object is a factor or ordered factor and contr is the contrast to
alter. An optional argument, how.many, specifies the number of
contrasts to assign to the factor. The value returned by C is the factor
with a "contrasts™ attribute equal to the specified contrast matrix.

For example, in the solder.balance data set, you can specify sum
contrasts for the Mask column with the call C(Mask, sum). You can
also use a custom contrast function, special.contrast, that returns a
matrix of  the desired dimension  with  the call
C(Mask, special.contrast).

Note

If you create your own contrast function, it must return a matrix with the following properties:

*  The number of rows must be equal to the number of levels specified, and the number of
columns must be one less than the number of rows.

*  The columns must be linearly independent of each other and of a vector of all ones.

You can also specify contrasts by supplying the contrast matrix
directly. For example, consider a factor vector quality that has four
levels:

> quality <- factor(
+ c("tested-Tow", "low", "high", "tested-high"),
+ Tevels = c("tested-Tow", "Tow", "high", "tested-high"))

> levels(quality)
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[1] "tested-Tow"™ "low" "high" "tested-high"

You can contrast levels 1 and 4 with levels 2 and 3 by including
quality in a model formula as C(quality, c(1,-1,-1,1)). Two
additional contrasts are generated, orthogonal to the one supplied.

To contrast the “low” values in quality versus the “high” values,
provide the following contrast matrix:

> contrast.mat <- matrix(c(1,-1,-1,1,1,1,-1,-1), ncol=2)
> contrast.mat

[,11 [,2]
[1,1] 1 1
[2,1 -1 1
[3,] -1 -1
[4,] 1 -1

Use the contrasts function to define the contrasts for a particular
factor whenever it appears. The contrasts function extracts contrasts
from a factor and returns them as a matrix. The following sets the
contrasts for the quality factor:

> contrasts(quality) <- contrast.mat
> contrasts(quality)

(.11 [,2] [,3]

tested-Tow 1 1 -0.5
Tow -1 1 0.5

high -1 -1 -0.5
tested-high 1 -1 0.5

The quality vector now has the contrast.mat parametrization by
default any time it appears in a formula. To override this new setting,
supply a contrast specification with the C function.



Contrasts: The Coding of Factors

Setting the Use the options function to change the default choice of contrasts for
contrasts Option all factors, as in the following example:

> options()$contrasts

factor ordered
"contr.treatment" "contr.poly"

> options(contrasts = c(factor = "contr.helmert",
+ ordered = "contr.poly"))

> options()$contrasts

[1] "contr.helmert™ "contr.poly"
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As model building proceeds, you’ll find several functions useful for
adding and deleting terms in formulas. The update function starts
with an existing fit and adds or removes terms as you specify. For
example, create a linear model object as follows:

> fuel.Im <- Tm(Mileage ~ Weight + Disp., data = fuel.frame)

You can use update to change the response to Fuel, using a period on
the right side of the tilde (~)to represent the current state of the model
in fuel.lm:

> update(fuel.lm, Fuel ~ . )

The period operator in this call includes every predictor in fuel.1min
the new model. Only the response variable changes.

You can drop the Disp. term, keeping the response as Mileage with
the command:

> update(fuel.Im, . ~ . - Disp.)

Another useful function is dropl, which computes statistics obtained
by dropping each term from the model one at a time. For example:

> dropl(fuel.lm)

Single term deletions

Model: Mileage ~ Weight + Disp.
Df Sum of Sq RSS Cp

<none> 380.3 420.3
Weight 1 323.4 703.7 730.4
Disp. 1 0.6 380.8 407.5

Each line presents model summary statistics that correspond to
dropping the term indicated in the first column. The first line in the
table corresponds to the original model; no terms (<none>) are
deleted.



Useful Functions for Model Fitting

There is also an addl function which adds one term at a time. The
second argument to addl provides the scope for added terms. The
scope argument can be a formula or a character vector indicating the
terms to be added. The resulting table prints a line for each term
indicated by the scope argument:

> addl(fuel.lm, c("Type", "Fuel™))

Single term additions

Model: Mileage ~ Weight + Disp.
Df Sum of Sq RSS Cp
<none> 380.271 420.299
Type 5 119.722 260.549 367.292
Fuel 1 326.097 54.173 107.545
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In most model-building calls, you’ll need to specify the data frame to
use. You may need arguments that check for missing values in the
data frame, or select only particular portions of the data frame to use
in the fit. The following list summarizes the standard optional
arguments available for most model-fitting functions.

data: specifies a data frame in which to interpret the variables
named in the formula, subset and weights arguments. The
following example fits a linear model to data in the
fuel.frame data frame:

> fuel.lm <- Tm(Fuel ~ Weight + Disp.,
+ data = fuel.frame)

weights: specifies a vector of observation of weights. If
weights is supplied, the fitting algorithm minimizes the sum
of the squared residuals multiplied by the weights:

2‘/‘viri2 .

Negative weights generate a Spotfire S+ error. We
recommend that the weights be strictly positive, since zero
weights give no residuals; to exclude observations from your
model, use the subset argument instead. The following
example fits a linear model to the claims data frame, and
passes number to the weights argument:

> claims.Im <- Tm(cost ~ age + type + car.age,
+ data = claims, weights = number,
+ na.action = na.exclude)

subset: indicates a subset of the rows of the data to be used in
the fit. The subset expression should evaluate to a logical or
numeric vector, or a character vector with appropriate row
names. The following example fits a linear model to data in
the auto.dat data frame, excluding those observations for
which Miles.per.gallon is greater than 35:

> auto.Im <- Tm(1/Miles.per.gallon ~ Weight,
+ data = auto.dat, subset = Miles.per.gallon < 35)



Optional Arguments to Model-Fitting Functions

* na.action: specifies a missing-data filter function. This is
applied to the model frame after any subset argument has
been used. The following example passes na.exclude to the
na.action argument, which drops any row of the data frame
that contains a missing value:

> ozone.Im <- Tm(ozone ~ temperature + wind,
+ data = air, subset = wind > 8,
+ na.action = na.exclude)

Each model fitting function has nonstandard optional arguments, not
listed above, which you can use to fit the appropriate model. The
following chapters describe the available arguments for each model

type.
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Introduction

INTRODUCTION

Probability theory is the branch of mathematics that is concerned
with random, or chance, phenomena. With random phenomena,
repeated observations under a specified set of conditions do not
always lead to the same outcome. However, many random
phenomena exhibit a statistical regularity. Because of this, a solid
understanding of probability theory is fundamental to most statistical
analyses.

A probability is a number between 0 and 1 that tells how often a
particular event is likely to occur if an experiment is repeated many
times. A probability distribution is used to calculate the theoretical
probability of different events. Many statistical methods are based on
the assumption that the observed data are a sample from a population
with a known theoretical distribution. This assumption is crucial. If
we proceed with an analysis under the assumption that a particular
sample is from a known distribution when it is not, our results will be
misleading and invalid.

In this chapter, we review the basic definitions and terminology that
provide the foundation for statistical models in TIBCO Spotfire S+.
This chapter is not meant to encompass all aspects of probability
theory. Rather, we present the facts as concise statements and relate
them to the functions and distributions that are built into Spotfire S+.
We begin with formal definitions and important concepts, including
mathematical descriptions of a random variable and a probability
density. We then introduce the four basic probability functions in
Spotfire S+, and illustrate how they are used in conjunction with
particular distributions. As a final example, we show how to
transform uniform random numbers to ones from other distributions.
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A random variable is a function that maps a set of events, or outcomes
of an experiment, onto a set of values. For example, if we consider the
experiment of tossing a coin, a random variable might be the number
of times the coin shows heads after ten tosses. The random variable in
this experiment can only assume a finite number of values 0, 1, ..., 10,
and so it is called a discrete random variable. Likewise, if we observe the
failure rates of machine components, a random variable might be
lifetime of a particular component. The random variable in this
experiment can assume infinitely many real values, and so it is called
a continuous random variable.

The probability density function (pdf) for a random variable provides a
complete description of the variable’s probability characteristics. If X

is a discrete random variable, then its density function fy(X) is
defined as

fy(x) = P(X=X).

In words, the density gives the probability that X assumes a particular

finite value x. Because of this definition, fy(X) is sometimes referred

to as the frequency function for a discrete random variable. For fy(x) to

be valid, it must be nonnegative and the sum of all possible
probabilities must equal 1:

> i) =1,

i=1

where X can assume the values«;, Xy, .., X.

For a continuous random variable Y, the density f,(y) is used to find

the probability that Y assumes a range of values, a<Y <b:

>(a<Y<b) = | :fY(y).



Important Concepts

Since a continuous random variable can assume infinitely many real
values, the probability that Y is equal to any single value is zero:

2V = a) = [ f(y =0

As with discrete variables, the probabilities for all possible values of a
continuous variable must be nonnegative and sum to 1:

]. o;fY(Y)dy = L

It is sometimes convenient to consider the cumulative distribution
function (cdf), which also describes the probability characteristics of a

random variable. For a discrete random variable X, the distribution
Fy(x) is the probability that X is less than some value x. The

cumulative distribution is found by summing probabilities for all real
values less than x:

Fx(x) = P(X=) = YFx(D) .

[

If Y is a continuous random variable, the cumulative distribution

function Fy(y) takes the following form:

y

Fyy) =PYS) = K.
These equations illustrate a relationship between the density and
distribution functions for a random variable. If one function is known,
the other can be easily calculated. Because of this relationship, the
terms distribution and density are often used interchangeably when
describing the overall probability characteristics of a random
variable.
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The mean or expected value of a random variable describes the center of
the variable’s density function. If X is a discrete random variable and
assumes  the  values X, Xy, .., X,  with  probabilities
(X)), fx(Xg), .., fx(X,), then the mean uy is given by the weighted
sum

My = 2Xifx ().
i=1
If Y is a continuous random variable with a probability density

function fy(y), the mean p, is given by

Ry = ,[ ) yfy(y)dy.

The variance and standard deviation of a random variable are measures
of dispersion. The variance is the average value of the squared
deviation from the variable’s mean, and the standard deviation is the

square root of the variance. If X is a discrete random variable with
density function fy(Xx) and mean py, the variance Gi is given by the

weighted sum

G = 3 (%~ k) Tx(xy) -
i=1
The standard deviation of X, oy, provides an indication of how

dispersed the values X;, Xy, .., X, are about py. In practice, it is
sometimes desirable to compute the mean absolute deviation of a
random variable instead of its variance. For a discrete variable X, the

mean deviation is D]X; — uy|fx (X)) -

Likewise, if Y is a continuous random variable with density function

fy(y) and mean py, the variance (53 is defined to be:

=] y-m)hay.



Quantiles

Moments

Important Concepts

The standard deviation of Y is o, , and the mean absolute deviation

is I _Z|y - HY|fY(Y)dy-

The pth quantile of a probability distribution F is defined to be the
value ¢such that F(t) = p, where p is a probability between 0 and 1.
For a random variable X, this definition is equivalent to the statement
P(X) = p . Special cases include those quantiles corresponding to
=1/ 2, p=3/,andd =1/ 4 When ) = 1/ 2, the quantile is
called the median of the probability distribution. Whend = 3/ 4 and
) = 1/ 4, the quantiles are called the upper quartile and lower quartile,
respectively. The difference between the upper and lower quartiles of
a distribution is often referred to as the interquartile range, or IQR.

The mode of a probability distribution function is a quantile for which
the function reaches a local maximum. If a distribution has only one
local maximum across its range of values, then it is said to be
unimodal. Likewise, if a distribution has exactly two local maximums,
then it is said to be bimodal. This statistical property is not related to
the Spotfire S+ function mode, which returns the data class of a
Spotfire S+ object.

The moments of a random variable provide a convenient way of
summarizing a few of the quantities discussed in this section. The rth

moment of a random variable X is defined to be the expected value

of the quantity X" . In practice, central moments are often used in place
of ordinary moments. If a random variable X has mean py, the rth

central moment is defined to be the expected value of the quantity

(X - p,x)r. The first central moment is similar to the mean absolute

deviation, and the second central moment is the variance of a
distribution. The third central moment is called the skewness, and is a
measure of asymmetry in a probability density function. The fourth
central moment is called the kurtosis, and is a measure of peakedness
in a density function.
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PROBABILITY FUNCTIONS

For each of the most common distributions, Spotfire S+ contains four
functions that perform probability calculations. These four functions
generate random numbers, calculate cumulative probabilities,
compute densities, and return quantiles for the specified distributions.
Each of the functions has a name beginning with a one-letter code
indicating the type of function: rdist, pdist, ddist, and qdist,
respectively, where d7ist is the Spotfire S+ distribution function. The
four functions are described briefly below. Table 3.1 lists the
distributions currently supported in Spotfire S+, along with the codes
used to identify them. For a complete description of the pseudo-
random number generator implemented in Spotfire S+, see Chapter
34, Mathematical Computing in Spotfire S+.

The random number generator function, rdist, requires an
argument specifying sample size. Some distributions may require
additional arguments to define specific parameters (see Table 3.1).
The rdist function returns a vector of values that are sampled from
the appropriate probability distribution function. For example, to
generate 25 random numbers from a uniform distribution on the

interval [-5,5], use the following expression:

> runif(25,-5,5)

[1] 2.36424 -1.20289 1.68902 -3.67466 -3.90192
[6] 0.45929 0.46681 1.06433 -4.78024 1.80795
[1I1] 2.45844 -3.48800 2.54451 -1.32685 1.49172
[16] -2.40302 3.76792 -4.99800 1.70095 2.66173
[21] -1.26277 -4.94573 -0.89837 1.98377 -2.61245

The probability function, pdist, requires an argument specifying a
vector of quantiles (possibly of length 1). Some distributions may
require additional arguments to define specific parameters (see Table
3.1). The pdist function returns a vector of cumulative probabilities
that correspond to the quantiles. For example, to determine the
probability that a Wilcoxon rank sum statistic is less than or equal to
24, given that the first sample has 4 observations and the second
sample has 6 observations, use the command below.



Density
Function d

Quantile
Function q

Spotfire S+ Probability Functions

> pwilcox(24, 4, 6)

[1] 0.6952381

The density function, ddist, requires an argument specifying a
vector of quantiles (possibly of length 1). Some distributions may
require additional arguments to define specific parameters (see Table
3.1). The ddist function returns a vector of corresponding values
from the appropriate probability density function. For example, to
determine the probability that a Wilcoxon rank sum statistic is equal
to 24, given that the first sample has 4 observations and the second
sample has 6 observations, use the following command:

> dwilcox(24,4,6)

[1] 0.07619048

The quantile function, qd7st, requires an argument specifying a
vector of probabilities (possibly of length 1). Some distributions may
require additional arguments to define specific parameters (see Table
3.1). The qdist function returns a vector of quantiles corresponding
to the probabilities for the appropriate distribution function. For
example, to compute the 0.95 quantile of a chi-square distribution
that has 5 degrees of freedom, use the following expression:

> qchisqg(.95, 5)

[1] 11.0705

The result says that 95% of numbers drawn from the given chi-square
distribution will have values less than 11.0705.
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Table 3.1: Probability distributions in Spotfire S+.

Required Optional

Code Distribution Parameters Parameters Defaults

beta beta shapel, shape?

binom binomial size, prob

cauchy Cauchy Tocation, scale Tocation=0,
scale=1

chisq chi-square df

exp exponential rate 1

P F dfl, df2

gamma Gamma shape rate rate=1

geom geometric prob

hyper hypergeometric m, n, k

Tnorm lognormal meanlog, sdlog meanlog=0,
sdlog=1

logis logistic location, scale location=0,
scale=1

mvnorm multivariate normal mean, cov, sd, rho | mean=rep(0,d),
cov=diag(d),
sd=1

nbinom negative binomial size, prob

norm normal mean, sd mean=0, sd=1

nrange range of standard size

normals
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Table 3.1: Probability distributions in Spotfire S+. (Continued)

statistic

Required Optional
Code Distribution Parameters Parameters Defaults
pois Poisson lambda
stab stable index skewness skewness=0
t Student’s t df
unif uniform min, max min=0, max=1
weibull Weibull shape scale scale=1
wilcox Wilcoxon rank sum | m, n
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A continuous random variable is one that can assume any value
within a given range. Examples of continuous variables include
height, weight, personal income, distance, and dollar amount. This
section describes five of the most common continuous distributions:
uniform, normal, chi-square, ¢, and F See the section Other
Continuous Distribution Functions in Spotfire S+ for descriptions of
additional distributions.

The uniform distribution describes variables that can assume any
value in a particular range with equal probability. That is, all possible
values of a uniform random variable have the same relative
frequency, and all have an equal chance of appearing. Given the

endpoints of the interval [a, b] as parameters, the probability density
function for a uniform random variable is defined as:

1
fa, b(X) = m, axb.
Outside of the interval [a, b], the density is equal to zero. Plots of this
density function for various values of a and b all have the same
rectangular shape, with a constant maximum of 1/ (b-a) in the

interval [a, b].

Spotfire S+ functions
dunif, punif, qunif, runif

Each of these functions has optional parameters for the min (a) and
max (b) of the defined density interval. By default, the values for these

parametersare @ = 0 and b = 1.

There is a Spotfire S+ function sample that also produces a vector of
values uniformly chosen from a given population. For an example of
this function, see the section Common Probability Distributions for
Discrete Variables.



Normal
Distribution

Common Probability Distributions for Continuous Variables

Command line example

A common application of continuous uniform random variables is in
queueing theory. For example, suppose a bus arrives every 15
minutes at a certain bus stop, on the quarter hour. If passengers arrive
randomly at the bus stop between 7:00 and 7:15 a.m., what is the
probability that a particular person will wait more than 12 minutes for
a bus? This will occur if the passenger arrives between 7:00 and 7:03.

> punif(3,0,15)-punif(0,0,15)

[1] 0.2

Therefore, a passenger has a 20% chance of waiting more than 12
minutes for the bus.

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type the values 0 and 3 in the first column.

3. Highlight the column and select Data P> Distribution
Functions.

4. By default, Spotfire S+ generates cumulative probability
values. Select uniform in the Distribution field, and change
the Minimum and Maximum parameters to 0 and 15.

5. Click OK.

6. The values 0.00 and 0.20 appear in the second column of the
data window, which is named Probability. This means that
the probability of arriving between 7:00 and 7:03 is

0.20 - 0.00, or 20%.

The normal, or Gaussian, distribution is unimodal and symmetric
about its mean. Given the mean | and the standard deviation ¢>0
as parameters, the probability density function for a normal random
variable is defined as:

1

WEXP[‘%(X;GM)Q} ‘

fu, «(X) =
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Plots of this density function for various values of p and ¢ all have
the same “bell” shape, with a global maximum at p and tails that
approach zero as X becomes large or small.

In theory, the normal distribution ranges from negative to positive
infinity, implying that normal random variables can assume any real

value. However, the bulk of the values that a normal variable assumes
are within two standard deviations of its mean. For example, consider
the standard normal distribution, where u = 0 and ¢ = 1. Sixty-eight
percent of the values that a standard normal variable assumes will fall
in the range from -1.00 to +1.00. In addition, ninety-five percent of
the values will fall in the range from -1.96 to +1.96.

Spotfire S+ functions

dnorm, pnorm, gnorm, rnorm

Each of these functions has optional parameters for mean (1) and sd
(o) . By default, the values for these parameters are u = 0 and
c=1.

Command line example |

The following command shows how to plot histograms of multiple

25-observation samples, each having mean 0 and standard deviation
L.

> hist(rnorm(25,0,1))

Repeat this many times and observe the variation in the distributions.

Windows GUI Example |

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Select Data » Random Numbers.

3. In the dialog that appears, the name of the new data window
is filled for the Data Set, and Sample is filled for the Target
Column. Specify a Sample Size of 25, and leave the defaults
for Distribution, Mean, and Standard Deviation.

4. Click Apply.
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5. Highlight the Sample column in the data window, open the
Plots 2D palette, and select Histogram.

6. Put the Random Numbers dialog and the graph sheet side
by side, and click Apply to create a new sample and plot.
Repeat this many times and observe the variation in the
distributions.

Command line example 2

Suppose pulmonary function is standardized on a normal distribution
with mean 0 and standard deviation 1. If a score of -1.5 is considered
to be poor pulmonary health for young people, what percentage of
children are in poor pulmonary health?

> pnorm(-1.5,0,1)

[1] 0.0668072

Thus, about 7% of children are classified as having poor pulmonary

health.

Windows GUI Example 2

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type -1.5 in the first cell.

3. Highlight the column and select Data P> Distribution
Functions. By default, Spotfire S+ uses a normal distribution
with mean 0 and standard deviation 1.

4. Click OK.

5. The value 0.07 appears in the second column of the data
window, which is named Probability. To see more decimal
places in the display, highlight the columns and click the
Increase Precision button on the DataSet toolbar.

The normal distribution is very important in statistical analyses, and
arises often in nearly every field of study. Generally speaking, any
variable that is a sum of numerous independent random variables can
be approximated by a normal distribution. Consequently, the normal
distribution offers a reasonable approximation for many variables
that may not strictly follow a normal distribution. The Central Limit
Theorem formalizes this idea. In practice, the normal approximation
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is usually a good one for relatively small sample sizes if the actual
distribution of the sample is fairly symmetric. If the actual distribution
is very skewed, then the sample size must be large for the normal
approximation to be accurate.

The chi-square distribution is derived from a standard normal
distribution and is primarily used in hypothesis testing of parameter

estimates. If Z;, Z,, .., Z are standard normal variables, each having

mean U = 0 and standard deviation o = 1, then a chi-square

variable X2 with n degrees of freedom is defined as the sum of their
squares:

2 2
X = Zzi .
i=1
A chi-square random variable with n degrees of freedom has the

following probability density function:

(x) = —_ 1 e—x/ 2X(n/ 2)-,
2 I'(n/ 2)

where T' is the gamma function,
“(y) = [ v leMd, y>0.
0

Since a chi-square random variable is a sum of squares, the density
function f,(x) is only defined for positive X and n. For small values

of n, plots of the chi-square distribution are skewed and asymmetric.
As the number of degrees of freedom increases, the distribution
becomes more symmetric and approaches the shape of a regular
Gaussian curve.

Spotfire S+ functions
dchisq, pchisq, qchisq, rchisq

Each of these functions requires you to specify a value for the df (n).
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Command line example
Find the upper and lower 2.5th percentile of a chi-square distribution
with 12 degrees of freedom.

> qchisq(0.975,12)

[1] 23.3366

> qchisq(0.025,12)

[1] 4.403789

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type the values 0.975, and 0.025 in the first column. Highlight
the column and click the Increase Precision button on the
DataSet toolbar to increase the precision of the display.

3. Highlight the first column and select Data » Distribution
Functions.

4. In the Result Type field, select Quantile. From the
Distribution dropdown list, select chisquare. In the Degrees
of Freedom field, type 12.

5. Click OK.

6. The values 23.34 and 4.40 appear in the second column of the
data window, which is named Quantile.

The t distribution is derived from both a standard normal

distribution and a chi-square distribution. If Z is a standard normal

variable and x2 is a chi-square random variable with n degrees of

freedom, then a t variable with n degrees of freedom is defined to be
the ratio
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A t random variable with n degrees of freedom has the following
probability density function:

f,00 = —————F(n—g—l)@ +’-‘_2)_(HT+U
T

Plots of this density function are similar in shape to plots of the
normal distribution. Although the t distribution is unimodal and

symmetric about its mean, t values are less concentrated and the
density function tends to zero more slowly than the normal
distribution. In practice, the t distribution represents the mean of a

Gaussian sample with unknown variance. Chapter 5, Statistical
Inference for Omne- and Two-Sample Problems, discusses the

t distribution in the context of estimation and hypothesis testing for
means of samples.

Spotfire S+ functions
dt, pt, qt, rt

Each of these functions requires you to specify a value for the df (n).

Command line example

What is the 95th percentile of the t distribution that has 20 degrees of
freedom?

> qt(0.95,20)
[1] 1.724718

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type 0.95 in the first cell.

3. Highlight the first column and select Data » Distribution
Functions.
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4. In the Result Type field, select Quantile. From the
Distribution dropdown list, select t. In the Degrees of
Freedom field, type 20.

5. Click OK.

6. The value 1.72 appears in the second column of the data
window, which is named Quantile. To see more decimal
places in the display, click the Increase Precision button on
the DataSet toolbar.

The F distribution is the ratio of two independent chi-square
variables, each divided by its own degrees of freedom. If ¥, and
are chi-square random variables with m and n degrees of freedom,

respectively, then an F random variable is defined to be

== A/ M
Xn/ N

An F variable with m and n degrees of freedom has the following
probability density function:

n, n(X) =

1ﬂ(m+n) ) (M
9 _ m/ 92
RO

m n
F(QJF(Q)

n
Like the chi-square distribution, the density function f (X) is
defined for positive X, m, and n only.
The F distribution is used in the analysis of variance to test the

equality of sample means. In cases where two means are
independently estimated, we expect the ratio of the two sample

variances to have a F distribution.

Spotfire S+ functions
df, pf, gf, rf

These functions require you to specify two values for the number of
degrees of freedom, one for each underlying chi-square variable.
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Command line example

Find the upper 5th percentile of an F distribution with 4 and 10
degrees of freedom.

> qf(0.95,4,10)

[1] 3.47805

Windows GUI Example

L.

Open an empty data set by clicking the New Data Set button
on the standard toolbar.

Type 0.95 in the first cell.

Highlight the first column and select Data » Distribution
Functions.

In the Result Type field, select Quantile. From the
Distribution dropdown list, select f. In the Degrees of
Freedom 1 field, type 4, and in the Degrees of Freedom 2
field, type 10.

Click OK.

The value 3.48 appears in the second column of the data
window, which is named Quantile. To see more decimal
places in the display, click the Increase Precision button on
the DataSet toolbar.



Common Probability Distributions for Discrete Variables

COMMON PROBABILITY DISTRIBUTIONS FOR DISCRETE

VARIABLES

Binomial
Distribution

A discrete random variable is one that can assume only a finite
number of values. Examples of discrete variables include the outcome
of rolling a die, the outcome of flipping a coin, and the gender of a
newborn child. Many discrete probability distributions are based on
the Bernoulli trial, an experiment in which there is only two possible
outcomes. The outcomes are often denoted as “head” and “tail”, or
“success” and “failure”. Mathematically, it is convenient to designate

the two outcomes as 1 and 0. A variable X is a Bernoulli random
variable with parameter p if X assumes the values 1 and 0 with the
probabilities P(X =1) = p and P(X=0) = 1-p, where 0<p<l .

In Spotfire S+ you can generate a series of Bernoulli trials using the
sample function. The following command returns a Bernoulli sample

of size 20 with replacement, using probabilities of 0.35 and 0.65 for 0
and 1, respectively:

> sample(0:1, 20, T, c(0.35, 0.65))

[I100011001111000111101

This section describes three of the most common discrete
distributions: binomial, Poisson, and hypergeometric. See the section
Other Discrete Distribution Functions in Spotfire S+ for descriptions
of additional distributions.

The binomial distribution describes the probability that one of two
events occurs a certain number of times in n trials. If X;, Xy, .., X
are independent Bernoulli random variables, each having a
probability parameter p and possible values of 0 or 1, then a

binomial random variable X is defined as their sum:

X = ixi.

i=1
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A binomial random variable with parameters n and p has the
following probability density function:

fy o0 = (| pc1-p" ",

where (D = R-‘—(EQ‘:-IZ)—‘ This density gives the probability that

exactly k successes occur in n Bernoulli trials.

Spotfire S+ functions

dbinom, pbinom, gbinom, rbinom

Each of these functions require you to specify values for the size (n)
and prob (p) parameters.

Command line example

A classic illustration for the binomial distribution is the coin toss. The
following examples compute the probability of getting 6 heads with
10 throws of a fair coin.

What is the probability of getting 6 heads with 10 throws of a fair
(p = 0.5) coin?

> dbinom(6,10,0.5)

[1] 0.2050781

What is the probability of getting at most 6 heads with 10 throws of a
fair coin?

> pbinom(6,10,0.5)

[1] 0.828125

Suppose someone is tossing a coin, and you are not sure whether the
coin is fair. In 10 throws, what is the largest number of heads you
would expect in order to be 95% confident that the coin is fair?

> gbinom(0.95,10,0.5)

[1] 8



Common Probability Distributions for Discrete Variables

Thus, if 9 or 10 tosses showed heads, you would suspect that the coin
might not be fair.

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. 'Type 6 in the first cell.

3. Highlight the first column and choose Data P Distribution
Functions.

4. In the Result Type field, select Density. From the
Distribution dropdown list, select binomial. Type 0.5 in the
Probability field and type 10 in the Sample Size field.

5. Click Apply.

6. The value 0.21 appears in the second column of the data
window, which is named Density.

7. 'To find the probability of throwing at most 6 heads with 10
throws of the coin, change the Result Type field to
Probability in the Distribution Functions dialog.

8. Click Apply.

9. The value 0.83 appears in a Probability column of the data
window.

10. To find the maximum number of heads that you would
expect from 10 throws to be 95% confident that the coin is
fair, type 0.95 in the first cell of a new column in the data
window. Name the new column V4.

11. In the Distribution Functions dialog, type V4 in the Source
Column field, and change the Result Type to Quantile.

12. Click OK.

13. The value 8 appears in a Quantile column of the data
window.

Poisson The Poisson distribution is the limit of a binomial distribution, as the

Distribution number of Bernoulli trials n gets large and the probability of a

success p gets small. Formally, a binomial distribution approaches a
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Poisson distribution if n—eo and p —0 in a way such that their

product remains constant, np = A. A Poisson random variable with a

parameter A has the following probability density function:

Ae™
k!

f(k) = , <=0, 1, 2, ..

In practice, computing exact binomial probabilities is convenient for
small sample sizes only, which suggests when Poisson approximations
can arise. Suppose X is a binomial random variable that describes the
number of times an event occurs in a given interval of time. Assume
that we can divide the time interval into a large number of equal
subintervals, so that the probability of an event in each subinterval is
very small. Three conditions must hold for a Poisson approximation
to be valid in this situation. First, the number of events that occur in
any two subintervals must be independent of one another. Second,
the probability that an event occurs is the same in each subinterval of
time. Third, the probability of two or more events occurring in a
particular subinterval is negligible in comparison to the probability of
a single event. A process that meets these three conditions is called a
Poisson process, and arises in fields as diverse as queueing theory and
insurance analysis.

A Poisson random variable with parameter A has a mean value of A.
Consequently, the number of events that occur in a Poisson process
over t subintervals of time has a mean value of At.

Spotfire S+ functions
dpois, ppois, qpois, rpois

Each of these functions requires you to specify a value for 1ambda.

Command line example

The following example is taken from Rosner (1995). The number of
deaths attributed to typhoid fever over a 1-year period is a Poisson
random variable with A = 4.6. What is the probability distribution
for the number of deaths over a 6-month period? To find this, we use
a parameter of 2.3, since the time interval in question is half of 1 year.
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To find the probability of 0, 1, 2, 3, 4, or 5 deaths in a 6-month
period, use the following command:

> dpois(0:5,2.3)

[1] 0.10025884 0.23059534 0.26518464 0.20330823 0.11690223
[6] 0.05377503

To find the probability of more than 5 deaths, use the following

command:

> 1-ppois(5,2.3)

[1] 0.03

Windows GUI Example

L.

Open an empty data set by clicking the New Data Set button
on the standard toolbar.

Highlight the first column and choose Data P Fill. Select
<END?> from the dropdown list for Columns, type 6 in the
Length field, and type 0 in the Start field.

Click OK.

A sequence of integers from 0.00 to 5.00 appear in the first
column, which is named V1.

Highlight the column and choose Data P Distribution
Functions.

In the Result Type field, select Density. From the
Distribution dropdown list, select poisson. Type 2.3 in the
field for Mean.

Click Apply.

The values 0.10, 0.23, 0.27, 0.20, 0.12, and 0.05 appear in the
second column of the data window, which is named Density.
To see more decimal places in the display, click the Increase
Precision button on the DataSet toolbar.

To find the probability that more than 5 deaths occur in a 6-
month period, type 5 in the first cell of a new column and
name the column V3.
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10. In the Distribution Functions dialog, type V3 in the Source
Column field, and change the Result Type to Quantile.

11. Click OK.

12. The value 0.97 appears in a Probability column of the data
window. This means that the probability that more than five

deaths occuris 1 -0.97, or 0.3.

The hypergeometric distribution is used in the analysis of two
categorical variables, and is best described by the classic Urn Model.
Suppose an urn contains b balls, of which m are red and n = b-m
are black. A hypergeometric random variable denotes the number of
red balls drawn when k balls are taken from the urn without
replacement. Given the parameters m, n, and k, the hypergeometric
probability density function is:

This density gives the probability that exactly r red balls are drawn
from the urn.

The hypergeometric distribution is similar to the binomial
distribution: where a binomial variable is sampled from a finite
population with replacement, a hypergeometric variable is sampled
without replacement. In fact, as b —c and the proportion of red

balls in the urn approaches p, the hypergeometric distribution
converges to a corresponding binomial distribution.

Hypergeometric random variables arise primarily in acceptance
sampling in manufacturing. That is, the number of sample products
that should be tested for quality in a particular batch follows a
hypergeometric distribution. Such information can be used to
determine an acceptable limit for the number of defective products.
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Spotfire S+ functions
dhyper, phyper, ghyper, rhyper

These functions require you to specify values for the number of red
balls in the urn (m), the number of black balls in the urn (n), and the

number of balls drawn without replacement (k).

Command line example

A box contains 100 balls, of which 50 are red and 50 are black. Ten
balls are drawn from the box at random without replacement. What is

the probability that all of the balls chosen will be red?
> dhyper(10, 50, 50, 10)

[1] 0.000593
Thus, the probability of choosing ten out of ten red balls from the box
is quite low.

Windows GUI Example

1. Open an empty data set by clicking the New Data Set button
on the standard toolbar.

2. Type 10 in the first cell.

3. Highlight the first column and choose Data » Distribution
Functions.

4. In the Results Type field, select Density. From the
Distribution dropdown list, choose hypergeometric. Type
10 for the Sample Size, and type 50 for both the Total
Successes and Total Failures.

5. Click OK.

6. The values 0.00 appears in the second column of the data
window, which is named Density. To see more decimal places
in the display, click the Increase Precision button on the
DataSet toolbar.
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The beta distribution is very versatile, and plots of the distribution
function can assume a wide variety of shapes. This flexibility allows
many uncertainties to be described by beta random variables.
Example applications include statistical likelihood ratio tests, random
walks, and Bayesian inference in decision theory.

The standard form of the beta probability density function is:

_ 1 a-1,.  \b-1
fa, b(x) - B(a, b)x (1 X) )
where 0<k<l , a and b are positive shape parameters, and B is the
beta function,

3(a, b) = | ;ua_l(l—u)b_ldt.

Spotfire S+ functions
dbeta, pbeta, gbeta, rbeta

Each of these functions requires you to specify values for the two
shape parameters.

The exponential distribution is one-sided and is characterized by a
memoryless property. It is often used to model the lifetimes of machine
components and the wait times in Poisson processes. For example,

suppose that the random variable X denotes the lifetime of a
particular electronic component. Given that the component survives
for t months, the probability that it survives for s more is not
dependent on t. Formally, the memoryless property is stated in the
following conditional probability:

P(X>t+s|X>t) = P(X>s).

In Poisson processes, exponential random variables describe the wait
times between events.
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Other Continuous Distribution Functions in Spotfire S+

The exponential probability density function is defined as follows:
f,(x) = Ae™,
where X>0 and A is a positive parameter.

Spotfire S+ functions

dexp, pexp, gexp, rexp

Each of these functions has an optional argument for the rate (L)

parameter. By default, A = 1.

The gamma distribution is a generalization of the exponential
distribution. Where an exponential variable models the wait time
until the next event in a Poisson process, a gamma random variable
models the wait time until the nth event. In applied work, gamma
distributions provide models for many physical situations, including
meteorological precipitation processes and personal income data in
the United States.

The probability density function for a gamma random variable is
defined as:

f (X) _ 7\,“ Xa— le—kx
S N ’
where x>0, a.>0 is a shape parameter, and 3 (the inverse of 1) is a

scale parameter, and I' is the gamma function.

Spotfire S+ functions
dgamma, pgamma, qgamma, rgamma

Each of these functions requires you to specify a value for the shape
(o) parameter. They also have optional arguments for the rate (A)
parameter, which is defined to be 1 by default.

The Weibull distribution is closely related to the exponential
distribution, and is commonly used in manufacturing to test the
breaking strength of materials. In this context, Weibull random
variables can model the lifetimes of machine components more
realistically than exponential random variables. This is because the
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Weibull distribution has a failure rate (or hazard function) that varies
with time, whereas the exponential has a constant failure rate due to
the memoryless property. In some contexts, the lifetime of particular
components may increase or decrease with time, making the Weibull
distribution more appropriate.

The probability density function for Weibull random variables is:

fo p(X) = %Xa_lexp(—(%)a),

where x>0, o is a positive shape parameter, and B is a positive
scale parameter. When o = 1, this distribution corresponds to an
exponential distribution with a hazard rate of 1/ . The failure rate of
the Weibull distribution decreases with time when 0<PB<1, is

constant when B = 1, and increases when B >1. In Spotfire S+, the
Weibull distribution is the default for Parametric Survival and Life
Testing.

Spotfire S+ functions
dweibull, pweibull, qweibull, rweibull

Each of these functions requires you to specify a value for the shape
(o) parameter. They also have an optional argument for the scale
(B) parameter, which is defined to be 1 by default.

The logistic distribution is similar in shape to a Gaussian distribution,
though it has longer tails. Logistic random variables are used heavily
to model growth curves, but they have also been used in bioassay
studies and other applications.

The probability density function for a logistic random variable is

(;L - X)
e

of 1+ exp(25%))

where A is a location parameter and 0 is a positive scale parameter.

fl, e(x) =
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With respect to growth curves, the logistic distribution function F
satisfies the following: the derivative of F with respect to x is

proportional to [F(x) —A][B—-F(x)] with A<B. The interpretation
of this statement is that the rate of growth is proportional to the
amount already grown, multiplied by the amount of growth that is
still expected.

Spotfire S+ functions
dlogis, plogis, qlogis, rlogis

Each of these functions has optional arguments for the Tocation (X)
and scale (0) parameters. By default, the values of these arguments
are A =0and 0 = 1.

Like the Gaussian distribution, the Cauchy distribution is unimodal
and symmetric. Like the t distribution, however, plots of the Cauchy
distribution have tails that tend to zero much more slowly than a
normal distribution. Given two independent standard normal

variables Z;, and Z,, each having mean 0 and standard deviation 1, a
standard Cauchy random variable Z is defined as their quotient:
z=-4.
Zy
Thus, a standard Cauchy random variable follows a t distribution

with one degree of freedom. A general Cauchy variable is defined by
multiplying Z by a positive scale parameter 0, and then adding a

location parameter A .

Given A and 0, the probability density function for a general Cauchy
random variable is:

o =51

The density function for a standard Cauchy variable corresponds to
the case when A = 0 and 6 = 1.
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The Cauchy density has a few peculiar properties that provide
counterexamples to some accepted statistical results. For example, the
tails of the density are long enough so that its mean and variance do
not exist. In other words, the density decreases so slowly that a wide
range of values can occur with significant probability, and so the
integral expressions for the mean and variance diverge.

Spotfire S+ functions

dcauchy, pcauchy, qcauchy, rcauchy

Each of these functions has optional arguments for the Tocation (L)
and scale (0) parameters. By default, the values of these parameters
are L = 0 and 6 = 1.

The lognormal distribution is a logarithmic transformation of the
normal distribution. Given a normal random variable Y with

parameters | and ©, a lognormal random variable X is defined to be
its exponential:

X=ce.

Thus, the natural logarithm of data that follows a lognormal
distribution should be approximately Gaussian.

The probability density function for a lognormal random variable is:

1 1 2
f, (X)) = - ex (——(lo X — W) ),

where x>0, and @ and 6>0 are the mean and standard deviation,
respectively, of the logarithm of the random variable. With this

definition, e" is a scale parameter for the distribution, and ¢ is a
shape parameter.

The lognormal distribution is sometimes referred to as the
antilognormal distribution, since it is the distribution of an exponential
(or antilogarithm) of a normal variable. When applied to economic
data, particularly production functions, it is sometimes called the
Cobb-Douglas distribution. In some cases, lognormal random variables
can represent characteristics like weight, height, and density more
realistically than a normal distribution. Such variables cannot assume
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negative values, and so they are naturally described by a lognormal
distribution. Additionally, with a small enough o, it is possible to
construct a lognormal distribution that closely resembles a normal
distribution. Thus, even if a normal distribution is felt to be
appropriate, it might be replaced by a suitable lognormal distribution.

Spotfire S+ functions

dinorm, pTnorm, glnorm, rinorm

Each of these functions has optional arguments for the meanlog (W)
and sdlog (o) parameters. By default, the values of these arguments
are L= 0and o= 1.

The distribution of the range of standard normal random variables is
primarily used for the construction of R-charts in quality control

work. Given n standard normal variables Z,, Z,, .., Z,, each with

mean 0 and standard deviation 1, the range is defined as the difference
between the minimum and maximum of the variables.

Spotfire S+ functions
dnrange, pnrange, qnrange, rnrange

Each of these functions requires you to specify a value for the size
(n) of the sample. They also have an optional nevals argument that
defines the number of iterations in the density, probability, and
quantile computations. The probability density function for the range
of standard normals is a complicated integral equation, and can
therefore require significant computation resources. A higher value of
nevals will result in better accuracy, but will consume more machine
time. By default, nevals is set to 200.
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The multivariate normal distribution is the extension of the Gaussian
distribution to more than one dimension. Let d be the number of
dimensions in the multivariate distribution, let i be a vector of length

d specifying the mean in each dimension, and let ¥ be a dx d
variance-covariance matrix. The probability density function for a
multivariate normal random variable is given by:

-1/ 2

L300 = @my Y Y Pexp( -y = x-w,

where X is the vector X;, Xy, .., Xg), and |Z| is the determinant of X .

Spotfire S+ functions
dmvnorm, pmvnorm, rmvnorm

Each of these functions has an optional argument for the mean vector
(1) . In addition, you can specify the variance-covariance matrix (X)
through the cov and sd arguments. If supplied, the variance-
covariance matrix is the product of the cov matrix and the sd
argument, which contains the standard deviations for each
dimension. By default, mean is a vector of zeros, cov is an identity
matrix, and sd is a vector of ones.

Stable distributions are of considerable mathematical interest. A
family is considered stable if the convolution of two distributions from
the family also belongs to the family. Each stable distribution is the
limit distribution of a suitably scaled sum of independent and
identically distributed random variables. Statistically, they are used
when an example of a very long-tailed distribution is required.

Spotfire S+ functions
rstab

The rstab function requires a value from the interval (0, 2] for an
index argument. For small values of the index, the distribution
degenerates to point mass at 0. An index of 2 corresponds to the
normal distribution, and an index of 1 corresponds to the Cauchy
distribution. Smaller index values produce random numbers from
stable distributions with longer tails. The rstab function also has an
optional skewness argument that indicates the modified skewness of



Other Continuous Distribution Functions in Spotfire S+

the distribution. Negative values correspond to left-skewed random
numbers, where the median is smaller than the mean (if it exists).
Positive values of skewness correspond to right-skewed random
numbers, where the median is larger than the mean. By default, the
skewness is set to 0.

Spotfire S+ contains only the rstab probability function for the stable
family of distributions. The efficient computation of density,
probability, and quantile values is currently an open problem.
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The geometric distribution describes the number of failures before
the first success in a sequence of Bernoulli trials. In binomial

distributions, we think of the number of trials n and the probability of

a success p as fixed parameters, so that the number of successes k is
the random variable. Reversing the problem, we could ask how many
trials would be required to achieve the first success. In this

formulation, the number of failures is the random variable, and p and
k = 1 are fixed.

A geometric random variable with a parameter p has the following
probability density function:

f,(n) = p(1-p)",1=0,1, 2, ..

This density gives the probability that exactly n failures occur before
a success is achieved.

Spotfire S+ functions

dgeom, pgeom, ggeom, rgeom

Each of these functions require you to specify a value for the prob (p)
parameter.

The negative binomial distribution is a generalization of the
geometric distribution. It models the number of failures before

exactly r successes occur in a sequence of Bernoulli trials. When
r = 1, a negative binomial random variable follows a geometric

distribution, and in general, a negative binomial variable is a sum of r
independent geometric variables.

Given the probability of a success p and the number of successes r as
parameters, the negative binomial probability density function is:

r+k-1
£ (k) =( ) )pr<1—p)k,< -0, 1,2 ..



Distribution of
Wilcoxon Rank
Sum Statistic

Other Discrete Distribution Functions in Spotfire S+

This density gives the probability that exactly k failures occur before

I successes are achieved.

Spotfire S+ functions

dnbinom, pnbinom, gnbinom, rnbinom

Each of these functions require you to specify values for the size (r)

and prob (p) parameters.

The Wilcoxon rank sum statistic, also known as the Mann-Whitney test
statistic, is a nonparametric method for comparing two independent
samples. The test itself is best described in terms of treatment and

control groups. Given a set of m + n experimental units, we randomly
select n and assign them to a control group, leaving m units for a
treatment group. After measuring the effect of the treatment on all
units, we group the m+n observations together and rank them in

order of size. If the sum of the ranks in the control group is too small
or too large, then it’s possible that the treatment had an effect.

The distribution of the Wilcoxon rank sum statistic describes the
probability characteristics of the test values. Given m and n as
m(m+ 1)

parameters, the rank sum statistic takes on values between 5

m(m+2n+1)

and 5

Spotfire S+ functions

dwilcox, pwilcox, qwilcox, rwilcox

Each of these functions require you to specify sizes (m and n) for the
two independent samples.

The wilcox functions are available in Spotfire S+ via the command
line only.
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In this section, we illustrate two of the common algorithms for
random number generation: the inverse cdf method and the polar
method. The algorithms we discuss are both standard techniques from
introductory statistics textbooks, and involve transformations of
uniform random variables. The techniques can thus be applied to
develop random number generators for distributions that are not
implemented in Spotfire S+. The algorithms we present do not
encompass all random number generators for all distributions, and
due to efficiency considerations, they are not the algorithms
implemented in Spotfire S+. Nevertheless, they are solid examples of
how the Spotfire S+ probability functions can be modified to serve
different analytical needs.

For details on the pseudo-random number generator implemented in
Spotfire S+, see Chapter 34, Mathematical Computing in Spotfire S+.

A fundamental result from probability theory states that if U is a

uniform random variable on the interval [0,1], and another variable

X = F_l( U) for some function F, then the cumulative distribution

function for X is F. This leads to the inverse cdf method for generating
random numbers from a uniform distribution:

1. Given a distribution function u = F(X), find an expression

for the inverse function x = F_l(u).

2. Generate uniform random variables on the interval [0,1], and

substitute them into F~'. The resulting values are randomly

sampled from the distribution F.

This method is practical for those distribution functions with inverses
that can be easily calculated.

Exponential random variables have a probability density function
fL(x) = ke_hx, where x>0 and A is a positive parameter. The

exponential distribution function F, is the integral of f, over positive

X values, which gives F; (x) = 1- e, Solving F, for x, we find the



The Double
Exponential
Distribution

Examples: Random Number Generation

inverse function :k_l(x) = —In(1-x)/ A We can therefore generate

uniform random variables and substitute them into Fx_l to calculate

exponential variables. The code below packages this process into a
Spotfire S+ function exp. rng.

> exp.rng <- function(n,lambda=1) {

+ unif.variables <- runif(n,0,1)

+ return((-1/Tambda)*log(l-unif.variables))

+ }
To generate 15 exponential random variables with the default
parameter A = 1, use the following command:

> exp.rng(15)

[1] 0.5529780 3.0265630 0.5664921 1.2665062 0.1150221
[6] 0.1091290 2.4797445 2.7851495 1.0714771 0.1501076
[11] 1.5948872 1.4719187 0.4208105 0.8323065 0.6344408

The double exponential or Laplace distribution is not explicitly
implemented in Spotfire S+. However, it is straightforward to develop
a random number generator for this distribution based on a
transformation of exponential variables. To do this, we use the
method  outlined Law and Kelton’s text <reference-
year>(1991)<reference-year>.

The probability density function for a double exponential random
variable is defined as:

A -
h(x) = 3¢ S

where A is a positive parameter. Whereas the regular exponential
density is defined for positive X only, the Laplace density is defined
for all x. In fact, plots of the Laplace density function show that it is
two exponential densities placed back-to-back. In other words, it is
symmetric about X = 0 and includes both the exponential density
and its mirror image across the y axis. This gives the process below
for generating Laplace random variables.
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1. Calculate an exponential random variable X.
2. Calculate a uniform random variable U on the interval [0,1].

3. If U<0.5, return —X. This step ensures that we sample

negative values from the Laplace distribution approximately
half of the time.

4. If U>0.5, return X. This step ensures that we sample

positive values from the Laplace distribution approximately
half of the time.

The code below packages this process into the function 1aplace.rng.

> laplace.rng <- function(n,lambda=1) {
+ return(rexp(n,rate=Tambda) * ifelse(runif(n)<=.5, -1, 1))
+}

To generate 12 Laplace random variables with the default parameter
A = 1, use the following command:

> Taplace.rng(12)

[1] -0.40098376 -0.37866455 -0.97648670 3.31844284
[5] 0.03778431 -0.11506231 -0.45228857 -1.66733404
[9] -0.97993096 -3.84597617 3.31298104 -0.04314876

The polar method, or Box-Muller method for generating random
variables is most often seen in the context of the normal or
multivariate normal distributions. The justification behind the
method relies on a few theoretical details which we only briefly
mention here. For a rigorous justification of the method, we refer the
interested user to a general statistics text such as Rice (1995).

A fundamental transformation law of probabilities states that if X is a
vector of jointly distributed continuous random variables that is
mapped into U, then the density functions of X and U are related via

the determinant of the Jacobian of the transformation. We can use this
result to relate the probability characteristics of normally distributed

cartesian coordinates (X;,Xy) and their corresponding polar

coordinates (r,0).



Examples: Random Number Generation

The Normal The two-dimensional polar method for generating normal random
Distribution variables is:

1. Generate two uniform random variables U; and U, on the
interval [0,1].

2. Calculate the values

X, = J-20ln(U;)cos(2nU,)
Xy = J—-20ln(U,)sin(2nU,) .

3. It can be shown with the fundamental transformation law that
X, and X, are independent Gaussian random variables with

mean 0 and standard deviation . Graphically, ,/~2c6ln(U,)
is the radius r of the point (X;,X,) in polar coordinates, and
27U, is the angle 6.

4. o calculate normal random variables with arbitrary mean u,

return the values X; + i and Xy + 1.

The code below packages this process into the Spotfire S+ function
gaussian.rng.

+ + + + + o+ o+

gaussian.rng <- function(n,mu=0,sigma=1) {

x <- vector(mode="numeric")

# Check whether n is even or odd.
if(abs(n/2-floor(n/2))<.Machine$double.eps) {
odd.indices <- seq(from=1,to=n,by=2)

even.indices <- seq(from=2,to=n,by=2)

unif.variables <- runif(n,0,1) }

else { odd.indices <- seq(from=1,to=n,by=2)
even.indices <- seq(from=2,to=n+l,by=2)
unif.variables <- runif(n+1,0,1) 1}

ul <- unif.variables[odd.indices]

u2 <- unif.variables[even.indices]

x[odd.indices] <- sqrt(-2*sigma*log(ul))*cos(2*pi*u2)
x[even.indices] <- sqrt(-2*sigma*log(ul))*sin(2*pi*u2)
X <- x+mu

return(x[1:n])

}
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To generate 12 Gaussian random variables with the default
parameters L = 0 and ¢ = 1, use the following command:

> gaussian.rng(12)

[1] -1.54634074 -0.37344362 -0.10249664 0.24225650
[5] 1.02383498 0.80662589 0.40487670 -2.15404022
[9] -1.22147040 0.02814069 0.17593919 -1.33878256
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When collecting data from a particular population, a researcher often
knows a few defining characteristics about the population. For
example, the researcher may know that the data is from a nearly
normal population, in the sense that its theoretical distribution is close
to Gaussian. It is sometimes tempting to jump directly into complex
data analyses and assume that a known theoretical distribution fully
describes the data. However, it is usually wise to assume little, and
instead examine the data in a rigorous manner.

There are two complementary approaches when initially examining a
data set: exploratory data analysis and descriptive statistics. Exploratory
data analysis involves various graphs that illustrate relationships in
the data set. An example of this technique is provided in Chapter 1,
Introduction to Statistical Analysis in Spotfire S+. In this chapter, we
discuss common descriptive statistics that are used to numerically

examine the characteristics of a data set. Given a set of n
observations X, Xy, .., X, we think of them as random samples

from a population with a particular distribution. In this context,
descriptive statistics are estimates of the location, scale, and shape of
the distribution. We begin by discussing common measures such as
the sample mean and variance. We then present a few of the more
robust measures, such as M estimators, Huber estimates, and bisquare
functions.

Throughout this chapter, we include examples in which descriptive
statistics are used and computed in TIBCO Spotfire S+. Wherever
possible, we provide menu examples for the Spotfire S+ graphical
user interface (GUI). At this time, however, there are some
computations that are available only through the command line
functions.



Summary Statistics

SUMMARY STATISTICS

Measures of
Central
Tendency

Mean

Measures of central tendency provide an indication of the center of a
population. Because of this, they are sometimes referred to as measures
of location. Estimates of population centers are useful in determining
the expected value of a sample, or where (on average) an observation
from the population tends to lie.

The mean is by far the most common measure of central tendency.

Given a sample X, Xy, .., X, the mean X is simply the arithmetic

average of the observations:

X =

S

n
3 X;.
i=1

It can be shown that X is an unbiased estimate of the true mean of the
population. Suppose the theoretical distribution from which the
observations are sampled has a mean of u. Then the expected value

of X is equal to W, and the sample mean provides an unbiased

estimate of the true mean. In other words, X is equal to the true mean
of the population on average.

Command line example

The Spotfire S+ function mean requires you to specify a numeric
vector, and it returns the arithmetic average of the vector.

> mean(lottery.payoff)
[1] 290.3583

GUI example

1. Choose Statistics » Data Summaries » Summary
Statistics.

2. Type Tottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Mean.
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4. Click OK.
5. The value 290.3583 appears in a Report window.
The sample mean is attractive as a measure of location because it is a

conceptually straightforward estimate. However, X is very sensitive
to outlying observations. By changing a single observation in a
sample, the arithmetic mean can be made arbitrarily large or
arbitrarily small. As a result, it is often used in conjunction with robust
measures of location, which are insensitive to outlying data points.
We discuss a few of the simpler robust measures here. For additional
statistics, see the section Robust Measures of Location and Scale.

The first robust measure of location that we discuss is the trimmed
mean. Given a sample, we first sort the observations in ascending
order. If we know that a certain percentage of the observations are
prone to extreme values, we discard them from either end of the
sorted data before computing the mean. As a result, the trimmed
mean estimates the population center more closely than the
arithmetic mean, especially in the presence of outliers.

Example

The Spotfire S+ function mean has an optional trim argument for
computing the trimmed mean of a vector. A value between 0 and 0.5,
representing the percentage of observations to be discarded from
either extreme of the data vector, can be specified for trim. The
arithmetic average of the trimmed vector is returned. This example
computes the 20% trimmed mean of the Tottery.payoff vector.

> mean(lottery.payoff, trim=0.2)

[1] 274.1558

The second robust measure of location that we discuss is the median.
Given a sample of size n, we first sort the observations in ascending
order. If n is odd, the median M is defined to be the middle value. If
n is even, then M is equal to the average of the two middle values.

The median is not affected by extreme values in a sample, and is
therefore quite robust against outlying observations.



Mode

Summary Statistics

Command line example

The Spotfire S+ function median requires you to specify a numeric
vector, and it returns the median of the vector.

> median(lottery.payoff)

[1] 270.25

Note that the median of the Tottery.payoff vector is lower than the
arithmetic mean. This indicates that the data vector has a few large
values that influence the mean.

GUI example

1. Choose Statistics » Data Summaries » Summary
Statistics.

2. Type Tottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Median.

4. Click OK.
The value 270.25 appears in a Report window.

The third robust measure of location that we discuss is the mode. The
mode of a sample is defined to be the most frequently occurring value
in it. Graphically, the mode is the value at which a histogram of the
data reaches a maximum. For fairly symmetric distributions of data,
the mode is a good indicator of the population center. For skewed
distributions, the mode can indicate whether the bulk of the values
occur in the higher or lower ranges.

Example

You can use the Spotfire S+ function table to compute the mode of a
sample. The following two commands define and test a function that
returns the mode of a numeric vector. Note that this statistical
property is not related to the Spotfire S+ function mode, which returns
the data class of a Spotfire S+ object.

Mode <- function(x) {

tab <- table(x)

Mode <- as.numeric(names(tab)[table(x) == max(tab)])
return(c(mode=Mode, count=max(tab))) }

+ 4+ + v
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> Mode(lottery.payoff)

mode count
127 4

This result says that the value 127 occurs most often (4 times) in the
Tottery.payoff vector. This value is considerably less than either the
mean or the median, which may indicate that a large number of the
Tottery.payoff observations are in the lower range of values.

Measures of dispersion provide an indication of the variability, or
“scatteredness,” in a collection of data points. Because of this,
dispersion statistics are sometimes referred to as measures of scale.
Many of these statistics are based on averaging the distance of each
observation from the center of the data, and therefore involve
measures of location.

As a first measure of scale in a data set, it is often natural to examine
the range, which is the difference between the maximum and
minimum values.

Command line example

The Spotfire S+ function range requires you to specify a numeric
object, and it returns the minimum and maximum values in the
object.

> range(lottery.payoff)
[1] 83.0 869.5

GUI example

1. Choose Statistics » Data Summaries » Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Minimum and Maximum.

4. Click OK.
The values 83.0 and 869.5 appear in a Report window.



Variance and
Standard
Deviation

Summary Statistics

The variance of a sample is the average value of the squared deviation
from the sample mean, and the standard deviation is the square root of

the variance. Given a sample X, Xy, .., X, and the arithmetic mean

of the sample X, the variance s is defined as:

n
2 1 =2
s = — Y -X)".
i=1
The standard deviation of the sample is therefore equal to s. The sum

of squares for the sample is equal to Y X; - X)” .
i
If s* is the average of the squared deviation, one might expect a

. . . 2.
divisor of n instead of n— 1. However, it can be shown that s~ is an

unbiased estimate of the population variance, whereas a divisor of n
produces a biased estimate. Suppose the theoretical distribution from

which the observations are sampled has a variance of & . Then the
expected value of s? is equal to S , and the sample variance provides

an unbiased estimate of the true variance. In other words, s is equal
to the true variance of the population on average.

Command line example

The Spotfire S+ functions var and stdev require you to specify a
numeric vector, and they return the sample variance and standard
deviation of the vector, respectively.

> var(lottery.payoff)
[1] 16612.21
> stdev(lottery.payoff)

[1] 128.8884

We can also compute the biased estimate of variance with an optional
argument to var:

> var(lottery.payoff, unbiased=F)
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[1] 16546.81

The standard deviation using the biased estimate is the square root of
this value, or 128.6344. By default, the unbiased argument is set to

TRUE, giving an estimate of the variance that uses the n— 1 divisor.

With the SumSquares argument, we can compute the unnormalized
sum of squares for Tottery.payoff:

> var(lottery.payoff, SumSquares=T)
[1] 4202890

GUI example

1. Choose Statistics » Data Summaries » Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Variance and Std. Deviation.

4. Click OK.

5. The unbiased variance 16612.21 and corresponding standard
deviation 128.8884 appear in a Report window.

Like the sample mean, the range and sample variance are both very
sensitive to outliers. As a result, they are often used in conjunction
with robust measures of scale, which are insensitive to outlying
observations. We discuss a few of the simpler robust measures here.
For additional statistics, see the section Robust Measures of Location
and Scale.

The first robust measure of scale that we discuss is the median absolute
deviation, or MAD. Given a collection of data points X, X,, .., X
and a measure of the population center, the MAD is the median
distance from the X; to the center. For example, if the population

center is the mean X, the MAD is defined as the median of the values

|Xi—)_(‘. If the population center is the median M, the MAD is
defined as the median of the values |X; - M|.



Interquartile
Range

Summary Statistics

Example

The Spotfire S+ function mad requires you to specify a numeric
vector, and it returns the median absolute deviation of the vector. The
mad function includes an optional center argument, which defines the
measure of location to use in the computation. By default, center is
equal to the median of the sample.

> mad(lottery.payoff)

[1] 122.3145

With the following syntax, we compute the median absolute
deviation using the 20% trimmed mean as the population center:

> mad(lottery.payoff,
+ center = mean(lottery.payoff, trim=0.2))

[1] 123.2869

The second robust measure of scale that we discuss is the interquartile
range, or IQR. Given a collection of data points X;, X,, .., X, the

IQR is the difference between the upper and lower (or third and first)
quartiles of the sample. The IQR is the visual tool used in boxplots to
display the spread of a sample around its median.

Command line example

You can use the Spotfire S+ function quantile to compute the
interquartile range of a sample. The following two commands define
and test a function that returns the IQR of a numeric vector.

> igr <- function (x) diff(quantile(x, c(0.25, 0.75)))
> iqr(lottery.payoff)

75%
169.75

Note that the quantile function interpolates between data points to
find the specified quantiles. For integer samples, it is sometimes
desirable to compute the quartiles without interpolation. In this
situation, the boxplot function can be used with the plot=F argument.
The boxplot function defines quantiles to be exactly equal to a data
point, or halfway between two points. This was the method first
introduced by Tukey for computing quantiles, presumably because it
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made the computations by hand easier. The following commands
define a function for returning the IQR of a numeric vector without

interpolation:

> iqr.data <- function(x) {

+ temp.boxplot <- boxplot(x, plot=F)

+ upper.quart <- temp.boxplot$stats[2,1]
+ Tower.quart <- temp.boxplot$stats[4,1]
+ return(upper.quart-lower.quart)

+ 3

>

iqr.data(lottery.payoff)

[1]1 171

GUI example

L.

Choose Statistics » Data Summaries » Summary
Statistics.

Type Tottery.payoff in the field for Data Set.

Click on the Statistics tab, and deselect all options except for
First Quartile and Third Quartile.

Click OK.

The values 194.25 and 364.00 appear in a Report window.
The interquartile range is 364.00 — 194.25, or 169.75.

Measures of shape describe the overall pattern in the distribution of data
values. For example, generate a histogram of a collection of data
points. Measures of shape might describe how symmetric or
asymmetric the distribution in the histogram is, whether it has a
unique center or multiple centers, or if the distribution is relatively
flat. The most popular measures of shape compare a particular data
set to a normal distribution. The normal distribution provides a
reference point, and the measures of shape indicate how similar or
different the data is to a Gaussian density function.



Skewness

Summary Statistics

The measures of shape that Spotfire S+ computes are based on the
rth central moment of a sample. Given a sample X;, X,, .., X, with

arithmetic mean X, the rth central moment m, is defined as:

Sl

m, =

3 (X -X)".
i=1

Skewness is a signed measure that describes the degree of symmetry,
or departure from symmetry, in a distribution. For a sample with

second and third central moments of m, and my, respectively, the

coefficient of skewness b, is defined to be:

Positive values of b, indicate skewness (or long-tailedness) to the

right, negative values indicate skewness to the left, and values close to
zero indicate a nearly-symmetric distribution. Spotfire S+ implements

a variation of b, called Fisher’s G1 measure to calculate skewness. If
the size of a sample is n, Fisher’s G1 measure of skewness is:

b,~/n(n-1)

g, = —)

Command line example
> skewness(lottery.payoff)

[1] 1.021289

This value is positive, which indicates a long tail to the right of the
distribution’s center. The result matches our conclusions from the
robust measures of location: both the median and mode of
Tottery.payoff are considerably less than the mean, which imply
that a few large values skew the distribution.
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GUI example

1. Choose Statistics » Data Summaries » Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Skewness.

4. Click OK.
The value 1.021289 appears in a Report window.

Kurtosis is a measure that describes the degree of peakedness in a
distribution. For a sample with second and fourth central moments of

my and m,, respectively, the coefficient of kurtosis by is defined to be:

m,
bQ = —5 .
My
Large values of b, usually imply a high peak at the center of the data,
and small values of b, imply a broad peak at the center. Spotfire S+

implements a variation of b, called Fisher’s G2 measure to calculate

kurtosis. If the size of a sample is n, Fisher’s G2 measure of kurtosis
is:

_ Qli_llgl:_l) __§£ﬂ;;1)
2T (n—2)(n—3)[b2 n+ 1 }

Command line example
> kurtosis(lottery.payoff)
[1] 1.554491

GUI example

1. Choose Statistics » Data Summaries » Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Kurtosis.



The summary
Function

Summary Statistics

4. Click OK.
5. The value 1.554491 appears in a Report window.

The Spotfire S+ function summary can operate on numeric objects to
return basic descriptive statistics in a tabular format. The output of the
summary function includes the minimum, maximum, quartiles, mean,
and median of numeric data. It is useful for printing purposes, and for
viewing a group of descriptive statistics together in one table.

Command line example
> summary(lottery.payoff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
83 194.25 270.25 290.36 364 869.5

GUI example

1. Choose Statistics » Data Summaries » Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Mean and the Quantiles group: Minimum, First Quartile,
Median, Third Quartile, Maximum.

4. Click OK.

The values 83.0, 194.25, 270.25, 290.36, 364.0, and 869.5
appear in a Report window.
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Once we compute summary statistics for a particular collection of
data points, we are interested in measuring the amount of variation in
the estimates. This informs us how much emphasis we should give the
estimates when proceeding with statistical analyses of the data. Two
common measures of the variability in descriptive statistics are called
standard error and confidence intervals. In this section, we discuss these
measures for the sample mean only, as they are both based on large-
sample asymptotics. Their justifications rely on normal
approximations, which are not necessarily meaningful in the context
of the sample variance and other measures.

The standard error of the mean (or SEM) is a measure of the variation in
the location estimate X. Suppose that a sample X;, X,, .., X, is from
a population with a true mean and variance of u and o ,
respectively. We compute the sample mean X and the sample
variance s”, and we wish to find a measure of the potential error in

X. Since X is an unbiased estimate, its expected value is equal to the

true mean L. Moreover, it can be shown that the standard deviation

of X is equal to 5/ /n. The following estimate Sy is therefore defined

as the standard error of the mean:

sz—.

In practice, the SEM is useful in the context of repeated sampling. For
instance, suppose multiple samples of size n are taken from the same

population. In this situation, we think of the arithmetic mean X as a
random variable with a particular distribution. The Central Limit

Theorem tells us that, after enough samples, the distribution of X is

approximately normal with parameters p and o . Since the bulk of



Confidence
Intervals

Measuring Error in Summary Statistics

the values in a normal distribution occur within two standard
deviations of the mean, we expect the arithmetic mean of a sample to

be within twice the SEM of X.

Command line example

You can use the Spotfire S+ function stdev to compute the standard
error of the mean for a sample. The following two commands define
and test a function that returns the SEM of a numeric vector.

> sem <- function(x) c(mean = mean(x),
+ SEM = stdev(x)/sqrt(length(x)))
> sem(lottery.payoff)

mean SEM
290.3583 8.087176

GUI example

1. Choose Statistics » Data Summaries » Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Mean and Std. Error of Mean.

4. Click OK.
5. The values 290.358268 and 8.087176 appear in a Report
window.

A confidence interval is a range of values that contains an estimate with
some specified probability, or confidence. If a confidence interval spans
a relatively small range, we can be reasonably sure that an estimate is
accurate. Conversely, if an interval is large, then the estimate can vary
widely from sample to sample. In most analyses, 95% confidence
levels are used to understand the variability and uncertainty in an
estimate.

Spotfire S+ computes upper and lower confidence levels for the

sample mean X by using multiples of the SEM. Suppose that a

sample X,, Xo, .., X, is from a population with a true mean of pu. We

first calculate the sample mean X and the standard error of the mean
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Sy . For point estimates such as X, Spotfire S+ implements confidence

intervals based on quantiles of a t distribution. This is because the

standardized quantity X — )/ Sy follows a t distribution with n - 1

degrees of freedom. The upper and lower (1 — o) % confidence levels
are therefore defined as:

S o
X £Sy qn—l(é) )

where ,_; is a function that returns quantiles of the t distribution

with n—1 degrees of freedom. To compute 95% confidence levels,
we set o0 = 0.05.

Command line example

You can use the Spotfire S+ function t.test to compute confidence
levels for the mean of numeric vector. The t.test function has an
optional conf.level argument, which is set to 0.95 by default.

> t.test(lottery.payoff)
One-sample t-Test

data: Tlottery.payoff
t = 35.9035, df = 253, p-value = 0
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
274 .4315 306.2850
sample estimates:
mean of X
290.3583

This result says that the 95% lower confidence level for the mean is
2744315, and the upper confidence level is 306.285. If we take
multiple samples similar to the Tottery.payoff vector, we can expect
about 95% of the sample means to lie between 274.4315 and 306.285.
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GUI example

1. Choose Statistics » Data Summaries » Summary
Statistics.

2. Type lottery.payoff in the field for Data Set.

3. Click on the Statistics tab, and deselect all options except for
Mean and Conf. Limits for Mean. Leave the Conf. Level
option at 0.95.

4. Click OK.

The values 290.358268, 274.431506, and 306.285029 appear
in a Report window.

109



Chapter 4 Descriptive Statistics

ROBUST MEASURES OF LOCATION AND SCALE

M Estimators M estimators are a class of robust location measures that seek to find a
of Location compromise between the sample mean and median. Given a sample

X1, Xg, .., X, from a population with a true standard deviation of o,
it can be shown that the sample mean minimizes the function

A

hy(w) = nz(x‘;“f.

i=1

Likewise, the median of the sample minimizes the function

n

hQ(LAl) = >

i=1

Xi— |

M estimators minimize the general function

() = zﬁ(x—;”)

i=1

where ¥ is some weight function and the solution p is the robust
measure of location.

A wide variety of weight functions have been proposed for
M estimators. Spotfire S+ implements two choices for V: Huber

Sunctions and Tukey’s bisquare functions. A Huber ¥ function is defined
as:

X x| <c

LX) = ’

H() {sign(x)c x| >¢

where sign(X) is equal to -1, 0, or 1 depending on the sign of x, and
C is a tuning constant. This function is linear from —C to ¢ and is

constant outside of this interval. Thus, ¥, assigns the constant weight

sign(Xx)C to outlying observations. Tukey’s bisquare ¥ function is
defined as:
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2
x(c2—x2) x| <
b
0 IX| >¢

Yr(x) = {

where C is a tuning constant. This function is a fifth degree

polynomial from —C to ¢ and is zero outside of this interval. Unlike
Huber functions, bisquare functions completely ignore extreme
outliers.

In practice, the true standard deviation of a population is not known,
and o must be approximated to compute M estimators of location.

Therefore, a robust measure of scale ¢ (such as the MAD) is needed

in calculations of ¥ functions.

Example

You can use the Spotfire S+ function Tocation.m to compute a robust
M estimator for the center of a numeric vector. The location.m
function includes optional scale, psi.fun, and parameters

arguments, which respectively define the measure of scale (), ¥

function, and tuning constant (C) to use in the computation. By
default, scale is the median absolute deviation from the median of
the sample, psi.fun is equal to Tukey’s bisquare function, and
parameters is set to 5.

> Tocation.m(lottery.payoff)

[1]1 279.2969
attr(, "convergence"):
sum width evals
1.584635e-013 1.752494e-008 5
attr(, "call"):
location.m(x = lottery.payoff)

With the following syntax, we compute an M estimator of location
using a Huber ¥ function. In this case, the default value of
parameters is equal to 1.45.

> Tocation.m(lottery.payoff, psi.fun="huber™)

[1] 279.8903
attr(, "convergence"):
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sum width evals
8.326673e-016 8.677228e-007 5
attr(, "call"):
location.m(x = lottery.payoff, psi.fun = "huber")

Spotfire S+ implements two robust measures of scale that are based
on M estimators of location: bisquare A estimates and Huber t estimates.

A estimates use the asymptotic variance of M estimators as a
computationally straightforward way to approximate scale. Suppose

that a sample of size n has an M estimator of location ,, that we
compute using a function ¥ and a scale estimate s),. To simplify
notation, let X = (X, X,, .., X,) be the vector of sample values and

let Y = (X—uy)/ Sy It can be shown that the asymptotic variance

A* of uy takes the form:

2 _ KsyEM¥ (V)]

A 2
(EMY(N])

where K is a constant, ¥ is the derivative of W with respect to py,

and E denotes expected value. Replacing the expected value signs
with summations and taking the square root of the result, we obtain
the following A estimate of scale:

KSp /n2¥'2(Yi)
Az bl
‘zlf(va‘

Spotfire S+ implements A estimates that use the median absolute
deviation for s, and Tukey’s bisquare function for ¥. The value for

k is chosen so that A is a consistent estimate for Gaussian models; it
is set to 0.9471 in Spotfire S+.
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The class of 7T estimates was first introduced in the context of
regression by Yohai and Zamar in 1986. Suppose that a sample of size
n has an M estimator of location u,, that we compute using a scale

estimate S),. To simplify notation, let X = (X, Xy, .., X;) be the

vector of sample values and let Y = (X—py)/ Sy A T estimate of

T = ks, /%E(Yi),

where K is a constant and p is a weight function. The value for k is

scale is defined to be:

chosen so that T is a consistent estimate for Gaussian models; it is set
to 1.048 in Spotfire S+. The t estimates implemented in Spotfire S+
use the median absolute deviation for s,, and Huber’s function p

for the weight function:

x> x| <

pu(x) = { 9

c x| >¢

The constant C is a tuning parameter that can be adjusted to obtain

desired asymptotic properties from 7 .

Example

You can use the Spotfire S+ functions scale.a and scale.tau to
compute robust measures of scale based on M estimators of location.
The scale.a function computes bisquare A estimates, and the
scale.tau function computes Huber 7 estimates. Both functions
include optional center and tuning arguments, which define the
measure of location in the MAD calculations and the tuning constants
(c) for ¥ and p, respectively. By default, center is the median of the
sample in both functions, tuning is set to 3.85 in scale.a, and tuning
is equal to 1.95 in scale.tau.
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The following two commands compute A estimates of scale for the

Tottery.payoff vector. The first command uses the median of
lTottery.payoff as the estimate of location, and the second command

uses an M estimator.

> scale.a(lottery.payoff)
[1] 118.2306

> scale.a(lottery.payoff,
+ center = location.m(lottery.payoff))

[1] 119.2025

The next two commands compute 7T estimates of scale for
lottery.payoff. The first command uses the median as the estimate
of location, and the second command uses an M estimator.

> scale.tau(lottery.payoff)
[1] 120.8589

> scale.tau(lottery.payoff,
+ center = location.m(lottery.payoff))

[1] 122.1694
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Suppose you have one or two samples of data that are continuous in
the sense that the individual observations can take on any possible
value in an interval. You often want to draw conclusions from your
data concerning underlying “population” or distribution model
parameters that determine the character of the observed data. The
parameters that are most often of interest are the mean and variance
in the case of one sample, and the relative means and variances and
the correlation coefficient in the case of two samples. This chapter
shows you how to use TIBCO Spotfire S+ to carry out statistical
inference for these parameters.

Often, your samples of data are assumed to come from a distribution
that is normal, or Gaussian. A normal distribution has the familiar bell-
shaped population “frequency” curve (or probability density) shown by
the solid line in Figure 5.1. Another common assumption is that the
observations within a sample are serially uncorrelated with one another.
In fact, the data seldom come from an exactly normal distribution.
Usually, a more accurate assumption is that the samples are drawn
from a nearly normal distribution—that is, a nearly bell-shaped curve
whose tails do not go to zero in quite the same way as those of the true
normal distribution, as shown by the dotted line in Figure 5.1.

It is important that you be aware that nearly normal distributions,
which have “heavier tails” than a normal distribution, give rise to
outliers, that is, unusually aberrant or deviant data values. For
example, in Figure 5.1 the left-hand tail of the nearly normal
distribution is heavier than the tail of the normal distribution, but the
right hand tail is not, and so this nearly normal distribution generates
outliers which fall to the left (smaller values than) the bulk of the data.

Even though your data have only a nearly normal distribution, rather
than a normal distribution, you can use a normal distribution as a
good “nominal” model, as indicated by Figure 5.1. Thus, you are
interested in knowing the values of the parameters of a normal
distribution (or of two normal distributions in the case of two samples)
that provide a good nominal distribution model for your data.
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Figure 5.1: Normal and nearly normal densities.

A normal distribution is characterized by two parameters: the mean u

and the variance o , or, equivalently, the mean and the standard

deviation G (the square root of the variance). The mean locates the
center of symmetry of the normal distribution, and so the parameter pt
is sometimes referred to as the /location. Similarly, the standard
deviation provides a measure of the spread of the distribution, and
thus can be thought of as a scale parameter.

In the case of two samples, X;, X,, .., X ,and Y, Yo, .., Y, for two

variables X and Y, you may also be interested in the value of the
correlation coefficient p . The parameter p measures the correlation (or
linear dependency) between the variables X and Y. The value of p is

reflected in the scatter plot obtained by plotting Y; versus X; for
I =1, 2, .., n. A scatterplot of Y; versus X;, which has a roughly

elliptical shape, with the values of Y; increasing with increasing
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values of X;, corresponds to positive correlation p (see, for example,
Figure 5.7). An elliptically-shaped scatter plot with the values of Y;
decreasing with increasing values of X; corresponds to negative

correlation p. A circular shape to the scatter plot corresponds to a

zero value for the correlation coefficient p .

Keep in mind that the correlation between two variables X and Y, as
just described, is quite distinct from serial correlation between the
observations within one or both of the samples when the samples are
collected over time. Whereas the former reveals itself in a scatterplot

of the Y; versus the X;, the latter reveals itself in scatter plots of the
observations versus lagged values of the observations; for example, a
scatter plot of Y; versus Y;, or a scatter plot of X; versus X;, ;. If
these scatter plots have a circular shape, the data are serially
uncorrelated. Otherwise, the data have some serial correlation.

Generally, you must be careful not to assume that data collected over
time are serially uncorrelated. You need to check this assumption
carefully, because the presence of serial correlation invalidates most
of the methods of this chapter.

To summarize: You want to draw conclusions from your data

. . . 2
concerning the population mean and variance parameters | and ©
for one sample of data, and you want to draw conclusions from your
data concerning the population means u;, Wy, the population

variances G} , 65 and the population correlation coefficient p for two
samples of data. You frame your conclusions about the above
parameters in one of the following two types of statistical inference
statements, illustrated for the case of the population mean p in a one-
sample problem:
* A CONFIDENCE INTERVAL. With probability 1 — o, the
mean W lies within the confidence interval (L,U).
* A HYPOTHESIS TEST The computed statistic 7'compares
the null hypothesis that the mean  has the specified value L
with the alternative hypothesis that p# . At any level of

significance greater than the reported p-value for T, we reject
the null hypothesis in favor of the alternative hypothesis.
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A more complete description of confidence intervals and hypothesis
tests is provided in the section Statistical Inference on page 125.

Classical methods of statistical inference, such as Student’s ¢ methods,
rely on the assumptions that the data come from a normal distribution
and the observations within a sample are serially uncorrelated. If your
data contain outliers, or are strongly nonnormal, or if the
observations within a sample are serially correlated, the classical
methods of statistical inference can give you very misleading results.
Fortunately, there are robust and nonparametric methods which give
reliable statistical inference for data that contain outliers or are
strongly nonnormal. Special methods are needed for dealing with
data that are serially correlated. See, for example, Heidelberger and

Welch (1981).

In this chapter, you learn to use Spotfire S+ functions for making both
classical and robust or nonparametric statistical inference statements
for the population means and variances for one and two samples, and
for the population correlation coefficient for two samples. The basic
steps in using Spotfire S+ functions are essentially the same no matter
which of the above parameters you are interested in. They are as
follows:

1. Setting up your data.

Before Spotfire S+ can be used to analyze the data, you must
put the data in a form that Spotfire S+ recognizes.

2. Exploratory data analysis (EDA).

EDA is a graphically-oriented method of data analysis which
helps you determine whether the data support the
assumptions required for the classical methods of statistical
inference: an outlier-free nearly normal distribution and
serially uncorrelated observations.

3. Statistical inference.

Once you’ve verified that your sample or samples are nearly
normal, outlier-free, and uncorrelated, you can use classical
methods of statistical inference that assume a normal
distribution and uncorrelated observations, to draw
conclusions from your data.
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If your data are not nearly normal and outlier-free, the results
of the classical methods of statistical inference may be
misleading. Hence, you often need robust or nonparametric
methods, as described in the section Robust and
Nonparametric Methods on page 127.
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BACKGROUND

Exploratory
Data Analysis

This section prepares you for using the Spotfire S+ functions in the
remainder of the chapter by providing brief background information
on the following three topics: exploratory data analysis, statistical
inference, and robust and nonparametric methods.

The classical methods of statistical inference depend heavily on the
assumption that your data are outlier-free and nearly normal, and that
your data are serially uncorrelated. Exploratory data analysis (EDA)
uses graphical displays to help you obtain an understanding of
whether or not such assumptions hold. Thus, you should always carry
out some graphical exploratory data analysis to answer the following
questions:

* Do the data come from a nearly normal distribution?
e Do the data contain outliers?

 If the data were collected over time, is there any evidence of
serial correlation (correlation between successive values of the
data)?

You can get a pretty good picture of the shape of the distribution
generating your data, and also detect the presence of outliers, by
looking at the following collection of four plots: a histogram, a boxplot,
a density plot, and a normal gg-plot. Examples of these four plots are
provided in Figure 5.2.

Density plots are essentially smooth versions of histograms, which
provide smooth estimates of population frequency, or probability density
curves; for example, the normal and nearly normal curves of Figure
5.1. Since the latter are smooth curves, it is both appropriate and
more pleasant to look at density plots than at histograms.

A normal qqg-plot (or quantile-quantile plot) consists of a plot of the
ordered values of your data versus the corresponding quantiles of a
standard normal distribution; that is, a normal distribution with mean
zero and variance one. If the qq-plot is fairly linear, your data are
reasonably Gaussian; otherwise, they are not.
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Of these four plots, the histogram and density plot give you the best
picture of the distribution shape, while the boxplot and normal
qq-plot give the clearest display of outliers. The boxplot also gives a
clear indication of the median (the solid dot inside the box), and the
upper and lower quartiles (the upper and lower ends of the box).

A simple Spotfire S+ function can create all four suggested
distributional shape EDA plots, and displays them all on a single
screen or a single hard copy plot. Define the function as follows:

> eda.shape <- function(x) {

+ par(mfrow = c(2, 2))

+ hist(x)

+ boxplot(x)

+ iqd <- summary(x)[5] - summary(x)[2]

+ plot(density(x, width = 2 * iqd),

+ xlab = "x", ylab ="", type = "1")
+ qgnorm(x, pch = 1)

+ qqline(x)

+ invisible()

+ 3

This function is used to make the EDA plots you see in the remainder
of this chapter. The argument width = 2*iqd to density sets the
degree of smoothness of the density plot in a good way. For more
details on writing functions, see the Programmer’s Guide.

If you have collected your data over time, the data may contain serial
correlation. That is, the observations may be correlated with one
another at different times. The assessment of whether or not there is
any time series correlation in the context of confirmatory data
analysis for location and scale parameters is an often-neglected task.

You can check for obvious time series features, such as trends and
cycles, by looking at a plot of your data against time, using the
function ts.plot. You can check for the presence of less obvious
serial correlation by looking at a plot of the autocorrelation function
for the data, using the acf function. These plots can be created, and
displayed one above the other, with the following Spotfire S+
function.
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> eda.ts <- function(x) {

+ par(mfrow = c(2, 1))

+ ts.plot(as.ts(x), type = "b", pch = 1)
+ acf(x)

+ invisible()

+ 3

This function is used to make the time series EDA plots you find in
the remainder of this chapter. See, for example, Figure 5.3. The
discussion of Figure 5.3 includes a guideline for interpreting the acf

plot.

Warning

If either the time series plot or the acf plot suggests the presence of serial correlation, you can
place little credence in the results computed in this chapter, using either the Student’s ¢ statistic
approach or using the nonparametric Wilcoxon approach. A method for estimating the
population mean in the presence of serial correlation is described by Heidelberger and Welch
(1981). Seek expert assistance, as needed.

Statistical
Inference

Formal methods of statistical inference provide probability-based
statements about population parameters such as the mean, variance,
and correlation coefficient for your data. You may be interested in a
simple point estimate of a population parameter. For example, the
sample mean is a point estimate of the population mean. However, a
point estimate neither conveys any uncertainty about the value of the
estimate, nor indicates whether a hypothesis about the population
parameter is to be rejected. To address these two issues, you will
usually use one or both of the following methods of statistical
inference: confidence intervals and hypothesis tests.

We define these two methods for you, letting 6 represent any one of
the parameters you may be interested in; for example, 6 may be the

mean WU, or the difference between two means W, —,, or the
correlation coefficient p .

CONFIDENCE INTERVALS. A (1-a)100% confidence interval
for the true but unknown parameter 0 is any interval of the form

(L,U), such that the probability is 1 - o that (L,U) contains 6. The
probability o with which the interval (L,U) fails to cover q is
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sometimes called the error rate of the interval. The quantity
(1 - o) x 100% is called the confidence level of the confidence interval.
Common values of o are a = 0.01, 0.05,0.1, which yield 99 %,
95 %, and 90 % confidence intervals, respectively.

HYPOTHESIS TESTS. A hypothesis test is a probability-based
method for making a decision concerning the value of a population
parameter 0 (for example, the population mean u or standard
deviation G in a one-sample problem), or the relative values of two

population parameters 6, and 0, (for example, the difference

between the population means [, -, in a two-sample problem).

You begin by forming a null hypothesis and an alternative hypothesis. For
example, in the two-sample problem your null hypothesis is often the

hypothesis that 8, = 0,, and your alternative hypothesis is one of the

following:

* The two-sided alternative 0, # 0,
*  The greater-than alternative 6, >0,

*  The less-than alternative 6, < 0,

Your decision to accept the null hypothesis, or to reject the null
hypothesis in favor of your alternative hypothesis is based on the

observed value T = t,,; of a suitably chosen test statistic T. The

probability that the statistic T exceeds the observed value t when

your null hypothesis is in fact true, is called the p-value. .
For example, suppose you are testing the null hypothesis that 6 = 6,
against the alternative hypothesis that 6#6, in a one-sample
problem. The p-value is the probability that the absolute value of T
exceeds the absolute value of t,;,; for your data, when the null
hypothesis is true.

In formal hypothesis testing, you proceed by choosing a “good”

statistic T and specifying a level of significance, which is the probability
of rejecting a null hypothesis when the null hypothesis is in fact true.



Robust and
Nonparametric
Methods

Background

In terms of formal hypothesis testing, your p-value has the following
interpretation: the p-value is the level of significance for which your

observed test statistic value t,,; lies on the boundary between

acceptance and rejection of the null hypothesis. At any significance
level greater than the p-value, you reject the null hypothesis, and at
any significance level less than the p-value you accept the null
hypothesis. For example, if your p-value is 0.03, you reject the null
hypothesis at a significance level of 0.05, and accept the null
hypothesis at a significance level of 0.01.

Two problems frequently complicate your statistical analysis. For
example, Student’s ¢test, which is the basis for most statistical
inference on the mean-value locations of normal distributions, relies
on two critical assumptions:

1. The observations have a common normal (or Gaussian)

distribution with mean p and variance o .
2. The observations are independent.

However, one or both of these assumptions often fail to hold in
practice.

For example, if the actual distribution for the observations is an
outlier-generating, heavy-tailed deviation from an assumed Gaussian
distribution, the confidence level remains quite close to (1 —o)100%,
but the average confidence interval length is considerably larger than
under normality. The p values based on the Student’s ¢ test are also
heavily influenced by outliers.

In this example, and more generally, you would like to have statistical
methods with the property that the conclusions you draw are not
much affected if the distribution for the data deviates somewhat from
the assumed model; for example, if the assumed model is a normal,
or Gaussian distribution, and the actual model for the data is a nearly
normal distribution. Such methods are called robust. In this chapter
you will learn how to use a Spotfire S+ function to obtain robust point
estimates and robust confidence intervals for the population
correlation coefficient.

For one and two-sample location parameter problems (among
others), there exist strongly robust alternatives to classical methods, in
the form of nonparametric statistics. The term nonparametric means that
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the methods work even when the actual distribution for the data is far
from normal; that is, when the data do not have to have even a nearly
normal distribution. In this chapter, you will learn to use one of the
best of the nonparametric methods for constructing a hypothesis test
p-value, namely the Wilcoxon rank method, as implemented in the
Spotfire S+ function wilcox.test.

It is important to keep in mind that serial correlation in the data can
quickly invalidate the use of both classical methods (such as Student’s
#) and nonparametric methods (such as the Wilcoxon rank method)
for computing confidence intervals and p values. For example, a 95%
Student’s ¢ confidence interval can have a much higher error rate
than 5% when there is a small amount of positive correlation in the
data. Also, most modern robust methods are oriented toward
obtaining insensitivity toward outliers generated by heavy-tailed
nearly normal distributions, and are not designed to cope with serial
correlation. For information on how to construct confidence intervals
for the population mean when your data are serially correlated and
free of outliers, see Heidelberger and Welch (1981).



One Sample: Distribution Shape, Location, and Scale

ONE SAMPLE: DISTRIBUTION SHAPE, LOCATION, AND
SCALE

In 1876, the French physicist Cornu reported a value of 299,990 km/
sec for ¢, the speed of light. In 1879, the American physicist A.A.
Michelson carried out several experiments to verify and improve on
Cornu’s value.

Michelson obtained the following 20 measurements of the speed of

light:

850 740 900 1070 930 850 950 980 980 880
1000 980 930 650 760 810 1000 1000 960 960

To obtain Michelson’s actual measurements in km/sec, add 299,000
km/sec to each of the above values.

The twenty observations can be thought of as observed values of
twenty random variables with a common but unknown mean-value
location p. If the experimental setup for measuring the speed of light
is free of bias, then it is reasonable to assume that u is the true speed

of light.

In evaluating this data, we seek answers to at least five questions:
1. What is the speed of light u?

2. Has the speed of light changed relative to our best previous
value p,?

3. What is the uncertainty associated with our answers to (1) and
(2)?

4. What is the shape of the distribution of the data?

5. The measurements were taken over time. Is there any
evidence of serial correlation?

The first three questions were probably in Michelson’s mind when he
gathered his data. The last two must be answered to determine which
techniques can be used to obtain valid statistical inferences from the
data. For example, if the shape of the distribution indicates a nearly
normal distribution without outliers, we can use the Student’s ¢ tests in
attempting to answer question (2). If the data contain outliers or are
far from normal, we should use a robust method or a nonparametric
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method such as the Wilcoxon signed-rank test. On the other hand, if
serial correlation exists, neither the Student’s ¢ nor the Wilcoxon test
offers valid conclusions.

In this section, we use Spotfire S+ to carefully analyze the Michelson
data. Identical techniques can be used to explore and analyze any set
of one-sample data.

The data form a single, ordered set of observations, so they are
appropriately described in Spotfire S+ as a vector. Use the scan
function to create the vector mich:

> mich <- scan()

1: 850 740 900 1070 930
6: 850 950 980 980 880
11: 1000 980 930 650 760
16: 810 1000 1000 960 960
21:

To start, we can evaluate the shape of the distribution, by making a set
of four EDA plots, using the eda.shape function described in the
section Exploratory Data Analysis on page 123:

> eda.shape(mich)

The plots, shown in Figure 5.2, reveal a distinctly skewed distribution,
skewed toward the left (that is, toward smaller values), but rather
normal in the middle region. The distribution is thus not normal, and
probably not even "nearly" normal.

The solid horizontal line in the box plot is located at the median of the
data, and the upper and lower ends of the box are located at the upper
quartile and lower quartile of the data, respectively. To get precise
values for the median and quartiles, use the summary function:

> summary(mich)

Min. 1st Qu. Median Mean 3rd Qu. Max.
650 850 940 909 980 1070

The summary shows, from left to right, the smallest observation, the
first quartile, the median, the mean, the third quartile, and the largest
observation. From this summary you can compute the interquartile
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range, IQR = 3Q-1Q. The interquartile range provides a useful
criterion for identifying outliers—any observation which is more than
1.5 x IQR above the third quartile or below the first quartile is a
suspected outlier.
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Figure 5.2: Exploratory data analysis plots.

To examine possible serial correlation, or dependency, make two
plots using the eda.ts function defined in the section Exploratory
Data Analysis on page 123.
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> eda.ts(mich)

The top plot in Figure 5.3 reveals a somewhat unusual excursion at
observations 14, 15, 16, and perhaps a slightly unusual oscillation in
the first 6 observations. However, the autocorrelation function plot in
the lower part of Figure 5.3 reveals no significant serial correlations—
all values lie within the horizontal dashed lines for lags greater than 0.
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Figure 5.3: Time series plots.
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Because the Michelson data are not normal, you should probably use
the Wilcoxon signed-rank test rather than the Student’s ¢ test for your
statistical inference. For illustrative purposes, we’ll use both.

To compute Student’s ¢ confidence intervals for the population mean-
value location parameter [, and to compute Student’s ¢ significance

test p values for the parameter L, use the function t.test.

To perform the test, you specify the confidence level, the
hypothesized mean-value location p, and the hypothesis being tested,
as follows:

+ conf.level specifies the confidence level of the confidence
interval. Usual values are 0.90, 0.95, or 0.99. The default is
0.95.

* mu specifies the null hypothesis value p, of u. The default is
o = 0, which is often inappropriate for one-sample problems.

You should choose p carefully, using either a previously
accepted value or a value suggested by the data before
sampling.

* alternative specifies the specific hypothesis being tested.
There are three options:

*  "two.sided" tests the hypothesis that the true mean is not
equal to ;. This is the default alternative.

* "greater" tests the hypothesis that the true mean is
greater than L, .

* "less" tests the hypothesis that the true mean is less than
Ho -

For Michelson’s data, suppose you want to test the null hypothesis
value [, = 990 (plus 299,000) against a two-sided alternative. To do
this, use t.test with the argument mu=990, as in the command below:

> t.test(mich, mu = 990)

One-sample t-Test

data: mich
t = -3.4524, df = 19, p-value = 0.0027
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alternative hypothesis: true mean is not equal to 990
95 percent confidence interval:
859.8931 958.1069
sample estimates:
mean of X
909

The p value is 0.0027, which is highly significant. Spotfire S+ returns
other useful information besides the p value, including the ¢ statistic

value, the degrees of freedom (df), the sample mean, and the
confidence interval.
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Our example used the default confidence level of 0.95. If you specify
a different confidence level, as in the following command:

> t.test(mich, conf.level = .90, mu = 990)

You obtain a new confidence interval of (868,950), which is shorter
than before, but nothing else changes in the output from t.test.

To perform the Wilcoxon signed rank nonparametric test, use the
function wilcox.test. As with t.test, the test is completely
determined by the confidence level, the hypothesized mean p,, and

the hypothesis to be tested. These options are specified for
wilcox.test exactly as for t.test.

For example, to test the hypothesis that & = 990 (plus 299,000), use
wilcox.test as follows:

> wilcox.test(mich, mu = 990)

Wilcoxon signed-rank test

data: mich

signed-rank normal statistic with correction Z = -3.0715,
p-value = 0.0021

alternative hypothesis: true mu is not equal to 990
Warning messages:
cannot compute exact p-value with ties in:
wil.sign.rank(dff, alternative, exact, correct)

The p value of 0.0021 compares with the ¢ test p value of 0.0027 for
testing the same null hypothesis with a two-sided alternative.

Michelson’s data have several tied values. Because exact p values
cannot be computed if there are tied values (or if the null hypothesis
mean is equal to one of the data values), a normal approximation is
used and the associated Z statistic value is reported.
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Suppose you are a nutritionist interested in the relative merits of two
diets, one featuring high protein, the other low protein. Do the two
diets lead to differences in mean weight gain? Consider the data in
Table 5.1, which shows the weight gains (in grams) for two lots of
female rats, under the two diets.

Table 5.1: Weight gain data.

High Protein Low Protein
134 70
146 118
104 101
119 85
124 107
161 132
107 94
83
113
129
97
123
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Two Samples: Distribution Shapes, Locations, and Scales

The first lot, consisting of 12 rats, was given the high protein diet, and
the second lot, consisting of 7 rats, was given the low protein diet.
These data appear in section 6.9 of Snedecor and Cochran (1980).

The high protein and low protein samples are presumed to have
mean-value location parameters ; and |, , and standard deviation

scale parameters o, and o , respectively. While you are primarily

interested in whether there is any difference in the pu’s, you may also
be interested in whether or not the two diets result in different
variabilities, as measured by the standard deviations (or their squared
values, the variances). This section shows you how to use Spotfire S+
functions to answer such questions.

In the two-sample case, each sample forms a set of data. Thus, you
begin by creating two data vectors, gain.high and gain.low,
containing the first and second columns of data from Table 5.1:

> gain.high <- scan()
1: 134 146 104 119 124 161 107 83 113 129 97 123
13:

> gain.low <- scan()
1: 70 118 101 85 107 132 94
8:

For each sample, make a set of EDA plots, consisting of a histogram,
a boxplot, a density plot and a normal qqg-plot, all displayed in a two-
by-two plot layout, using the eda.shape function defined in the
section Exploratory Data Analysis on page 123.

> eda.shape(gain.high)
> eda.shape(gain.low)

The resulting plots for the high-protein group are shown in Figure 5.4.
They indicate that the data come from a nearly normal distribution,
and there is no indication of outliers. The plots for the low-protein
group, which we do not show, support the same conclusions.
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Figure 5.4: EDA plots for high-protein group.

Since the data were not collected in any specific time order, you need
not make any exploratory time series plots to check for serial
correlation.

Is the mean weight gain the same for the two groups of rats?
Specifically, does the high-protein group show a higher average
weight gain? From our exploratory data analysis, we have good
reason to believe that Student’s ¢ test will provide a valid test of our
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hypotheses. As in the one-sample case, you can get confidence
intervals and hypothesis test p values for the difference u, -,
between the two mean-value location parameters [, and L, using

the functions t.test and wilcox.test.

As before, each test is specified by a confidence level, a hypothesized
U, (which now refers to the différence of the two sample means), and

the hypothesis to be tested. However, because of the possibility that
the two samples may be from different distributions, you may also
specify whether the two samples have equal variances.

You define the test to be performed using the following arguments to
t.test:

* conf.level specifies the confidence level of the confidence
interval. Usual values are 0.90, 0.95, or 0.99. The default is
0.95.

* mu specifies the null hypothesis value i, of Wy = Hy— 1 -
The defaultis p, = 0.

* alternative specifies the hypothesis being tested. There are
three options:

*  "two.sided" tests the hypothesis that the difference of
means is not equal to ;. This is the default alternative.

* "greater" tests the hypothesis that the difference of
means is greater than .

*  "less" tests the hypothesis that the difference of means is
less than .

* var.equal specifies whether equal variances are assumed for
the two samples. The default is var.equal=TRUE.

To determine the correct setting for the option var.equal, you can
either use informal inspection of the EDA boxplots or use the
function var.test for a more formal test. If the heights of the boxes in
the two boxplots are approximately the same, then so are the
variances of the two outlier-free samples. The var.test function
performs the F test for variance equality on the vectors representing
the two samples.
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For the weight gain data, the var.test function returns:
> var.test(gain.high, gain.low)

F test for variance equality

data: gain.high and gain.Tow

F=1.0755, num df = 11, denom df = 6, p-value = 0.9788
alternative hypothesis: true ratio of variances is not
equal to 1
95 percent confidence interval:

0.198811 4.173718

sample estimates:

variance of x variance of y

457 .4545 425.3333

The evidence supports the assumption that the variances are the
same, so var.equal=T is a valid choice.

We are interested in two alternative hypotheses: the two-sided
alternative that p,—p = 0 and the one-sided alternative that

Uy —u >0 . To test these, we run the standard two-sample ¢ test

twice, once with the default two-sided alternative and a second time
with the one-sided alternative alt="g".

You get both a confidence interval for p, -, , and a two-sided test

of the null hypothesis that w, —p, = 0, by the following simple use
of t.test:

> t.test(gain.high, gain.low)

Standard Two-Sample t-Test
data: gain.high and gain.low
t =1.8914, df = 17, p-value = 0.0757
alternative hypothesis: true difference in means is
not equal to 0

95 percent confidence interval:

-2.193679 40.193679
sample estimates:
mean of x mean of y

120 101

The p value is 0.0757, so the null hypothesis is rejected at the 0.10
level, but not at the 0.05 level. The confidence interval is (-2.2, 40.2).
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To test the one-sided alternative that p,—p, >0, use t.test again

with the argument alternative="greater" (abbreviated below for

ease of typing):
> t.test(gain.high, gain.low, alt = "g")

Standard Two-Sample t-Test

data: gain.high and gain.low
t =1.8914, df = 17, p-value = 0.0379
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
1.525171 NA
sample estimates:
mean of x mean of y
120 101

In this case, the p value is just half of the p value for the two-sided
alternative. This relationship between the p values of the one-sided
and two-sided alternatives holds in general. You also see that when
you use the alt="g" argument, you get a lower confidence bound.
This is the natural one-sided confidence interval corresponding to the
“greater than” alternative.

To get a two-sided hypothesis test p value for the “two-sided”
alternative, based on the Wilcoxon rank sum test statistic, use
wilcox.test, which takes the same arguments as t.test:

> wilcox.test(gain.high, gain.Tow)

Wilcoxon rank-sum test

data: gain.high and gain.low

rank-sum normal statistic with correction Z = 1.6911,
p-value = 0.0908

alternative hypothesis: true mu is not equal to O

Warning messages:

cannot compute exact p-value with ties in:
wil.rank.sum(x, y, alternative, exact, correct)
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The above p value of 0.0908, based on the normal approximation
(used because of ties in the data), is rather close to the ¢ statistic
p value of 0.0757.
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Two Paired Samples

Often two samples of data are collected in the context of a comparative
study. A comparative study is designed to determine the difference
between effects, rather than the individual effects. For example,
consider the data in Table 5.2, which give values of wear for two kinds
of shoe sole material, A and B, along with the differences in values.

Table 5.2: Comparing shoe sole material

Boy wear.A wear.B wear.A-wear.B
1 14.0(R) 13.2(L) 0.8
2 8.8(R) 8.2(L) 0.6
3 11.2(L) 10.9(R) 0.3
4 14,2(R) 14.3(L) -0.1
5 11.8(L) 10.7(R) 11
6 6.4(R) 6.6(L) -0.2
7 9.8(R) 9.5(L) 0.3
8 11.3(R) 10.8(L) 0.5
9 9.3(L) 8.8(R) 0.5
10 13.6(R) 13.3(L) 0.3

In the table, (L) indicates the material was used on the left sole and
(R) indicates it was used on the right sole.

The experiment leading to this data, described in Box, Hunter, and
Hunter (1978), was carried out by taking 10 pairs of shoes and putting
a sole of material A on one shoe and a sole of material B on the other
shoe in each pair. Which material type went on each shoe was
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determined by randomizing, with equal probability that material A
was on the right shoe or left shoe. A group of 10 boys then wore the
shoes for a period of time, after which the amount of wear was
measured. The problem is to determine whether shoe material A or B
is longer wearing.

You could treat this problem as a two-sample location problem and
use either t.test or wilcox.test, as described in the section Two
Samples: Distribution Shapes, Locations, and Scales on page 136, to
test for a difference in the means of wear for material A and material
B. However, you will not be very successful with this approach
because there is considerable variability in wear of both materials
types A and B from individual to individual, and this variability tends
to mask the difference in wear of material A and B when you use an
ordinary two-sample test.

However, the above experiment uses paired comparisons. Each boy
wears one shoe with material A and one shoe with material B. In
general, pairing involves selecting similar individuals or things. One
often uses self-pairing as in the above experiment, in which two
procedures, often called ¢reatments, are applied to the same individual
(either simultaneously or at two closely spaced time intervals) or to
similar material. The goal of pairing is to make a comparison more
sensitive by measuring experimental outcome differences on each
pair, and combining the differences to form a statistical test or
confidence interval. When you have paired data, you use t.test and
wilcox.test with the optional argument paired = T.

The use of paired versions of t.test and wilcox.test leads to
improved sensitivity over the usual versions when the variability of
differences is smaller than the variability of each sample; for example,
when the variability of differences of material wear between materials
A and B is smaller than the variability in wear of material A and
material B.
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Two Paired Samples

In paired comparisons you start with two samples of data, just as in
the case of ordinary two-sample comparisons. You begin by creating
two data vectors, wear.A and wear.B, containing the first and second
columns of Table 5.2. The commands below illustrate one way of
creating the data vectors.

> wear.A <- scan()
1: 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6
11:

> wear.B <- scan()
1: 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
11:

You can carry out exploratory data analysis on each of the two paired
samples X;, .., X, and Y, ... Y,, as for an ordinary two-sample
problem, as described in the section Exploratory Data Analysis on
page 137. However, since your analysis is based on differences, it is
appropriate to carry out EDA based on a single sample of differences
di = Xi—yi,i = ]., vy n.

In the shoe material wear experiment, you use eda.shape on the
difference wear.A-wear.B:

> eda.shape(wear.A - wear.B)

The results are displayed in Figure 5.5. The histogram and density
indicate some deviation from normality that is difficult to judge
because of the small sample size.
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Figure 5.5: EDA plots for differences in shoe sole material wear.

You might also want to make a scatter plot of wear.B versus wear.A,
using plot(wear.A,wear.B), as a visual check on correlation between
the two variables. Strong correlation is an indication that within-
sample variability is considerably larger than the difference in means,
and hence that the use of pairing will lead to greater test sensitivity.
To obtain the scatter plot of Figure 5.6, use the following Spotfire S+
expression:

> plot(wear.A, wear.B)
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Figure 5.6: Scatter plot of wear. A versus wear.B.

Statistical To perform a paired ¢ test on the shoe material wear data, with the
Inference default two-sided alternative use t.test with the paired argument, as
follows:

> t.test(wear.A, wear.B, paired =T)

Paired t-Test

data: wear.A and wear.B
t = 3.3489, df = 9, p-value = 0.0085
alternative hypothesis: true mean of differences is not
equal to O
95 percent confidence interval:
0.1330461 0.6869539
sample estimates:
mean of x -y
0.41
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The p value of .0085 is highly significant for testing the difference in
mean wear of materials A and B. You also get the 95% confidence
interval (0.13, 0.67) for the difference in mean values. You can control
the type of alternative hypothesis with the a1t optional argument, and
you can control the confidence level with the conf.level optional
argument, as usual. To perform a paired Wilcoxon test (often called
the Wilcoxon signed rank test) on the shoe material data, with the
default two-sided alternative use wilcox.test with the paired
argument, as follows:

> wilcox.test(wear.A, wear.B, paired = T)

Wilcoxon signed-rank test

data: wear.A and wear.B

signed-rank normal statistic with correction Z = 2.4495,
p-value = 0.0143

alternative hypothesis: true mu is not equal to 0

Warning messages:
cannot compute exact p-value with ties in:
wil.sign.rank(dff, alternative, exact, correct)

The pvalue of 0.0143 is highly significant for testing the null
hypothesis of equal centers of symmetry for the distributions of
wear.A and wear.B. You can control the type of alternative hypothesis
by using the optional argument alt as usual.
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CORRELATION

What effect, if any, do housing starts have on the demand for
residential telephone service? If there is some useful association, or
correlation, between the two, you may be able to use housing start data
as a predictor of growth in demand for residential phone lines.
Consider the data displayed in Table 5.3 (in coded form), which
relates to residence telephones in one area of New York City.

The first column of data, labeled “Diff. HS,” shows annual first
differences in new housing starts over a period of fourteen years. The
first differences are calculated as the number of new housing starts in
a given year, minus the number of new housing starts in the previous
year. The second column of data, labeled “Phone Increase,” shows
the annual increase in the number of “main” residence telephone
services (excluding extensions), for the same fourteen-year period.

Table 5.3: The phone increase data.

Diff. HS Phone Increase
0.06 1.135
0.13 1.075
0.14 1.496
-0.07 1.611
-0.05 1.654
-0.31 1.573
0.12 1.689
0.23 1.850
-0.05 1.587
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Table 5.3: The phone increase data. (Continued)

Diff. HS Phone Increase
-0.03 1.493
0.62 2.049
0.29 1.943
-0.32 1.482
-0.71 1.382

The general setup for analyzing the association between two samples
of data such as those above is as follows. You have two samples of

observations, of equal sizes n, of the random variables X;, Xy, .., X,
and Y, Yo, ... Y, Let’s assume that each of the two-dimensional
vector random variables (X;, Y;),i = 1, 2, .., n, have the same joint

distribution.

The most important, and commonly used measure of association
between two such random variables is the (population) correlation

coefficient parameter p , defined as

o = E(X=u)(Y = Uy)
0%

)

where W, Uy, and o;, G, are the means and standard deviations,

respectively, of the random variables X and Y. The E appearing in
the numerator denotes the statistical expected value, or expectation
operator, and the quantity E(X—;)(Y — L) is the covariance between

the random variables X and Y. The value of p is always between 1
and -1.

Your main goal is to use the two samples of observed data to
determine the value of the correlation coefficient p. In the process
you want to do sufficient graphical EDA to feel confident that your
determination of p is reliable.
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Setting Up the The data form two distinct data sets, so we create two vectors with the

Data

Exploratory
Data Analysis

suggestive names diff.hs and phone.gain:

> diff.hs <- scan()

1: .06 .13 .14 -.07 -.05 -.31 .12
8: .23 -.05 -.03 .62 .29 -.32 -.71
15:

> phone.gain <- scan()

1: 1.135 1.075 1.496 1.611 1.654 1.573 1.689
8: 1.850 1.587 1.493 2.049 1.943 1.482 1.382
15:

If two variables are strongly correlated, that correlation may appear
in a scatter plot of one variable against the other. For example, plot
phone.gain versus diff.hs using the following command:

> plot(diff.hs, phone.gain)

The results are shown in Figure 5.7. The plot reveals a strong positive
correlation, except for two obvious outliers. To identify the
observation numbers associated with the outliers in the scatter plot,
along with that of a third suspicious point, we used identify as
follows:

> identify(diff.hs, phone.gain, n = 3)

See the online help for a complete discussion of identify.
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Figure 5.7: Scatter plot of phone. gain versus diff.hs.

The obvious outliers occur at the first and second observations. In
addition, the suspicious point (labeled “3” in the scatter plot) occurs at
the third observation time.

Since you have now identified the observation times of the outliers,
you can gain further insight by making a time series plot of each
series:

> plot(diff.hs, type = "b")
> plot(phone.gain, type = "b")

You should also make an autocorrelation plot for each series:

> acf(diff.hs)
> acf(phone.gain)

The results are shown in Figure 5.8. Except for the first three
observations of the two series phone.gain and diff.hs, there is a
strong similarity of shape exhibited in the two time series plots. This
accounts for the strong positive correlation between the two variables
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Inference

Correlation

diff.hs and phone.gain shown in Figure 5.7. The dissimilar behavior
of the two time series plots for the first three observations produces
the two obvious outliers, and the suspicious point, in the scatter plot
of phone.gain versus diff.hs.
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Figure 5.8: Time series and ACF plots of phone increase data.

The ACF plots show little evidence of serial correlation within each of
the individual series.

From your exploratory data analysis, two types of questions present
themselves for more formal analysis. If the evidence for correlation is
inconclusive, you may want to test whether there is correlation
between the two variables of interest by testing the null hypothesis

that p = 0. On the other hand, if your EDA convinces you that
correlation exists, you might prefer a point estimate p of the

correlation coefficient p, or a confidence interval for p .
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Hypothesis Test  You can get p values for the null hypothesis that p = 0 by using the
p-Values function cor.test. To perform this test, you specify the alternative
hypothesis to be tested and the test method to use, as follows:

* alternative specifies the alternative hypothesis to be tested.
There are three options:

*  "two.sided" (the default alternative) tests the alternative
hypothesis that p # 0.

* "greater" tests the alternative hypothesis that p >0.
* "less" tests the alternative hypothesis that p <0.
You can also use the abbreviated forms alt="g" and alt="1".
* method specifies which of the following methods is used:

« "pearson" (the default) uses the standard Pearson sample
correlation coefficient.

e "kendall" uses the rank-based Kendall’s T measure of
correlation.

* "spearman" uses the rank-based Spearman’s p measure of
correlation.

You can abbreviate these methods by using enough of the character
string to determine a unique match; here "p", "k", and "s" work.

Because both Kendall’s T and Spearman’s p methods are based on

ranks, they are not so sensitive to outliers and nonnormality as the
standard Pearson estimate.

Below is a simple use of cor.test to test the alternative hypothesis
that there is a positive correlation in the phone gain data. We use the
default choice of the classical Pearson estimate with the one-sided
alternative alt="g".
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> cor.test(diff.hs, phone.gain, alt = "g")

Pearson product-moment correlation

data: diff.hs and phone.gain
t = 1.9155, df = 12, p-value = 0.0398
alternative hypothesis: true coef is greater than 0
sample estimates:
cor
0.4839001

You get a normal theory #statistic having the modest value of 1.9155,
and a p value of 0.0398. The estimate of p is 0.48, to two decimal
places. There are 14 bivariate observations, and since the mean is
estimated for each sample under the null hypothesis that p >0, the
number of degrees of freedom (df) is 12.

Since your EDA plots reveal two obvious bivariate outliers in the
phone gain data, the nonparametric alternatives, either Kendall’s T or

Spearman’s p, are preferable in determining p values for this case.
Using Kendall’s method, we obtain the following results:

> cor.test(diff.hs, phone.gain, alt = "g",method = "k")

Kendall’s rank correlation tau

data: diff.hs and phone.gain
normal-z = 2.0834, p-value = 0.0186
alternative hypothesis: true tau is greater than 0
sample estimates:
tau
0.4175824

The p-value obtained from Kendall’s method is smaller than that
obtained from the Pearson method. The null hypothesis is rejected at

a level of 0.05. Spearman’s p, by contrast, yields a p value similar to
that of the standard Pearson method.
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Warning

The values returned for tau and rho (0.407 and 0.504, respectively, for the phone gain data) do
not provide unbiased estimates of the true correlation p. Transformations of tau and rho are
required to obtain unbiased estimates of p.

Point Estimates
and Confidence
Intervals for p

156

You may want an estimate p of p, or a confidence interval for p.
The function cor.test gives you the classical sample correlation
coefficient estimate r of p, when you use the default Pearson’s
method. However, cor.test does not provide you with a robust
estimate of p, (since neither Kendall’s T nor Spearman’s p provide
an unbiased estimate of p ). Furthermore, cor.test does not provide

any kind of confidence interval for p .

To obtain a robust point estimate of p, use the function cor with a

nonzero value for the optional argument trim. You should specify a
fraction o between 0 and 0.5 for the value of this argument. This
results in a robust estimate which consists of the ordinary sample
correlation coefficient based on the fraction (1-o) of the data
remaining after “trimming” away a fraction o. In most cases, set
trim=0.2. If you think your data contain more than 20% outliers, you
should use a larger fraction in place of 0.2. The default value is
trim=0, which yields the standard Pearson sample correlation
coefficient.

Applying cor to the phone gain data, you get:
> cor(diff.hs, phone.gain, trim = 0.2)
[1] 0.7145078

Comparing this robust estimate to our earlier value for p obtained
using cor.test, we see the robust estimate yields a larger estimate of
p . This is what you expect, since the two outliers cause the standard

sample correlation coefficient to have a value smaller than that of the
“bulk” of the data.
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To obtain a confidence interval for p, we’ll use the following

procedure (as in Snedecor and Cochran (1980)). First, transform p
using Fisher’s ztransform, which consists of taking the inverse
hyperbolic tangent transform x = atanh(p). Then, construct a
confidence interval for the correspondingly transformed true

correlation coefficient [3 = atanh(p). Finally, transform this interval

back to the original scale by transforming each endpoint of this
interval with the hyperbolic tangent transformation tanh.

To implement the procedure just described as a Spotfire S+ function,
create the function cor.confint as follows:

> cor.confint <- function(x, y, conf.level = .95, trim = 0)
+ {

+ z <- atanh(cor(x, y, trim))

+ b <- gnorm((1 - conf.level)/2)/(length(x) - 3)*.5
+ ci.z <- c(z - b, z+b)

+ conf.int <- tanh(ci.z)

+ conf.int

+ }

You can now use your new function cor.confint on the phone gain
data:

> cor.confint(diff.hs, phone.gain)

[1] 0.80722628 -0.06280425

> cor.confint(diff.hs, phone.gain, trim = .2)

[1] 0.9028239 0.2962300

When you use the optional argument trim=0.2, you are basing the
confidence interval on a robust estimate of p, and consequently you
get a robust confidence interval. Since the robust estimate has the
value 0.72, which is larger than the standard (nonrobust) estimate
value of 0.48, you should be reassured to get an interval which is
shifted upward, and is also shorter, than the nonrobust interval you
got by using cor.confint with the default option trim=0.
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INTRODUCTION

160

Most TIBCO Spotfire S+ functions for hypothesis testing assume a
certain distributional form (often normal) and then use data to make
conclusions about certain parameters of the distribution, often the
mean or variance. In Chapter 5, Statistical Inference for One- and
Two-Sample Problems, we describe EDA techniques to informally
test the assumptions of these procedures. Goodness of fit (GOF) tests
are another, more formal tool to assess the evidence for assuming a
certain distribution.

There are two types of GOF problems, corresponding to the number
of samples. They ask the following questions:

1. One sample. Does the sample arise from a hypothesized
distribution?

2. Two sample. Do two independent samples arise from the same
distribution?

Spotfire S+ implements the two best-known GOF tests:
*  Chi-square, in the chisq.gof function.
*  Kolmogorov-Smirnov, in the ks.gof function.

The chi-square test applies only in the one-sample case; the
Kolmogorov- Smirnov test can be used in both the one-sample and
two-sample cases.

Both the chi-square and Kolmogorov-Smirnov GOF tests work for
many different distributions. In addition, Spotfire S+ includes the
function shapiro.test, which computes the Shapiro-Wilk Wstatistic
for departures from normality. This statistic can be more powerful
than the other two tests for determining whether a particular data set
arises from the normal (Gaussian) distribution.

This chapter describes all three tests, together with a graphical
function, cdf.compare, that can be used as an exploratory tool for
evaluating goodness of fit.



Cumulative Distribution Functions

CUMULATIVE DISTRIBUTION FUNCTIONS

For a random variable X, a cumulative distribution function (cdf),
F(x) = P[X], assigns a measure between 0 and 1 of the
probability that X <x. If X;, .., X, form a random sample from a

continuous distribution with observed values X, .., X, an empirical

distribution function Fn can be defined for all X, —eo< X < oo, so that
F,(X) is the proportion of observed values less than or equal to X.

The empirical distribution function estimates the unknown cdf.

To decide whether two samples arise from the same unknown
distribution, a natural procedure is to compare their empirical
distribution functions. Likewise, for one sample, you can compare its
empirical distribution function with a hypothesized cdf. For more
information on cumulative distribution functions, see Chapter 1,
Probability.

A graphical comparison of either one empirical distribution function
with a known cdf, or of two empirical distribution functions, can be
obtained easily in Spotfire S+ using the function cdf.compare. For
example, consider the plot shown in Figure 6.1. In this example, the
empirical distribution function and a hypothetical cdf are quite close.
This plot is produced using the cdf.compare function as follows:

# Set the seed for reproducibility.

> set.seed(222)

> z <- rnorm(100)

> cdf.compare(z, distribution = "normal”)
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Empirical and Hypothesized normal CDFs
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Figure 6.1: The empirical distribution function of a sample of size 100 generated
from a N(0,1) distribution. The dotted line is the smoothed theoretical N(0,1)
distribution evaluated at the sample points.

You may also compare distributions using quantile-quantile plots
(qqplots) generated by either of the following functions:

* qgnorm, which compares one sample with a normal
distribution.

* qqplot, which compares two samples.

For our normal sample z, the command qqnorm(z) produces the plot
shown in Figure 6.2.



Cumulative Distribution Functions

Quantiles of Standard Normal

Figure 6.2: A gqnorm plot of a sample from a normal distribution.

Departures from linearity show how the sample differs from the
normal, or how the two sample distributions differ. To compare
samples with distributions other than the normal, you may produce
qqplots using the function ppoints. For more details, see the chapter
Traditional Graphics in the Guide to Graphics.

In many cases, the graphical conclusions drawn from either
cdf.compare or the qgplots make more formal tests such as the
chi-square or Kolmogorov-Smirnov unnecessary. For example,
consider the two empirical distributions compared in Figure 6.3.
They clearly have different distribution functions:

> x <- rnorm(30)
>y <- runif(30)
> cdf.compare(x, y)
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Comparison of Empirical cdfs of x and y
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Figure 6.3: Two clearly different empirical distribution functions.
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THE CHI-SQUARE GOODNESS-OF-FIT TEST

The chi-square test is the oldest and best known goodness-of-fit test. It
is a one-sample test that examines the frequency distribution of n
observations grouped into k classes. The observed counts ¢; in each
class are compared to the expected counts C; from the hypothesized
distribution. The test statistic, due to Pearson, is

9 (6 —Cp2

£ .25 Ci

i=1

Under the null hypothesis that the sample comes from the
hypothesized distribution, the test statistic has a }2 distribution with
k-1 degrees of freedom. For any significance level o, reject the null
hypothesis if 5(2 is greater than the critical value v for which
P(x2>v) = .

You perform the chi-square goodness of fit test with the chisq.gof
function. In the simplest case, specify a test vector and a hypothesized
distribution:

> chisq.gof(z, distribution = "normal™)

Chi-square Goodness of Fit Test
data: z

Chi-square = 11.8, df = 12, p-value = 0.4619
alternative hypothesis:

True cdf does not equal the normal Distn. for at least
one sample point.

Since we created z as a random sample from a normal distribution, it
is not surprising that we cannot reject the null hypothesis. If we
hypothesize a different distribution, we see that the chi-square test
correctly rejects the hypothesis. In the command below, we test
whether z is a sample from an exponential distribution.

> chisq.gof(z, distribution = "exponential™)
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Chi-square Goodness of Fit Test
data: z

Chi-square = 271.28, df = 12, p-value =0
alternative hypothesis:

True cdf does not equal the exponential Distn. for at
least one sample point.

The allowable values for the distribution argument are the
following strings:

"beta" "binomial" "cauchy" "chisquare"
"exponential" " "gamma" "geometric"
"hypergeometric" "lognormal"™ "logistic"™ "negbinomial"”
"normal" "poisson" "t "uniform"
"weibull" "wilcoxon"

The default value for distribution is "normal™".

When the data sample is from a continuous distribution, one factor
affecting the outcome is the choice of partition for determining the
grouping of the observations. This becomes particularly important
when the expected count in one or more cells drops below 1, or the
average expected cell count drops below five (Snedecor and Cochran
(1980), p. 77). You can control the choice of partition using either the
n.classes or cut.points argument to chisq.gof. By default,
chisq.gof uses a default value for n.classes due to Moore (1986).

Use the n.classes argument to specify the number of equal-width
classes:

> chisq.gof(z, n.classes = 5)
Use the cut.points argument to specify the end points of the cells.

The specified points should span the observed values:

> cuts.z <- c(floor(min(z))-1, -1, 0, 1, ceiling(max(z))+1)
> chisqg.gof(z, cut.points = cuts.z)
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Chi-square tests apply to any type of variable: continuous, discrete, or
a combination of these. For large sample sizes (n 2 50 ), the chi-square
is the only valid test when the hypothesized distribution is discrete. In
addition, the chi-square test easily adapts to the situation when
parameters of a distribution are estimated. However, information is
lost by grouping the data, especially for continuous variables.

167



Chapter 6 Goodness of Fit Tests

THE KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST

168

Suppose F, and F, are two cdfs. In the one-sample situation, F; is
the empirical distribution function and F, is a hypothesized cdf; in

the two-sample situation, F; and F, are both empirical distribution

functions. Possible hypotheses and alternatives concerning these cdfs
are:

»  Two-sided

Hy: F(x) = Fy(x) forall x

H,: F(x) # Fy(x) for at least one value of x
*  One-sided ( “less” alternative)

Hy: Fi(x) 2 Fy(x) forall x

H)y: F (x) <Fy(x) for at least one value of X.
*  One-sided (“greater” alternative)

Hy: F(x)<Fy(x) forall x

H,: F|(x)>Fy(x) for at least one value of x

The Kolmogorov-Smirnov (KS) test is a method for testing the above
hypotheses. Corresponding to each alternative hypothesis is a test
statistic, as follows.

* Two-sided Test: T = sup,|F(x) = Fy(X)|
*  Less Alternative: T~ = sup,|Fo(X) = F(X)|

*  Greater Alternative: TT = SUpX|F1(X)_FQ(X)‘

Thus, the KS test is based on the maximum vertical distance between
the distributions F,(x) and Fy(x). If the test statistic is greater than

some critical value, the null hypothesis is rejected.
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To perform a KS test, use the function ks.gof. By default, the one-
sample ks.gof test compares the sample x to a normal distribution
with a mean of mean(x) and a standard deviation of stdev(x). For
example, the following is returned for our normal sample, z:

> ks.gof(z)

One sample Kolmogorov-Smirnov Test of Composite Normality

data: z
ks = 0.0826, p-value = 0.0891
alternative hypothesis:
True cdf is not the normal distn. with estimated
parameters
sample estimates:
mean of x standard deviation of x
0.006999765 1.180401

In the one-sample case, ks.gof can test any of the three hypotheses
through the alternative argument; possible values of alternative
are "two-sided", "greater”, and "less". In the two-sample case,
ks.gof can test only the two-sided hypothesis.

You can specify a different distribution using the distribution
argument, which accepts the following values:

"beta" "binomial" "cauchy" "chisquare"
"exponential" " "gamma" "geometric"
"hypergeometric" "lognormal"” "logistic"™ "negbinomial"”
"normal" "poisson" "t "uniform”
"weibull" "wilcoxon"

For example, suppose we think the underlying distribution of z is chi-
square with 2 degrees of freedom. The KS test gives strong evidence
against this assumption. In the command below, the ks.gof function
passes the df argument to the functions for the chi-square distribution.
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> ks.gof(z, alternative = "greater",
+ distribution = "chisquare", df = 2)

One-sample Kolmogorov-Smirnov Test
Hypothesized distribution = chisquare

data: z
ks = 0.4906, p-value =0
alternative hypothesis:
True cdf is greater than the chisquare distn. with the
specified parameters

Figure 6.4, created as follows, also shows that this assumption is not
reasonable:

> cdf.compare(z, dist = "chisquare", df = 2)
The chisq.gof test gives further confirmation:
> chisq.gof(z, dist = "chisquare™, n.param.est = 0, df = 2)
Chi-square Goodness of Fit Test
data: z
Chi-square = 314.96, df = 12, p-value =0
alternative hypothesis:

True cdf does not equal the chisquare Distn. for at least
one sample point.

Note that chisq.gof tests only the two sided alternative.
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Empirical and Hypothesized chisquare CDFs
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Figure 6.4: Similar to Figure 6.3, except the dotted line shows a chi-square cdf with
2 degrees of freedom.
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THE SHAPIRO-WILK TEST FOR NORMALITY
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The Shapiro-Wilk Wistatistic is a well-established and powerful test
for detecting departures from normality. The test statistic W is

defined as:
n 2
B
i=1

3 (X = %)

W =

where X, Xy, .., X, are the ordered data values. The vector

1= (a, ay .., a,)is

Tyl
Jgomv
Jm'v v m
where m is the vector of expected values of the order statistics for a

random sample of size n from a standard normal distribution. Here,

V is the variance-covariance matrix for the order statistics, T denotes

the transpose operator, and V™! is the inverse of V. Thus, a contains
the expected values of the standard normal order statistics, weighted

by their variance-covariance matrix and normalized so that aa=1.
The Wistatistic is attractive because it has a simple, graphical
interpretation: you can think of it as an approximate measure of the
correlation in a normal quantile-quantile plot of the data.

To calculate Shapiro-Wilk’s Wstatistic in Spotfire S+, use the
shapiro.test function. This function works for sample sizes less than
5000; Spotfire S+ returns an error if there is more than 5000 finite
values in your data set. The following is returned for our normal
sample, z:

> shapiro.test(z)

Shapiro-Wilk Normality Test

data: z



The Shapiro-Wilk Test for Normality

W = 0.9853, p-value = 0.3348

Small p-values indicate that the null hypothesis of normality is
probably not true. Since we generated z from a normal distribution, it
is not surprising that we cannot reject the null hypothesis.
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ONE-SAMPLE TESTS

Comparison of As we mention in the section The Chi-Square Goodness-of-Fit Test on

Tests

Composite
Tests for a
Family of
Distributions

174

page 165, the chi-square test divides the data into categories. While
this may be appropriate for discrete data, it can be an arbitrary
process when the data are from a continuous distribution. The results
of the chi-square test can vary with how the data are divided,
especially when dealing with continuous distributions. Because of this
characteristic, the one-sample Kolmogorov-Smirnov test is more
powerful than the chi-square test when the hypothesized distribution
is continuous. That is, it is more likely to reject the null hypothesis
when it should.

In general, both the chi-square and Kolmogorov-Smirnov GOF tests
are less powerful for detecting departures from normality than the
Shapiro-Wilk test. This is because the Shapiro-Wilk test is designed
specifically for normal distributions, and does not test the goodness of
fit for other distributions. In addition, the chi-square and
Kolmogorov-Smirnov tests must estimate distribution parameters
from the data if none are provided; we discuss this in detail in the
next section.

When distribution parameters are estimated from a sample rather
than specified in advance, the tests described in this chapter may no
longer be adequate. Instead, different tables of critical values are
needed. The tables for the Kolmogorov-Smirnov test, for example,
vary according the the following criteria:

» Different distributions
*  Estimated parameters
*  Methods of estimation
* Sample sizes

The null hypothesis is composite in these cases: rather than
hypothesizing that the data have a distribution with specific
parameters, we hypothesize only that the distribution belongs to a
particular family of distributions, such as the normal. This family of
distributions results from allowing all possible parameter values.
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The two functions chisq.gof and ks.gof use different strategies to
solve composite tests. When estimating distribution parameters, the
chisq.gof function requires the user to pass both the number of
estimated parameters and the estimates themselves as arguments. It
then reduces the degrees of freedom for the chi-square by the number
of estimated parameters.

The ks.gof function explicitly calculates the required parameters in
two cases:

*  Normal distribution, where both the mean and variance are
estimated.

*  Exponential distribution, where the mean is estimated.

Otherwise, ks.gof forbids composite hypotheses. When distribution
parameters must be estimated, the KS test tends to be conservative.
This means that the actual significance level for the test is smaller than
the stated significance level. A conservative test may incorrectly fail to
reject the null hypothesis, thus decreasing its power.

The Shapiro-Wilk Wstatistic is calculated directly from the data
values, and does not require estimates of the distribution parameters.
Thus, it is more powerful than both the chi-square and Kolmogorov-
Smirnov GOF tests when the hypothesized theoretical distribution is
normal.

As an example, we test whether we can reasonably assume that the
Michelson data arises from a normal distribution; see the section One
Sample: Distribution Shape, Location, and Scale on page 129 for a
definition of the mich data set. We start with an exploratory plot using
cdf.compare, as shown in Figure 6.5:

> cdf.compare(mich, dist = "normal"”, mean = mean(mich),
+ sd = stdev(mich))
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Empirical and Hypothesized normal CDFs
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Figure 6.5: Exploratory plot of cdf of the Michelson data.

We now use the ks.gof function, which estimates parameters for the
mean and variance:

> ks.gof(mich, dist = "normal")

One sample Kolmogorov-Smirnov Test of Composite Normality

data: mich
ks = 0.1793, p-value = 0.0914
alternative hypothesis:
True cdf is not the normal distn. with estimated
parameters
sample estimates:
mean of x standard deviation of x
909 104.926

If distribution parameters are estimated, the degrees of freedom for
chisq.gof depend on the method of estimation. In practice, you may
estimate the parameters from the original data and set the argument
n.param.est to the number of parameters estimated. The chisq.gof
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function then subtracts one degree of freedom for each parameter
estimated. For example, the command below tests the normal
assumption for the Michelson data using chisq.gof:

> chisq.gof(mich, dist = "normal", n.param.est = 2,
+ mean = mean(mich), sd = stdev(mich))

Chi-square Goodness of Fit Test

Warning messages:
Expected counts < 5. Chi-squared approximation may not
be appropriate.
data: mich
Chi-square = 8.7, df = 4, p-value = 0.0691
alternative hypothesis:
True cdf does not equal the normal Distn. for at least one
sample point.
Note that the distribution theory of the chi-square test is a large
sample theory. Therefore, when any expected cell counts are small,

chisq.gof issues a warning message. You should regard p values with
caution in this case.

In truth, if the parameters are estimated by maximum likelihood, the
degrees of freedom for the chi-square test are bounded between

(m—1) and (m-1-k), where m is the number of cells and k is the
number of parameters estimated. It is therefore important to compare
the test statistic to the chi-square distribution with both (m-1) and
(m-1-k) degrees of freedom, especially when the sample size is
small. See Kendall and Stuart (1979), for a more complete discussion.

Both the chi-square and Kolmogorov-Smirnov goodness-of-fit tests
return results for the mich data which make us suspect the null
hypothesis, but don’t allow us to firmly reject it at 95% or 99%
confidence levels. The shapiro.test function returns a similar result:

> shapiro.test(mich)

Shapiro-WiTk Normality Test

data: mich
W = 0.9199, p-value = 0.0988

177



Chapter 6 Goodness of Fit Tests

TWO-SAMPLE TESTS

178

In the two-sample case, you can use the ks.gof function, with the
second sample y filling in for the hypothesized distribution. The
assumptions of the two-sample KS test are:

* The samples are random samples,
* The samples are mutually independent, and
*  The data are measured on at least an ordinal scale.

In addition, the test gives exact results only if the underlying
distributions are continuous.

For example, the following commands graphically compare the cdfs
of two vectors, x and y, that are generated from a normal and
exponential distribution, respectively:

> x <- rnorm(30)

>y <- rexp(100)

> par(mfrow = c(1,2))
> qqplot(x, y)

> cdf.compare(x, y)

Figure 6.6 shows the results; the qqgplot is not linear and the cdfs are
quite different. This graphical evidence is verified by a formal KS test:

> ks.gof(x, y)

Two-Sample Kolmogorov-Smirnov Test

data: x and y
ks = 0.4667, p-value = 0.0001
alternative hypothesis:
cdf of x does not equal the
cdf of y for at Teast one sample point.
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Comparison of Empirical cdfs of x and y
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Figure 6.6: Normal and exponential samples compared. In the graph on the right,
the dotted line is the cumulative distribution function for the exponential sample.
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This chapter shows you how to use TIBCO Spotfire S+ statistical
inference functions for two types of problems that involve counts or
proportions. With these functions, you can obtain confidence intervals
for the unknown population parameters and p values for hypothesis
tests of the parameter values.

The first type of problem is one where you have one or more
samples, or sets of trials, in which the count for each sample
represents the number of times that a certain interesting outcome
occurs. By common convention, we refer to the occurrence of the
outcome of interest as a “success.” For example, if you play roulette
100 times at a casino, and you bet on red each time, you are
interested in counting the number of times that the color red comes
up. This count is a number between 0 and 100. When you divide this
count by 100 you get a proportion (that is, a number between 0 and
1). This proportion is a natural estimate of the probability that red
comes up on the roulette wheel.

Another example is provided by the famous Salk vaccine trials. These
trials involved two groups, one of which received the vaccine and one
of which received a placebo. For each group, the count of interest was
the number of individuals who contracted polio. The ratio of the
number of individuals who contracted polio to the total number of
individuals in the group is a proportion that provides a natural
estimate of the probability of contracting polio within that group.

The underlying probability model for problems of this first type is the
binomial distribution. For each set of trials i, this distribution is

characterized by the number of trials and the probability p; that a
success occurs on each trial. This probability is called a proportion
parameter. Your main interest is in making statistical inference
statements concerning the probabilities 3,, py, .., p, of occurrence of

the event of interest for each of the m sets of trials.

The second type of problem is one where you have counts on the
number of occurrences of several possible outcomes for each of two
variables. For example, you may be studying three types of cancer
and three types of diet (such as low-, medium- and high-fat diets). The
two variables of interest may be “type of cancer” and “type of diet.”



Introduction

For a fixed set of individuals, you have counts on the number of
individuals who fall jointly in each of the categories defined by the
simultaneous occurrence of a type of cancer and a diet classification.
For problems of this kind, the data is arranged in a two-way table
called a contingency table.

In this second kind of problem, your main interest is to determine
whether there is any association between the two variables of interest.
The probability model for such problems is one of statistical
independence between the two variables.

The first three sections of this chapter cover the first type of problem
described above, for which the proportion parameters are the
probabilities of success, 3;, Py, .., P, in m sets of binomial trials. The

last section covers the second type of problem, where you are
interested in testing the null hypothesis of independence between two
variables.
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PROPORTION PARAMETER FOR ONE SAMPLE

When you play roulette and bet on red, you expect your probability
of winning to be close to, but slightly less than, 0.5. You expect this
because (in the United States) a roulette wheel has 18 red slots, 18
black slots, and two additional slots labeled “0” and “00,” for a total of
38 slots into which the ball can fall. Thus, for a “fair” (that is, perfectly
balanced) wheel, you expect the probability of red to be

)y = 18/ 38 = 0.474. You hope that the house is not cheating you
by altering the roulette wheel so that the probability of red is less than

0.474.

To test whether a given sample has a particular proportion parameter,

use the binom.test function.

Setting Up the In the roulette case there is little to do, since the only data are the
Data number 7 of trials and the number x of successes. These two values
can be directly supplied as arguments to binom.test, as shown in the

examples below.

Hypothesis You can test the null hypothesis that p = p, using the function

Testing binom. test. For example, if you bet on red 100 times and red comes
up 42 times, you get a p value for this null hypothesis against the

two-sided alternative that p # 0.474 as follows:

> binom.test(42, 100, p = 0.474)$p.value

[1] 0.3167881

The two-sided alternative is the default alternative for binom.test.
You can get a p value for a one-sided alternative by using the optional
argument alt. For example, in the roulette wheel example you are

concerned that the house might cheat you in some way so that p <p,,.

Use the following to test the null hypothesis against this one-sided

alternative:

> binom.test(42, 100, p = 0.474, alt = "1")$p.value

[1] 0.1632416
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Proportion Parameter for One Sample

Here a1t="1" specifies the “less than” alternative p <p,. To specify

the “greater than” alternative p >p,, use alt="g".

The default for the optional argument p, which specifies the null
hypothesis value for p, is p=0.5. For example, suppose you toss a
coin 1000 times, with heads coming up 473 times. To test the coin for
“fairness” (that is, to test that the probability of heads equals 0.5), use
the following:

> binom.test(473, 1000)$p.value

[1] 0.09368729

The function binom.test does not compute a confidence interval for
the probability p of success. You can get a confidence interval for p
by using the function prop.test. For example, the following shows
how to obtain the 95% confidence interval for p:

> prop.test(45, 100)$conf.int

[1] 0.3514281 0.5524574
attr(, "conf.level"):
[1] 0.95

The function prop.test uses a normal approximation to the binomial
distribution for such computations.

You get different confidence intervals by using the optional argument
conf.level with different values. For example, to get a 90%
confidence interval:

> prop.test(45, 100, conf.level = 0.9)$conf.int

[11 0.3657761 0.5370170
attr(, "conf.level"):
[1] 0.9
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In the Salk vaccine trials, two large groups were involved in the
placebo-control phase of the study. The first group, which received
the vaccination, consisted of 200,745 individuals. The second group,
which received a placebo, consisted of 201,229 individuals. There
were 57 cases of polio in the first group and 142 cases of polio in the
second group.

You assume a binomial model for each group, with a probability p;

of contracting polio in the first group and a probability py, of
contracting polio in the second group. You are mainly interested in
knowing whether or not the vaccine is effective. Thus you are mainly
interested in knowing the relationship between p; and p,.

You can use prop.test to obtain hypothesis test p values concerning
the values of p; and p,, and to obtain confidence intervals for the

difference between the values p, and p,.

The first two arguments to prop.test are vectors containing,
respectively, the number of successes and the total number of trials.
For consistency with the one-sample case, we name these vectors x
and n. In the case of the Salk vaccine trials, a “success” corresponds to
contracting polio (although one hardly thinks of this as a literal
success!). Thus, you create the vectors x and n as follows:

> x <- c¢(b7, 142)
> n <- ¢c(200745, 201229)

For two-group problems, you can use either of two null hypotheses:
an equal probabilities null hypothesis that p; = p,, with no

restriction on the common value of these probabilities other than that
they be between 0 and 1, or a completely specified probabilities null

hypothesis, where you provide specific probabilities for both p; and

Py, and test whether the true probabilities are equal to those

hypothesized.
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Proportion Parameters for Two Samples

When using the equal probabilities null hypothesis, a common
alternative hypothesis is the two-sided alternative p, # p,. These null
and alternative hypotheses are the defaults for prop.test.

In the Salk vaccine trials, your null hypothesis is that the vaccine has
no effect. For the two-sided alternative that the vaccine has some

effect, either positive or negative, you get a p value by extracting the
p.value component of the list returned by prop.test:

> prop.test(x, n)$p.value

[1] 2.86606e-09

The extremely small p value clearly indicates that the vaccine has
some effect.

To test the one-sided alternative that the vaccine has a positive effect;
that is, that p; < p,, use the argument alt="1" to prop.test:

> prop.test(x, n, alt = "1")$p.value

[1] 1.43303e-09

Here the p value is even smaller, indicating that the vaccine is highly
effective in protecting against the contraction of polio.

You can also use prop.test to test “completely” specified null
hypothesis probabilities. For example, suppose you have some prior
belief that the probabilities of contracting polio with and without the

Salk vaccine are p),; = 0.0002 and py, = 0.0006, respectively. Then

you supply these null hypothesis probabilities as a vector object, using
the optional argument p. The p value returned is for the joint
probability that both probabilities are equal to the hypothesized
probabilities; that is, 0.0002 and 0.0006 .

> prop.test(x, n, p = c¢(0.0002, 0.0006))$p.value

[1] 0.005997006

The above p value is very small and indicates that the null hypothesis
is very unlikely and should be rejected.
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Confidence You obtain a confidence interval for the difference p,-p, in the

Intervals probabilities of success for the two samples by extracting the
conf.int component of prop.test. For example, to get a 95%
confidence interval for the difference in probabilities for the Salk
vaccine trials:

> prop.test(x, n)$conf.int

[1] -0.0005641508 -0.0002792920
attr(, "conf.level"):
[1] 0.95

The 95% confidence level is the default confidence level for
prop.test. You get a different confidence level by using the optional
argument conf.level=. For example, to get a 99% confidence
interval, use:

> prop.test(x, n, conf.level = 0.99)$conf.int

[1] -0.0006073419 -0.0002361008
attr(, "conf.level"):
[11 0.99

You get a confidence interval for the difference p,-p, by using
prop.test only when you use the default null hypothesis that
Pi = Pg.

You get all the information provided by prop.test as follows:
> prop.test(x, n, conf.level = 0.90)

2-sample test for equality of proportions with

continuity correction
data: x out of n
X-squared = 35.2728, df = 1, p-value = 0
alternative hypothesis: two.sided
90 percent confidence interval:

-0.0005420518 -0.0003013909
sample estimates:

prop’n in Group 1 prop’n in Group 2

0.0002839423 0.0007056637
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PROPORTION PARAMETERS FOR THREE OR MORE

SAMPLES

Setting Up the
Data

Sometimes you may have three or more samples of subjects, with
each subject characterized by the presence or absence of some
characteristic. An alternative, but equivalent, terminology is that you
have three or more sets of trials, with each trial resulting in a success
or failure. For example, consider the data shown in Table 7.1 for four
different studies of lung cancer patients, as presented by Fleiss (1981).

Table 7.1: Smoking status among lung cancer patients in four studies.

Study Number of Patients Number of Smokers
1 86 83
2 93 90
3 136 129
4 82 70

Each study has a certain number of patients, as shown in the second
column of the table, and for each study a certain number of the
patients were smokers, as shown in the third column of the table. For
this data, you are interested in whether the probability of a patient
being a smoker is the same in each of the four studies, that is, whether
each of the studies involve patients from a homogeneous population.

The first argument to prop.test is a vector containing the number of
subjects having the characteristic of interest for each of the groups (or
the number of successes for each set of trials). The second argument
to prop.test is a vector containing the number of subjects in each
group (or the number of trials for each set of trials). As in the one and
two sample cases, we call these vectors x and n.
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For the smokers data in Table 7.1, you create the vectors x and n as
follows:

> x <- c(83, 90, 129, 70)
>n <- c(86, 93, 136, 82)

For problems with three or more groups, you can use either an equal
probabilities null hypothesis or a completely specified probabilities
null hypothesis.

In the lung cancer study, the null hypothesis is that the probability of
being a smoker is the same in all groups. Because the default null
hypothesis for prop.test is that all groups (or sets of trials) have the
same probability of success, you get a p value as follows:

> prop.test(x, n)$p.value

[1] 0.005585477

The p value of 0.006 is highly significant, so you can not accept the
null hypothesis that all groups have the same probability that a
patient is a smoker. To see all the results returned by prop.test, use:

> prop.test(x, n)

4-sample test for equality of proportions without
continuity correction

data: x out of n
X-squared = 12.6004, df = 3, p-value = 0.0056
alternative hypothesis: two.sided
sample estimates:
prop’n in Group 1 prop’n in Group 2 prop’n in Group 3
0.9651163 0.9677419 0.9485294
prop’n in Group 4
0.8536585

If you want to test a completely specified set of null hypothesis
probabilities, you need to supply the optional argument p, with the
value of this argument being a vector of probabilities having the same
length as the first two arguments, x and n.
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For example, in the lung cancer study, to test the null hypothesis that
the first three groups have a common probability 0.95 of a patient
being a smoker, while the fourth group has a probability 0.90 of a
patient being a smoker, create the vector p as follows, then use it as an
argument to prop.test:

> p <- ¢(0.95, 0.95, 0.95, 0.90)
> prop.test(x, n, p)$p.value

[1] 0.5590245
Warning messages:

Expected counts < 5. Chi-square approximation may not be
appropriate in prop.test(x,n,p).

Alternatively, you could use

> prop.test(x, n, p = c(0.95, 0.95, 0.95, 0.90))$p.value

Confidence Confidence intervals are not computed by prop.test when you have
Intervals three or more groups (or sets of trials).
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CONTINGENCY TABLES AND TESTS FOR INDEPENDENCE
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The Salk vaccine trials in the early 1950s resulted in the data
presented in Table 7.2.

Table 7.2: Contingency table of Salk vaccine trials data.

Non-paralytic Paralytic
No Polio Polio Polio Totals
Vaccinated 200,688 24 33 200,745
Placebo 201,087 27 115 201,229
Totals 401,775 51 148 401,974

There are two categorical variables for the Salk trials: vaccination
status, which has the two levels “vaccinated” and “placebo,” and polio
status, which has the three levels “no polio,” “non-paralytic polio,”
and “paralytic polio.” Of 200,745 individuals who were vaccinated,
24 contracted non-paralytic polio, 33 contracted paralytic polio, and
the remaining 200,688 did not contract any kind of polio. Of 201,229
individuals who received the placebo, 27 contracted non-paralytic
polio, 115 contracted paralytic polio, and the remaining 201,087 did
not contract any kind of polio.

Tables such as Table 7.2 are called contingency tables. A contingency
table lists the number of counts for the joint occurrence of two levels
(or possible outcomes), one level for each of two categorical variables.
The levels for one of the categorical variables correspond to the
columns of the table, and the levels for the other categorical variable
correspond to the rows of the table.

When working with contingency table data, your primary interest is
most often determining whether there is any association in the form
of statistical dependence between the two categorical variables whose
counts are displayed in the table. The null hypothesis is that the two
variables are statistically independent. You can test this null
hypothesis with the functions chisq.test and fisher.test. The
function chisq.test is based on the classic chi-square test statistic,
and the associated p value computation entails some approximations.
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Contingency Tables and Tests for Independence

The function fisher.test computes an exact p value for tables
having at most 10 levels for each variable. The function fisher.test
also entails a statistical conditioning assumption.

For contingency tables involving confounding variables, which are
variables related to both variables of interest, you can test for
independence using the function mantelhaen.test, which performs
the Mantel-Haenszel test. For contingency tables involving matched
pairs, use the function mcnemar.test to perform McNemar’s
chi-square test.

The functions for testing independence in contingency tables do not
compute confidence intervals, only p-values and the associated test
statistic.

The chi-square and Fisher’s exact tests are familiar methods for
testing independence. The Fisher test is often recommended when
expected counts in any cell are below 5, as the chi-square probability
computation becomes increasingly inaccurate when the expected
counts in any cell are low; Spotfire S+ produces a warning message in
that case. Other factors may also influence your choice of which test
to use, however. Refer to a statistics text for further discussion if you
are unsure which test to use.

You can set up your contingency table data in several ways. Which
way you choose depends to some extent on the original form of the
data and whether the data involve a large number of counts or a small
to moderate number of counts.

If you already have the data in the form of a contingency table in
printed form, as in Table 7.2, the easiest thing to do is to put the data
in matrix form (excluding the marginal totals, if provided in the
original data). For example,

> salk.mat <- rbind(c(200688, 24, 33),c(201087, 27, 115))
> salk.mat

(.11 [,2]1 [,3]
[1,] 200688 24 33
[2,] 201087 27 115
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You could obtain the same result in a slightly different way as follows:

> salk.mat <- matrix(c(200688, 24, 33, 201087, 27, 115),
+ 2, 3, byrow =T)

You may be given the raw data in the form of two equal-length coded
vectors, one for each variable. In such cases, the length of the vectors
corresponds to the number of individuals, with each entry indicating
the level by a numeric coding. For example, suppose you have two
variables from a clinical trial of the drug propranolol (Snow, 1965).
The vector status is coded for control or propranolol status, and the
vector drug is coded yes or no indicating whether the patient survived
at least 28 days with the prescribed drug. The raw data are stored in
two columns of a built-in data frame named propranolol:

> propranolol$status

[1] control control control control prop control prop
[8] control prop control prop prop control prop
[15] prop control control prop prop prop prop
[22] control prop control control prop control control
[29] control control control control prop control prop
[36]1 control prop prop prop control prop control
[43] prop control prop control prop control control
[50] prop prop prop control prop prop prop
[57] control control control prop prop control prop
[64] control prop control prop control prop control
[71] prop control prop control prop control prop
[78]1 control prop control prop control prop control

[85] prop control prop control control prop prop
> propranolol$drug

[1] yes yes yes no yes yes yes yes yeS yes yes no no yes
[15] yes no no yes yes yes yes no yes yes no Yyes no yes
[29] no yes no yes no yes yes no no YyesS yes yes yes yes
[43] yes yes yes no yes no Yyes yes yes yes yes yes yes yes
[57] yes yes yes no yesS yesS yes no no no yes yes yes yes
[71] no no yes yes yes yesS yes yes yesS yes yes yes yes yes
[85] yes yes yes no no yes no
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To obtain the contingency table (without marginal count totals) use
the table function with the status and drug columns as arguments:

> table(propranolol$drug, propranolol$status)

control prop
no 17 7
yes 29 38

Your data may already be in the form of two factor objects, or you
may want to put your data in that form for further analysis in Spotfire
S+. To do this, use the factor command as follows:

> status.fac <- factor(propranolol$status)
> drug.fac <- factor(propranolol$drug)

We use status.fac and drug.fac as arguments to the functions
described below.

You use the function chisq.test to perform a classical chi-square test
of the null hypothesis that the categorical variables of interest are
independent. For example, using the matrix form of data object
salk.mat for the Salk vaccine trials

> chisqg.test(salk.mat)$p.value

[1] 1.369748e-10

which yields an exceedingly small p value. This leads to rejection of
the null hypothesis of no association between polio status and
vaccination status.

To get all the information computed by chisq.test, use chisq.test
without specifying a return component, as usual:

> chisqg.test(salk.mat)

Pearson’s chi-square test without Yates’” continuity
correction

data: salk.mat
X-squared = 45.4224, df = 2, p-value = 0
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You could also use the two factor objects status.fac and drug.fac as
follows:

> chisqg.test(status.fac, drug.fac)

Pearson's chi-square test with Yates' continuity correction

data: status.fac and drug.fac
X-square = 4.3198, df = 1, p-value = 0.0377

The results are the same no matter which way you have set up the
data.

You can perform an exact test of indepence by using the Spotfire S+
function fisher.test. You can use any data object type that can be
used with chisq.test. For example, using the factor objects for the
propranolol clinical trial:

> fisher.test(status.fac, drug.fac)

Fisher's exact test

data: status.fac and drug.fac
p-value = 0.0314
alternative hypothesis: two.sided

When using fisher.test you should be aware that the p value is
computed conditionally on the fixed marginal counts of the
contingency table you are analyzing. That is, the inference does not
extend to all possible tables that might be obtained by repeating the
experiment and getting different marginal counts.

A cancer study produced the data shown in Table 7.3 and Table 7.4, as
reported by Rosner (1986). In these tables, “case” refers to an
individual who had cancer and “control” refers to an individual who
did not have cancer. A “passive” smoker is an individual who lives
with a smoker. A smoker can also be a passive smoker if that smoker
lives with a spouse who also smokes.
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Table 7.3: Nonsmokers in cancer study.

Not a Passive

Case-Control Status Passive Smoker Smoker
case 120 111
control 80 155

Table 7.4: Smokers in cancer study.

Not a Passive

Case-Control Status Passive Smoker Smoker
case 161 117
control 130 124

For each of these tables, you can use chisq.test or fisher.test to
test for independence between cancer status and passive smoking
status. The data are presented in separate tables because “smoking
status,” that is, being a smoker or not being a smoker, could be a
confounding variable, because both smoking status and passive smoking
status are related to the outcome, cancer status, and because smoking
status may be related to the smoking status of the spouse. You would
like to be able to combine the information in both tables so as to
produce an overall test of independence between cancer status and
passive smoking status. You can do so for two or more two-by-two
tables, by using the function mantelhaen.test, which performs the
Mantel-Haenszel test.

Since the data are now associated with three categorical variables, the
two main variables of interest plus a confounding variable, you can
prepare your data in any one of the three forms listed below.
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* athree-dimensional array which represents the three
dimensional contingency table (two-by-two tables stacked on
top of one another)

+ three numerical vectors representing each of the three
categorical variables, two of primary interest and one a
confounding variable

* three factor objects for the three categorical variables

Which form you use depends largely on the form in which the data
are presented to you. For example, the data in Table 7.3 and Table 7.4
are ideal for use with a three-dimensional array:

> x.array <- array(c(l120, 80, 111, 155, 161, 130, 117, 124),
+ c(2, 2, 2))

> x.array

, . 1

(.11 [,2]
[1,] 120 111
2,1 80 155

, 2
[,11 [,2]
(1,1 16l 117
[2,] 130 124

> mantelhaen.test(x.array)$p.value
[1] 0.0001885083
> mantelhaen.test(x.array)

Mantel-Haenszel chi-square test with
continuity correction

data: x.array

Mantel-Haenszel chi-square = 13.9423, df =1,
p-value = 2e-04
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McNemar’s
Test for
Symmetry
Using Matched
Pairs

Contingency Tables and Tests for Independence

In some experiments with two categorical variables, one of the
variables specifies two or more groups of individuals who receive
different treatments. In such situations, matching of individuals is
often carried out in order to increase the precision of statistical
inference. However, when matching is carried out the observations
usually are not independent. In such cases, the inference obtained
from chisq.test, fisher.test and mantelhaen.test is not valid
because these tests all assume independent observations. The
function mcnemar.test allows you to obtain a valid inference for
experiments where matching is carried out.

Consider, for example, the data in Table 7.5, as reported by Rosner
(1986). In this table, each entry represents one pair. For instance, the
“5” in the lower left cell means that in 5 pairs, the individual with
treatment A died, while the individual that that person was paired
with, who received treatment B, survived.

Table 7.5: Matched pair data for cancer study.

Survive With Die With
Treatment B Treatment B
survive with treatment A 90 16
die with treatment A 5 510

Your interest is in the relative effectiveness of treatments A and B in
treating a rare form of cancer. Each count in the table is associated
with a matched pair of individuals.

A pair in the table for which one member of a matched pair survives
while the other member dies is called a discordant pair. There are 16
discordant pairs in which the individual who received treatment A
survives and the individual who received treatment B dies. There are
5 discordant pairs with the reverse situation in which the individual
who received treatment A dies and the individual who received
treatment B survives.

If both treatments are equally effective, then you expect these two
types of discordant pairs to occur with “nearly” equal frequency. Put

in terms of probabilities, your null hypothesis is that p; = p,, where
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p, is the probability that the first type of discordancy occurs in a
matched pair of individuals, and p, is the probability that the second
type of discordancy occurs.

We illustrate the use of mcnemar.test on the above data, putting the
data into the form of a matrix object:

> x.matched <- cbind(c(90, 5),c(16, 510))
> x.matched

(.11 [.2]
[1,] 90 16
[2,1 5 510

> mcnemar.test(x.matched)$p.value
[1]1 0.02909633
> mcnemar.test(x.matched)

McNemar’s chi-square test with continuity
correction

data: x.matched
McNemar’s chi-square = 4.7619, df = 1, p-value = 0.0291

You can use mcnemar.test with two numeric vector objects, or two
factor objects, as the data arguments (just as with the other functions
in this section). You can also use mcnemar.test with matched pair
tables having more than two rows and more than two columns. In

such cases, the null hypothesis is symmetry of the probabilities p;;
associated with each row and column of the table; that is, the null
hypothesis is that p;; = pj; for each combination of i and j.
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204

Much data of interest is categorical in nature. Did patients receive
treatment A, B, or C and did they survive? Do the people in a sample
population smoke? Do they have high cholesterol counts? Have they
had heart trouble? These data are stored in TIBCO Spotfire S+ as
factors, that is, as vectors where the elements indicate one of a number
of levels. A useful way of looking at these data is to cross-classify it and
get a count of the number of cases sharing a given combination of
levels, and then create a multi-way contingency table (a cross-
tabulation) showing the levels and the counts.

Consider the data set claims. It contains the number of claims for
auto insurance received broken down by the following variables: age
of claimant, age of car, type of car, and the average cost of the claims.
We can disregard the costs for the moment, and consider the question
of which groups of claimants generate the most claims. To make the
work easier we create a new data frame claims.src which does not
contain the cost variable:

> claims.src <- claims[, -4]
> summary(claims.src)

age car.age type number

17-20 116 0-3:32 A:32 Min. : 0.00
21-24 116 4-7:32 B:32 I1st Qu.: 9.00
25-29 :16 8-9:32 C:32 Median : 35.50
30-34,35-39 :32 10+:32 D:32 Mean : 69.86
40-49 :16 3rd Qu.: 96.25
50-59 116 Max. :434.00
60+ 116

Use the function crosstabs to generate tables of cross-classified data.
The following call to crosstabs generates output showing car age vs.
car type.
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> crosstabs(number ~ car.age + type, data = claims.src)

Call:
crosstabs(number ~ car.age + type, claims.src)
8942 cases in table

oo +
N |
N/RowTotal |
[N/ColTotal]
[N/Total |
R +
car.age|type

|A |B |C |D |RowTotT|
——————— e e =
0-3 | 391 |1538 |1517 | 688  |4134

|0.3081 |0.3956 |0.5598 |0.6400 |
|0.0437 0.1720 [0.1696 |0.0769 |
——————— B i e S
4-7 | 538 |1746 | 941 | 324  |3549 |
|0.1516 |0.4920 |0.2651 |0.0913 [0.397 |
|0.4240 |0.4491 |0.3472 |0.3014 | |
|0.0602 0.1953 [0.1052 |0.0362 | |
——————— B i e S
8-9 | 187 | 400 | 191 | 44 |[822 |
|0.2275 |0.4866 |0.2324 |0.0535 [0.092 |
|0.1474 |0.1029 |0.0705 |0.0409 | |
|0.0209 |0.0447 |0.0214 |0.0049 | |

|
|0.0946 |0.3720 |0.3670 |0.1664 |0.462 |
|
|

ColTot1|1269  [3888  |2710  |1075  |8942 |
|0.14 ]0.43  ]0.30 |0.12 | |
——————— B i e S

Test for independence of all factors
Chi”2 = 588.2952 d.f.=9 (p=0)
Yates’ correction not used
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The first argument to crosstabs is a formula that tells which variables
to include in the table. The second argument is the data set where the
variables are found. The complete call to crosstabs is stored in the
resulting object as the attribute "cal1" and is printed at the top of the
table.

Following the formula at the top of the table, the next item of
information is the number of cases; that is, the total count of all the
variables considered. In this example, this is the total of the number
variable, sum(claims.src$number). After the total number of cases,
the output from crosstabs provides a key that tells you how to
interpret the cells of the table. In the key, N is the count. Below N are
the proportions of the whole that the count represents: the proportion
of the row total, the proportion of the column total, and the
proportion of the table total. If there are only two terms in the
formula, the table total is the same as the number of cases.

A quick look at the counts in the table, and in particular at the row
totals (4134, 3549, 822, 437), shows that there are fewer older cars than
newer cars. Relatively few cars survive to be eight or nine years old,
and the number of cars over ten years old is one-tenth that of cars
three years or newer. It is slightly more surprising to note the four
types of cars don’t seem to age equally. You can get an inkling of this
by comparing the cells near the top of the table with those near the
bottom; however, if you compare the third figure in each cell, the one
the key tells us is N/Co1Total, the progression becomes clear. Of cars
of type D, 64% are no more than three years old, while only 4% are
eight or nine, and less than 2% are over 10. Compare this to type A
cars, where there are slightly more in the 4-7 year age group than in
the 0-3 year, the proportion between eight and nine is 0.1474 and the
proportion over ten years is 0.1206.

It seems as if the type of car is related to its age. If we look below the

table where the results of the XQ test for independence are written, we
see that the p value is so small it appears as 0. Of course, we must
remember these data are from insurance claims forms. This is not a
sample of all the cars on the road, but just those that were accidents
and had insurance policies with the company that collected the data.

There may also be an interaction between car type/car age and the
age of the owner (which seems likely), and between the age of the
owner and the likelihood of an automobile accident.
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With crosstabs, it is possible to tabulate all of these data at once and
print the resulting table in a series of layers, each showing two
variables. Thus, when we type crosstabs(number ~ car.age + type
+ age, data=claims.src), we get a series of 8 layers, one for each
factor (age group) in the variable age. The variable represented by the
first term in the formula to the right of the ~, car.age, is represented
by the rows of each layer. The second term, type is represented by
the columns, and each level of the third, age, produces a separate
layer. If there were more than three variables, there would be one
layer for each possible combination of levels in the variables after the
first two. Part of the first of these layers is shown below. Note that the
number written in the bottom right margin is the sum of the row
totals, and is not the same as the number of cases in the entire table,
which is still found at the top of the display and which is used to
compute N/Total, the fourth figure in each cell.

> crosstabs(number ~ car.age + type + age,
+ data = claims.src)

Call:
crosstabs(number ~ car.age + type + age, claims.src)
8942 cases in table

R +
N |
N/RowTotal |
[N/ColTotal]|
[N/Total |
R +
age=17-20
car.age|type
|A |B |C |D | RowTot1|
——————— e e e R
0-3 | 8 | 10 | 9 | 3 |30
[0.27 ]0.33 ]0.3 [0.1 |0.34

|
|
|0.38  |0.25 ]0.39 |0.6 | |
|8.9e-4 [0.0011 [0.001 |3.4e-4 | |

——————— it s e e SR S
4-7 | 8 |28 |13 | 2 |51
|0.16  |0.55 |0.25 |0.039 |0.57 |
|0.38  |0.7  ]0.57 |0.4 | |
|8.9e-4 [0.0031 |0.0015 |2.2e-4 | |
——————— it s e e SR S
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89 | 4 | 1 | 1 | 0 |6 |
|0.67 ]0.17  [0.17 |0 |0.067 |
|0.19  ]0.025 [0.043 |0 | |
|4.5e-4 |1.1e-4 |1.1e-4 |0 | |

——————— e T S S e
10+ | | 1 | 0 | 0 ]2 |
0.5 0.5 |0 |0 |0.022 |
|0.048 ]0.025 |0 |0 | |
|1.1e-4 |1.le-4 |0 |0 | |
——————— e T S S e
ColTot1]21 140 |23 |5 189 |
|0.24 |0.45 ]0.26 |0.056 | |
——————— B i e S
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CHOOSING SUITABLE DATA SETS

Cross-tabulation is a technique for categorical data. You tabulate the
number of cases for each combination of factors between your
variables. In the claims data set these numbers were already
tabulated. However, when looking at data that have been gathered as
a count, you must always keep in mind exactly what is being
counted—thus we can tell that of the 40-49 year old car owners who
submitted insurance claims, 43% owned cars of type B, and of the cars
of type B whose owners submitted insurance claims, 25% were owned
by 40-49 year olds.

The data set guayule also has a response variable which is a count,
while all the predictor variables are factors. Here, the thing being
counted is the number of rubber plants that sprouted from seeds of a
number of varieties subjected to a number of treatments. However,
this experiment was designed so that the same number of seeds were
planted for each possible combination of the factors of the controlling
variables. Since we know the exact make-up of the larger population
from which our counts are taken, we can observe the relative size of
counts with complaisance and draw conclusions with great
confidence. The difference between guayule and claims is that with
the former we can view the outcome variable as a binomial response
variable (“sprouted”/“didn’t sprout”) for which we have tabulated one
of the outcomes (“sprouted”), and in the claims data set we can’t.

Another data set in which all the controlling variables are factors is
solder.

> summary(solder)

Opening Solder Mask PadType Panel skips
S:300 Thin :450 A1.5:180 L9 : 90 1:300 Min. : 0.00
M:300 Thick:450 A3 :270 W9 : 90 2:300 1st Qu.: 0.00
L:300 A6 : 90 L8 : 90 3:300 Median : 2.00
B3 :180 L7 : 90 Mean 5.53
B6 :180 D7 : 90 3rd Qu.: 7.00
L6 : 90 Max. :48.00

(Other):360
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The response variable is the number of skips appearing on a finished
circuit board. Since any skip on a board renders it unusable, we can
easily turn this into a binary response variable:

> attach(solder)
> good <- factor(skips == 0)

Then, when we want to look at the interaction between the variables,
crosstabs counts up all the cases with like levels among the factors:

> crosstabs( ~ Opening + Mask + good)

Call:
crosstabs( ~ Opening + Mask + good)
900 cases in table

[N |
N/RowTotal |
[N/ColTotal]
[N/Total |

good=FALSE
Opening|Mask
|A1.5  |A3 | A6 |B3 |B6 |RowTot1]

S |49 176 |30 |60 |60 |275 |
|0.1782 |0.2764 [0.1091 [0.2182 |0.2182 |0.447 |
|0.5326 |0.5033 [0.3371 |0.4444 |0.4054 | |
|0.0544 |0.0844 [0.0333 |0.0667 |0.0667 | |

M |22 |35 |59 |39 |51 |206 |
|0.1068 |0.1699 |0.2864 |0.1893 |0.2476 |0.335 |
|0.2391 |0.2318 |0.6629 |0.2889 |0.3446 | |
|0.0244 |0.0389 |0.0656 |0.0433 |0.0567 | |

L |21 |40 | 0 |36 |37 1134 |
|0.1567 |0.2985 |0.0000 |0.2687 |0.2761 |0.218 |
|0.2283 |0.2649 |0.0000 |0.2667 |0.2500 | |
|0.0233 |0.0444 |0.0000 |0.0400 |0.0411 | |

ColTot1]92 |151 |89 |135  |148  |615 |
|0.1496 |0.2455 |0.1447 |0.2195 |0.2407 | |
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good=TRUE
Opening|Mask

|A1.5  |A3 | A6 |B3 |B6 |RowTot1|
——————— bt e e e s
S |11 |14 | 0 | 0 | 0 |25

|
|0.4400 |0.5600 |0.0000 |0.0000 |0.0000 |0.088 |
|0.1250 [0.1176 |0.0000 |0.0000 |0.0000 | |
|0.0122 |0.0156 |0.0000 |0.0000 |0.0000 | |

M |38 |25 | 1 |21 | 9 |94 |
|0.4043 |0.2660 |0.0106 |0.2234 [0.0957 |0.330 |
|0.4318 [0.2101 |1.0000 |0.4667 |0.2812 | |
|0.0422 |0.0278 |0.0011 |0.0233 [0.0100 | |

L |39 |80 | 0 |24 |23 |166 |
|0.2349 |0.4819 [0.0000 |0.1446 |0.1386 |0.582 |
|0.4432 |0.6723 |0.0000 |0.5333 |0.7188 | |
|0.0433 [0.0889 |0.0000 |0.0267 |0.0256 | |

ColTot1|88 119 |1 |45 |32 |285 |
|0.3088 |0.4175 |0.0035 |0.1579 |0.1123 | |

Test for independence of all factors
Chir2 = 377.3556 d.f.= 8 (p=0)
Yates' correction not used

In the first example above we specified where to look for the
variables age, car.age and type by giving the data frame claims.src
as the second argument of crosstabs. In the second example, we
attached the data frame solder and let crosstabs find the variables in
the search list. Both methods work because, when crosstabs goes to
interpret a term in the formula, it looks first in the data frame
specified by the argument data and then in the search list.

You can specifiy a data set to crosstabs with the name of a data
frame, or a frame number in which to find an attached data frame.
Using a frame number gives the advantage of speed that comes from
attaching the data frame, while protecting against the possibility of
having masked the name of one of the variables with something in
your .Data directory.
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For example,

> attach(guayule)
> search()

[1] ".Data"
[2] "guayule" .

> rubber <- crosstabs(plants ~ variety + treatment,
+ data = 2)

If you specify a data frame and do not give a formula, crosstabs uses
the formula ~ ., that is, it cross-classifies all the variables in the data
frame. Any variable names not found in the specified data frame
(which is all of them if you don’t specify any) are sought in the search
list.
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CROSS-TABULATING CONTINUOUS DATA

As seen in the example of the solder data frame above, it is fairly
easy to turn a continuous response variable into a binomial response
variable. Clearly, we could have used any logical expression that
made sense to do so; we could have chosen any cutoff point for
acceptable numbers of skips.

A somewhat harder problem is presented by the case where you want
a multinomial factor from continuous data. You can make judicious
use of the cut function to turn the continuous variables into factors,
but you need to put care and thought into the points at which to
separate the data into ranges. The quartiles given by the function
summary offer a good starting point. The data frame kyphosis
represents data on 81 children who have had corrective spinal
surgery. The variables here are whether a postoperative deformity
(kyphosis) is present, the age of the child in months, the number of
vertebrae involved in the operation, and beginning of the range of
vertebrae involved.

> summary(kyphosis)

Kyphosis Age Number Start
absent :64 Min. : 1.00 Min. : 2.000 Min. : 1.00
present:17 1st Qu.: 26.00 1st Qu.: 3.000 1st Qu.: 9.00

Median : 87.00 Median : 4.000 Median :13.00

Mean : 83.65 Mean : 4.049 Mean :11.49
3rd Qu.:130.00 3rd Qu.: 5.000 3rd Qu.:16.00
Max. :206.00 Max. :10.000 Max. :18.00

The summary of these variables suggests that two year intervals might
be a reasonable division for the age. We use the cut function to break
the variable Age into factors at a sequence of points at 24 month
intervals and to label the resulting levels with the appropriate range of
years. Since there are at most nine values for Number we leave it alone
for the moment. Since the mean of the Start variable is close to the
first quartile, a fairly coarse division of Start is probably sufficient.
We could require that cut simply divide the data into four segments
of equal length with the command cut(Start, 4), but the results of
this, while mathematically correct, look a bit bizarre; the first level
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created is "0.830+ thru 5.165". The pretty function divides the
range of Start into equal intervals with whole number end points,
and the cut function makes them into levels with reasonable names:

> attach(kyphosis)

> kyphosis.fac <- data.frame(Kyphosis = Kyphosis,

+ Age = cut(Age, c(seq(from=0, to=144, by=24), 206),

+ labels = c("0-2", "2-4", "4-6", "6-8", "8-10",

+ "10-12", "12+"M)),

+ Number = Number, Start = cut(Start, pretty(Start, 4)))
> detach(2)

> summary(kyphosis.fac)

Kyphosis Age Number Start
absent :64 0-2 :20 Min. : 2.000 0+ thru 5:13
present:17 2-4 7 1st Qu.: 3.000 5+ thru 10:14

4-6 : 8 Median : 4.000 10+ thru 15:32
6-8 : 9 Mean : 4.049 15+ thru 20:22
8-10 :11 3rd Qu.: 5.000

10-12:14  Max. :10.000

12+ :12

The cross-tabulation of this data can then be easily examined:
> crosstabs(~ Age + Kyphosis, data = kyphosis.fac)

Call:
crosstabs( ~ Age + Kyphosis, kyphosis.fac)
81 cases in table

L +
N |
[N/RowTotal |
[N/ColTotal]
[N/Total |
L +
Age | Kyphosis
|absent |present|RowTotl|
——————— e
0-2 |19 | 1 |20

|0.297 |0.059 |

|
|0.950 ]0.050 ]0.247 |
|
|0.235 [0.012 | |
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2-4 | 6 | 1 |7 |

——————— e s e
12+ |11 | 1 |12 |
|0.917 ]0.083 ]0.148 |
|0.172  |0.059 | |
|0.136 [0.012 | |
——————— e s e
ColTot1 |64 |17 |81 |
|0.79 [0.21 | |
------- B i EE I

Test for independence of all factors
Chi”2 = 9.588004 d.f.= 6 (p=0.1431089)
Yates' correction not used
Some expected values are less than 5,
don't trust stated p-value
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CROSS-CLASSIFYING SUBSETS OF DATA FRAMES
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There are two ways to subset a data frame for cross-classification.
First, the crosstabs function cross-tabulates only those variables
specified in the formula. If there is one variable in the data frame in
which you are not interested, don’t mention it. Second, you can
choose which rows you want to consider with the subset argument.
You can use anything you would normally use to subscript the rows
of a data frame. Thus, the subset argument can be an expression that
evaluates to a logical vector, or a vector of row numbers or row
names. See the chapter Writing Functions in Spotfire S+ in the
Programmer’s Guide for details on subscripting.

As an example, recall the solder data set. You can look at the relation
between the variables without turning skips explicitly into a binomial
variable by using it to subscript the rows of the data frame:

> crosstabs(~ Solder + Opening, data = solder,
+ subset = skips < 10)

Call:
crosstabs( ~ Solder+Opening, solder, subset = skips<10)
729 cases in table

[N |
[N/RowTotal |

[N/ColTotal]|
[N/Total |

|S M |L | RowTot1 |

|
|
|0.706 ]0.506 [0.517 | |
|
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------- B et T
------- B et T
ColTot1]|170  |269  [290  |729 |

|0.23 |0.37 |0.40 | |
——————— T s R

Test for independence of all factors
Chinr2 = 20.01129 d.f.= 2 (p=4.514445e-05)
Yates' correction not used

A more common use of the subscript is to look at some of the
variables while considering only a subset of the levels of another:

> crosstabs( ~ Solder + Opening + good,
+ subset = Panel == "1")

Call:
crosstabs( ~ Solder+0Opening+good, subset = Panel == "1")
300 cases in table

[N |
[N/RowTotal |
[N/ColTotal|
[N/Total |

good=FALSE
Solder |Opening
|S | M | L | RowTot1 |
------- R ks SRR R LR
Thin |49 |33 |31 [113 |
|0.4336 |0.2920 |0.2743 |0.59 |
|[0.5444 |0.5410 |0.7949 | |
[0.1633 |0.1100 |0.1033 | |

Thick |41 |28 | 8 |77 |
|0.5325 |0.3636 |0.1039 |0.41 |
|0.4556 |0.4590 |0.2051 | |
|0.1367 |0.0933 |0.0267 | |

——————— T s R

ColTot190 |61 139 |190 |
|0.474 ]0.321 ]0.205 | |

——————— B e e R
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good=TRUE
Solder |Opening

|S M | L | RowTot1 |
——————— b S e et -
Thin | 1 |17 [19 |37

|
[0.0270 |0.4595 |0.5135 |0.34 |
|0.1000 |0.4359 |0.3115 | |
|0.0033 |0.0567 |0.0633 | |
——————— B e s e
Thick | 9 |22 |42 |73 |
[0.1233 |0.3014 |0.5753 |0.66 |
|0.9000 |0.5641 |0.6885 | |
|0.0300 |0.0733 |0.1400 | |
——————— B e s e
ColTot1]10 |39 |61 |110 |
[0.091 |0.355 |0.555 | |
——————— B T e
Test for independence of all factors
Chir2 = 82.96651 d.f.= 2 (p=3.441691e-15)
Yates' correction not used
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MANIPULATING AND ANALYZING CROSS-CLASSIFIED
DATA

When you apply crosstabs to a data frame, you get a
multidimensional array whose elements are the counts and whose
dimensions are the variables involved in the cross-tabulations. The
first factor variable is the first (or row) dimension, the second is the
second (or column) dimension, the third is the third dimension, etc. If
you wish to do more than tabulate data, say compute means or sums
of cross-classified data, you can apply functions to the elements of the
array with the function tapply; see the online help for tapply for
more information.
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INTRODUCTION
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When contemplating a study, one of the first statistical questions that
arises is “How big does my sample need to be?” The required sample
size is a function of the alternative hypothesis, the probabilities of
Type I and Type II errors, and the variability of the population(s)
under study. Two functions are available in TIBCO Spotfire S+ for
computing power and sample size requirements:
normal.sample.size and binomial.sample.size. Depending on the
input, these functions provide the following:

+ For given power and alternative hypothesis, the required
sample size;

+  For given sample size and power, the detectable difference;

»  For given sample size and alternative hypothesis, the power to
distinguish between the hypotheses.

These functions can be applied in one- and two-sample studies. They
produce tables from vectorized input that are suitable for passing to
Trellis graphics functions.



Power and Sample Size Theory

POWER AND SAMPLE SIZE THEORY

Intuitively, we have a sense that the sample size required for a study
depends on how small of a difference we’re trying to detect, how
much variability is inherent in our data, and how certain we want to
be of our results. In a classical hypothesis test of Hj (null hypothesis)

versus H, (alternative hypothesis), there are four possible outcomes,

two of which are erroneous:

* Don’t reject Hy when is H, true.

* Reject H, when H is false.

*  Reject Hy when H, is true (type I error).

+  Don’t reject Hy when Hj is false (type II error).

To construct a test, the distribution of the test statistic under H is

used to find a critical region which will ensure the probability of
committing a type I error does not exceed some predetermined level.
This probability is typically denoted o. The power of the test is its
ability to correctly reject the null hypothesis, or 1 - Pr(type II error),
which is based on the distribution of the test statistic under H,. The

required sample size is then a function of
1. The null and alternative hypotheses;
2. The target o
3. The desired power to detect /;
4

The variability within the population(s) under study.

Our objective is, for a given test, to find a relationship between the
above factors and the sample size that enables us to select a sample
size consistent with the desired oo and power.
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NORMALLY DISTRIBUTED DATA

One-Sample
Test of
Gaussian Mean
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When conducting a one-sample test of a normal mean, we start by
writing our assumptions and hypotheses:

Xi ~N(M’ (72)

where i=1,...,n, and & is known. To perform a two-sided test of
equality the hypotheses is as follows:

Ho: = My
Hatll = 1y
Our best estimate of p is the sample mean, which is normally
distributed:
- o
X ~N —
(b %)

The test statistic is
Z = ;nX-pp)/ ¢
Z-N(u-pg 1)
Z~N(0, 1) for H,

We reject H, if [Z| >Z,_,, 4, which guarantees a level o test. The
power of the test to detect u= ) is

Power = dl(-[rl(-h%——-_%—)—zl_a/ 2)+¢(@-(E—§:—@—Z1-a/ 2)

We can think of the left side of the sum as the lower power, or the
power to detect [, <L, and the right side as the upper power, or the
power to detect L, >, . Solving for n using both the upper and

lower power is difficult, but we note that when W, —u,<0, the

upper power is negligible (< 0/2). Similarly, the lower power is small
when U, — ;>0 . Therefore, the equation can be simplified by using



Comments

Examples

Normally Distributed Data

the absolute value of the difference between p, and p, and

considering only one side of the sum. This results in the following
sample size formula:

1= [(o(Z) _o 9+ Zpower))/ |l"la_lvlo“Z

*  While only one of the upper and lower power is used in
deriving the sample size formula, the Spotfire S+ function
normal.sample.size uses both the upper and lower power
when computing the power of a two-tailed test for a given
sample size.

* In practice, the variance of the population is seldom known
and the test statistic is based on the ¢ distribution. Using the
¢ distribution to derive a sample size requires an iterative
approach, since the sample size is needed to specify the
degrees of freedom. The difference between the quantile
value for the ¢ distribution versus the standard normal
distribution is significant only when small sample sizes are
required. Thus, the standard formula based on the normal
distribution is chosen. Keep in mind that for samples sizes less
than 10, the power of a ¢ test could be significantly less than
the target power.

* The formula for a one-tailed test is derived along similar lines.
It is exactly the same as the two-tailed formula with the

exception that Z; _, 9 isreplaced by Z; _ .

The function for computing sample size for normally distributed data
is normal.sample.size. This function can be used to compute sample
size, power, or minimum detectable difference, and automatically
chooses what to compute based on the input information. Here are
some simple examples:

# One-sample case, using all the defaults
> normal.sample.size(mean.alt = 0.3)

mean.null sdl mean.alt delta alpha power nl
1 0 1 0.3 0.3 0.05 0.8 88

# Reduce output with summary
> summary(normal.sample.size(mean.alt = 0.3))
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i

+ power = c(0.8, 0.9, 0.95, 0.99), alt = "greater",
T)

B~ w o

v

(S O R

gl B~ w

See

delta power nl
0.8 88

Upper-tail test, recomputing power

0.3

normal.sample.size(mean = 100, mean.alt = 105, sdl = 10,

recompute.power =

mean.null sdl mean.alt delta

100
100
100
100

Calculate
normal.sample.size(mean = 100, mean.alt = 105, sdl = 10,
+ nl = (1:5)*20)

10
10
10
10

power

105
105
105
105

5

5
5
5

alpha

0.
0.
0.
0.

05
05
05
05

mean.null sdl mean.alt delta alpha

Lower-tail test,

100
100
100
100
100

10
10
10
10
10

105
105
105
105
105

5

5
5
5
5

0.
0.05
0.
0
0

summary(normal.sample.size(mean
+ nl = (1:5)*20, power = 0.9, alt = "Tess™))

mean.alt delta power nl
93.45636 -6.543641 0.9 20
95.37295 -4.627053 0.9 40
96.22203 -3.777973 0.9 60
96.72818 -3.271821 0.9 80
97.07359 -2.926405 0.9 100
the online help files

for

summary .power.table for more details.

05

05

.05
.05

normal.sample.size

0.
0.
0.
0.

o O O O o

power
8037649
9054399
9527153
9907423

power

.6087795
.8853791
.9721272
.9940005
.9988173

nl
25
35
44
64

nl
20
40
60
80
100

minimum detectable difference
100, sdl =

10,

and

Extending the formula to two-sampled tests is relatively easy. Given
two independent samples from normal distributions



Normally Distributed Data

le |~N(u1, G%) | = 1, TS nl
Xo =Ny, 63)  j=1, ., ny
we construct a two-sided test of equality of means
Hotly = g
H g # Uy
This is more conveniently written as
Ho:lg -1y = 0
Ho:lg—p; 20

The difference of the sample means is normally distributed:

- o o, %
(XQ—XI)"N(HQ_HD n—ll"'n—z)"N(HQ_Hp n_l(G%"'?)) .

Here, the constant Kk is the ratio of the sample sizes, < = ny/ n;. This
leads to the test statistic

Xy =Xy
Z = 62 GQ
o, %
Ny Ny

Derivation of the two-sample formulas proceeds along the same lines
as the one-sample case, producing the following formulas:

ny

(Gl + G%)[(Z(l —as 9t ZPower)}2

k ’MQ_M1|
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For two—sample cases, use normal.sample.size with mean2 instead of
mean.alt. A few simple examples are provided below.

#
>

1

#
#
#

Don't round sample size
summary(normal.sample.size(mean2 = 0.3, exact.n = T))

delta power nl n2
0.3 0.8 174.4195 174.4195

Round sample size, then recompute power
summary(normal.sample.size(mean2 = 0.3, recompute = T))

delta power nl n2
0.3 0.8013024 175 175

Unequal sample sizes, lower tail test

The prop.n2 argument is equal to k from the

above derivation.

normal.sample.size(mean = 100, mean2 = 94, sdl = 15,

+ prop.n2 = 2, power = 0.9, alt = "less")

meanl sdl mean2 sd2 delta alpha power nl n2 prop.n2
100 15 94 15 -6 0.05 0.9 81 162 2



Binomial Data

BINOMIAL DATA

One-Sample

Test of
Binomial
Proportion

Another very common test is for a binomial proportion. Say we have
data sampled from a binomial distribution,

X~B(n, m)

Here X represents the number of “successes” observed in n Bernoulli
trials, where the probability of a success is equal to ©. The mean and

variance of the random variable X is
EXX) = nm
Var(X) = nn(1 —m)
We wish to test the value of the parameter 7 using a two-sided test:
Hy:m = &,

H,:t =m,
We could use an exact binomial test, but if n is sufficiently large and
the distribution is not too skewed (rt is not too close to 0 or 1), a
normal approximation can be used instead. A good rule of thumb is
that the normal distribution is a good approximation to the binomial
distribution if

nm(l-m)>5

When using a continuous distribution to approximate a discrete one,
a continuity correction is usually recommended; typically, a value of 1/2
is used to extend the range in either direction. This means that a

probability of Pr(X; <X <X,) for a binomial distribution becomes
Pr(x,—l XX, + 1)
2 2

when using a normal approximation.
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If the continuity correction is temporarily suppressed, the sample size
formula is derived very much as in the normal case:

)
N = [«/no(l — )Ly oy 9+ JTp(1 _nO)ZPower}

|Tta — |

There have been several suggestions concerning how to best
incorporate a continuity correction into the sample-size formula. The
one adopted by the Spotfire S+ function binomial.sample.size for a
one-sample test is

n=n+_—2
|Tq — T

Examples # One-sample case, using all the defaults
> binomial.sample.size(p.alt = 0.3)

p.null p.alt delta alpha power nl
1 0.5 0.3 -0.2 0.05 0.8 57

# Minimal output
> summary(binomial.sample.size(p.alt = 0.3))

deTta power nl
1 -0.2 0.8 57

# Compute power
> binomial.sample.size(p = 0.2, p.alt = 0.12, nl = 250)

p.null p.alt delta alpha power nl
1 0.2 0.12 -0.08 0.05 0.8997619 250

Comparing The two-sample test for proportions is a bit more involved than the
Proportions others we’ve looked at. Say we have data sampled from two binomial
distributions
from Two
Samples X =By, ™)
Xq ~B(Ny, T9)
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We construct a two-sided test of equality of means
Hymt, = o
Hym #m,
which is more conveniently written as
Hy:my—my = 0
Hymy —my %0
Using our best estimators for the parameters m; and m,, we can begin

constructing a test statistic:

n

A~ 1 1
= XX
1.
i=1
L)

Ny 2

=1

For large enough sample sizes, we can use a normal approximation:

TEQ —TEI NN(TCQ 7, T (1 -m) N Ty (1 —n2))
n, n,

Let the constant k be the ratio of the sample sizes, < = ny/ n;. Then:

A oA 1=
Ty — T, ~N(1t2 - Ty, nll(nl(l -+ MD

When the null hypothesis is true, my = 1, = © and this can be

written as

M- ~N(O, n(1 —n)(nil + niz)) ~N(()’ 7%:7‘)(1 + %))

Immediately a problem arises: namely, the variance needed to
construct the test statistic depends on the parameters being tested. It
seems reasonable to use all of the data available to estimate the
variances, and this is exactly what Spotfire S+ does. A weighted
average of the two estimates for the proportions is used to estimate
the variance under H,,.
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When weighted averages are used to estimate the variance, the test
statistic is:

7—1: _ N7, + NyTo _ 1t + ko
Ny +ny 1+k

N N

T — T
Z= [ _
\/n(l —1:)(l + l)
n, Ny

When the null hypothesis is true, this gives Z~N(0, 1). We use this
to derive the formula without continuity correction:

(-7, 1 ?
/\/nl(l_nl)"'%zPower"' n(l_n)(l-'-E)ZI—G/Q

= [Tty — 10|

Applying the two-sample adjustment for a continuity correction
produces the final results

¥
AN LS 2
K|y — 70y

# For two-sample, use p2 instead of p.alt
> summary(binomial.sample.size(p2 = 0.3))

delta power nl n2
1 -0.2 0.8 103 103

# Don't round sample size or use the continuity correction
> summary(binomial.sample.size(p2 = 0.3, exact.n =T,
+ correct = F))

delta power nl n2
1 -0.2 0.8 92.99884 92.99884
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Round sample size, then recompute power

summary(binomial.sample.size(p2 = 0.3, recompute = T))
delta power nl n2
-0.2 0.8000056 103 103
Unequal sample sizes, lower tail test
The prop.n2 argument is equal to k from the
above derivation.
binomial.sample.size(p = 0.1, p2 = 0.25, prop.n2 = 2,

+ power = 0.9, alt = "Tess™)

pl p2 delta alpha power nl n2 prop.n2
0.1 0.25 0.15 0.05 0.9 92 184 2

Compute minimum detectable difference (delta),
given sample size and power.
binomial.sample.size(p = 0.6, nl = 500, prop.n2 = 0.5,

+ power = ¢(0.8, 0.9, 0.95))

pl p2 delta alpha power nl n2 prop.n2
0.6 0.7063127 0.1063127 0.05 0.80 500 250 0.5
0.6 0.7230069 0.1230069 0.05 0.90 500 250 0.5
0.6 0.7367932 0.1367932 0.05 0.95 500 250 0.5

Compute power
binomial.sample.size(p = 0.3, p2 = seq(0.31, 0.35,

+ by = 0.01), nl = 1000, prop.n2 = 0.5)

g B W N

1 p2 delta alpha power nl n2 prop.n2

0.3 0.31 0.01 0.05 0.06346465 1000 500 0.5
0.3 0.32 0.02 0.05 0.11442940 1000 500 0.5
0.3 0.33 0.03 0.05 0.20446778 1000 500 0.5
0.3 0.34 0.04 0.05 0.32982868 1000 500 0.5
0.3 0.35 0.05 0.05 0.47748335 1000 500 0.5
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Introduction

INTRODUCTION

Regression is a tool for exploring relationships between variables.
Linear regression explores relationships that are readily described by
straight lines, or their generalization to many dimensions. A
surprisingly large number of problems can be analyzed using the
techniques of linear regression, and even more can be attacked by
means of transformations of the original variables that result in linear
relationships among the transformed variables. In recent years, the
techniques themselves have been extended through the addition of
robust methods and generalizations of the classical linear regression
techniques. These generalizations allow familiar problems in
categorical data analysis such as logistic and Poisson regression to be
subsumed under the heading of the generalized linear model (GLM),
while still further generalizations allow a predictor to be replaced by
an arbitrary smooth function of the predictor in building a generalized

additive model (GAM).

This chapter describes regression and smoothing in the case of a
univariate, continuous response. We start with simple regression,
which is regression with a single predictor variable: fitting the model,
examining the fitted models, and analyzing the residuals. We then
examine multiple regression, varying models by adding and dropping
terms as appropriate. Again, we examine the fitted models and
analyze the residuals. We then consider the special case of weighted
regression, which underlies many of the robust techniques and
generalized regression methods.

One important reason for performing regression analysis is to get a
model useful for prediction. The section Prediction with the Model
describes how to use TIBCO Spotfire S+ to obtain predictions from
your fitted model, and the section Confidence Intervals describes
how to obtain pointwise and simultaneous confidence intervals.

The classical linear regression techniques make several strong
assumptions about the underlying data, and the data can fail to satisfy
these assumptions in different ways. For example, the regression line
may be thrown off by one or more outliers or the data may not be
fitted well by any straight line. In the first case, we can bring robust
regression methods into play; these minimize the effects of outliers
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while retaining the basic form of the linear model. Conversely, the
robust methods are often useful in identifying outliers. We discuss
robust regression in detail in a later chapter.

In the second case, we can expand our notion of the linear model,
either by adding polynomial terms to our straight line model, or by
replacing one or more predictors by an arbitrary smooth function of
the predictor, converting the classical linear model into a generalized

additive model (GAM).

Scatterplot smoothers are useful tools for fitting arbitrary smooth
functions to a scatter plot of data points. The smoother summarizes
the trend of the measured response as a function of the predictor
variables. We describe several scatterplot smoothers available in
Spotfire S+, and describe how the smoothed values they return can
be incorporated into additive models.



Simple Least-Squares Regression

SIMPLE LEAST-SQUARES REGRESSION

Simple regression uses the method of least squares to fit a continuous,
univariate response as a linear function of a single predictor variable.
In the method of least squares, we fit a line to the data so as to
minimize the sum of the squared residuals. Given a set of =

observations y; of the response variable corresponding to a set of

values X; of the predictor and an arbitrary model )A/ = ]:(X), the ith

residual is defined as the difference between the ith observation Yy;
and the fitted value §/i = %(Xi) ,thatis, I; = y;— 9i .

To do simple regression with Spotfire S+, use the function 1m (for
linear model) with a simple formula linking your chosen response
variable to the predictor variable. In many cases, both the response
and the predictor are components of a single data frame, which can
be specified as the data argument to 1m. For example, consider the air
pollution data in the built-in data set air:

> air[, c(1,3)]

ozone temperature

1 3.448217 67
2 3.301927 72
3 2.289428 74
4 2.620741 62
5 2.843867 65

A scatter plot of the data is shown in Figure 10.1.
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Figure 10.1: Scatter plot of ozone against temperature.

From the scatter plot, we hypothesize a linear relationship between
temperature and ozone concentration. We choose ozone as the
response and temperature as the single predictor. The choice of
response and predictor variables is driven by the subject matter in
which the data arise, rather than by statistical considerations.

To fit the model, use 1m as follows:

> ozone.Ilm <- Im(ozone ~ temperature, data = air)

The first argument, ozone ~ temperature, is the formula specifying
that the variable ozone is modeled as a function of temperature. The
second argument specifies that the data for the linear model is
contained in the data frame air.
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Use the summary function to obtain a summary of the fitted model:
> summary(ozone.lm)

Call: ITm(formula = ozone ~ temperature)
Residuals:
Min 1Q Median 3Q Max
-1.49 -0.4258 0.02521 0.3636 2.044

Coefficients:

Value Std. Error t value Pr(>|t]|)
(Intercept) -2.2260 0.4614 -4.8243 0.0000
temperature 0.0704 0.0059 11.9511 0.0000

Residual standard error: 0.5885 on 109 degrees of freedom
Multiple R-Squared: 0.5672

F-statistic: 142.8 on 1 and 109 degrees of freedom, the
p-value is 0

Correlation of Coefficients:
(Intercept)
temperature -0.9926

The Value column under Coefficients gives the coefficients of the
linear model, allowing us to read off the estimated regression line as
follows:

ozone = -2.2260 + 0.0704 x temperature

The column headed Std. Error gives the estimated standard error
for each coefficient. The Multiple R-Squared term from the 1m
summary tells us that the model explains about 57% of the variation
in ozone. The F-statistic is the ratio of the mean square of the
regression to the estimated variance; if there is no relationship
between temperature and ozone, this ratio has an F distribution with
1 and 109 degrees of freedom. The ratio here is clearly significant, so
the true slope of the regression line is probably not 0.
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Suppose we have the linear model defined as follows:

> ozone.Ilm <- 1m(ozone ~ temperature, data = air)

How good is the fitted linear regression model? Is temperature an
adequate predictor of ozone concentration? Can we do better?
Questions such as these are essential any time you try to explain data
with a statistical model. It is not enough to fit a model; you must also
assess how well that model fits the data, being ready to modify the
model or abandon it altogether if it does not satisfactorily explain the
data.

The simplest and most informative method for assessing the fit is to
look at the model graphically, using an assortment of plots that, taken
together, reveal the strengths and weaknesses of the model. For
example, a plot of the response against the fitted values gives a good
idea of how well the model has captured the broad outlines of the
data. Examining a plot of the residuals against the fitted values often
reveals unexplained structure left in the residuals, which in a strong
model should appear as nothing but noise. The default plotting
method for 1m objects provides these two plots, along with the
following useful plots:

*  Sgquare root of absolute residuals against fitted values. This plot is
useful in identifying outliers and visualizing structure in the
residuals.

*  Normal quantile plot of residuals. This plot provides a visual test
of the assumption that the model’s errors are normally
distributed. If the ordered residuals cluster along the
superimposed quantile-quantile line, you have strong
evidence that the errors are indeed normal.

*  Residual-Fit spread plot, or r-f plot. This plot compares the
spread of the fitted values with the spread of the residuals.
Since the model is an attempt to explain the variation in the
data, you hope that the spread in the fitted values is much
greater than that in the residuals.

*  Cook’s distance plot. Cook’s distance is a measure of the
influence of individual observations on the regression
coefficients.
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Calling p1ot as follows yields the six plots shown in Figure 10.2:

> par(mfrow = c(2,3))
> plot(ozone.1m)
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Figure 10.2: Default plots for Tm objects.

The line y =Y is shown as a dashed line in the third plot (far right of
top row). In the case of simple regression, this line is visually
equivalent to the regression line. The regression line appears to
model the trend of the data reasonably well. The residuals plots (left
and center, top row) show no obvious pattern, although five
observations appear to be outliers. By default, as in Figure 10.2, the
three most extreme values are identified in each of the residuals plots
and the Cook’s distance plot. You can request a different number of
points by using the id.n argument in the call to plot; for this model,
id.n=5 is a good choice.

Another useful diagnostic plot is the normal plot of residuals (left plot,
bottom row). The normal plot gives no reason to doubt that the
residuals are normally distributed.
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The 1-f plot, on the other hand (middle plot, bottom row), shows a
weakness in this model; the spread of the residuals is actually greater
than the spread in the original data. However, if we ignore the five
outlying residuals, the residuals are more tightly bunched than the
original data.

The Cook’s distance plot shows four or five heavily influential
observations. As the regression line fits the data reasonably well, the
regression is significant, and the residuals appear normally
distributed, we feel justified in using the regression line as a way to
estimate the ozone concentration for a given temperature. One
important issue remains—the regression line explains only 57% of the
variation in the data. We may be able to do somewhat better by
considering the effect of other variables on the ozone concentration.
See the section Multiple Regression for this further analysis.

At times, you are not interested in all of the plots created by the
default plotting method. To view only those plots of interest to you,
call plot with the argument ask=T. This call brings up a menu listing
the available plots:

> par(mfrow = c(1,1))
> plot(ozone.Im, id.n =5, ask = T)

Make a plot selection (or 0 to exit):

: plot: All

: plot: Residuals vs Fitted Values

: plot: Sqrt of abs(Residuals) vs Fitted Values
: plot: Response vs Fitted Values

: plot: Normal QQplot of Residuals

: plot: r-f spread plot

: plot: Cook’s Distances

Selection:

Enter the number of the desired plot.

N o oW N

If you want to view all the plots, but want them all to appear in a full
graphics window, do not set par(mfrow=c(2,3)) before calling plot,
and do not use the ask=T argument. Instead, before calling p1ot, call
par(ask=T). This tells Spotfire S+ to prompt you before displaying
each additional plot.



Other
Diagnostics

Simple Least-Squares Regression

The Durbin-Watson statistic DW can be used to test for first-order

correlation in the residuals of a linear model. The statistic is defined
as:

n-1
9
DAY
DW=t=L
n b
Y (e -8)”

t=1

where 2, €,, .., €, are the residuals and € is their arithmetic mean.

The statistic is bounded between 0 and 4; small values indicate
possible positive autocorrelation and large values indicate possible
negative autocorrelation. For completely independent residuals, DW
is symmetric around 2. If the test is significant, the observations in
your data set may not be independent and you should check the
validity of your model assumptions.

The null distribution for the Durbin-Watson test statistic depends on
the data matrix used to compute the linear model. Thus, significance
tables are not built into Spotfire S+. Instead, you can obtain
approximate bounds for significance levels using the tables found in
Durbin and Watson (1950); these tables are also available in many
general statistics texts.

In Spotfire S+, the Durbin-Watson test statistic is implemented in the
function durbinWatson, which has a method for the class "1m" as well
as a default method for numeric vectors. The code used to compute
the statistic is sum((diff(x))*2)/var(x, SumSquares=T), where x is a

vector. Thus, DW is simply the ratio of the sum of squared, successive
differences to the sum of squared deviations from the mean.

For example, we obtain the following from durbinWatson for our
linear model ozone.Tm:

> durbinWatson(ozone.1m)

Durbin-Watson Statistic: 1.819424
Number of observations: 111
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The Durbin-Watson test statistic works well if the observations are
equispaced in space or time. In general, however, correlated residuals
are difficult to diagnose and it is best to analyze the data collection
process for any potential correlation.



Multiple Regression

MULTIPLE REGRESSION

You can construct linear models involving more than one predictor as
easily in Spotfire S+ as models with a single predictor. In general,
each predictor contributes a single ferm in the model formula; a single
term may contribute more than one coefficient to the fit.

For example, consider the built-in data sets stack.loss and stack.x.
Together, these data sets contain information on ammonia loss in a
manufacturing process. The stack.x data set is a matrix with three
columns representing three predictors: air flow, water temperature,
and acid concentration. The stack.loss data set is a vector
containing the response. To make our computations easier, combine
these two data sets into a single data frame, then attach the data
frame:

> stack.df <- data.frame(stack.loss, stack.x)
> stack.df

stack.loss Air.Flow Water.Temp Acid.Conc.

42 80 27 89
37 80 27 88
3 37 75 25 90

> attach(stack.df)

For multivariate data, it is usually a good idea to view the data as a
whole using the pairwise scatter plots generated by the pairs
function:

> pairs(stack.df)
The resulting plot is shown in Figure 10.3.
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Figure 10.3: Pairwise scatter plots of stack loss data.

Call 1m as follows to model stack.loss as a linear function of the
three predictors:

> stack.Im <- ITm(stack.loss ~ Air.Flow + Water.Temp +
+ Acid.Conc.)

> summary(stack.1m)
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Call: ITm(formula = stack.loss ~ Air.Flow + Water.Temp +
Acid.Conc.)
Residuals:
Min 1Q Median 30 Max
-7.238 -1.712 -0.4551 2.361 5.698

Coefficients:
Value Std. Error t value Pr(>|t]|)

(Intercept) -39.9197 11.8960 -3.3557 0.0038

Air.Flow 0.7156  0.1349 5.3066 0.0001
Water.Temp  1.2953  0.3680 3.5196 0.0026
Acid.Conc. -0.1521 0.1563 -0.9733  0.3440

Residual standard error: 3.243 on 17 degrees of freedom
Multiple R-Squared: 0.9136

F-statistic: 59.9 on 3 and 17 degrees of freedom, the
p-value is 3.016e-09

Correlation of Coefficients:
(Intercept) Air.Flow Water.Temp
Air.Flow 0.1793
Water.Temp -0.1489 -0.7356
Acid.Conc. -0.9016 -0.3389 0.0002

When the response is the first variable in the data frame, as in
stack.df, and the desired model includes all the variables in the data
frame, the name of the data frame itself can be supplied in place of
the formula and data arguments:

> Im(stack.df)

Call:
Tm(formula = stack.df)

Coefficients:
(Intercept) Air.Flow Water.Temp Acid.Conc.
-39.91967 0.7156402  1.295286 -0.1521225

Degrees of freedom: 21 total; 17 residual
Residual standard error: 3.243364

We examine the default plots to assess the quality of the model (see
Figure 10.4):
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> par(mfrow = c(2,3))
> plot(stack.Im, ask = F)

Both the line y = y and the residuals plots give support to the

model. The multiple R? and F statistic also support the model. But
would a simpler model suffice?

To find out, let’s return to the summary of the stack.1m model. From
the t values, and the associated p-values, it appears that both
Air.Flow and Water.Temp contribute significantly to the fit. But can
we improve the model by dropping the Acid.Conc. term? We explore
this question further in the section Adding and Dropping Terms from
a Linear Model.
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Figure 10.4: Default plots of fitted model.
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ADDING AND DROPPING TERMS FROM A LINEAR MODEL

In the section Multiple Regression, we fitted a linear model with three
predictors of which only two appeared to be significant. Can we
improve the model stack.1m by dropping one or more terms?

The dropl function takes a fitted model and returns an ANOVA table
showing the effects of dropping in turn each term in the model:

> dropl(stack.1m)

Single term deletions

Model:
stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.
Df Sum of Sq RSS Cp
<none> 178.8300 262.9852

Air.Flow 1 296.2281 475.0580 538.1745
Water.Temp 1 130.3076 309.1376 372.2541
Acid.Conc. 1 9.9654 188.7953 251.9118

The columns of the returned value show the degrees of freedom for
each deleted term, the sum of squares corresponding to the deleted
term, the residual sum of squares from the resulting model, and the

C, statistic for the terms in the reduced model.

The C, statistic (actually, what is shown is the AIC statistic, the

likelihood version of the C; statistic-the two are related by the

p

~2
equation AIC = © (Cp +N)) provides a convenient criterion for

determining whether a model is improved by dropping a term. If any
term has a C; statistic lower than that of the current model (shown on

the line labeled <none>), the term with the lowest C, statistic is

dropped. If the current model has the lowest C, statistic, the model is

not improved by dropping any term. The regression literature
discusses many other criteria for adding and dropping terms. See, for
example, Chapter 8 of Weisberg (1985).
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In our example, the C, statistic shown for Acid.Conc. is lower than

that for the current model. So it is probably worthwhile dropping that
term from the model:

> stack2.1m <- Tm(stack.loss ~ Air.Flow + Water.Temp)
> stack2.1m

Call:
Im(formula = stack.loss ~ Air.Flow + Water.Temp)

Coefficients:
(Intercept) Air.Flow Water.Temp
-50.35884 0.6711544 1.295351

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

A look at the summary shows that we have retained virtually all the
explanatory power of the more complicated model:

> summary(stack2.1m)

Call: ITm(formula = stack.loss ~ Air.Flow + Water.Temp)
Residuals:
Min 1Q Median 3Q Max
-7.529 -1.75 0.1894 2.116 5.659

Coefficients:
Value Std. Error t value Pr(>|t]|)

(Intercept) -50.3588 5.1383 -9.8006 0.0000
Air.Flow 0.6712 0.1267 5.2976  0.0000
Water.Temp  1.2954  0.3675 3.5249  0.0024

Residual standard error: 3.239 on 18 degrees of freedom
Multiple R-Squared: 0.9088

F-statistic: 89.64 on 2 and 18 degrees of freedom, the
p-value is 4.382e-10

Correlation of Coefficients:
(Intercept) Air.Flow
Air.Flow -0.3104
Water.Temp -0.3438 -0.7819
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The residual standard error has fallen, from 3.243 to 3.239, while the
multiple R” has decreased only slightly from 0.9136 to 0.9088.

We create the default set of diagnostic plots as follows:

> par(mfrow = ¢(2,3))
> plot(stack2.1m, ask = F)

These plots, shown in Figure 10.5, support the simplified model.
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Figure 10.5: Diagnostic plots for simplified model.

We turn next to the opposite problem: adding terms to an existing
model. Our first linear model hypothesized a relationship between
temperature and atmospheric ozone, based on a scatter plot showing
an apparent linear relationship between the two variables. The air
data set containing the two variables ozone and temperature also
includes two other variables, radiation and wind. Pairwise scatter
plots for all the variables can be constructed using the pairs function,
as illustrated in the command below.

> pairs(air)
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The resulting plot is shown in Figure 10.6. The plot in the top row,
third column of Figure 10.6 corresponds to the scatter plot shown in
Figure 10.1.
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Figure 10.6: Pairwise scatter plots for ozone data.

From the pairwise plots, it appears that the ozone varies somewhat
linearly with each of the variables radiation, temperature, and wind,
and the dependence on wind has a negative slope.
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We can use the addl function to add the terms wind and radiation in
turn to our previously fitted model:

> ozone.addl <- addl(ozone.lm, ~ temperature + wind +
+ radiation)
> ozone.addl

Single term additions

Model :
ozone ~ temperature
Df Sum of Sq RSS Cp
<none> 37.74698 39.13219

wind 1 5.839621 31.90736 33.98517
radiation 1 3.839049 33.90793 35.98575

The first argument to addl is a fitted model object, the second a
formula specifying the scope; that is, the possible choices of terms to
be added to the model. A response is not necessary in the formula
supplied; the response must be the same as that in the fitted model.
The returned object is an ANOVA table like that returned by dropl,
showing the sum of squares due to the added term, the residual sum

of squares of the new model, and the modified C, statistic for the

terms in the augmented model. Each row of the ANOVA table
represents the effects of a single term added to the base model. In

general, it is worth adding a term if the C, statistic for that term is

p
lowest among the rows in the table, including the base model term. In

our example, we conclude that it is worthwhile adding the wind term.

Our choice of temperature as the original predictor in the model,
however, was completely arbitrary. We can gain a truer picture of the
effects of adding terms by starting from a simple intercept model:

> ozone0.1m <- Tm(ozone ~ 1, data = air)
> ozone0.addl <- addl(ozoneO.1m, ~ temperature + wind +
+ radiation)
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The obvious conclusion from the output is that we should start with
the temperature term, as we did originally:

> ozone0.addl

Single term additions

Model :
ozone ~ 1
Df Sum of Sq RSS Cp
<none> 87.20876 88.79437
temperature 1 49.46178 37.74698 40.91821
wind 1 31.28305 55.92571 59.09694
radiation 1 15.53144 71.67732 74.84855
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CHOOSING THE BEST MODEL—STEPWISE SELECTION

Adding and dropping terms using add1 and dropl is a useful method
for selecting a model when only a few terms are involved, but it can
quickly become tedious. The step function provides an automatic
procedure for conducting stepwise model selection. Essentially what
step does is automate the selection process implied in the section
Adding and Dropping Terms from a Linear Model. That is, it
calculates the C, statistics for the current model, as well as those for
all reduced and augmented models, then adds or drops the term that
reduces C, the most. The step function requires an initial model,

often constructed explicitly as an intercept-only model, such as the
ozone0.1m model constructed in the last section. Because step
calculates augmented models, it requires a scope argument, just like
addl.

For example, suppose we want to find the “best” model involving the
stack loss data, we could create an intercept-only model and then call
step as follows:

> stack0.Tm <- Tm(stack.loss ~ 1, data = stack.df)
> step(stack0.1m, ~ Air.Flow + Water.Temp + Acid.Conc.)

Start: AIC= 2276.162
stack.loss ~ 1

Single term additions

Model:
stack.loss ~ 1

scale: 103.4619

Df Sum of Sq RSS Cp

<none> 2069.238 2276.162
Air.Flow 1 1750.122 319.116 732.964
Water.Temp 1 1586.087 483.151 896.998
Acid.Conc. 1 330.796 1738.442 2152.290
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Step: AIC= 732.9637
stack.loss ~ Air.Flow

Single term deletions

Model:
stack.loss ~ Air.Flow

scale: 103.4619

Df Sum of Sq RSS Cp

<none> 319.116 732.964

Air.Flow 1 1750.122 2069.238 2276.162
Single term additions

Model:
stack.loss ~ Air.Flow

scale: 103.4619

Df Sum of Sq RSS Cp
<none> 319.1161 732.9637
Water.Temp 1 130.3208 188.7953 809.5668
Acid.Conc. 1 9.9785 309.1376 929.9090
Call:
Im(formula = stack.loss ~ Air.Flow, data = stack.df)

Coefficients:
(Intercept) Air.Flow
-44.13202 1.020309

Degrees of freedom: 21 total; 19 residual
Residual standard error (on weighted scale): 4.098242
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The value returned by step is an object of class "1m", and the final
result appears in exactly the same form as the output of 1m. However,
by default, step displays the output of each step of the selection
process. You can turn off this display by calling step with the trace=F
argument:

> step(stack0.1m, ~ Air.Flow + Water.Temp + Acid.Conc.,
+ trace = F)

Call:
Im(formula = stack.loss ~ Air.Flow, data = stack.df)

Coefficients:
(Intercept) Air.Flow
-44,13202 1.020309

Degrees of freedom: 21 total; 19 residual
Residual standard error (on weighted scale): 4.098242
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UPDATING MODELS

260

We built our alternate model for the stack loss data by explicitly
constructing a second call to 1m. For models involving only one or
two predictors, this is not usually too burdensome. However, if you
are looking at many different combinations of many different
predictors, constructing the full call repeatedly can be tedious.

The update function provides a convenient way for you to fit new
models from old models, by specifying an updated formula or other
arguments. For example, we could create the alternate model
stack2.1musing update as follows:

> stack2a.1m <- update(stack.Im, .~. - Acid.Conc.,
+ data = stack.df)
> stack2a.lm

Call:
Im(formula = stack.loss ~ Air.Flow + Water.Temp, data =
stack.df)

Coefficients:
(Intercept) Air.Flow Water.Temp
-50.35884 0.6711544  1.295351

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

The first argument to update is always a model object, and additional
arguments for Tm are passed as necessary. The formula argument

“w »

typically makes use of the “.” notation on either side of the “~”. The
“.” indicates “as in previous model.” The “-” and “+” operators are

used to delete or add terms. See Chapter 2, Specifying Models in
Spotfire S+, for more information on formulas with update.



Weighted Regression

WEIGHTED REGRESSION

Example:
Weighted
Linear
Regression

You can supply weights in fitting any linear model; this can
sometimes improve the fit of models with repeated values in the
predictor. Weighted regression is the appropriate method in those
cases where it is known a priori that not all observations contribute
equally to the fit.

The claims data set contains information on the average cost of
insurance claims for automobile accidents. The 128 rows of the data
frame represent all possible combinations of three predictor
variables: age, car.age, and type. An additional variable, number,
gives the number of claims that correspond to each combination. The
outcome variable, cost, is the average cost of the claims in each
category. An insurance company may be interested in using data like
this to set premiums.

We want to fit a regression model predicting cost from age, car.age,
and type. We begin with a simple scatter plot of the number of claims
versus the average cost:

> plot(claims$number, claims$cost)

The result is displayed in Figure 10.7. The plot shows that the
variability of cost is much greater for the observations with smaller
numbers of claims. This is what we expect: if each combination of

. 2 .
age, car.age, and type has the same variance ¢ before averaging,

then the mean cost for a group of n claims is s/ n. Thus, as the size
of a group grows, the variability decreases.
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Figure 10.7: Scatter plot of the number of insurance claims versus the average cost.

First, we fit an unweighted linear model to the c1aims data and view a
plot of the residuals:

> unweighted.claims <- Im(cost ~ age + type + car.age,
+ data = claims, na.action = na.exclude)
> unweighted.claims

Call:
Im(formula = cost ~ age + car.age + type, data = claims,
na.action = na.exclude)

Coefficients:
(Intercept) age.L age.Q age.C age " 4
239.2681 -58.27753 53.31217 -23.83734 -37.09553

age ~* 5 age " 6 age ~ 7 car.age.L car.age.Q
-51.57616 9.523087 -12.60742 -112.1761 -20.12425

car.age.C typel type?2 type3
-1.035686 10.46875 3.519079 25.53023
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200

resid(unweighted.claims)

-200

Weighted Regression

Degrees of freedom: 123 total; 109 residual
5 observations deleted due to missing values
Residual standard error: 103.6497

> plot(claims$number, resid(unweighted.claims))
(11T

> abline(h = 0)

The plot is displayed in the left panel of Figure 10.8. We know the
unweighted.claims model is wrong because the observations are
based on different sample sizes, and therefore have different
variances. In the plot, we again see that the variability in the residuals
is greater for smaller group sizes.
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Figure 10.8: Scatter plots of residuals for two c1aims models. The plot on the left is for an unweighted
model, and the plot on the right is for a model that includes weights.
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To adjust for the difference in variances, we compute a weighted
linear model using number as our vector of weights. This means, for
example, that the observation based on 434 claims is weighted much
more than the 6 observations that are based on only one claim. This
makes sense, because we expect an average based on many data
points to be more stable and closer to the true group mean than one
based on only a few points.

> weighted.claims <- Tm(cost ~ age + type + car.age,
+ data = claims, na.action = na.exclude, weights = number)
> weighted.claims

Call:
Im(formula = cost ~ age + car.age + type, data = claims,
weights = number, na.action = na.exclude)

Coefficients:
(Intercept) age.L age.Q age.C age ~ 4
250.6384 -58.26074 30.19545 5.962486 -34.10711

age ~ b age ~ 6 age ~ 7 car.age.L car.age.Q
-33.5003 -7.180729 18.667 -78.91788 -54.76935

car.age.C typel type?2 type3
-49.47014 2.661179 9.47081 24.2689

Degrees of freedom: 123 total; 109 residual
5 observations deleted due to missing values
Residual standard error (on weighted scale): 606.2138

> plot(claims$number, resid(weighted.claims))
(117

> abline(h = 0)

The plot is displayed in the right panel of Figure 10.8. The plot shows
that the weighted model fits points with large weights more accurately
than the unweighted model. The analysis with weights is more
trustworthy and matches better with standard regression assumptions.



Observation
Weights vs.
Frequencies

Weighted Regression

Spotfire S+ implements observation weights through the weights
argument to most regression functions. Observation weights are
appropriate when the variances of individual observations are

inversely proportional to the weights. For a set of weights w;, one

interpretation is that the ith observation is the average of w; other

observations, each having the same predictors and (unknown)
variance. This is the interpretation of the weights we include in the
claims example above.

It is important to note that an observation weight is not the same as a
frequency, or case weight, which represents the number of times a
particular observation is repeated. It is possible to include frequencies
as a weights argument to a Spotfire S+ regression function; although
this produces the correct coefficients for the model, inference tools
such as standard errors, p values, and confidence intervals are
incorrect. In the examples below, we clarify the difference between
the two types of weights using both mathematical and Spotfire S+
notation.

Let X; be a set of predictor variables, for| = 1, 2, .., p, and suppose

Y is a vector of n response values. The classical linear model
(weighted or unweighted) is represented by an equation of the form

VY
Y =Bo+ YBjX+e,
i=1

where B, is the intercept, f; is the coefficient corresponding to X;, €

is a vector of residuals of length n, and B+ DB; X; represents the

i
fitted values. In this model, there are n observations and p+ 1

coefficients to estimate.
For i = 1, 2, .., n, the residuals €; in an unweighted model are

normally distributed with zero means and identical, unknown

variances & . When observation weights are included in the model,
however, the variances differ between residuals. Suppose we include
a set of weights w; in our linear model. The ith residual €; in the

weighted model is normally distributed with a zero mean, but its

variance is equal to 5/ w; for an unknown o . This type of model is
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appropriate if the ith observation is the average of w; other

) . . 9 ) .
observations, each having the same variance ¢ . Another situation in
which this weighted model can be used is when the relative precision
of the observations is known in advance.

Note

Spotfire S+ does not currently support weighted regression when the absolute precision of the
observations is known. This situation arises often in physics and engineering, when the
uncertainty associated with a particular measurement is known in advance due to properties of

the measuring procedure or device. In this type of regression, the individual G, are known,
. 2 . 2 .
weightsw; = 1/ ©; are supplied, and ¢ need not be estimated. Because of the treatment of

. . 2 . . ..
weights in Spotfire S+, however, ¢ is always estimated. If you know the absolute precision of

. . . 2 . .
your observations, it is possible to supply them as 1/ ¢ to the weights argument in a Spotfire

S+ regression function. This computes the correct coefficients for your model, but the standard

. . . . . 2
errors and other inference tools will be incorrect, since they are based on estimates of G .
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The main difference between observation weights and frequencies
lies in the degrees of freedom for a particular model. In Spotfire S+,
the degrees of freedom for both weighted and unweighted models is
equal to the number of observations minus the number of parameters

estimated. For example, a linear model with n observations and one

predictor has n—2 degrees of freedom, since both a slope and an
intercept are estimated. In contrast, the degrees of freedom for a
model with frequencies is equal to the sum of the frequencies minus
the number of parameters estimated. The degrees of freedom does
not affect the coefficients in a Spotfire S+ regression, but it is used to
compute standard errors, p values, and confidence intervals. If you
use a weights argument to represent frequencies in a regression
function, you will need to exercise extreme caution in interpreting the
statistical results.

For example, consider the following three contrived linear models.
First, we create arbitrary vectors x and y, where the first five elements
in x are identical to each other. We then compute a linear model for
the vectors. For reproducibility, we use the set.seed function.
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> set.seed(0)
> x <- c(rep(1l, 5), 2:10)
> X

(r] 1.1 1 1 1 2 3 4 5 6 7 8 910

>y <- runif(14)
>y

[1] 0.96065916 0.93746001 0.04410193 0.76461851 0.70585769
[6] 0.50355052 0.92864822 0.84027312 0.54710167 0.48780511
[11] 0.39898473 0.26351962 0.92592463 0.42851457

> unweighted.Iml <- Tm(y ~ x)
> unweighted.1ml

Call:
Tm(formula = y ~ x)

Coefficients:
(Intercept) X
0.7162991 -0.02188421

Degrees of freedom: 14 total; 12 residual
Residual standard error: 0.288045

Next, we create vectors x2 and y2 that are identical to x and y, only
the five repeated x values have identical y values. This simulates a
data set with repeated observations. In our example, we choose the
mean of the first five y values to be the repeated y2 value, and then
compute a linear model for the vectors:

> x2 <- X
> y2 <- c(rep(mean(y[1:5]), times=5), y[6:14])
> y2

[1] 0.6825395 0.6825395 0.6825395 0.6825395 0.6825395
[6] 0.5035505 0.9286482 0.8402731 0.5471017 0.4878051
[11] 0.3989847 0.2635196 0.9259246 0.4285146
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> unweighted.Im2 <- Tm(y2 ~ x2)
> unweighted.1m2

Call:
Im(formula = y2 ~ x2)

Coefficients:
(Intercept) X2
0.7162991 -0.02188421

Degrees of freedom: 14 total; 12 residual
Residual standard error: 0.1911415

Note that both of these models have fourteen observations and 12
degrees of freedom. Finally, we create vectors x3 and y3 that are
identical to x2 and y2, only the five repeated values are condensed
into one. To account for this, we assign a weight of 5 to the first
observation and compute a weighted regression for x3 and y3:

> x3 <- 1:10
> y3 <- c(y2[1], y2[6:14])
> y3

[1] 0.6825395 0.5035505 0.9286482 0.8402731 0.5471017
[6] 0.4878051 0.3989847 0.2635196 0.9259246 0.4285146

> w3 <- c¢(5, rep(l, 9))
> w3

[115111111111

> weighted.Im <- Tm(y3 ~ x3, weights w3)

> weighted.1m

Call:
Im(formula = y3 ~ x3, weights = w3)

Coefficients:
(Intercept) X3
0.7162991 -0.02188421

Degrees of freedom: 10 total; 8 residual
Residual standard error (on weighted scale): 0.2340995
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Unlike the first two models, weighted.1m has only 10 observations
and 8 degrees of freedom. Since Spotfire S+ implements observation
weights, we expect weighted.Im to accurately represent the first
unweighted regression. In contrast, we would expect weighted.1m to
represent the second unweighted regression if Spotfire S+ supported
frequencies.

Although the coefficients for the three linear models are the same, the
standard errors for the regression parameters are different, due to the
varying degrees of freedom. This can be seen from the following calls
to summary:

> summary(unweighted.1ml)$coefficients

Value Std. Error t value Pr(>|t])
(Intercept) 0.71629912 0.12816040 5.5890831 0.000118174
x -0.02188421 0.02431325 -0.9000937 0.385777544

> summary(unweighted.1m2)$coefficients

Value Std. Error t value Pr(>|t])
(Intercept) 0.71629912 0.08504493 8.422596 2.211207e-006
x2 -0.02188421 0.01613384 -1.356417 1.999384e-001

> summary(weighted.Im)$coefficients

Value Std. Error t value Pr(>|t])
(Intercept) 0.71629912 0.10415835 6.877021 0.0001274529
x3 -0.02188421 0.01975983 -1.107510 0.3002587236

For weighted.1m to accurately represent unweighted.1m2, its standard
errors should be based on 12 degrees of freedom (the sum of the the
frequencies minus 2).

Depending on the field of study, different categories of weights may
be needed in regression analysis. Observation weights and
frequencies are not the only types used; we present these here simply
to illustrate how Spotfire S+ implements weights in regression
functions. Although the above discussion is specific to the 1m function,
it is applicable to most Spotfire S+ regression functions that include a
weights option.
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PREDICTION WITH THE MODEL
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Much of the value of a linear regression model is that, if it accurately
models the underlying phenomenon, it can provide reliable predictions
about the response for a given value of the predictor. The predict
function takes a fitted model object and a data frame of new data, and
returns a vector corresponding to the predicted response. The
variable names in the new data must correspond to those of the
original predictors; the response may or may not be present, but if
present is ignored.

For example, suppose we want to predict the atmospheric ozone
concentration from the following vector of temperatures:

> newtemp <- c(60, 62, 64, 66, 68, 70, 72)

We can obtain the desired predictions using predict as follows:
> predict(ozone.Im, data.frame(temperature = newtemp))

1 2 3 4 5 6
1.995822 2.136549 2.277276 2.418002 2.558729 2.699456

7
2.840183

The predicted values do not stand apart from the original
observations.

You can use the se.fit argument to predict to obtain the standard
error of the fitted value at each of the new data points. When
se.fit=T, the output of predict is a list, with a fit component
containing the predicted values and an se.fit component containing
the standard errors
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For example,

> predict(ozone.lm, data.frame(temperature = newtemp),
+ se.fit =T)

$fit:
1 2 3 4 5 6
1.995822 2.136549 2.277276 2.418002 2.558729 2.699456

7
2.840183

$se.fit:
1 2 3 4 5
0.1187178 0.1084689 0.09856156 0.08910993 0.08027508

6 7
0.07228355 0.06544499

$residual.scale:
[1] 0.5884748

$df:
[1] 109

You can use this output list to compute pointwise and simultaneous
confidence intervals for the fitted regression line. See the section
Confidence Intervals for details. See the predict help file for a
description of the remaining components of the return list,
residual.scale and df, as well as a description of predict’s other
arguments.
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How reliable is the estimate produced by a simple regression?
Provided the standard assumptions hold (that is, normal, identically
distributed errors with constant variance ©), we can construct
confidence intervals for each point on the fitted regression line based
on the t distribution, and simultaneous confidence bands for the

fitted regression line using the F distribution.

In both cases, we need the standard error of the fitted value, se.fit,
which is computed as follows (Weisberg, 1985, p. 21):
1
~ N2
se.fit = % + (X_—X)2
2Xi - X)
i

where X = a given point in the predictor space. For a fitted object of
class "1m", you can use the predict function as follows to calculate
se.fit:

> predict(ozone.lm, se.fit =T)

For a given point X in the predictor space, a (1 -a)% confidence

interval for the fitted value corresponding to x is the set of values y
such that

o/ 2, Nn—-2)x sefit<y<y+tlo/ 2, n—2)X se.,

where t(q, d) computes the gth quantile of the t distribution with d
degrees of freedom. The pointwise function takes the output of
predict (produced with the se.fit=T flag) and returns a list
containing three vectors: the vector of lower bounds, the fitted values,
and the vector of upper bounds giving the confidence intervals for the
fitted values for the predictor. The output from pointwise is suitable,
for example, as input for the error.bar function. The following
command computes pointwise prediction intervals for the ozone.1m
model.
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> pointwise(predict(ozone.Im, se.fit =T))

$upper:
1 2 3 4 5 6
2.710169 3.011759 3.138615 2.42092 2.593475 2.250401

7 8 9 10 11 12
2.363895 2.828752 2.651621 2.769185 2.193888 2.535673

$fit:
1 2 3 4 5 6
2.488366 2.840183 2.98091 2.136549 2.347639 1.925458

7 8 9 10 11 12
2.066185 2.629093 2.418002 2.558729 1.855095 2.277276

$Tower:
1 2 3 4 5 6
2.266563 2.668607 2.823205 1.852177 2.101803 1.600516

7 8 9 10 11 12
1.768476 2.429434 2.184384 2.348273 1.516301 2.018878

It is tempting to believe that the curves resulting from connecting all
the upper points and all the lower points would give a confidence
interval for the entire curve. This, however, is not the case; the
resulting curve does not have the desired confidence level across its
whole range. What is required instead is a simultaneous confidence
interval, obtained by replacing the t distribution with the F
distribution. A Spotfire S+ function for creating such simultaneous
confidence intervals (and by default, plotting the result) can be
defined with the code below.
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"confint.Im"<-
function(object, alpha = 0.05, plot.it =T, ...) {

}

f <- predict(object, se.fit =T)
p <- length(coef(object))
fit <- f$fit
adjust <- (p * gqf(l - alpha, p, length(fit) -
p))"~0.5 * f$se.fit
lTower <- fit - adjust
upper <- fit + adjust
if(plot.it) {
y <- fit + resid(object)
plot(fit, y)
abline(0, 1, 1ty = 2)
ord <- order(fit)
lines(fit[ord], lower[ord])
lines(fit[ord], upperl[ordl])
invisible(list(Tower=Tower, upper=upper))
}

else list(lower = lower, upper = upper)

A plot of our first model of the air data, as generated by the following
command, is shown in Figure 10.9:

> confint.Im(ozone.1m)

fit

Figure 10.9: Simultaneous confidence intervals for the ozone data.
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POLYNOMIAL REGRESSION

Thus far in this chapter, we’ve dealt with data sets for which the
graphical evidence clearly indicated a linear relationship between the
predictors and the response. For such data, the linear model is a
natural and elegant choice, providing a simple and easily analyzed
description of the data. But what about data that does not exhibit a
linear dependence? For example, consider the scatter plot shown in
Figure 10.10. Clearly, there is some functional relationship between the
predictor E (for Ethanol) and the response NOx (for Nitric Oxide), but
just as clearly the relationship is not a straight line.
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Figure 10.10: Scatter plot showing nonlinear dependence.
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How should we model such data? One approach is to add polynomial
terms to the basic linear model, then use least-squares techniques as
before. The classical linear model (with the intercept term

represented as the coefficient of a dummy variable X, of all 1’s) is

represented by an equation of the following form:

n
Y=Y B Xc+e (10.1)
k=0

where the predictors X, enter the equation as linear terms. More

generally, classical linear regression techniques apply to any equation
of the form

n
Y=Y Bz +e (102)
k=0

where the Z, are new variables formed as combinations of the

original predictors. For example, consider a cubic polynomial
relationship given by the following equation:

Pe}
k
Y= YBx +e (103
k=0

We can convert this to the desired form by the following assignments:

X =2,
xl_Z1
x2:Z2
x3=Z3

Once these assignments are made, the coefficients B, can be

determined as usual using the classical least-squares techniques.
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To perform a polynomial regression in Spotfire S+, use Tm together
with the poly function. Use poly on the right hand side of the formula
argument to 1m to specify the independent variable and degree of the
polynomial. For example, consider the following made-up data:

x <- runif(100, 0, 100)
y <- 50 - 43*x 4+ 31*x"2 - 2*x*3 + rnorm(100)

We can fit this as a polynomial regression of degree 3 as follows:

> xyIm <- Tm(y ~ poly(x, 3))
> xylm

Call:
Tm(formula =y ~ poly(x, 3))

Coefficients:
(Intercept) poly(x, 3)1 poly(x, 3)2 poly(x, 3)3
-329798.8 -3681644 -1738826 -333975.4

Degrees of freedom: 100 total; 96 residual
Residual standard error: 0.9463133

The coefficients that appear in the object xy1m are the coefficients for
the orthogonal form of the polynomial. To recover the simple
polynomial form, use the function poly.transform:

> poly.transform(poly(x,3), coef(xylm))

x"0 x~1 xX"2 x"3
49.9119 -43.01118 31.00052 -2.000005

These coefficients are very close to the exact values used to create y.

If the coefficients returned from a regression involving poly are so
difficult to interpret, why not simply model the polynomial explicitly?
That is, why not use the formula y ~ x + x*2 + x*3 instead of the
formula involving poly? In our example, there is little difference.
However, in problems involving polynomials of higher degree,
severe numerical problems can arise in the model matrix. Using poly
avoids these numerical problems, because poly uses an orthogonal
set of basis functions to fit the various “powers” of the polynomial.
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As a further example of the use of poly, let us consider the ethanol
data we saw at the beginning of this section. From Figure 10.10, we
are tempted by a simple quadratic polynomial. However, there is a
definite upturn at each end of the data, so we are safer fitting a quartic
polynomial, as follows:

> ethanol.poly <- Tm(NOx ~ poly(E, degree = 4))
> summary(ethanol.poly)

Call: Tm(formula

Residuals:
Min

1Q

= NOx ~ poly(E, degree = 4))

Median 3Q Max

-0.8125 -0.1445 -0.02927 0.1607 1.017

Coefficients:

poly(E, degree
poly(E, degree
poly(E, degree
poly(E, degree

poly(E, degree
poly(E, degree
poly(E, degree

Value Std. Error t value

(Intercept) 1.9574 0.0393 49.8407
4)1 -1.0747 0.3684 -2.9170
4)2 -9.2606 0.3684 -25.1367
4)3 -0.4879 0.3684 -1.3243
4)4  3.6341 0.3684 9.8644
Pr(>|t])
(Intercept) 0.0000
4)1  0.0045
4)2 0.0000
4)3 0.1890
4)4  0.0000

poly(E, degree

Residual standard error: 0.3684 on 83 degrees of freedom
Multiple R-Squared: 0.8991
F-statistic: 184.9 on 4 and 83 degrees of freedom, the

p-value is 0

Correlation of Coefficients:

poly(E, degree
poly(E, degree
poly(E, degree
poly(E, degree

poly(E, degree
poly(E, degree
poly(E, degree
poly(E, degree

(Intercept) poly(E, degree = 4)1

4)1 0
4)2 0
4)3 0
4)4 0

poly(E, degree = 4)2 poly(E, degree = 4)3
4)1
4)2
4)3 0
4)4 0 0

o O O
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> poly.transform(poly(E, 4), coef(ethanol.poly))

X0 X1 XN2 X3 x4
174 .3601 -872.2071 1576.735 -1211.219 335.356
In the summary output, the P(>|t|) value for the fourth order
coefficient is equal to zero. Thus, the probability that the model does
not include a fourth order term is zero, and the term is highly
significant. Although the ethano1 data looks fairly quadratic in Figure
10.10, a simple quadratic model would result in more error than in the
quartic model ethanol.poly.
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Generalized least squares models are regression (or ANOVA) models
in which the errors have a nonstandard covariance structure. Like
simple least squares regression, the method of generalized least squares
(GLS) uses maximum likelihood or restricted maximum likelihood to
fit a continuous, univariate response as a linear function of a single
predictor variable. In GLS, however, the errors are allowed to be
correlated and/or to have unequal variances.

To fit a linear model in Spotfire S+ with generalized least squares
regression, use the function g1s. Several arguments are available in
g1s, but a typical call is in one of three forms:

gls(model, data, correlation) # correlated errors
gls(model, data, weights) # heteroscedastic errors
gls(model, data, correlation, weights) # both

The model argument is a two-sided linear formula specifying the
model for the expected value of the response variable; this is identical
to the model argument required by Im. In many cases, both the
response and the predictor are components of a single data frame,
which can be specified as the optional data argument to g1s.

The arguments that exemplify the flexibility of g1s are correlation
and weights. The optional argument correlation specifies the
within-group correlation structure for a grouped data set. In grouped
data, the values of the response variable are grouped according to one
or more factors; these data are discussed in detail in Chapter 14,
Linear and Nonlinear Mixed-Effects Models. The correlation
structures available in g1s are organized into corStruct classes, as
shown in Table 10.1. The optional argument weights to g1s specifies
the form of the errors variance-covariance function, which is used to
model heteroscedasticity in the within-group errors. The available
variance functions are organized into varFunc classes, as shown in
Table 10.2.
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Table 10.1: Classes of correlation structures.

Class Description

corAR1 AR(1)

corARMA ARMA(p,q)

corBand banded

corCAR1L continuous AR(1)
corCompSymm compound symmetry
corkExp exponential spatial correlation
corGaus Gaussian spatial correlation
corldent multiple of an identity
corLin linear spatial correlation
corRatio

rational quadratic spatial correlation

corSpatial

general spatial correlation

corSpher spherical spatial correlation

corStrat a different corStruct class for each level of a
stratification variable

corSymm general correlation matrix

Table 10.2: Classes of variance function structures.

Class Description

varComb combination of variance functions
varConstPower constant plus power of a variance covariate
varkxp exponential of a variance covariate
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Table 10.2: Classes of variance function structures.

Class Description

varFixed fixed weights, determined by a variance covariate
varldent different variances per level of a factor

varPower power of a variance covariate

You can define your own correlation and variance function classes by
specifying appropriate constructor functions and a few method
functions. For a new correlation structure, method functions must be
defined for at least corMatrix and coef. For examples of these
functions, see the methods for the corSymm and corAR1 classes. A new
variance function requires methods for at least coef, coef<-, and
initialize. For examples of these functions, see the methods for the
varPower class.

Example: The The ovary data set has 308 rows and 3 columns. It contains the
Ovary Data Set number of ovarian follicles detected in different mares at different
times in their estrus cycles.

> Ovary

Grouped Data: follicles ~ Time | Mare

Mare Time follicles
1 1 -0.13636360 20
2 1 -0.09090910 15
3 1 -0.04545455 19
4 1 0.00000000 16
5 1 0.04545455 13
6 1 0.09090910 10
7 1 0.13636360 12

Biological models suggest that the number of follicles may be
modeled as a linear combination of the sin and cosine of 2*pi*Time.
The corresponding Spotfire S+ model formula is written as:

follicles ~ sin(2*pi*Time) + cos(2*pi*Time)

Let’s fit a simple linear model for the Ovary data first, to demonstrate
the need for considering dependencies among the residuals.
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Generalized Least Squares Regression

> Ovary.Im <- Im(follicles ~
+ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary)

We can view a plot of the residuals with the following command:
> plot(Ovary.Im, which = 1)

The result is shown in Figure 10.11, and suggests that we try a more
general variance-covariance structure for the error term in our model.
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Fitted : sin(2 * pi * Time) + cos(2 * pi * Time)

Figure 10.11: Residuals plot from a simple linear fit to the Ovary data set.

We use the g1s function with a power variance structure instead of
standard linear regression. In our generalized least squares model, the
variance increases with a power of the absolute fitted values.

> Ovary.fitl <- gls(follicles ~
+ sin(2*pi*Time) + cos(2*pi*Time), data = QOvary,
+ weights = varPower())

The fitted objects returned by the g1s function are of class "gis". A
variety of methods are available for displaying, updating, and
evaluating the estimation results.

The print method displays a brief description of the estimation
results returned by g1s. For the Ovary.fitl object, the results are

> Ovary.fitl
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Generalized least squares fit by REML
Model: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
Data: Ovary
Log-restricted-1likelihood: -895.8303

Coefficients:
(Intercept) sin(2 * pi * Time) cos(2 * pi * Time)
12.22151 -3.292895 -0.8973728

Variance function:

Structure: Power of variance covariate
Formula: ~ fitted(.)

Parameter estimates:

power

0.4535912

Degrees of freedom: 308 total; 305 residual
Residual standard error: 1.451151

A more complete description of the estimation results is returned by
the summary function:

> summary(Ovary.fitl)

Generalized least squares fit by REML
Model: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
Data: Ovary
AIC BIC lToglLik
1801.661 1820.262 -895.8303
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Variance function:
Structure: Power of variance covariate

Formula: ~ fitted(.)

Parameter estimates:
power

0.4535912

Coefficients:
Value Std.Error t-value p-value
(Intercept) 12.22151 0.2693741 45.37003 <.0001
sin(2 * pi * Time) -3.29290 0.3792688 -8.68222 <.0001
cos(2 * pi * Time) -0.89737 0.3591879 -2.49834 0.013

Correlation:

(Intr) s(2%p*T)
sin(2 * pi * Time) -0.165
cos(2 * pi * Time) -0.321 0.021

Standardized residuals:
Min Q1 Med Q3 Max
-2.303092 -0.7832415 -0.02163715 0.6412627 3.827058

Residual standard error: 1.451151
Degrees of freedom: 308 total; 305 residual

Diagnostic plots for assessing the quality of a fitted g1s model are
obtained using the plot method. Figure 10.12 shows the plot
displayed by the command:

> plot(Ovary.fitl)

285



Chapter 10 Regression and Smoothing for Continuous Response Data

286

4 o
3 o
o
O]
- o
® ) o o
= @ o7 q o o
3 o @ S} [
@ © o ©%o 9 o ° b o o
o 14 ©o %P o o oo o @ o of@cmp
3 °© @ o o
] o E3) %o o o
N o o Co o
i o O o o ¢ o 9 oo °o 5 P o°_ o &
] 2.000 o @} o o o o °lo o oo
§ O oo o O ° o aw @
»n @O g o oo oo §Oo 0 ©
co °qo o O lom oo OO ° o
o O o Ooo °© o o
4 © <)
1 @ o4 ° o go o ©
OO@ o ©lo b o °
9 ° © o oo
24 © o o [o3F)
o
T T T
10 12 14

Fitted values

Figure 10.12: Residuals plot from a generalized least squares fit to the Ovary data,
using a power variance function.

Although we included a power variance structure in Ovary.fitl, the
plot in Figure 10.12 still shows evidence of extra variation in the
model. One possibility, given that Time is a covariate in the data, is
that serial correlation exists within the groups. To test this hypothesis,
we use the ACF function as follows:

> ACF(Ovary.fitl)

lag ACF
0 1.0000000
1 0.6604265
2 0.5510483
3 0.4410895

A~ w N

The ACF function computes the values of the empirical
autocorrelation function that correspond to the residuals of the g1s fit.
The values are listed for several lags, and there appears to be
significant autocorrelation at the first few lags. These values,
displayed in Figure 10.13, can be plotted with a simple call to the plot
method for ACF.

> plot(.Last.value)
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Figure 10.13: Empirical autocorrelation function corresponding to the standardized
residuals of the Ovary. fit1 model object.

Figure 10.13 suggests that an autoregressive process of order 1 may be
adequate to model the serial correlation in the residuals. We use the
correlation argument in gls to re-fit the model using an AR(1)
correlation structure for the residuals. The value returned by ACF for
the first-lag correlation is used as an estimate of the autoregressive
coefficient.

> Ovary.fit2 <- gls(follicles ~

+ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary,

+ correlation = corAR1(0.66), weights = varPower())
> plot(Ovary.fit2)

The residuals, displayed in Figure 10.14, look much tighter than for
Ovary.fitl. This indicates that the extra variation we observed in
Ovary.fitl is adequately modeled with the corARl correlation
structure.
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In addition, the anova table comparing the two fits shows great
improvement when the serial correlation is considered in the model:

> anova(Ovary.fitl, Ovary.fit2)

Model df AIC BIC TogLik Test
Ovary.fitl 1 5 1801.661 1820.262 -895.8303
Ovary.fit2 2 6 1598.496 1620.818 -793.2479 1 vs 2

L.Ratio p-value
Ovary.fitl
Ovary.fit2 205.1648 <.0001
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Figure 10.14: Residuals plot from a generalized least squares fit to the Ovary data,
using a power variance function and within-group AR(1) serial correlation.

The final generalized least squares model for the Ovary data is:
> Ovary.fit2

Generalized Teast squares fit by REML
Model: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
Data: Ovary
Log-restricted-1likelihood: -793.2479

Coefficients:

(Intercept) sin(2 * pi * Time) cos(2 * pi * Time)
12.30864 -1.647776 -0.8714635
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Correlation Structure: AR(1)
Parameter estimate(s):
Phi
0.7479559
Variance function:
Structure: Power of variance covariate

Formula: ~ fitted(.)

Parameter estimates:
power

-0.7613254

Degrees of freedom: 308 total; 305 residual
Residual standard error: 32.15024
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SMOOTHING

Locally
Weighted
Regression
Smoothing
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Polynomial regression can be useful in many situations. However, the
choice of terms is not always obvious, and small effects can be greatly
magnified or lost completely by the wrong choice. Another approach
to analyzing nonlinear data, attractive because it relies on the data to
specify the form of the model, is to fit a curve to the data points
locally. With this technique, the curve at any point depends only on
the observations at that point and some specified neighboring points.
Because such a fit produces an estimate of the response that is less
variable than the original observed response, the result is called a
smooth, and procedures for producing such fits are called scatterplot
smoothers. Spotfire S+ offers a variety of scatterplot smoothers:

* loess.smooth, a locally weighted regression smoother.

* smooth.spline, a cubic smoothing spline, with local behavior
similar to that of kernel-type smoothers.

* ksmooth, a kernel-type scatterplot smoother.
* supsmu, a very fast variable span bivariate smoother.

Halfway between the global parametrization of a polynomial fit and
the local, nonparametric fit provided by smoothers are the parametric
fits provided by regression splines. Regression splines fit a continuous
curve to the data by piecing together polynomials fit to different
portions of the data. Thus, like smoothers, they are local fits. Like
polynomials, they provide a parametric fit. In Spotfire S+, regression
splines can be used to specify the form of a predictor in a linear or
more general model, but are not intended for top-level use.

In locally weighted regression smoothing, we build the smooth
function s(X) pointwise as follows:
1. Take a point, say X, . Find the k nearest neighbors of X,
which constitute a neighborhood N(X;). The number of

neighbors K is specified as a percentage of the total number of
points. This percentage is called the span.



5.

Smoothing

Calculate the largest distance between X, and another point

in the neighborhood:

A(Xg)=maxyy |Xo = Xy

Assign weights to each point in N(X,) using the tri-cube

()

weight function:

where

3.3
W(u):{(l—u) for 0 <1
0 otherwise

Calculate the weighted least squares fit of y on the
neighborhood N(X,). Take the fitted value Y, = S(X,).

Repeat for each predictor value.

Use the Tloess.smooth function to calculate a locally weighted
regression smooth. For example, suppose we want to smooth the
ethanol data. The following expressions produce the plot shown in
Figure 10.15:

> plot(E, NOx)
> Tines(loess.smooth(E, NOx))

The figures shows the default smoothing, which uses a span of 2/3.
For most uses, you will want to specify a smaller span, typically in the
range of 0.3 to 0.5.
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Using the
Super
Smoother
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NOx

Figure 10.15: Loess-smoothed ethanol data.

With Toess, the span is constant over the entire range of predictor
values. However, a constant value will not be optimal if either the

error variance or the curvature of the underlying function f varies
over the range of X. An increase in the error variance requires an
increase in the span whereas an increase in the curvature of f requires
a decrease. Local cross-validation avoids this problem by choosing a
span for the predictor values X; based on only the leave-one-out

residuals whose predictor values X; are in the neighborhood of ;.

The super smoother, supsmu, uses local cross-validation to choose the
span. Thus, for one-predictor data, it can be a useful adjunct to Toess.

For example, Figure 10.16 shows the result of super smoothing the
response NOx as a function of E in the ethanol data (dotted line)
superimposed on a loess smooth. To create the plot, use the
following commands:

> scatter.smooth(E, NOx, span = 1/4)
> Tines(supsmu(E, NOx), Tty = 2)



Local Cross-
Validation

Smoothing

NOx

E

Figure 10.16: Super smoothed ethanol data (the dotted line).

Let s(x|k) denote the linear smoother value at x when span k is

used. We wish to choose k = k(X) so as to minimize the mean
squared error

e’ (k) = E,Y[Y —s(X|K)]*

where we are considering the joint random variable model for (X, Y).
Since

2 2
ExYLY -s(X|K)]" = EXEY|X[Y—S(X|k)]
we would like to choose k = k(X) to minimize

e (k)

Ey[X = X[Y - s(X|K)]”

Ey|X = X[Y -s(x[k)]” .
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However, we have only the data (x;, y;), i = 1, .., n, and not the

true conditional distribution needed to compute Ey’X: X, and so we
cannot calculate ef(k) . Thus we resort to cross-validation and try to

minimize the cross-validation estimate of e)%(k) :
~Q - 2
ecy(K) = z[yi —S(i)(Xi|k)] .
i=1
Here Si(xi|k) is the “leave-one-out” smooth at x;, that is, S(i)(xi|k) is
constructed using all the data (X;, ¥j), ] = 1, .., n, except for (X;, Y;),
and then the resultant local least squares line is evaluated at x;

thereby giving s;,(X|K) . The leave-one-out residuals
Fiy(K) = ¥i =5 (xi[K)
are easily obtained from the ordinary residuals
ri(k) =vy; —S(Xi‘k)

using the standard regression model relation

ri(k)
i
Here h;;,i = 1, .., n, are the diagonals of the so-called “hat” matrix,

H = X(XTX)_IXT, where, for the case at hand of local straight-line

regression, X is a 2-column matrix.



Using the
Kernel
Smoother

Smoothing

A kernel-type smoother is a type of local average smoother that, for
each target point x;in predictor space, calculates a weighted average Y;

of the observations in a neighborhood of the target point:

n
Vi = Y Wi (10.4)
i=1

where

The function K used to calculate the weights is called a kernel
function, which typically has the following properties:

+  K(t) =0 forall ¢
< [ T Kdt =1

+  K(-t) = K(t)m for all # (symmetry)

Note that the first two properties are those of a probability density
function. The parameter b in the equation for the weights is the
bandwidth parameter, which determines how large a neighborhood of
the target point is used to calculate the local average. A large
bandwidth generates a smoother curve, while a small bandwidth
generates a wigglier curve. Hastie and Tibshirani (1990) point out that
the choice of bandwidth is much more important than the choice of
kernel.

To perform kernel smoothing in Spotfire S+, use the ksmooth
function. The kernels available in ksmooth are shown in Table 10.3.
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Table 10.3: Kernels available for ksmooth.

Kernel Explicit Form
"box"
ol s
box 0, I1>05
" ] "1 1
triangle 1—|t|/ C : |t| SE
0, t|>=
t>1
" w2 2
parzen (k;—t%)/ ko, It| <,
Kpar(t) = (t2/ ky)—k It +k;, C,<|t|<C,
0, C, <t
"normal" , 92
Gor(D) = (17 27ke) exp(~t2/ 2k6
n convolution form, Kigi(D) = Ky * Kpox (D
’In convolution form, Kpar(t) = Ky * Kpox (D
The constants shown in the explicit forms above are used to scale the
resulting kernel so that the upper and lower quartiles occur at +0.25. Also,
the bandwidth is taken to be 1 and the dependence of the kernel on the
bandwidth is suppressed.

Of the available kernels, the default "box" kernel gives the crudest
smooth. For most data, the other three kernels yield virtually identical
smooths. We recommend "triangle" because it is the simplest and
fastest to calculate.
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The intuitive sense of the kernel estimate 9i is clear: Values of y; such
that x; is close to X; get relatively heavy weights, while values of y;
such that x; is far from Xx; get small or zero weight. The bandwidth

parameter b determines the width of <(t/ b), and hence controls the
size of the region around X; for which y; receives relatively large
weights. Since bias increases and variance decreases with increasing
bandwidth b, selection of b is a compromise between bias and
variance in order to achieve small mean squared error. In practice

this is usually done by trial and error. For example, we can compute a
kernel smooth for the ethanol data as follows:

plot(E, NOx)

Tines(ksmooth(E, NOx, kernel="triangle"™, bandwidth=0.2))
Tines(ksmooth(E, NOx, kernel="triangle", bandwidth=0.1),
1ty=2)

legend(0.54, 4.1, c("bandwidth=0.2", "bandwidth=0.1"),

+ 1ty = c(1,2))

vV o+ VvV VvV Vv

The resulting plot is shown in Figure 10.17.

— bandwidth=0.2 [¢) o
v bandwidth=0.1

NOx

0.6 0.8 1.0 1.2

Figure 10.17: Kernel smooth of ethanol data for two bandwidths.
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Smoothing
Splines
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A cubic smoothing spline behaves approximately like a kernel smoother,

but it arises as the function f that minimizes the penalized residual sum
of squares given by

2 ” 2,
2RSS = Y (i~ )" + A (77(t)"d
i=1
over all functions with continuous first and integrable second

derivatives. The parameter A is the smoothing parameter,

corresponding to the span in Toess or supsmu or the bandwidth in
ksmooth.

To generate a cubic smoothing spline in Spotfire S+, use the function
smooth.spline to smooth to the input data:

> plot(E, NOx)
> Tines(smooth.spline(E, NOx))

You can specify a different A using the spar argument, although it is

not intuitively obvious what a “good” choice of A might be. When
the data is normalized to have a minimum of 0 and a maximum of 1,
and when all weights are equal to 1, A = spar. More generally, the
relationship is given by A = (max(x)-min(x))*3-mean(w)-spar. You
should either let Spotfire S+ choose the smoothing parameter, using
either ordinary or generalized cross-validation, or supply an
alternative argument, df, which specifies the degrees of freedom for the
smooth. For example, to add a smooth with approximately 5 degrees
of freedom to our previous plot, use the following:

> lines(smooth.spline(E, NOx, df = 5), 1ty = 2)
The resulting plot is shown in Figure 10.18.



Comparing
Smoothers

Smoothing

NOx

Figure 10.18: Smoothing spline of ethanol data with cross-validation (solid line)
and pre-specified degrees of freedom.

The choice of a smoother is somewhat subjective. All the smoothers
discussed in this section can generate reasonably good smooths; you
might select one or another based on theoretical considerations or the
ease with which one or another of the smoothing criteria can be
applied. For a direct comparision of these smoothers, consider the
artificial data constructed as follows:

> set.seed(14) ffset the seed to reproduce the example
> e <- rnorm(200)

> x <- runif(200)

>y <- sin(2 * pi * (1-x)"2) + x * e

299



Chapter 10 Regression and Smoothing for Continuous Response Data

A “perfect” smooth would recapture the original signal,

f(x) = sin(2m(1 —X)Q), exactly. The following commands sort the
input and calculate the exact smooth:

> sx <- sort(x)
> fx <- sin(2 * pi * (1-sx)"2)

The following commands create a scatter plot of the original data,
then superimpose the exact smooth and smooths calculated using
each of the smoothers described in this chapter:

plot(x, y)

lines(sx, fx)

lines(supsmu(x, y), Tty = 2)

lTines(ksmooth(x, y), 1ty = 3)
lTines(smooth.spline(x, y), 1ty = 4)
lines(loess.smooth(x, y),1ty = 5)

legend(0, 2, c("perfect™, "supsmu", "ksmooth",
+ "smooth.spline™, "Toess"), 1ty = 1:5)

VvV V V V V VYV

The resulting plot is shown in Figure 10.19. This comparison is crude
at best, because by default each of the smoothers does a different
amount of smoothing. A fairer comparison would adjust the
smoothing parameters to be roughly equivalent.

o~ A
o 4
>
-------- supsmu
o - ——  ksmooth .
— —  smooth.spline
— — loess °
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 10.19: Comparison of Spotfire S+ smoothers.
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ADDITIVE MODELS

An additive model extends the notion of a linear model by allowing
some or all linear functions of the predictors to be replaced by
arbitrary smooth functions of the predictors. Thus, the standard linear
model

Y= ZBiXi +€
i=0
is replaced by the additive model
n
Y=o+ fi(Xj) +e
i=1
The standard linear regression model is a simple case of an additive
model. Because the forms of the f; are generally unknown, they are
estimated using some form of scatterplot smoother.
To fit an additive model in Spotfire S+, use the gam function, where
gam stands for generalized additive model. You provide a formula which

may contain ordinary linear terms as well as terms fit using any of the
following:

* loess smoothers, using the 10 function;

+ smoothing spline smoothers, using the s function;
+ natural cubic splines, using the ns function;

*  Bsplines, using the bs function;

* polynomials, using poly.

The three functions ns, bs, and poly result in parametric fits; additive
models involving only such terms can be analyzed in the classical
linear model framework. The 1o and s functions introduce
nonparametric fitting into the model. For example, the following call
takes the ethanol data and models the response NOx as a function of
the loess-smoothed predictor E:

> attach(ethanol)
> ethanol.gam <- gam(NOx ~ 1o(E, degree = 2))
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> ethanol.gam

Call:
gam(formula = NOX ~ 1o(E, degree = 2))

Degrees of Freedom: 88 total; 81.1184 Residual
Residual Deviance: 9.1378

In the call to 1o, we specify that the smooth is to be locally quadratic
by using the argument degree=2. For data that is less obviously
nonlinear, we would probably be satisfied with the default, which is
locally linear fitting. The printed gam object closely resembles a
printed 1m object from linear regression—the call producing the model
is shown, followed by the degrees of freedom and the residual deviance
which serves the same role as the residual sum of squares in the linear
model. The deviance is a function of the log-likelihood function,

which is related to the probability mass function f(y;;y;) for the
observation Yy; given ;. The log-likelihood for a sample of n

observations is defined as follows:

I(m;y) = Y log f(y;; W)
i=1
The deviance D(y; m) is then defined as

W = 21(m*; y) - 21(m; y)

where p* maximizes the log-likelihood over p unconstrained, and ¢
is the dispersion parameter. For a continuous response with normal
errors, as in the models we’ve been considering in this chapter, the

dispersion parameter is just the variance o, and the deviance
reduces to the residual sum of squares. As with the residual sum of
squares, the deviance can be made arbitrarily small by choosing an
interpolating solution. As in the linear model case, however, we
generally have a desire to keep the model as simple as possible. In the
linear case, we try to keep the number of parameters, that is, the
quantities estimated by the model coefficients, to a minimum.
Additive models are generally nonparametric, but we can define for
nonparametric models an eguivalent number of parameters, which we
would also like to keep as small as possible.



Additive Models

The equivalent number of parameters for gam models is defined in
terms of degrees of freedom, or df. In fitting a parametric model, one
degree of freedom is required to estimate each parameter. For an
additive model with parametric terms, one degree of freedom is
required for each coefficient the term contributes to the model. Thus,
for example, consider a model with an intercept, one term fit as a
cubic polynomial, and one term fit as a quadratic polynomial. The
intercept term contributes one coefficient and requires one degree of
freedom, the cubic polynomial contributes three coefficients and thus
requires three degrees of freedom, and the quadratic polynomial
contributes two coefficients and requires two more degrees of
freedom. Thus, the entire model has six parameters, and uses six
degrees of freedom. A minimum of six observations is required to fit
such a model.

Models involving smoothed terms wuse both parametric and
nonparametric degrees of freedom; parametric degrees of freedom
result from fitting a linear (parametric) component for each smooth
term, while the nonparametric degrees of freedom result from fitting
the smooth after the linear part has been removed. The difference
between the number of observations and the degrees of freedom
required to fit the model is the residual degrees of freedom. Conversely,
the difference between the number of observations and the residual
degrees of freedom is the degrees of freedom required to fit the
model, which is the equivalent number of parameters for the model.

The summary method for gam objects shows the residual degrees of
freedom, the parametric and nonparametric degrees of freedom for
each term in the model, together with additional information:

> summary(ethanol.gam)

Call: gam(formula = NOx ~ To(E, degree = 2))
Deviance Residuals:

Min 1Q Median 3Q Max
-0.6814987 -0.1882066 -0.01673293 0.1741648 0.8479226

(Dispersion Parameter for Gaussian family taken to be
0.1126477 )

Null Deviance: 111.6238 on 87 degrees of freedom

Residual Deviance: 9.137801 on 81.1184 degrees of freedom
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Number of Local Scoring Iterations: 1

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)
(Intercept) 1
lo(E, degree = 2) 2 3.9 35.61398 1.110223e-16

The Deviance Residuals are, for Gaussian models, just the ordinary
residuals Y; — Uj. The Nul1 Deviance is the deviance of the model

consisting solely of the intercept term.

The ethanol data set contains a third variable, C, which measures the
compression ratio of the engine. Figure 10.20 shows pairwise scatter
plots for the three variables.
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Figure 10.20: Pairs plot of the ethanol data.
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Let’s incorporate C as a linear term in our additive model:

> ethanol2.gam <- gam(NOx ~ C + 1o(E, degree = 2))
> ethanol2.gam

Call:
gam(formula = NOx ~ C + To(E, degree = 2))

Degrees of Freedom: 88 total; 80.1184 Residual
Residual Deviance: 5.16751

> summary(ethanol2.gam)

Call: gam(formula = NOx ~ C + 1o(E, degree = 2))
Deviance Residuals:
Min 1Q Median 3Q Max
-0.6113908 -0.166044 0.0268504 0.1585614 0.4871313

(Dispersion Parameter for Gaussian family taken to be
0.0644985 )

Null Deviance: 111.6238 on 87 degrees of freedom
Residual Deviance: 5.167513 on 80.1184 degrees of freedom
Number of Local Scoring Iterations: 1
DF for Terms and F-values for Nonparametric Effects
Df Npar Df  Npar F Pr(F)
(Intercept) 1

c 1
lo(E, degree = 2) 2 3.9 57.95895 0
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We can use the anova function to compare this model with the
simpler model involving E only:

> anova(ethanol.gam, ethanol2.gam, test = "F")

Analysis of Deviance Table

Response: NOx
Terms Resid. Df Resid. Dev Test Df

1 To(E, degree = 2) 81.1184 9.137801

2 C+ 1o(E, degree = 2) 80.1184 5.167513 +C 1
Deviance F Value Pr(F)

1

2 3.970288 61.55632 1.607059e-11

The model involving C is clearly better, since the residual deviance is
cut almost in half by expending only one more degree of freedom.

Is the additive model sufficient? Additive models stumble when there
are interactions among the various terms. In the case of the ethanol
data, there is a significant interaction between C and E. In such cases, a
full local regression model, fit using the 1oess function, is often more
satisfactory. We discuss the ethanol data more thoroughly in Chapter
13, Local Regression Models.
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MORE ON NONPARAMETRIC REGRESSION

Alternating
Conditional
Expectations

The additive models fitted by gam in the section Additive Models are
simple examples of nonmparametric regression. The machinery of
generalized additive models, proposed by Hastie and Tibshirani
(1990), is just one approach to such nonparametric models. Spotfire
S+ includes several other functions for performing nonparametric
regression, including the ace function, which implements the first
proposed technique for nonparametric regression—alternating
conditional expectations. Spotfire S+ also includes AVAS (Additive
and VAriance Stabilizing transformations) and projection pursuit
regression. This section describes these varieties of nonparametric
regression.

Alternating conditional expectations or ace, is an intuitively appealing
technique introduced by Breiman and Friedman (1985). The idea is to

find nonlinear transformations 3(y), ¢;(X;), ®(Xg), ... Oy(X,) of the

response Yy and predictors X;, X, .., X, respectively, such that the
additive model

0(Y) = 0;(X)) + Qy(Xg) + o+ Oy (X,) + & (10.5)

is a good approximation for the data y;, Xjj, .., X, i = 1, ..., n. Let
s X5 Xgs oer X be random variables with joint distribution F, and let

expectations be taken with respect to F. Consider the goodness-of-fit
measure

E{ew) - 2¢k<xk>J

k=1 (106)

2 2
e =¢€ (97 ¢17 7¢ ) =
i E6”(y)
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The measure 62 is the fraction of variance not explained by

regressing 6(y) on ¢(X,), .., ®(X;) . The data-based version of e is

i=1 k:l

z{é(yi) - Zak(xik)‘

62 =

- (107)
3 6%(y)
i=1

where 0 and the ¢J , estimates of 6 and the ¢, are standardized so
n
that 9(y|) and the 'qu(Xij) have mean zero: Ze(yi) =0 and
i=1
n

Zq)k(xik) = 0,k =1, .., p. For the usual linear regression case,
i=1
where

é(yi) =Yi-y

and
d1(Xj =% = (X — xl)Bl A xp) = (Xip— Xp)Bp
with Bl SIRRRD Bp the least squares regression coefficients, we have

2l0i=-9- Z(Xik_)_(k)[gk
é2 B RSS=i=1 k=1

LS — SS_Y_ n
Z(yi—y)Q
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The squared multiple correlation coefficient is given by

R2 = 1—eES. The transformations 6, ¢1, ..., ¢p are chosen to

maximize the correlation between 9(y|) and ﬁj(xil) + -+ dﬁ(xip) .

Although ace is a useful exploratory tool for determining which of the

response Y and the predictors Xx;, .., X, are in need of nonlinear

p
transformations and what type of transformation is needed, it can

produce anomalous results if errors € and the ¢1(X;) fail to satisfy the

independence and normality assumptions.

To illustrate the use of ace, construct an artificial data set with additive
errors

y, = e " Pireiii= 1, 2, .., 200

with the €;’s being N0,10) random variables (that is, normal random
variables with mean 0 and variance 10 ), independent of the x;’s, with
the x;’s being U0, 2) random variables (that is, random variables

uniformly distributed on the interval from 0 to 2).

> set.seed(14) ffset the seed to reproduce the example
> x <- 2 * runif(200)

> e <- rnorm(200, 0, sqrt(10))

>y <- exp(l+2*x) + e

Now use ace:

> a <- ace(x, y)
Set graphics for 3 x 2 layout of plots:

> par(mfrow = c(3,2))
Make plots to do the following:
1. Examine original data
2. Examine transformation of y
3. Examine transformation of x
4. Check linearity of the fitted model
5

Check residuals versus the fit
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The following Spotfire S+ commands provide the desired plots:

> plot(x, y, sub = "Original Data™)

> plot(x, a$tx, sub = "Transformed x vs. x")

> plot(y, a$ty, sub = "Transformed y vs. y")

> plot(as$tx, a$ty, sub = "Transformed y vs.

+ Continue string: Transformed x")

> plot(a$tx, a$ty - a$tx,

+ ylab = "residuals", sub = "Residuals vs. Fit")

These plots are displayed in Figure 10.21, where the transformed
values O(y) and ¢(y) are denoted by ty and tx, respectively. The
estimated transformation tX = ((X) seems close to exponential, and
except for the small bend at the lower left, the estimated

transformation ty = G(y) seems quite linear. The linearity of the

plot of ty versus tx reveals that a good additive model of the type
shown in Equation (10.5) has been achieved. Furthermore, the error
variance appears to be relatively constant, except at the very lefthand

end. The plot of residuals, I; = e(yi)—&>(xi) versus the fit

tx = d)(XI) gives a clearer confirmation of the behavior of the

residuals’ variance.
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Figure 10.21: ace example with additive errors.
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The term AVAS stands for additivity and variance stabilizing
transformation. Like ace, the Spotfire S+ function avas tries to find

transformations 0(y), ¢;(X;), ... ®,(X,) such that

B(Y) = 0;(X)) + Po(Xg) + ==+ Pp(Xp) + € (10.8)

provides a good additive model approximation for the data
fis Xi1s - Xip | = 1, 2, .., n. However, avas differs from ace in that
it chooses O(y) to achieve a special variance stabilizing feature. In
particular the goal of avas is to estimate transformations 6, ¢;, .., By

which have the properties

p
EIO(Y)[Xgs - Xl = Y 0(X)) (10.9)

i=1
and

p

var| 6(y)| D ¢i(X;) | = constant (10.10)
i=1

Here E[z|w] is the conditional expectation of z given w. The
additivity structure of Equation (10.9) is the same as for ace, and
correspondingly the ¢,’s are calculated by the backfitting algorithm

(X)) = ELG(V)— ZQ(Xi)|XkJ (10.11)

i#k
cycling through < =1, 2, .., p until convergence. The variance
stabilizing aspect comes from Equation (10.9). As in the case of ace,
estimates O(y;) and ¢J-(Xik), <=1,2, .., p are computed to

approximately satisfy Equation (10.8) through Equation (10.11), with
the conditional expectations in Equation (10.8) and Equation (10.11)
estimated using the super smoother scatterplot smoother (see supsmu
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function documentation). The equality in Equation (10.9) is
approximately achieved by estimating the classic stabilizing
transformation.

To illustrate the use of avas, construct an artificial data set with
additive errors

y, = el *Pipeli i = 1, .., 200

with the €,;’s being MO, 10) random variables (that is, normal random
variables with mean 0 and variance 10), independent of the X;’s, with

the x;’s being U0, 2) random variables (that is, random variables

uniformly distributed on the interval from 0 to 2).

> set.seed(14) ffset the seed to reproduce the example
> x <- runif(200, 0, 2)

> e <- rnorm(200, 0, sqrt(10))

>y <- exp(l+2*x) + e

Now use avas:

> a <- avas(x, y)

Set graphics for a 3 x 2 layout of plots:

> par(mfrow = c(3,2))

Make plots to: (1) examine original data; (2) examine transformation
of x; (3) examine transformation of y; (4) check linearity of the fitted
model; (5) check residuals versus the fit:

> plot(x, y, sub = "Original data™)

> plot(x, a$tx, sub = "Transformed x vs. x")

> plot(y, a$ty, sub = "Transformed y vs. y")

> plot(as$tx, a$ty, sub = "Transformed y vs. Transformed x")
> plot(a$tx, a$ty - a$tx, ylab = "Residuals™,

+ sub = "Residuals vs. Fit")

These plots are displayed in Figure 10.22 where the transformed
values O(y) and ¢(X) are denoted by ty and tx, respectively. The
estimated transformation tx = dS(X) seems close to exponential, and

the estimated transformation ty = é(y) seems linear. The plot of ty
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versus tX reveals that a linear additive model holds; that is, we have
achieved a good additive approximation of the type in Equation
(10.8). In this plot the error variance appears to be relatively constant.

The plot of residuals, r; = é(yi)—q)(xi), versus the fit tx = ¢(Xi)

gives further confirmation of this.
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Figure 10.22: avas example with additive errors.
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Suppose that the true additive model is

p
0’(y) = Z¢?(Xi)+8 (10.12)

i=1

with € independent of <y, Xy, .., X, and var(e) = constant.

Then the iterative avas algorithm for Equation
(10.9) through Equation (10.11), described below for the data
versions of Equation (10.9) through Equation (10.11), yields a

sequence of transformations G(J), ij) R ;EJ) , which

converge to the true transformation 90, ¢°1 R (bg as the

number of iterations j tends to infinity. Correspondingly, the
data-based version of this iteration yields a sequence of
IDN0)) (1)

. N .
transformations ® ', ¢; , .., ¢y’ , which, at convergence,

provide estimates 0, ¢, .., (I)p of the true model
. 0 0 0
transformations 0, ¢, , .., 0, -

avas appears not to suffer from some of the anomalies of ace,
for example, not finding good estimates of a true additive

model (Equation (10.12)) when normality of € and joint
normality of ¢;(X;), ... 9,(X;) fail to hold. See the example

below.
avas is a generalization of the Box and Cox (1964) maximum-

likelihood procedure for choosing power transformation y}L of
the response. The function avas also generalizes the Box and
Tidwell (1962) procedure for choosing transformations of the

carriers Xy, Xg, -.» Xp and is much more convenient than the
Box-Tidwell procedure. See also Weisberg (1985).

0(Yy) is a monotone transformation, since it is the integral of a
nonnegative function (see the section Further Details on page
316). This is important if one wants to predict y by inverting

0 : monotone transformations are invertible, and hence we
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p
can predict y with y = 6! z&)i(xi) . This predictor

i=1
has no particular optimality property, but is simply one

straightforward way to get a prediction of y once an avas
model has been fit.

Let

p
v(u) = VAR|B(Y)| Y oi0x) = u (10.13)
i=1

where e(y) is an arbitrary transformation of y, e(y) will be the
“previous” estimate of 6(y) in the overall iterative procedure

described below. Given the variance function v(U), it is known that

p
VAR|g(6(y))| Y i(x) = u
i=1

will be constant if g is computed according to the rule

t du

t) = j NN (10.14)

for an appropriate constant ¢. See Box and Cox (1964).

The detailed steps in the population version of the avas algorithm are
as follows:

1. Initialize:

Set (y) = (y—Ey)/ (VAR'" *yand backfit on x,, .., X,

to get d’h . ¢p . See the description of ace for details of
backfitting.
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2. Get new transformation of y:
*  Compute variance function:
A P A
v(u) = VAR|6(y)| Y ¢i(x) = u
i=1
*  Compute variance stabilizing transformation:

t du

0 = f ¢ v %y

+  Set é(y) - g(é(y)) and standardize:

vARY 20(y)

3. Get new ¢, 5z

Backfit 6(y) onx, Xo, .., Xg to obtain new estimates

q)l’ (R34 q)p .
4. Iterate steps 2 and 3 until

P

p
= 1-E[6(y)- Y a(x) (10.15)

i=1

A2
=1-¢e

doesn’t change.

Of course the above algorithm is actually carried out using the sample

of data y;, X;;, ... Xjp, 1 = 1, .., n, with expectations replaced by

ip
sample averages, conditional expectations replaced by scatterplot
smoothing techniques and VAR'’s replaced by sample variances.

In particular, super smoother is used in the backfitting step to obtain
01(X;1)s -s q)p(Xip) , (i=1), .., n. An estimate V(U) of v(u) is

obtained as follows: First the scatter plot of
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p 2 b
2 " - - .
logrl = lOg e(yl) - zq)J(XIJ) versus UI = zq)J(X”) 1S
i=1 j=1
smoothed using a running straight lines smoother. Then the result is
exponentiated. This gives an estimate v(u)>0, and V(Uu) is

truncated below at 10" to insure positivity and avoid dividing by
zero in the integral in Equation (10.14); the integration is carried out
using a trapezoidal rule.

The basic idea behind projection pursuit regression, ppreg, is as
follows. Let y and x = (X, Xy, .., X;)T denote the response and

explanatory vector, respectively. Suppose you have observations Y;
and corresponding predictors X; = (X3, X, --Xip)T, 1 =1, 2, ., n.

Let a;, a,, .., denote p-dimensional unit vectors, as “direction”
n

vectors, and let y = % zyi. The ppreg function allows you to find
i=1

M = M,, direction vectors 3;, ay, .., 2, and good nonlinear

transformations ¢;, ¢, .., q)MO such that

M

y= 9+ 3 Bnln(@nx) (10.16)

m=1

provides a “good” model for the data y;, X;, i = 1, 2, .., n. The

“projection” part of the term projection pursuit regression indicates

that the carrier vector x is projected onto the direction vectors
J

1, dg; .. aMo to get the lengths a'x of the projections, and the

“pursuit” part indicates that an optimization technique is used to find

“good” direction vectors 1;, ay, .., Ay .
g 1> Ao M,
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More formally, y and X are presumed to satisfy the conditional
expectation model

M,

E[y|X}, Xgy s Xp] = Wy + 2 Bm¢m(a;X) (10.17)

m=1

where y, = E(y), and the ¢, have been standardized to have mean

zero and unity variance:

E¢ (arx) =0, Eoi(arx) =0, n=1, .., M (1018)

The observations Yy;, X; = (Xjj, ... xip)T i =1, .., n, are assumed to
be independent and identically distributed random variables like y
and X, that is, they satisfy the model in Equation (10.17).

The true model parameters B,,, ¢, a,, M = 1, .., M, in Equation

(10.17) minimize the mean squared error

M, “

Ely-u, - Zﬁmq)m(a:nx) (10.19)

m=1

over all possible B, ¢,,and a,,.

Equation (10.17) includes the additive ace models under the
restricion  0(y) =y. This occurs when M, =p and

3= (L0, ., 0),15=(0, 1,0, .., 0,4 =(0,0,.,0, 1), and
the B,,’s are absorbed into the ¢,’s. Furthermore, the ordinary linear

model is obtained when M, = 1, assuming the predictors x are

independent ~with mean 0 and  variance 1. Then

2’ = (by, .., b))/ o] + -+ b, ot = t, and
B, = ./b% + -+ bz , where the b; are the regression coefficients.
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The projection pursuit model in Equation (10.17) includes the
possibility of having interactions between the explanatory variables.
For example, suppose that

ELY[X), X9l = X;Xg (10.20)

This is described by Equation (10.17) with p, = 0, M, = 2,

1 T T (
Bl = BZ = Z') al = (1’ 1)7 a2 = (1’ _1)7 (I)l(t) = t2> and

dy(t) = —t*. For then

T 2 2 2
d;(a;X) = (X{ +Xg) X] + 2X{Xq + X

T 2 2 2
Oy(A9X) = —(X; =Xg)" = =X+ 2X X9 — Xy

so that

Z
T —
D Brdm(@ X) = X;Xg.
m=1
Neither ace nor avas is able to model interactions. It is this ability to
pick up interactions that led to the invention of projection pursuit

regression by Friedman and Stuetzle (1981), and it is what makes
ppreg a useful complement to ace and avas.

The two variable interactions shown above can be used to illustrate
the ppreg function. The two predictors, x; and X, are generated as

uniform random variates on the interval -1 to 1. The response, Y, is
the product of x; and X, plus a normal error with mean zero and

variance 0.04.

> set.seed(14) ffset the seed to reproduce the example
> x1 <- runif(400, -1, 1)

> x2 <- runif(400, -1, 1)

> eps <- rnorm(400, 0, 0.2)

>y <- x1 * x2 + eps

> x <- cbind(x1, x2)
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Now run the projection pursuit regression with max.term set at 3,
min.term set at 2 and with the residuals returned in the ypred
component (the default if xpred is omitted).

> p <- ppreg(x, y, 2, 3)

Make plots (shown in Figure 10.23) to examine the results of the
regression.

> par(mfrow = c(3, 2))

> plot(xl, y, sub ="Y vs X1")

> plot(x2, y, sub ="Y vs X2")

> plot(p$z[,1]1, p$zhat[,1]1, sub = "1st Term:

+ Continue string: Smooth vs Projection Values z1")
> plot(p$z[,2]1, p$zhat[,2], sub = "2nd Term:

+ Continue string: Smooth vs Projection Values z2")
> plot(y-p$ypred, y, sub = "Response vs Fit™)

> plot(y-p$ypred, p$ypred, sub = "Residuals vs Fit™)

The first two plots show the response plotted against each of the
predictors. It is difficult to hypothesize a function form for the
relationship when looking at these plots. The next two plots show the
resulting smooth functions from the regression plotted against their
respective projection of the carrier variables. Both the plots have a
quadratic shape with one being positive and the other negative, the
expected result for this type of interaction function. The fifth plot
shows clearly a linear relationship between the response and the fitted
values. The residuals shown in the last plot do not display any
unusual structure.
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Figure 10.23: Projection pursuit example.

The forward stepwise procedure
An initial M-term model of the form given by the right-hand side of
Equation (10.17), with the constraints of Equation (10.18) and M >M,

is estimated by a forward stepwise procedure, as described by
Friedman and Stuetzle (1981).
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First, a trial direction a; is used to compute the values z;; = aIxi ,
i =1, .., n, where X; = (Xj}, .., xip)T. Then, with )7'1 =Y;-Y, you
have available a scatter plot of data (gli, Zj1), i = 1, .., n, which may
be smoothed to obtain an estimate 'qil(zi 1) of the conditional
expectation E[y|z,] = E[y;|z;;] for the identically distributed
random variables y;, z;; = aIxi. Super Smoother is used for this

purpose; see the documentation for supsmu. This ¢; depends upon
the trial direction vector a;, so we write ¢; = ¢, a,- Now a; is

varied to minimize the weighted sum of squares,

n

D wily; — o, al(Zil)]z (10.21)

i=1

where for each ¢; in the optimization procedure, a new ¢, a, is
computed using super smoother. The weights w; are user-specified,

with the default being all weights unitary: w; = 1. The final results of

this optimization will be denoted simply 5.1 and ld)1 , where '(1‘)1 has
been standardized according to Equation (10.18) and the

corresponding value [ is computed. We now have the

approximation y; = Yy + B1¢1(éIXi), wherei = 1, .., n.

Next we treat yi(2) = Y;—Y-B16¢1(z;;) as the response, where now

~T A AT
Zj; = a;X%;, and fit a second term B2¢2(Zi2) , where z;9 = a5X;, to
this modified response, in exactly the same manner that we fitted

Bla)l(éIXi) to yfl). This gives the approximation ng) = Bga)g(zm)
oryj= ¥+ PB101(z;;) + Bada(z)-
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Continuing in this fashion we arrive at the forward stepwise estimated
model

\Yl

yi= 9+ 3 BnOn(Zip)i = L . n (10.22)
m=1

AT
where z; .. = a X;,m =1, .., M.

The backward stepwise procedure

Having fit the M term model in Equation (10.22) in a forward stepwise
manner, ppreg fits all models of decreasing order
n=M-1 M-2, .., My, where M and M,;, are user-specified.

For each term in the model, the weighted sum of squared residuals

P

n m
T
SSR(m) = ZWi Yi—¥Y- ZB|¢|(3| X;) (10.23)
i=1 I=1
is minimized through the choice of B, a;, ¢, | =1, .., m. The

initial values for these parameters, used by the optimization algorithm
which minimizes Equation (10.23), are the solution values for the m

most important out of m + 1 terms in the previous order m + 1 model.
Here importanceis measured by

Bl

I, = =1, ., m+l (10.24)

where | are the optimal coefficients for the m+ 1 term model,
n=M-1, M=2, ., M.

Model selection strategy

In order to determine a “good” number of terms M, for the ppreg

model, proceed as follows. First, run ppreg with M;;, = 1 and M set

at a value large enough for the data analysis problem at hand. For a
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relatively small number of variables p, say p <4, you might well
choose M 2>p. For large p, you would probably choose M<p,

hoping for a parsimonious representation.

For each order m, 1M <M , ppreg will evaluate the fraction of
unexplained variance

e2(m) - SSR(m)
X‘Wi[yi_y]2
i=1
n m 2
ZWi Yi—=Y- ZBI&)I(EAHTXi)
_ i=1 I=1
z{Wi[yi_y]2

i=1
A plot of e’(m) versus m which is decreasing in m may suggest a
good choice of m = M,. Often eQ(m) decreases relatively rapidly

when m is smaller than a good model order M, (as the (bias)2

component of prediction mean-squared error is decreasing rapidly),
and then tend to flatten out and decrease more slowly for m larger
than M,,. You can choose M, with this in mind.

The current version of ppreg has the feature that when fitting models

having M = Mpip, Myin+ 1, ... M terms, all of the values By, &,
¢|(ZI|), le = é.;er, i = 1, ... N, | = 1, ... M, and eQ(m) are
returned for m = M,,;,, whereas all of these except the smoothed

values ¢/(z;;) and their corresponding arguments z;; are returned for
allm = M., ... M. This feature conserves storage requirements. As
a consequence, you must run ppreg twice form = M;,, .., M, using

two different values of M,,;,. The first time M,;, = 1 is used in order
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to examine e2(m), m = 1, .., M (among other things) and choose a

good order M. The second time M,,;, = M, is used in order obtain

all output, including ¢|(Zil) and z;, values.

Multivariate response

All of the preceding discussion has been concentrated on the case of a
single response Yy, with observed values y;, .., y,. In fact, ppreg is

designed to handle multivariate responses Yy, .., ¥, with observed
values Vij, 1 =1, ..n,j=1,.,q.For this case, ppreg allows you

to fit a good model

VI 0

Yj= ¥j+ ZBmN)m(a X) (10.25)
m=1

by minimizing the multivariate response weighted sum of squared
residuals

q n m “
SSRy(m) = SW; Swi|yi-y— 3 Biytalx;) (10.26)

j=1 i=1 =1

and choosing a good value m = M, . Here the W; are user-specified

response weights (with default W;=1), the w; are user-specified
n

observation weights (with default w;=1), and yj = % zyii' Note
" i=1
that a single set of ¢y ’s is used for all responses y;;, j = 1, .., q,

whereas the different behavior of the different responses is modeled

by different linear combinations of the q>m ’s by virtue of the different

~ ~ ~ T
sets of coefficients Bj = (Bij, ..., Bmj) i =1, ... q.
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The ppreg procedure for the multivariate response case is similar to
the single response case. For given values of M,;, and M, ppreg first
does a forward stepwise fitting starting with a single term (m =1),
and ending up with M terms, followed by a backward stepwise

procedure stopping with an M,;, -term model. When passing from an

M+ 1 term model to an m-term model in the multivariate response
case, the relative importance of a term is given by

y
I = ZWJ-

i=1

By

The most important terms are the ones with the largest I, and the

corresponding values of le , O, and @, are used as initial conditions
in the minimization of SSRy(M) . Good model selection; that is, a

good choice m = M, can be made just as in the case of a single

response, namely, through examination of the multivariate response
fraction of unexplained variation

SSR(m
eg(m) = 3 o q( )
ZW,- zwi[yij_yj]Z (10.27)
i=1 i=1

by first using ppreg with M,;, = 1 and a suitably large M. Then

ppreg is run again with M;;, = M, and the same large M.
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Introduction

INTRODUCTION

Robust regression techniques are an important complement to classical
least squares regression. Robust techniques provide answers similar to
least squares regression when the data are linear and have normally
distributed errors. The results differ significantly, however, when the
errors do not satisfy the normality conditions or when the data
contain significant outliers. TIBCO Spotfire S+ includes several
robust regression techniques; this chapter focuses on robust MM
regression. This is the technique we officially recommend, as it
provides both high-quality estimates and a wealth of diagnostic and
inference tools.

Other robust regression techniques available in Spotfire S+ are least
trimmed squares (LTS) regression, least median squares (LMS) regression,
least absolute deviations (L1) regression, and M-estimates of regression.
These are discussed briefly in the section Other Robust Regression
Techniques.

Spotfire S+ also includes the S+MissingData library, which extends
the statistical modeling capabilities of Spotfire S+ to support model-
based missing data methods. You can load this library into your
Spotfire S+ session by either typing Tlibrary(missing) in the
Commands window, or if you are using the Windows version,
choose File » Load Library from the main menu. For more
information, see the file library/missing/missing.pdf in your
Spotfire S+ program group or if you are on Windows, select Help »
Online Manuals » Missing Data Analysis Library.

333



Chapter 11 Robust Regression

OVERVIEW OF THE ROBUST MM REGRESSION METHOD

Key
Robustness
Features of the
Method

The Essence of
the Method: A
Special
M-Estimate

334

This section provides an overview of the Spotfire S+ tools you can
use to compute a modern linear regression model with robust MM
regression. The tools we discuss include both inference for
coefficients and model selection.

The robust MM method has the following general features:

* In data-oriented terms, a robust MM fit is minimally
influenced by outliers in the independent variables space, in
the response (dependent variable) space, or in both.

* In probability-oriented terms, the robust fit minimizes the
maximum possible bias of the coefficients estimates. The bias
minimized is due to a non-Gaussian contamination model
that generates outliers, subject to achieving a desired (large
sample size) efficiency for the coefficient estimates when the
data has a Gaussian distribution.

* Statistical inference tools produced by the robust fit are based
on large sample size approximations for such quantities as
standard errors and “t-statistics” of coefficients, R-squared
values, etc.

For further information, see the section Theoretical Details.

A robust MM model has the form
yi = xiTB+ei, =1, .,0n

where Yy; is the scalar response associated with ith observation, X; is a
p-dimensional  vector of independent predictor values,
3 = (By, By -.» Bp) represents the coefficients, and the €; are errors.

Spotfire S+ computes a robust M-estimate [ that minimizes the

objective function
n T
yi—X% B



Overview of the Robust MM Regression Method

Here, S is a robust scale estimate for the residuals and p is a

symmetric, bounded loss function. Loss functions are described in the
section Theoretical Details, and two possibilities are shown

graphically in Figure 11.5. Alternatively, B is a solution of the

estimating equation
=X [3

i=1

where ¢ = p’ is a redescending (nonmonotonic) function.

Since p is bounded, it is nonconvex, and the minimization algorithm
can therefore produce many local minima; correspondingly, the
estimating equation above can have multiple solutions. Spotfire S+

deals with this issue by computing highly robust initial estimates BO
and s’ that have breakdown points of 0.5. The final estimate B is

then the local minimum of the objective function that is nearest to BO .
We refer to an M-estimate computed in this way as an MM-estimate, a
term first introduced by Yohai (1987). The initial values are computed
using the S-estimate approach described in the section Theoretical
Details, and are thus referred to as initial S-estimates.

Note

The theory for the robust MM method is based on Rousseeuw and Yohai (1984), Yohai, Stahel,
and Zamar (1991), and Yohai and Zamar (1998). The code is based on Alfio Marazzi’s ROBETH
library, with additional work by R. Douglas Martin, Douglas B. Clarkson, and Jeffrey Wang of
Insightful Corporation. The code development was partially supported by an SBIR Phase I grant
entitled “Usable Robust Methods,” funded by the National Institutes of Health.

The ImRobMM
Function

The Spotfire S+ function that computes robust MM regression
estimates is called TmRobMM. The model object returned by TmRobMM is
almost identical in structure to a least-squares model object returned
by 1m; that is, you obtain most of the same fitted model components
from the two functions, such as standard errors and ¢ statistics for
coefficients. Examples using the TmRobMM function are given in the
section Computing Robust Fits.
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Comparison of Spotfire S+ includes a special function compare.fits that is

Least Squares
and Robust
Fits

Robust Model
Selection
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specifically designed to facilitate the comparison of least squares fits
and robust fits for a linear regression model. Objects returned by
compare.fits can be printed, summarized, and plotted, resulting in
tabular and graphical displays that make it easy for you to compare
the two types of fits. Examples using the compare.fits function are
given in the section Comparing Least Squares and Robust Fits.

It is not enough to use a robust regression method when you try to
decide which of several alternative models to use. You also need a
robust model selection criterion. To this end, you might use one of the
following three tests: the robust F-test, the robust Wald test, and the
robust FPE (RFPE) criterion. See the section Robust Model Selection
for further details.



Computing Robust Fits

COMPUTING ROBUST FITS

Example: The The Spotfire S+ data frame oilcity contains monthly excess returns

oilcity Data on the stocks of Oil City Petroleum, Inc., from April 1979 to
December 1989. The data set also contains the monthly excess
returns of the market for the same time period. Returns are defined as
the relative change in the stock price over a one-month interval, and
excess returns are computed relative to the monthly return of a 90-day
U.S. Treasury bill at the risk-free rate.

A scatter plot of the oi1city data, displayed in Figure 11.1, shows that
there is one large outlier in the data. The command below produces

the graph.

> plot(oilcity$Market, oilcity$0il,
+ xlab = "Market Returns™, ylab = "0il City Returns")
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Figure 11.1: Scatter plot of the 0i1city data.
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Normally, financial economists use least squares to fit a straight line
predicting a particular stock return from the market return. The
estimated coefficient of the market return is called the befa, and it
measures the riskiness of the stock in terms of standard deviation and
expected returns. Large beta values indicate that the stock is risky
compared to the market, but also indicate that the expected returns
from the stock are large.

We first fit a least squares model to the oilcity data as follows:

> 0il.1s <- Tm(0i1 ~ Market, data = oilcity)
> o0il.ls

Call:
Im(formula = 0il ~ Market, data = oilcity)

Coefficients:
(Intercept) Market
0.1474486 2.85674

Degrees of freedom: 129 total; 127 residual
Residual standard error: 0.4866656

To obtain a robust fit, you can use the TmRobMM function with the same
linear model:

> oil.robust <- TmRobMM(0il ~ Market, data = oilcity)
> oil.robust

Final M-estimates.

Call:
TmRobMM(formula = 0il ~ Market, data = oilcity)

Coefficients:
(Intercept) Market
-0.08395796 0.8288795

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446265



Computing Robust Fits

From the output of the two models, we see that the robust beta
estimate is dramatically different than the least squares estimate. The
least squares method gives a beta of 2.857, which implies that the
stock is 2.857 times as volatile as the market and has about 2.857
times the expected return. The robust MM method gives a beta of
0.829, which implies that the stock is somewhat less volatile and has a
lower expected return. Also, note that the robust scale estimate is
0.14, whereas the least-squares scale estimate is 0.49. The least-
squares scale estimate is based on the sum of squared residuals, and is
thus considerably inflated by the presence of outliers in data.

You can see both models in the same graph with the following set of

commands:
> plot(oilcity$Market, oilcity$0il,
+ xlab = "Market Returns"™, ylab = "0il City Returns")
> abline(coef(oil.robust), 1ty = 1)
> abline(coef(oil.ls), Tty = 2)

> legend(locator(l), c("oil.robust","oil.1s™), 1ty=1:2)

The result is displayed in Figure 11.2. In the Tegend command, the
Tocator function allows you to interactively choose a location for the
key.

oil.robust

""" oil.ls

Qil City Returns

-0.2 -0.1 0.0

Market Returns

Figure 11.2: Least squares and robust fits of the o1 1city data.
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Least Squares
and Robust
Model Objects

Objects returned by the 1m function are of class "1m":
> data.class(oil.ls)

(1] "Tm"

On the other hand, objects returned by TmRobMM are of class
"TmRobMM™":

> data.class(oil.robust)

[1] "TmRobMM"

As with objects of class "1m", you can easily visualize, print and
summarize objects of class "TmRobMM" using the generic functions
plot, print and summary. With the names function, you can see that
TmRobMM objects contain many of the same components as 1m objects,
in addition to components that are needed for the robust fitting
algorithm:

> names(oil.Ts)

340

[1] "coefficients™ "residuals" "fitted.values"
[4] "effects" "R" "rank"
[7] "assign" "df.residual" "contrasts"
[10] "terms" "call"
> names(oil.robust)
[1] "coefficients" "T.coefficients"
[3] "scale" "T.scale"
[5] "cov" "T.cov"
[7] "dev" "T.dev"
[9] "residuals" "T.residuals"
[11]1 "r.squared" "T.r.squared"
[13] "M.weights" "T.M.weights"
[15] "fitted.values" "T.fitted.values"
[17] "mm.bias" "ls.bias"
[19] "™iter.refinement” ™"iter.final.coef"
[21] "iter.final.scale" "df.residual"”
[23] "rank" "est"
[25] "robust.control™ "qr"
[27] "assign" "contrasts"
[29] "terms" "call"



Visualizing and Summarizing Robust Fits

VISUALIZING AND SUMMARIZING ROBUST FITS

The plot
Function

For simple linear regression models, like the ones computed for the
oilcity data in the previous section, it is easy to see outliers in a
scatter plot. In multiple regression models, however, determining
whether there are outliers in the data is not as straightforward.
Nevertheless, Spotfire S+ makes it easy for you to visualize outliers in
a multiple regression. To illustrate this point, we use the well-known
“stack loss” data, which has been analyzed by a large number of
statisticians.

The stack loss data contains the percent loss of ammonia during 21
consecutive days at an oxidation plant. Ammonia is lost when it is
dissolved in water to produce nitric acid. Three variables may
influence the loss of ammonia during this process: air flow, water
temperature, and acid concentration. The stack loss response data is
contained in the vector stack.loss, and the three independent
variables are contained in the matrix stack.x. The following
command combines the response and predictor variables into a data
frame named stack.df:

> stack.df <- data.frame(Loss = stack.loss, stack.x)
To compute a least squares fit for stack.df, use the 1m function as
follows:

> stack.ls <- Tm(Loss ~

+ Air.Flow + Water.Temp + Acid.Conc., data = stack.df)

To compute a robust fit for the same linear model, use:

> stack.robust <- TmRobMM(Loss ~
+ Air.Flow + Water.Temp + Acid.Conc., data = stack.df)

We now use the plot function to visualize the robust fit, as illustrated
in the command below. Note that plots of Cook's distance values are
not currently available for robust linear model objects.
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> plot(st

ack.robust, ask = T)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Residuals vs Fitted Values

3: plot: Sgrt of abs(Residuals) vs Fitted Values
4: plot: Response vs Fitted Values

5: plot: Normal QQplot of Residuals

6: plot: r-f spread plot

Selection:

You can compare plots of the residuals versus fitted values for
stack.1s and stack.robust using the following commands:

par(mfrow = c(1,2))

plot(stack.ls, which.plots = 1)
title(main = "LS Fit")
plot(stack.robust, which.plots = 1)
title(main = "Robust Fit")

vV VvV VvV VvV

Figure 11.3 shows the two plots. The robust fit pushes the outliers
away from the majority of the data, so that you can identify them
more easily.

LS Fit Robust Fit
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Fitted : Air.Flow + Water.Temp + Acid.Conc. Fitted : Air.Flow + Water.Temp + Acid.Conc.

Figure 11.3: Plots of the residuals vs. fitted values for the stack. 10ss data.
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Function

Visualizing and Summarizing Robust Fits

The summary function for TmRobMM objects provides the usual types of
inference tools, including #values and p-values. In addition, it also
provides some information specific to robust models, such as tests for
bias. For example, the command below displays a detailed summary
of the 0i1.robust object computed in the section Least Squares and
Robust Fits.

> summary(oil.robust)

Final M-estimates.
Call: TmRobMM(formula = 0il ~ Market, data = oilcity)

Residuals:
Min 1Q Median 3Q Max
-0.4566 -0.08875 0.03082 0.1031 5.218

Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) -0.0840 0.0281 -2.9931 0.0033
Market 0.8289 0.2834 2.9247 0.0041

Residual scale estimate: 0.1446 on 127 degrees of freedom

Proportion of variation in response explained by model:
0.0526

Test for Bias

Statistics P-value
M-estimate 2.16 0.3396400
LS-estimate 22.39 0.0000138

Correlation of Coefficients:
(Intercept)
Market 0.8169

The seed parameter is : 1313
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Note that the standard errors, #values, and p-values are displayed in
the same format as they are in Tm summaries. The standard errors for
TmRobMM objects are computed from the robust covariance matrix of
the estimates. For technical details regarding the computation of
robust covariance matrices, refer to Yohai, Stahel, and Zamar (1991).

The summary method for TmRobMM provides another piece of useful
information: the Proportion of variation in response explained

by model, usually known as the R? value. Spotfire S+ calculates a
robust version of this statistic, as described in the section Theoretical
Details.

Finally, there is a Test for Bias section in the summary output for
TmRobMM objects. This section provides the test statistics of bias for
both the final M-estimates and the least squares (LS) estimates against
the initial S-estimates. In the 0i1.robust example, the test for bias of
the final M-estimates yields a p-value of 0.33, which suggests that the
bias of the final M-estimates relative to the initial S-estimates is not
significant at the default 0.90 level. This is why the final M-estimates
are reported in the summary output instead of the initial estimates. The
test for bias of the least squares estimates relative to the S-estimates
yields a p-value of 0, which indicates that the LS estimate is highly
biased. This suggests that the robust MM model is preferred over the
least squares model. For technical details regarding the calculations of
the tests for bias, see Yohai, Zamar, and Stahel (1991).
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COMPARING LEAST SQUARES AND ROBUST FITS

Comparison
Objects for
Least Squares
and Robust
Fits

In the section The plot Function, we compared plots of the residuals
versus fitted values for least squares and robust MM fits of the same
linear model. You might have noticed that the plots in Figure 11.3 do
not have the same vertical scale. Spotfire S+ provides the function
compare.fits for comparing different fits of a given model. Objects
returned by this function are of class "compare.fits”, which has
appropriate plot, print, and summary methods. The plot method
allows you to view different fits on the same scale for easy visual
comparison. In addition, the print and summary methods return
tabular displays that are conveniently aligned for comparison of
inference results.

For example, to compare the 0i1.1s and oi1.robust fits, create a
comparison object with the following command:

> oil.cmpr <- compare.fits(oil.ls, oil.robust)
> oil.cmpr

Calls:
0il.1s Tm(formula = 0il ~ Market, data = oilcity)
oil.robust TmRobMM(formula = 0il ~ Market, data = oilcity)

Coefficients:
0il.1s oil.robust
(Intercept) 0.1474 -0.08396
Market 2.8567 0.82888

Residual Scale Estimates:

oil.1s : 0.4867 on 127 degrees of freedom
oil.robust : 0.1446 on 127 degrees of freedom
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Visualizing
Comparison

Objects
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You can easily plot a compare.fits object to obtain a visual
comparison of least squares and robust fits. To plot the oi1.cmpr
object that we created in the previous section, use the command:

> plot(oil.cmpr)

Make a plot selection (or 0 to exit):

1: A1l

2: Normal QQ-Plots of Residuals

3: Estimated Densities of Residuals
4. Residuals vs Fitted Values

5: Response vs Fitted Values
Selection:

The normal qqplot and estimated densities for 0i1.cmpr are shown in
Figure 11.4, as generated by the following commands:

> par(mfrow = ¢c(2,1))
> plot(oil.cmpr, which.plot
> plot(oil.cmpr, which.plot

1)
2)

The densities of residuals are computed using a kernel density
estimator. In a “good” model fit, the probability density estimates for
the residuals are centered at zero and are as narrow as possible.
Figure 11.4 shows that the density for the 0i1.1s object is shifted to
the left of the origin, whereas the density for oi1.robust is well-
centered. Furthermore, the outlier in the oilcity data is pushed far
from the mode of the density for the MM-estimator, and thus appears
as a pronounced bump in the plot of the residual density estimates. In
the density plot for the least squares fit, the outlier is not as visible.
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Figure 11.4: Normal qqplots and residual density estimates for the linear fits in 07 1. cmpr.

Statistical A detailed comparison of two model fits, including #values and
P )
Inference from £-values, can be obtained with the summary method for compare.fits

Comparison objects. For example:

Objects > summary(oil.cmpr)

Calls:
0il1.Ts Tm(formula = 0il ~ Market, data = oilcity)
oil.robust TmRobMM(formula = 0il ~ Market, data = oilcity)

Residual Statistics:
Min 1Q Median 3Q Max
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0il.1s -0.6952 -0.17323 -0.05444 0.08407 4.842
oil.robust -0.4566 -0.08875 0.03082 0.10314 5.218

Coefficients:

Value Std. Error t value
.14745 0.07072 2.085
.08396 0.02805 -2.993
.85674 0.73175 3.904
.82888 0.28341 2.925

0il.Ts_(Intercept)
oil.robust_(Intercept) -

0i1.1s_Market

0il.robust_Market

o N O O

Pr(>]t])

0il1.1s_(Intercept) 0.0390860
0oil.robust_(Intercept) 0.0033197
0il.1s_Market 0.0001528
0il.robust_Market 0.0040852

Residual Scale Estimates:
0il.1s : 0.4867 on 127 degrees of freedom
oil.robust : 0.1446 on 127 degrees of freedom

Proportion of variation in response(s) explained by
model(s):

oil.1s : 0.1071
oil.robust : 0.0526

Correlations:
0il.Ts
Market
(Intercept) 0.7955736

oil.robust
Market
(Intercept) 0.8168674

Warning

When the p-values for the tests of bias indicate that the final M-estimates are highly biased
relative to the initial S-estimates, the final M-estimates are not used in a TmRobMM fit. In this case,
the asymptotic approximations for the inference results may not be very good, and you should
thus not trust them.
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ROBUST MODEL SELECTION

Robust F and
Wald Tests

An important part of statistical inference is hypothesis testing. Spotfire
S+ provides two robust tests for determining whether a regression
coefficient is zero: the robust Wald test and the robust F test. To illustrate
how these tests are used, we generate an example data frame
simu.dat with a function called gen.data:

> gen.data <- function(coeff, n = 100, eps = 0.1,
+ sig = 3, snr = 1/20, seed = 837)

+ {

+ #f coeff : 3 x 1 vector of coefficients

+ # eps : the contamination ratio, between 0 and 0.5
+ # sig : standard deviation of most observations

+ 4 snr : signal-to-noise ratio,

+ #f Note : the regressors are generated as: rnorm(n,l),
+ rnorm(n,1)"3, exp(rnorm(n,1)). It also

+ generates an unused vector x4.

set.seed(seed)
x <- cbind(rnorm(n,1), rnorm(n,1)*3, exp(rnorm(n,1)))
ru <- runif(n)
nl <- sum(ru < eps)
u <- numeric(n)
ulru < eps] <- rnorm(nl, sd = sig/snr)
ulru > eps] <- rnorm(n - nl, sd = sig)
data.frame(y = x %*% matrix(coeff, ncol = 1) + u,
x1 = x[,1], x2 = x[,2], x3 = x[,3], x4 = rnorm(n,1))
}

+ + + + + + + + + o+

> simu.dat <- gen.data(1l:3)

The gen.data function creates a data frame with five columns: y, x1,
x2, x3, and x4. The variable y is generated according to the following
equation:

y = b;X; +boXy +b3Xg+U.

349



Chapter 11 Robust Regression

Here b, by, and by are given by the coef argument to gen.data. In

simu.dat, b, = 1, by = 2, and by = 3. The u term in the equation

is sampled from a N(0,3) distribution by default, with 10%
contamination. The x4 column of the resulting data frame is normally
distributed and independent of y, x1, x2, and x3.

First, we model simu.dat using x1, x2, and x3, and x4 as predictor
variables. We use a -1 in the model formula so that an intercept is not
included:

> simu.mm4 <- TmRobMM(y ~ x1+x2+x3+x4-1, data = simu.dat)
> simu.mm4

Final M-estimates.

Call:
TmRobMM(formula =y ~ x1 + x2 + x3 + x4 - 1, data=simu.dat)

Coefficients:
x1 X2 x3 x4
0.6335503 2.048027 3.045304 -0.05288568

Degrees of freedom: 100 total; 96 residual
Residual scale estimate: 3.281144

To test the hypothesis that the coefficient of x4 is actually zero, we fit
another model using only x1, x2, and x3 as predictor variables. We
can then use anova to test the significance of the x4 coefficient:

> simu.mm3 <- update(simu.mm4, .~.-x4)
> anova(simu.mm4, simu.mm3)

Response: y

Terms Df Wald P(>Wald)
1 x1I + x2 +x3 + x4 -1
2 x1l + x2 + x3 -1 1 0.04438085 0.8331466

The p-value is greater than 0.8, which implies that you can accept the
null hypothesis that the fourth coefficient is zero.
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Criterion

Robust Model Selection

The default test used by the anova method for TmRobMM objects is the
robust Wald test, which is based on robust estimates of the
coefficients and covariance matrix. To use the robust F test instead,
specify the optional test argument to anova:

> anova(simu.mm4, simu.mm3, test = "RF")

Response: y

Terms Df RobustF P(>RobustF/fH)
1 x1 + x2 +x3 + x4 -1
2 x1l + x2 + x3 -1 1 0.03375381 0.8507215

This gives a result similar to the one returned by the robust Wald test.

In addition to the robust Wald and F tests, Spotfire S+ provides
Robust Final Prediction Errors (RFPE) as a criterion for model
selection. This criterion is a robust analogue to the classical Final
Prediction Errors (FPE) criterion, and is defined as:

sep[ ")

i=1

where E denotes expectation with respect to both Bl and Y;, the Bl

term is the final M-estimate of B, and © is the scale parameter for the
observations. The y;, X;, and p terms are as defined in the section
Overview of the Robust MM Regression Method. When considering

a variety of models that have different choices of predictor variables,
choose the model with the smallest value of RFPE.

Note that when p(u) = u? , the RFPE criterion reduces to the classical
FPE. It can also be shown that RFPE is asymptotically equivalent to
the robust version of the Akaike Information Criterion (AIC)
proposed by Ronchetti (1985). The section Theoretical Details
provides a technical discussion that supports the use of RFPE.

The RFPE criterion is used as the robust test in the dropl and addl
methods for TmRobMM objects. For example, use of dropl on the fitted
model object simu.mm4 gives the output below.

> dropl(simu.mm4)
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Single term deletions

Model:
y ~x1 +x2 +x3 + x4 -1
Df RFPE
<none> 24.24090
x1 1 24.46507
x2 1 52.19715
x3 1 64.32581

x4 1 23.95741

The model obtained by dropping x4 has a lower RFPE than the
model that includes all four predictor variables. This indicates that
dropping x4 results in a better model.

You can also use the addl function to explore the relevance of
variables. For example, use the following command to investigate
whether x4 helps to predict y in the simu.mm3 model:

> addl(simu.mm3, "x4")

Single term additions

Model:
y ~x1 +x2 +x3 -1
Df RFPE
<none> 24.10179
x4 1 24.38765

As expected, the model without x4 is preferred, since the RFPE
increases when x4 is added.

Warning

When the p-values for the tests of bias indicate that the final M-estimates are highly biased
relative to the initial S-estimates, the final M-estimates are not used in a TmRobMM fit. If this applies

to any of the models considered by dropl and addl, you should not trust the corresponding
RFPE values.
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CONTROLLING OPTIONS FOR ROBUST REGRESSION

Efficiency at
Gaussian
Model

Alternative
Loss Function

This section discusses a few of the most common control parameters
for robust MM regression. Most of the default settings for the
parameters can be changed through the functions
1mRobMM. robust.control and TmRobMM.genetic.control. For details
about parameters that are not discussed in this section, see the online
help files for the two control functions.

If the final M-estimates are returned by TmRobMM, they have a default
asymptotic efficiency of 85% compared with the least squares
estimates, when the errors are normally distributed. In some cases,
you may require an efficiency other than 85%. To change the value of
this control parameter, define the efficiency argument to
TmRobMM. robust.control. For example, the following command
computes a robust MM regression model for the oi1city data with an
efficiency of 95%:

> oil.eff <- TmRobMM(0il ~ Market, data = oilcity,
+ robust.control = 1mRobMM.robust.control(efficiency=0.95))

Note that the coefficients of 0i1.tmp are slightly different than those
of 0i1.robust, which uses the default efficiency of 85%:

> coef(oil.eff)

(Intercept) Market
-0.07398854 0.8491129

As mentioned in the section Overview of the Robust MM Regression
Method, the final M-estimates are based on initial S-estimates of both
the regression coefficients and the scale parameter. Spotfire S+ uses a
loss function to compute initial S-estimates and final M-estimates. Two
different loss functions are available in Spotfire S+: Tukey’s bisquare
function, and the optimal loss function recently discovered by Yohai
and Zamar (1998). Figure 11.5 shows Tukey’s bisquare function in the
left panes and the optimal loss function in the right; the top two
graphs in the figure display the loss functions p and the bottom two

graphs show y = p'. The mathematical forms of these functions can
be found in the section Theoretical Details.
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Figure 11.5: Available loss functions for robust MM regression models.
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The optimal loss function has better combined Gaussian efficiency
and non-Gaussian bias control properties, and is therefore used as the
default in TmRobMM models. You can choose the Tukey bisquare
function instead, or a combination of the two loss functions, by
defining the weight argument to TmRobMM.robust.control
accordingly. For example, the following commands use Tukey’s
bisquare function for the initial S-estimates and the optimal loss
function for the final M-estimates:

> control.lossfun <- TmRobMM.robust.control(
+ weight = c("Bisquare”,"Optimal"), mxr = 100)

> oil.lossfun <- 1TmRobMM(0il ~ Market, data = oilcity,
+ robust.control = control.lossfun)



Confidence
Level of Bias
Test

Controlling Options for Robust Regression

> coef(oil.lTossfun)

(Intercept) Market
-0.08371941 0.8291027

In the control.lossfun definition, we define the mxr parameter to
increase the maximum number of iterations in the refinement step of
the fitting algorithm.

The default level of the test for bias in TmRobMM is 10%. This means
that whenever the p-value of the test is greater than 0.10, the final
M-estimates are returned; otherwise, the initial S-estimates are
returned. To change the level of the test for bias, define the Tevel
argument in the TmRobMM. robust.control function. A higher value of
Tevel rejects the final M-estimates more often, and a lower value
rejects them less often. For example, you can force the fitting
algorithm to return the initial S-estimates by setting 1evel=1, as the
following commands illustrate:

control.s <- 1TmRobMM.robust.control(level = 1)
0il.s <- TmRobMM(0il ~ Market, data = oilcity,
robust.control = control.s)

oil.s

A S VAR V4

Initial S-estimates.

Call:
TmRobMM(formula = 0il ~ Market, data = oilcity,
robust.control control.s)

Coefficients:
(Intercept) Market
-0.06246073 0.8270727

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446265
Warning messages:

Significant test at level 0%. The bias is high, and
inference based on final estimates is not recommended. Use
initial estimates as exploratory tools.
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Note

The above warning is only relevant when you use levels in the range of 1% to 10%.
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Similarly, specifying 1evel=0 forces 1mRobMM to return the final
M-estimates:

> control.mm <- TmRobMM.robust.control(level = 0)
> oil.mm <- TmRobMM(0il ~ Market, data = oilcity,
+ robust.control = control.mm)

If you want to compute the S-estimates only, and do not require the
M-estimates, you can specify the estim argument to
TmRobMM. robust.control as follows:

control.s2 <- 1mRobMM.robust.control(estim = "S")
0il.s2 <- TmRobMM(0i1 ~ Market, data = oilcity,
robust.control = control.s2)

0il.s2

A S VAR V4

Initial S-estimates.

Call:
TmRobMM(formula 0il ~ Market, data = oilcity,
robust.control = control.s2)

Coefficients:
(Intercept) Market
-0.06246073 0.8270727

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446265

Similarly, you can obtain only the final M-estimates if you use
estim="MM".



Resampling
Algorithms
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Sometimes you may want to change the level of the test for bias after
fitting a robust regression model. For this purpose, you can use the
update function and specify a new value with the robust.control
argument. For example, to change the level for 0i1.s to 20%, use the
following command:

> oil.level <- update(oil.s, level = 0.2)
> oil.level

Final M-estimates.

Call:

TmRobMM(formula = 0il ~ Market, data = oilcity,
robust.control = control.s)

Coefficients:
(Intercept) Market
-0.08395796 0.8288795

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1478398

Note that the final M-estimates are now returned. If the formula
argument is missing in the call to update, the function alternates
between the initial S-estimates and final M-estimates.

Spotfire S+ uses one of three resampling schemes to compute initial
S-estimates: random resampling, exhaustive resampling, and a genetic
algorithm. You can choose which scheme to use by specifying the
sampling argument in the TmRobMM.robust.control function. Valid
choices for this control parameter are "Random"”, "Exhaustive" and
"Genetic"; by default, samp1ing="Random". Exhaustive resampling is
recommended only when the sample size is small and there are less
than ten predictor variables.

Random resampling is controlled by two parameters: a random seed
and the number of subsamples to draw. By default, the number of
subsamples is [4.6 - 2P1, where p is the number of explanatory

variables and [ ] denotes the operation of rounding a number to its
closest integer. This number of subsamples works well if there are less
than 13 predictor variables, but it may be too large when there are
more predictors, resulting in unreasonably long computation times.
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To choose a different value for the number of subsamples drawn,
define the optional argument nrep. For example, the following
command computes a robust MM regression model for the oilcity
data using 10 subsamples in the random resampling scheme:

> oil.sample <- TmRobMM(0il1 ~ Market, data = oilcity,
+ nrep = 10)

You can control the seed of the random resampling by specifying the
seed argument to the TmRobMM. robust.control function.

The genetic resampling algorithm is controlled by a list of parameters
defined in the TmRobMM.genetic.control function. If you choose the
genetic resampling algorithm for your robust MM model, you can
specify control parameters by defining the genetic.control
argument in TmRobMM. This optional argument should be a list, and is
usually returned by a call to TmRobMM.genetic.control. To see the
names and default values of the 1mRobMM.genetic.control
arguments, use the following command:

> args(1mRobMM.genetic.control)

function(popsize = NULL, mutate.prob = NULL,
random.n = NULL, births.n NULL, stock Tist(),
maxslen = NULL, stockprob NULL, nkeep 1)

For explanations of these arguments, see the online help files for
1mRobMM.genetic.control and 1tsreg.default.
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THEORETICAL DETAILS

Initial
Estimates

As mentioned in the section Overview of the Robust MM Regression
Method, the minimization algorithm that TmRobMM uses to compute
coefficients can produce many optimal solutions to the objective
function

n T
Zp{)%] (11.1)

Here vy; is the scalar response associated with ith observation, X; is a
p-dimensional vector of independent predictor values, and
3 =By By -o» Bp) represents the coefficients. Spotfire S+ deals with

this issue by computing highly robust initial estimates BO and s’ for
the coefficients and scale parameter, respectively. The initial estimates
are calculated using the S-estimate method introduced by Rousseeuw
and Yohai (1984), as part of an overall computational strategy
proposed by Yohai, Stahel, and Zamar (1991).

The S-estimate approach has as its foundation an M-estimate s of an

unknown scale parameter for the observations. The observations are
assumed to be robustly centered, in that a robust location estimate has

been subtracted from each y; fori = 1, 2, .., n. The M-estimate S is

obtained by solving the equation

% nZP(%) =05 (11.2)

i=1

where p is a symmetric, bounded function. It is known that such a

scale estimate has a breakdown point of 0.5 (Huber, 1981), and that
one can find min-max bias robust M-estimates of scale (Martin and
Zamar, 1989 and 1993).
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Loss Functions

360

Consider the following modification of Equation (11.2):

n T
1 p{yi_xi BJ =05 (11.3)

n—p =" $()

For each value of B, we have a corresponding robust scale estimate

$(B). The initial S-estimate is the value [30 that minimizes S(B):

BO = argminﬁg(ﬁ) (11.4)

This presents a second nonlinear optimization problem, one for
which the solution is traditionally found by a random resampling
algorithm followed by a local search, as described in Yohai, Stahel,
and Zamar (1991). Spotfire S+ allows you to use an exhaustive form
of resampling for small problems, or a genetic algorithm in place of

the resampling scheme. Once the initial S-estimate BO is computed,
the The final M-estimate is the local minimum of Equation (11.1) that

. 0
is nearest to 3.

For details on the numerical algorithms implemented in TmRobMM, see
Marazzi (1993).

A robust M-estimate for the coefficients B in a linear model is
obtained by minimizing Equation (11.1). The p in the equation is a
loss function, which is a convex weight function of the residuals; the
derivative of p is usually denoted by . In TmRobMM, two different
weight functions can be used for both the initial S-estimates and the

final M-estimates: Tukey’s bisquare function and the optimal weight
function introduced in Yohai and Zamar (1998).
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Tukey’s bisquare function and its derivative are as follows:
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In these equations, C is a tuning constant. The Yohai and Zamar
optimal function and its derivative are:
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where C is a tuning constant and

|, = -1.944, g, = 1.728, g, = -0.312, g, = 0.01¢,
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See Figure 11.5 for the general shapes of these two loss functions.
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Robust
R-Squared

362

Yohai and Zamar (1998) showed that their loss function above is
optimal in the following sense: the final M-estimate obtained using
this function has a breakdown point of 0.5. In addition, it minimizes
the maximum bias under contamination distributions (locally for
small fractions of contamination), subject to achieving a desired
efficiency when the data are Gaussian.

The Gaussian efficiency of the final M-estimate is controlled by the
choice of tuning constant ¢ in the weight function. As discussed in the
section Controlling Options for Robust Regression, you can specify a
desired Gaussian efficiency with the efficiency argument to
TmRobMM. robust.control. Once a value is chosen, Spotfire S+
automatically adjusts the tuning parameter to achieve the desired
efficiency.

The robust R2 statistic is calculated as follows:

»  Initial S-estimator BO

If an intercept is included in the model, then

2 _ (=g~ (=p)s")’

(n-1Ds;

R ;
where n is the number of observations, p is the number of
predictor variables, and s is the initial S-estimate for the

scale parameter. The S, term is the minimized S(u) from

Equations (11.3) and (11.4), for a regression model that has
only an intercept L.

If an intercept is included in the model, then

2 _ n8(0)’ = (n-p)(s")”
ns(0)*




Robust
Deviance

Theoretical Details

Final M-estimator Bl

If an intercept p is included in the model, then
A Thl
E(yi_u)_z@(yi_xi § ]
_ SO SO
Yi—u
i
S

where y; is the ith response fori = 1, 2, .., n, X; isa

R2

I

p-dimensional vector of predictor values, and s” is the initial

S-estimate for the scale parameter. The p term is the location
M-estimate corresponding to the local minimum of

Yi— K
Qy(w) = E[s_oj
such that
Q,(1) Q)

where [ is the sample median estimate. If an intercept is not

included in the model, replace }1 with 0 in the above formula.

For an M-estimate, the deviance is defined as the optimal value of the

objective function (11.1) on the o scale. That is:

Initial S-estimator [30

For simplicity, we use the notation §(B0) = 5, where S(B) is
from Equations (11.3) and (11.4), so that

D = (5,)°.
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Robust F Test

Robust Wald
Test

Robust FPE
(RFPE)
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»  Final M-estimator Bl

See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986),
where this test is referred to as the tau fest.

See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986).

In 1985, Ronchetti proposed to generalize the Akaike Information
Criterion (AIC) to robust model selection. However, Ronchetti’s
results are subject to certain restrictions: they apply only to
M-estimates with zero breakdown points, and the density of the errors
must have a certain form. Yohai (1997) proposed the following Robust
Final Prediction Errors (RFPE) criterion for model selection, which is
not subject to the same restrictions:

€ A
RFPE = nEp(8)+p2—B (11.5)

Here n is the number of observations, p is the number of predictor
variables, € contains the errors for the model, and & is the scale

parameter for the observations. The A and B terms are

A = Eq?@ B = EVY @

where y = p' is the derivative of the loss function. This criterion is a
robust analogue to the classical Final Prediction Errors (FPE)
criterion.



Breakdown
Points

Theoretical Details

By replacing the expectation with a summation, the first term in
Equation (11.5) can be approximated by

€p(5)- zp() o

i=1
where r; = y; —XiT[.’)1 are the residuals for the model using the final

M-estimates B' for the coefficients. Equation (11.5) can thus be
estimated by

(1L.6)

0o >

< (vi-xB
_ i_A i
RFPE = zp[—SO j +p
i=1

where §, = §(BO) is from Equations (11.3) and (11.4). The A and B
terms are:

1 . r 1 . r

_ ~ B = = Y[~

o ZWQ(SO) 5=4 2V (So)

i:l i=1

>

The approximation on the right-hand side of Equation (11.6) is used
as the RFPE criterion in Spotfire S+.

The breakdown point of a regression estimator is the largest fraction of
data that may be replaced by arbitrarily large values without making
the Euclidean norm of the resulting estimate tend to infinity. The

Euclidean norm HBH of an estimate is defined as follows:

p
I8l* = > pi
i=1
Any estimator with a breakdown point of approximately 1/2 is called
a high breakdown point estimator, and is highly robust.
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To illustrate the concept of breakdown point, consider the simple

problem of estimating location, where the most common estimator is
n

the sample mean Yy :% Zyi . The breakdown point of the mean is
i=1
0, since if any single y; —dvo , then y —vo. On the other hand, the

sample median has breakdown point of approximately 1/2. For
convenience, consider an odd sample size n: it is possible to set
1 = 1/ 2 of the observations to e without the median tending to
Teo,
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OTHER ROBUST REGRESSION TECHNIQUES

Least Trimmed Least trimmed squares (LTS) regression, introduced by Rousseeuw

Squares
Regression

(1984), is a highly robust method for fitting a linear regression model.

The LTS estimate |15 for the coefficients in a linear model
minimizes the following objective function:

ZF?B : (11.7)

i=1

where r;B is the ith ordered residual. The value of q is often set to be

slightly larger than half of n, the number of observations in the

model. In contrast, the ordinary least squares estimate Bs for the
regression coefficients minimizes the sum of all squared residuals:

n

ZF?B : (11.8)

i=1

Thus, LTS is equivalent to ordering the residuals from a least squares
fit, trimming the observations that correspond to the largest residuals,
and then computing a least squares regression model for the
remaining observations. The ordinary least squares estimator lacks

robustness because a single observation can cause s to take on any

value. The same is true of M-estimators, which are discussed in the
section M-Estimates of Regression.

To compute a least trimmed squares regression model, use the 1tsreg
function. For the stack.df data introduced in the section Visualizing
and Summarizing Robust Fits, we compute LTS estimates as follows:

> stack.lts <- Ttsreg(Loss ~ ., data = stack.df)
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> stack.1ts

Method:
Least Trimmed Squares Robust Regression.

Call:
ltsreg.formula(Loss ~ ., data = stack.df)

Coefficients:
Intercept Air.Flow Water.Temp Acid.Conc.
-43.6607 0.9185 0.5242 -0.0623

Scale estimate of residuals: 2.05
Total number of observations: 21

Number of observations that determine the LTS estimate: 18

Comparing the LTS coefficients to those for an ordinary least squares
fit, we see that the robust values are noticeably different:

> stack.Im <- Tm(Loss ~ ., data = stack.df)
> coef(stack.1m)

(Intercept) Air.Flow Water.Temp Acid.Conc.
-39.91967 0.7156402 1.295286 -0.1521225

> coef(stack.1ts)

Intercept Air Flow Water Temp Acid Conc.
-43.66066 0.9185217 0.5241657 -0.0622979

Plots of the residuals versus fitted values for the two fits, shown in
Figure 11.6, are also revealing:

> par(mfrow = c(1,2))

> plot(fitted(stack.Im), resid(stack.Im),
+ ylim = range(resid(stack.Tts)))

> plot(fitted(stack.1ts), resid(stack.1ts))
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resid(stack.Im)
resid(stack Its)

10 20 30 40 5 10 15 20 25 30 35

fitted(stack.Im) fitted(stack.Its)

Figure 11.6: Residual plots for least squares (left) and least trimmed squares (right)
regression models.

The plot for the least squares fit shows the residuals scattered with no
apparent pattern. In contrast, the plot for the LTS fit shows four clear
outliers: three at the top of the graph and one at the bottom.

If q is the right fraction of n, the least trimmed squares estimator has
the attractive robustness property that its breakdown point is
approximately 1/2. Thus, the LTS estimator is a high-breakdown
point regression estimator. The high breakdown point means that the

values XiTBLTS ,i =1, ... n, fit the bulk of the data well, even when
the bulk consists of only a litle more than 50% of the data.

Correspondingly, the residuals riBLTS = yi—X;rBLTS reveal the

outliers quite clearly. Least squares residuals and M-estimate residuals
often fail to reveal problems in the data, as discussed in the section
Comparison of Least Squares, Least Trimmed Squares, and M-
Estimates.
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Least Median
Squares
Regression

Least Absolute
Deviation
Regression
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Similar to least trimmed squares regression is a method called least
median of squares (LMS). Rather than minimize a sum of the squared
residuals as LTS does, LMS minimizes the median of the squared
residuals (Rousseeuw 1984). In Spotfire S+, the Tmsreg function
performs least median of squares regression.

LMS regression has a high breakdown point of almost 50%. That is,
almost half of the data can be corrupted in an arbitrary fashion, and
the estimates obtained by LMS continue to model the majority of the
data well. However, least median of squares is statistically very
inefficient. It is due to this inefficiency that we recommend the
1mRobMM and 1tsreg functions over Tmsreg.

The idea of least absolute deviation (L1) regression is actually older than
that of least squares, but until the development of high-speed
computers, it was too cumbersome to have wide applicability. As its

name implies, L1 regression finds the coefficients estimate 1 that
minimizes the sum of the absolute values of the residuals:

n

Srif| -
i=1

In Spotfire S+, the function 11fit is used to compute a least absolute
deviation regression model (note that the second character in the
function name is the number “1”, not the letter “I”). As an example,
consider again the stack loss data introduced in the section
Visualizing and Summarizing Robust Fits. We construct an Ll
regression model using 11fit as follows:

> stack.11 <- T1fit(stack.x, stack.loss)
> stack.11

$coefficients:
Intercept Air Flow Water Temp Acid Conc.
-39.68986 0.8318838 0.5739132 -0.06086949
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$residuals:

[1] 5.06087255 0.00000000 5.42898655 7.63478327
[5] -1.21739066 -1.79130375 -1.00000000 0.00000000
[9] -1.46376956 -0.02028821 0.52753741 0.04058089
[13] -2.89854980 -1.80289757 1.18260884 0.00000000
[17] -0.42608649 0.00000000 0.48695672 1.61739194

[21] -9.48115635

Plots of the residuals against the fitted values for statck.11 show the
outliers more clearly than the least squares regression model, but not
as clearly as 1tsreg does in Figure 11.6:

> par(mfrow = ¢(1,2))

> plot(fitted(stack.Im), resid(stack.Im),

+ ylim = range(resid(stack.11)))

> plot(stack.loss - resid(stack.11), resid(stack.11))

The resulting plot is shown in Figure 11.7.

resid(stack.Im)
resid(stack.I1)

-10
10

10 20 30 40 10 15 20 25 30 35

fitted(stack.Im) stack.loss - resid(stack.I1)

Figure 11.7: Residual plots for least squares (left) and least absolute deviation
(right) regression models.
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M-Estimates of The M-estimator of regression was first introduced by Huber in 1973. For

Regression

372

a given p function, an M-estimate of regression By minimizes the

objective function:

n

ZP(%)- (11.9)

i=1

. 2 .
Least squares regression corresponds to p(x) = X~ and L1 regression

corresponds to p(x) = |X|. Generally, the value of BM is dependent

on the value of &, which is usually unknown.

Although M-estimates are protected against wild values in the
response variable, they are sensitive to high leverage points, which have
very different X values compared to the other data points in a model.
In particular, a typographical error in an explanatory variable can
have a dramatic affect on an M-estimate, while least trimmed squares
handles this situation easily. One advantage of M-estimates is that
they can be computed in much less time than LTS or other high-
breakdown point estimators. For more discussion about high leverage
points, see the section Comparison of Least Squares, Least Trimmed
Squares, and M-Estimates.

In Spotfire S+, you can calculate M-estimates of regression using the
rreg function, which computes iteratively reweighted least-squares fits. In
the fitting algorithm, an initial model is calculated using traditional
weighted least squares by default. The algorithm computes a new set
of weights based on the results of the initial fit. The new weights are
then used in another weighted least squares fit, and so on. Spotfire S+
continues iteratively until some convergence criteria are satisfied or a
specified maximum number of iterations is reached.

To use the rreg function, the only required arguments are x, the
vector or matrix of explanatory variables, and y, the vector response.
For example, a typical call to rreg using the stack loss data is:

> stack.M <- rreg(stack.x, stack.loss)
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> stack.M

$coefficients:
(Intercept) Air Flow Water Temp Acid Conc.
-42.07438 0.8978265 0.731816 -0.1142602

$residuals:

[1] 2.65838630 -2.45587390  3.72541082 6.78619020
[5] ~-1.75017776 -2.48199378 -1.52824862 -0.52824862
[9] -1.89068795 -0.03142924 0.99691253 0.61446835
[13] -2.80290885 -1.27786270 2.17952419 0.83674360
[17] -0.49471517 0.30510621 0.68755039 1.52911203

[21] -10.01211661

$fitted.values:
[1] 39.341614 39.455874 33.274589 21.213810 19.750178
[6] 20.481994 20.528249 20.528249 16.890688 14.031429
[11] 13.003087 12.385532 13.802909 13.277863 5.820476
[16] 6.163256 8.494715 7.694894 8.312450 13.470888
[21] 25.012117

$w:
[1] 0.87721539 0.91831885 0.77235329 0.41742415 0.95387576
[6] 0.90178786 0.95897484 0.99398847 0.93525890 0.99958817
[11] 0.97640677 0.98691782 0.89529949 0.98052477 0.92540436
[16] 0.98897286 0.99387986 0.99933718 0.99574820 0.96320721
[21] 0.07204303
$int:
[11 T
$conv:

[1] 0.175777921 0.036317063 0.021733577 0.013181419
[5] 0.007426725 0.003341872 0.093998053 0.055029889

$status:
[1] "converged"

You can control the choice of p by specifying a weight function as the
method argument to rreg. Currently, there are eleven weight
functions built into Spotfire S+, and there is not yet a consensus on
which method is the “best.” See the rreg help file for details on each
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of the weight functions available. The default weight function uses
Huber’s function until convergence, and then a bisquare function for
two more iterations. Huber’s function is defined as:

1 abs(x) <c
p(x) = c
m abs(X) >C

where C is a tuning constant. The bisquare function implemented in

rreg is:
p(X) = (1_@2)2 X<¢
0

Here again, C is a tuning parameter.

The following call to rreg defines a simple weight function for the

stack loss data that corresponds to the least squares choice p(x) = X

> stack.MLS <- rreg(stack.x, stack.loss,
+ method = function(u) 2*abs(u), iter = 100)

Warning messages:
failed to converge in 100 steps

> coef(stack.MLS)

(Intercept) Air Flow Water Temp Acid Conc.
-39.68049 0.7166834  1.298541 -0.156553

> coef(stack.1m)

(Intercept) Air.Flow Water.Temp Acid.Conc.
-39.91967 0.7156402 1.295286 -0.1521225



Other Robust Regression Techniques

Comparison of Plots of residuals are often used to reveal outliers in linear models. As
discussed in the section Least Trimmed Squares Regression, LTS is an
robust method that isolates outliers quite clearly in plots. However,
residuals from least squares and M-estimator regression models often
fail to reveal problems in the data. We illustrate this point with a
contrived example.

Least Squares,
Least Trimmed
Squares, and
M-Estimates

First, we construct an artificial data set with sixty percent of the data

scattered about the line y = X, and the remaining forty percent in an

outlying cluster centered at (6,2).

i

vV VvV V VvV

>

set

set.

x30
e30
y30
x20
y20

the seed to reproduce this example
seed(14)

<- runif(30, mean = 0.5, sd = 4.5)
<- rnorm(30, mean = 0, sd = 0.2)
<- 2 + x30 + e30

<- rnorm(20, mean = 6, sd = 0.5)
<- rnorm(20, mean = 2, sd = 0.5)

> x <- ¢(x30, x20)
>y <- c(y30, y20)

We plot the data, and then fit three different regression lines: the
ordinary least squares line, an M-estimate line, and the least trimmed
squared line.

VvV VvV V V VvV

>

plot(x, y)
abline(Im(y ~ x))
text(5, 3.4, "LS™)
abline(rreg(x, y))
text(4, 3.2, "M")
abline(ltsreg(x, y))
text(4, 6.5, "LTS™)

The resulting plot is shown in Figure 11.8. Note that all three
regression lines are influenced by the leverage points in the outlying
cluster.
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Figure 11.8: Least trimmed squares, least squares, and M-estimates regression. Note that the outlying cluster of
leverage points influences all three fits.

376

The 1tsreg function has a quan argument that allows you to specify
the number of residuals included in the least trimmed squares
calculations. The default value of quan includes approximately 90% of
the data points. However, we can change this value to include only a
little more than 50% of the data, since LTS regression has a

breakdown point of nearly 1/ 2. In the commands below, we use
about 60% of the data in the LTS fit:

plot(x, y)

abTine(Im(y ~ x))

text(5, 3.4, "LS™)

abline(rreg(x, y))

text(4, 3.2, "M™)

abline(ltsreg(x, y, quan = floor(0.6*Tength(x))))
text(3.7, 6.0, "LTS™)

VvV VvV V V VYV YV



Other Robust Regression Techniques

The result is shown in Figure 11.9. Note that the outlying cluster of
points pulls both the ordinary least squares line and the M-estimate
away from the bulk of the data. Neither of these two fitting methods is
robust to leverage points (i.e., outliers in the x direction). The LTS line
recovers the linear structure in the bulk of the data and essentially
ignores the outlying cluster. In higher dimensions, such outlying
clusters are extremely hard to identify using classical regression
techniques, which makes least trimmed squares an attractive robust
method.

Figure 11.9: Least trimmed squares regression, as compared to least squares and
M-estimates regression.
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380

Least squares estimation of regression coefficients for linear models
dates back to the early nineteenth century. It met with immediate
success as a simple way of mathematically summarizing relationships
between observed variables of real phenomena. It quickly became
and remains one of the most widely used statistical methods of
practicing statisticians and scientific researchers.

Because of the simplicity, elegance, and widespread use of the linear
model, researchers and statisticians have tried to adapt its
methodology to different data configurations. For example, it should
be possible to relate a categorical response (or some transformation of
it) to a set of predictor variables, similar to the role a continuous
response takes in the linear model. Although conceptually plausible,
the development of regression models for categorical responses
lacked solid theoretical foundation until the introduction of the

generalized linear model by Nelder and Wedderburn (1972).

This chapter focuses on generalized linear models and generalized
additive models, as they apply to categorical responses. In particular,
we focus on logistic, probit, and Poisson regressions. We also include
a brief discussion on the quasi-likelihood method, which fits models
when an exact likelihood cannot be specified.



Generalized Linear Models

GENERALIZED LINEAR MODELS

The linear model discussed in Chapter 10, Regression and Smoothing
for Continuous Response Data, is a special case of the generalized
linear model. A linear model provides a way of estimating the

response variable Y, conditional on a linear function of the values

K, X9, .., X, of some set of predictors variables, X;, Xo, .., X

P
Mathematically, we write this as:

P

p
E(Y[X)= By + ZBiXi- (12.1)

i=1

For the linear model, the variance of Y is assumed to be constant, and
is denoted by var(Y) = g .

A generalized linear model (GLM) provides a way of estimating a
function of the mean response as a linear combination of some set of
predictors. This is written as:

p

gECY[X) = g(w) = Bo+ Y Bix; = nX) . (12.2)

i=1

The function of the mean response, g(u), is called the /ink function,
and the linear function of the predictors, 1(X), is called the linear
predictor. For the generalized linear model, the variance of Y may be a

function of the mean response W:

var(Y) = OV(n) .

To compute generalized linear models in TIBCO Spotfire S+, we can
use the g1m function.
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Three special cases of generalized linear models are the logistic,
probit, and Poisson regressions. Logistic regression models data in
which the response variable is categorical and follows a binomial
distribution. To do a logistic regression in Spotfire S+, we declare the
binomial family in gTm. This uses the logit link function

9(p) = logit(p) = log .
-p
and the variance function defined by
var(Y) = (I)L .
l-p

Here, p is the probability of an event occurring, and corresponds to
the mean response of a binary (0-1) variable. In logistic regression, we
model the probability of some event occurring as a linear function of
a set of predictors. The most common examples of logistic response
variables include the presence/absence of AIDS, the presence/
absence of a plant species in a vegetation sample, and the failure/non-
failure of a electronic component in a radio.

Like logistic regression, probit regression models data in which the
response variable follows a binomial distribution. It describes the
probability of some event occurring as a linear function of predictors,
and therefore uses the same variance function as logistic models:

var(Y) = ¢1L_p.

However, probit regression uses the probit link function

ap) = F'(p),

where F is the Gaussian cumulative distribution function, and F s
its inverse. To do a probit regression in Spotfire S+, we declare the
binomial(1ink=probit) family in gIm. This kind of regression is
popular in bioassay problems.
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Poisson regression models data in which the response variable
represents counts. To do a Poisson regression in Spotfire S+, we
declare the poisson family in g1m. This uses the loglink function

g(w) = log(w,

and the variance function defined by

var(Y) = ¢ou.

The Poisson family is useful for modeling count data that typically
follows a Poisson distribution. Common examples include tables of
rates, in which the rate of a particular event is classified according to a
number of categorical predictors. The example we present in the
section Poisson Regression models the number of soldering skips as a
function of various controlled factors in a solder experiment.

Usually, ¢ is fixed to be 1 in the variance function of a generalized

linear model. When we cannot assume that ¢ = 1, we must use the
quasi family in g1m for quasi-likelihood estimation. This is the case of
over- or under-dispersion, as discussed in McCullagh and Nelder
(1989). The quasi-likelihood family allows us to estimate the
parameters in a model without specifying the underlying distribution
function. In this case, the link and variance functions are all that are
used to fit the model. Once these are known, the same iterative
procedure used for fitting the other families can be used to estimate
the model parameters. For more details, see Chambers and Hastie

(1992) and McCullagh and Nelder (1989).

Other families are available in g1m for modeling various kinds of data
as linear functions of predictors. For example, normal and inverse
normal distributions are specified with the gaussian and
inverse.gaussian families. Table 12.1 lists the distribution families
available for use with the g1m function.

383



Chapter 12 Generalizing the Linear Model

384

Table 12.1: Link and variance functions for the generalized linear and generalized
additive models.

Distribution Family Link Variance
Normal/Gaussian | gaussian u 1
Binomial binomial log(W/(1-w) | w(1-w/n
Poisson poisson log (W) n
Gamma gamma /p “2
Inverse Normal/ inverse.gaussian I/MQ HB
Gaussian

Quasi quasi g(w V()

Each of these distributions belongs to the one-parameter exponential
family of distributions. The link function for each family listed in
Table 12.1 is referred to as the canonical link, because it relates the
canonical parameter of the distribution family to the linear predictor,
N X) . For more details on the parameterization of these distributions,

see McCullagh and Nelder (1989).

The estimates of regression parameters in a generalized linear model
are maximum likelihood estimates, produced by iteratively

reweighted least-squares (IRLS). Essentially, the log-likelihood I(B, y)
is maximized by solving the score equations:

NP, y)/ ap = C (12.3)

Since the score equations are nonlinear in f, they are solved

iteratively. For more details, see Chambers and Hastie (1992) or
McCullagh and Nelder (1989).



Generalized Additive Models

GENERALIZED ADDITIVE MODELS

The section Generalized Linear Models discusses an extension of
linear models to data with error distributions other than normal
(Gaussian). By using the g1m function, we can fit data with Gaussian,
binomial, Poisson, gamma, or inverse Gaussian errors. This
dramatically broadens the kind of data for which we can build
regression models.

The primary restriction of a GLM is the fact that the linear predictor
Nnx) is still a linear function of the parameters in the model. The
generalized additive model (GAM) extends the generalized linear
model by fitting nonparametric functions to estimate relationships
between the response and the predictors. The nonparametric
functions are estimated from the data using smoothing operations. To
compute generalized additive models in Spotfire S+, we can use the
gam function. Because GLMs are a special instance of GAMs, we can
fit genearlized linear models using the gam function as well.

The form of a generalized additive model is:

p
g(E(Y[x)) = g(w) = a+ Y fi(x) = nx), (12.4)

i=1

where g(p) is the link function and o is a constant intercept term. In
Equation (12.4), f; corresponds to the nonparametric function
describing the relationship between the transformed mean response

g(u) and the ith predictor. In this context, 1(X) is referred to as the

additive predictor, and is entirely analogous to the /inear predictor of a
GLM as defined in Equation (12.2). As for the generalized linear

model, the variance of Y in a GAM may be function of the mean

response W

var(Y) = oV ().
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All of the distribution families listed in Table 12.1 are available for
generalized additive models. Thus fully nonparametric, nonlinear
additive regression models can be fit to binomial data (logistic and
probit regression) and count data (Poisson regression), as well as to
data with error distributions given by the other families in Table 12.1.

Two functions that are useful for fitting a gam are s and To. Both of
these functions are used to fit smooth relationships between the
transformed response and the predictors. The s function fits cubic
B-splines to estimate the smooth, and 1o fits a locally weighted least-
squares regression to estimate the smooth. For more details on using
these functions, see their help files.



Logistic Regression
LOGISTIC REGRESSION

To fit a logistic regression model, use either the g1m function or the
gam function with a formula to specify the model, and set the family
argument to binomial. As an example, consider the built-in data
frame kyphosis. A summary of the data frame produces the
following:

> attach(kyphosis)
> summary(kyphosis)

Kyphosis Age Number Start
absent :64 Min. : 1.00 Min. : 2.000 Min. : 1.00
present:17 1st Qu.: 26.00 1st Qu.: 3.000 1st Qu.: 9.00

Median : 87.00 Median : 4.000 Median :13.00

Mean : 83.65 Mean : 4.049 Mean :11.49
3rd Qu.:130.00 3rd Qu.: 5.000 3rd Qu.:16.00
Max. :206.00 Max. :10.000 Max. :18.00

The list below describes the four variables in the kyphosis data set.

*  Kyphosis: a binary variable indicating the presence/absence
of a postoperative spinal deformity called Kyphosis.

* Age: the age of the child in months.

* Number: the number of vertebrae involved in the spinal
operation.

* Start: the beginning of the range of the vertebrae involved in
the operation.

A convenient way of examining the bivariate relationship between
each predictor and the binary response, Kyphosis, is with a set of
boxplots produced by plot.factor:

> par(mfrow = c(1,3), cex = 0.7)
> plot.factor(kyphosis)

Setting the mfrow parameter to c(1,3) produces three plots in a row.
The character expansion is set to 0.7 times the normal size using the
cex parameter of the par function. Figure 12.1 displays the result.
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Age
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Number

absent present

Kyphosis
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10

absent present

Kyphosis

absent present

Kyphosis

Figure 12.1: Boxplots of the predictors of kyphosis versus Kyphosis.

Both Start and Number show strong location shifts with respect to the
presence or absence of Kyphosis. The Age variable does not show
such a shift in location.

The logistic model we start with relates the probability of developing
Kyphosis to the three predictor variables, Age, Number, and Start. We
fit the model using g1m as follows:

> kyph.gIim.all <- gIm(Kyphosis ~ Age + Number + Start,

+ family = binomial, data =

kyphosis)

The summary function produces a summary of the resulting fit:

> summary(kyph.glm.all)

Call: glm
family =

(formula
binomial,

= Kyphosis ~ Age + Number + Start,

data

Deviance Residuals:

Min
-2.312363

Coefficie

-0.5484308

nts:

1Q
-0.

Value

(Intercept)
Age

Number
Start

-2.03693225
0.01093048
0.41060098

-0.20651000

= kyphosis)

Median
3631876

Std. Error
1.44918287
0.00644419
0.22478659
0.06768504

3Q

t value
-1.405573
1.696175
1.826626
-3.051043

Max

-0.1658653 2.16133
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(Dispersion Parameter for Binomial family taken to be 1 )
Null Deviance: 83.23447 on 80 degrees of freedom
Residual Deviance: 61.37993 on 77 degrees of freedom
Number of Fisher Scoring Iterations: 5

Correlation of Coefficients:
(Intercept) Age Number
Age -0.4633715
Number -0.8480574 0.2321004
Start -0.3784028 -0.2849547 0.1107516

The summary includes:
1. areplica of the call that generated the fit,

2. asummary of the deviance residuals (we discuss residuals
later in this chapter),

3. atable of estimated regression coefficients, their standard
errors, and the partial #test of their significance,

4. estimates of the null and residual deviances, and
5. a correlation matrix of the coefficient estimates.

The partial #tests indicate that Start is important even after adjusting
for Age and Number, but they provide little information on the other
two variables.

You can produce an analysis of deviance for the sequential addition
of each variable by using the anova function, specifying the chi-square
test to test for differences between models. The command below
shows this test for the kyph.gim.al1 model object.

> anova(kyph.glm.all, test = "Chi")

Analysis of Deviance Table
Binomial model
Response: Kyphosis

Terms added sequentially (first to last)
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Df Deviance Resid. Df Resid. Dev Pr(Chi)

NULL 80  83.23447

Age 1 1.30198 79  81.93249 0.2538510
Number 1 10.30593 78 71.62656 0.0013260
Start 1 10.24663 77  61.37993 0.0013693

Here we see that Number is important after adjusting for Age. We
already know that Number loses its importance after adjusting for Age
and Start. In addition, Age does not appear to be important as a
linear predictor.

You can examine the bivariate relationships between the probability
of Kyphosis and each of the predictors by fitting a “null” model and
then adding each of the terms, one at a time. The null model in this
example has a single intercept term, and is specified with the formula
Kyphosis ~ 1:

> kyph.gIm.null <- glm(Kyphosis ~ 1, family = binomial,
+ data = kyphosis)
> addl(kyph.glm.null, ~ . + Age + Number + Start)

Single term additions

Model: Kyphosis ~ 1

Df Sum of Sq RSS Cp
<none> 81.00000 83.02500
Age 1 1.29546 79.70454 83.75454
Number 1 10.55222 70.44778 74.49778
Start 1 16.10805 64.89195 68.94195

The Cp statistic is used to compare models that are not nested. A small
Cp value corresponds to a better model, in the sense of a smaller
residual deviance penalized by the number of parameters that are
estimated in fitting the model.

From the above analysis, Start is clearly the best single variable to
use in a linear model. These statistical conclusions, however, should
be verified by looking at graphical displays of the fitted values and
residuals. The plot method for generalized linear models is called
plot.glm, and produces four diagnostic plots:

1. a plot of deviance residuals versus the fitted values,

2. aplot of the square root of the absolute deviance residuals
versus the linear predictor values,
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3. aplot of the response versus the fitted values, and
4. anormal quantile plot of the Pearson residuals.

This set of plots is similar to those produced by the plot method for 1m
objects.

Systematic curvature in the residual plots might be indicative of
problems in the choice of link, the wrong scale for one of the
predictors, or omission of a quadratic term in a predictor. Large
residuals can also be detected in these plots, and may be indicative of
outlying observations that need to be removed from the analysis. The
plot of the absolute residuals against predicted values gives a visual
check on the adequacy of the assumed variance function. The normal
quantile plot is useful in detecting extreme observations deviating
from a general trend. However, one should exercise caution in not
over-interpreting the shape of this plot, which is not necessarily of
interest in the nonlinear context.

Figure 12.2 displays the four plots for the model involving all three
predictor variables: Age, Number, and Start. The plots are produced
with the following commands:

> par(mfrow = c(2,2))
> plot(kyph.gim.al1)
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Figure 12.2: Plots of the generalized linear model of Kyphosis predicted by Age,
Start, and Number.

Residual plots are not useful for binary data such as Kyphosis,
because all of the points lie on one of two curves depending on
whether the response is 0 or 1. A more useful diagnostic plot is
produced by the plot.gam function. By default, plot.gam plots the
estimated relationship between the individual fitted terms and each of
the corresponding predictors. You can request that partial residuals
be added to the plot by specifying the argument resid=T. The scale
argument can be used to keep all of the plots on the same scale for
ease of comparison. Figure 12.3 is produced with the following
commands:

> par(mfrow = c(1,3))
> plot.gam(kyph.gIim.all, resid = T, scale = 6)
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Age
Number
Start

0 100 200 2 4 6 8 10 0 5 10

Age Number Start

Figure 12.3: Additional plots of the generalized linear model of Kyphosis
predicted by Age, Number, and Start.

These plots give a quick assessment of how well the model fits the
data by examining the fit of each term in the formula. The plots are of
the adjusted relationship for each predictor, versus each predictor.
When the relationship is linear, the label on the vertical axis reduces
to the variable name. We will see the utility of this plot method and
the reason for the labels in the next section, where we plot additive
models produced by gam.

Both plot.gim and plot.gam produce multiple plots. You can,
however, choose which plots you look at by using the argument
ask=T. This option produces a menu of available plots from which
you select the number of the plot that you would like to see. For
example, here is the menu of default GLM plots:

> plot(kyph.glm.all, ask = T)

Make a plot selection (or 0 to exit):

1: plot: ATl

2: plot: Residuals vs Fitted Values

3: plot: Sqrt of abs(Residuals) vs Predictions
4: plot: Response vs Fitted Values

5: plot: Normal QQplot of Std. Residuals
Selection:
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So far we have examined only [linear relationships between the
predictors and the probability of developing Kyphosis. We can assess
the validity of the linear assumption by fitting an additive model with
relationships estimated by smoothing operations, and then comparing
it to the linear fit. We use the gam function to fit an additive model as
follows:

> kyph.gam.all <-
+ gam(Kyphosis ~ s(Age) + s(Number) + s(Start),
+ family = binomial, data = kyphosis)

Including each variable as an argument to the s function instructs gam
to estimate the “smoothed” relationships with each predictor by using
cubic B-splines. Alternatively, we can use the 1o function for local
regression smoothing. A summary of the fit is:

> summary(kyph.gam.all)

Call: gam(formula = Kyphosis ~ s(Age) +s(Number)+ s(Start),

family = binomial, data = kyphosis)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.351358 -0.4439636 -0.1666238 -0.01061843 2.10851

(Dispersion Parameter for Binomial family taken to be 1 )
Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 40.75732 on 68.1913 degrees of freedom

Number of Local Scoring Iterations: 7

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)
(Intercept) 1

s(Age) 1 2.9 5.782245 0.1161106
s(Number) 1 3.0 5.649706 0.1289318
s(Start) 1 2.9 5.802950 0.1139286
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The summary of a gam fit is similar to the summary of a gim fit. One
noticeable difference, however, is in the analysis of deviance table.
For an additive fit, the tests correspond to approximate partial tests for
the importance of the smooth for each term in the model. These tests
are typically used to screen variables for inclusion in the model. For a
single-variable model, this is equivalent to testing for a difference
between a linear fit and a smooth fit that includes both linear and
smooth terms. The approximate nature of the partial tests is discussed
in detail in Hastie and Tibshirani (1990).

Since Start is the best single variable to use in the Kyphosis model,
we fit a base GAM with a smooth of Start. For comparison, we fit
two additional models that build on the base model: one with a
smooth of the Age variable and one with a smooth of the Number
variable.

> kyph.gam.start <- gam(Kyphosis ~ s(Start),
+ family = binomial, data = kyphosis)

> kyph.gam.start.age <-
+ gam(Kyphosis ~ s(Start) + s(Age),
+ family = binomial, data kyphosis)

> kyph.gam.start.number <-
+ gam(Kyphosis ~ s(Start) + s(Number),
+ family = binomial, data = kyphosis)

We produce the following analysis of deviance tables:
> anova(kyph.gam.start, kyph.gam.start.age, test = "Chi")

Analysis of Deviance Table
Response: Kyphosis

Terms Resid. Df Resid. Dev

1 s(Start) 76.24543 59.11262
2 s(Start) + s(Age) 72.09458 48.41713
Test Df Deviance Pr(Chi)
1
2 +s(Age) 4.150842 10.69548 0.0336071
> anova(kyph.gam.start, kyph.gam.start.number,
+ test = "Chi")
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Analysis of Deviance Table

Response: Kyphosis

Terms Res.Df Res.Dev

1 s(Start) 76.24543 59.11262
2 s(Start)+s(Number) 72.18047 54.17895

Test Df Deviance Pr(Chi)
1

2 +s(Number) 4.064954 4.933668 0.3023856

The indication is that Age is important in the model even with Start
included, whereas Number is not important under the same conditions.

With the following commands, we plot the fit that includes the Age
and Start variables, adding partial residuals and maintaining the
same scale for all figures:

> par(mfrow = c(2,2))
> plot(kyph.gam.start.age, resid = T, scale = 8)

The result is displayed in the top two plots of Figure 12.4. With the
following command, we plot the fit and add pointwise confidence
intervals:

> plot(kyph.gam.start.age, se = T, scale = 10)

The result is displayed in the bottom two plots of Figure 12.4. Notice
the labels on the vertical axes, which reflect the smoothing operation
included in the modeling.
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Figure 12.4: The partial fits for the generalized additive logistic regression model of

Kyphosis with Age and Start as predictors.

The summary of the additive fit with smooths of Age and Start
appears as follows:

> summary(kyph.gam.start.age)

Call:

gam(formula =
binomial,

family

data =

kyphosis)

Kyphosis ~ s(Start) + s(Age),
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Deviance Residuals:
Min 1Q Median 3Q Max

-1.694389 -0.4212112 -0.1930565 -0.02753535 2.087434

(Dispersion Parameter for Binomial family taken to be 1 )
Null Deviance: 83.23447 on 80 degrees of freedom
Residual Deviance: 48.41713 on 72.09458 degrees of freedom
Number of Local Scoring Iterations: 6
DF for Terms and Chi-squares for Nonparametric Effects
Df Npar Df Npar Chisq P(Chi)

(Intercept) 1

s(Start) 1
s(Age) 1

7.729677 0.0497712
6.100143 0.1039656

w N
[e> V)

Returning to The plots displayed in Figure 12.4 suggest a quadratic relationship for
the Linear Age and a piecewise linear relationship for Start. We return to a
Model generalized linear model to fit these relationships instead of relying
ode on the more complicated additive models. In general, it is best to fit
relationships with a linear model if possible, as it results in a simpler

model without losing too much precision in predicting the response.

For Age, we fit a second degree polynomial. For Start, recall that its
values indicate the beginning of the range of the vertebrae involved
in the operation. Values less than or equal to 12 correspond to the
thoracic region of the spine, and values greater than 12 correspond to
the lumbar region. From Figure 12.4, we see that the relationship for
Start is fairly flat for values approximately less than or equal to 12,
and then drops off linearly for values greater than 12. Because of this,
we try fitting a linear model with the term I((Start -
12) * (Start > 12)):

> kyph.glm.istart.age2 <-
+ glm(Kyphosis ~ poly(Age,2) + I((Start-12) * (Start>12)),
+ family = binomial, data = kyphosis)
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The I function is used here to prevent the "*" from being used for
factor expansion in the formula sense. Figure 12.5 displays the
resulting fit, along with the partial residuals and pointwise confidence
intervals. To generate these plots, we use the plot.gam function in the
same way that we did for Figure 12.4:

> par(mfrow = c(2,2))
> plot.gam(kyph.glm.istart.age2, resid = T, scale = 8)
> plot.gam(kyph.glm.istart.age2, se = T, scale = 10)
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Figure 12.5: The partial fits for the generalized linear logistic regression model of
Kyphosis with quadratic fit for Age and piecewise linear fit for Start.
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The summary of the fit follows:
> summary(kyph.gIim.istart.age?2)

Call: glm(formula = Kyphosis ~ poly(Age, 2) +
I((Start - 12) * (Start > 12)), family = binomial,
data = kyphosis)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.42301 -0.5014355 -0.1328078 -0.01416602 2.116452
Coefficients:

Value Std. Error t value

(Intercept) -0.6849607 0.4570976 -1.498500

poly(Age, 2)1 5.7719269 4.1315471 1.397038

poly(Age, 2)2 -10.3247767 4.9540479 -2.084109
I((Start-12)*(Start>12)) -1.3510122 0.5072018 -2.663658

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 83.23447 on 80 degrees of freedom
Residual Deviance: 51.95327 on 77 degrees of freedom
Number of Fisher Scoring Iterations: 6

Correlation of Coefficients:
(Intercept) poly(Age,2)1 poly(Age,2)2
poly(Age, 2)1 -0.1133772
poly(Age, 2)2 0.5625194 0.0130579
I((Start-12)*(Start>12)) -0.3261937 -0.1507199 -0.0325155

Contrasting the summary of the linear fit kyph.gim.istart.age2 with
the additive fit kyph.gam.start.age, we can see the following
important details:

1. The linear fit is more parsimonious. The effective number of
parameters estimated in the linear model is approximately 5
less than for the additive model with smooths.
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2. The residual deviance in the linear fit is not significantly
higher than the residual deviance in the additive fit. The
deviance in the linear fit is only about 3.5 more, even though
the effective number of parameters in the linear model is
lower.

3. With a linear fit, we can produce an analytical expression for
the model, which cannot be done for an additive model with
smooth fits. This is because the coefficients in a linear model
are estimated for a parametric relationship, whereas the
smooths in an additive model are nonparametric estimates. In
general, these nonparametric estimates have no analytical
form and are based on an iterative computer algorithm. This
is an important distinction to consider when choosing
between linear models and additive models with smooth
terms.

Finally, we can use the anova function to verify that there is no
difference between the two models kyph.gim.istart.age2 and
kyph.gam.start.age:

> anova(kyph.glm.istart.age2, kyph.gam.start.age,
+ test = "Chi")

Analysis of Deviance Table

Response: Kyphosis

Terms Res. Df Res. Dev
1 poly(Age,2)+I((Start-12)*(Start>12)) 77.00000 51.95327
2 s(Start) + s(Age) 72.09458 48.41713

Test Df Deviance Pr(Chi)

1
21 vs. 2 4.905415 3.536134 0.6050618
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Legal Forms of The required formula argument to glm is in the same format as most

the Response
Variable

402

other formulas in Spotfire S+, with the response on the left side of a
tilde (~) and the predictor variables on the right. In logistic regression,
however, the response can assume a few different forms:

1. If the response is a logical vector or a two-level factor, it is
treated as a 0/1 binary vector. The zero values correspond to
failures and the ones correspond to successes. This is the form
of the response variable in all of the example kyphosis
models above.

2. If the response is a multilevel factor, Spotfire S+ assumes the
first level codes failures (0) and all of the remaining levels
code successes (1).

3. If the response is a two-column matrix, Spotfire S+ assumes
the first column holds the number of successes for each trial
and the second column holds the number of failures.

4. If the response is a general numeric vector, Spotfire S+
assumes that it holds the proportion of successes. That is, the

ith value in the response vector is3;/ n;, where s; denotes the
number of successes out of n; total trials. In this case, the n;

must be given as weights to the weights argument in g1m.

As an simple example of a two-column response, we tabulate the data
in the Kyphosis variable of the kyphosis data set:

> kyph.table <- table(kyphosis$Kyphosis)
> kyph.mat <- t(as.matrix(kyph.table))
> kyph.mat

absent present
[1,] 64 17

The following call to g1m creates a generalized linear model using the
first column of kyph.mat as the response. Because it is the first column
of the matrix, absent is assumed to be a success in the model:

> kyphl.gIm <- gim(kyph.mat ~ 1, family = binomial)
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> kyphl.gIm

Call:
gIlm(formula = kyph.mat ~ 1, family = binomial)

Coefficients:
(Intercept)
1.32567

Degrees of Freedom: 1 Total; 0 Residual
Residual Deviance: 0

If we use the full vector Kyphosis in a similar call, Spotfire S+
assumes that present is a success in the model. This is because
present is the second level of the factor variable and is therefore
coded to the binary value 1 (success). Likewise, absent is the first
level of Kyphosis, and is therefore coded to 0 (failure):

> levels(kyphosis$Kyphosis)
[1] "absent” "present”

> kyph2.gTm <- gIlm(Kyphosis ~ 1, family = binomial,
+ data = kyphosis)
> kyph2.g1m

Call:
gIlm(formula = Kyphosis ~ 1, family = binomial, data =
kyphosis)

Coefficients:
(Intercept)
-1.32567

Degrees of Freedom: 81 Total; 80 Residual
Residual Deviance: 83.23447

We can rename absent to be the success indicator with the following
command:

> kyph3.gTm <- gIim(Kyphosis=="absent" ~ 1,
+ family = binomial, data = kyphosis)
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PROBIT REGRESSION

404

To fit a probit regression model, use either the g1m function or the gam
function with a formula to specify the model, and set the family
argument to binomial(1link=probit). As an example, consider the
data frame kyphosis. In the previous section, we computed various
logistic regression models for the variables in kyphosis. From our
analysis, we  determined that the best model was
kyph.gIm.istart.age2:

> kyph.gim.istart.age2

Call:

gim(formula = Kyphosis ~ poly(Age, 2) + I((Start - 12) *
(Start > 12)),

family = binomial, data = kyphosis)

Coefficients:
(Intercept) poly(Age, 2)1 poly(Age, 2)2

-0.6849607 5.771927 -10.32478
I((Start - 12) * (Start > 12))
-1.351012

Degrees of Freedom: 81 Total; 77 Residual
Residual Deviance: 51.95327

To compute the same model as a probit regression, use the probit
link function as follows:

> kyph.probit <- gIm(Kyphosis ~ poly(Age, 2) +
+ I((Start - 12) * (Start > 12)),
+ family = binomial(link=probit), data = kyphosis)

> summary (kyph.probit)

Call: gIm(formula = Kyphosis ~ poly(Age, 2) + I((Start - 12)
* (Start > 12)), family = binomial(link = probit), data
= kyphosis)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.413873 -0.5227573 -0.09664452 -0.0005086466 2.090332
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Coefficients:
Value Std. Error
(Intercept) -0.3990572 0.2516421
poly(Age, 2)1 3.4305340 2.2995511
poly(Age, 2)2 -6.1003327 2.6288017
I((Start - 12) * (Start > 12)) -0.7516299 0.2564483

t value

(Intercept) -1.585813

poly(Age, 2)1 1.491828

poly(Age, 2)2 -2.320575

I((Start - 12) * (Start > 12)) -2.930922

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 83.23447 on 80 degrees of freedom
Residual Deviance: 51.63156 on 77 degrees of freedom
Number of Fisher Scoring Iterations: 6

Correlation of Coefficients:
(Intercept) poly(Age, 2)1
poly(Age, 2)1 -0.0536714
poly(Age, 2)2 0.4527154 0.0306960
I((Start - 12) * (Start > 12)) -0.3762806 -0.1765981

poly(Age, 2)2
poly(Age, 2)1
poly(Age, 2)2
I((Start - 12) * (Start > 12)) 0.00393

Often, it is difficult to distinguish between logistic and probit models,
since the underlying distributions approximate each other well in
many circumstances. That is, the logistic distribution is similar to the
Gaussian distribution, only with longer tails. Unless the sample size is
extremely large, the subtle differences between the two distributions
can be difficult to see. If a substantial proportion of responses are
concentrated in the tails of the distribution, where the logistic and
Gaussian distributions differ, then the probit and logit links can give
significantly different results. When both models fit well, the
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parameter estimates in a logistic model are about 1.6 to 1.8 times the
esimates in the probit model. For more details, see either Venables &
Ripley (1997) or Agresti (1990).
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POISSON REGRESSION

To fit a Poisson regression model use either the gim function or the
gam function with a formula to specify the model, and set the family
argument to poisson. In this case, the response variable is discrete
and takes on non-negative integer values. Count data is frequently
modeled as a Poisson distribution. As an example, consider the built-
in data frame solder.balance. A summary of the data frame
produces the following:

> attach(solder.balance)
> summary(solder.balance)

Opening Solder Mask PadType Panel skips
S:240 Thin :360 A1.5:180 L9 : 72 1:240 Min. : 0.000
M:240 Thick:360 A3 :180 W9 : 72 2:240 1st Qu.: 0.000
L:240 B3 :180 L8 : 72 3:240 Median : 2.000
B6 :180 L7 : 72 Mean : 4.965
D7 : 72 3rd Qu.: 6.000
L6 : 72 Max. :48.000

(Other):288

The solder experiment, contained in solder.balance, was designed
and implemented in one of AT&T’s factories to investigate
alternatives in the “wave-soldering” procedure for mounting
electronic components on circuit boards. Five different factors were
considered as having an effect on the number of solder skips. A brief
description of each of the factors follows. For more details, see the
paper by Comizzoli, Landwehr, and Sinclair (1990).

* Opening: The amount of clearance around the mounting pad.
* Solder: The amount of solder.

* Mask: The type and thickness of the material used for the
solder mask.

* PadType: The geometry and size of the mounting pad.

* Panel: The panel number. In the experiment, each board was
divided into three panels, with three runs on a board.

* skips: The number of visible solder skips on a circuit board.
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Two useful preliminary plots of the data are a histogram of the
response variable skips, and plots of the mean response for each
level of the predictor. Figure 12.6 and Figure 12.7 display the plots, as
generated by the commands below. Figure 12.6 shows the skewness
and long-tailedness typical of count data. We model this behavior
using a Poisson distribution.

> par(mfrow = c(1,1))
> hist(skips)
> plot(solder.balance)
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Figure 12.6: A4 histogram of skips for the solder.balance data.
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Figure 12.7: A plot of the mean response for each level of each factor.

The plot of the mean skips for different levels of the factors displayed
in Figure 12.7 shows a very strong effect due to Opening. For levels M
and L, only about two skips were seen on average, whereas for level S,
more then 10 skips were seen. Effects almost as strong were seen for
different levels of Mask.

If we do boxplots of skips for each level of the two factors, Opening
and Mask, we get an idea of the distribution of the data across levels of
the factors. Figure 12.8 displays the results of doing “factor” plots on
these two factors.

> par(mfrow = c(1, 2))
> plot.factor(skips ~ Opening + Mask)

Examining Figure 12.8, it is clear that the variance of skips increases
as its mean increases. This is typical of Poisson distributed data.
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Figure 12.8: Boxplots for each level of the two factors Opening and Mask.

We proceed now to model skips as a function of the controlled
factors in the experiment. We start with a simple-effects model for
skips as follows:

> paov <- glm(skips ~ ., family = poisson,
+ data = solder.balance)

> anova(paov, test = "Chi™)

Analysis of Deviance Table
Poisson model
Response: skips

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(Chi)

NULL 719 6855.690
Opening 2 2524.562 717 4331.128 0.000000e+00
Solder 1 936.955 716 3394.173 0.000000e+00
Mask 3 1653.093 713 1741.080 0.000000e+00
PadType 9 542.463 704 1198.617 0.000000e+00
Panel 2  68.137 702 1130.480 1.554312e-15
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The chi-squared test is requested in this case because g1m assumes that
the dispersion parameter ¢ = 1 in the variance function; in other
words, g1m assumes that there is no under- or over-dispersion in the
model. We use the quasi-likelihood family in g1m when we want to
estimate the dispersion parameter as part of the model fitting
computations. We could also set the argument disp to 0 in the

summary function to obtain chi-squared estimates of ¢:

> summary(paov, disp = 0)

According to the analysis of deviance, it appears that all of the factors
considered have a very significant influence on the number of solder
skips. The solder experiment contained in solder.balance is
balanced, so we need not be concerned with the sequential nature of
the analysis of deviance table; the tests of a sequential analysis are
identical to the partial tests of a regression analysis when the
experiment is balanced.

Now we fit a second order model. We fit all the simple effects and all
the second order terms except those including Panel (we have looked
ahead and discovered that the interactions with Panel are non-
significant, marginal, or of less importance than the other
interactions). The analysis of deviance table follows:

> paov2 <- glm(skips ~ . +
+ (Opening + Solder + Mask + PadType) * 2,
+ family = poisson, data = solder.balance)

> anova(paov2, test = "Chi")

Analysis of Deviance Table
Poisson model
Response: skips

Terms added sequentially (first to last)
Df Deviance Res.Df Resid. Dev Pr(Chi)
NULL 719  6855.690
Opening 2 2524.562 717  4331.128 0.0000000000
Solder 1 936.955 716 3394.173 0.0000000000
Mask 3 1653.093 713 1741.080 0.0000000000
PadType 9 542.463 704 1198.617 0.0000000000
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Panel 2 68.137 702 1130.480 0.0000000000
Opening:Solder 2 27.978 700 1102.502 0.0000008409
Opening:Mask 6 70.984 694 1031.519 0.0000000000
Opening:PadType 18 47.419 676 984.100 0.0001836068
Solder:Mask 3 59.806 673 924.294 0.0000000000
Solder:PadType 9 43.431 664 880.863 0.0000017967
Mask:PadType 27 61.457 637 819.407 0.0001694012

All of the interactions estimated in paov2 are quite significant.

To verify the fit, we do several different kinds of plots. The first four
are displayed in Figure 12.9, and result from the standard plotting
method for a g1m object.

> par(mfrow = c(2, 2))
> plot(paov2)
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Figure 12.9: Plots of the second order model of skips.

The plot of the observations versus the fitted values shows no great
departures from the model. The plot of the absolute deviance
residuals shows striations due to the discrete nature of the data.
Otherwise, the deviance residual plot does not reveal anything to
make us uneasy about the fit.
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The other plots that are useful for examining the fit are produced by
plot.gam. Figure 12.10 displays plots of the adjusted fit with partial
residuals overlaid for each predictor variable. Since all the variables
are factors, the resulting fit is a step function; a constant is fitted for
each level of a factor. Figure 12.10 is produced by the following

commands:

> par(mfrow = c(2,3))
> plot.gam(paov2, resid = T)
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Figure 12.10: Partial residual plots of the second order model of skips.
The plot.gam function adds a bit of random noise to the coded factor

levels to spread the plotted points out. This allows you to see their
vertical locations more clearly.
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Note

The warning message about interaction terms not being saved can be safely ignored here.

These plots produced by plot.gam indicate that the data is modeled
reasonably well. Please note, however, that the default plots will show
only glaringlack of fit.
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QUASI-LIKELIHOOD ESTIMATION

Quasi-likelihood estimation allows you to estimate regression
relationships without fully knowing the error distribution of the
response variable. Essentially, you provide link and variance
functions that are used in the estimation of the regression coefficients.
Although the link and variance functions are typically associated with
a theoretical likelihood, the likelihood need not be specified, and fewer
assumptions are made in estimation and inference.

As a simple analogy, there is a connection between normal-theory
regression models and least-squares regression estimates. Least-
squares estimation gives identical parameter estimates to those
produced from normal-theory models. However, least-squares
estimation assumes far less; only second moment assumptions are
made by least-squares, compared to full distribution assumptions of
normal-theory models.

Quasi-likelihood estimation for the distributions of Table 12.1 is
analogous to least-squares estimation for the normal distribution. For
the Gaussian family, IRLS is equivalent to standard least-squares
estimation. Used in this context, quasi-likelihood estimation allows us
to estimate the dispersion parameter in under- or over-dispersed
regression models. For example, an under- or over-dispersed logistic
regression model can be estimated wusing quasi-likelihood
methodology, by supplying the appropriate link and variance
functions for the binomial family.

However, quasi-likelihood estimation extends beyond the families
represented in Table 12.1. Any modeling situation for which suitable
link and variance functions can be derived can be modeled using the
quasi-likelihood methodology. Several good examples of this kind of
application are presented in McCullagh and Nelder (1989).
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As an example of quasi-likelihood estimation, we return to a Poisson
regression model for the solder.balance data frame. Recall that we
modeled skips as a function of all the factors, plus all the two-way
interactions except those including Panel. The modeling call was:

> paov2$call

glm(formula = skips ~ . + (Opening + Solder +
Mask + PadType)~2, family = poisson, data
= solder.balance)

When we declare the family argument to be Poisson, the dispersion
parameter is set to 1. In many problems, this assumption is not valid.
We can use the quasi-likelihood methodology to force the estimation
of the dispersion parameter. For the solder experiment, we
accomplish this as follows:

> paov3 <-gIm(formula = skips ~ . +

+ (Opening + Solder + Mask + PadType) * 2,
+ family = quasi(link="1og", var="mu"),

+ data = solder.balance)

A summary of the fit reveals that the dispersion parameter is
estimated to be 1.4, suggesting over-dispersion:

> summary(paov3)$dispersion

Quasi-l1ikelihood
1.400785

We now recompute the ANOVA table, computing Fstatistics to test
for effects:

> anova(paov3, test = "F")
Analysis of Deviance Table
Quasi-Tikelihood model
Response: skips
Terms added sequentially (first to last)
Df Deviance R.Df Res. Dev F Value Pr(F)
NULL 719 6855.690

Opening 2 2524.562 717 4331.128 901.1240 0.00000000
Solder 1 936.955 716 3394.173 668.8786 0.00000000
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Mask
PadType

1653.093 713 1741.080 393.3729
542.463 704 1198.617 43.0285

Panel 68.137 702 1130.480 24.3210 0.00000000
Opening:Solder 27.978 700 1102.502 9.9864 0.00005365

3 0.00000000

9 0

2 0

2 0

Opening:Mask 6 70.984 694 1031.519  8.4457 0.00000001
8 0

3 0

9 0

0

.00000000

Opening:PadType 1 47.419 676 984.100 1.8806 0.01494805
Solder:Mask 59.806 673 924.294 14.2316 0.00000001
Solder:PadType 43.431 664 880.863  3.4449 0.00036929
Mask:PadType 27 61.457 637 819.407 1.6249 0.02466031

All of the factors and interactions are still significant even when we
model the over-dispersion. This gives us more assurance in our
previous conclusions.
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Residuals are the principal tool for assessing how well a model fits the
data. For regression models, residuals are used to assess the
importance and relationship of a term in the model, as well as to
search for anomalous values. For generalized models, we have the
additional task of assessing and verifying the form of the variance as a
function of the mean response.

Generalized models require a generalization of the residual, so that it
can be used in the same way as the Gaussian residuals of a linear
model. In fact, four different kinds of residuals are defined to assess
how well a generalized model fits, to determine the form of the
variance function, and to diagnose problem observations.

"deviance": Deviance residuals are defined as

D . -
ry = sign(y; —Hi)«/ai
where d; is the contribution of the ith observation to the

deviance.

D.2
The deviance itselfis D = E(I’i ) . Consequently,

deviance residuals are reasonable for detecting observations
with unduly large influence in the fitting process, since they
reflect the same criterion that is used in the fitting.

"working": Working residuals are the difference between the
working response and the linear predictor at the final iteration
of the IRLS algorithm. They are defined as:

w ~ N
ri = (yj-M)—=~.
Oui
These residuals are returned when you extract the residuals
component directly from a g1m object.

"pearson": The Pearson residuals are defined as

] Yi—Hi

rB = 41—

N



Residuals

Their sum-of-squares
&b
2 i~ M
i=1 V(MI)

is the chi-squared statistic. Pearson residuals are a rescaled
version of the working residuals. When proper account is

. . P W
taken of the associated weights, r; =, /w;r; .

* "response": The response residuals are simply y; — ;.

You compute residuals for gim and gam objects with the residuals
function, or resid for short. The type argument allows you to specify
one of "deviance”, "working", "pearson", or "response"”. By default,
deviance residuals are computed. To plot the deviance residuals

versus the fitted values of a model, type the following command:

> plot(fitted(glmobj), resid(glmobj))

Alternatively, to plot the Pearson residuals versus the fitted values,
type:

> plot(fitted(gilmobj), resid(glmobj, type = "pearson"))

Selecting which residuals to plot is somewhat a matter of personal
preference. The deviance residual is the default because a large
deviance residual corresponds to an observation that does not fit the
model well, in the same sense that a large residual for the linear
model does not fit well. You can find additional detail on residuals in
McCullagh and Nelder (1989).
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Prediction for generalized linear models and generalized additive
models is similar to prediction for linear models. An important point
to remember, however, is that for either of the generalized models,
predictions can be on one of two scales. You can predict:

+ on the scale of the linear predictor, which is the transformed
scale after applying the link function, or

+ on the scale of the original response variable.

Since prediction is based on the linear predictor 1(X), computing
predicted values on the scale of the original response effectively
transforms 1(x) (evaluated at the predictor data) via the inverse link
function.

The type argument to either predict.gim or predict.gam allows you
to choose one of three options for predictions.

1. "1ink": Computes predictions on the scale of the linear
predictor (the link scale).

2. "response”: Computes predictions on the scale of the
response.

3. "terms": Computes a matrix of predictions on the scale of the
linear predictor, one column for each term in the model.

Specifying type="terms" allows you to compute the component of
the prediction for each term separately. Summing the columns of the
matrix and adding the intercept term is equivalent to specifying
type="11ink".

As an example, consider the additive model with Kyphosis modeled
as smooths of Start and Age:

> kyph.gam.start.age

Call:

gam(formula = Kyphosis ~ s(Start) + s(Age),
family = binomial, data = kyphosis)

Degrees of Freedom: 81 total; 72.09458 Residual
Residual Deviance: 48.41713
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If we are interested in plotting the prediction surface over the range of
the data, we start by generating appropriate sequences of values for
each predictor. We then store the sequences in a data frame with
variable labels that correspond to the variables in the model:

> attach(kyphosis)

> kyph.margin <- data.frame(

+ Start = seq(from=min(Start), to=max(Start), Tength=40),
+ Age = seq(from=min(Age), to=max(Age), length=40))

Since a GAM is additive, we need to do predictions only at the
margins and then sum them together to form the entire prediction
surface. We produce the marginal fits by specifying type="terms".

> margin.fit <- predict(kyph.gam.start.age, kyph.margin,
+ type = "terms")

Now generate the surface for the marginal fits.

> kyph.surf <- outer(margin.fit[,1], margin.fit[,2], "+")
> kyph.surf <- kyph.surf + attr(margin.fit, "constant™)
> kyph.surf <- binomial()$inverse(kyph.surf)

The first line adds the marginal pieces of the predictions together to
create a matrix of surface values, the second line adds in the constant
intercept term, and the third line applies the inverse link function to
transform the predictions back to the scale of the original response.
Now we produce the plot using the persp function (or contour or
image if we wish):

> persp(kyph.margin[,1], kyph.margin[,2], kyph.surf,
+ xlab = "Start", ylab = "Age", zlab = "Kyphosis")

Figure 12.11 displays the resulting plot.
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Figure 12.11: Plot of the probability surface for developing Kyphosis based age in
months and start position.

Prediction for linear and generalized linear models is a two-step
procedure.

L.

Compute a model matrix using the new data where you want
predictions.

2. Multiply the model matrix by the coefficients extracted from
the fitted model.

This procedure works perfectly fine as long as the model has no

composite terms that are dependent on some overall summary of a
variable. For example:

(x - mean(x))/sqrt(var(x))
(x - min(x))/diff(range(x))
poly(x)

bs(x)

ns(x)

The reason that the prediction procedure does not work for such
composite terms is that the resulting coefficients are dependent on the
summaries used in computing the terms. If the new data are different
from the original data used to fit the model (which is more than likely
when you provide new data), the coefficients are inappropriate. One
way around this problem is to eliminate such dependencies on data



Prediction from the Model

summaries. For example, change mean(x) and var(x) to their
numeric values, rather than computing them from the data at the time
of fitting the model. For the spline functions bs and ns, provide the
knots explicity in the call to the function, rather than letting the
function compute them from the overall data. If the removal of
dependencies on the overall data is possible, prediction can be made
safe for new data. However, when the dependencies cannot be
removed, as is the case when using s or lo in gam, use the
predict.gam function explicitly. This function computes predictions
in as safe a way as possible, given the need for generality. To illustrate
this method, suppose that the data used to produce a generalized fit is
named o1d.data, and new.data is supplied for predictions:

1. A new data frame, both.data, is constructed by combining
old.data and new.data.

2. The model frame and model matrix are constructed from the
combined data frame both.data. The model matrix is

separated into two pieces X° and X" , corresponding to
old.data and new.data.

3. The parametric part of fit is refit using x°.

4. The coefficients from this new fit are then applied to X" to
obtain the new predictions.

5. For gam objects with both parametric and nonparametric
components, an additional step is taken to evaluate the fitted
nonlinear functions at the new data values.

This procedure works perfectly for terms with mean and var in them,
as well as for poly. For other kinds of composite terms, such as bs
knots placed at equally spaced (in terms of percentiles) quantiles of
the distribution of the predictor, predict.gam works approximately.
Because the knots produced by the combined data will, in general, be
different from the knots produced by the original data, there will be
some error in predicting the new data. If the old data and the new
data have roughly the same distribution, the error in predicting the
new data should be small.
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A commonly used device in generalized linear models is the offset,
which is a component of the linear predictor that has a fixed
coefficient. The effect of these components is to offset the value of the
linear predictor by a certain fixed amount. In Spotfire S+, you can
specify offsets in GLMs by including offset terms directly in the
model formula. For example, consider the following simple logistic
regression model for the kyphosis data set:

> fitl <- gIm(Kyphosis ~ Age + Start,
+ family=binomial, data=kyphosis)

The coef function returns the coefficients of the model:
> coef(fitl)

(Intercept) Age Start
0.2250435 0.009507095 -0.237923

With the following syntax, we can force the intercept to be 0.25 and
the coefficient for Age to be 0.01:

> fit2 <- gIm(Kyphosis ~
+ offset(0.25 + 0.01*Age) + Start - 1,
+ family=binomial, data=kyphosis)

> coef(fit2)

Start
-0.2443723

The -1 in the model formula is needed to prevent the fitting of an
intercept term, since it is already included in the offset component.

Offsets allow for a kind of residual analysis in generalized linear
models. By specifying offsets, you can evaluate the contribution of
particular terms to a fit, while holding other terms constant. In
addition, a variable can be included as both a regression term and an
offset in a model formula. With this kind of model, you can test the
hypothesis that the variable’s regression coefficient is any fixed value.
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Family Objects The combination of a link and variance function comprise a family in
generalized linear models and generalized additive models. A
Spotfire S+ family object includes the link function, its derivative, the
variance and deviance functions, and a method for obtaining starting
values in the fitting algorithm. There are many combinations of link
and variance functions that are common in GLMs, but only some are
included in Spotfire S+. If you would like to use a family in your
analysis that is not yet part of Spotfire S+, you will need to use the
make.family function. This constructor requires the arguments listed
below.

* name: A character string giving the name of the family.

* Tink: A list containing information about the link function,
including its inverse, derivative, and initialization expression.

+ variance: A list supplying the variance and deviance
functions.

The data sets gTm.1inks and gim.variances provide the necessary
information for the link and variance functions included in Spotfire
S+. The information in these data sets can be used as templates when
defining custom links and variances. For example, the following
command lists the necessary information for the probit link:

> glm.links[, "probit"]

$names:
[1] "Probit: gnorm(mu)"

$1ink:
function(mu)
gnorm(mu)

$inverse:
function(eta)
pnorm(eta)

$deriv:

function(mu)
sqrt(2 * pi) * exp((gnorm(mu)*2)/2)
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$initialize:
expression({
if(is.matrix(y)) {
if(dim(y)[2] > 2)

stop("only binomial response matrices (2
columns)™)

n <- drop(y %*% c(1, 1))

y <-y[, 1]
}
else {
if(is.category(y))
y <-y !=Tlevels(y)[1]
else y <- as.vector(y)
n <- rep(l, length(y))
}

w<-w*n

nfn == 0] <-1

y <- y/n

mu <- y + (0.5 - y)/n

We provide two examples below: one defines a new variance
function for quasi-likelihood estimation, and one defines a new family
for the negative binomial distribution.

Example: quasi-likelihood estimation

In Spotfire S+, quasi-likelihood estimation is performed with the
family=quasi option in gim and gam. This option allows you to
specify any combination of the link and variance functions from
Table 12.1. No distributional assumptions are made, and the model is
fit directly from the combination of the link and variance. If you
require a link or variance function for your quasi-likelihood model
that is not included in Table 12.1, you will need to create a new one.
We use the leaf blotch example from McCullagh and Nelder (1989) to
illustrate one approach for doing this.

The data in Table 12.2 is from a 1965 experiment concerning the
incidence of Rhynchosporium secalis, or leaf blotch. Ten varieties of
barley were grown at each of nine sites, and the percentage of total
leaf area affected by the disease was recorded.
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Table 12.2: Percentage of total leaf area affected by Rhynchosporium secalis, for ten varieties of barley grown at

nine different sites.

Variety
Site 1 2 3 4 5 6 7 8 9 10
1 0.05 0.00 0.00 0.10 0.25 0.05 0.50 1.30 1.50 1.50
2 0.00 0.05 0.05 0.30 0.75 0.30 3.00 7.50 1.00 | 12.70
3 1.25 1.25 2.50 | 16.60 2.50 2.50 0.00 | 20.00 | 3750 | 26.25
4 2.50 0.50 0.01 3.00 2.50 0.01 | 25.00 | 55.00 5.00 | 40.00
5 5.50 1.00 6.00 1.10 2.50 8.00 | 16.50 | 29.50 | 20.00 | 43.50
6 1.00 5.00 5.00 5.00 5.00 5.00 | 10.00 5.00 | 50.00 | 75.00
7 5.00 0.10 5.00 5.00 | 50.00 | 10.00 | 50.00 | 25.00 | 50.00 | 75.00
8 5.00 | 10.00 5.00 5.00 | 25.00 | 75.00 | 50.00 | 75.00 | 75.00 | 75.00
9 1750 | 25.00 | 42.50 | 50.00 | 3750 | 95.00 | 62.50 | 95.00 | 95.00 | 95.00

Wedderburn (1974) suggested a linear logistic model for these data,
with a variance function given by the square of the variance for the
binomial distribution:

var(Y) = p(1-w)”.

As this variance is not included in Spotfire S+, we must first define it
before continuing with the analysis.

To build a new variance function, a set of names, a variance, and a
deviance are all needed. We use the binomial variance, stored in the
"mu(1l-mu)" column of gim.variances, as a template for creating our
squared.binomial variance function.
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> squared.binomial <- Tist(
+ name = "Binomial Squared: mu”2*(1l-mu)”2",
+ variance = function(mu) mu*2 * (1 - mu)"2,

+ deviance
+ {

+ + 4+ + + + ++ + A+ ++ A+ o+ +

}
)

function(mu, y, w, residuals = F)

devy <- vy
nz <-y =20
devy[nz] <- (2*y[nz]-1) * log(y[nz]l / (1-y[nz1)) - 2
devmu <- (2*y-1)*log(mu/(1l-mu)) - y/mu - (1l-y)/(1l-mu)
if(any(small <- mu”2*(1-mu~2) < .Machine$double.eps))
{
warning("fitted values close to 0 or 1")
smu <- mulsmall]
sy <- y[small]
smu <- ifelse(smu < .Machine$double.eps,
.Machine$double.eps, smu)
onemsmu <- ifelse((1l - smu) < .Machine$double.eps,
.Machine$double.eps, 1 - smu)
devmu[small] <- (2*sy-1)*(Tog(smu)-log(onesmu)) -
sy/smu - (1 - sy)/(onesmu)
}
devi <- 2 * (devy - devmu)
if(residuals) sign(y - mu) * sqrt(abs(devi) * w)
else sum(devi)

We can now use the squared binomial variance when computing
quasi-likelihood models. For example, the commands below compute
Wedderburn’s model for the leaf blotch data. We create an R.secalis
data set containing the information from Table 12.2, and then call g1m
with the family=quasi option. For clarity, we convert the data values
to decimal percentages.

>
+
+
+

1:

R.secalis <- data.frame(

fac.design(c(9,10), factor.names = 1ist(

site = 1:9, variety = 1:10)),
incidence = scan())

10:
19:
28:

0.0005 0 0.0125 0.025 0.055 0.01 0.05 0.05 0.175
0 0.0005 0.0125 0.005 0.01 0.05 0.001 0.1 0.25
0 0.0005 0.025 0.0001 0.06 0.05 0.05 0.05 0.425
0.001 0.003 0.166 0.03 0.011 0.05 0.05 0.05 0.5
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37: 0.0025 0.0075 0.025 0.025 0.025 0.05 0.5 0.25 0.375
46: 0.0005 0.003 0.025 0.0001 0.08 0.05 0.1 0.75 0.95
55: 0.005 0.03 0 0.25 0.165 0.1 0.5 0.5 0.625

64: 0.013 0.075 0.2 0.55 0.295 0.05 0.25 0.75 0.95

73: 0.015 0.01 0.375 0.05 0.2 0.5 0.5 0.75 0.95

82: 0.015 0.127 0.2625 0.4 0.435 0.75 0.75 0.75 0.95
91:

> R.secalis

site variety incidence

1 1 0.0005
.0000
.0125
.0250
.0550
.0100
.0500
.0500
.1750
.0000

O W O N O O & W N -
= W 00 N O O & W N
N =R
O O O O O O o o o

—_

# Set treatment contrasts before calling glm.
> options(contrasts = c("contr.treatment™, "contr.poly™))

secalis.quasi <- gIm(incidence ~ site + variety,

data = R.secalis,

family = quasi(link=logit, variance=squared.binomial),
+ control = gim.control(maxit = 50))

Y

The coefficients and standard errors for our model match those
originally computed by Wedderburn:

> coef(secalis.quasi)

(Intercept) site? site3 sited siteb siteb
-7.920978 1.382404 3.857455 3.557023 4.10487 4.30132

site’ site8 site9 variety?2 variety3 variety4
4.917166 5.691471 7.065438 -0.4641615 0.0816659 0.9547215

varietyb5 variety6 variety7 variety8 variety9 varietylO
1.352033 1.333007 2.339617 3.262141 3.135984 3.887684
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Example: negative binomial distribution

The negative binomial distribution arises when modeling
“overdispersed Poisson data,” which is frequency data in which the
variance is greater than mean. This type of data can arise in Poisson
processes that have variable length, or in processes where each event
contributes a variable amount to the total. The negative binomial
distribution assumes many forms in these contexts; we create a new
family for a particular form in which the variance is quadratic. For
additional technical details, see Venables and Ripley (1997) and
McCullagh and Nelder (1989).

Suppose we have a response variable Y that is Poisson with a mean of

Z. We assume that Z itself is random, and follows a gamma

distribution with mean p and variance .1+ ],LQ/ 0, for a parameter 6.

Thus, the variance of Z is proportional to the square of its mean. This
mixture of distributions results in the following negative binomial
distribution for Y :

__T@+y)ue’
f (y) - )
e @)yt 8)° Y

where y = 1, 2, .. and I' is the gamma function. For fixed 6, the
negative binomial distribution in this form has a canonical link given

by

nw = 10g(;£—9)

and the variance function var(Y) = pu+ ],LQ/ 0.

We use the make.family function to create a family for the negative
binomial distribution. For simplicity, we use the code for the log and
logit link functions as templates for creating the negative binomial
link. The code for the variance function below is taken from Venables
and Ripley (1997).

> neg.binomial <- function(theta =

+ stop("theta must be given")) {

+ nb.link <- Tist(

+ names = "Tog(mu/(mu + theta))",

+ lTink = substitute(function(mu, th = .Theta)



+ + 4+ + 4+ + 4+ + o+ A+ o+
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Tog(mu/(mu + th)),
frame = list(.Theta = theta)),
inverse = substitute(function(eta, th = .Theta)
{
tmp <- care.exp(eta)
return((tmp * th) / (1 - tmp))
1,
frame = Tist(.Theta = theta)),
deriv = substitute(function(mu, th = .Theta)

{
d <- mu * (mu + th)
if(any(tiny <- (d < .Machine$double.eps))) {
warning("Model unstable™)
d[tiny] <- .Machine$double.eps
}
return(th / d)
1,

frame = Tist(.Theta = theta)),
initialize = expression(mu <- y + (y==0)/6)
)
nb.variance <- Tist(
names = "mu + mu~2/theta",
variance = substitute(function(mu, th = .Theta)
mu * (1 - mu/th),
frame = list(.Theta = theta)),
deviance = substitute(
function(mu, y, w, residuals = F, th = .Theta)
{
devi <- 2 * w * (y * log(pmax(l,y) / mu) -
(y + th) * Tog((y + th) / (mu + th)))
if(residuals)
return(sign(y - mu) * sqrt(abs(devi)))
else
return(sum(devi))

1,
frame = Tist(.Theta = theta))
)
make.family(
name = "Negative binomial",

1ink = nb.link,
variance = nb.variance) }
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In both Chapter 10, Regression and Smoothing for Continuous
Response Data, and Chapter 12, Generalizing the Linear Model, we
discuss fitting curves or surfaces to data. In both of these earlier
chapters, a significant limitation on the surfaces considered was that
the effects of the terms in the model were expected to enter the model
additively, without interactions between terms.

Local regression models provide much greater flexibility in that the
model is fitted as a single smooth function of all the predictors. There
are no restrictions on the relationships among the predictors.

Local regression models in TIBCO Spotfire S+ are created using the
Toess function, which uses locally weighted regression smoothing, as
described in the section Smoothing on page 290. In that section, the
focus was on the smoothing function as an estimate of one predictor’s
contribution to the model. In this chapter, we use locally weighted
regression to fit the complete regression surface.



Fitting a Simple Model

FITTING A SIMPLE MODEL

As a simple example of a local regression model, we return to the
ethanol data discussed in Chapter 10, Regression and Smoothing for
Continuous Response Data. We start by considering only the two
variables NOx and E. We smoothed these data with Toess.smooth in
the section Smoothing on page 290. Now we use Toess to create a
complete local regression model for the data.

We fit an initial model to the ethanol data as follows, using the
argument span=1/2 to specify that each local neighborhood should
contain about half of the observations:

> ethanol.loess <- Toess(NOx ~ E, data = ethanol,
+ span = 1/2)
> ethanol.loess

Call:
loess(formula = NOx ~ E, data = ethanol, span = 1/2)

Number of Observations: 88
Equivalent Number of Parameters: 6.2
Residual Standard Error: 0.3373
Multiple R-squared: 0.92
Residuals:

min 1st Q median 3rd Q max

-0.6656 -0.1805 -0.02148 0.1855 0.8656

The equivalent number of parameters gives an estimate of the complexity
of the model. The number here, 6.2, indicates that the local regression
model is somewhere between a fifth and sixth degree polynomial in
complexity. The default print method for "loess" objects also

includes the residual standard error, multiple RQ, and a five number
summary of the residuals.
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How good is our initial fit? The following function calls plot the Toess
object against a scatter plot of the original data:

> attach(ethanol)

> plot(ethanol.loess, x1im = range(E),

+ ylim = range(NOx, fitted(ethanol.loess)))
> points(E, NOx)

NOx

Figure 13.1: Locally weighted smooth of ethanol data.

The resulting plot, shown in Figure 13.1, captures the trend
reasonably well. The following expressions plot the residuals against
the predictor E to check for lack of fit:

> scatter.smooth(E, resid(ethanol.loess), span =1,
+ degree = 1)
> abline(h = 0)

The resulting plot, shown in Figure 13.2, indicates no lack of fit.
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Figure 13.2: Residual plot for Toess smooth.

Is there a surplus of fit? That is, can we increase the span of the data
and still get a good fit? To see, let’s refit our model, using update:

> ethanol.loess2 <- update(ethanol.loess, span

> ethanol.loess?2

Call:
loess(formula NOXx ~ E,
Number of Observations:
Equivalent Number of Parameters:
Residual Standard Error:
Multiple R-squared:
Residuals:
min

data

1st Q median 3rd Q

1)

ethanol, span = 1)

88

3.5
0.5126
0.81

max

-0.9791 -0.4868 -0.064 0.3471 0.9863
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By increasing the span, we reduce somewhat the equivalent number
of parameters; this model is thus more parsimonious than our first
model. We do seem to have lost some fit and gained some residual
error. The diagnostic plots, shown in Figure 13.3, reveal a less
satisfying fit in the main plot, and much obvious structure left in the

residuals.
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Figure 13.3: Diagnostic plots for Toess fit with span 1.

The residuals are also more broadly spread than those of the first
model. We confirm this with a call to anova as follows:

> anova(ethanol.loess2, ethanol.loess)

Model 1:
loess(formula = NOx ~ E, data = ethanol, span = 1)
Model 2:
loess(formula = NOx ~ E, data = ethanol, span = 1/2)
Analysis of Variance Table

ENP RSS Test F Value Pr(F)
1 3.5 22.0840 1 vs 2 32.79 8.2157e-15

2 6.2 9.1685

The difference between the models is highly significant, so we stick
with our original model.
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EXPLORING DATA WITH MULTIPLE PREDICTORS

Conditioning
Plots

The ethanol data set actually has three variables, with the
compression ratio, C, of the engine as another predictor joining the
equivalence ratio £ and the response, nitric oxide emissions, NOx. A
summary of the data is shown below:

> summary(ethanol)

NOx C E
Min. 0.370 Min. : 7.500 Min. :0.5350
1st Qu.:0.953 1st Qu.: 8.625 1st Qu.:0.7618
Median :1.754 Median :12.000 Median :0.9320
Mean :1.957 Mean :12.030 Mean :0.9265
3rd Qu.:3.003 3rd Qu.:15.000 3rd Qu.:1.1100
Max. :4.028 Max. :18.000 Max. :1.2320

A good place to start an analysis with two or more predictors is a
pairwise scatter plot, as generated by the pairs function:

> pairs(ethanol)

The resulting plot is shown in Figure 13.4. The top row shows the
nonlinear dependence of NOx on E, and no apparent dependence of
NOx on C. The middle plot in the bottom row shows E plotted against
C. This plot reveals no apparent correlation between the predictors,
and shows that the compression ratio C takes on only 5 distinct values.

Another useful plot for data with two predictors is the perspective
plot. This lets us view the response as a surface over the predictor
plane.

> persp(interp(E, C, NOx), xlab = "E", ylab = "C",
+ zlab = "NOx™)

The resulting plot is shown in Figure 13.5.
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Figure 13.4: Pairs plot of ethanol data.

Figure 13.5: Perspective plot of ethanol data.
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Creating
Conditioning
Values

Constructing a
Conditioning
Plot

Exploring Data with Multiple Predictors

One conclusion we cannot draw from the pairwise scatter plot is that
there is no effect of C on NOx. Such an effect might well exist, but be
masked by the strong effect of E. Another type of plot, the conditioning
plot, or coplot, can reveal such hidden effects.

A coplot shows how a response depends upon a predictor given other
predictors. Basically, the idea is to create a matrix of conditioning
panels, each panel graphs the response against the predictor for those
observations whose value of the given predictor lie in an interval.

To create a coplot:

1. (Optional) Create the conditioning values. The coplot
function creates default values if conditioning values are
omitted, but they are not usually as good as those created
specifically for the data at hand.

2. Use the coplot function to create the plot.

We discuss these steps in detail in the following subsections.

How you create conditioning values depends on the nature of the
values taken on by the predictor, whether continuous or discrete.

For continuous data, the conditioning values are intervals, created
using the function co.intervals. For example, the following call
creates nine intervals for the predictor E:

> E.intervals <- co.intervals(E, number = 9, overlap = 1/4)

For data taking on discrete values, the conditioning values are the
sorted, unique values. For example, the following call creates the
conditioning values for the predictor C:

> C.points <- sort(unique(C))
To construct a conditioning plot, use coplot using a formula with the
special form A ~ B | C, where A is the response, B is the predictor of

interest, and C is the given predictor. Thus, to see the effect of C on
NOx given E, use the formula NOx ~ C | E.
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In most cases, you also want to specify one or both of the following
arguments:

* given.values: The conditioning values created above.

* panel: A function of x and y used to determine the method of
plotting in the dependence panels. The default is points.

To create the conditioning plot shown in Figure 13.6:

> coplot(NOx ~ C | E, given.values = E.intervals)

Given: E
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Figure 13.6: Conditioning plot of ethanol data.
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Analyzing To read the coplot, move from left to right, bottom to top. The scatter
conditioning plots on the bottom row show an upward trend, while those on the

upper two rows show a flat trend. We can more easily see the trend
Plots : . o o :
by using a smoothing function inside the conditioning panels, which
we can do by specifying the panel argument to coplot as follows:

> coplot(NOx ~ C | E, given.values = E.intervals,
+ panel = function(x, y) panel.smooth(x, vy,
+ degree =1, span = 1))

The resulting plot is shown in Figure 13.7.

Given: E
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Figure 13.7: Smooth conditioning plot of ethanol data.

443



Chapter 13 Local Regression Models

This plot clearly shows that for low values of E, NOx increases linearly
with C, while for higher values of E, NOx remains constant with C.

Conversely, the coplot for the effects of E on NOx given C is created
with the following call to coplot, and shown in Figure 13.8:

> coplot(NOx ~ E | C, given.values = C.points,
+ panel = function(x, y) panel.smooth(x, y, degree = 2,
+ span = 2/3))

NOx

Figure 13.8: Smooth conditioning plot of ethanol data, conditioned on C.
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Comparing the two coplots, we can see that NOx changes more rapidly
as a function of E with C fixed than as a function of C with E fixed.

Also, the variability of the residuals is small compared to the effect of
E, but noticeable compared to the effect of C.
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FITTING A MULTIVARIATE LOESS MODEL

446

We have learned quite a bit about the ethanol data without fitting a
model: there is a strong nonlinear dependence of NOx on E and there
is an interaction between C and E. We can use this knowledge to
shape our initial local regression model. First, we specify a formula
that includes as predictors both E and C, namely NOx ~ C * E. Then,
we accept the default of local quadratic fitting to better model the
nonlinear dependence.

> ethanol.m <- Toess(NOx ~ C * E, data = ethanol)
> ethanol.m

Call:
loess(formula = NOx ~ C * E, data = ethanol)

Number of Observations: 88
Equivalent Number of Parameters: 9.4
Residual Standard Error: 0.3611
Multiple R-squared: 0.92
Residuals:

min 1st Q median 3rd Q max

-0.7782 -0.3517 -0.05283 0.195 0.6338

We search for lack of fit by plotting the residuals against each of the
predictors:

> par(mfrow = c(1,2))

> scatter.smooth(C, residuals(ethanol.m), span = 1, deg=2)
> abline(h = 0)

> scatter.smooth(E, residuals(ethanol.m), span = 1, deg=2)

> abline(h = 0)

The resulting plot is shown in Figure 13.9. The right-hand plot in the
figure shows considerable lack of fit, so we reduce the span from the
default 0.75 to 0.4:

> ethanol.m2 <- update(ethanol.m, span = .4)



Fitting a Multivariate Loess Model

> ethanol.m2

Call: loess(formula = NOx ~ C * E, data = ethanol,
span = 0.4)

Number of Observations: 88
Equivalent Number of Parameters: 15.3
Residual Standard Error: 0.2241
Multiple R-squared: 0.97
Residuals:

min 1st Q median 3rd Q max

-0.4693 -0.1865 -0.03518 0.1027 0.3739

Repeating the commands for generating the diagnostic plots with
ethanol.m2 replacing ethanol.m yields the plot shown in Figure
13.10.
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Figure 13.9: Diagnostic plot for 10ess model of ethanol data.
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Figure 13.10: Diagnostic plot for first revised model.
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The right-hand plot in Figure 13.10 looks better but still has some
quadratic structure, so we shrink the span still further, and try again:

> ethanol.m3 <- update(ethanol.m, span = .25)
> ethanol.m3

Call:
loess(formula = NOx ~ C * E, data = ethanol, span = 0.25)

Number of Observations: 88
Equivalent Number of Parameters: 21.6
Residual Standard Error: 0.1761
Multiple R-squared: 0.98
Residuals:

min 1st Q@ median 3rd Q max

-0.3975 -0.09077 0.00862 0.06205 0.3382

Again, we create the appropriate residuals plots to check for lack of
fit. The result is shown in Figure 13.11. This time the fit is much better.
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Figure 13.11: Diagnostic plot for second revised model.

Another check on the fit is provided by coplots using the residuals as
the response variable:

coplot(residuals(ethanol.m3) ~ C | E,
given = E.intervals,

panel= function(x, y)

panel.smooth(x, y, degree =1, span =1,
zero.line = TRUE))

+ + 4+ + v

448



Fitting a Multivariate Loess Model

> coplot(residuals(ethanol.m3) ~ E | C, given = C.points,
+ panel= function(x, y)

+ panel.smooth(x, y, degree = 1, span =1,

+ zero.line = TRUE))

The resulting plots are shown in Figure 13.12 and Figure 13.13. The
middle row of Figure 13.12 shows some anomalies—the residuals are
virtually all positive. However, the effect is small, and limited in
scope, so it can probably be ignored.
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Figure 13.12: Conditioning plot on E for second revised model.
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Figure 13.13: Conditioning plot on C for second revised model.

As a final test, we create several additional diagnostic plots to check
the distribution of the error terms. The plots generated by the
following commands are shown in Figure 13.14.

> par(mfrow=c(2, 2))

> plot(fitted(ethanol.m3), sqrt(abs(resid(ethanol.m3))))
> plot(C, sqrt(abs(resid(ethanol.m3))))

> plot(E, sqrt(abs(resid(ethanol.m3))))
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> qgnorm(resid(ethanol.m3))
> qqline(resid(ethanol.m3))

NULL

sqrt(abs(resid(ethanol.m3)))

sqgrt(abs(resid(ethanol.m3)))

0.3 0.5

0.1

0.3 0.5

0.1

2 3
fitted(ethanol.m3)

Fitting a Multivariate Loess Model

sqrt(abs(resid(ethanol.m3)))

resid(ethanol.m3)
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Figure 13.14: Diagnostic plots for second revised model.

The model passes these checks; the errors appear to be Gaussian, or

nearly so.
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LOOKING AT THE FITTED MODEL

452

Examining the fitted model graphically is no less important than
graphically examining the data. One way to test the model is to
compare the predicted surface with the data surface shown in Figure
13.5 . We can create the corresponding perspective plot for the model

as follows. First, define an evenly-spaced grid of points spanning the
range of E and C:

> newC <- seq(from = min(C), to = max(C), length
> newkE <- seq(from = min(E), to max(E), Tength
> new.ethanol <- expand.grid(E = newE, C = new(C)

40)
40)

The expand.grid function returns a data frame with 1600 rows and 2
columns, corresponding to all possible combinations of newC and
newE. We can then use predict with the fitted model and these new
data points to calculate predicted values for each of these grid points:

> eth.surf <- predict(ethanol.m3, new.ethanol)
The perspective plot of the surface is then created readily as follows:

> persp(newE, newC, eth.surf, xlab = "E",
+ ylab = "C")

The resulting plot is shown in Figure 13.15.

1 2 3 45

0

Figure 13.15: Perspective plot of the model.



Looking at the Fitted Model

Not surprisingly, the surfaces look quite similar, with the model
surface somewhat smoother than the data surface. The data surface
has a noticeable wrinkle for E = 0.7, ¢ = 14. This wrinkle is smoothed
out in the model surface. Another graphical view is probably
worthwhile.

The default graphical view for "loess" objects with multiple
predictors is a set of coplots, one per predictor, created using the plot
function.

> par(ask=T)
> plot(ethanol.m3, confidence = 7)

The resulting plots are shown in Figure 13.16 and Figure 13.17. One
feature that is immediately apparent, and somewhat puzzling, is the
curvy form of the bottom row of Figure 13.16. Our preliminary
coplots revealed that the dependence of NOx on C was approximately
linear for small values of E. Thus, the model as fitted has a noticeable
departure from our understanding of the data.

Given: E
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Figure 13.16: Default conditioning plot of the model, first predictor.

NOx
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Given: C
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E
Figure 13.17: Default conditioning plot of the model, second predictor.
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Improving the Model

IMPROVING THE MODEL

The model in ethanol.m3 is fit using local quadratic fitting for all
terms corresponding to C*E. This means that the model contains the

following fitting variables: a constant, E, C, EC, CQ, and £°. However,
our original look at the data led us to believe that the effect of C was
piecewise linear; it thus makes sense to fit C parametrically, and drop
the quadratic term. We can make these changes using the update
function as follows:

> ethanol.m4 <- update(ethanol.m3, drop.square = "C",
+ parametric = "C")
> ethanol.m4

Call:
loess(formula = NOx ~ C * E, span = 0.25, parametric = "C",
drop.square = "C")
Number of Observations: 88
Equivalent Number of Parameters: 18.2
Residual Standard Error: 0.1808
Multiple R-squared: 0.98
Residuals:
min 1st Q median 3rd Q max

-0.4388 -0.07358 -0.009093 0.06616 0.5485

The coplot, Figure 13.18 and Figure 13.19, now shows the appropriate
linear fit, and we have introduced no lack of fit, as shown by the
residuals plots in Figure 13.20.
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Given: E
06 08 10 12

Figure 13.18: Default conditioning plot of improved model, first predictor.
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Figure 13.19: Default conditioning plot of improved model, second predictor.
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Figure 13.20: Residual plot of improved model.

In fact, comparing the plot of residuals against E for the latest model
with that for ethanol.m3 (Figure 13.21) indicates we may be able to

increase the span for the latest model and not introduce any lack of
fit:

> ethanol.m5 <- update(ethanol.m4, span = 1/2)
> ethanol.mb

Call:
loess(formula = NOx ~ C * E, span = 1/2, parametric = "C",
drop.square = "C")
Number of Observations: 88
Equivalent Number of Parameters: 9.2
Residual Standard Error: 0.1842
Multiple R-squared: 0.98
Residuals:
min 1st Q median 3rd Q max

-0.5236 -0.0972 0.01386 0.07326 0.5584

We gain a much more parsimonious model-the Equivalent Number
of Parameters drop from approximately 18 to about 9. An F-test using
anova shows no significant difference between our first acceptable
model and the latest, more parsimonious model.



> anova(ethanol.m3,

Model 1:

loess(formula = NOx ~ C * E,
Model 2:

loess(formula = NOx ~ C * E,
drop.square = "C")

Analysis of Variance Table

ENP RSS Test
1 21.6 1.7999 1 vs 2
2 9.2 2.5433
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Figure 13.21: Comparison of residual plots for original and improved models.
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Introduction

INTRODUCTION

Mixed-effects models provide a powerful and flexible tool for
analyzing grouped data, which is data that can be classified according
to one or more grouping variables. Mixed-effects models incorporate
both fixed and random effects:

*  Fixed effects are parameters associated with an entire
population, or with repeatable levels of experimental factors.

*  Random effects are parameters associated with experimental
units drawn at random from a population.

Such models typically describe relationships between a response
variable and covariates that are grouped according to one or more
classification factors. Common applications are longitudinal data,
repeated measures data, multilevel data, and block designs. By
associating common random effects to observations sharing the same
level of a classification factor, mixed-effects models flexibly represent
the covariance structure induced by grouping.

This chapter describes a set of functions, classes, and methods for the
analysis of linear and nonlinear mixed-effects models in Spotfire S+.
The methods provide a comprehensive set of tools for analyzing
linear and nonlinear mixed-effects models with an arbitrary number
of nested grouping levels. They supersede the modeling facilities
available in release 3 of S (Chambers and Hastie, 1992) and releases
5.1 (Unix) and 2000 (Windows) of S-PLUS.

This chapter illustrates how to:
*  Represent grouped data sets using the groupedData class.

+  Fit basic linear mixed-effects models using the Tme function
and manipulate the returned objects.

+  Fit basic nonlinear mixed-effects models using the n1me
function and manipulate the returned objects.

+ Fit advanced linear and nonlinear mixed-effects models by
defining positive-definite matrices, correlation structures, and
variance functions.

The analysis of several sample data sets illustrates many of the
available features. A detailed description of all functions, classes, and
methods can be found in the on-line help files.
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464

The code for the methods discussed in this chapter was contributed
by Douglas M. Bates of the University of Wisconsin and José C.
Pinheiro of Bell Laboratories. Their book, Mixed Effects Models in S and
Spotfire S+ (2000), contains a careful description of the statistical
theory behind mixed-effects models, as well as detailed examples of
the software for fitting and displaying them. For discussions of
advanced topics not presented in this chapter, we refer the reader to
the Pinheiro and Bates text.



Representing Grouped Data Sets

REPRESENTING GROUPED DATA SETS

The
groupedData
Class

The data sets used for fitting mixed-effects models have several
characteristics in common. They consist of measurements of a
continuous response at several levels of a covariate (for example,
time, dose, or treatment). The measurements are grouped according
to one or more factors. Additional covariates may also be present,
some of which may vary within a group (inner covariates) and some of
which may not (outer covariates).

A natural way to represent such data in Spotfire S+ is as a data frame
containing the response, the primary covariate, the grouping factor(s),
and any additional factors or continuous covariates. The different
roles of the variables in the data frame can be described by a formula
of the form

response ~ primary | groupingl/grouping2/...

This is similar to the display formula in a Trellis plot, as discussed in
Becker, Cleveland, and Shyu (1996).

The formula and the data for a grouped data set are packaged
together in a groupedData object. The constructor (the function used
to create objects of a given class) for groupedData takes a formula and
a data frame as arguments. The call to the constructor establishes the
roles of the variables, stores descriptive labels for plots, and converts
the grouping factors to ordered factors so the panels in plots are
ordered in a natural way. By default, the order of the grouping factors
is determined by a summary function applied to the response and
split according to the groups, taking into account the nesting order.
The default summary function is the maximum. Additionally, labels
can be given for the response and the primary covariate, and their
units can be specified as arbitrary strings. The reason for separating
the labels and the units is to allow the units to propagate to derived
quantities, such as the residuals from a fitted model.

When outer factors are present, they are given by a formula such as
outer = ~Sex or outer = ~ Treatment*Type. When multiple
grouping factors are present, a list of such formulas must be supplied.
Inner factors are described in a similar way. When establishing the
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Example: The
Orthodont
Data Set

466

order of the levels of the grouping factor, and hence the order of
panels in a plot, re-ordering is only permitted within combinations of
levels for the outer factors.

Trellis parameters can be used to control the graphical presentation of
grouped data. See the online help files for plot.nffGroupedData,
plot.nfnGroupedData and plot.nmGroupedData for details. The first
two functions plot groupedData objects with single levels of grouping,
and plot.nmGroupedData displays objects with multiple grouping
levels.

Extractor functions can be used on groupedData objects to obtain the
different components of the display formula. Functions such as
getGroups, getCovariate, and getResponse can be applied to extract
the corresponding element in the data set. In addition, groupedData
objects can be summarized by group using the function gsummary.

As a first example of grouped data, consider the orthodontic study
presented in Potthoff and Roy (1964). These data consist of four
distance measurements (in millimeters) made at ages 8, 10, 12, and 14
years, on 16 boys and 11 girls. The measurements represent the
distance from the center of the pituitary to the pterygomaxillary
fissure.

The data from the orthodontic study are stored in the example data
set Orthodont, which has the following variables:

* The 108 observations in the data set are grouped into 27
categories by Subject.

* The 27 subjects are classified into two groups by Sex, an
indicator variable assuming the value "Male" for boys and
"Female" for girls.

*  Each of the subjects has four measures of distance,
corresponding to the four age values.

This is an example of balanced repeated measures data, with a single
level of grouping (Subject). We wish to predict distance from age,
using Subject as a grouping variable and Sex as an outer covariate.

To create a new groupedData object for Orthodont, use the class
constructor as follows:

# Assign Orthodont to your working directory.
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Orthodont <- 0
Orthodont <- groupedData(distance ~ age | Subject,
data = Orthodont,
labels = Tist(x = "Age",

y="Distance from pituitary to pterygomaxillary fissure"),
+ units = Tist(x

rthodont

outer

Representing Grouped Data Sets

= ~ Sex,

= vv(yr.)u, y = u(mm)u))

The print method returns the display formula and the data frame
associated with a groupedData object.

> print(Orthodont)

Grouped Data:

1
2
3
4

105
106
107
108

distance

26.
25.
29.
31.

24.
25.
28.
28.

0

o O O

o O O o

distance ~
age Subject
8 MO1
10 MO1
12 MO1
14 MO1
8 F11
10 F11
12 F11
14 F11

age | Subject
Sex
Male
Male
Male
Male

Female
Female
Female
Female

You can also use the names and formula methods to return the
variable names and their roles in a groupedData object.

> names(0Orthodont)

(1]

"distance

age" "Subject™ "Sex"

> formula(Orthodont)

distance ~ age | Subject
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One advantage of using a formula to describe the roles of variables in
a groupedData object is that this information can be used within the
model-fitting functions to make the model specification easier. For
example, obtaining preliminary linear regression fits by Subject is as
simple as the following command:

> Ortho.Tis <- TmList(Orthodont)

The 1mList function partitions data according to the levels of a
grouping factor, and individual linear models are fit for each data
partition. The linear models use the formula defined in the
groupedData object; in this example, TmList fits models for each
Subject according to the formula distance~age.

You can plot the Orthodont data with:

> plot(Orthodont, Tayout = c(8,4),
+ between = 1ist(y = c(0, 0.5, 0)))

The result is displayed in Figure 14.1. When establishing the order of
the levels of the grouping factor, and hence the order of panels in a
plot, re-ordering is only permitted within combinations of levels for
the outer factors. In the Orthodont data, Sex is an outer factor, which
is why the panels for males and females are grouped separately in
Figure 14.1. Within each gender group, panels are ordered by
maximum distance measurements.

The plot method for the groupedData class allows an optional
argument outer which can be given a logical value or a formula. A
logical value of TRUE (or T) indicates that the outer formula stored with
the data should be used in the plot. The right side of the explicit or
inferred formula replaces the grouping factor in the trellis formula.
The grouping factor is then used to determine which points are joined
with lines. For example:

> plot(Orthodont, outer =T)

The plot is displayed in Figure 14.2. The two panels in the figure
correspond to males and females. Within the panels, the four
measurements for each Subject are joined with lines.



Representing Grouped Data Sets

8 10 12 14
L1
F03 F04 F11

I 20

F10 Fo9 Fo6 Fo1 Fo5 Fo8 Fo7 Fo2

| Leded A7

Mo4 M12 Mo6 M13 M15 Mo1 Mo9

- 25

Distance from pituitary to pterygomaxillary fissure (mm)

M11 M16 M08 MO05 M14 MO02 MO7 MO03
30 4 o
i -3—9/@/‘2;\/&:\8/2/{ ﬁﬁ/)/J-
20 -
LU rrrrrrr LU rrrrrrirrrrrorrr TTrorrr Trrrrrir L
8 10 12 14 8 10 12 14 8 10 12 14 8 10 12 14
Age (yr)

Figure 14.1: Orthodontic growth patterns in 16 boys (M) and 11 girls (F) between 8
and 14 years of age. Panels within each gender group are ordered by maximum
response.
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30
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Figure 14.2: Orthodontic growth patterns in 16 boys and 11 girls between 8 and 14
years of age, with different panels per gender.

An example of grouped data with two levels of grouping is from an
experiment conducted by Deborah Darien at the School of Veterinary
Medicine, University of Wisconsin at Madison. The radiology study
consisted of repeated measures of mean pixel values from CT scans of
10 dogs. The pixel values were recorded over a period of 14 days after
the application of a contrast, and measurements were taken from both
the right and left lymph nodes in the axillary region of the dogs.

The data from the radiology study are stored in the example data set
Pixel, which has the following variables:

* The observations in the data set are grouped into 10
categories by Dog.

« The 10 dogs have two measurements (Side) for each day a
pixel value was recorded: "L" indicates that the CT scan was
on the left lymph node, and "R" indicates that it was on the
right lymph node.

* The mean pixel values are recorded in the pixel column of
the data set.
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The purpose of the experiment was to model the mean pixel value as
a function of time, in order to estimate the time when the maximum
mean pixel value was attained. We therefore wish to predict pixel
from day, using both Dog and Side as grouping variables.

To create a new groupedData object for the Pixel data, use the class
constructor as follows:

# Assign Pixel to your working directory.

Pixel <- Pixel

Pixel <- groupedData(pixel ~ day | Dog/Side,

data = Pixel, labels = Tist(

x = "Time post injection", y = "Pixel intensity"),
units = list(x = "(days)™))

+ o+ o+ vV

> Pixel

Grouped Data: pixel ~ day | Dog/Side
Dog Side day pixel

1 1 R 0 1045.8
2 1 R 1 1044.5
3 1 R 2 1042.9
4 1 R 4 1050.4
5 1 R 6 1045.2
6 1 R 10 1038.9
7 1 R 14 1039.8
8 2 R 0 1041.8
9 2 R 1 1045.6
10 2 R 2 1051.0
11 2 R 4 1054.1
12 2 R 6 1052.7
13 2 R 10 1062.0
14 2 R 14 1050.8
15 3 R 0 1039.8

Plot the grouped data with the following command:

> plot(Pixel, displayLevel =1, inner = ~Side)

The result is displayed in Figure 14.3. The grouping variable Dog
determines the number of panels in the plot, and the inner factor Side
determines which points in a panel are joined by lines. Thus, there
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are 10 panels in Figure 14.3, and each panel contains a set of
connected points for the left and right lymph nodes. The panels are
ordered according to maximum pixel values.

When multiple levels of grouping are present, the plot method allows
two optional arguments: displaylLevel and collapseLevel. These
arguments specify, respectively, the grouping level that determines
the panels in the Trellis plot, and the grouping level over which to
collapse the data.
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Figure 14.3: Mean pixel intensity of the right (R) and left (L) lymph nodes in the
axillary region, versus time from intravenous application of a contrast. The pixel
intensities were obtained from CT scans.

As an example of grouped data with a nonlinear response, consider
an experiment on the cold tolerance of a C grass species, Echinochloa
crus-galli, described in Potvin, Lechowicz, and Tardif (1990). A total of
twelve four-week-old plants, six from Quebec and six from
Mississippi, were divided into two groups: control plants that were
kept at 26°C, and chilled plants that were subject to 14 hours of
chilling at 7° C. After 10 hours of recovery at 20° C, COq uptake rates

(in ,umol/mzs) were measured for each plant at seven concentrations of
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ambient CO,: 100, 175, 250, 350, 500, 675, and 1000 /L. Each
plant was subjected to the seven concentrations of COy in increasing,

consecutive order.

The data from the CO, study are stored in the example data set 02,
which has the following variables:

* The 84 observations in the data set are grouped into 12
categories by Plant.

+ The 12 plants are classified into two groups by Type, an
indicator variable assuming the values "Quebec" and
"Mississippi”.

* The 12 plants are classified into two additional groups
according to Treatment, which indicates whether a plant was
"nonchilled"” or "chilled".

* Each plant has seven uptake measurements, corresponding to
the seven concentration (conc) values.

The objective of the experiment was to evaluate the effect of plant
type and chilling treatment on the CO, uptake. We therefore wish to
predict uptake from conc, using Plant as a grouping variable and
both Treatment and Type as outer covariates.

To create a new groupedData object for the C02 data, use the class
constructor as follows:

# Assign C02 to your working directory.

> €02 <- C02

> €02 <- groupedData(uptake ~ conc | Plant, data = C02,

+ outer = ~ Treatment * Type,

+ labels = Tist(x = "Ambient carbon dioxide concentration”,
+ y = "C02 uptake rate"),

+ units = Tist(x = "(uL/L)", y = "(umol/m"2 s)"))

> €02

Grouped Data: uptake ~ conc | Plant
Plant Type Treatment conc uptake
1 Qnl Quebec nonchilled 95 16.0
2 Qnl Quebec nonchilled 175 30.4
3 Qnl Quebec nonchilled 250 34.8
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Plot the grouped data with the following command:
> plot(C02)

The result is shown in Figure 14.4. As in the Orthodont example, you
can use the optional argument outer=T to indicate that the outer
formula stored with the data should be used in the plot. For example:

> plot(C02, outer = T)

The plot is displayed in Figure 14.5. The outer covariates, Treatment
and Type, determine the number of plots in the figure. The grouping
variable Plant determines the points that are connected by lines in
each panel.
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Figure 14.4: CO, uptake versus ambient CO, concentration for Echinochloa crus-

galli plants, six from Quebec and six from Mississippi. Half the plants of each type
were chilled overnight before the measurements were taken.
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Figure 14.5: CO, uptake versus ambient CO, by Treatment and Type.
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We can also obtain a numeric summary of the C02 data by group,
using the gsummary function as follows:

> gsummary(C02)

Plant Type Treatment conc uptake
Qnl Qnl Quebec nonchilled 435 33.22857
Qn2 Qn2 Quebec nonchilled 435 35.15714
Qn3 Qn3 Quebec nonchilled 435 37.61429
Qcl Qcl Quebec chilled 435 29.97143
Qc3 Qc3 Quebec chilled 435 32.58571
Qc? Qc? Quebec chilled 435 32.70000

Mn3 Mn3 Mississippi nonchilled 435 24.11429
Mn2 Mn2 Mississippi nonchilled 435 27.34286
Mn1l Mnl Mississippi nonchilled 435 26.40000
Mc2 Mc2 Mississippi chilled 435 12.14286
Mc3 Mc3 Mississippi chilled 435 17.30000
Mcl Mcl Mississippi chilled 435 18.00000

Another example of grouped data with a nonlinear response comes
from an experiment described in Davidian and Giltinan (1995),
which compares growth patterns of two genotypes of soybean. One
genotype is a commercial variety, Forrest, and the other is an
experimental strain, Plant Introduction #416937. The data were
collected in the three years from 1988 to 1990. At the beginning of the
growing season in each year, 16 plots were planted with seeds (8 plots
with each genotype). Each plot was sampled eight to ten times at
approximately weekly intervals. At sampling time, six plants were
randomly selected from each plot, leaves from these plants were
weighed, and the average leaf weight per plant was calculated for the
plot. Different plots in different sites were used in different years.

The data from the soybean study are stored in the example data set
Soybean, which has the following variables:

* The observations in the data set are grouped into 48
categories by P1ot, a variable that provides unique labels for
the 16 plots planted in each of the 3 years.

* The 48 plots are classified into three groups by Year, which
indicates whether the plot was planted in "1988", "1989", or
"1990".
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* The 48 plots are classified into two additional groups
according to Variety, which indicates whether a plot
contained the commercial strain of plants (F) or the
experimental strain (P).

* The average leaf weight at each Time for the plots is recorded
in the weight column of the data set.

The objective of the soybean experiment was to model the growth
pattern in terms of average leaf weight. We therefore wish to predict
weight from Time, using Plot as a grouping variable and both
Variety and Year as outer covariates.

To create a new groupedData object for the Soybean data, use the class
constructor as follows:

i

+ + 4+ + v v

>

Gr

O NOY O W N

el
N = O WO

Assign Soybean to your working directory.
Soybean <- Soybean

Soybean <- groupedData(weight ~ Time | Plot,
data = Soybean, outer = ~ Variety * Year,
labels = 1ist(x = "Time since planting”,

y = "Leaf weight/plant"),

units = list(x = "(days)", y = "(g)"))

Soybean
ouped Data: weight ~ Time | Plot
PTot Variety Year Time weight
1988F1 F 1988 14 0.10600
1988F1 F 1988 21 0.26100
1988F1 F 1988 28 0.66600
1988F1 F 1988 35 2.11000
1988F1 F 1988 42 3.56000
1988F1 F 1988 49 6.23000
1988F1 F 1988 56 8.71000
1988F1 F 1988 63 13.35000
1988F1 F 1988 70 16.34170
1988F1 F 1988 77 17.75083
1988F2 F 1988 14 0.10400
1988F2 F 1988 21 0.26900
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Plot the grouped data with the following command:

> plot(Soybean, outer= ~ Year * Variety)
The result is shown in Figure 14.6.
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Figure 14.6: Average leaf weight in plots of soybeans, versus time since planting. The
plots are from three different years and represent two different genotypes of soybeans.
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FITTING MODELS USING THE LME FUNCTION

Model
Definitions

The Spotfire S+ function 1me fits a linear mixed-effects model as
described in Laird and Ware (1982), or a multilevel linear mixed-
effects model as described in Longford (1993) and Goldstein (1995).
The models are fitted using either maximum likelihood or restricted
maximum likelihood. The Tme function produces objects of class
"Tme™.

Example: the Orthodont data

The plot of the individual growth curves in Figure 14.1 suggests that a
linear model might adequately explain the orthodontic distance as a
function of age. However, the intercepts and slopes of the lines seem
to vary with the individual patient. The corresponding linear mixed-
effects model is given by the following equation:

dij = (By + bjg) + (B + bjy)age; + &; (14.1)

where dj; represents the distance for the ith individual at age j, and
By and B; are the population average intercept and the population
average slope, respectively. The b;, and b;; terms are the effects in

intercept and slope associated with the ith individual, and ¢;; is the
within-subject error term. It is assumed that the b; = (blo,bﬂ)T are

independent and identically distributed with a N(O,OZD) distribution,

2 . .
where 6D represents the covariance matrix for the random effects.

Furthermore, we assume that the £ are independent and identically

distributed with a N(O,og) distribution, independent of the b;.
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One of the questions of interest for these data is whether the curves
show significant differences between boys and girls. The model given
by Equation (14.1) can be modified as

(14.2)
(B + Byisex; + bil)agej + &

to test for sex-related differences in intercept and slope. In Equation
(14.2), sex; is an indicator variable assuming the value 0 if the ith

individual is a boy and 1 if she is a girl. The f), and f, terms
represent the population average intercept and slope for the boys; 4,
and f;, are the changes (with respect to f,; and f,,) in population

average intercept and slope for girls. Differences between boys and
girls can be evaluated by testing whether f,; and £, are significantly

different from zero. The remaining terms in Equation (14.2) are
defined as in Equation (14.1).

Example: the Pixel data

In Figure 14.3, a second order polynomial seems to adequately
explain the evolution of pixel intensity with time. Preliminary
analyses indicated that the intercept varies with Dog, as well as with
Side nested in Dog. In addition, the linear term varies with Dog, but
not with Side. The corresponding multilevel linear mixed-effects
model is given by the following equation:

2
Yiik = (Bo+Doi+ Do )+ (By + b1t + Bolije + € (14.3)

where i = 1, 2, .., 10 refers to the dog number, j = 1, 2 refers to
the lymph node side (j = 1 corresponds to the right side and j = 2
corresponds to the left), and £ refers to time. The £, £, and f, terms

denote, respectively, the intercept, the linear term, and the quadratic
term fixed effects. The §,; term denotes the intercept random effect at

the Dog level, 5y, j denotes the intercept random effect at the Side
within Dog level, and ;,; denotes the linear term random effect at the
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Dog level. The y variable is the pixel intensity, ¢ is the time since
contrast injection, and Ejj is the error term. It is assumed that the

b,= (bOi’bli)T are independent and identically distributed with a

N(O,OZDl) distribution, where ($2D1 represents the covariance matrix

for random effects at the Dog level. The b; = [80; ,j] are independent of
the b, and independent and identically distributed with a N(O,OZDQ)

distribution, where GQDQ represents the covariance matrix for
random effects at the Side within Dog level. The £y, are independent

and identically distributed with a N(O,GQ) distribution, independent of
the b, and the bz‘,j'

The typical call to the 1me function is of the form

Tme(fixed, data, random)

Only the first argument is required. The arguments fixed and random
are generally given as formulas. Any linear formula is allowed for
both arguments, giving the model formulation considerable
flexibility. The optional argument data specifies the data frame in
which the model’s variables are available.

Other arguments in the Tme function allow for flexible definitions of
the within-group correlation and heteroscedasticity structures, the
subset of the data to be modeled, the method to use when fitting the
model, and the list of control values for the estimation algorithm. See
the 1me online help file for specific details on each argument.

Example: the Orthodont data

For the model given by Equation (14.1), the fixed and random
formulas are written as follows:

fixed = distance ~ age, random = ~ age
For the model given by Equation (14.2), these formulas are:
fixed = distance ~ age * Sex, random = ~ age

Note that the response variable is given only in the formula for the
fixed argument, and that random is usually a one-sided linear
formula. If the random argument is omitted, it is assumed to be the
same as the right side of the fixed formula.
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Because Orthodont is a groupedData object, the grouping structure is
extracted from the groupedData display formula, and does not need
to be explicitly included in random. Alternatively, the grouping
structure can be included in the formula as a conditioning expression:

random = ~ age | Subject

A simple call to Tme that fits the model in Equation (14.1) is as follows:

> Ortho.fitl <- ITme(fixed = distance ~ age,
+ data = Orthodont, random = ~ age | Subject)

To fit the model given by Equation (14.2), you can update Ortho.fitl
as follows:

# set contrasts for desired parameterization

> options(contrasts = c("contr.treatment™, "contr.poly"))
> Ortho.fit2 <- update(Ortho.fitl,

+ fixed = distance ~ age * Sex)

Example: the Pixel data

When multiple levels of grouping are present, as in the Pixel
example, random must be given as a list of formulas. For the model
given by Equation (14.3), the fixed and random formulas are:

fixed = pixel ~ day + day”?2

random = 1ist(Dog = ~ day, Side = ~ 1)
Note that the names of the elements in the random list correspond to
the names of the grouping factors; they are assumed to be in

outermost to innermost order. As with all Spotfire S+ formulas, a
model with a single intercept is represented by ~ 1.

The multilevel model given by Equation (14.3) is fitted with the

following command:

> Pixel.fitl <- Tme(fixed = pixel ~ day + day”"2,
+ data = Pixel, random = list(Dog = ~ day, Side = ~1))
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The print
Method

Manipulating lme Objects

A call to the 1me function returns an object of class "1me". The online
help file for TmeObject contains a description of the returned object

and each of its components. There are several methods available for
Tme objects, including print, summary, anova, and plot. These
methods are described in the following sections.

A brief description of the 1me estimation results is returned by the

print method. It displays estimates of the fixed effects, as well as
standard deviations and correlations of random effects. If fitted, the

on page 481, the results are as follows:
> print(Ortho.fitl)

Linear mixed-effects model fit by REML
Data: Orthodont
Log-restricted-1likelihood: -221.3183
Fixed: distance ~ age

(Intercept) age
16.76111 0.6601852

Random effects:
Formula: ~ age | Subject
Structure: General positive-definite
StdDev Corr
(Intercept) 2.3270357 (Inter
age 0.2264279 -0.609
Residual 1.3100396

Number of Observations: 108
Number of Groups: 27

within-group correlation and variance function parameters are also
printed. For the Ortho.fitl object defined in the section Arguments
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The summary A complete description of the Tme estimation results is returned by the

Method summary function. For the Ortho.fit2 object defined in the section
Arguments on page 481, the results are given by the following
command:

> summary(Ortho.fit2)
Linear mixed-effects model fit by REML
Data: Orthodont
AIC BIC TogLik
448.5817 469.7368 -216.2908

Random effects:
Formula: ~ age | Subject
Structure: General positive-definite
StdDev Corr
(Intercept) 2.4055020 (Inter
age 0.1803458 -0.668
Residual 1.3100393

Fixed effects: distance ~ age + Sex + age:Sex
Value Std.Error DF t-value p-value
(Intercept) 16.34062 1.018532 79 16.04331 <.0001
age 0.78438 0.086000 79 9.12069 <.0001
Sex 1.03210 1.595733 25 0.64679 0.5237
age:Sex -0.30483 0.134735 79 -2.26243 0.0264
Correlation:
(Intr) age Sex
age -0.880
Sex -0.638 0.562
age:Sex 0.562 -0.638 -0.880

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.168077 -0.3859386 0.007103473 0.4451539 3.849464

Number of Observations: 108
Number of Groups: 27

The approximate standard errors for the fixed effects are computed
using an algorithm based on the asymptotic theory described in
Pinheiro (1994). In the results for Ortho. fit2, the significant, negative
fixed effect between age and Sex indicate that the orthodontic
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distance increases faster in boys than in girls. However, the non-
significant fixed effect for Sex indicates that the average intercept is
common to boys and girls.

To summarize the estimation results for the Pixel.fitl object defined
on page 482, use the following:

> summary(Pixel.fitl)
Linear mixed-effects model fit by REML
Data: Pixel
AIC BIC TogLik
841.2102 861.9712 -412.6051

Random effects:
Formula: ~ day | Dog
Structure: General positive-definite
StdDev Corr
(Intercept) 28.36994 (Inter
day 1.84375 -0.555

Formula: ~ 1 | Side %in% Dog
(Intercept) Residual
StdDev: 16.82424 8.989609

Fixed effects: pixel ~ day + day”?2
Value Std.Error DF t-value p-value
(Intercept) 1073.339 10.17169 80 105.5222 <.0001
day 6.130 0.87932 80 6.9708 <.0001
I(day”2) -0.367 0.03395 80 -10.8218 <.0001
Correlation:
(Intr) day
day -0.517
I(day~2) 0.186 -0.668

Standardized Within-Group Residuals:
Min Ql Med Q3 Max
-2.829056 -0.4491807 0.02554919 0.557216 2.751964

Number of Observations: 102
Number of Groups:

Dog Side %in% Dog

10 20
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The anova A likelihood ratio test can be used to test the difference between fixed
Method effects in different 1me models. The anova method provides this
capability for 1me objects.
Warning

Likelihood comparisons between restricted maximum likelihood (REML) fits with different
fixed effects structures are not meaningful. To compare such models, you should re-fit the objects
using maximum likelihood (ML) before calling anova.

486

As an example, we compare the Ortho.fitl and Ortho.fit2 objects
defined for the Orthodont data set. Since the two models have
different fixed effects structures, we must re-fit them using maximum
likelihood estimation before calling the anova function. Use the
update function to re-fit the objects as follows:

> Ortho.fitl.ML <- update(Ortho.fitl, method = "ML")
> Ortho.fit2.ML <- update(Ortho.fit2, method = "ML™)
The call to anova produces:
> anova(Ortho.fitl.ML, Ortho.fit2.ML)
Model df AIC BIC logLik
Ortho.fitl.ML 1 6 451.2116 467.3044 -219.6058
Ortho.fit2.ML 2 8 443.8060 465.2630 -213.9030

Test L.Ratio p-value
Ortho.fitl.ML
Ortho.fit2.ML 1 vs 2 11.40565 0.0033

Recall that Ortho.fit2.ML includes terms that test for sex-related
differences in the data. The likelihood ratio test strongly rejects the
null hypothesis of no differences between boys and girls. For small
sample sizes, likelihood ratio tests tend to be too liberal when
comparing models with nested fixed effects structures, and should
therefore be used with caution. We recommend using the Wald-type
tests provided by the anova method (when a single model object is
passed to the function), as these tend to have significance levels close
to nominal, even for small samples.
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method
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Diagnostic plots for assessing the quality of a fitted Tme model are
obtained with the plot method. This method takes several optional
arguments, but a typical call is of the form

plot(object, form)

The first argument is an Tme object and the second is a display
formula for the Trellis graphic to be produced. The fitted object can
be referenced by the period symbol “.” in the form argument. For
example, the following command produces a plot of the standardized
residuals versus the fitted values for the Ortho.fit2 object, grouped
by gender:

> plot(Ortho.fit2,
+ form = resid(., type = "p") ~ fitted(.) | Sex)

The result is displayed in Figure 14.7.

The form expression above introduces two other common methods
for Tme objects: resid and fitted, which are abbreviations for
residuals and fitted.values. The resid and fitted functions are
standard Spotfire S+ extractors, and return the residuals and fitted
values for a model object, respectively. The argument type for the
residuals.ime method accepts the strings "pearson" (or "p"),
"normalized”, and "response"; the standardized residuals are

returned when type="p". By default the raw or "response" (or
standardized) residuals are calculated.

Figure 14.7 provides some evidence that the variability of the
orthodontic distance is greater in boys than in girls. In addition, it
appears that a few outliers are present in the data. To assess the
predictive power of the Ortho.fit2 model, consider the plot of the
observed values versus the fitted values for each Subject. The plots,
shown in Figure 14.8, are obtained with the following command:

> plot(Ortho.fit2, form = distance ~ fitted(.) | Subject,
+ Tayout = c(4,7), between = list(y = c(0, 0, 0, 0.5)),
+ aspect = 1.0, abline = ¢(0,1))
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Standardized residuals

Fitted values (mm)

Figure 14.7: Standardized residuals versus fitted values for the Ortho. fit2 model
object, grouped by gender.
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Figure 14.8: Observed distances versus fitted values by Subject for the
Ortho. fit2 model object.
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For most of the subjects, there is very good agreement between the
observed and fitted values, indicating that the fit is adequate.

The form argument to the plot method for Tme objects provides
virtually unlimited flexibility in generating customized diagnostic
plots. As a final example, consider the plot of the standardized
residuals (at the Side within Dog level) for the Pixel.fitl object,
grouped by Dog. The plot, similar to the one shown in Figure 14.9, is
obtained with the following command:

> plot(Pixel.fitl, form = Dog ~ resid(., type = "p"))

| | | | | |

Dog

N WA OO N 0 ©

—_
o

—_

Standardized residuals

Figure 14.9: Standardized residuals by Dog for the Pixel. fit1 model object.

The residuals seem to be symmetrically scattered around zero with
similar variabilities, except possibly for dog number 4.

Standard Spotfire S+ methods for extracting components of fitted
objects, such as residuals, fitted.values, and coefficients, can
also be used on 1me objects. In addition, 1me includes the methods
fixed.effects and random.effects for extracting the fixed effects
and the random effects estimates; abbreviations for these functions
are fixef and ranef, respectively. For example, the two commands
below return coefficients and fixed effects.
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> coef(Ortho.fit2)

(Intercept) age Sex age:Sex
M16 15.55737 0.6957276 1.032102 -0.3048295
M05 14.69529 0.7759009 1.032102 -0.3048295

F04 18.00174 0.8125880 1.032102 -0.3048295
F11 18.53692 0.8858555 1.032102 -0.3048295

> fixef(Pixel.fitl)

(Intercept) day I(day”2)
1073.339 6.129597 -0.3673503

The next command returns the random effects at the Dog level for the
Pixel.fitl object:

> ranef(Pixel.fitl, level = 1)

.714229 -1.19537074
.365854 -0.09936872
.582059 -0.43243128
.080310 2.19475596
.658544 3.09597260
.299771 -0.56127136
.823243 -1.03699983
.353938 -2.27445838
-7.053961 0.99025533
-5.753702 -0.68108358
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Random effects estimates can be visualized with the Spotfire S+
function plot.ranef.1me, designed specifically for this purpose. This
function offers great flexibility for the display of random effects. The
simplest display produces a dot plot of the random effects for each
coefficient, as in the following example:

> plot(ranef(Pixel.fitl, Tevel = 1))
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Predicted values for 1me objects are returned by the predict method.
For example, if you are interested in predicting the average
orthodontic measurement for both boys and girls at ages 14, 15, and
16, as well as for subjects MO1 and F10 at age 13, first create a new data
frame as follows:

Orthodont.new <- data.frame(
Sex = c("Male", "Male", "Male", "Female", "Female",
"Female", "Male", "Female"),

age = c(14, 15, 16, 14, 15, 16, 13, 13),
Subject = c(NA, NA, NA, NA, NA, NA, "MO1", "F10"))

+ + + + Vv

You can then use the following command to compute the subject-
specific and population predictions:

> predict(Ortho.fit2, Orthodont.new, level = c(0,1))

Subject predict.fixed predict.Subject

1 NA 27.32188 NA
2 NA 28.10625 NA
3 NA 28.89063 NA
4 NA 24.08636 NA
5 NA 24.56591 NA
6 NA 25.04545 NA
7 MO1 26.53750 29.17264
8 F10 23.60682 19.80758

The Tevel argument is used to define the desired prediction levels,
with zero referring to the population predictions.

Finally, the intervals method for 1me objects computes confidence
intervals for the parameters in a mixed-effects model:

> intervals(Ortho.fit2)

Approximate 95% confidence intervals

Fixed effects:
lower est. upper
(Intercept) 14.3132878 16.3406250 18.36796224
age 0.6131972 0.7843750 0.95555282
Sex -2.2543713 1.0321023 4.31857585
age:Sex -0.5730137 -0.3048295 -0.03664544
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Random Effects:
Level: Subject
lower est. upper
sd((Intercept)) 1.00636826 2.4055020 5.7498233
sd(age) 0.05845914 0.1803458 0.5563649
cor((Intercept),age) -0.96063585 -0.6676196 0.3285589

Within-group standard error:
lTower est. upper
1.084768 1.310039 1.582092

The models considered so far do not assume any special form for the
random effects variance-covariance matrix. See the section Advanced
Model Fitting for a variety of specifications of both the random effects
covariance matrix and the within-group correlation structure. Beyond
the available covariance structures, customized structures can be
designed by the user; this topic is also addressed in the section
Advanced Model Fitting.
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FITTING MODELS USING THE NLME FUNCTION

Model
Definition

Nonlinear mixed-effects models, which generalize nonlinear models
as well as linear mixed-effects models, can be analyzed with the
Spotfire S+ function nime. The nime function fits nonlinear mixed-
effects models as defined in Lindstrom and Bates (1990), using either
maximum likelihood or restricted maximum likelihood. These
models are of class "nIme" and inherit from the class "1me", so
methods for Tme objects apply to n1me objects as well.

There are many advantages to using nonlinear mixed-effects models.
For example, the model or expectation function is usually based on
sound theory about the mechanism generating the data. Hence, the
model parameters usually have a physical meaning of interest to the
investigator.

Example: the CO2 data

Recall the €02 data set, which was introduced in the section
Representing Grouped Data Sets as an example of grouped data with
a nonlinear response. The objective of the data collection was to
evaluate the effect of plant type and chilling treatment on their CO,

uptake. The model used in Potvin, e al. (1990) is
Uij = il —expl-4(Cj - g3 11+ &; (14.4)

where Ul-j denotes the CO, uptake rate of the ith plant at the jth CO,
ambient concentration. The ¢;, @; and ¢, terms denote the

asymptotic uptake rate, the uptake growth rate, and the maximum
ambient CO, concentration at which no uptake is verified for the ith

plant, respectively. The C] term denotes the jth ambient CO, level,

and the € are independent and identically distributed error terms

with a common N(O,OZ) distribution.

493



Chapter 14 Linear and Nonlinear Mixed-Effects Models

Arguments

494

Several optional arguments can be used with the n1me function, but a
typical call is of the form

nlme(model, data, fixed, random, start)

The model argument is required and consists of a formula specifying
the nonlinear model to be fitted. Any Spotfire S+ nonlinear formula
can be used, giving the function considerable flexibility.

The arguments fixed and random are formulas (or lists of formulas)
that define the structures of the fixed and random effects in the
model. Only the fixed argument is required; by default, random is
equivalent to fixed, so the random argument can be omitted. As in all
Spotfire S+ formulas, a 1 on the right side of the fixed or random
formulas indicates that a single intercept is associated with the effect.
However, any linear formula can be used instead. Again, this gives
the model considerable flexibility, as time-dependent parameters can
be easily incorporated. This occurs, for example, when a fixed
formula involves a covariate that changes with time.

Usually, every parameter in a mixed-effects model has an associated
fixed effect, but it may or may not have an associated random effect.
Since we assume that all random effects have zero means, the
inclusion of a random effect without a corresponding fixed effect is
unusual. Note that the fixed and random formulas can be
incorporated directly into the model declaration, but the approach
used in n1me allows for more efficient derivative calculations.

The data argument to nTme is optional and names a data frame in
which the variables for the model, fixed, and random formulas are
found. The optional start argument provides a list of starting values
for the iterative algorithm. Only the fixed effects starting estimates are
required; the default starting estimates for the random effects are zero.

Example: the CO2 data
For the CO, uptake data, we obtain the following model formula
from Equation (14.4):
uptake ~ A * (1 - exp(-B * (conc - C)))
where 4 = ¢, B=¢, and C = ¢,. To force the rate parameter ¢, to be

positive while preserving an unrestricted parametrization, you can
transform B with IB = log(B) as follows:

uptake ~ A * (1 - exp(-exp(1B) * (conc - C)))
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Alternatively, you can define a Spotfire S+ function that contains the
model formula:

> C02.func <-
+ function(conc, A, 1B, C) A*(1 - exp(-exp(1B)*(conc - C)))

The model argument in n1me then looks like

uptake ~ C02.func(conc, A, 1B, C)

The advantage of the latter approach is that the analytic derivatives of
the model function can be passed to nime as a gradient attribute of
the value returned by C02.func. The analytic derivatives can then be
used in the optimization algorithm. For example, we use the Spotfire
S+ function deriv to create expressions for the derivatives:

> C02.func <-
+ deriv(~ A * (1 - exp(-exp(IB) * (conc - C))),
+ c("A", "1B", "C"), function(conc, A, 1B, C){})

If the value returned by a function like C02.func does not have a
gradient attribute, numerical derivatives are used in the optimization
algorithm.

To fit a model for the C02 data in which all parameters are random
and no covariates are included, use the following fixed and random
formulas:

fixed =A+ 1B +C ~ 1, random= A + 1B + C ~ 1

Alternatively, the random argument can be omitted since it is
equivalent to the fixed formula by default. Because €02 is a
groupedData object, the grouping structure does not need to be
explicitly given in random, as it is extracted from the groupedData
display formula. However, it is possible to include the grouping
structure as a conditioning expression in the formula:

random = A + 1B + C ~ 1 | Plant

If you want to estimate the (fixed) effects of plant type and chilling
treatment on the parameters in the model, use

fixed = A+ 1B + C ~ Type * Treatment,
random = A+ 1B + C ~ 1
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The following simple call to nime fits the model given by Equation

(14.4):

> C02.fitl <-

+ nlme(model = uptake ~ C02.func(conc, A, 1B, C),
+ fixed = A+ 1B + C ~ 1, data = C02,

+ start c(30, 1og(0.01), 50))

The initial values for the fixed effects are obtained from Potvin, et al.
(1990).
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MANIPULATING NLME OBJECTS

The print
Method

Objects returned by the n1me function are of class "n1me". The online
help file for nTmeObject contains a description of the returned object
and each of its components. The n1me class inherits from the Tme class,
so that all methods described for Tme objects are also available for
nime objects. In fact, with the exception of the predict method, all
methods are common to both classes. We illustrate their uses here
with the CO4 uptake data.

The print method provides a brief description of the n1me estimation
results. It displays estimates of the standard deviations and
correlations of random effects, the within-group standard deviation,
and the fixed effects. For the C02.fit1 object defined in the section
Arguments on page 494, the results are as follows:

> print(C02.fitl)

NonTinear mixed-effects model fit by maximum likelihood
Model: uptake ~ C02.func(conc, A, 1B, C)
Data: CO2
Log-likelihood: -201.3103
Fixed: A+ 1B + C ~ 1
A 1B C
32.47374 -4.636204 43.5424

Random effects:
Formula: Tist(A~1 , 1B~1, C~1)
Level: Plant
Structure: General positive-definite
StdDev Corr
A 9.5100551 A 1B
1B 0.1283327 -0.160
C 10.4010223 0.999 -0.139
Residual 1.7664129

Number of Observations: 84
Number of Groups: 12
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Note that there is strong correlation between the A and the C random
effects, and that both of these have small correlations with the 1B
random effect. A scatterplot matrix provides a graphical description
of the random effects correlation structure. We generate a scatterplot
matrix with the pairs method:

> pairs(C02.fitl, ~ranef(.))
The result is shown in Figure 14.10.
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Figure 14.10: Scatterplot matrix of the estimated random effects in C02. fit1.

The correlation between A and C may be due to the fact that the plant
type and chilling treatment, which are not included in the C02.fitl
model, affect A and C in similar ways. The plot.ranef.1me function
can be used to explore the dependence of individual parameters on
plant type and chilling factor. The following command produces the
plot displayed in Figure 14.11.

> plot(ranef(C02.fitl, augFrame = T),
+ form = ~Type*Treatment, layout = c(3,1))



The summary
Method

Manipulating nlme Objects

Mississippi chilled

Mississippi nonchilled

Quebec chilled

Type * Treatment

Quebec nonchilled

Random effects
Figure 14.11: Estimated random effects versus plant type and chilling treatment.

These plots indicate that chilled plants tend to have smaller values of
A and C. However, the Mississippi plants seem to be much more
affected than the Quebec plants, suggesting an interaction effect
between plant type and chilling treatment. There is no clear pattern of
dependence between 1B and the treatment factors, suggesting that 18
is not significantly affected by either plant type or chilling treatment.

We can update C02.fitl, allowing the A and C fixed effects to depend
on the treatment factors, as follows:

> C02.fit2 <- update(CO2.fitl,
+ fixed = 1ist(A+C ~ Treatment * Type, 1B ~ 1),
+ start = c(32.55, 0, 0, 0, 41.56, 0, 0, 0, -4.6))

The summary method provides detailed information for fitted nime
objects. For the C02.fit2 object defined in the previous section, the
results are as follows:

> summary(C02.fit2)
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Nonlinear mixed-effects model fit by maximum Tlikelihood
Model: uptake ~ C02.func(conc, A, 1B, C)
Data: CO2
AIC BIC lTogLik
392.4073 431.3004 -180.2037

Random effects:
Formula: 1list(A~1, 1B~1, C~1)
Level: Plant
Structure: General positive-definite
StdDev Corr
A.(Intercept) 2.3709337 A.(In) 1B
1B 0.1475418 -0.336
C.(Intercept) 8.1630618 0.355 0.761
Residual 1.7113057

Fixed effects: 1ist(A + C ~ Treatment * Type, 1B ~ 1)
Value Std.Error DF t-value
A.(Intercept) 42.24934 1.49761 64 28.21125

A.Treatment -3.69231 2.05807 64 -1.79407
A.Type -11.07858 2.06458 64 -5.36603
A.Treatment:Type -9.57430 2.94275 64 -3.25352
C.(Intercept) 46.30206 6.43499 64 7.19536
C.Treatment 8.82823 7.22978 64 1.22109
C.Type 3.00775 8.04748 64 0.37375
C.Treatment:Type -49.01624 17.68013 64 -2.77239
1B -4.65063 0.08010 64 -58.06061

p-value

A.(Intercept) <.0001

A.Treatment 0.0775
A.Type <.0001
A.Treatment:Type 0.0018
C.(Intercept) <.0001
C.Treatment 0.2265
C.Type 0.7098
C.Treatment:Type 0.0073
1B <.0001

Correlation:

The small pvalues of the #statistics associated with the
Treatment:Type effects indicate that both factors have a significant
effect on parameters A and C. This implies that their joint effect is not
just the sum of the individual effects.
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For the fitted object C02.fit2, you can investigate the joint effect of
Treatment and Type on both A and C using the anova method.

> anova(C02.fit2,
+ Terms = c("A.Treatment"”, "A.Type", "A.Treatment:Type"))

F-test for: A.Treatment, A.Type, A.Treatment:Type
numDF denDF F-value p-value
1 3 64 51.77643 <.0001

> anova(C02.fit2,
+ Terms = c("C.Treatment™, "C.Type", "C.Treatment:Type"))

F-test for: C.Treatment, C.Type, C.Treatment:Type
numDF denDF F-value p-value
1 3 64 2.939699 0.0397

The p-values of the Wald F-tests suggest that Treatment and Type have
a stronger influence on A than on C.

Diagnostic plots for nime objects can be obtained with the plot
method, in the same way that they are generated for 1me objects. For
the C02.fit2 model, plots grouped by Treatment and Type of the
standardized residuals versus fitted values are shown in Figure 14.12.
The figure is obtained with the following command:

> plot(C02.fit2, form =

+ resid(., type = "p") ~ fitted(.) | Type * Treatment,

+ abline = 0)
The plots do not indicate any departures from the assumptions in the
model: no outliers seem to be present and the residuals are
symmetrically scattered around the y = 0 line, with constant spread
for different levels of the fitted values.
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Figure 14.12: Standardized residuals versus fitted values for the C02. fit2 model,
grouped by plant type and chilling treatment.

Predictions for n1me objects are returned by the predict method. For
example, to obtain population predictions of the CO, uptake rate for

Quebec and Mississippi plants under chilling and no chilling, at
ambient CO4 concentrations of 75, 100, 200, and 500 /L, first

define a new data frame as follows:

> C02.new <- data.frame(

+ Type = rep(c("Quebec", "Mississippi"), c(8, 8)),

+ Treatment=rep(rep(c("chilled"”,"nonchilled"),c(4,4)),2),
+ conc = rep(c(75, 100, 200, 500), 4))

You can then use the following command to compute the desired
predictions:

> predict(C02.fit2, CO2.new, level = 0)
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[1] 6.667665 13.444072 28.898614 38.007573 10.133021
[6] 16.957656 32.522187 41.695974 8.363796 10.391096
[11] 15.014636 17.739766 6.785064 11.966962 23.785004
[16] 30.750597

attr(, "label™):

[1] "Predicted values (umol/m*2 s)"

The augPred method can be used to plot smooth fitted curves for
predicted values. The method works by calculating fitted values at
closely spaced points. For example, Figure 14.13 presents fitted curves
for the C02.fit2 model. Individual curves are plotted for all twelve
plants in the C02 data, evaluated at 51 concentrations between 50 and
1000 /L. The curves are obtained with the following command:

> plot(augPred(C02.fit2))

The C02.fit2 model explains the data reasonably well, as evidenced
by the close agreement between its fitted values and the observed
uptake rates.
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Figure 14.13: Individual fitted curves for the twelve plants in the CO, uptake data,
based on the C02. f1t2 object.
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Methods for extracting components from a fitted n1me object are also
available, and are identical to those for 1me objects. Some of the most
commonly used methods are coef, fitted, fixef, ranef, resid, and
intervals. For more details on these extractors, see the online help
files and the section Other Methods on page 489.
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ADVANCED MODEL FITTING

Positive-
Definite Matrix
Structures

In many practical applications, we want to restrict the random effects
variance-covariance matrix to special forms that have fewer
parameters. For example, we may want to assume that the random
effects are independent so that their variance-covariance matrix is
diagonal. We may also want to make specific assumptions about the
within-group error structure. Both the Tme and n1me functions include
advanced options for defining positive-definite matrices, correlation
structures, and variance functions.

Different positive-definite matrices can be used to represent the
random effects variance-covariance structures in mixed-effects
models. The available matrices, listed in Table 14.1, are organized in
Spotfire S+ as different pdMat classes. To use a pdMat class when fitting
mixed-effects models, specify it with the random argument to either
Tme or nlme.

Table 14.1: Classes of positive-definite matrices.

Class Description

pdBand band diagonal

pdBlocked block diagonal

pdCompSymm compound symmetry

pdDiag diagonal

pdIdent multiple of an identity

pdKron Kronecker product

pdStrat a different pdMat class for each level of
a stratification variable

pdSymm general positive-definite
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By default, the pdSymm class is used to represent a random effects
covariance matrix. You can define your own pdMat class by specifying
a constructor function and, at a minimum, methods for the functions
pdConstruct, pdMatrix and coef. For examples of these functions, see
the methods for the pdSymm and pdDiag classes.

Example: the Orthodont data

We return to the Ortho.fit2 model that we created in the section
Arguments on page 494. To fit a model with independent slope and
intercept random effects, we include a diagonal variance-covariance
matrix using the pdDiag class:

> Ortho.fit3 <- update(Ortho.fit2, random = pdDiag(~age))
> Ortho.fit3

Linear mixed-effects model fit by REML
Data: Orthodont
Log-restricted-1likelihood: -216.5755
Fixed: distance ~ age + Sex + age:Sex

(Intercept) age Sex age:Sex
16.34062 0.784375 1.032102 -0.3048295

Random effects:
Formula: ~ age | Subject
Structure: Diagonal
(Intercept) age Residual
StdDev: 1.554607 0.08801665 1.365502

Number of Observations: 108
Number of Groups: 27

The grouping structure is inferred from the groupedData display
formula in the Orthodont data. Alternatively, the grouping structure
can be passed to the random argument as follows:

random = list(Subject = pdDiag(~age))

Example: the CO2 data

Recall the C02.fit2 object defined in the section The print Method
on page 497. We wish to test whether we can assume that the random
effects in C02.fit2 are independent. To do this, use the commands
below.
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Structures and
Variance
Functions
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> C02.fit3 <- update(C02.fit2, random = pdDiag(A+1B+C~1))
> anova(C02.fit2, C02.fit3)

Model df AIC BIC lToglLik Test
Co02.fit2 1 16 392.4073 431.3004 -180.2037
C02.fit3 2 13 391.3921 422.9927 -182.6961 1 vs 2

L.Ratio p-value
C02.fit2
CO02.fit3 4.984779 0.1729

As evidenced by the large p-value for the likelihood ratio test in the
anova output, the independence of the random effects seems
plausible. Note that because the two models have the same fixed
effects structure, the test based on restricted maximum likelihood is
meaningful.

The within-group error covariance structure can be flexibly modeled
by combining correlation structures and variance functions.
Correlation structures are used to model within-group correlations
that are not captured by the random effects. These are generally
associated with temporal or spatial dependencies. The variance
functions are used to model heteroscedasticity in the within-group
errors.

Similar to the positive-definite matrices described in the previous
section, the available correlation structures and variance functions are
organized into corStruct and varFunc classes. Table 14.2 and Table
14.3 list the standard classes for each structure.

Table 14.2: Classes of correlation structures.

Class Description
corAR1 AR(1)

COrARMA ARMA(p,q)
corBand banded

corCAR1L continuous AR(1)

507



Chapter 14 Linear and Nonlinear Mixed-Effects Models

508

Table 14.2: Classes of correlation structures. (Continued)

Class Description

corCompSymm compound symmetry

corkxp exponential spatial correlation
corGaus Gaussian spatial correlation
corldent multiple of an identity

corlLin linear spatial correlation
corRatio

rational quadratic spatial correlation

corSpatial

general spatial correlation

corSpher spherical spatial correlation

corStrat a different corStruct class for each level of a
stratification variable

corSymm general correlation matrix

Table 14.3: Classes of variance function structures.

Class Description

varComb combination of variance functions
varConstPower constant plus power of a variance covariate
varkexp exponential of a variance covariate
varFixed

fixed weights, determined by a variance covariate
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Table 14.3: Classes of variance function structures.

Class Description
varldent different variances per level of a factor
varPower power of a variance covariate

In either Tme or nime, the optional argument correlation specifies a
correlation structure, and the optional argument weights is used for
variance functions. By default, the within-group errors are assumed to
be independent and homoscedastic.

You can define your own correlation and variance function classes by
specifying appropriate constructor functions and a few method
functions. For a new correlation structure, method functions must be
defined for at least corMatrix and coef. For examples of these
functions, see the methods for the corSymm and corAR1 classes. A new
variance function requires methods for at least coef, coef<-, and
initialize. For examples of these functions, see the methods for the
varPower class.

Example: the Orthodont data

Figure 14.7 displays a plot of the residuals versus fitted values for the
Ortho.fit2 model. It suggests that different variance structures
should be allowed for boys and girls. We test this by updating the
Ortho.fit3 model (defined in the previous section) with the varIdent
variance function:

> Ortho.fit4 <- update(Ortho.fit3,
+ weights = varIdent(form = ~ 1|Sex))
> Ortho.fit4

Linear mixed-effects model fit by REML
Data: Orthodont
Log-restricted-Tikelihood: -206.0841
Fixed: distance ~ age + Sex + age:Sex

(Intercept) age Sex age:Sex
16.34062 0.784375 1.032102 -0.3048295
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Random effects:
Formula: ~ age | Subject
Structure: Diagonal
(Intercept) age Residual
StdDev: 1.448708 0.1094042 1.65842

Variance function:

Structure: Different standard deviations per stratum
Formula: ~ 1 | Sex

Parameter estimates:

Male Female

1 0.425368

Number of Observations: 108
Number of Groups: 27

> anova(Ortho.fit3, Ortho.fit4)

Model df AIC BIC TogLik
Ortho.fit3 1 7 449.9235 468.4343 -217.9618
Ortho.fit4 2 8 430.9407 452.0958 -207.4704

Test L.Ratio p-value
Ortho.fit3
Ortho.fit4 1 vs 2 20.98281 <.0001

There is strong indication that the orthodontic distance is less variable
in girls than in boys.

We can test for the presence of an autocorrelation of lag 1 in the by
updating Ortho.fit4 as follows:

> Ortho.fith <- update(Ortho.fit4, corr = corAR1())
> Ortho.fith

Linear mixed-effects model fit by REML
Data: Orthodont
Log-restricted-1likelihood: -206.037
Fixed: distance ~ age + Sex + age:Sex

(Intercept) age Sex age:Sex
16.31726 0.7859872 1.060799 -0.3068977
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Random effects:
Formula: ~ age | Subject
Structure: Diagonal
(Intercept) age Residual
StdDev: 1.451008 0.1121105 1.630654

Correlation Structure: AR(1)

Formula: ~ 1 | Subject

Parameter estimate(s):
Phi

-0.05702521

Variance function:

Structure: Different standard deviations per stratum
Formula: ~ 1 | Sex

Parameter estimates:

Male Female

1 0.4250633

Number of Observations: 108
Number of Groups: 27

> anova(Ortho.fit4, Ortho.fith)

Model df AIC BIC ToglLik Test
Ortho.fit4 1 8 428.1681 449.3233 -206.0841
Ortho.fith 2 9 430.0741 453.8736 -206.0370 1 vs 2

L.Ratio p-value
Ortho.fit4
Ortho.fith5 0.094035 0.7591

The large p-value of the likelihood ratio test indicates that the
autocorrelation is not present.

Note that the correlation structure is used together with the variance
function, representing a heterogeneous AR(1) process (Littel, et al.,
1996). Because the two structures are defined and constructed
separately, a given correlation structure can be combined with any of
the available variance functions.

511



Chapter 14 Linear and Nonlinear Mixed-Effects Models

512

Example: the Pixel data

In the form argument of the varFunc constructors, a fitted Tme or n1me
object can be referenced with the period “.” symbol. For example,
recall the Pixel.fitl object defined in the section Arguments on
page 481. To use a variance function that is an arbitrary power of the
fitted values in the model, update Pixel.fit1 as follows:

> Pixel.fit2 <- update(Pixel.fitl,
+ weights = varPower(form = ~ fitted(.)))
> Pixel.fit2

Linear mixed-effects model fit by REML
Data: Pixel
Log-restricted-likelihood: -412.4593
Fixed: pixel ~ day + day”?2

(Intercept) day I(day~2)
1073.314 6.10128 -0.3663864

Random effects:
Formula: ~ day | Dog
Structure: General positive-definite
StdDev Corr
(Intercept) 28.503164 (Inter
day 1.872961 -0.566

Formula: ~ 1 | Side %in% Dog
(Intercept) Residual
StdDev: 16.66015 4.4518e-006

Variance function:
Structure: Power of variance covariate

Formula: ~ fitted(.)

Parameter estimates:
power

2.076777

Number of Observations: 102
Number of Groups:
Dog Side %in% Dog

10 20

> anova(Pixel.fitl, Pixel.fit2)
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Model df AIC BIC loglLik Test
Pixel.fitl 1 8 841.2102 861.9712 -412.6051
Pixel.fit2 2 9 842.9187 866.2747 -412.4593 1 vs 2

L.Ratio p-value
Pixel.fitl
Pixel.fit2 0.2915376 0.5892

There is no evidence of heteroscedasticity in this case, as evidenced
by the large p-value of the likelihood ratio test in the anova output.
Because the default value for form in varPower is ~fitted(.), it
suffices to use weights = varPower() in this example.

Example: the CO2 data

As a final example, we test for the presence of serial correlation in the
within-group errors of the nonlinear C02.fit3 model (defined in the
previous section). To do this, we use the corAR1 class as follows:

> C02.fit4 <- update(C02.fit3, correlation = corAR1())
> anova(C02.fit3, C02.fit4)

Model df AIC BIC loglLik Test
C02.fit3 1 13 391.3921 422.9927 -182.6961
C02.fit4 2 14 393.2980 427.3295 -182.6490 1 vs 2

L.Ratio p-value
C02.fit3
CO02.fit4 0.09407508 0.7591

There does not appear to be evidence of within-group serial
correlation.

The SPOTFIRE S+ function nlslList can be used to create a list of
nonlinear fits for each group of a groupedData object. This function is
an extension of nls, which is discussed in detail in the chapter
Nonlinear Models. As with n1me, you must provide initial estimates
for the fixed effects parameters when using n1sList. You can either
provide the starting values explicitly, or compute them using a self-
starting function. A self-starting function is a class of models useful for
particular applications. We describe below several self-starting
functions that are provided with Spotfire S+.
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One way of providing initial values to n1sList is to include them in
the data set as a parameters attribute. In addition, both n1sList and
nime have optional start arguments that can be used to provide the
initial estimates as input. Alternatively, a function that derives initial
estimates can be added to the model formula itself as an attribute.
This constitutes a selfStart function in Spotfire S+. When a self-
starting function is used in calls to n1sList and nlme, initial estimates
for the parameters are taken directly from the initial attribute of the
function.

The following four self-starting functions are useful in biostatistics
applications.

* Biexponential model:

p B
el 2

't et
e +0,e

The corresponding Spotfire S+ function is
SSbiexp(input, Al, Trcl, A2, Trc2), where input=tisa
covariate and Al=0y, A2=0,, 1rc1=[B;, and Trc2=B, are

parameters.
*  First-order Compartment model:

<"t e
ef. 7. (e e

e (eP_e")

The corresponding Spotfire S+ function is

SSfol(Dose, input, 1C1, 1Ka, 1Ke), where Dose=dis a
covariate representing the initial dose, input=tis a covariate
representing the time at which to evaluate the model, and
1C1=0, 1Ka=P, and 1Ke=y are parameters.

*  Four-parameter Logistic model:

ot B(;a 70
1+e Y

The corresponding Spotfire S+ function is
SSfpl(input, A, B, xmid, scal), where input=xisa
covariate and A=0, B=[3, xmid=y, and scal=6 are parameters.
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*  Logistic model:

o

1+ e—(t—B)/ Y

The corresponding Spotfire S+ function is

SSlogis(time, Asym, xmid, scal), where time=tis a
covariate and Asym=0, xmid=P, and scal=Yy are parameters.

Other Spotfire S+ self-starting functions are listed in Table 14.4.
Details about each function can be found in its corresponding online
help file. You can define your own self-starting function by using the
selfStart constructor.

Table 14.4: Self-starting models available in Spotfire S+.

Function Model

SSasymp asymptotic regression

SSasympOff asymptotic regression with an offset
SSasympOrig asymptotic regression through the origin
SSbhiexp biexponential model

SSfol first-order compartment model

SSfp1 four-parameter logistic model

SSlogis logistic model

SSmicmen Michaelis-Menten relationship

Example: The Soybean data

We apply the self-starting function SSlogis to the Soybean data
introduced in the section Representing Grouped Data Sets. We want
to verify the hypothesis that a logistic model can be used represent

leaf growth.
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The n1sList call is as follows:

> Soybean.nlslList <- nlsList(weight ~
+ SSlogis(Time, Asym, xmid, scal) | Plot, data = Soybean)

Error in nls(y ~ 1/(1 + exp((xmid - x)/scal)), data
singular gradient matrix

The error message indicates that n1s could not compute a fit for one
of the groups in the data set. The object Soybean.nlsList is
nevertheless created.

Warning

On occasion, n1sList returns errors when it cannot adequately fit one or more groups in the
data set. When this occurs, fits for the remaining groups are still computed.

The results in Soybean.nlsList show that the 1989P8 group in the
Soybean data could not be fitted appropriately with the logistic model.
We can see this directly by using the coef function.

> coef(Soybean.nlsList)

1988F4
1988F2
1988F1
1988F7
1988F5
1988F8
1989P2
1989P8
1990F2
1990P5
1990pP2
1990P4

15.
19.
20.
19.
30.
.776430

22

28.

19.

19.

25.
26.

Asym
151338
745503
338576
871706
647205

294391
NA
459767

543787
787317
132712

52.
56.
57.
56.
64.
59.

67.

66.

51

61

xmid
83361
57514
40265
16236
12857
32964

17185
NA
28652

.14830
62.
.20345

35974

O — 0 O o o

12.

13.

7.

11.
10.

An nlme method exists for n1sList
population parameters and individual random effects for an n1sList
model. For example, the following simple call computes a mixed-
effects model from the Soybean.nTsList object.
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scal

.176641
.406720
.604870
.069718
.262351
.000267

522720
NA
158397

291976
657019
973765

objects, which allows you to fit
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> Soybean.fitl <- nime(Soybean.nlsList)
> summary(Soybean.fitl)

NonTinear mixed-effects model fit by maximum likelihood
Model: weight ~ SSTogis(Time, Asym, xmid, scal)
Data: Soybean
AIC BIC TogLik
1499.667 1539.877 -739.8334

Random effects:
Formula: list(Asym ~ 1 , xmid ~ 1 , scal ~ 1)
Level: Plot
Structure: General positive-definite
StdDev Corr
Asym 5.200969 Asym xmid
xmid 4.196918 0.721
scal 1.403934 0.711 0.959
Residual 1.123517

Fixed effects: Tist(Asym ~ 1 , xmid ~ 1 , scal ~ 1)
Value Std.Error DF t-value p-value
Asym 19.25326 0.8031745 362 23.97145 <.0001
xmid 55.02012 0.7272288 362 75.65724 <.0001
scal 8.40362 0.3152215 362 26.65941 <.0001
Correlation:
Asym xmid
xmid 0.724
scal 0.620 0.807

Standardized Within-Group Residuals:
Min Ql Med Q3 Max
-6.086247 -0.2217542 -0.03385827 0.2974177 4.845216

Number of Observations: 412
Number of Groups: 48

The Soybean.fitl object does not incorporate covariates or within-
group errors. Comparing the estimated standard deviations and
means of Asym, xmid, and scal, the asymptotic weight Asym has the
highest coefficient of variation (5.2/19.25 = 0.27). Modeling this
random effects parameter is the focus of the following analyses.
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We first attempt to model the asymptotic weight as a function of the
genotype variety and the planting year. To model the within-group
errors, we assume the serial correlation follows an AR(1) process.
Given that the observations are not equally spaced in time, we need
to use the continuous form of the AR process and provide the time
variable explicitly. From Figure 14.14, we conclude that the within-
group variance is proportional to some power of the absolute value of
the predictions. The figure is obtained with the following command:

> plot(Soybean.fitl)

Standardized residuals

T T T T T T
0 5 10 15 20 25

Fitted values (g)
Figure 14.14: A plot of the standardized residuals for the Soybean. fit1 model.

We fit an improved model to the Soybean data below. In the new fit,
we model the within-group errors using the corCARl correlation
structure and the varPower variance function. Initial estimates for the
parameterization of Asym are derived from the results of
Soybean.nlsList.
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Soybean.fit2 <- nlme(weight ~

SS1ogis(Time, Asym, xmid, scal), data = Soybean,

fixed = 1ist(Asym ~ Variety * Year, xmid ~ 1, scal ~ 1),
random = list(Asym ~ 1, xmid ~ 1, scal ~ 1),

start = ¢(20.08425, 2.03699, -3.785161, 0.3036094,
1.497311, -1.084704, 55.02058, 8.402632),

correlation = corCAR1(form = ~Time),

weights = varPower())

+ + + + + + + v

Figure 14.15 displays a plot the residuals for the updated model,
obtained with the following command:

> plot(Soybean.fit2)

The residuals plot confirms our choice of variance structure. The
anova function is used to compare the Soybean.fitl and
Soybean.fit2 models. The progress in the log-likelihood, AIC, and
BIC is tremendous.

> anova(Soybean.fitl, Soybean.fit2)

Model df AIC BIC loglLik
Soybean.fitl 1 10 1499.667 1539.877 -739.8334
Soybean.fit2 2 17 678.592 746.950 -322.2962

Test L.Ratio p-value
Soybean.fitl
Soybean.fit2 1 vs 2 835.0744 <.0001

We conclude that both the genotype variety and planting year have a
large impact on the limiting leaf weight of the plants. The
experimental strain gains 2.5 grams in the limit.
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Modeling
Spatial
Dependence
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Standardized residuals

T T T T T
0 5 10 15 20

Fitted values (g)

Figure 14.15: A plot of the standardized residuals for Soybean. fit2.

Two main classes of dependence among within-group errors can be
modeled using the mixed-effects tools Spotfire S+: temporal and
spatial. To model serial correlation, or temporal dependence, several
correlation structures were introduced in Table 14.2. To assess and
model spatial dependence among the within-group errors, we use the
Variogram function.

The Variogram method for the 1me and nime classes estimates the
sample semivariogram from the residuals of a fitted object. The
semivariogram can then be plotted with its corresponding plot
method. If the residuals show evidence of spatial dependence, then
you need to determine either a model for the dependence or its
correlation structure.

We use the corSpatial function to model spatial dependence in the
within-group errors. This function is a constructor for the corSpatial
class, which represents a spatial correlation structure. This class is
virtual, having five real classes corresponding to five specific spatial
correlation structures: corExp, corGaus, corlin, corRatio, and
corSpher. An object returned by corSpatial inherits from one of



Advanced Model Fitting

these real classes, as determined by the type argument. Objects
created with this constructor need to be initialized using the
appropriate initialize method.

Example: the Soybean data
A typical call to the Variogram function for a mixed-effects model
looks like:

> plot(Variogram(Soybean.fitl, form = ~ Time))

The resulting plot, shown in Figure 14.16, does not show a strong
pattern in the semivariogram of the residuals from Soybean.fitl, in
terms of time distance. This implies that spatial correlation may not
be present in the model.

Semivariogram
Q,

05 4 r

0.0 4 L

Distance

Figure 14.16: Estimate of the sample semivariogram for the Soybean. fit1 model
object.

521



Chapter 14 Linear and Nonlinear Mixed-Effects Models

522

Refitting Soybean. fit2 without the AR(1) correlation structure shows
that the model may indeed be overparameterized:

> Soybean.fit3 <- update(Soybean.fit2, correlation = NULL)
> anova(Soybean.fitl, Soybean.fit3, Soybean.fit2)

Model df AIC BIC logLik
Soybean.fitl 1 10 1499.667 1539.877 -739.8334
Soybean.fit3 2 16 674.669 739.005 -321.3344
Soybean.fit2 3 17 678.592 746.950 -322.2962

Test L.Ratio p-value
Soybean.fitl
Soybean.fit3 1 vs 2 836.9981 <.0001
Soybean.fit2 2 vs 3 1.9237 0.1654

This indicates that only the change in the fixed effects model and the
use of a variance function explain the improvement we see in
Soybean. fit2. The model without the correlation structure is simpler,
and therefore preferred.
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INTRODUCTION

526

This chapter covers the fitting of nonlinear models such as in
nonlinear regression, likelihood models, and Bayesian estimation.
Nonlinear models are more general than the linear models usually
discussed. Specifying nonlinear models typically requires one or
more of the following: more general formulas, extended data frames,
starting values, and derivatives.

The two most common fitting criteria for nonlinear models
considered are Minimum sum and Minimum sum-of-squares.
Minimum sum minimizes the sum of contributions from observations
(the maximum likelihood problem). Minimum sum-of-squares
minimizes the sum of squared residuals (the nonlinear least-squares
regression problem).

The first sections of this chapter summarize the use of the nonlinear
optimization functions. Starting with the section Examples of
Nonlinear Models, the use of the ms and n1s functions are examined,
along with corresponding examples and theory, in much more detail.



Optimization Functions

OPTIMIZATION FUNCTIONS

TIBCO Spotfire S+ has several functions for finding roots of
equations and local maxima and minima of functions, as shown in

Table 15.1.

Table 15.1: The range of Spotfire S+ functions for finding roots, maxima, and minima.

Function Description

polyroot Finds the roots of a complex polynomial equation.

uniroot Finds the root of a univariate real-valued function in a user-supplied interval.

peaks Finds local maxima in a set of discrete points.

optimize Approximates a local optimum of a continuous univariate function within a
given interval.

ms Finds a local minimum of a multivariate function.

nimin Finds a local minimum of a nonlinear function using a general quasi-Newton
optimizer.

niminb Finds a local minimum for smooth nonlinear functions subject to bound-
constrained parameters.

nls Finds a local minimum of the sums of squares of one or more multivariate
functions.

nlregb Finds a local minimum for sums of squares of nonlinear functions subject to
bound-constrained parameters.

nnls Finds the least-squares solution subject to the constraint that the coefficients

be nonnegative.
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The function polyroot finds the roots (zeros) of the complex-valued
k
polynomial equation @,z +..4+a;Z2+3; = 0. The input to

polyroot is the vector of coefficients c(a,, .., a;). For example, to

solve the equation 2°+52+6 = 0, use polyroot as follows:

> polyroot(c(6, 5, 1))

[1] -2+2.584939e-261 -3-2.584939e-261

Since 2.584939e-26i is equivalent to zero in machine arithmetic,
polyroot returns -2 and -3 for the roots of the polynomial, as
expected.

The function uniroot finds a zero of a continuous, univariate, real-
valued function within a user-specified interval for which the function
has opposite signs at the endpoints. The input to uniroot includes the
function, the lower and upper endpoints of the interval, and any
additional arguments to the function. For example, suppose you have
the function:

> my.fcn

function(x, amp=1, per=2*pi, horshft=0, vershft=0)
{

amp * sin(((2*pi)/per) * (x-horshft)) + vershft
}

This is the sine function with amplitude abs(amp), period abs(per),
horizontal (phase) shift horshft and vertical shift vershft. To find a

root of the function my.fcn in the interval n/ 2,3n/ 2 using its
default arguments, type:

> uniroot(my.fcn, interval = c(pi/2, 3*pi/2))
$root

[1] 3.141593

To find a root of my.fcn in the interval n/ 4,3n/ 4 with the period

set to T, type the following command.

> uniroot(my.fcn, interval = c(pi/4, 3*pi/4), per = pi)



Finding Local
Maxima and
Minima of
Univariate
Functions

Optimization Functions

$root:
[1] 1.570796
> pi/2
[1] 1.570796

See the help file for uniroot for information on other arguments to
this function.

The peaks function takes a data object x and returns an object of the
same type with logical values: T if a point is a local maximum;
otherwise, F:

> peaks(corn.rain)

1890: FTFFFFTFFFTFTFFFFTFFFFTFFTF
1917: TFFFTFFTFTF

Use peaks on the data object -x to find local minima:
> peaks(-corn.rain)

1890: FFFFTFFFFFFTFFFTFFFFFTFTFFT
1917: FTFFFTFFTFF

To find a local optimum (maximum or minimum) of a continuous
univariate function within a particular interval, use the optimize
function. The input to optimize includes the function to optimize, the
lower and upper endpoints of the interval, which optimum to look for
(maximum versus minimum), and any additional arguments to the
function.

> optimize(my.fcn, c(0, pi), maximum = T)

$maximum:
[17 1.570799

$objective:
[1] -1

$nf:
[1] 10

$interval:
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[1] 1.570759 1.570840

> pi/2
[1] 1.570799
> optimize(my.fcn, c(0, pi), maximum = F, per = pi)

$minimum:
[1] 2.356196

$objective:
[1] -1

$nf:
[1]1 9

$interval:
[1] 2.356155 2.356236

> 3%pi/4
[1] 2.356194

See the help file for optimize for information on other arguments to
this function.

Spotfire S+ has two functions to find the local minimum of a
multivariate function: niminb (Nonlinear Minimization with Box
Constraints) and ms (Minimize Sums).

The two required arguments to nTminb are objective (the function f
to minimize) and start (a vector of starting values for the
minimization). The function f must take as its first argument a vector
of parameters over which the minimization is carried out. By default,
there are no boundary constraints on the parameters. The niminb
function, however, also takes the optional arguments 1ower and upper
that specify bounds on the parameters. Additional arguments to f can
be passed in the call to n1minb.
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I. Example: using niminb to find a local minimum
> my.multvar.fcn

function(xvec, ctr = rep(0, Tength(xvec)))
{
if(length(xvec) != length(ctr))
stop("lengths of xvec and ctr do not match")
sum( (xvec - ctr)”2)

}

> nlminb(start = c(0,0), objective = my.multvar.fcn,
+ ctr = ¢c(1,2))

$parameters:
[1]112

$objective:
[1] 3.019858e-30

$message:
[1] "ABSOLUTE FUNCTION CONVERGENCE"

2. Example: using nlminb to find a local maximum

To find a local maximum of f, use nTminb on —f. Since unary minus
cannot be performed on a function, you must define a new function
that returns -1 times the value of the function you want to maximize:

> fcn.to.maximize

function(xvec)
{
- xvec[l]”2 + 2 * xvec[l] - xvec[2]”2 + 20 * xvec[2] + 40

}

> fcn.to.minimize

function(xvec)
{
- fen.to.maximize(xvec)

}
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> nlminb(start = c(0, 0), objective = fcn.to.minimize)

$parameters:
[1I1 1 10

$objective:
[1] -141

$message:
[1] "RELATIVE FUNCTION CONVERGENCE"

3. Example: using nlminb to find a constrained minimum

To find the local minimum of a multivariate function subject to
constraints, use n1minb with the Tower and/or upper arguments. As an
example of constrained minimization, consider the following function
norm.neg.2.11, which is (minus a constant) -2 times the log-likelihood
function of a Gaussian distribution:

norm.neg.2.11 <-
function(theta, y)

{

length(y) * log(thetal[2]) +

(1/thetal[2]) * sum((y - thetal[l1])"2)
+ }

+ + + + Vv

This function assumes that observations from a normal distribution
are stored in the vector y. The vector theta contains the mean
(theta[11) and variance (theta[21) of this distribution. To find the
maximum likelihood estimates of the mean and variance, we need to
find the wvalues of theta[l] and theta[2] that minimize
norm.neg.2.11 for a given set of observations stored in y. We must
use the lower argument to niminb because the estimate of variance
must be greater than zero:

> set.seed(12)

> my.obs <- rnorm(100, mean = 10, sd = 2)

> nlminb(start = c(0,1), objective = norm.neg.2.11,
+ lower = c(-Inf, 0), y = my.obs)

$parameters:

[1]1 9.863812 3.477773
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$objective:
[1] 224.6392

$message:
[11 "RELATIVE FUNCTION CONVERGENCE™"

> mean(my.obs)
[1] 9.863812
> (99/100) * var(my.obs)

[1] 3.477774

4. Example: using ms

The Minimum Sums function ms also minimizes a multivariate
function, but in the context of the modeling paradigm. It therefore
expects a formula rather than a function as its main argument. Here,
the last example is redone with ms, where mu is the estimate of the

population mean u and ss is the estimate of the population variance

2
o .

> ms( ~length(y) * log(ss) + (1/ss) * sum((y - mu)*2),
+ data = data.frame(y = my.obs),
+ start = Tist(mu = 0, ss = 1))

value: 224.6392
parameters:

mu SS
9.863813 3.477776

formula: ~length(y) * Tog(ss) + (1/ss) * sum((y-mu)”2)
1 observations
call: ms(formula = ~Tength(y) * log(ss) + (1/ss) *

sum((y - mu)*2),
data = data.frame(y=my.obs), start=list(mu=0, ss=1))
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Hint

The ns function does not do minimization subject to constraints on the parameters.

If there are multiple solutions to your minimization problem, you may not get the answer you
want using ms. In the above example, the ms function tells us we have “1 observations” because
the whole vector y was used at once in the formula. The Minimum Sum function minimizes the
sum of contributions to the formula, so we could have gotten the same estimates mu and ss with
the formula shown in example 5.
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5. Example: using ms with several observations

> ms( ~log(ss) + (1/ss) * (y - mu)"2,
+ data = data.frame(y = my.obs),
+ start = Tist(mu = 0, ss = 1))

value: 224.6392

parameters:
mu SSs
9.863813 3.477776

formula: ~log(ss) + (1/ss) * (y - mu)"2

100 observations
call: ms(formula = ~log(ss) + (1/ss) * (y - mu)"2,
data = data.frame(y=my.obs), start=list(mu=0,ss=1))

6. Example: using ms with a formula function

If the function you want to minimize is fairly complicated, then it is
usually easier to write a function and supply it in the formula.

> ms( ~norm.neg.2.11(theta,y), data = data.frame(y =
+ my.obs), start = Tist(theta = ¢c(0,1)))

value: 224.6392

parameters:
thetal theta?2
9.863813 3.477776
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formula: ~norm.neg.2.11(theta, y)
1 observations

call: ms(formula = ~norm.neg.2.11(theta, y), data =
data.frame(y = my.obs),
start = Tist(theta = c(0, 1)))

Solving Given an mXx n matrix A and a vector b of length m, the linear
Nonnegative nonnegative least squares problem is to find the vector x of length n
Least Squares that minimizes |AX — b]| , subject to the constraint that X; =20 for i in

Problems 1, ... n.

To solve nonnegative least squares problems in Spotfire S+, use the
nnls.fit function. For example, consider the following fit using the
stack data:

$coefficients
Air Flow Water Temp Acid Conc.
0.2858057 0.05715152 0

$residuals:

[1] 17.59245246 12.59245246 14.13578403
[4] 8.90840973 -0.97728723 -1.03443875
[7] -0.09159027 0.90840973 -2.89121593
[10] -3.60545832 -3.60545832 -4.54830680
[13] -6.60545832 -5.66260984 -7.31901267
[16] -8.31901267 -7.37616419 -7.37616419
[19] -6.43331572 -2.14814995 -6.14942983

$dual:

Air Flow Water Temp Acid Conc.
3.637979e-12 5.400125e-13 -1438.359
$rkappa:

final minimum
0.02488167 0.02488167

$call:
nnls.fit(x = stack.x, y = stack.loss)
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You can also use niregb to solve the nonnegative least squares
problem, since the nonnegativity constraint is just a simple box
constraint. To pose the problem to niregb, define two functions,
Tin.res and 1in.jac, of the form f(x,params) that represent the
residual function and the Jacobian of the residual function,

respectively:

> Tin.res <- function(x, b, A) A %*%» x - b

> 1in.jac <- function(x, A) A

> nlregh(n = length(stack.loss), start = rnorm(3),
+ res = Tin.res, jac = lin.jac, Tower = 0,

+ A = stack.x, b = stack.loss)

$parameters:
[1] 0.28580571 0.05715152 0.00000000

$objective:
[1] 1196.252

Generally, nn1s.fit is preferred to niregb for reasons of efficiency,
since nlregb is primarily designed for nonlinear problems. However,
nlregb can solve degenerate problems that can not be handled by
nnls.fit. You may also want to compare the results of nnl1s. fit with
those of 1m. Remember that 1m requires a formula and fits an intercept
term by default (which nnl1s.fit does not). Keeping this in mind, you
can construct the comparable call to 1m as follows:

> Im(stack.loss ~ stack.x - 1)

Call:

Im(formula = stack.loss ~ stack.x - 1)

Coefficients:

stack.xAir Flow stack.xWater Temp stack.xAcid Conc.
0.7967652 1.111422 -0.6249933

Degrees of freedom: 21 total; 18 residual
Residual standard error: 4.063987

For the stack loss data, the results of the constrained optimization
methods nn1s.fit and niregb agree completely. The linear model
produced by 1m includes a negative coefficient.
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You can use nn1s.fit to solve the weighted nonnegative least squares
problem by providing a vector of weights as the weights argument.
The weights used by 1m are the square roots of the weights used by
nnls.fit; you must keep this in mind if you are trying to solve a
problem using both functions.

Two functions, n1s and n1regb, are available for solving the special
minimization problem of nonlinear least squares. The function n1s is
used in the context of the modeling paradigm, so it expects a formula
rather than a function as its main argument. The function niregb
expects a function rather than a formula (the argument name is
residuals), and, unlike n1s, it can perform the minimization subject
to constraints on the parameters.

I. Example: using nls

In this example, we create 100 observations where the underlying
signal is a sine function with an amplitude of 4 and a horizontal

(phase) shift of m. Noise is added in the form of Gaussian random

numbers. We then use the n1s function to estimate the true values of
amplitude and horizontal shift.

> set.seed(20)

> noise <- rnorm(100, sd = 0.5)

> x <- seq(0, 2*pi, length = 100)

> my.nl.obs <- 4 * sin(x - pi) + noise

> plot(x, my.nl.obs)

> nls(y ~ amp * sin(x - horshft),

+ data = data.frame(y = my.nl.obs, x = x),
+ start = Tist(amp = 1, horshft = 0))

Residual sum of squares : 20.25668
parameters:
amp horshft
-4.112227 0.01059317
formula: y ~ amp * sin(x - horshft)
100 observations

2. Example: using nls with better starting values

The above example illustrates the importance of finding appropriate
starting values. The n1s function returns an estimate of amp close to -4
and an estimate of horshft close to 0 because of the cyclical nature of
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the sine function: sin(X—-7) = —sin(X). If we start with initial

estimates of amp and horshft closer to their true values, n1s gives us
the estimates we want.

> nls(y ~ amp * sin(x - horshft),
+ data = data.frame(y = my.nl.obs, x = x),
+ start = list(amp = 3, horshft = pi/2))

Residual sum of squares : 20.25668
parameters:

amp horshft
4.112227 -3.131
formula: y ~ amp * sin(x - horshft)
100 observations

3. Example: creating my.new.func and using nlregb

We can use the niregb function to redo the above example and
specify that the value of amp must be greater than 0:

> my.new.fcn

function(param, x, y)
{

amp <- param[1l]

horshft <- param[2]

y - amp * sin(x - horshft)
}

> nlregb(n = 100, start = c(3,pi/2),
+ residuals = my.new.fcn,
+ Tower = c(0, -Inf), x = x, y = my.nl.obs)

$parameters:
[1] 4.112227 3.152186

$objective:
[1] 20.25668

$message:
[1] "BOTH X AND RELATIVE FUNCTION CONVERGENCE"

$grad.norm:
[1] 5.960581e-09
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EXAMPLES OF NONLINEAR MODELS

Maximum
Likelihood
Estimation

Example One:

Ping-Pong

Parameters are estimated by maximizing the likelihood function.
Suppose n independent observations are distributed with probability
densities p;(8) = p(y;, 0), where 6 is a vector of parameters. The

likelihood function is defined as

L(y:0) = J]pr;(®)- (15.1)

i=1

The problem is to find the estimate é that maximizes the likelihood

function for the observed data. Maximizing the likelihood is
equivalent to minimizing the negative of the log-likelihood:

n

1(6) = —log(L(y:8)) = ¥ -log(p;(6)). (15.2)
i=1

Each member of the U.S. Table Tennis Association is assigned a
rating based on the member’s performance in tournaments. Winning
a match boosts the winner’s rating and lowers the loser’s rating some
number of points depending on the current ratings of the two players.
Using these data, two questions we might like to ask are the following:

1. Do players with a higher rating tend to win over players with
a lower rating?

2. Does a larger difference in rating imply that the higher-rated
player is more likely to win?

Assuming a logistic distribution in which .og(p/ (1-p)) is
proportional to the difference in rating and the average rating of the
two players, we get:

eDioc+ RB

©
1]

Do+ RiB' (15.3)
1+e
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Example Two:

In Equation (15.3), D; = W;-L; is the difference in rating between
the winner and loser and R; = %(Wi +L;) is the average rating for the

two players. To fit the model, we need to find o and B which
minimize the negative log-likelihood

Ylog(p;) = j—Dia—RiB+log(l +eDia+RiB)} . (15.4)

In a 1988 AT&T wave-soldering experiment, several factors were

Wave-Soldering  varied.
Skips
Factor Description
opening Amount of clearance around the mounting pad
solder Amount of solder
mask Type and thickness of the material used for the solder mask
padtype The geometry and size of the mounting pad
panel Each board was divided into three panels, with three runs on a board
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The results of the experiment gave the number of visible soldering
skips (faults) on a board. Physical theory and intuition suggest a
model in which the process is in one of two states:

1. A “perfect” state where no defects occur;
2. An “imperfect” state where there may or may not be defects.

Both the probability of being in the imperfect state and the
distribution of skips in that state depend on the factors in the
experiment. Assume that some “stress” S induces the process to be in
the imperfect state and also increases the tendency to generate skips
when in the imperfect state.
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Assume S depends linearly on the levels of the factors X;, for

=1, ., p:

p
Si = zxiija (15.5)

i=1

where B is the vector of parameters to be estimated.

Assume the probability P; of being in the imperfect state is

monotonically related to the stress by a logistic distribution:

1
Pi = —— ~
Y 15.6
1+ e( 05 (15.6)

As the stress increases, the above function approaches 1.

Given that the process is in an imperfect state, assume the probability
of k; skips is modeled by the Poisson distribution with mean A;:

3(ki) =€

k.

e !

AL (15.7)
k!

The probability of zero skips is the probability of being in the perfect
state plus the probability of being in the imperfect state and having
zero skips. The probability of one or more skips is the probability of
being in the imperfect state and having one or more skips.
Mathematically the probabilities may be written as:

(—T)Si —ki
+———ify; =0
(=15 1+ eH)Si
Piy=y) =4 1+¢€ y (15.8)
A A
(=08 y|!
1+e
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Nonlinear
Regression

Example Three:

Puromycin

542

The mean number of skips in the imperfect state is always positive

Si
and modeled in terms of the stress by ki = € . The parameters, T

and B, can be estimated by minimizing the negative log-likelihood.
The ith element of the negative log-likelihood can be written (to
within a constant) as:

S.

<7T)Si —e ! .
-1)S; log(e +e ) ify; =0

(
(B, ©) = log(l+e )~ (15.9)

S.
y.Si—e ' if y, >0

The model depicted above does not reduce to any simple linear
model.

Parameters are estimated by minimizing the sum of squared residuals.
Suppose n independent observations y can be modeled as a
nonlinear parametric function f of a vector x of predictor variables

and a vector 3 of parameters:

y = f(x;B) + ¢,
where the errors, €, are assumed to be normally distributed. The
nonlinear least-squares problem finds parameter estimates [3 that
minimize:
I
2
Y (yi—fxsB))”. (15.10)

i=1

A biochemical experiment measured reaction velocity in cells with
and without treatment by Puromycin. The data from this experiment
is stored in the example data frame Puromycin, which contains the
three variables described in the table below.
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Variable Description

conc The substrate concentration

vel The reaction velocity

state Indicator of treated or untreated

Assume a Michaelis-Menten relationship between velocity and
concentration:

V= ——+g, (15.11)
K+c

where V is the velocity, ¢ is the enzyme concentration, V,, is a
parameter representing the asymptotic Velocity as C—o, K is the
Michaelis parameter, and € is experimental error. Assuming the
treatment with the drug changes V., but not K, the optimization

function is

(Vmax + AVmax I ﬁreated}(St"’lte))ci)2

SVmax K) = Eﬁvi—
K+c;

(15.12)

where |y cqteqy is the function indicating if the cell was treated with

Puromycin.
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INFERENCE FOR NONLINEAR MODELS

Likelihood
Models

Least Squares
Models

The Fitting
Algorithms

544

With likelihood models, distributional results are asymptotic.
Maximum likelihood estimates tend toward a normal distribution
with a mean equal to the true parameter and a variance matrix given
by the inverse of the information matrix (i.e., the negative of the
second derivatives of the log-likelihood).

In least-squares models approximations to quantities such as standard
errors or correlations of parameter estimates are used. The
approximation proceeds as follows:

1. Replace the nonlinear model with its linear Taylor series
approximation at the parameter estimates.

2. Use the methods for linear statistical inference on the
approximation.

Consequently, the nonlinear inference results are called linear
approximation results.

Minimum-sum algorithm

This section deals with the general optimization of an objective
function modeled as a sum. The algorithm is a version of Newton’s
method based on a quadratic approximation of the objective function.
If both first and second derivatives are supplied, the approximation is
a local one using the derivatives. If no derivatives or only the first
derivative are supplied, the algorithm approximates the second
derivative information. It does this in a way specifically designed for
minimization.

The algorithm actually used is taken from the PORT subroutine
library which evolved from the published algorithm by Gay (1983).
Two key features of this algorithm are:

1. A quasi-Newton approximation for second derivatives.

2. A “trust region” approach controlling the size of the region in
which the quadratic approximation is believed to be accurate.

The algorithm is capable of working with user models specifying 0, 1,
or 2 orders of derivatives.
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Nonlinear least-squares algorithm

The Gauss-Newton algorithm is used with a step factor to ensure that
the sum of squares decreases at each iteration. A line-search method
is used, as opposed to the trust region employed in the minimum-sum
algorithm. The step direction is determined by a quadratic model.
The algorithm proceeds as follows:

1. The residuals are calculated, and the gradient is calculated or
approximated (depending on the data) at the current
parameter values.

2. A linear least-squares fit of the residual on the gradient gives
the parameter increment.

3. If applying the full parameter increment increases the sum of
squares rather than decreasing it, the length of the increment
is successively halved until the sum of squares is decreased.

4. The step factor is retained between iterations and started at
min{2*(previous step factor), 1}.

If the gradient is not specified analytically, it is calculated using finite
differences with forward differencing. For partially linear models, the
increment is calculated using the Golub-Pereyra method (Golub and
Pereyra, 1973) as implemented by Bates and Lindstrom (1986).

Nonlinear models typically require specifying more details than
models of other types. The information typically required to fit a
nonlinear model, using the Spotfire S+ functions ms or nTs, is:

1. A formula
2. Data

3. Starting values

For nonlinear models a formula is a Spotfire S+ expression involving
data, parameters in the model, and any other relevant quantities. The
parameters must be specified in the formula because there is no
assumption about where they are to be placed (as in linear models, for
example). Formulas are typically specified differently depending on
whether you have a minimum-sum problem or nonlinear least-
squares problem.
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Simplifying
Formulas

Implications of
the Formulas

546

In the puromycin example, you would specify a formula for the
simple model (described in Equation (15.11)) by:

vel ~ Vm*conc / (K + conc)

The parameters Vm and K are specified along with the data vel and
conc. Since there is no explicit response for minimum-sum models
(for example, likelihood models), it is left off in the formula.

In the ping-pong example (ignoring the average rating effect), the
formula for Equation (15.4) is:

~ -D*alpha + log(l + exp(D*alpha))

where D is a variable in the data and alpha is the parameter to fit.
Note that the model here is based only on the difference in ratings,
ignoring for the moment the average rating.

Some models can be organized as simple expressions involving one
or more Spotfire S+ functions that do all the work. Note that D*alpha
occurs twice in the formula for the ping-pong model. You can write a
general function for the log-likelihood in terms of D*alpha.

> Iprob <- function(lp) Tog(l + exp(lp)) - 1p

Recall that 1p is the linear predictor for the GLM. A simpler
expression for the model is now:

~ lprob( D * alpha )

Having 1prob now makes it easy to add additional terms or
parameters.

For nonlinear least-squares formulas the response on the left of ~ and
the predictor on the right must evaluate to numeric vectors of the
same length. The fitting algorithm tries to estimate parameters to
minimize the sum of squared differences between response and
prediction. If the response is left out the formula is interpreted as a
residual vector.

For Minimum-Sum formulas, the right of ~ must evaluate to a
numeric vector. The fitting algorithm tries to estimate parameters to
minimize the sum of this “predictor” vector. The concept here is
linked to maximum-likelihood models. The computational form does
not depend on an MLE concept. The elements of the vector may be
anything and there need not be more than one.



Parametrized
Data Frames

Inference for Nonlinear Models

The evaluated formulas can include derivatives with respect to the
parameters. The derivatives are supplied as attributes to the vector
that results when the predictor side of the formula is evaluated. When
explicit derivatives are not supplied, the algorithms use numeric
approximations.

Relevant data for nonlinear modeling includes:
* Variables
* Initial estimates of parameters
+ Fixed values occurring in a model formula

Parametrized data frames allow you to “attach” relevant data to a data
frame when the data do not occupy an entire column. Information is
attached as a "parameter" attribute of the data frame. The parameter
function returns or modifies the entire list of parameters and is
analogous to the attributes function. Similarly the param function
returns or modifies one parameter at a time and is analogous to the
attr function. You could supply values for Vm and K to the Puromycin
data frame with:

# Assign Puromycin to your working directory.
> Puromycin <- Puromycin
> parameters(Puromycin) <- Tist(Vm = 200, K = 0.1)

The parameter values can be retrieved with:
> parameters(Puromycin)

$Vm:
[1] 200

$K:
[1] 0.1

The class of Puromycin is now:
> class(Puromycin)

[1] "pframe"

Now, when Puromycin is attached, the parameters Vm and K are
available when referred to in formulas.
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Starting Values;

Before the formulas can be evaluated, the fitting functions must know

Identifying which names in the formula are parameters to be estimated and must
Parameters have starting values for these parameters. The fitting functions
determine this in the following way:

1. If the start argument is supplied, its names are the names of
the parameters to be estimated, and its values are the
corresponding starting values.

2. If start is missing, the parameters attribute of the data
argument defines the parameter names and values.

Hint

Explicitly use the start argument to name and initialize parameters.

You can easily see what the starting values are in the call component of the fit and you can
arrange to keep particular parameters constant when that makes sense.

Derivatives

First Derivatives
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Supplying derivatives of the predictor side of the formula with respect
to the parameters along with the formula can reduce the number of
iterations (thus speeding up the computations), increase numerical
accuracy, and improve the chance of convergence. In general
derivatives should be used whenever possible.

The fitting algorithms can use both first derivatives (the gradient) and
second derivatives (the Hessian). The derivatives are supplied to the
fitting functions as attributes to the formula. Recall that evaluating the

formula gives a vector of n values. Evaluating the first derivative
expression should give n values for each of the p parameters, that is
an N X p matrix. Evaluating the second derivative expression should
give n values for each of the px p partial derivatives, that is, an

NX p X p array.

The negative log-likelihood for the simple ping-pong model is:

(o) = Elog(l + eDia) - D;a] (15.13)
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Differentiating with respect to o and simplifying gives the gradient:

al

-3 )
Y0 0+ eD‘a) (15.14)

The gradient is supplied to the fitting function as the gradient
attribute of the formula:

> form.pp <- ~log(l + exp( D*alpha ) ) - D*alpha
> attr(form.pp, "gradient™) <-

+~-D/ ( 1+ exp( D*alpha ) )

> form.pp

~ log(l + exp(D * alpha)) - D * alpha
Gradient: ~ - D/(1 + exp(D * alpha))

When a function is used to simplify a formula, build the gradient into
the function. The 1prob function is used to simplify the formula
expression to ~Tprob(D*alpha):

> Tprob <- function(lp) log(l + exp(1p)) - 1p

An improved version of 1prob adds the gradient:

> 1prob2 <- function(lp, X)

+ {

+ elp <- exp(1p)

+ z <-1+ elp

+ value <- Tog(z) - 1p

+ attr(value, "gradient") <- -X/z
+ value

+

}

Note 1p is again the linear predictor and X is the data in the linear
predictor. With the gradient built into the function, you don’t need to
add it as an attribute to the formula; it is already an attribute to the
object hence used in the formula.
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Second
Derivatives
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The second derivatives may be added as the hessian attribute of the
formula. In the ping-pong example, the second derivative of the

negative log-likelihood with respect to o is:

3_2| — z'—
do’ (1+ eD‘m)2 o

The 1prob2 function is now modified to add the Hessian as follows.
The Hessian is added in a general enough form to allow for multiple
predictors.

Tprob3 <- function(lp, X)

{

elp <- exp(lp)

z <-1+ elp

value <- log(z) - 1p
attr(value, "gradient") <- -X/z
if(length(dx <- dim(X)) == 2)

{

n <- dx[1]; p <- dx[2]

} else

+ + + + + o+ o+

+
Py

n <- Tength(X); p <- 1

}

xx <- array(X, c(n, p, p))

attr(value, "hessian") <- (xx * aperm(xx, c(l, 3, 2)) *
elp)/z”2

value

}

Interesting points of the added code are:

+ + + + + + +

* The second derivative computations are performed at the
time of the assignment of the hessian attribute.

e The rest of the code (starting with if(length(...)))is to
make the Hessian general enough for multiple predictors.

* The aperm function does the equivalent of a transpose on the
second and third dimensions to produce the proper cross
products when multiple predictors are in the model.
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Symbolic A symbolic differentiation function D is available to aid in taking
Differentiation derivatives.

Table 15.2: Arguments to D.

Argument Purpose
expr Expression to be differentiated
name Which parameters to differentiate with respect to

The function D is used primarily as a support routine to deriv.

Again referring to the ping-pong example, form contains the
expression of the negative log-likelihood:

> form

expression(log((1l + exp(D * alpha))) - D * alpha)

The first derivative is computed as:
> D(form, "alpha™)

(exp(D * alpha) * D)/(1 + exp(D * alpha)) - D

And the second derivative is computed as:
> D(D(form, "alpha™), "alpha™)

(exp(D * alpha) * D * D)/(1 + exp(D * alpha))
- (exp(D * alpha) * D * (exp(D * alpha) * D))
/(1 + exp(D * alpha))*2
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The deriv function takes an expression, computes a derivative,
simplifies the result, then returns an expression or function for
computing the original expression along with its derivative(s).

Table 15.3: Arguments to deriv.

Argument Purpose

expr Expression to be differentiated, typically a formula, in
which case the expression returned computes the
right side of the ~ and its derivatives.

namevec Character vector of names of parameters.
function.arg Optional argument vector or prototype for a function.
tag Base of the names to be given to intermediate results.

Default is ".expr".

Periods are used in front of created object names to avoid conflict
with user-chosen names. The deriv function returns an expression in
the form expected for nonlinear models.

> deriv(form, "alpha™)

expression(
{
.exprl <- D * alpha
.expr2 <- exp(.exprl)
.expr3 <- 1 + .expr2
.value <- (log(.expr3)) - .exprl

.grad <- array(0, c(length(.value), 1), Tist(NULL,
l'a'lphal'))

.grad[, "alpha"] <- ((.expr2 * D)/.expr3) - D
attr(.value, "gradient™) <- .grad
.value

D)
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If the function.arg argument is supplied, a function is returned:
> deriv(form, "alpha"™, c("D", "alpha™))

function(D, alpha)
{
.exprl <- D * alpha
.expr2 <- exp(.exprl)
.expr3 <- 1 + .expr2
.value <- (log(.expr3)) - .exprl
.actualArgs <- match.call()["alpha"]
if(all(unlist(Tapply(as.Tist(.actualArgs), is,name))))
{

.grad <- array(0, c(length(.value), 1), Tist(NULL,
vva‘lphau))

.grad[, "alpha"] <- ((.expr2 * D)/.expr3) - D
dimnames(.grad) <- Tist(NULL, .actualArgs)
attr(.value, "gradient") <- .grad

}

.value

}

The namevec argument can be a vector:
> deriv(vel ~ Vm * (conc/(K + conc)), c("Vm", "K"))

expression(
{ .exprl <- K + conc
.expr2 <- conc/.exprl
.value <- Vm * .expr2
.grad <- array(0, c(length(.value), 2), Tist(NULL,
c("Vm","K")))
.grad[, "Vm"] <- .expr2
.grad[, "K"] <- - (Vm * (conc/(.exprl”2)))
attr(.value, "gradient") <- .grad
.value
b

The symbolic differentiation interprets each parameter as a scalar.
Generalization from scalar to vector parameters (for example, 1prob2)
must be done by hand. Use parentheses to help deriv find relevant
subexpressions. Without the redundant parentheses around conc/
(K + conc) the expression returned by deriv is not as simple as
possible.
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Fitting Models There are two different fitting functions for nonlinear models. The ms
function minimizes the sum of the vector supplied as the right side of
the formula. The nls function minimizes the sum of squared
differences between the left and right sides of the formula.

Table 15.4: Arguments to ms.

Argument Purpose

formula The nonlinear model formula (without a left side).
data A data frame in which to do the computations.

start Numeric vector of initial parameter values.

scale Parameter scaling.

control List of control values to be used in the iteration.
trace Indicates whether intermediate estimates are printed.

Table 15.5: Arguments tonls.

Argument Purpose

formula The nonlinear regression model as a formula.
data A data frame in which to do the computations.
start Numeric vector of initial parameter values.
control List of control values to be used in the iteration.
algorithm Which algorithm to use. The default is a Gauss-

Newton algorithm. If algorithm = "plinear", the
Golub-Pereyra algorithm for partially linear least-
squares models is used.

trace Indicates whether intermediate estimates are printed.
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Before fitting a model, take a look at the data displayed in Figure 15.1.

> attach(Puromycin)
> plot(conc,vel, type = "n")

> text(conc, vel, ifelse(state == "treated", "T", "U"))
T
-
T U U
32 T
- U
-
- U
> T U
U
-
o
1 TU
Y
-
U
B Y
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

conc

Figure 15.1: vel versus conc for treated (T) and untreated (U) groups.

I. Estimating starting values

Obtain an estimate of V,,,, for each group as the maximum value

each group attains.
* The treated group has a maximum of about 200.

* The untreated group has a maximum of about 160.

The value of K is the concentration at which V reaches v,/ 2,

roughly 0.1 for each group.
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2. A simple model

Start by fitting a simple model for the treated group only.

> Treated <- Puromycin[Puromycin$state == "treated",]

> Purfit.l <- nls(vel ~ Vm*conc/(K + conc), data = Treated,
+ start = list(Vm = 200, K = 0.1))

> Purfit.l

residual sum of squares: 1195.449
parameters:

Vm K
212.6826 0.06411945
formula: vel~(Vm * conc)/(K + conc)
12 observations

Fit a model for the untreated group similarly but with vm=160.

> Purfit.2

residual sum of squares: 859.6043
parameters:

Vm K
160.2769 0.04770334
formula: vel ~ (Vm * conc)/(K + conc)
11 observations

3. A more complicated model

Obtain summaries of the fits with the summary function:

> summary (Purfit.1)

Formula: vel ~ (Vm * conc)/(K + conc)

Parameters:
Value Std. Error t value
Vm 212.6830000 6.94709000 30.61460
K 0.0641194 0.00828075 7.74319

Residual standard error: 10.9337 on 10 degrees of freedom
Correlation of Parameter Estimates:

Vm
K 0.765
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> summary(Purfit.2)

Formula: vel ~ (Vm * conc)/(K + conc)

Parameters:
Value Std. Error t value
Vm 160.2770000 6.48003000 24.73400
K 0.0477033 0.00778125 6.13055

Residual standard error: 9.773 on 9 degrees of freedom

Correlation of Parameter Estimates:
Vm
K 0.777

An approximate ttest for the difference in K between the two models
suggests there is no difference:

> (0.06412 - 0.0477)/sqrt(0.00828"2 + 0.00778"2)

[1] 1.445214

The correct test of whether the K s should be different:

> Purboth <- nls(vel ~ (Vm + delV*(state == "treated")) *
+ conc/(K + conc), data = Puromycin,

+ start = list(Vm = 160, delV = 40, K = 0.05))

> summary (Purboth)

Formula: vel ~ ((Vm + delV * (state == "treated")) * conc)/
(K + conc)

Parameters:
Value Std. Error t value
Vm 166.6030000 5.80737000 28.68820
delV 42.0254000 6.27209000 6.70038
K 0.0579696 0.00590999 9.80875

Residual standard error: 10.5851 on 20 degrees of freedom
Correlation of Parameter Estimates:
Vm delV

delV -0.5410
K 0.6110 0.0644
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> combinedSS <- sum(Purfit.l$res”2) + sum(Purfit.2%$res”2)
> Fval <- (sum(Purboth$res”2) - combinedSS)/(combinedSS/19)
> Fval

[1] 1.718169
> 1 - pf(Fval, 1, 19)
[1] 0.2055523
Using a single K appears to be reasonable.
Fitting a Model = The example here develops a model based only on the difference in

to the Ping-Pong ratings, ignoring, for the moment, the average rating. The model to fit
Data is:

~-Da+ log(l + exp(Da)) ,

where D is a variable representing the difference in rating, and o is
the parameter to fit. There are four stages to the development of the
model.

I. Estimating starting values

A very crude initial estimate for o can be found with the following
process:

* Replace all the differences in ratings by 4d , where d is the
mean difference.

+  For each match, the probability from the model that the
winner had a higher rating satisfies:

Jo= log(p/ (1-p)).

*  Substitute for p the observed frequency with which the
higher-rated player wins, and then solve the above equation
for a.

The computations in Spotfire S+ proceed as follows:

> pingpong <- pingpong

> param(pingpong, "p") <- 0 # make pingpong a "pframe"
> attach(pingpong,1)

> D <- winner - loser

> p <- sum(winner > loser) / length(winner)
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> P
[1] 0.8223401

> alpha <- log(p/(l-p))/mean(D)
> alpha

[1] 0.007660995

> detach(l, save = "pingpong")
2. A simple model
Recall the 1prob function which calculates the log-likelihood for the
ping-pong problem:
> Tprob
function(1p)
log(l + exp(lp)) - 1p
The model is fitted as follows:
> attach(pingpong)
> fit.alpha <- ms( ~ lprob( D * alpha ),

+ start = list(alpha = 0.0077))
> fit.alpha

value: 1127.635

parameters:
alpha
0.01114251

formula: ~ Tprob(D * alpha)

3017 observations

call: ms(formula= ~lprob(D * alpha),
start = lTist(alpha = 0.0077))

3. Adding the gradient
To fit the model with the gradient added to the formula, use Tprob2.

> fit.alpha.2 <- ms( ~ 1prob2( D*alpha, D),
+ start = l1ist(alpha = 0.0077))
> fit.alpha.2
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value: 1127.635
parameters:

alpha
0.01114251
formula: ~ T1prob2(D * alpha, D)
3017 observations
call: ms(formula = ~ 1prob2(DV * alpha, DV), start =

list(alpha = 0.0077))

Even for this simple problem, providing the derivative has decreased
the computation time by 20%.

4. Adding the Hessian

To fit the model with the gradient and the Hessian added to the
formula, use 1prob3.

> fit.alpha.3 <- ms( ~ 1prob3(D*alpha, D),
+ start = Tist(alpha = .0077))
> fit.alpha.3

value: 1127.635

parameters:
alpha
0.01114251
formula: ~ T1prob3(DV * alpha, DV)
3017 observations
call: ms(formula = ~ 1prob3(DV * alpha, DV), start =

1ist(alpha = 0.0077))

Profiling provides a more accurate picture of the uncertainty in the
parameter estimates than simple standard errors do. When there are
only two parameters, contours of the objective function can be
plotted by generating a grid of values. When there are more than two
parameters, examination of the objective function is usually done in
one of two ways, as listed below.

+  Slices: fix all but two of the parameters at their estimated values
and create a grid of the objective function by varying the
remaining two parameters of interest.

*  Projections: vary two parameters of interest over fixed values,
optimizing the objective function over the other parameters.
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Two-dimensional projections are often too time consuming to
compute. One-dimensional projections are called profiles. Profiles are

plots of a t statistic equivalent, called the profile t function, for a
parameter of interest against a range of values for the parameter.

For n1s, the profile t function for a given parameter 0, is denoted by

T(6,) and is computed as follows:

T(0,) = sign(ep—-ép) §£9£Zé;§£92 (15.16)

)

where ép is the model estimate of 6, é(ep) is the sum of squares

based on optimizing all parameters except the fixed 6,, and S(é) is

the sum of squares based on optimizing all parameters.

The profile t function is directly related to confidence intervals for
the corresponding parameter. It can be shown that t(6,) is

equivalent to the studentized parameter

0.0
8(8,) = L=, (15.17)

se(0p)

for which a 1 — o confidence interval can be constructed as follows:
a a
—t(N - P;—) <0(0,) ﬂ(N - P;—) 15.1
9 p 9 ( 5. 8)

The profile function produces profiles for n1s and ms objects.
Profiles show confidence intervals for parameters as well as the
nonlinearity of the objective function. If a model is linear, the profile
is a straight line through the origin with a slope of 1. You can produce
the profile plots for the Puromycin fit Purboth as follows:

> Purboth.prof <- profile(Purboth)
> plot(Purboth.prof)
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The object returned by profile has a component for each parameter
that contains the evaluations of the profile t function, plus some
additional attributes. The component for the Vm parameter is:

> Purboth.prof$Vm

tau par.vals.Vm par.vals.delV par.vals.K

1 -3.9021051 144 .6497 54.60190 0.04501306
2 -3.1186052 148.8994 52.07216 0.04725929
3 -2.3346358 153.2273 49.54358 0.04967189
4 -1.5501820 157.6376 47.01846 0.05226722
5 -0.7654516 162.1334 44 .50315 0.05506789
6 0.0000000 166.6040 42.02591 0.05797157
7 0.7548910 171.0998 39.57446 0.06103225
8 1.5094670 175.6845 37.12565 0.06431820
9 2.2635410 180.3616 34.67194 0.06783693
10 3.0171065 185.1362 32.20981 0.07160305
11 3.7701349 190.0136 29.73812 0.07563630
12 4.5225948 194.9997 27.25599 0.07995897

Figure 15.2 shows profile plots for the three-parameter Puromycin fit.
Each plot shows the profile t function (t ), when the parameter on the
x-axis ranges over the values shown and the other parameters are
optimized. The surface is quite linear with respect to these three
parameters.
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Figure 15.2: The profile plots for the Puromycin fit.
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An example of a simple function to compute the confidence intervals
from the output of profile follows:

> conf.int <- function(profile.obj, variable.name,

+ confidence.level = 0.95) {

+ if(is.na(match(variable.name, names(profile.obj))))
+ stop(paste("Variable", variable.name,

+ "not in the model"))

+ resid.df <- attr(profile.obj, "summary")[["df"]1]1[2]
+ tstat <- qt(l - (1 - confidence.level)/2, resid.df)
+ prof <- profile.obj[[variable.name]]

+ approx(prof[, "tau"]l, prof[, "par.vals"]

+ [, variable.name],

+ c(-tstat, tstat))[[2]1] }

The tricky line in conf.int is the last one which calls approx. The
Purboth.prof$Vm component is a data frame with two columns. The
first column is the vector of T values that we can pick off using
prof[, "tau"l. The second column is named par.vals and contains
a matrix with as many columns as there are parameters in the model.
This results in the strange looking subscripting given by
prof[, "par.vals"1[, variable.name]. The first subscript removes
the matrix from the par.vals component, and the second subscript
removes the appropriate column. Three examples using conf.int
and the profile object Purboth.prof follow:

> conf.int(Purboth.prof, "delV", conf = .99)
[1] 24.20945 60.03857

> conf.int(Purboth.prof, "Vm", conf = .99)
[1] 150.4079 184.0479

> conf.int(Purboth.prof, "K", conf = .99)

[1] 0.04217613 0.07826822

The conf.int function can be improved by doing a cubic spline
interpolation rather than the linear interpolation that approx does. A
marginal confidence interval computed from the profile t function is
exact, disregarding any approximations due to interpolation, whereas
the marginal confidence interval computed with the coefficient and its
standard error is only a linear approximation.
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INTRODUCTION

Setting Up the
Data Frame

568

This chapter discusses how to analyze designed experiments.
Typically, the data have a numeric response and one or more
categorical variables (factors) that are under the control of the
experimenter. For example, an engineer may measure the yield of
some process using each combination of four catalysts and three
specific temperatures. This experiment has two factors, catalyst and
temperature, and the response is the yield.

Traditionally, the analysis of experiments has centered on the
performance of an Analysis of Variance (ANOVA). In more recent
years graphics have played an increasingly important role. There is a
large literature on the design and analysis of experiments; Box,
Hunter, and Hunter is an example.

This chapter consists of sections which show you how to use TIBCO
Spotfire S+ to analyze experimental data for each of the following
situations:

+ Experiments with one factor
*  Experiments with two factors and a single replicate

* Experiments with two factors and two or more replicates

+  Experiments with many factors at two levels: 9k designs

Each of these sections stands alone. You can read whichever section
is appropriate to your problem, and get the analysis done without
having to read the other sections. This chapter uses examples from
Box, Hunter, and Hunter (1978) and thus is a useful supplement in a
course which covers the material of Chapters 6, 7, 9, 10, and 11 of
Box, Hunter, and Hunter.

In analyzing experimental data using Spotfire S+, the first thing you
do is set up an appropriate data frame for your experimental data. You
may think of the data frame as a matrix, with the columns containing
values of the wvariables. Each row of the data frame contains an
observed value of the response (or responses), and the corresponding
values of the experimental factors.



A First Look at
the Data

The Model and
Analysis of
Variance

Diagnostic Plots

Introduction

Use the functions plot.design, plot.factor, and possibly
interaction.plot to graphically explore your data.

It is important that you have a clear understanding of exactly what
model is being considered when you carry out the analysis of
variance. Use aov to carry out the analysis of variance, and use
summary to display the results.

In using aov, you use formulas to specify your model. The examples in
this chapter introduce you to simple uses of formulas. You may
supplement your understanding of how to use formulas in Spotfire S+
by reading Chapter 2, Specifying Models in Spotfire S+ (in this book),
or Chapter 2, Statistical Models, and Chapter 5, Analysis of Variance;
Designed Experiments (in Chambers and Hastie (1992)).

For each analysis, you should make the following minimal set of plots
to convince yourself that the model being entertained is adequate:

* Histogram of residuals (using hist)

*  Normal qg-plot of residuals (using gqnorm)

+  Plot of residuals versus fit (using p1ot)

When you know the time order of the observations, you should also
make plots of the original data and the residuals in the order in which
the data were collected.

The diagnostic plots may indicate inadequacies in the model from
one or more of the following sources: existence of interactions,
existence of outliers, and existence of nonhomogeneous error
variance.
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The simplest kind of experiments are those in which a single
continuous response variable is measured a number of times for each

of several levels of some experimental factor.

For example, consider the data in Table 16.1 (from Box, Hunter, and
Hunter (1978)), which consists of numerical values of blood
coagulation times for each of four diets. Coagulation time is the
continuous response variable, and diet is a gqualitative variable, or
Jactor, having four levels: A, B, C, and D. The diets corresponding to

the levels A, B, C, and D were determined by the experimenter.

Table 16.1: Blood coagulation times for four diets.

Diet

A B C D
62 63 68 56
60 67 66 62
63 71 71 60
59 64 67 61
65 68 63

66 68 64

63

59

Your main interest is to see whether or not the factor “diet” has any
effect on the mean value of blood coagulation time. The experimental
factor, “diet” in this case, is often called the treatment.




Setting Up the

Data Frame

Experiments with One Factor

Formal statistical testing for whether or not the factor level affects the
mean is carried out using the method of analysis of variance
(ANOVA). This needs to be complemented by exploratory graphics
to provide confirmation that the model assumptions are sufficiently
correct to validate the formal ANOVA conclusion. Spotfire S+
provides tools for you to do both the data exploration and formal

ANOVA.

In order to analyze the data, you need to get it into a form that
Spotfire S+ can use for the analysis of variance. You do this by setting
up a data frame. First create a numeric vector coag:

> coag <- scan()

1: 62 60 63 59

5: 63 67 71 64 65 66

11: 68 66 71 67 68 68

17: 56 62 60 61 63 64 63 59
25:

Next, create a factor called diet, that corresponds to coag:

> diet <- factor(rep(LETTERS[1:4], c(4,6,6,8)))
> diet

[I]AAAABBBBBBCCCCCCDDDDDDDD

Now create a data frame with columns diet and coag:

> coag.df <- data.frame(diet,coag)

The data frame object coag.df is a matrix-like object, so it looks like a
matrix when you display it on your screen:

> coag.df
diet coag
1 A 62
A 60
3 A 63
23 D 63
24 D 59
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A First Look at For each level of the treatment factor, you make an initial graphical

the Data

572

exploration of the response data y;; by using the functions
plot.design and plot.factor.

You can make plots of the treatment means and treatment medians
for each level of the experimental factor diet by using the function
plot.design twice, as follows:

> par(mfrow = c(1,2))

> plot.design(coag.df)

> plot.design(coag.df, fun = median)
> par(mfrow = c(1,1))

The results are shown in the two plots of Figure 16.1. In the left-hand
plot, the tick marks on the vertical line are located at the treatment
means for the diets A, B, C, and D, respectively. The mean values of
coagulation time for diets A and D happen to have the same value,
61, and so the labels A and D are overlaid. The horizontal line,
located at 64, indicates the overall mean of all the data. In the right-
hand plot of Figure 16.1, medians rather than means are indicated.
There is not much difference between the treatment means and the
treatment medians, so you should not be too concerned about
adverse effects due to outliers.
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Figure 16.1: Treatment means and medians.



Experiments with One Factor

The function plot.factor produces a box plotbox plot of the
response data for each level of the experimental factor:

> plot.factor(coag.df)

The resulting plot is shown in Figure 16.2. This plot indicates that the
responses for diets A and D are quite similar, while the median
responses for diets B and C are considerably larger relative to the
variability reflected by the heights of the boxes. Thus, you suspect
that diet has an effect on blood coagulation time.

70

coag

60

diet
Figure 16.2: Box plots for each treatment.

If the exploratory graphical display of the response using
plot.factor indicates that the interquartile distance of the box plots
depends upon the median, then a transformation to make the error
variance constant is called for. The transformation may be selected
with a “spread versus level” plot. See, for example, the section The
Two-Way Layout with Replicates, or Hoaglin, Mosteller, and Tukey
(1983).
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The classical model for experiments with a single factor is

i=1 .,
lij = M+ &j .
‘ SRR I R
where |; is the mean value of the response for the ith level of the
experimental factor. There are | levels of the experimental factor,
and J; measurements y;;, Y9, ... ¥j; are taken on the response

variable for level i of the experimental factor.

Using the treatment terminology, there are | treatments, and ; is

called the ith treatment mean. The above model is often called the
one-way layout model. For the blood coagulation experiment, there are
| = 4 diets, and the means [, Ly, U3, and L, correspond to diets A,

B, C, and D, respectively. The numbers of observations are J, = 4,

You carry out the analysis of variance with the function aov:

> aov.coag <- aov(coag ~ diet, coag.df)
The first argument to aov above is the formula coag ~ diet. This
formula is a symbolic representation of the one-way layout model
equation; the formula excludes the error term ¢;;. The second
argument to aov is the data frame you created, coag.df, which
provides the data needed to carry out the ANOVA. The names diet

and coag, used in the formula coag ~ diet, need to match the names
of the variables in the data frame coag.df.

To display the ANOVA table, use summary. The p-value returned by
summary for aov.coag is 0.000047, which is highly significant.

> summary(aov.coag)

Df Sum of Sq Mean Sq F Value Pr(F)
diet 3 228 76.0 13.5714 4.65847e-05
Residuals 20 112 5.6
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Experiments with One Factor

You obtain the fitted values and residuals using the fitted.values
and residuals functions on the result of aov. Thus, for example, you
get the fitted values with the following:

> fitted.values(aov.coag)

1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24
61 61 61 61 66 66 66 66 66 66 68 68 68 68 68 68 61 61 61 61 61 61 61 61

The resid and fitted functions are shorter names for residuals and
fitted.values, respectively.

You can check the residuals for distributional shape and outliers by
using hist and ggnorm, with the residuals component of aov.coag as
argument:

> hist(resid(aov.coag))
> qqnorm(resid(aov.coag))

Figure 16.3 shows the resulting histogram and Figure 16.4 shows the
quantile-quantile plot.
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Figure 16.3: Histogram of residuals.
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resid(aov.coag)
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Figure 16.4: Normal qq-plot of residuals.
The shape of the histogram, and the linearity of the normal qq-plot,

both indicate that the error distribution is quite Gaussian. The flat
sections in the qq-plot are a consequence of tied values in the data.

You can check for nonhomogeneity of error variance and possible
outliers by plotting the residuals versus the fit:

> plot(fitted(aov.coag), resid(aov.coag))
This plot reveals no unusual features and is not shown.

An alternate form of the one-way layout model is the overall mean plus
effects form:

where 1 is the overall mean and o; is the effect for level (or
treatment) i. The ith treatment mean [ in the one-way layout

formulation is related to w and o; by



Experiments with One Factor

The effects o; satisfy the constraint
N0y + Nyl + .4+ N0y =0,

where n; is the number of replications for the ith treatment. The

function aov fits the one-way model in the overall mean plus effects
form:

See the section Model Coefficients and Contrasts for more on this.

To obtain the effects, use model.tables as follows:

> model.tables(aov.coag)

Tables of effects

diet
ABC D
-324 -3
rep 4 6 6 8

Warning messages:

Model was refit to allow projection in:
model.tables(aov.coag)

You can get the treatment means as follows:
> model.tables(aov.coag, type = "means")

Tables of means
Grand mean
64

diet
A B C D
61 66 68 61
rep 4 6 6 8
Warning messages:
Model was refit to allow projection in:
model.tables(aov.coag, type = "means")
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The data in Table 16.2 (used by Box, Hunter, and Hunter (1978)) were
collected to determine the effect of treatments A, B, C, and D on the
yield of penicillin in a penicillin manufacturing process.

Table 16.2: Effect of four treatments on penicillin yield.

Treatment
Block A B C D
Blend 1 89 88 97 94
Blend 2 84 77 92 79
Blend 3 81 87 87 85
Blend 4 87 92 89 84
Blend 5 79 81 80 88

The values of the response variable “yield” are the numbers in the
table, and the columns of the table correspond to the levels A, B, C,
and D of the treatment factor. There was a second factor, namely the
blend factor, since a separate blend of the corn-steep liquor had to be
made for each application of the treatments.

Your main interest is in determining whether the treatment factor
affects yield. The blend factor is of only secondary interest; it is a
blocking variable introduced to increase the sensitivity of the
inference for treatments. The order of the treatments within blocks
was chosen at random. Hence, this is a randomized blocks experiment.

The methods we use in this section apply equally well to two-factor
experiments in which both factors are experimentally controlled and
of equal interest.
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Data Frame

and column combination) has the same number of observations (one
observation per cell, in the present example). With balanced data,
you can use fac.design to create the data frame.

First, create a list fnames with two components named blend and
treatment, where blend contains the level names of the blend factor
and treatment contains the level names of the treatment factor:

> fnames <- list(blend = paste("Blend ™, 1:5),
+ treatment = LETTERS[1:4])

Then use fac.design to create the design data frame pen.design

> pen.design <- fac.design(c(5,4), fnames)

The first argument, c(5,4), to fac.design specifies the design as
having two factors because its length is two. The 5 specifies five levels
for the first factor, blend, and the 4 specifies four levels for the second
factor, treatment. The second argument, fnames, specifies the factor
names and the labels for their levels.

The design data frame pen.design that you just created contains the
factors blend and treatment as its first and second columns,
respectively.

Now create yield to match pen.design:
> yield <- scan()

1: 89 84 81 87 79
6: 88 77 87 92 81
11: 97 92 87 89 80
16: 94 79 85 84 88
21:

You can now use data.frame to combine the design data frame
pen.design and the response yield into the data frame pen.df:

> pen.df <- data.frame(pen.design, yield)
Now look at pen.df:

> pen.df
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blend treatment yield

1 Blend 1 A 89
2 Blend 2 A 84
3 Blend 3 A 81
4 Blend 4 A 87
5 Blend 5 A 79
6 Blend 1 B 88
19 Blend 4 D 84
20 Blend 5 D 88

Alternatively, you could build the model data frame directly from
pen.design as follows:

> pen.design[,"yield"] <- yield

When you plot the object pen.design, Spotfire S+ uses the method
plot.design, because the object pen.design is of class "design".
Thus, you obtain the same results as if you called plot.design
explicitly on the object pen.df.

You can look at the (comparative) values of the sample means of the
data for each level of each factor using plot.design:

> plot.design(pen.df)

This function produces the plot shown in Figure 16.5. For the blend
factor, each tick mark is located at the mean of the corresponding row
of Table 16.2. For the treatment factor, each tick mark is located at the
mean of the corresponding column of Table 16.2. The horizontal line
is located at the sample mean of all the data. Figure 16.5 suggests that
the blend has a greater effect on yield than does the treatment.



The Unreplicated Two-Way Layout

S Blend 1 —(
=
=4
c —
8 — Blend 4 ——
=
2
=
5
=
g
8
£
< | B
8
Blend 3 —— B —
I A
Blend 2 —
&8 — Blend 5 ——
blend treatment

Factors

Figure 16.5: Sample means in penicillin yield experiment.

Since sample medians are insensitive to outliers, and sample means
are not, you may want to make a plot similar to Figure 16.5 using
sample medians instead of sample means. You can do this with
plot.design, using the second argument fun=median:

> plot.design(pen.df, fun = median)

In this case, the plot does not indicate great differences between
sample means and sample medians.

Use plot.factor to get a more complete exploratory look at the data.
But first use par to get a one row by two column layout for two plots:

> par(mfrow = ¢(1,2))
> plot.factor(pen.df)
> par(mfrow = c(1,1))

This command produces the plot shown in Figure 16.6.
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Figure 16.6: Factor plot for penicillin yield experiment.
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The box plots for factors, produced by plot.factor, give additional
information about the data besides the location given by
plot.design. The box plots indicate variability, skewness, and
outliers in the response, for each fixed level of each factor. For this
particular data, the box plots for both blends and treatments indicate
rather constant variability, relatively little overall skewness, and no
evidence of outliers.

For two-factor experiments, you should use interaction.plot to
check for possible interactions (that is, nonadditivity). The
interaction.plot function does not accept a data frame as an
argument. Instead, you must supply appropriate factor names and the
response name. To make these factor and response data objects
available to interaction.plot, you must first attach the data frame
pen.df:

> attach(pen.df)
> interaction.plot(treatment, blend, yield)

These commands produce the plot shown in Figure 16.7. The first
argument to interaction.plot specifies which factor appears along
the x-axis (in this case, treatment). The second argument specifies
which factor is associated with each line plot, or “trace” (in this case,
blend). The third argument is the response variable (in this case,
yield).
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Figure 16.7: Interaction plot of penicillin experiment.

Without replication it is often difficult to interpret an interaction plot
since random error tends to dominate. There is nothing striking in
this plot.

The additive model for experiments with two factors, A and B, and
one observation per cell is:

_ A B ..
Yij = B+ 05 + 04 + €5 j=1, .13
where U is the overall mean, Oc'iA is the effect of the ith level of factor

A and Och is the effect of the j th level of factor B.

For the penicillin data above, factor A is “blend” and factor B is
“treatment.” Blend has | = 5 levels and treatment has J = 5 levels.

To estimate the additive model, use aov:

> aov.pen <- aov(yield ~ blend + treatment, pen.df)

The formula yield ~ blend + treatment specifies that a two factor
additive model is fit, with yield the response, and blend and
treatment the factors.
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Display the analysis of variance table with summary:
> summary(aov.pen)

Df Sum of Sq Mean Sq F Value Pr(F)

blend 4 264 66.0000 3.50442 0.040746
treatment 3 70 23.3333 1.23894 0.338658
Residuals 12 226 18.8333

The p-value for blend is moderately significant, while the p-value for
treatment is insignificant.

Make a histogram of the residuals.

> hist(resid(aov.pen))

The resulting histogram is shown in Figure 16.8.
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Figure 16.8: Histogram of residuals for penicillin yield experiment.

Now make a normal qq-plot of residuals:

> qgnorm(resid(aov.pen))

The resulting plot is shown in Figure 16.9.
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Figure 16.9: Quantile-quantile plot of residuals for penicillin yield experiment.

The central four cells of the histogram in Figure 16.8 are consistent
with a fairly normal distribution in the middle. The linearity of the
normal qq-plot in Figure 16.9, except near the ends, also suggests that
the distribution is normal in the middle. The relatively larger values
of the outer two cells of the histogram, and the flattening of the
normal qg-plot near the ends, both suggest that the error distribution
is slightly more short-tailed than a normal distribution. This is not a
matter of great concern for the ANOVA F'tests.

Make a plot of residuals versus the fit:

> plot(fitted(aov.pen), resid(aov.pen))

The resulting plot is shown in Figure 16.10. The plot of residuals
versus fit gives some slight indication that smaller error variance is
associated with larger values of the fit.
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Figure 16.10: Residuals vs. fitted values for penicillin yield experiment.

Since there is some indication of inhomogeneity of error variance, we
now consider transforming the response, yield.

You may want to test for the existence of a multiplicative interaction,

specified by the model
A B A B
Yij = W+ 0 + 05 + 00, 0 +E€jj -

When the unknown parameter 6 1is not zero, multiplicative
interaction exists. A test for the null hypothesis of no interaction may
be carried out using the test statistic T,4; for Tukey’s one degree of

freedom for nonadditivity.

A Spotfire S+ function, tukey.1, is provided in the section Details.
You can use it to compute T,y and the p-value. For the penicillin
data:

> tukey.l(aov.pen, pen.df)

$T.1df:
[17 0.09826791

$p.value:
[1] 0.7597822
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The statistic T,y = 0.098 has a p-value of p = 0.76, which is not

significant. Therefore, there is no indication of a multiplicative
interaction.

Assuming that the response values are positive, you can find out

whether or not the data suggest a specific transformation to remove
multiplicative interaction as follows: Plot the residuals rj; for the
additive fit versus the comparison values

~A"B
0 0

u

Clj =

If this plot reveals a linear relationship with estimated slope 6, then
you should analyze the data again, using as new response values the

. A . . .
power transformation Y; i of the original response variables y;;, with

exponent

A=1-0.

(If = 0, use log(y;;).) See Hoaglin, Mosteller, and Tukey (1983) for
details.

A Spotfire S+ function called comp.plot, for computing the

comparison values Cj;, plotting r;; versus C;

ij> and computing 0, is

jo
provided in the section Details. Applying comp.plot to the penicillin
data gives the results shown below and in Figure 16.11:

> comp.plot(aov.pen, pen.df)

$theta.hat:
[1] 4.002165

$std.error:
[1] 9.980428

$R.squared:

R2
0.008854346
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Cij

Figure 16.11: Display from comp.plot.

0.2

In this case, the estimated slope is 8 = 4, which gives A = -3.
However, this is not a very sensible exponent for a power

transformation. The standard deviation of 9 is nearly 10 and the R’

is only .009, which indicates that 8 may be zero. Thus, we do not
recommend using a power transformation.

The test statistic T,y for Tukey’s one degree of freedom is given by:

where

T (13-1-J) >%
tdt SSI’eS.l
. < "A"B
2 20605

i=1j=1

| J
ICARDNC D)

i=1 i=1

5SS, =
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SS,es1 = SSyes— SSg

res.1 res

S = 3 2

i=1i=1

. "A "B . . A B
with the o , 0 the additive model estimates of the o and o , and

rjj the residuals from the additive model fit. The statistic T,y has an
Fl,U—I—J distribution.

Here is a function tukey.l to compute the Tukey one degree of
freedom for nonadditivity test. You can create your own version of
this function by typing tukey.1l <- and then the definition of the
function.

tukey.l <- function(aov.obj, data) {

vnames <- names(aov.obj$contrasts)

if(length(vnames) != 2)
stop("the model must be two-way")

vara <- datal[, vnames[1]]

varb <- datal[, vnames[2]]

na <- length(levels(vara))

nb <- length(levels(varb))

resp <- data[, as.character(attr(aov.obj$terms,
"variables")[attr(aov.obj$terms, "response” )])]

cfs <- coef(aov.obj)

alpha.A <- aov.obj$contrasts[[vnames[11]] %*% cfs[
aov.obj$assign[[vnames[1]]1]1]

alpha.B <- aov.obj$contrasts[[vnames[2]1]1] %*% cfs[
aov.obj$assign[[vnames[2]1]1]

r.mat <- matrix(0, nb, na)

r.mat[cbind(as.vector(unclass(varb)), as.vector(
unclass(vara)))] <- resp

SS.theta.num <- sum((alpha.B %*% t(alpha.A)) * r.mat)"2

SS.theta.den <- sum(alpha.A”2) * sum(alpha.B"2)

SS.theta <- SS.theta.num/SS.theta.den

SS.res <- sum(resid(aov.obj)"2)

SS.res.1 <- SS.res - SS.theta

T.1df <- ((na * nb - na - nb) * SS.theta)/SS.res.]1

p.value <- 1 - pf(T.1df, 1, na * nb - na - nb)

1ist(T.1df = T.1df, p.value = p.value) }

+ + + + + +F +F A+
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Here is a function comp.plot for computing a least-squares fit to the
plot of residuals versus comparison values:

comp.plot <- function(aov.obj, data)

{

vnames <- names(aov.obj$contrasts)
if(Tength(vnames) != 2)

stop("the model must be two-way™)

vara <- datal[, vnames[1]]

varb <- datal[, vnames[2]]

cfs <- coef(aov.obj)

alpha.A <- aov.obj$contrasts[[vnames[1]1]] %*% cfs[
aov.obj$assign[[vnames[1]1]11]

alpha.B <- aov.obj$contrasts[[vnames[2]1]1] %*% cfs[
aov.obj$assign[[vnames[2]]1]]

cij <- alpha.B %*% t(alpha.A)

cij <- c(cij)/cfs[aov.obj$assign$"(Intercept)"]
na <- length(levels(vara))

nb <- length(levels(varb))

r.mat <- matrix(NA, nb, na)
r.mat[cbind(as.vector(unclass(varb)), as.vector(
unclass(vara)))] <- resid(aov.obj)

plot(cij, as.vector(r.mat))

Is.fit <- I1sfit(as.vector(cij), as.vector(r.mat))
abline(ls.fit)

output <- Ts.print(ls.fit, print.it = F)
list(theta.hat = output$coef.tablel[2, 1],
std.error = output$coef.table[2, 2],

R.squared = output$summary[2])

}

+ + + + + + +F A+ F A+ Y
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THE TWO-WAY LAYOUT WITH REPLICATES

The data in Table 16.3 (used by Box, Hunter, and Hunter (1978))
displays the survival times, in units of 10 hours, of animals in a 3 x 4
replicated factorial experiment. In this experiment, each animal was
given one of three poisons, labeled I, II, and III, and one of four
treatments, labeled A, B, C, and D. Four animals were used for each
combination of poison and treatment, making four replicates.

Table 16.3: A replicated factorial experiment.

Treatment

Poison A B C D
I 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71

0.46 0.88 0.63 0.66

0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56
0.29 0.61 0.35 1.02

0.40 0.49 0.31 0.71

0.23 1.24 0.40 0.38

I1I 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36

0.18 0.38 0.24 0.31

0.23 0.29 0.22 0.33
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treatment and poison, containing the level names of these two
factors:

> fnames <- Tist(treatment = LETTERS[1:4],
+ poison=c("I", "II", "III"))

Use fac.design, with optional argument rep = 4, to create the design
data frame poisons.design:

> poisons.design <- fac.design(c(4,3), fnames, rep = 4)

Note that since treatments is the first factor in the fnames list and
treatments has 4 levels, 4 is the first argument of c(4,3).

You now need to create the vector surv.time to match
poisons.design. Each replicate of the experiment consists of data in
three rows of Table 16.3. Rows 1, 5, and 9 make up the first replicate,
and so on. The command to get what we want is:

> surv.time <- scan()

1: .31 .82 .43 .45
5: .36 .92 .44 .56
9: .22 .30 .23 .30
13: .45 1.10 .45 .71
17: .29 .61 .35 1.02
21: .21 .37 .25 .36
25: .46 .88 .63 .66
29: .40 .49 .31 .71
33: .18 .38 .24 .31
37: .43 .72 .76 .62
41: .23 1.24 .40 .38
45: .23 .29 .22 .33
49:

Finally, make the data frame poisons.df:

> poisons.df <- data.frame(poisons.design, surv.time)



The Two-Way Layout with Replicates

A First Look at Use plot.design, plot.factor, and interaction.plot to get a first

the Data
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look at the data through summary statistics.

Set par(mfrow = c(3,2)) and use the above three functions to get the
three row and two column layout of plots displayed in Figure 16.12:

> par(mfrow = ¢(3,2))
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Figure 16.12: Initial plots of the data.
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To obtain the design plot of sample means shown in the upper left
plot of Figure 16.12, use plot.design as follows:

> plot.design(poisons.df)

To obtain the design plot of sample medians shown in the upper
right-hand plot of Figure 16.12, use plot.design again:

> plot.design(poisons.df, fun = median)

The two sets of box plots shown in the middle row of Figure 16.12 are
obtained with:

> plot.factor(poisons.df)
To obtain the bottom row of Figure 16.12, use interaction.plot:

attach(poisons.df)
interaction.plot(treatment,poison, surv.time)
interaction.plot(treatment,poison, surv.time,
+ fun = median)

Vv VvV Vv

The main differences between the plots obtained with plot.design
using means and medians are as follows:

* the difference between the horizontal lines which represents
the mean and median, respectively, for all the data;

+ the difference between the tick marks for the poison factor at
level II.

The box plots resulting from the use of plot.factor indicate a clear
tendency for variability to increase with the (median) level of
response.

The plots made with interaction.plot show stronger treatment
effects for the two poisons with large levels than for the lowest level
poison. This is an indication of an interaction.

When you have replicates, you can consider a model which includes

. . AB
an interaction term Q j

i=1, ., 1
B A B _AB .
k=1, ., K



Diagnostic Plots

The Two-Way Layout with Replicates

You can now carry out an ANOVA for the above model using aov as
follows:

> aov.poisons <- aov(surv.time ~ poison * treatment,
+ data = poisons.df)

The expression poison*treatment on the right-hand side of the
formula specifies that aov fit the above model with interaction. This
contrasts with the formula surv.time ~ poison + treatment, which
AB
1)

tells aov to fit an additive model for which o;: is assumed to be zero

for all levelsi, j.

You now display the ANOVA table with summary:

> summary(aov.poisons)

Df Sum of Sq Mean Sq F Value Pr(F)
poison 2 1.033013 0.5165063 23.22174 0.0000003
treatment 3 0.921206 0.3070688 13.80558 0.0000038
poison:treatment 6 0.250138 0.0416896 1.87433 0.1122506
Residuals 36 0.800725 0.0222424

The p-values for both poisons and treatment are highly significant,
while the p-value for interaction is insignificant.

The colon in poison:treatment denotes an interaction, in this case
the poison-treatment interaction.

Make a histogram and a normal qqg-plot of residuals, arranging the
plots side by side in a single figure with par(mfrow = c(1,2)) before
using hist and qqnorm:

> par(mfrow = c(1,2))

> hist(resid(aov.poisons))
> qqnorm(resid(aov.poisons))
> par(mfrow = c(1,1))

The call par(mfrow = c(1,1)), resets the plot layout to a single plot
per figure.

The histogram in the left-hand plot of Figure 16.13 reveals a marked
asymmetry, which is reflected in the normal qq-plot in the right-hand
side of Figure 16.13. The latter shows a curved departure from
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linearity toward the lower left part of the plot, and a break in linearity
in the upper right part of the plot. Evidently, all is not well (see the
discussion on transforming the data in the Guidance section below).
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Figure 16.13: Histogram and normal qq-plot of residuals.

Make a plot of residuals versus fit:

> plot(fitted(aov.poisons), resid(aov.poisons))

The result, displayed in Figure 16.14, clearly reveals a strong
relationship between the residuals and the fitted values. The
variability of the residuals increases with increasing fitted values. This
is another indication that transformation would be useful.

When the error variance for an experiment varies with the expected
value of the observations, a variance stabilizing transformation will
often reduce or eliminate such behavior.

We shall show two methods for determining an appropriate variance
stabilizing transformation, one which requires replicates and one
which does not.
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Figure 16.14: Plot of residuals versus fit.

Method for For two-factor experiments with replicates, you can gain insight into
p P b & &

Two-Factor an appropriate variance stabilizing transformation by carrying out the
. following informal procedure. First, calculate the within-cell standard

Experiments 8 P

fh deviations Gjj and means ; it
wi
Replicates std.poison <- tapply(poisons.df$surv.time,

list(poisons.df$treatment,
poisons.df$poison), stdev)

std.poison <- as.vector(std.poison)
means.poison <- tapply(poisons.df$surv.time,
list(poisons.df$treatment,
poisons.df$poison), mean)

means.poison <- as.vector(means.poison)

vV + 4+ VvV VvV 4+ 4+ Vv

Then plot log(Gjj) versus log(yij) and use the slope of the
regression line to estimate the variance stabilizing transform:

> plot(log(means.poison), log(std.poison))

> var.fit <- 1sfit(log(means.poison),

+ log(std.poison))
> abline(var.fit)
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> theta <- var.fit$coef[2]
> theta

X
1.97704

Now let A = 1 -0 and choose A to be that value among the set of

values —1, —é, 0, %, 1 which is closest to 71 If A = 0, then make

the transformation Y; j= log y; j- Otherwise, make the power
~ A

transformation Y; ik = Yijk- Now you should repeat the complete

analysis described in the previous subsections, using the response Y; jk

in place of yjjy.

Since for the poisons experiment you getd = 2, you choose A = -1.

L . . ~ -1
This gives a reciprocal transformation ¥, ik = VYijko where Yj; are the

values you used in the response with surv.time. You can think of the
new response ¥, jk s representing the rate of dying.

The model can be refit using the transformed response:

> summary(aov(l/surv.time ~ poison*treatment,
+ data = poisons.df))

Df Sum of Sq Mean Sq F Value Pr(F)
poison 2 34.87712 17.43856 72.63475 0.0000000
treatment 3 20.41429 6.80476 28.34307 0.0000000
poison:treatment 6 1.57077 0.26180 1.09042 0.3867329
Residuals 36 8.64308 0.24009

With the transformation the p-values for the main effects have
decreased while the p-value for the interaction has increased—a more
satisfactory fit. The diagnostic plots with the new response are much
improved also.



Method for
Unreplicated
Two-Factor
Experiments

The Two-Way Layout with Replicates

An alternative simple method for estimating the variance stabilizing
transformation is based on the relationship between the log of the
absolute residuals and the log of the fitted values. This method has the
advantage that it can be used for unreplicated designs. This method is

also often preferred to that of plotting log Gj against ¥;; even for

cases with replication, because y;; and Gjj are not always adequately

good estimates of the mean and standard deviation for small values of
K(K<8).

This method consists of plotting log of absolute residuals versus log of

fitted values, and computing the slope 0 of the regression line. You

thenset A = 1 — 0. Residuals with very small absolute values should
usually be omitted before applying this method. Here is some sample
code.

plot(log(abs(fitted(aov.poisons)[
abs(resid(aov.poisons)) > exp(-10)1)),
log(abs(resid(aov.poisons)[
abs(resid(aov.poisons)) > exp(-10)1)))
logrij.fit <- 1sfit(
log(abs(fitted(aov.poisons)[
abs(resid(aov.poisons)) > exp(-10)1)),
log(abs(resid(aov.poisons)[
abs(resid(aov.poisons)) > exp(-10)1)))
abline(logrij.fit)

theta <- Tlogrij.fit$coef[2]

theta

VIV YV o+ o+ o+ o+ o+ o+ v

X
1.930791

Youget;» =1-0=~ -1

Note that the two simple methods described above both lead to
nearly identical choices of power transformation to stabilize variance.
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You will find that a nonconstant standard deviation for observations
Yi (yijk for the two-factor experiment with replicates) is well-
explained by a power law relationship in many data sets. In
particular, for some constant B and some exponent 8, we have

0
o= B

where g, is the standard deviation of the y; and 1 is the mean of the

y;. If you then use a power law transformation

A
Yi =i
for some fixed exponent A, it can be shown that the standard

deviation Gy for the transformed data Y;, is given by

G = KM{“_(I_G) .

You can therefore make Gy have a constant value, independent of

the mean m of the original data y; (and independent of the

approximate mean n}” of the transformed data y; ), by choosing

A=1-6.
Note that
log g, =~ log K + 6log n.

Suppose you plot log Gjj versus log Yi j for a two-factor experiment
with replicates and find that this plot results in a fairly good straight
line fit with slope 0, where ©; j is an estimate of g, and )A/ij is an
estimate of m. Then the slope 0 provides an estimate of 6, and so
you set A = 1-0. Since a fractional exponent A is not very natural,

one often chooses the closest value A in the following “natural” set.



Alternative
Formal
Methods

The Two-Way Layout with Replicates

-1 Reciprocal

—% Reciprocal square root
0 Log
% Square root
1 No transformation

There are two alternative formal approaches to stabilizing the
variance. One approach is to select the power transformation that
minimizes the residual squared error. This is equivalent to
maximizing the log-likelihood function and is sometimes referred to
as a Box-Cox analysis (see, for example, Weisberg (1985); Box
(1988); Haaland (1989)).

The second approach seeks to stabilize the variance without the use of
a transformation, by including the variance function directly in the
model. This approach is called generalized least squares/variance
function estimation (see, for example, Carroll and Ruppert (1988);
Davidian and Haaland (1990)).

Transformations are easy to use and may provide a simpler, more
parsimonious model (Box (1988)). On the other hand, modeling the
variance function directly allows the analysis to proceed on the
original scale and allows more direct insight into the nature of the
variance function. In cases when the stability of the variance is
critical, either of these methods have better statistical properties than
the simple informal graphical methods described above.
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The data in Table 16.4 come from an industrial product development
experiment in which a response variable called conversion is measured
(in percent) for each possible combination of two levels of four
factors, listed below.

*  K: catalyst charge (10 or 15 pounds)

«  Te: temperature ( 220 or 240°C )

«  P: pressure (50 or 80 pounds per square inch)
*  C: concentration (10% or 12%)

The levels are labeled “-” and “+” in the table. All the factors in the
experiment are quantitative, so the “-” indicates the “low” level and
the “+” indicates the “high” level for each factor. This data set was
used by Box, Hunter, and Hunter (1978).

The design for this experiment is called a 9* design because there are

24 = 16 possible combinations of two levels for four factors.

To set up the data frame first create a list of the four factor names with
the corresponding pairs of levels labels:

> fnames <- Tlist(K = c("10™,"15™), Te = c("220","240"),
+ P p— C("50","80"), C p— C("]_O","]_Z"))

Now use fac.design to create the deesign data frame devel.design:

> devel.design <- fac.design(rep(2,4), fnames)

The first argument to fac.design is a vector of length four, which
specifies that there are four factors. Each entry of the vector is a 2,
which specifies that there are two levels for each factor.

Since devel.design matches Table 16.4, you can simply scan in the
coversion data:

> conversion <- scan()

1: 71 61 90 82 68 61 87 80
9: 61 50 89 83 59 51 85 78
17:



Many Factors at Two Levels: 2 Designs

Table 16.4: Data from product development experiment.

Factor
Observation
Number K| Te P | C Conversion (%) Run Order
1 - - - - 71 (8)
2 + - - - 61 2)
3 - + - - 90 (10)
4 + + - - 82 (4)
5 - - + - 68 (15)
6 + - + - 61 (9)
7 - + + - 87 (1)
8 + + + - 80 (13)
9 - - - + 61 (16)
10 + - - + 50 (5)
11 - + - + 89 (11)
12 + + - + 83 (14)
13 - - + + 59 (3)
14 + - + + 51 (12)
15 - + + + 85 (6)
16 + + + + 78 (7)
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Finally, create the data frame devel.df:

> devel.df <- data.frame(devel.design, conversion)
> devel.df

K Te P C conversion

1 10 220 50 10 71
2 15 220 50 10 61
3 10 240 50 10 90
15 10 240 80 12 85
16 15 240 80 12 78

A First Look at Use plot.design and plot.factor to make an initial graphical
the Data exploration of the data. To see the design plot with sample means, use
the following command, which yields the plot shown in Figure 16.15:

> plot.design(devel.df)

[To]
o 240+
o |
c [e6]
K]
[2]
2 B 1OT 10
- 80
6 R A l 12J_
S 15
(0]
E 8
S 220+
K Te P C
Factors

Figure 16.15: Sample means for product development experiment.

To see the design plot with sample medians, use:

> plot.design(devel.df, fun = median)
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To see box plots of the factors, use the following commands, which
yield the plots shown in Figure 16.16:

> par(mfrow = c(2,2))
> plot.factor(devel.df)
> par(mfrow = c(1,1))

conversion
50 60 70 80 90

10

conversion
50 60 70 80 90

50

Figure 16.16: Factor plot for product development experiment.

P

80

conversion
50 60 70 80 90

conversion
50 60 70 80 90

220 240
Te
10 12
(o]

You can use aov to estimate all effects (main effects and all
interactions), and carry out the analysis of variance. Let’s do so, and

store the results in aov.devel:

> aov.devel <- aov(conversion ~ K*Te*P*C, data = devel.df)
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The product form K*Te*P*C on the right-hand side of the formula tells

Spotfire S+ to fit the above 9! design model with all main effects and
all interactions included. You can accomplish the same thing by using
the power function * to raise the expression K+Te+P+C to the fourth
power:

> aov.devel <- aov(conversion ~ (K+Te+P+(C)"4,
+ data = devel.df)

This second method is useful when you want to specify only main
effects plus certain low-order interactions. For example, replacing 4
by 2 above results in a model with all main effects and all second-
order interactions.

You can obtain the estimated coefficients using the coef function on
the aov output:

> coef(aov.devel)

(Intercept) K Te P C K:Te K:P  Te:P K:C
72.25 -4 12 -1.125 -2.75 0.5 0.375 -0.625 -5.464379%e-17
Te:C P:C K:Te:P K:Te:C K:P:C Te:P:C K:Te:P:C
2.25 -0.125 -0.375 0.25 -0.125 -0.375 -0.125
Notice that colons are used to connect factor names to represent
interactions, for example, K:P:C is the three factor interaction
between the factors K, P, and C. For more on the relationship between
coefficients, contrasts, and effects, see the section Experiments with
One Factor and the section The Unreplicated Two-Way Layout.

You can get the analysis of variance table with the summary
command:

> summary(aov.devel)

Df Sum of Sq Mean Sq
K 1 256.00 256.00

Te 1 2304.00 2304.00
P 1 20.25 20.25
C 1 121.00 121.00
K:Te 1 4.00 4.00
K:P 1 2.25 2.25
Te:P 1 6.25 6.25
K:C 1 0.00 0.00
Te:C 1 81.00 81.00
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Effects in the 2k
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Many Factors at Two Levels: 2 Designs

P:C 1 0.25 0.25
K:Te:P 1 2.25 2.25
K:Te:C 1 1.00 1.00
K:P:C 1 0.25 0.25
Te:P:C 1 2.25 2.25
K:Te:P:C 1 0.25 0.25

The ANOVA table does not provide any F statistics. This is because
you have estimated 16 parameters with 16 observations. There are no
degrees of freedom left for estimating the error variance, and hence

there is no error mean square to use as the denominator of the F
statistics. However, the ANOVA table can give you some idea of
which effects are the main contributors to the response variation.

On some occasions, you may have replicates of a 9" design. In this

. . 2
case, you can estimate the error variance ¢ as well as all effects. For

example, the data in Table 16.5 is from a replicated 23 pilot plant
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example used by Box, Hunter, and Hunter (1978). The three factors
are temperature (Te), concentration (C) and catalyst (K), and the response is

yield.

Table 16.5: Replicated pilot plant experiment.

Te C K Rep 1 Rep 2
- - - 59 61

+ - - 74 70

- + - 50 58
+ + - 69 67

- - + 50 54
+ - + 81 85

- + + 46 44
+ + + 79 81

To set up the data frame, first make the factor names list:

> fnames <- Tist(Te = c("T1", "Th"), C = c("C1", "Ch™),
+ K = c("K1", "Kh"))

Because T is a constant in Spotfire S+ which stands for the logical
value true, you can not use T as a factor name for temperature.
Instead, use Te, or some such alternative abbreviation. Then make the
design data frame, pilot.design, with M=2 replicates, by using
fac.design with the optional argument rep=2:

> pilot.design <- fac.design(c(2,2,2), fnames, rep = 2)

Now, create the response vector pilot.yield as a vector of length 16,
with the second replicate values following the first replicate values:

> pilot.yield <- scan()
1: 59 74 50 69 50 81 46 79
9: 61 70 58 67 54 85 44 81
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17:

Finally, use data. frame:

> pilot.df <- data.frame(pilot.design, pilot.yield)

You can now carry out the ANOVA, and because the observations
are replicated, the ANOVA table has an error variance estimate, that

is, mean square for error, and F statistics:

> aov.pilot <- aov(pilot.yield ~ (Te + C + K)*3, pilot.df)
> summary(aov.pilot)

Df Sum of Sq Mean Sq F Value Pr(F)

Te 1 2116 2116 264.500 0.000000

c 1 100 100 12.500 0.007670

K 1 9 9 1.125 0.319813

Te:C 1 9 9 1.125 0.319813

Te:K 1 400 400 50.000 0.000105

C:K 1 0 0 0.000 1.000000

Te:C:K 1 1 1 0.125 0.732810
Residuals 8 64 8

Temperature is clearly highly significant, as is the temperature-
catalyst interaction, and concentration is quite significant.

In cases where you are confident that high-order interactions are
unlikely, you can fit a model which includes interactions only up to a
fixed order, through the use of the power function *» with an
appropriate exponent. For example, in the product development
experiment of Table 16.4, you may wish to estimate only the main
effects and all second-order interactions. In this case, use the
command:

> aov.devel.2 <- aov(conversion ~ (K+Te+P+C)~2,devel.df)

Now you are using 16 observations to estimate 11 parameters: the
mean, the four main effects, and the six two-factor interactions. Since
you only use 11 degrees of freedom for the parameters, out of a total
of 16, you still have 5 degrees of freedom to estimate the error
variance. So the command

> summary(aov.devel.2)
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produces an ANOVA table with an error variance estimate and F
statistics.

You are usually treading on thin ice if you assume that higher-order
interactions are zero, unless you have extensive first-hand knowledge

of the process you are studying with a 9" design. When you are not
sure whether or not higher-order interactions are zero, you should use
a half-normal quantile-quantile plot to judge which effects, including
interactions of any order, are significant. Use the function qqnorm as
follows to produce a half-normal plot on which you can identify
points:

> qqnorm(aov.devel, Tabel = 6)

The resulting figure, with six points labeled, is shown in Figure 16.17.

Te »
o
<
o
» [<p]
s}
2
o & A
Ke
2 Te:C » C-
e ® o .TaP‘P.
O 4 e ® o o
0.0 0.5 1.0 1.5 2.0

Half-normal Quantiles

Figure 16.17: Half-normal plot for product development experiment.

In general, there are 2k _1 points in the half-normal plot, since there

are 2" effects and the estimate of the overall mean is not included in
this plot. The y-axis positions of the labeled points are the absolute
values of the estimated effects. The messages you get from this plot
are:

*  The effects for temperature, catalyst, concentration, and
temperature by concentration are clearly nonzero.

*  The effect for pressure is also very likely nonzero.
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Many Factors at Two Levels: 2 Designs

You can examine the marginal effects better by creating a plot with a
smaller y-range:

> qqnorm(aov.devel, Tabel =6, ylim = c(0,20))
A full qq-plot of the effects can give you somewhat more information.
To get this type of plot, use the following:

> qgnorm(aov.devel, full =T, label = 6)

Having determined from the half-normal plot which effects are
nonzero, now fit a model having terms for the main effects plus the
interaction between temperature and concentration:

> aov.devel.small <- aov(conversion ~ K+P+Te*C,
+ data = devel.df)

You can now get an ANOVA summary, including an error variance
estimate:

> summary(aov.devel.small)

Df Sum of Sq Mean Sq F Value Pr(F)

1 256.00 256.000 136.533 0.000000375
P 1 20.25 20.250 10.800 0.008200654
Te 1 2304.00 2304.000 1228.800 0.000000000
C 1 121.00 121.000 64.533 0.000011354
Te:C 1 81.00 81.000 43.200 0.000062906
Residuals 10 18.75 1.875

Once you have tentatively identified a model for a 9k experiment,
you should make the usual graphical checks based on the residuals
and fitted values. In the product development example, you should
examine the following plots:

> hist(resid(aov.devel.small))
> qqnorm(resid(aov.devel.small))
> plot(fitted(aov.devel.small), resid(aov.devel.small))
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The latter two plots are shown in Figure 16.18 and Figure 16.19.
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Figure 16.18: Quantile-quantile plot of residuals, product development example.
You should also make plots using the time order of the runs:
> run.ord <- scan()

1: 82 1041591 13165 11 14 3 12 6 7
17:

> plot(run.ord, resid(aov.devel.small))
> plot(run.ord, fitted(aov.devel.small))

This gives a slight hint that the first runs were more variable than the
latter runs.

612



Many Factors at Two Levels: 2 Designs

N B L]
% - B L] L] L]
1S . .
U? [
6 L] e e
& © -
ko) L]
>
o)
\(3 L] L]
o
(7] T
e

o

T T T T T
50 60 70 80 90

fitted(aov.devel.small)

Figure 16.19: Fitted values vs. residuals, product development example.

Details The function aov returns, by default, coefficients corresponding to the
following usual ANOVA form for the 1:

_ _ 12 K
M =1 = W+og 0 .0
12 13 k-1, k
12 1'3 k-1
+ ...
123 k
+ 0G5
112+t

In this form of the 2¥ model, each i, takes on just two values: 1 and

9. There are 2 values of the k-tuple index iy, iy, .., i, and the

. m
parameter U is the overall mean. The parameters o; correspond to

. mn
the main effects, form = 1, .., k. The parameters o; ; correspond to

. . Imn
the two-factor interactions, the parameters 0;; ; correspond to the

IIlmin
three-factor interactions, and the remaining coefficients are the higher-
order interactions.
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The coefficients for the main effects satisfy the constraint

i i i i ;
n'10c1+n'20(2 =0 fori=12 .,k where the n' denote the

number of replications for the ith treatment. All higher-order
interactions satisfy the constraint that the weighted sum over any
individual subscript index is Zero. For example,

12 12 12 12 124 124 124 124

N 1041+ Nj 909 =0, n = 0, etc. Because

igi, %1igi,  Maigi, %iyi,

of the constraints on the parameters in this form of the model, it

suffices to specify one of the two values for each effect. The function
A~ ~12

aov returns estimates for the “high” levels (for example, 0, o ).

An estimated effect (in the sense usually used in 9 models) is equal
to the difference between the estimate at the high level minus the
estimate at the low level:

~1 ~1 ~1

o = 0y—0 .

1~1 1~1
Since N 0 +Ny0ly = 0, we have

~1 ~1 n
= 0y 1+—?
Ny

In the case of a balanced design, n} = né and the estimated effect

~1 ~1
simplifies to o0 = 204, .
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Chapter 17 Further Topics in Analysis of Variance

INTRODUCTION

Chapter 16, Designed Experiments and Analysis of Variance,
describes the basic techniques for using TIBCO Spotfire S+ for
analysis of variance. This chapter extends the concepts to several
related topics as follows:

*  Multivariate analysis of variance (MANOVA);
*  Split-plot designs;
* Repeated measures;

*  Nonparametric tests for one-way and blocked two-way
designs;

* Variance components models.

These topics are preceded by a discussion of model coefficients and

contrasts. This information is important in interpreting the available
ANOVA summaries.
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MODEL COEFFICIENTS AND CONTRASTS

This section explains what the coefficients mean in ANOVA models,
and how to get more meaningful coefficients for particular cases.

Suppose we have 5 measurements of a response variable scores for
each of three treatments, "A", "B", and "C", as shown below:

> scores <- scan()
1: 4545 410777777876

> scores.treat <- factor(c(rep("A",5), rep("B",5),
rep("C",5)))
> scores.treat

+

[IJAAAAABBBBBCCCCC

In solving the basic ANOVA problem, we are trying to solve the
following simple system of equations:

LlA = I:H'dA

U = U+ 0B
Hc = L+ 0c
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Consider:

4 11

5 11

4 11

5 11

4 11 o o
10 1 1 ' !
7 1 1 o o

v=|7|= |1 1 ||2+e= [1%][2A +e

7 1 1 ||9 OB
7 11 ||oc o]
7 1 1

7 1 1

8 1 1

7 1 1

6] |1 1

The problem is that the matrix [1 Xa] is singular. That is, we cannot

solve for the alphas.

-1-1
Use the Helmert contrast matrix C,= | 1 _1].
0 2
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The matrix X*= [1 X, Ca] is nonsingular. Thus, we solve the new

system (using betas rather than alphas):

B R Gl

—
S

N 00NN NN NN

1-1-1
1-1-1
1-1-1
1-1-1
1-1-1

p—

— e e e e e e e
O OO O O = e e e

i u
Bi| +e= [1 X, C,J|B:
Py Py
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The matrix [1 X, CJ is nonsingular; therefore, we can solve for the

u 6.333
the solution (B,/= | 1.6
Byl 10.333
u
- n
Because y = [1 XJ (AXA = [1 X, CJ B, it follows that
% By
0|
Oa
Xalog|= X3Cq {Bl} or simply a= C,B.
o 2
Thus, we can calculate the original alphas:
-1-1 L6 -1.933
CaB= |1 -1 {0333} 1.266 |= o
0 2| 0.667

If we use aov as usual to create the aov object scores.aov, we can use

the coef function to look at the solved values W, B, and PBo:

> scores.aov <- aov(scores ~ scores.treat)

> coef(scores.aov)

(Intercept) scores.treatl scores.treat2
6.333333 1.6 0.3333333

In our example, the contrast matrix is as follows:

-1-1
I -1
0 2
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You can obtain the contrast matrix for any factor object using the
contrasts function. For unordered factors such as scores.treat,
contrasts returns the Helmert contrast matrix of the appropriate
size:

> contrasts(scores.treat)

(.11 [,2]
A -1 -1
B 1 -1
C 0 2

The contrast matrix, together with the treatment coefficients returned
by coef, provides an alternative to using model.tables to calculate
effects:

> contrasts(scores.treat) %*% coef(scores.aov)[-1]

[.1]
A -1.9333333
B 1.2666667
C 0.6666667

For ordered factors, the Helmert contrasts are replaced, by default,
with polynomial contrasts that model the response as a polynomial
through equally spaced points. For example, suppose we define an
ordered factor water.temp as follows:

> water.temp <- ordered(c(65, 95, 120))
> water.temp

[1] 65 95 120
65 < 95 < 120

The contrast matrix for water.temp uses polynomial contrasts:
> contrasts(water.temp)

.L .Q
65 -0.7071068 0.4082483
95 0.0000000 -0.8164966
120 0.7071068 0.4082483

623



Chapter 17 Further Topics in Analysis of Variance

624

For the polynomial contrasts, 1 represents the linear component of

the response, o represents the quadratic component, and so on.
When examining ANOVA summaries, you can split a factor’s effects
into contrast terms to examine each component’s contribution to the
model. See the section Splitting Treatment Sums of Squares Into
Contrast Terms for complete details.
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At times it is desirable to give particular contrasts to some of the
coefficients. In our example, you might be interested in a contrast that
has A equal to a weighted average of B and C. This might occur, for
instance, if the treatments were really doses. You can add a contrast
attribute to the factor using the assignment form of the contrasts
function:

> contrasts(scores.treat) <- c(4, -1, -3)
> contrasts(scores.treat)

[.1] .2]
A 4 0.2264554
B -1 -0.7925939
C -3 0.5661385

Note that a second contrast was automatically added.

Refitting the model, we now get different coefficients, but the fit
remains the same.

> scores.aov?2 <- aov(scores ~ scores.treat)
> coef(scores.aov?)

(Intercept) scores.treatl scores.treat?2
6.333333 -0.4230769 -1.06434

More details on working with contrasts can be found in the section
Contrasts: The Coding of Factors in Chapter 2.
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Results from an analysis of variance are typically displayed in an
analysis of variance table, which shows a decomposition of the variation
in the response: the total sum of squares of the response is split into
sums of squares for each treatment and interaction and a residual sum
of squares. You can obtain the ANOVA table, as we have throughout
this chapter, by using summary on the result of a call to aov, such as
this overly simple model for the wafer data:

> attach(wafer, pos = 2)
> wafer.aov <- aov(pre.mean ~ visc.tem + devtime +
+ etchtime)

> summary(wafer.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
visc.tem 2 1.343361 0.6716807 3.678485 0.0598073
devtime 2 0.280239 0.1401194 0.767369 0.4875574
etchtime 2 0.103323 0.0516617 0.282927 0.7588959
Residuals 11 2.008568 0.1825971

O O O o

Each treatment sum of squares in the ANOVA table can be further
split into terms corresponding to the treatment contrasts. By default,
the treatment contrasts are used for unordered factors and polynomial
contrasts for ordered factors. In this example, we continue to use the
Helmert contrasts for unordered factors and polynomial contrasts for
ordered factors.

For instance, with ordered factors you can assess whether the
response is fairly linear in the factor by listing the polynomial
contrasts separately. In the data set wafer, you can examine the linear
and quadratic contrasts of devtime and etchtime by using the split
argument to the summary function:

> summary(wafer.aov, split = Tlist(
+ etchtime = Tist(L =1, Q = 2),
+ devtime = Tist(L =1, Q = 2)))

Df Sum of Sq Mean Sq F Value Pr(F)
visc.tem 2 1.343361 0.6716807 3.678485 0.0598073
devtime 2 0.280239 0.1401194 0.767369 0.4875574
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devtime: L 1 0.220865 0.2208653 1.209577 0.2949025

devtime: Q 1 0.059373 0.0593734 0.325161 0.5799830
etchtime 2 0.103323 0.0516617 0.282927 0.7588959

etchtime: L 1 0.094519 0.0945188 0.517636 0.4868567

etchtime: Q@ 1 0.008805 0.0088047 0.048219 0.8302131
Residuals 11 2.008568 0.1825971

Each of the (indented) split terms sum to their overall sum of squares.

The split argument can evaluate only the effects of the contrasts
used to specify the ANOVA model: if you wish to test a specific
contrast, you need to set it explicitly before fitting the model. Thus, if
you want to test a polynomial contrast for an unordered factor, you
must specify polynomial contrasts for the factor before fitting the
model. The same is true for other nondefault contrasts. For instance,
the variable visc.tem in the wafer data set is a three-level factor
constructed by combining two levels of viscosity (204 and 206) with
two levels of temperature (90 and 105).

> levels(visc.tem)

[1] "204,90™ "206,90" ™204,105"

To assess viscosity, supposing temperature has no effect, we define a
contrast that takes the difference of the middle and the sum of the first
and third levels of visc.tem; the contrast matrix is automatically
completed:

# Assign visc.tem to your working directory.
> visc.tem <- visc.tem

> contrasts(visc.tem) <- c(-1, 2, -1)

> contrasts(visc.tem)

[,1] [.2]
204,90 -1 -7.071068e-01
206,90 2 -1.110223e-16

204,105 -1 7.071068e-01

> wafer.aov <- aov( pre.mean ~ visc.tem + devtime +
+ etchtime)

# Detach the data set.
> detach(2)
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In this fitted model, the first contrast for visc.aov reflects the effect of
viscosity, as the summary shows below.
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> summary(wafer.aov, split = Tlist(
+ visc.tem = list(visc = 1)))

Df Sum of Sq Mean Sq F Value Pr(F)

visc.tem 2 1.343361 0.671681 3.678485 0.0598073

visc.tem: visc 1 1.326336 1.326336 7.263730 0.0208372

devtime 2 0.280239 0.140119 0.767369 0.4875574

etchtime 2 0.103323 0.051662 0.282927 0.7588959
Residuals 11 2.008568 0.182597

Commonly the ANOVA model is written in the form grand mean plus
treatment effects,

Yijk = M+ 04+ Bj+ (af)j; + &

The treatment effects, o;, B;, and (of);;, reflect changes in the

response due to the combination of treatments. In this
parametrization, the effects (weighted by the replications) are
constrained to sum to zero.

Unfortunately, the use of the term e¢ffect in ANOVA is not
standardized: in factorial experiments an effect is the difference
between treatment levels, in balanced designs it is the difference from
the grand mean, and in unbalanced designs there are (at least) two
different standardizations that make sense.

The coefficients of an aov object returned by coef(aov.object) are
coefficients for the contrast variables derived by the aov function,
rather than the grand-mean-plus-effects decomposition. The functions
dummy .coef and model.tables translate the internal coefficients into
the more natural treatment effects.

In a balanced design, both computing and interpreting effects are
straightforward. The following example uses the gun data frame,
which is a design object with 36 rows representing runs of teams of
three men loading and firing naval guns, attempting to get off as
many rounds per minute as possible. The three predictor variables
specify the team, the physiques of the men on it, and the loading
method used. The outcome variable is the rounds fired per minute.
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> gun.aov <- aov(Rounds ~ Method + Physique/Team,
+ data = gun)
> coef(gun.aov)

(Intercept) Method Physique.L Physique.Q
19.33333 -4.255556 -1.154941 -0.06123724
PhysiqueSTeaml PhysiqueATeaml PhysiqueHTeaml

1.9375 0.45 -0.45
PhysiqueSTeam2 PhysiqueATeam2 PhysiqueHTeam?2
-0.4875 0.008333333 -0.1083333

The dummy.coef function translates the coefficients into the more
natural effects:

> dummy.coef(gun.aov)

$"(Intercept)":
(Intercept)
19.33333

$Method:
M1 M2
4.255556 -4.255556

$Physique:
[11 0.7916667 0.0500000 -0.8416667

$"Team %in% Physique":

171 271 3T1 172 272
-1.45 -0.4583333 0.5583333 2.425 0.4416667
372 173 2T3 3T3

-0.3416667 -0.975 0.01666667 -0.2166667
For the default contrasts, these effects always sum to zero.

The same information is returned in a tabulated form by
model.tables. Note that model.tables calls proj; hence, it is helpful
to use qr=T in the call to aov.
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> model.tables(gun.aov, se = T)

Tables of effects

Method
M1 M2
4,256 -4.256
Physique
S A H

0.7917 0.05 -0.8417

Team %in% Physique
Dim 1 : Physique
Dim 2 : Team

Tl T2 T3
S -1.450 2.425 -0.975
A -0.458 0.442 0.017
H 0.558 -0.342 -0.217

Standard errors of effects
Method Physique Team %in% Physique
0.3381 0.4141 0.7172
rep 18.0000 12.0000 4.0000
Warning messages:

Model was refit to allow projection in:
model.tables(gun.aov, se = T)

Using the first method, the gunners fired on average 4.26 more
rounds than the overall mean. The standard errors for the effects are
simply the residual standard error scaled by the replication factor,
rep, the number of observations at each level of the treatment. For
instance, the standard error for the Method effect is:

se(Residual) _ 1434
Jr eplication(Method) J18

se(Method) = = (0.3381

The model.tables function also computes cell means for each of the
treatments. This provides a useful summary of the analysis that is
more easily related to the original data.
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> model.tables(gun.aov, type = "means"™, se =T)

Tables of means

Grand mean

19.33
Method
M1 M2
23.59 15.08
Physique
S A H

20.13 19.38 18.49

Team %in% Physique

Dim 1 : Physique

Dim 2 : Team
T1 T2 T3

S 18.68 22.55 19.15

A 18.93 19.83 19.40

H 19.05 18.15 18.28

Standard errors for differences of means
Method Physique Team %in% Physique

0.4782 0.5856 1.014
rep 18.0000 12.0000 4.000
Model was refit to allow projection in:
model.tables(gun.aov, type = "means", se = T)

The first method had an average firing rate of 23.6 rounds. For the
tables of means, standard errors of differences between means are
given, as these are usually of most interest to the experimenter. For
instance the standard error of differences for Team %in% Physique is:

SED = [2x -2—945-7-9 — 1014

To gauge the statistical significance of the difference between the first
and second small physique teams, we can compute the least significant
difference (LSD) for the Team %in% Physique interaction. The validity
of the statistical significance is based on the assumption that the
model is correct and the residuals are Gaussian. The plots of the
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residuals indicate these are not unreasonable assumptions for this
data set. You can verify this by creating a histogram and normal
qq-plot of the residuals as follows:

> hist(resid(gun.aov))
> qqnorm(resid(gun.aov))

The LSD at the 95% level is:
1(0.975, 26) x SED(Team %*% Physique)

We use the tdistribution with 26 degrees of freedom because the
residual sum of squares has 26 degrees of freedom. In Spotfire S+, we
type the following:

> qt(0.975, 26) * 1.014

[1] 2.084307

Since the means of the two teams differ by more than 2.08, the teams
are different at the 95% level of significance. From an interaction plot

it is clear that the results for teams of small physique are unusually
high.

In factorial experiments, where each experimental treatment has only
two levels, a treatment effect is, by convention, the difference between
the high and low levels. Interaction effects are half the average
difference between paired levels of an interaction. These factorial
effects are computed when type="feffects" is used in the
model.tables function:

> catalyst.aov <- aov(Yield ~ ., data = catalyst, qr = T)
> model.tables(catalyst.aov, type = "feffects", se =T)

Table of factorial effects
Effects se

Temp 23.0 5.062

Conc -5.0 5.062

Cat 1.5 5.062
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When designs are unbalanced (there are unequal numbers of
observations in some cells of the experiment), the effects associated
with different treatment levels can be standardized in different ways.
For instance, suppose we use only the first 35 observations of the gun
data set:

> gunsmall.aov <- aov(Rounds ~ Method + Physique/Team,
+ data = gun, subset = 1:35, qr =T)

The dummy.coef function standardizes treatment effects to sum to
Zero:

> dummy.coef(gunsmall.aov)

$"(Intercept)":
(Intercept)
19.29177

$Method:
M1 M2
4.297115 -4.297115

$Physique:
[1I] 0.83322650 0.09155983 -0.92478632

$"Team %in% Physique":
171 2T1 3T1 172 2T2
-1.45 -0.4583333 0.6830128 2.425 0.4416667

3T2 173 2T3 3T3
-0.2169872 -0.975 0.01666667 -0.466025

The model.tables function computes effects that are standardized so
the weighted effects sum to zero:

!
i=1
where n; is the replication of level i and 7t; the effect. The

model.tables effects are identical to the values of the projection
vectors computed by proj(gunsmall.aov), as the command below
shows.
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> model.tables(gunsmall.aov)

Tables of effects

Method
M1 M2
4.135 -4.378
rep 18.000 17.000

Physique
S A H
0.7923 0.05065 -0.9196
rep 12.0000 12.00000 11.0000

Team %in% Physique
Dim 1 : Physique
Dim 2 : Team

T1 T2 T3
S -1.450 2.425 -0.975
rep 4.000 4.000 4.000
A -0.458 0.442 0.017
rep 4.000 4.000 4.000
H 0.639 -0.261 -0.505
rep 4.000 4.000 3.000

With this standardization, treatment effects are orthogonal:
consequently cell means can be computed by simply adding effects to
the grand mean; standard errors are also more readily computed.

> model.tables(gunsmall.aov, type = "means", se = T)

Standard error information not returned as design is
unbalanced.

Standard errors can be obtained through se.contrast.
Tables of means
Grand mean

19.45
Method
M1 M2
23.59 15.08

rep 18.00 17.00
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Physique
S A H
20.25 19.5 18.53
rep 12.00 12.0 11.00

Team %in% Physique
Dim 1 : Physique
Dim 2 : Team

T1 T2 T3
S 18.80 22.67 19.27
rep 4.00 4.00 4.00
A 19.05 19.95 19.52
rep 4.00 4.00 4.00
H 19.17 18.27 18.04
rep 4.00 4.00 3.00

Note that the (Intercept) value returned by dummy.coef is not the
grand mean of the data, and the coefficients returned are not a
decomposition of the cell means. This is a difference that occurs only
with unbalanced designs. In balanced designs the functions
dummy . coef and model.tables return identical values for the effects.

In the unbalanced case, the standard errors for comparing two means
depend on the replication factors, hence it could be very complex to
tabulate all combinations. Instead, they can be computed directly
with se.contrast. For instance, to compare the first and third teams
of heavy physique:

> se.contrast(gunsmall.aov, contrast = Tist(
+ Physique == "S" & Team == "T1",

+ Physique == "S" & Team == "T3"),

+ data = gun[1:35,]1)

[1] 1.018648

By default, the standard error of the difference of the means specified
by contrast is computed. Other contrasts are specified by the
argument coef. For instance, to compute the standard error of the
contrast tested in the section Splitting Treatment Sums of Squares Into
Contrast Terms for the variable visc.tem, use the commands below.
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attach(wafer)

se.contrast(wafer.aov, contrast = Tist(
visc.tem ==levels(visc.tem)[1],
visc.tem == Tevels(visc.tem)[2],
visc.tem == levels(visc.tem)[3]),

coef = ¢c(-1,2,-1), data = wafer)

+ + 4+ + v v

Refitting model to allow projection
[1] 0.4273138

# Detach the data set.
> detach(2)

The value of the contrast can be computed from
model.tables(wafer.aov). The effects for visc.tem are:

visc.tem
204,90 206,90 204,105
0.1543 -0.3839 0.2296

The contrast is -0.3839 - mean(c(0.1543,0.2296)) = -0.5758. The
standard error for testing whether the contrast is zero is 0.0779;
clearly, the contrast is nonzero.

Researchers implementing an experimental design frequently lose
experimental units and find themselves with unbalanced, but
complete data. The data are unbalanced in that the number of
replications is not constant for each treatment combination; the data
are complete in that at least one experimental unit exists for each
treatment combination. In this type of circumstance, an experimenter
may find the analysis of unweighted means is appropriate, and that the
unweighted means are of more interest than the weighted means. In
such an analysis, the Type III sum of squares is computed instead of
the Type I (sequential) sum of squares.

In a Type I analysis, the model sum of squares is partitioned into its
term components, where the sum of squares for each term listed in
the ANOVA table is adjusted for the terms listed in the previous
rows. For unbalanced data, the sequential sums of squares (and the
hypotheses they test) depend on the order in which the terms are
specified in the model formula. In a Type III analysis, however, the
sum of squares for each term listed in the ANOVA table is adjusted
for all other terms in the model. These sums of squares are
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independent of the order that the terms are specified in the model
formula. If the data are balanced, the sequential sum of squares equals
the Type III sum of squares. If the data are unbalanced but complete,
then the Type III sums of squares are those obtained from Yates'
weighted squares-of-means technique. In this case, the hypotheses
tested by the Type III sums of squares for the main effects is that the
levels of the unweighted means are equal.

For general observational studies, the sequential sum of squares may
be of more interest to an analyst. For a designed experiment, an
analyst may find the Type III sum of squares of more use.

The argument ssType to the methods anova.1m and summary.aov
compute the Type III sums of squares. To obtain the Type III
analysis for an aov object, use the option ssType=3 in the call to anova
or summary. In addition, the multicomp function can be used to
compute unweighted means. In this section, we provide examples to
demonstrate these capabilities in an analysis of a designed
experiment.

The fat-surfactant example below is taken from Milliken and Johnson
(1984, p. 166), where they analyze an unbalanced randomized block
factorial design. Here, the specific volume of bread loaves baked from
dough that is mixed from each of nine Fat and Surfactant treatment
combinations is measured. The experimenters blocked on four Flour
types. Ten loaves had to be removed from the experiment, but at
least one loaf existed for each Fat x Surfactant combination and all
marginal means are estimable. Therefore, the Type III hypotheses are
testable. The data are given in Table 17.1.

The commands below create a Baking data set from the information
in Table 17.1.

> Baking <- data.frame(

+ Fat = factor(

+ c(rep(l,times=12), rep(2,times=12), rep(3,times=12))),
+ Surfactant = factor(

+ rep(c(1,1,1,1,2,2,2,2,3,3,3,3), times=3)),

+ Flour = factor(rep(l:4, times=9)),

+ Specific.Vol = c(6.7, 4.3, 5.7, NA, 7.1, NA, 5.9, 5.6,
+ NA, 5.5, 6.4, 5.8, NA, 5.9, 7.4, 7.1, NA, 5.6, NA, 6.8,
+ 6.4, 5.1, 6.2, 6.3, 7.1, 5.9, NA, NA, 7.3, 6.6,

+ 8.1, 6.8, NA, 7.5, 9.1, NA))
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> Baking

Fat Surfactant Flour Specific.Vol

1 1 1 6.7
4.3
5.7
NA
7.1
NA
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Table 17.1: Specific volumes from a baking experiment.

Fat Surfactant Flour 1 Flour 2 Flour 3 Flour 4

1 6.7 4.3 5.7

1 2 7.1 5.9 5.6
3 5.5 6.4 5.8
1 5.9 7.4 7.1

2 2 5.6 6.8
3 6.4 5.1 6.2 6.3
1 7.1 5.9

3 2 7.3 6.6 8.1 6.8
3 7.5 9.1

The overparametrized model is:
fori=1, .,4, =1, 2 3 and< =1, 2, 3. In this model, the b;

are coefficients corresponding to the levels in Fat, the f; correspond

to Flour, the s, correspond to Surfactant, and the (fs); are
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coefficients for the Fat x Surfactant interaction. Because the data
are unbalanced, the Type III sums of squares for Flour, Fat, and
Surfactant test more useful hypotheses than the Type I analysis.
Specifically, the Type III hypotheses are that the unweighted means
are equal:

Hiour: U1 = Mo = U3, = My
HFat?l:l.l. = 11.2. = Ll.?,.

HSurfactant: Li1i=HLo=HUL3

where

2Hik

D Mijk
nj = b
DMijk
k= b—

The hypotheses tested by the Type I sums of squares are not easily
interpreted, since they depend on the order in which the terms are
specified. In addition, the Type I sums of squares involve the cell
replications, which can be viewed as random variables when the data
are unbalanced in a truly random fashion. Moreover, the hypothesis
tested by the blocking term, Flour, involves parameters of the Fat,
Flour, and Fat x Flour terms.

The following command computes an analysis of variance model for
the Baking data.

> Baking.aov <- aov(Specific.Vol ~ Flour + Fat*Surfactant,
+ data = Baking, contrasts = list(Flour = contr.sum(4),

+ Fat = contr.sum(3), Surfactant = contr.sum(3)),

+ na.action = na.exclude)

The ANOVA tables for both the Type I and Type I1I sums of squares
are given below for comparison. Using the Type III sums of squares
for the Baking.aov object, we see that the block effect, Flour, is
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significant. In addition, Fat appears to be significant, but Surfactant
is not (at a test size of o = 0.05). In the presence of a significant

interaction, however, the test of the marginal means probably has
little meaning for Fat and Surfactant.

> anova(Baking.aov)

Analysis of Variance Table
Response: Specific.Vol

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

Flour 3  6.39310 2.131033 12.88269 0.0002587

Fat 2 10.33042 5.165208 31.22514 0.0000069

Surfactant 2 0.15725 0.078625 0.47531 0.6313678
Fat:Surfactant 4 5.63876 1.409691 8.52198 0.0010569

Residuals 14 2.31586 0.165418
> anova(Baking.aov, ssType = 3)
Analysis of Variance Table

Response: Specific.Vol

Type III Sum of Squares
Df Sum of Sq Mean Sq F Value Pr(F)

Flour 3 8.69081 2.896937 17.51280 0.00005181
Fat 2 10.11785 5.058925 30.58263 0.00000778
Surfactant 2 0.99721 0.498605 3.01421 0.08153989
Fat:Surfactant 4 5.63876 1.409691 8.52198 0.00105692
Residuals 14 2.31586 0.165418
Unweighted The unweighted means computed below estimate the means given in
Means the Type III hypotheses for Flour, Fat, and Surfactant. The means

for Flour x Surfactant in the overparametrized model are

Miji
i

l:l.jk = T
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We use the multicomp function with the argument
comparisons="none" to compute the unweighted means and their
standard errors.

# Unweighted means for Flour.
> multicomp(Baking.aov, comparisons="none", focus="Flour")

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method

critical point: 2.8297
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

Estimate Std.Error Lower Bound Upper Bound

1 7.30 0.199 6.74 7.87 *x*x%
2 5.71 0.147 5.29 6.12 ***x*
3 6.98 0.162 6.52 7.44 Fx*x%
4 6.54 0.179 6.04 7.05 *xxx

# Unweighted means for Fat.
> multicomp(Baking.aov, comparisons="none™, focus="Fat")

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.6177
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

Estimate Std.Error Lower Bound Upper Bound

1 5.85 0.136 5.49 6.21 **x*x
2 6.58 0.148 6.19 6.96 **x*x
3 7.47 0.156 7.06 7.88 *xx%x
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# Unweighted means for Surfactant.
> multicomp(Baking.aov, comparisons = "none",
+ focus = "Surfactant")

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.6177
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

Estimate Std.Error Lower Bound Upper Bound

1 6.4 0.150 6.00 6.79 **x*
2 6.6 0.143 6.22 6.97 **x*x*
3 6.9 0.147 6.52 7.29 *x*x%

# Unweighted means for Fat x Surfactant.
> multicomp(Baking.aov, comparisons="none"™, focus="Fat",
+ adjust = Tist(Surfactant = seq(3)))

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method

critical point: 3.2117
response variable: Specific.Vol

intervals excluding 0 are flagged by '"****'

Estimate Std.Error Lower Bound Upper Bound

l.adjl 5.54 0.240 4.76 6.31 ***x*
2.adjl 7.02 0.241 6.25 7.80 **xx
3.adjl 6.63 0.301 5.66 7.59 FExx
l.adj2 5.89 0.239 5.12 6.66 ***x
2.adj2 6.71 0.301 5.74 7.67 ***%x
3.adj2 7.20 0.203 6.55 7.85 **xx
1.adj3 6.12 0.241 5.35 6.90 ****
2.adj3 6.00 0.203 5.35 6.65 ***x
3.adj3 8.59 0.300 7.62 9.55 Fkxx
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In the output from mu1ticomp, the unweighted means are given in the
Estimate column. In the table for the Fat x Surfactant interaction,
the adjX labels represent the levels in Surfactant. Thus, the value
7.02 is the estimated mean specific volume at the second level in Fat
and the first level in Surfactant.

The F statistic for the Fat x Surfactant interaction in the Type III
ANOVA table is significant, so the tests for the marginal means of Fat
and Surfactant have little meaning. We can, however, use multicomp
to find all pairwise comparisons of the mean Fat levels for each level
of Surfactant, and those of Surfactant for each level of Fat.

> multicomp(Baking.aov, focus = "Fat",
+ adjust = Tist(Surfactant = seq(3)))

95 % simultaneous confidence intervals for specified
lTinear combinations, by the Sidak method

critical point: 3.2117
response variable: Specific.Vol

intervals excluding 0 are flagged by '****'

Estimate Std.Error Lower Bound Upper Bound

l.adjl-2.adjl -1.490 0.344 -2.590 -0.381 ***x*
l.adjl-3.adjl -1.090 0.377 -2.300 0.120
2.adjl-3.adjl 0.394 0.394 -0.872 1.660
1.adj2-2.adj2 -0.817 0.390 -2.070 0.434
1.adj2-3.adj2 -1.310 0.314 -2.320 -0.300 ****
2.adj2-3.adj2 -0.492 0.363 -1.660 0.674
1.adj3-2.adj3 0.123 0.316 -0.891 1.140
1.adj3-3.adj3 -2.470 0.378 -3.680 -1.250 ***x*
2.adj3-3.adj3 -2.590 0.363 -3.750 -1.420 ***x*
> multicomp(Baking.aov, focus = "Surfactant",

+ adjust = Tist(Fat = seq(3)))

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method

critical point: 3.2117
response variable: Specific.Vol

intervals excluding 0 are flagged by '"****'
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Summarizing ANOVA Results

Estimate Std.Error Lower Bound Upper Bound

l.adjl-2.adjl -0.355 0.341 -1.45000 0.740
l.adjl-3.adjl -0.587 0.344 -1.69000 0.519
2.adjl-3.adjl -0.232 0.342 -1.33000 0.868
l.adj2-2.adj2 0.314 0.377 -0.89700 1.530
l.adj2-3.adj2 1.020 0.316 0.00922 2.040 ***xx
2.adj2-3.adj2 0.708 0.363 -0.45700 1.870
1l.adj3-2.adj3 -0.571 0.363 -1.74000 0.594
1.adj3-3.adj3 -1.960 0.427 -3.33000 -0.590 **x*x*
2.adj3-3.adj3 -1.390 0.363 -2.55000 -0.225 **x*xx%

The levels for both the Fat and Surfactant factors are labeled 1, 2,
and 3, so the rows in the multicomp tables require explanation. For
the first table, the label 1.adjl1-2.adjl refers to the difference
between levels 1 and 2 of Fat (the focus variable) at level 1 of
Surfactant (the adjust variable). For the second table, the label
refers to the difference between levels 1 and 2 of Surfactant at level 1
of Fat. Significant differences are flagged with four stars, ****. As a
result of the Fat x Surfactant interaction, the F test for the
equivalence of the Surfactant marginal means is not significant.
However, there exist significant differences between the mean of
Surfactant levels 1-3 at a Fat level of 2, and also between the means
of Surfactant levels 1-3 and 2-3 at a Fat level of 3.

The Type I and Type III estimable functions for the
overparametrized model show the linear combinations of the model
parameters, tested by each sum of squares. The Type I estimable
functions can be obtained by performing row reductions on the cross

products of the overparameterized model matrix X'X. The row

operations reduce X'X to upper triangular form with ones along its
diagonal (SAS Institute, Inc., 1978). The Spotfire S+ code for this
algorithm, used to compute the matrix TypeI.estim below, is given in
the Appendix. In the following command, we print only four digits of
each entry in Typel.estim.

> round(Typel.estim, 4)

L2 L3 L4 L6 L7 L9 L10 L12 L13 L15 L16
.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
0000 -1.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
0667 -0.0833 0.0952 1.0000 0.0000 0.0000 0.0000 0 0 0 0
3000 -0.1250 -0.2143 0.0000 1.0000 0.0000 0.0000 0 0 0 0
2333 0.2083 0.1190 -1.0000 -1.0000 0.0000 0.0000 0 0 0 0
2333 0.2083 0.1190 0.1152 0.1338 1.0000 0.0000 0 0 0 0
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Surfactant2 -

Surfactant3
FatlSurfactantl
FatlSurfactant2
FatlSurfactant3
Fat2Surfactantl
Fat2Surfactant2
Fat2Surfactant3
Fat3Surfactantl
Fat3Surfactant2
Fat3Surfactant3
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.1000 -
.1333
.2000
.0333 -
.1667 -
.1667 -
.1667 -
.0333 -
.2000
.0333 -
.0000

The columns labeled L2, L3, and

OO O OO ODOOOO

.2500 -
.0417
.1250
.1667 -
L0417 -
L0417 -
L0417 -
L0417 -
.1250
L0417 -
.1250

OO OOODODOOOO

L2143 -
.0952
.1429
.0238
.0238
.0238
.1667
.0238
.0000
.0238
.1429

oo '
OO OO OO OO OOOoO

.1966 -
.0814
.3531
.3167
.3302
.0060
.0049
.0011
.2319
.5182
.2499

o [
OO OO ODODOOOO

.3235

.0359

.3250

.2034

L2271

.1896 -

.0060 -

.0299 -

L4716 -

.5209 -
.2520 -

.0000
.0000 -
.3507
.0149
.3358 -
L4242
.0190
L4432 -
L2251 -
.0041
.2210 -

ODOOODODOCDOOO—O
OO OO OO OOO -

.0000 0 0 0 O
.0000 0 0 0 O
.0037 1 0 0 0
L3499 0 1 0 0
.3536 -1 -1 0 0
.0760 0 O 1 0
2971 0 0 0 1
37310 0 1 -1
L0797 -1 0 1 0
.3530 0 -1 0 -1
L2733 1 1 1 1

L4 in the above output are for the
Flour hypothesis. Columns L6 and L7 are for the Fat hypothesis, L9
and L10 are for the Surfactant hypothesis, and the last four columns
are for the Fat x Surfactant hypothesis.

The Type III estimable functions can be obtained from the generating

set (XtX)*(XtX) , where (XtX)* is the g2 inverse, or generalized inverse
of the cross product matrix (Kennedy & Gentle, 1980). We can then
perform the steps outlined in the SAS/STAT User’s Guide on the
generating set (SAS Institute, Inc., 1990). This algorithm is
implemented in the function print.ssType3, through the option
est.fun=TRUE.

> Typelll.estim <- print(ssType3(Baking.aov), est.fun = T)

Type III Sum of Squares

Flour

Fat

Surfactant

Fat:Surfactant
Residuals 14

Df
3
2
2
4

Sum
8.
10.
0.
5.
2.

of Sq
69081
11785
99721
63876
31586

Mean Sq
2.896937
5.058925
0.498605
1.409691
0.165418

Estimable function coefficients:

Flour : L2,
Fat : L6, L7
Surfactant :

Fat:Surfactant

L3,

L9

L4

, L10
L12, LI3,

L15, L16

F Value Pr(F)
17.51280 0.00005181
30.58263 0.00000778

3.01421 0.08153989

8.52198 0.00105692
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The Typelll.estim object is a list of lists. We can extract the
overparameterized form of the estimable functions by examining the
names of the list components:

> names(Typelll.estim)
[11 "ANQVA" "est.fun"
> names(Typelll.estim$est.fun)

[1] "gen.form™ "over.par™ "assign"

The estimable functions we want are located in the over.par
component of est.fun:

> round(Typelll.estim$est.fun$over.par, 4)

L2 L3 L4 L6 L7 L9 L10 L12 L13 L15 L16

(Intercept) 0 0 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0
Flourl 1 0 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0

Flour2 0 1 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0

Flour3 0 0 1 0.0000 0.0000 0.0000 0.0000 0 0 0 0

Flour4 -1 -1 -1 0.0000 0.0000 0.0000 0.0000 0 0 0 0

Fatl 0 0 0 1.0000 0.0000 0.0000 0.0000 0 0 0 0

Fatz2 0 0 0O 0.0000 1.0000 0.0000 0.0000 0 0 0 0

Fat3 0 0 0 -1.0000 -1.0000 0.0000 0.0000 0 0 0 0
Surfactantl 0 0 0 0.0000 0.0000 1.0000 0.0000 0 0 0 0
Surfactantz 0 0 0O 0.0000 0.0000 0.0000 1.0000 0 0 0 0
Surfactant3 0 0 0 0.0000 0.0000 -1.0000 -1.0000 0 0 0 0
FatlSurfactantl 0 0 O 0.3333 0.0000 0.3333 0.0000 1 0 0 0
FatlSurfactant2 0 0 0 0.3333 0.0000 0.0000 0.3333 0 1 0 0
FatlSurfactant3 0 0 0 0.3333 0.0000 -0.3333 -0.3333 -1 -1 0 0
Fat2Surfactantl 0 0 0 0.0000 0.3333 0.3333 0.0000 0 0 1 0
Fat2Surfactant2 0 0 O 0.0000 0.3333 0.0000 0.3333 0 0 0 1
Fat2Surfactant3 0 0 0 0.0000 0.3333 -0.3333 -0.3333 0 0 -1 -1
Fat3Surfactantl 0 0 0 -0.3333 -0.3333 0.3333 0.0000 -1 0 -1 0
Fat3Surfactant2 0 0 0 -0.3333 -0.3333 0.0000 0.3333 0 -1 0 -1
Fat3Surfactant3 0 0 0 -0.3333 -0.3333 -0.3333 -0.3333 1 1 1 1

Here we see one of the appealing properties of the Type III analysis:
the hypothesis tested by the Type III sum of squares for Flour
involves parameters of the Flour term only, whereas the hypothesis
tested by the Type I sum of squares involves parameters of the Fat,
Surfactant and Fat x Surfactant terms.

As we show in the section Unweighted Means on page 641,
unweighted means can be obtained from multicomp using the
argument comparisons="none". In doing so, we obtain the estimable
functions for the marginal means of the overparametrized model. For
example, the estimable functions for the Fat marginal means are
computed by the following command.
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> Fat.mcomp <- multicomp(Baking.aov, focus = "Fat",
+ comparisons = "none")
> round(Fat.mcomp$imat, 4)

1 2 3

(Intercept) 1.0000 1.0000 1.0000
Flourl 0.2500 0.2500 0.2500

Flour2 0.2500 0.2500 0.2500

Flour3 0.2500 0.2500 0.2500

Flour4 0.2500 0.2500 0.2500

Fatl 1.0000 0.0000 0.0000

Fat2 0.0000 1.0000 0.0000

Fat3 0.0000 0.0000 1.0000
Surfactantl 0.3333 0.3333 0.3333
Surfactant2 0.3333 0.3333 0.3333
Surfactant3 0.3333 0.3333 0.3333
FatlSurfactantl 0.3333 0.0000 0.0000
FatlSurfactant2 0.3333 0.0000 0.0000
FatlSurfactant3 0.3333 0.0000 0.0000
Fat2Surfactantl 0.0000 0.3333 0.0000
Fat2Surfactant2 0.0000 0.3333 0.0000
Fat2Surfactant3 0.0000 0.3333 0.0000
Fat3Surfactantl 0.0000 0.0000 0.3333
Fat3Surfactant2 0.0000 0.0000 0.3333
Fat3Surfactant3 0.0000 0.0000 0.3333

The reader can verify that the Type III estimable functions for Fat are
the differences between columns 1 and 3, and between columns 2 and
3. Thus, the L6 column in the over.par component of TypeIII.estim
is the difference between the first and third columns of the
Fat.mcomp$imat object above. Likewise, the L7 column in the output
from TypeIll.estim is the difference between the second and third
columns of Fat.mcomp$Imat.

The function Tm reparametrizes a linear model in an attempt to make
the model matrix full column rank. In this section, we explore the
analysis of the unweighted means for Fat using the sigma restricted
linear model. In the sigma restricted parameterization, the sum of the
level estimates of each effect is constrained to be zero. That is,

Mi = ;= D = Nfs)y = NAfs)y = 0
I ‘
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Therefore, any effect that we sum over in the mean estimate vanishes.
Specifically, we have f, +fy+f; =0 for the Fat variable in

Baking.aov. We use the sigma restrictions to compute Baking.aov on
page 640, since we specify contr.sum in the contrasts argument to
aov. For clarity, the command is repeated here:

> Baking.aov <- aov(Specific.Vol ~ Flour + Fat*Surfactant,
+ data = Baking, contrasts = list(Flour = contr.sum(4),

+ Fat = contr.sum(3), Surfactant = contr.sum(3)),

+ na.action = na.exclude)

In this setting, the unweighted means for Fat can be computed with
the estimable functions given in L below.

# Define a vector of descriptive row names.

> my.rownames <- c("(Intercept)",
+ "Flourl™, "Flour2", "Flour3", "Fatl", "Fat2",
+ "Surfactantl™, "Surfactant2",
+ "FatlSurfactantl™, "Fat2Surfactantl”,
+ "FatlSurfactant2"™, "Fat2Surfactant2")
> L <- as.matrix(data.frame(
+ Fat.l = ¢(1,0,0,0,1,rep(0,7)),
+ Fat.2 = ¢(1,0,0,0,0,1,rep(0,6)),
+ Fat.3 = ¢(1,0,0,0,-1,-1,rep(0,6)),
+ row.names = my.rownames))
> L
Fat.l Fat.2 Fat.3
(Intercept) 1 1 1
Flourl 0 0 0
Flour2 0 0 0
Flour3 0 0 0
Fatl 1 0 -1
Fat2 0 1 -1
Surfactantl 0 0 0
Surfactant2 0 0 0
FatlSurfactantl 0 0 0
Fat2Surfactantl 0 0 0
FatlSurfactant2 0 0 0
Fat2Surfactant2 0 0 0
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The intercept in the least squares fit estimates . The two coefficients
for the Fat effect (labeled Fatl and Fat2 in L above) estimate f; and

fy, respectively, and f; = —f, —f,.

We can check that each function is, in fact, estimable by first ensuring

it is in the row space of the model matrix X, and then computing the
unweighted means. The commands below show this process.

> X <- model.matrix(Baking.aov)
> Is.fit <- 1sfit(t(X) %*% X, L, intercept = F)
> apply(abs(ls.fit$residuals), 2, max) < 0.0001

Fat.l Fat.2 Fat.3
T T T

The residuals of 1s.fit are small, so the estimable functions are in
the row space of X. The next command uses L and the coefficients
from Baking.aov to compute the unweighted means for Fat. Note

that these are the same values returned by multicomp in the section
Unweighted Means.

>m <- t(L) %*% Baking.aov$coefficients
>m

(.11
Fat.1 5.850197
Fat.2 6.577131
Fat.3 7.472514

To compute Type III sums of squares, we first use the summary

method to obtain (XtX)_1 and ¢. The summary method also helps us
compute the standard errors of the unweighted means, as shown in
the second command below. Again, note that these values are
identical to the ones returned by multicomp.

> Baking.summ <- summary.lm(Baking.aov)
> Baking.summ$sigma *
+ sqrt(diag(t(L) %*% Baking.summ$cov.unscaled %*% L))

[1] 0.1364894 0.1477127 0.1564843
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A set of Type III estimable functions for Fat can be obtained using
the orthogonal contrasts generated by contr.helmert. We use these

types of contrasts to test ].11_ = [1.2_ and }11_ + }12_ = 2[1.3_ , which is

equivalent to Hp,, .

> contr.helmert(3)

(.11 [,2]
1 -1 -1
2 1 -1
3 0 2

v

L.typellIl <- L %*% contr.helmert(3)
dimnames(L.typelIII)[[2]] = c("Fat.l1", "Fat.2")
L.typelll

VoV

Fat.1 Fat.2

(Intercept) 0 0
Flourl

Flour2

Flour3

Fatl

Fat2
Surfactantl
Surfactant2
FatlSurfactantl
Fat2Surfactantl
FatlSurfactant?
Fat2Surfactant?

O O O O O o P, O o o

O O O O O O W w o o o

Finally, the Type III sum of squares is computed for Fat. Note that
this is the same value that is returned by anova in the section ANOVA
Tables on page 640.

> h.m <- t(contr.helmert(3)) %*% m

> tCh.m) %*% solve(

+ t(L.typelll) %*% Baking.summ$cov.unscaled %*%
+ L.typelll) %*% h.m

[,1]
[1,] 10.11785
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Alternative computations

Through the sum contrasts provided by contr.sum, we use the sigma
restrictions to compute Baking.aov. Since the Baking data are
complete, we can therefore use dropl as an alternative way of
obtaining the Type III sum of squares. In general, this fact applies to
any aov model fit with factor coding matrices that are true contrasts;
sum contrasts, Helmert contrasts, and orthogonal polynomials fall
into this category, but treatment contrasts do not. For more details
about true contrasts, see the chapter Specifying Models in Spotfire
S+.

> dropl(Baking.aov, ~.)

Single term deletions

Model:
Specific.Vol ~ Flour + Fat * Surfactant
Df Sum of Sq RSS F Value Pr(F)
<none> 2.31586

Flour 3 8.69081 11.00667 17.51280 0.00005181
Fat 2 10.11785 12.43371 30.58263 0.00000778
Surfactant 2 0.99721 3.31307 3.01421 0.08153989

Fat:Surfactant 4 5.63876 7.95462 8.52198 0.00105692
For the sigma restricted model, the hypotheses Hp,, and Hg,fciant
can also be expressed as

H;‘at:fl = f2 =0

*
HSurfactant:81 = 52 = S3 =0

The row for Fat in the dropl ANOVA table is the reduction in sum of
squares due to Fat, given that all other terms are in the model. This

simultaneously tests that the least squares coefficients By, = f; and

Braw = fo are zero, and hence f; = —(f, +f,) = 0 (Searle, 1987).

The same argument applies to Surfactant. It follows that the
following Type III estimable functions for Fat can be used to test

HY . (or equivalently Hp,):

> L.typelll <- as.matrix(data.frame(
+ Fat.1 = c(rep(0,4), 1, rep(0,7)),
+ Fat.2 = c(rep(0,5), 1, rep(0,6)),



+ row.names = my.rownames))

> L.typelll

Fat.l Fat.2

(Intercept)
Flourl

Flour2

Flour3

Fatl

Fat2
Surfactantl
Surfactant2
FatlSurfactantl
Fat2Surfactantl
FatlSurfactant?
Fat2Surfactant?

0

O O O O O O o rr O o o

O O O O OO O O o o o

Summarizing ANOVA Results

> h.c <- t(L.typelll) %*% Baking.aov$coef

> t(h.c) %*% solve(t(L.typelll) %*%

+ Baking.summ$cov.unscaled %*% L.typelll) %*% h.c

[,1]
[1,] 10.11785

Again, this is the same value for the Type III sum of squares that both

anova and drop1 return.
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Multivariate analysis of variance, known as MANOVA, is the
extension of analysis of variance techniques to multiple responses.
The responses for an observation are considered as one multivariate
observation, rather than as a collection of univariate responses.

If the responses are independent, then it is sensible to just perform
univariate analyses. However, if the responses are correlated, then
MANOVA can be more informative than the univariate analyses as
well as less repetitive.

In Spotfire S+ the manova function is used to estimate the model. The
formula needs to have a matrix as the response:

> wafer.manova <- manova(cbind(pre.mean, post.mean) ~ .,
+ data = wafer[, c(1:9, 11)1)

The manova function creates an object of class "manova". This class of
an object has methods specific to it for a few generic functions. The
most important function is the "manova" method for summary, which
produces a MANOVA table:

> summary(wafer.manova)

Df Pillai Trace approx. F num df den df P-value

maskdim 1 0.9863 36.00761 2 1 0.11703
visc.tem 2 1.00879 1.01773 4 4 0.49341
spinsp 2 1.30002 1.85724 4 4 0.28173
baketime 2 0.80133 0.66851 4 4 0.64704
aperture 2 0.96765 0.93733 4 4 0.52425
exptime 2 1.63457 4.47305 4 4 0.08795
devtime 2 0.99023 0.98065 4 4 0.50733
etchtime 2 1.26094 1.70614 4 4 0.30874
Residuals 2

There are four common types of test in MANOVA. The example
above shows the Pillai-Bartlett trace test, which is the default test in
Spotfire S+. The last four columns show an approximate F test (since
the distributions of the four test statistics are not implemented). The
other available tests are Wilks’ Lambda, Hotelling-Lawley trace, and
Roy’s maximum eigenvalue.



Multivariate Analysis of Variance

Note

A model with a few residual degrees of freedom as wafer.manova is not likely to produce

informative tests.

You can view the results of another test by using the test argument.
The following command shows you Wilks’ lambda test:

> summary(wafer.manova, test = "wilk")

Below is an example of how to see the results of all four of the
multivariate tests:

> wafer.manova2 <- manova(cbind(pre.mean, post.mean,

+ Tog(pre.dev), Tog(post.dev)) ~

+ maskdim + visc.tem + spinsp, data = wafer)

> wafer.ms2 <- summary(wafer.manova2)

> for(i in c("p", "w", "h", "r")) print(wafer.ms2, test=i)

You can also look at the univariate ANOVA tables for each response
with a command like:

> summary(wafer.manova, univariate = T)

Hand and Taylor (1987) provide a nice introduction to MANOVA.
Many books on multivariate statistics contain a chapter on
MANOVA. Examples include Mardia, Kent and Bibby (1979), and
Seber (1984).
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SPLIT-PLOT DESIGNS

A split-plot design contains more than one source of error. This can
arise because factors are applied at different scales, as in the guayule
example below.

Split-plots are also encountered because of restrictions on the
randomization. For example, an experiment involving oven
temperature and baking time will probably not randomize the oven
temperature totally, but rather only change the temperature after all
of the runs for that temperature have been made. This type of design
is often mistakenly analyzed as if there were no restrictions on the
randomization (an indication of this can be p-values that are close to
1). See Hicks (1973) and Daniel (1976).

Spotfire S+ includes the guayule data frame which is also discussed in
Chambers and Hastie (1992). This experiment was on eight varieties
of guayule (a rubber producing shrub) and four treatments on the
seeds. Since a flat (a shallow box for starting seedlings) was not large
enough to contain all 32 combinations of variety and treatment, the
design was to use only a single variety in each flat and to apply each
treatment within each flat. Thus the flats each consist of four sub-
plots. This is a split-plot design since flats are the experimental unit
for varieties, but the sub-plots are the experimental unit for the
treatments. The response is the number of plants that germinated in
each sub-plot.

To analyze a split-plot design like this, put the variable that
corresponds to the whole plot in an Error term in the formula of the
aov call:

> gua.aovl <- aov(plants ~ variety * treatment +
+ Error(flats), data = guayule)

As usual, you can get an ANOVA table with summary:
> summary(gua.aovl)

Error: flats

Df Sum of Sq Mean Sq F Value Pr(F)
variety 7 763.156 109.0223 1.232036 0.3420697
Residuals 16 1415.833 88.4896
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Error: Within

Df Sum of Sq Mean Sq F Value Pr(F)
treatment 3 30774.28 10258.09 423.4386 0.00000e+00
variety:treatment 21 2620.14 124.77 5.1502 1.32674e-06
Residuals 48 1162.83 24.23

This shows varieties tested with the error from flats, while treatment
and its interaction with variety are tested with the within-flat error,
which is substantially smaller.

The guayule data actually represent an experiment in which the flats
were grouped into replicates, resulting in three sources of error or a
split-split-plot design. To model this we put more than one term inside
the Error term:

> gua.aov2 <- aov(plants ~ variety * treatment +
+ Error(reps/flats), data = guayule)
> summary(gua.aov2)

Error: reps
Df Sum of Sq Mean Sq F Value Pr(F)
Residuals 2 38.58333 19.29167

Error: flats %in% reps

Df Sum of Sq Mean Sq F Value Pr(F)
variety 7 763.156 109.0223 1.108232 0.4099625
Residuals 14 1377.250 98.3750

Error: Within

Df Sum of Sq Mean Sq F Value Pr(F)
treatment 3 30774.28 10258.09 423.4386 0.00000e+00
variety:treatment 21 2620.14 124.77 5.1502 1.32674e-06
Residuals 48 1162.83 24.23

The Error term could also have been specified as
Error(reps + Flats). However, the specification
Error(flats + reps) would not give the desired result (the sequence
within the Error term is significant); explicitly stating the nesting is
preferred. Note that only one Error term is allowed.
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Repeated-measures designs are those that contain a sequence of
observations on each subject—for example, a medical experiment in
which each patient is given a drug, and observations are taken at zero,
one, two, and three weeks after taking the drug. Although this
description is too simplistic to encompass all repeated-measures
designs, it nevertheless captures the spirit.

Repeated-measures designs are similar to split-plot designs in that
there is more than one source of error (between subjects and within
subjects), but there is correlation in the within-subjects observations.
In the example we expect that the observations in week three will be
more similar to week two observations than to week zero
observations. Because of this, the split-plot analysis (referred to as the
univariate approach) is valid only under certain restrictive conditions.

We will use the artificial data set drug.mu1t, which has the following
form:

> drug.mult

subject gender Y.1 Y.2 Y.3 Y.4
1 S1 F 75.9 74.3 80.0 78.9
2 S2 F 78.3 75.5 79.6 79.2
3 S3 F 80.3 78.2 80.4 76.2
4 S4 M 80.7 77.2 82.0 83.8
5 S5 M 80.3 78.6 81.4 81.5
6 S6 M 80.1 81.1 81.9 86.4

The data set consists of the two factors subject and gender, and the
matrix Y which contains 4 columns. The first thing to do is stretch this
out into a form suitable for the univariate analysis:

> drug.uni <- drug.mult[rep(l:6, rep(4,6)), 1:2]

> ymat <- data.matrix(drug.mult[, paste("Y.",1:4, sep="")]1)
> drug.uni <- cbind(drug.uni,

+ time = ordered(rep(paste("Week", 0:3, sep = ""), 6)),

+ y = as.vector(t(ymat)))
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The univariate analysis treats the data as a split-plot design:

> summary(aov(y ~ gender*time + Error(subject),
+ data = drug.uni))

Error: subject

Df Sum of Sq Mean Sq F Value Pr(F)
gender 1 60.80167 60.80167 19.32256 0.01173
Residuals 4 12.58667 3.14667

Error: Within

Df Sum of Sq Mean Sq F Value Pr(F)
time 3 49.10833 16.36944 6.316184 0.0081378
gender:time 3 14.80167 4.93389 1.903751 0.1828514
Residuals 12 31.10000 2.59167

Tests in the Within stratum are valid only if the data satisfy the
circularity property, in addition to the usual conditions. Circularity
means that the variance of the difference of measures at different
times is constant; for example, the variance of the difference between
the measures at week 0 and week 3 should be the same as the
variance of the difference between week 2 and week 3. We also need
the assumption that actual contrasts are used; for example, the
contr.treatment function should not be used. When circularity does
not hold, then the p-values for the tests will be too small.

One approach is to perform tests which are as conservative as
possible. Conservative tests are formed by dividing the degrees of
freedom in both the numerator and denominator of the F'test by the
number of repeated measures minus one. In our example there are
four repeated measures on each subject, so we divide by 3. The split-
plot and the conservative tests are:

> 1 - pf(6.316184, 3, 12) # usual univariate test
[1] 0.008137789
> 1 - pf(6.316184, 1, 4) # conservative test

[1] 0.06583211

These two tests are telling fairly different tales, so the data analyst
would probably move on to one of two alternatives. A Huynh-Feldt
adjustment of the degrees of freedom provides a middle ground
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between the tests above—see Winer, Brown and Michels (1991), for
instance. The multivariate approach, discussed below, substantially
relaxes the assumptions.

The univariate test for time was really a test on three contrasts. In the
multivariate setting we want to do the same thing, so we need to use
contrasts in the response:

> drug.man <- manova(ymat %*% contr.poly(4) ~ gender,
+ data = drug.mult)
> summary(drug.man, intercept = T)
Df Pillai Trace approx. F num df den df P-value
(Intercept) 1 0.832005 3.301706 3 2 0.241092

gender 1 0.694097 1.512671 3 2 0.421731
Residuals 4

The line marked (Intercept) corresponds to time in the univariate
approach, and similarly the gender line here corresponds to
gender:time. The p-value of 0.24 is larger than either of the
univariate tests; the price of the multivariate analysis being more
generally valid is that quite a lot of power is lost. Although the
multivariate approach is preferred when the data do not conform to
the required conditions, the univariate approach is preferred when
they do. The trick, of course, is knowing which is which.

Let’s look at the univariate summaries that this MANOVA produces:

> summary(drug.man, intercept = T, univar =T)
Response: .L

Df Sum of Sq Mean Sq F Value Pr(F)
(Intercept) 1 22.188 22.1880 4.327255 0.1059983
gender 1 6.912 6.9120 1.348025 0.3101900

Residuals 4 20.510 5.1275
Response: .Q

Df Sum of Sq Mean Sq F Value Pr(F)
(Intercept) 1 5.415000 5.415000 5.30449 0.0826524
gender 1 4.001667 4.001667 3.92000 0.1188153

Residuals 4 4.083333 1.020833

Response: .C

Df Sum of Sq Mean Sq F Value Pr(F)
(Intercept) 1 21.50533 21.50533 13.22049 0.0220425
gender 1 3.88800 3.88800 2.39016 0.1969986

Residuals 4  6.50667 1.62667



Repeated-Measures Designs

If you add up the respective degrees of freedom and sums of squares,
you will find that the result is the same as the univariate Within
stratum. For this reason, the univariate test is sometimes referred to as
the average F lest.

The above discussion has focused on classical inference, which
should not be done before graphical exploration of the data.

Many books discuss repeated measures. Some examples are Hand
and Taylor (1987), Milliken and Johnson (1984), Crowder and Hand
(1990), and Winer, Brown, and Michels (1991).
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This section briefly describes how to use two nonparametric rank
tests for ANOVA: the Kruskal-Wallis rank sum test for a one-way
layout and the Friedman test for unreplicated two-way layout with
(randomized) blocks.

Since these tests are based on ranks, they are robust with regard to the
presence of outliers in the data; that is, they are not affected very

much by outliers. This is not the case for the classical F tests.

You can find detailed discussions of the Kruskal-Wallis and Friedman
rank-based tests in a number of books on nonparametric tests; for
example, Lehmann (1975) and Hettmansperger (1984).

When you have a one-way layout, as in the section Experiments with
One Factor in Chapter 16, you can use the Kruskal-Wallis rank sum test
kruskal.test to test the null hypothesis that all group means are
equal.

We illustrate how to use kruskal.test for the blood coagulation data
of Table 16.1. First you set up your data as for a one-factor experiment
(or one-way layout). You create a vector object coag, arranged by
factor level (or treatment), and you create a factor object diet whose
levels correspond to the factor levels of vector object coag. Then use
kruskal.test:

> kruskal.test(coag, diet)

Kruskal-Wallis rank sum test

data: coag and diet

Kruskal-Wallis chi-square = 17.0154, df = 3,
p-value = 7e-04

alternative hypothesis: two.sided

The p-value of p=0.0007 is highly significant. This p-value is
computed using an asymptotic chi-squared approximation. See the
online help file for more details.



The Friedman
Rank Sum Test

Rank Tests for One-Way and Two-Way Layouts

You may find it helpful to note that kruskal.test and friedman.test
return the results of its computations, and associated information, in
the same style as the functions in Chapter 5, Statistical Inference for
One- and Two-Sample Problems.

When you have a two-way layout with one blocking variable and one
treatment variable, you can use the Friedman rank sum test
friedman.test to test the null hypothesis that there is no treatment
effect.

We illustrate how you use friedman.test for the penicillin yield data
described in Table 16.2 of Chapter 16. The general form of the usage

1S

friedman.test(y, groups, blocks)

where y is a numeric vector, groups contains the levels of the
treatment factor and block contains the levels of the blocking factor.
Thus, you can do:

# Make treatment and blend available.
> attach(pen.df, pos = 2)
> friedman.test(yield, treatment, blend)

Friedman rank sum test

data: yield and treatment and blend
Friedman chi-square = 3.4898, df = 3, p-value = 0.3221
alternative hypothesis: two.sided

# Detach the data set.
> detach(2)

The p-value is p=0.32, which is not significant. This p-value is
computed using an asymptotic chi-squared approximation. For
further details on friedman.test, see the help file.
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Variance components models are used when there is interest in the
variability of one or more variables other than the residual error. For
example, manufacturers often run experiments to see which parts of
the manufacturing process contribute most to the variability of the
final product. In this situation variability is undesirable, and attention
is focused on improving those parts of the process that are most
variable. Animal breeding is another area in which variance
components models are routinely used. Some data, from surveys for
example, that have traditionally been analyzed using regression can
more profitably be analyzed using variance component models.

To estimate a variance component model, you first need to use
is.random to state which factors in your data are random. A variable
that is marked as being random will have a variance component in
any models that contain it. Only variables that inherit from class
"factor" can be declared random. Although is.random works on
individual factors, it is often more practical to use it on the columns of
a data frame. You can see if variables are declared random by using
is.random on the data frame:

> is.random(pigment)

Batch Sample Test
F F F

Declare variables to be random by using the assignment form of
is.random:

> pigment <- pigment
> is.random(pigment) <- c(T, T, T)
> is.random(pigment)

Batch Sample Test
T T T



Estimation
Methods

Variance Components Models

Because we want all of the factors to be random, we could have
simply done the following:

> is.random(pigment) <- T

The value on the right is replicated to be the length of the number of
factors in the data frame.

Once you have declared your random variables, you are ready to
estimate the model using the varcomp function. This function takes a
formula and other arguments very much like 1m or aov. Because the
pigment data are from a nested design, the call has the following
form:

> pigment.vc <- varcomp(Moisture ~ Batch/Sample,
+ data = pigment)
> pigment.vc

Variances:

Batch Sample %in% Batch Residuals
7.127976 28.53333 0.9166667
Call:

varcomp(formula = Moisture ~ Batch/Sample, data = pigment)

The result of varcomp is an object of class "varcomp”. You can use
summary on "varcomp" objects to get more details about the fit, and
you can use plot to get qq-plots for the normal distribution on the
estimated effects for each random term in the model.

The method argument to varcomp allows you to choose the type of
variance component estimator. Maximum likelihood and REML
(restricted maximum likelihood) are two of the choices. REML is very
similar to maximum likelihood but takes the number of fixed effects
into account; the usual unbiased estimate of variance in the one-
sample model is an REML estimate. See Harville (1977) for more
details on these estimators.

The default method is a MINQUE (minimum norm quadratic
unbiased estimate); this class of estimator is locally best at a particular
spot in the parameter space. The MINQUE option in Spotfire S+ is
locally best if all of the variance components (except that for the
residuals) are zero. The MINQUE estimate agrees with REML for
balanced data. See Rao (1971) for details. This method was made the
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default because it is less computationally intense than the other
methods, however, it can do significantly worse for severely
unbalanced data (Swallow and Monahan (1984)).

You can get robust estimates by using method="winsor". This method
creates new data by moving outlying points or groups of points
toward the rest of the data. One of the standard estimators is then
applied to this possibly revised data. Burns (1992) gives details of the
algorithm along with simulation results. This method uses much
larger amounts of memory than the other methods if there are a large
number of random levels, such as in a deeply nested design.

We now produce a more complicated example in which there are
random slopes and intercepts. The data consist of several pairs of
observations on each of several individuals in the study. An example
might be that the y values represent the score on a test and the x
values are the time at which the test was taken.

Let’s start by creating simulated data of this form. We create data for
30 subjects and 10 observations per subject:

subject <- factor(rep(1:30, rep(10,30)))
set.seed(357) # makes these numbers reproducible
trueslope <- rnorm(30, mean = 1)

trueint <- rnorm(30, sd = 0.5)

times <- rchisq(300, 3)

scores <- rep(trueint, rep(10,30)) +

times * rep(trueslope, rep(10,30)) + rnorm(300)
test.df <- data.frame(subject, times, scores)
is.random(test.df) <- T

is.random(test.df)

vV vV V 4+ V V V V VvV VvV

subject
T

Even though we want to estimate random slopes and random
intercepts, the only variable that is declared random is subject. Our
model for the data has two coefficients: the mean slope (averaged
over subjects) and the mean intercept. It also has three variances: the
variance for the slope, the variance for the intercept, and the residual
variance.



Variance Components Models

The following command estimates this model using Maximum
Likelihood, as the default MINQUE is not recommended for this
type of model:

> test.vc <- varcomp(scores ~ times * subject,
+ data = test.df, method = "m1")

This seems very simple. We can see how it works by looking at how
the formula get expanded. The right side of the formula is expanded
into four terms:

scores ~ 1 + times + subject + times:subject

The intercept term in the formula, represented by 1, gives the mean
intercept. The variable times is fixed and produces the mean slope.
The subject variable is random and produces the variance
component for the random intercept. Since any interaction
containing a random variable is considered random, the last term,
times:subject, is also random; this term gives the variance
component for the random slope. Finally, there is always a residual
variance.

Now we can look at the estimates:

> test.vc
Variances:

subject times:subject Residuals
0.3162704 1.161243 0.8801149
Message:
[1] "RELATIVE FUNCTION CONVERGENCE"
Call:

varcomp(formula = scores ~ times*subject, data=test.df,
method = "m1"™)

This shows the three variance components. The variance of the
intercept, which has true value 0.25, is estimated as 0.32. Next,
labeled times:subject is the variance of the slope, and finally the
residual variance. We can also view the estimates for the coefficients
of the model, which have true values of 0 and 1.

> coef(test.vc)

(Intercept) times
0.1447211 1.02713
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In the section Estimable Functions on page 645, we discuss the Type I
estimable functions for the overparameterized model of the Baking
data. This appendix provides the Spotfire S+ code for the
Typel.estim object shown in that section. For more details on the
algorithm used to compute Type I estimable functions, see the SAS
Technical Report R-101 (1978).

The commands below are designed to be easily incorporated into a
script or source file, so that they can be modified to suit your
modeling needs. To reproduce Typel.estim exactly, you must first
define the Baking data and the Baking.aov model in your Spotfire S+

session (see page 638).

# Get crossproduct matrix for overparameterized model.

XtX <- crossprod(.Call("S_ModelMatrix",
model.frame(Baking.aov), F)$X)

n <- as.integer(nrow(XtX))

# Call LAPACK routine for LU decomposition.

LU <- .Fortran("dgetrf", n, n, as.numeric(XtX), n,
integer(n), integer(1))[[3]1]

U <- matrix(LU, nrow = n, dimnames = Tist(
paste("L", seq(n), sep=""), dimnames(XtX)[[111))

# Zero out the Tower triangular part of U.
ULrow(U) > col(U)] <- 0

# Create 1's on the diagonal, as prescribed
# by the SAS technical report.

d <- diag(U)

d[abs(d) < sqrt(.Machine$double.eps)] <- 1
L <- diag(1/d) %*% U

dimnames(L) <- dimnames(U)

L <- t(L)

# Do column operations to produce "pretty" output.

# Flour hypothesis.

L[,2]1 <- L[,2] - L[3,21*LL,3]
L[,2] <- L[,2] - L[4,2]*L[,4]
L[,3] <- L[,3] - L[4,3]1*L[,4]
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# Fat hypothesis.
L[,61 <- L[,61 - L[7,61*L[,7]

# Surfactant hypothesis.
L[,9] <- L[,91 - L[10,9]*L[,10]

# Fat x Surfactant hypothesis.

LC,12] <- L[,12] - L[13,12]*L[,13]
L[,12] <- L[,12] - L[15,12]*L[,15]
L[,12] <- L[,12] - L[16,12]*L[,16]
L[,13] <- L[,13] - L[15,13]1*L[,15]
L[,137 <- L[,131 - L[16,13]*L[,16]
L[,15] <- L[,15] - L[16,15]*L[,16]

# Take only those columns that correspond to a hypothesis.
Typel.estim <- L[, c("L2", "L3", "L4", "L6", "L7",
"L9", "L]-O"’ "le", IVL13", "L15"’ "L16")]
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This chapter describes the use of the function multicomp in the
analysis of multiple comparisons. This particular section describes
simple calls to multicomp for standard comparisons in one-way
layouts. The section Advanced Applications tells how to use
multicomp for nonstandard designs and comparisons. In the section
Capabilities and Limits, the capabilities and limitations of this
function are summarized.

When an experiment has been carried out in order to compare effects
of several treatments, a classical analytical approach is to begin with a
test for equality of those effects. Regardless of whether you embrace
this classical strategy, and regardless of the outcome of this test, you
are usually not finished with the analysis until determining where any
differences exist, and how large the differences are (or might be); that
is, until you do multiple comparisons of the treatment effects.

As a simple start, consider the built-in TIBCO Spotfire S+ data frame
on fuel consumption of vehicles, fuel.frame. Each row provides the
fuel consumption (Fuel) in 100*gallons/mile for a vehicle model, as
well as the Type group of the model: Compact, Large, Medium, Small,
Sporty, or Van. There is also information available on the Weight and
Displacement of the vehicle. Figure 18.1 shows a box plot of fuel
consumption, the result of the following commands.

> attach(fuel.frame, pos = 2)
> boxplot(split(Fuel, Type))
> detach(2)
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Figure 18.1: Fuel consumption box plot.

Not surprisingly, the plot suggests that there are differences between
vehicle types in terms of mean fuel consumption. This is confirmed
by a one-factor analysis of variance test of equality obtained by a call
to aov.

> aovout.fuel <- aov(Fuel ~ Type, data = fuel.frame)
> anova(aovout.fuel)

Analysis of Variance Table
Response: Fuel
Terms added sequentially (first to last)

Df Sum of Sq Mean Sq F Value Pr(F)
Type 5 24.23960 4.847921 27.22058 1.220135e-13
Residuals 54 9.61727 0.178098

The box plots show some surprising patterns, and inspire some
questions. Do small cars really have lower mean fuel consumption
than compact cars? If so, by what amount? What about small versus
sporty cars? Vans versus large cars? Answers to these questions are
offered by an analysis of all pairwise differences in mean fuel
consumption, which can be obtained from a call to mu1ticomp.

> mca.fuel <- multicomp(aovout.fuel, focus = "Type")
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> plot(mca.fuel)
> mca.fuel

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.9545

response variable: Fuel

intervals excluding 0 are flagged by '****'

Estimate Std. Lower Upper
Error Bound Bound
Compact-Large -0.800 0.267 -1.590 -0.0116 ****
Compact-Medium -0.434 0.160 -0.906 0.0387
Compact-Small 0.894 0.160 0.422 1.3700 H***x*
Compact-Sporty 0.210 0.178 -0.316 0.7360
Compact-Van -1.150 0.193 -1.720 -0.5750 ***x*
Large-Medium 0.366 0.270 -0.432 1.1600
Large-Small 1.690 0.270 0.896 2.4900 HF**
Large-Sporty 1.010 0.281 0.179 1.8400 ***x*
Large-Van -0.345 0.291 -1.210 0.5150
Medium-Small 1.330 0.166 0.839 1.8200 H*x*x*
Medium-Sporty 0.644 0.183 0.103 1.1800 H*x*x*
Medium-Van -0.712 0.198 -1.300 -0.1270 ****
Small-Sporty -0.684 0.183 -1.220 -0.1440 ****
Small-Van -2.040 0.198 -2.620 -1.4600 ****
Sporty-Van -1.360 0.213 -1.980 -0.7270 ***x*
Compact-Large (e
Compact-Medium C——e——1)
Compact-Small )
Compact-Sporty C—t+—=———9
Compact-Van )
Large-Medium - )
Large-Small R
Large-Sporty - )
Large-Van - )
Medium-Small C——e——)
Medium-Sporty )
Medium-Van )
Small-Sporty )
Small-Van F———e———)
Sporty-Van F——-——)

-30 25 20 -15 -10 -05 00 05 10 15 20 25
simultaneous 95 % confidence limits, Tukey method
response variable: Fuel

Figure 18.2: Fuel consumption ANOVA.
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As the output and plot in Figure 18.2 indicate, this default call to
multicomp has resulted in the calculation of simultaneous 95%
confidence intervals for all pairwise differences between vehicle Fuel
means, based on the levels of Type, sometimes referred to as MCA
comparisons (Hsu, 1996). The labeling states that Tukey’s method
(Tukey, 1953) has been used; since group sample sizes are unequal,
this is actually equivalent to what is commonly known as the Tukey-
Kramer (Kramer, 1956) multiple comparison method.

The output indicates via asterisks the confidence intervals which
exclude zero; in the plot, these can be identified by noting intervals
that do not intersect the vertical reference line at zero. These
identified statistically significant comparisons correspond to pairs of
(long run) means which can be declared different by Tukey’s HSD
(homestly significant difference) method. Not surprisingly, we can assert
that most of the vehicle types have different mean fuel consumption
rates. If we require 95% confidence in all of our statements, we cannot
claim different mean fuel consumption rates between the compact
and medium types, the compact and sporty types, the large and
medium types, and the large and van types.

Note we should not assert that these pairs have equal mean
consumption rates. For example, the interval for Compact-Medium
states that this particular difference in mean fuel consumption is
between -0.906 and 0.0387 units. Hence, the medium vehicle type
may have larger mean fuel consumption than the compact, by as
much as 0.9 units. Only an engineer can judge the importance of a
difference of this size; if it is considered trivial, then using these
intervals we can claim that for all practical purposes these two types
have equal mean consumption rates. If not, there may still be an
important difference between these types, and we would need more
data to resolve the question.

The point to the above discussion is that there is more information in
these simultaneous intervals than is provided by a collection of
significance tests for differences. This is true whether the tests are
reported via conclusions “Reject”/“Do not reject”, or via p-values or
adjusted p-values. This superior level of information using confidence
intervals has been acknowledged by virtually all modern texts on
multiple comparisons (Hsu, 1996; Bechhofer, Santner, and
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Goldsman, 1995; Hochberg and Tamhane, 1987; Toothaker, 1993).
All multiple comparison analyses using multicomp are represented by
using confidence intervals or bounds.

If all the intervals are to hold simultaneously with a given confidence
level, it is important to calculate intervals only for those comparisons
which are truly of interest. For example, consider the summary data
in Table 2.5 from Hsu (Hsu, 1996). The data concerns a study by
Juskevich and Guyer (1990) in which rat growth was studied under
several growth-hormone treatments.

In this setting, it may only be necessary to compare each hormone
treatment’s mean growth with that of the placebo (that is, the oral
administration with zero dose). These all-to-one comparisons are
usually referred to as multiple comparisons with a control (MCC)
(Dunnett, 1955). Suppse that the raw data for each rat were available
in a data frame hormone.dfr, with a numeric variable growth and a
factor variable treatment for each rat. The following statements
calculate, print, and plot Dunnett’s intervals for hormone.dfr:

> aovout.growth <- aov(growth ~ treatment, data =
+ hormone.dfr)

> multicomp(aovout.growth, focus = "treatment",

+ comparisons = " control =1, plot =T)

mcc,

Table 18.1: Mean weight gain in rats under hormone treatments.

Mean Standard Sample
Method/Dose Growth (g) Deviation Size
oral, 0 324 39.2 30
inject,1.0 432 60.3 30
oral,0.1 327 39.1 30
oral,0.5 318 53.0 30
oral,5 325 46.3 30
oral,50 328 43.0 30
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The results are shown graphically in Figure 18.3. The intervals clearly
show that only the injection method is distinguishable from the
placebo in terms of long run mean weight gain.

Table 4: MCC for hormone treatments

inject.,1.0-oral,0 - B
oral,0.1-oral,0 t————fe———— 3
oral,0.5-oral,0 F————1 F———9)
oral,5.0-oral,0 1)
oral,50-oral,0 e 9

40  -20 0 20 40 60 80 100 120 14C
simultaneous 95 % confidence limits, Dunnett method
response variable: growth

Figure 18.3: MCC for rat hormone treatments.

Alternatively, we can compute Dunnett’s intervals directly from the
summary statistics that appear in Table 18.1. This allows us to use
multicomp even when we do not have access to the raw data. To
illustrate this, we first generate the data in Table 18.1 with the
commands below.

method.dose <- c("oral,0", "inject,1.0", "oral,0.1",
"oral,0.5", "oral,5.0", "oral,50")

mean.growth <- c¢(324,432,327,318,325,328)
names(mean.growth) <- method.dose

std.dev <- ¢(39.2, 60.3, 39.1, 53.0, 46.3, 43.0)
sample.size <- rep(30,6)

vV VvV VvV VvV O+ Vv

Note that we assigned names to the mean.growth vector. This allows
us to take advantage of the plot labeling in multicomp, as we see
below.

To use muTticomp with summary data, we need to specify the x, vmat,
and df.residual arguments. For the default implementation of
multicomp, the x argument is a numeric vector of estimates. This
corresponds to the mean.growth variable in our example. The vmat
argument is the estimated covariance matrix for x, which is diagonal
due to the independence of means in the rat growth hormone
example. To compute the entries of vmat for the data in Table 18.1, we
square the std.dev variable and then divide by 30 (i.e., sample.size)
to obtain variances for the means. The df.residual argument
specifies the number of degrees of freedom for the residuals, and is
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equal to the total number of observations minus the number of
categories. In our example, this is 30 X 6 — 6 = 174. For more details
on any of these arguments, see the help file for multicomp.default.

The commands below reproduce the plot displayed in Figure 18.3:

> multicomp(mean.growth, diag(std.dev~2/30),

+ df.residual = 174, comparisons = "mcc", control = 1,
+ plot = T, ylabel = "growth")

> title("Table 4: MCC for hormone treatments")

95 % simultaneous confidence intervals for specified
Tinear combinations, by the Dunnett method

critical point: 2.5584
response variable: mean.growth

intervals excluding 0 are flagged by '****'

Estimate Std.Error Lower Bound

inject,1.0-oral,0 108 13.1 74 .4
oral,0.1-oral,0 3 10.1 -22.9
oral,0.5-oral,0 -6 12.0 -36.8
oral,5.0-oral,0 1 11.1 -27.3

oral,50-oral,0 4 10.6 -23.2
Upper Bound

inject,1.0-oral,0 142.0 ****
oral,0.1-oral,0 28.9
oral,0.5-oral,0 24.8
oral,5.0-oral,0 29.3

oral,50-oral,0 31.2

Since we assigned names to the mean.growth vector, multicomp
automatically produces labels on the vertical axis of the plot. The
ylabel argument in our call to multicomp fills in the “response
variable” label on the horizontal axis.

The first and only required argument to multicomp is an aov object (or
equivalent), the results of a fixed-effects linear model fit by aov or a
similar model-fitting function. The focus argument, when specified,
names a factor (a main effect) in the fitted aov model. Comparisons
will then be calculated on (adjusted) means for levels of the focus
factor. The comparisons argument is an optional argument which can
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Overview

specify a standard family of comparisons for the levels of the focus
factor. The default is comparisons="mca", which creates all pairwise
comparisons.  Setting  comparisons="mcc" creates all-to-one
comparisons relative to the level specified by the control argument.
The only other comparisons option available is "none”, which states
that the adjusted means themselves are of interest (with no
differencing), in which case the default method for interval
calculation is known as the studentized maximum modulus method.
Other kinds of comparisons and different varieties of adjusted means
can be specified through the 1mat and adjust options discussed
below.

Confidence intervals provide both upper and lower bounds for each
difference or adjusted mean of interest. In some instances, only the
lower bounds, or only the upper bounds, may be of interest.

For instance, in the fuel consumption example earlier, we may only
be interested in determining which types of vehicle clearly have
greater fuel consumption than compacts, and in calculating lower
bounds for the difference. This can be accomplished through lower
mcc bounds:

> aovout.fuel <- aov(Fuel ~ Type, data = fuel.frame)

> multicomp(aovout.fuel, focus = "Type",
+ comparison = "mcc", bounds = "lower", control =1,
+ plot = T)

95 % simultaneous confidence bounds for specified
Tinear combinations, by the Dunnett method

critical point: 2.3332000000000002
response variable: Fuel

bounds excluding 0 are flagged by '"****'

Estimate Std.Error Lower Bound
Large-Compact 0.800 0.267 0.1770 ****
Medium-Compact 0.434 0.160 0.0606 ***x*
Small-Compact -0.894 0.160 -1.2700
Sporty-Compact -0.210 0.178 -0.6250
Van-Compact 1.150 0.193 0.6950 ***x*
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Large-Compact F—— R m—

Medium-Compact L

Small-Compact | ———®——————————F——————————————

Sporty-Compact e

Van-Compact e
T T T T I B R

-14 -1.0 -0.6 0.2 0.2 06 1.0
simultaneous 95 % confidence limits, Dunnett method

response variable: Fuel
Figure 18.4: Lower mcc bounds for fuel consumption.

The intervals or bounds computed by multicomp are always of the
form

(estimate) £ (critical point) X (standard error of estimate)

You have probably already noticed that the estimates and standard
errors are supplied in the output table. The critical point used
depends on the specified or implied multiple comparison method.

The muTticomp function can calculate critical points for simultaneous
intervals or bounds by the following methods:

+  Tukey (method = "tukey"),

*  Dunnett (method = "dunnett"),

« Sidak (method = "sidak"),

+ Bonferroni (method = "bon"),

*  Scheffé (method = "scheffe")

*  Simulation-based (method = "sim").

Non-simultaneous intervals use the ordinary Student’s-t critical point,
method="1sd". If a method is specified, the function will check its
validity in view of the model fit and the types of comparisons
requested. For example, method="dunnett" will be invalid if
comparisons="mca". If the specified method does not satisfy the
validity criterion, the function terminates with a message to that
effect. This safety feature can be disabled by specifying the optional
argument valid.check = F. If no method is specified, the function
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uses the smallest critical point among the valid non-simulation-based
methods. If you specify method="best", the function uses the smallest
critical point among all valid methods including simulation; this latter
method may take a few moments of computer time.

The simulation-based method generates a near-exact critical point via
Monte Carlo simulation, as discussed by Edwards and Berry (1987).
For nonstandard families of comparisons or unbalanced designs, this
method will often be substantially more efficient than other valid
methods. The simulation size is set by default to provide a critical
point whose actual error rate is within 10% of the nominal o (with
99% confidence). This amounts to simulation sizes in the tens of
thousands for most choices of o. You may directly specify a
simulation size via the simsize argument to multicomp, but smaller
simulation sizes than the default are not advisable.

It is important to note that if the simulation-based method is used, the
critical point (and hence the intervals) will vary slightly over repeated
calls; recalculating the intervals repeatedly searching for some
desirable outcome will usually be fruitless, and will result in intervals
which do not provide the desired confidence level.

Other muTticomp arguments of interest are the alpha argument which
specifies the error rate for the intervals or bounds, with default
alpha=0.05. By default, alpha is a familywise error rate, that is, you
may be (1-alpha)x 100% confident that every calculated bound
holds. If you desire confidence intervals or bounds without
simultaneous coverage, specify error.type="cwe", meaning
comparisonwise error rate protection; in this case you must also
specify method="1sd". Finally, for those familiar with the Scheffé
(1953) method, the critical point is of the form:

sqrt(Srank * gqf(l-alpha, Srank, df.residual))

The numerator degrees of freedom Srank may be directly specified as
an option. If omitted, it is computed based on the specified
comparisons and aov object.
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In the first example, the Fuel consumption differences found between
vehicle types are almost surely attributable to differences in Weight
and/or Displacement. Figure 18.5 shows a plot of Fuel versus Weight
with plotting symbols identifying the various model types:

> plot(Weight, Fuel, type = "n")
> text(Weight, Fuel, abbreviate(as.character(Type)))
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8 1 Vane8privan Larg
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0 | MedmMifigdim ~ Medm
<
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24 Smil Cmpc Cmpc
S@ihll Cmpc  Spmpc
Crijpst  Spripc
0 | Smil Sprt
«® Smll
Sprt
Smil  Smll
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@ Smll
Smil
Smll
2000 2500 3000 3500
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Figure 18.5: Consumption of Fuel versus Weight.

This plot shows a strong, roughly linear relationship between Fuel
consumption and Weight, suggesting the addition of Weight as a
covariate in the model. Though it may be inappropriate to compare
adjusted means for all six vehicle types (see below), for the sake of
example the following calls fit this model and calculate simultaneous
confidence intervals for all pairwise differences of adjusted means,
requesting the best valid method.
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> Tmout.fuel.ancova <- Tm(Fuel ~ Type + Weight,
+ data = fuel.frame)

> multicomp(Imout.fuel.ancova, focus = "Type",
+ method = "best"™, plot =T)

Compact-Large e o )
Compact-Medium e L———)
Compact-Small i )
Compact-Sporty e )
Compact-Van [ - )
Large-Medium e ———— )
Large-Small [ —-——
Large-Sporty e I e )
Large-Van - - ——— -=)
Medium-Small b ———— )
Medium-Sporty C—4———— 3
Medium-Van -] 9
Small-Sporty - -—t——)
Small-Van - 9
Sporty-Van [ - )

T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
simultaneous 95 % confidence limits, simulation-based method
response variable: Fuel

Figure 18.6: Fuel consumption ANCOVA (adjusted for Weight).

The “best” valid method for this particular setting is the simulation-
based method; Tukey’s method has not been shown to be valid in the
presence of covariates when there are more than three treatments.
The intervals show that, adjusting for weight, the mean fuel
consumption of the various vehicle types are in most cases within one
unit of each other. The most notable exception is the van type, which
is showing higher mean fuel consumption than the small and sporty
types, and most likely higher than the compact, medium and large

types.

When there is more than one term in the Tm model, multicomp
calculates standard adjusted means for levels of the focus factor and
then takes differences as specified by the comparisons argument.
Covariates are adjusted to their grand mean value. If there are other
factors in the model, the standard adjusted means for levels of the
focus factor use the average effect over the levels of any other (non-
nested) factors. This adjustment scheme can be changed using the
adjust argument, which specifies a list of adjustment levels for non-
focus terms in the model. Any terms excluded from the adjust list
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are adjusted in the standard way. The adjust list may include
multiple adjustment values for each term; a full set of adjusted means
for the focus factor is calculated for each combination of values
specified by the adjust list. Differences (if any) specified by the

comparisons argument are then calculated for each combination of

values specified by the adjust list.

Toothaker’s Besides allowing you to specify covariate values for adjustment, the
Two-Factor adjust argument can be used to calculate simple effects comparisons
Design when factors interact, or (analogously) when covariate slopes are

two-factor analysis of variance.

> score <- c(13, 13, 10, 16, 14, 11, 13, 13, 11, 16,
+ 10, 15, 19, 19, 17, 19, 17, 20, 17, 18, 17, 18, 18,
+ 19, 18, 17, 19, 17, 19, 17, 19, 17, 15, 18, 17, 15,
+ 19, 16, 17, 19, 15, 20, 16, 19, 16, 19, 19, 18, 11,
+ 11, 10, 15, 10, 16, 16, 17, 11, 16, 11, 10, 12, 16,
+ 17, 16, 16, 16, 14, 14, 16, 15, 15, 15, 18, 15, 15,
+ 15, 18, 19, 18, 18, 16, 16, 18, 16, 18, 19, 15, 16,
+ 18, 19, 19, 18, 17, 16, 17, 15)

> cogstyle <- factor(c(rep("FI", 52), rep("FD", 52)))
> studytec <- factor(c(rep("NN", 13), rep("SN", 13),
+ rep("P0"™, 13), rep("CO0"™, 13), rep("NN", 13),

+ rep("SN"™, 13), rep("P0",13), rep("C0",13)))

> interaction.plot(cogstyle, studytec, score)

> aovout.students <- aov( score ~ cogstyle * studytec)

> anova(aovout.students)
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different. This is best illustrated by an example: Toothaker (1993)
discusses a two-factor design, using the data collected by Frank
(1984). Subjects are female undergraduates, with response the score
on a 20-item multiple choice test over a taped lecture. Factors are
cognitive style (cogstyle, levels FI = Field independent and FD = Field
dependent) and study technique (studytech, levels NN=no notes,
SN = student notes, PO = partial outline supplied, CO= complete
outline). The following code fits the model and performs a standard
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Analysis of Variance Table
Response: score

Terms added sequentially (first to last)

Advanced Applications

Df Sum of Sq Mean Sq F Value Pr(F)
cogstyle 1 25.0096 25.0096 7.78354 0.00635967
studytec 3 320.1827 106.7276 33.21596 0.00000000
cogstyle:studytec 3 27 .2596 9.0865 2.82793 0.04259714
Residuals 96 308.4615 3.2131
?—)’
studytec
—
~ e T e PO
---- NN
o |
o
8
IS
£ 24
f_l‘,
o] D I I

cogstyle

Figure 18.7: Two-factor design test scores.

It is apparent from the test for interaction and the profile plot that
there is non-negligible interaction between these factors. In such cases
it is often of interest to follow the tests with an analysis of “simple
effects.” In the following example, a comparison of the four study
techniques is performed separately for each cognitive style group.
The following call calculates simultaneous 95% intervals for these
differences by the best valid method, which is again simulation.
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> mcout.students <- multicomp(aovout.students,
+ focus = "studytec", adjust = list(cogstyle =
+ c("FI", "FD") ), method = "best")

> plot(mcout.students)
> mcout.students

95 % simultaneous confidence intervals for specified
linear combinations, by the simulation-based method

critical point: 2.8526
response variable: score

simulation size= 12616

intervals excluding 0 are flagged by '****'

Estimate Std.Error Lower Bound Upper Bound

C0.adjl-NN.adjl  4.4600 0.703 2.460
C0.adjl1-P0.adjl 0.7690 0.703 -1.240
C0.adjl-SN.adjl 2.1500 0.703 0.148
NN.adjl-P0.adjl -3.6900 0.703 -5.700
NN.adjl-SN.adjl -2.3100 0.703 -4.310
PO.adjl-SN.adjl 1.3800 0.703 -0.621
C0.adj2-NN.adj2  4.3800 0.703 2.380
C0.adj2-P0.adj2 0.0769 0.703 -1.930
C0.adj2-SN.adj2 -0.3850 0.703 -2.390
NN.adj2-P0.adj2 -4.3100 0.703 -6.310
NN.adj2-SN.adj2 -4.7700 0.703 -6.770
PO.adj2-SN.adj2 -0.4620 0.703 -2.470

CO.adjl-NN.adjl ****
C0.adjl1-P0.adj1
CO0.adjl-SN.adjl ***=*
NN.adjl-P0O.adjl ***=*
NN.adjl-SN.adjl ***=*
PO.adjl-SN.adjl
CO0.adj2-NN.adj2 ****
C0.adj2-P0.adj2
C0.adj2-SN.adj2
NN.adj2-P0.adj2 ***=*
NN.adj2-SN.adj2 ***=*
PO.adj2-SN.adj2

H NN NN WO D

6.
.770
.160
.690
.302
.390
.390
.080
.620
.300
.760
.540

nNo

470
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simultaneous 95 % confidence limits, simulation-based method
response variable: score

Figure 18.8: Simple effects for study techniques.

In many situations, the setting calls for inference on a collection of
comparisons or linear combinations other than those available
through specifications of the focus, adjust, and comparisons
arguments. The Tmat argument to multicomp allows you to directly
specify any collection of linear combinations of the model effects for
inference. It is a matrix (or an expression evaluating to a matrix)
whose columns specify linear combinations of the model effects for
which confidence intervals or bounds are desired. Specified linear
combinations are checked for estimability; if inestimable, the function
terminates with a message to that effect. You may disable this safety
feature by specifying the optional argument est.check=F.
Specification of Tmat overrides any focus or adjust arguments; at
least one of Tmat or focus must be specified. Differences requested or
implied by the comparisons argument are taken over the columns of
Tmat. In many instances no such further differencing would be
desired, in which case you should specify comparisons="none".

Linear combinations in Tmat use the textbook parameterization of the
model. For example, the fuel consumption analysis of covariance
model parameterization has eight parameters: an Intercept, six
coefficients for the factor Type (Compact, Large, Medium, Small,
Sporty, Van) and a coefficient for the covariate Weight. Note that the
levels of the factor object Type are listed in alphabetical order in the
parameter vector.
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In the fuel consumption problem, many would argue that it is not
appropriate to compare, for example, adjusted means of Small
vehicles and Large vehicles, since these two groups’ weights do not
overlap. Inspection of Figure 18.5 shows that, under this
consideration, comparisons are probably only appropriate within two
weight groups: Small, Sporty, and Compact as a small weight group;
Medium, Large, and Van as a large weight group. We can accomplish
comparisons within the two Weight groups using the following matrix,
which is assumed to be in the object Tmat.fuel. Note the column
labels, which will be used to identify the intervals in the created figure
and plot.

Table 18.2: The Weight comparison matrix in the file 1mat. fuel.

Com-Sma | Com-Spo | Sma-Spo | Lar-Med Lar-Van Med-Van
Intercept 0 0 0 0 0 0
Compact 1 1 0 0 0 0
Large 0 0 0 1 1 0
Medium 0 0 0 -1 0 1
Small -1 0 1 0 0 0
Sporty 0 -1 -1 0 0 0
Van 0 0 0 0 -1 -1
Weight 0 0 0 0 0 0
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The code below creates the intervals. If we restrict attention to these
comparisons only, we cannot assert any differences in adjusted mean
fuel consumption.

> multicomp.Im(Imout.fuel.ancova, ITmat = Tmat.fuel,
+ comparisons = "none", method = "best"™, plot =T)
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simultaneous 95 % confidence limits, simulation-based method
response variable: Fuel

Figure 18.9: Using Tmat for specialized contrasts.

The textbook parameterization for linear models are created
according to the following algorithm:

L.

Overparame-  The

An intercept parameter is included first, if the model contains
one.

For each “main effect” term in the model (terms of order one),
groups of parameters are included in the order the terms are
listed in the model specification. If the term is a factor, a
parameter is included for each level. If the term is numeric, a
parameter is included for each column of its matrix
representation.

Parameters for terms of order 2 are created by “multiplying”
the parameters of each main effect in the term, in left-to-right
order. For example, if A has levels A1, A2 and B has levels B1,
B2, B3, the parameters for A:B are A1B1, A1B2, A1B3, A2B1, A2B2,
A2B3.

Parameters for higher level terms are created by multiplying

the parameterization of lower level terms two at a time, left to
right. For example, the parameters for A:B:C are those of A:B
multiplied by C.

textbook parameterization will often be awkwardly

terized Models o©verparameterized. For example, the 2 x 4 factorial model specified
in the student study techniques example has the following
parameters, in order (note the alphabetical rearrangement of the
factor levels).
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* Intercept

< FD,FI

€O, NN, PO, SN

«  FDCO, FDNN, FDPO, FDSN, FICO, FINN, FIPO, FISN

Clearly, care must be taken in creating an 1mat for factorial designs,
especially with crossed and/or nested terms. The flexibility Tmat
provides for creating study-specific linear combinations can be
extremely valuable, though. If you are in doubt about the actual
textbook parameterization of a given linear model, it may help to run
a standard analysis and inspect the 1mat created, which is part of the
output list of multicomp. For example, for the simple effects analysis
of the student test scores of Figure 18.8, the implied Tmat can be seen
using the command:

> mcout.students$Imat

The function multicomp.1m, after checking estimability of specified
linear combinations and creating a vector of estimates, a covariance
matrix, and degrees of freedom, «calls the bdase function
multicomp.default. The function multicomp.default will be directly
valuable in many settings. It uses a vector of estimates bvec and
associated covariance matrix vmat as required arguments, with
optional degrees of freedom df.residual (possibly Inf, the default) to
calculate confidence intervals on linear combinations of bvec. These
linear combinations can be specified through an optional Tmat
argument and/or comparisons argument; there is neither a focus nor
an adjust argument. Linear combinations of bvec defined by
columns of 1mat (if any; the default Tmat is an identity matrix) are
calculated, followed by any differences specified or implied by the
comparisons argument. The multicomp.1m options method, bounds,
alpha, error.type, crit.point, sim.size, Srank, valid.check, and
plot are also available in multicomp.default.

The function multicomp.default can be very useful as a means of
calculating intervals based on summary data, or using the results of
some model-fitting program other than 1m; bvec must be considered
as a realization of a multivariate normal vector. If the matrix vmat
incorporates any estimate of variance considered to be a realized chi-
square variable, the degrees of freedom df.residual must be
specified.
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The rat growth data discussed earlier (Table 18.1) provides a simple
example of the use of multicomp.default. Here, the first few
statements create the vector of estimates bvec and covariance matrix
vmat assuming that a single factor analysis of variance model is
appropriate for the data, followed by the statement that produced the
lower mcc bounds of Figure 18.10:

> growth <- c(324, 432, 327, 318, 325, 328)
> stddev <- ¢(39.2, 60.3, 39.1, 53.0, 46.3, 43.0)
> samp.size <- rep(30, 6)
> names(growth) <- ¢( "oral,0", "inject,1.0", "oral,0.1",
+ "oral,0.5", "oral,5", "oral,50™)
> mse <- mean(stddev”2)
> vmat <-mse * diag(l/samp.size)
> multicomp.default(growth, vmat, df.residual =
+ sum(samp.size-1), comparisons = "mcc", bounds = "Tower",
+ control =1, plot =T)
inject,1.0-oral,0 —— — e —
oral,0.1-oral,0 - — — — — — —
oral,0.5-oral,0 - ——— — — — — —
oral,5-oral,0 - — — — —
oral,50-oral,0 - — — —
T T T T T T

-40 -20 0 20 40 60 80 100 120
simultaneous 95 % confidence limits, Dunnett method

response variable:

Figure 18.10: Lower mcc bounds for rat hormone treatment.
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In summary, the function multicomp uses the information in a linear
model; that is, a fitted fixed effects linear model. Through some
combination of the focus, adjust, comparisons and Tmat arguments,
any collection of estimable linear combinations of the fixed effects
may be estimated, and simultaneous or non-simultaneous intervals or
bounds computed by any of the applicable methods mentioned
above. Specified linear combinations are checked for estimability
unless you specify est.check=F. Specified methods are checked for
validity unless you specify valid.check=F.

The function multicomp.default uses a specified vector of parameter
estimates bvec and a covariance matrix vmat, which will usually have
some associated degrees of freedom df.residual specified. Possibly
through some combination of the comparisons or Tmat arguments,
any collection of linear combinations of the parameters may be
estimated, and simultaneous or non-simultaneous intervals or bounds
computed by any of the applicable methods discussed above.
Specified methods are checked for validity unless you specify
valid.check=F.

The output from either procedure is an object of class "multicomp", a
list containing elements table (a matrix of calculated linear
combination estimates, standard errors, and lower and/or upper
bounds), alpha, error.type, method, crit.point, Tmat (the final
matrix of linear combinations specified or implied), and other
ancillary information pertaining to the intervals. If the argument
plot=T is specified, the intervals/bounds are plotted on the active
device. If not, the created multicomp object can be used as an
argument to plot (see plot.multicomp).

The critical points for the methods of Tukey and Dunnett are
calculated by numerically using the Spotfire S+ quantile functions
qtukey, qdunnett, gmvt, and gmvt.sim, which may be directly useful
to advanced users for their own applications.



Capabilities and Limits

What the function multicomp does not do:

L.

Any stagewise or multiple range test. The simultaneous testing
procedures attributed to Fisher, Tukey, Scheffé, Sidak and
Bonferroni are implied by the use of the corresponding
method and noting which of the calculated intervals excludes
zero. The multiple range tests of Duncan(1955) and Newman-
Keuls (Newman, 1939; Keuls, 1952) do not provide
familywise error protection, and are not very efficient for
comparisonwise error protection; modern texts on multiple
comparisons recommend uniformly against these two
multiple range tests (Hsu, 1996; Hochberg and Tamhane,
1987; Bechofer et al., 1996; Toothaker 1993).

Multiple comparisons with the “best” treatment (MCB; Hsu,
1996, chapter 4), or any ranking and selection procedure
(Bechofer, et al., 1995) other than selection of treatments
better than a control implied by Dunnett’s one-sided
methods. Users familiar with these methods and reasonably
proficient at Spotfire S+ programming will be able to code
many of these procedures through creative use of multicomp
with the comparisons="mcc" option.
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Symbols

%1in% operator
formula 34
* operator
formula 32, 34
formulas 595, 606
+ operator
formulas 595
. operator
formula 36
/ operator
formula 34
: operator
variable interaction 32
~ operator
formulas 32, 606, 609
~ operator 29

Numerics

2k designs
creating design data frame 602
details of ANOVA 613
diagnostic plots 610, 611
EDA 604
estimating effects 605, 607, 609
example of 2* design 602
replicates 607
small order interactions 609

ace
algorithm 307
compared to avas 312
example 309

ace function 309

Index

ace goodness-of-fit measure 307
acf function 124, 152
add1 function
generalized linear models 390
addl function 45
linear models 255
additive models
see generalized additive models
additive predictor
mathematical definition 385
additivity and variance stabilizing
transformation
see avas 312
A estimates of scale 112
AIC
related to C statistic 251
air data set 239, 253
algorithms
ace 307
ANOVA 629
avas 312
backfitting 312
correlation coefficient 150
cubic smoothing splines 298
deviance 302
generalized additive models 12
generalized linear models 11
glm function 384, 415
goodness-of-fit measure 307
kernel-type smoothers 295
L1 regression 370
least squares regression 367
least trimmed squares
regression 367
linear models 10
local cross-validation for
variable span smoothers 293
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700

locally weighted regression
smoothing 291
Tukey’s one degree of freedom
588
alternating conditional expectations
see ace
alternative hypothesis 126
analysis of deviance tables, see
ANOVA tables
analysis of variance see ANOVA
ANOVA
2k designs 604-614
checking for interaction 594
data type of predictors 10
diagnostic plots 575
diagnostic plots for 584, 595,
611
EDA 572, 580, 593, 604
effects table 577
estimating effects 605, 607, 609
factorial effects 633
fitting functions 8
grand mean plus treatment
effects form 629
interaction 582
one-way layout 574-577
rank sum tests 662
repeated-measures designs 659
robust methods 662
small-order interactions 609
split-plot designs 656
treatment means 577
two-way additive model 583
two-way replicated 594-601
two-way unreplicated 578-590
unbalanced designs 634
variance stabilizing 597, 599,
601
ANOVA, see also MANOVA
anova function
chi-squared test 389, 411
F test 416
generalized additive models 395
generalized linear models 389,
410, 411, 416

anova function 519
anova function 9
anova function
additive models 306
ANOVA models
residuals 584, 595
ANOVA tables 9, 595, 606, 609, 626
F statistics 416
generalized additive models 306
logistic regression 389, 395
Poisson regression 410, 411
quasi-likelihood estimation 416
aov.coag data set
created 574
aov.devel.?2 data set
created 609
aov.devel.small data set
created 611
aov.devel data set
created 605
aov.pilot data set
created 609
aov function 8
2% model 605
arguments 574
default coefficients returned 613
estimating effects 609
extracting output 606
one-way layout 574, 577
two-way layout 595
two-way layout additive model
583
aov function
repeated-measures designs 659
split-plot designs 656
approx function 564
auto.stats data set 15
autocorrelation function
plot 124, 152
avas
algorithm for population
version 316
avas
algorithm 312
backfitting algorithm 312



compared to ace 312

example 313

key properties 315
avas function 313

B

backfitting 317
Bernoulli trial 69, 71, 84
definition 69
beta distribution 57, 76
beta function 76
binom.test function 184
binomial coefficients 74
definition 70
binomial distribution 57, 69, 182
relation to geometric
distribution 84
relation to hypergeometric
distribution 74
relation to Poisson distribution
71
binomial family 387, 404
inverse link function 421
logit link 382
probit link 382
blocking variable 578
Box-Cox maximum-likelihood
procedure 315
boxplot function
used to compute quartiles 101
boxplots 123, 387, 409, 573, 582,
594
Box-Tidwell procedure 315
breakdown point 365
B-splines 394
B-splines 298

C

cancer study data 196
canonical links 384
catalyst data set 10
catalyst data set 633
categorical data

Index

cross-classification 204
categorical data see also factors
categorical variables 30

interactions 33
Cauchy distribution 57, 79

stable 82
cdf.compare function 160, 161, 170,

175,178
CDF. See cumulative distribution
functions
Central Limit Theorem 63, 106
central moments

of a probability distribution 55

of a sample 103
C function 41
chisq.gof function 160, 165, 170

cut.points argument 166

distribution argument 166

estimating parameters 175

n.classes argument 166

n.param.est argument 176

warning messages 177
chisq.test function 192
chi-square distribution 57, 64
chi-squared test 192, 195, 206, 389,

411
chi-square goodness of fit test 160
choice of partition 166
comparison with other one-
sample tests 174

continuous variables 167

distributions 166

large sample theory 177

mathematical definition 165
claims data set 204
classification trees see also tree-

based models
coag.df data frame

created 571
coagulation data 570
coefficients

converting to treatment effects

629

estimated 606

extracting 8
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702

fixing 424
coefficients function
abbreviated coef 8
coef function 424
coef function 8, 23, 606
cognitive style study 686
comp.plot function
defined 590
comparative study 143
comparing means
two samples 226
comparing proportions
two samples 230
comparison values 587
conditioning plots 7, 9
analyzing 443
conditioning panels 441
conditioning values 441
constructing 441
local regression models 453
residuals as response variable
448
conditioning values 441
confidence intervals 120, 191, 564,
681
binomial distribution 185
confidence level 126, 185
correlation coefficient 157
error rate 125
for the sample mean 106, 107
pointwise 272
simultaneous 272
two-sample 188
confint.1m function
defined 273
contingency tables 183, 192, 195
choosing suitable data 209
continuous data 213
creating 204
reading 206
subsetting data 216
continuous data 4
converting to factors 213
cross-tabulating 213

continuous random variable 52, 60,
76
continuous response variable 570
continuous variables
interactions 33
contr.helmert function 40
contr.poly function 40
contr.sum function 40
contr.treatment function 39
contrasts
adding to factors 625
creating contrast functions 41
Helmert 39
polynomial 40
specifying 41, 42, 43
sum 40
treatment 39
contrasts function 42
contrasts function 625
coplot function 7, 9
coplots
see conditioning plots
cor.confint function
created 157
cor.test function 154
corelation
serial 120
cor function 156
correlation
example 149
serial 124, 245
shown by scatterplots 120
correlation coefficient 119
algorithm 150
Kendall’s t measure 154, 155
Pearson product-moment 154
p-values
p-values 154
rank-based measure 154, 155
Spearman’s r measure 154, 155
correlation structures 505
correlation structures and variance
functions 507
corStruct classes 280, 507
counts 182



Cp statistic 390
Cp statistic 251, 257
cross-classification 204
crosstabs function 204, 219
arguments 206, 216
return object 206
cross-validation
algorithm 293
cubic smoothing splines 298
algorithm 298
cumulative distribution functions
53,161
See also probability
distributions
cut function 213

D

data
categorical 4
continuous 4
organizing see data frames
summaries 5
data frames
attaching to search list 247
design data frame 579, 592, 602
degrees of freedom 134, 303
nonparametric 303
parametric 303
smoothing splines 298
density function. See probability
density function
density plot 123
derivatives 548
deriv function 552
design data frames 579, 592, 602
designed experiments
one factor 570-577
randomized blocks 578
replicated 591
two-way layout 578
devel.design data frame
created 602
devel.df data frame
created 604

Index

deviance 418
algorithm 302
deviance residuals 418
D function 551
diagnostic plots
ANOVA 584
linear regression 242
local regression models 436
multiple regression 249
outliers 575
diff.hs data set 151
discrete random variable 52, 69, 84
dispersion parameter 383, 416
obtaining chi-squared estimates
411
distribution functions. See
probability distributions
double exponential distribution
random number generation 87
dropl function 44
linear models 251
drug.fac data set 195
drug.mult data set 658
drug data set 194
dummy.coef function 630
Dunnett’s intervals 678, 679
durbinWatson function 245
Durbin-Watson statistic 245
dwilcox function 57

E

EDA
see exploratory data analysis
eda.shape
defined 124
eda.ts function 124
EDA functions
interaction.plot 582
plot.design 572, 580, 594
plot.factor 573, 581
empirical distribution function 161
ethanol data set 275
Euclidean norm 365
example functions
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704

comp.plot 590
confint.1m273
cor.confint function 157
eda.shape 124

eda.ts 124

tukey.1 589

examples

2k design of pilot plant data 607

2k design of product
development data 602

ace example with artificial data
set 309

ANOVA of coagulation data
570

ANOVA of gun data 629

ANOVA of penicillin yield data
578

ANOVA of poison data 591

ANOVA table of wafer data
626

avas with artificial data set 313

binomial model of Salk vaccine
trial data 186

binomial test with roulette 184

chi-squared test on propranolol
drug data 196

chi-squared test on Salk vaccine
data 195

coplot of ethanol data 441

correlation of phone and
housing starts data 149

developing a model of auto data
14

Fisher’s exact test on
propranolol drug data 196

goodness of fit tests for the
Michelson data 175

hypothesis testing of lung
cancer data 190

linear model of air pollution
data 239

logistic regression model of
kyphosis data 387

MANOVA of wafer data 654

Mantel-Haenszel test on cancer
study data 196

McNemar chi-squared test on
cancer study data 199

multiple regression with
ammonia loss data 247

new family for the negative
binomial distribution 430

new variance function for quasi-
likelihood estimation 426

one-sample speed of light data
129

paired samples of shoe wear
data 144

parameterization of scores data
619

perspective plot of fitted data
452

Poisson regression model of
solder.balance data 407

probit regression model of
kyphosis data 404

proportions test with roulette
185

quasi-likelihood estimation of
leaf blotch data 426

quasi-likelihood estimation of
solder.balance data 416

repeated-measure design
ANOVA of drug data 658

split-plot design ANOVA of
rubber plant data 656

two-sample weight gain data
137

variance components model of
pigment data 665

weighted regression of course
revenue data 261

expected value 112

of a random variable 54

exploratory data analysis 121

four plot function 124

interaction 582

phone and housing starts data
151



plots 5

serial correlation 124

shoe wear data 145

speed of light data 130

time series function 124

weight gain data 137

exponential distribution 57, 76

random number generation 86

relation to gamma distribution
77

relation to Weibull distribution
77

F

fac.design function 579, 602
factorial effects 633
factors 4
adding contrasts 625
creating from continuous data
213
levels 4
parametrization 39
plotting 387, 409, 582
setting contrasts 42, 43
family functions 383, 425
binomial 382, 387, 404
creating a new family 425
in generalized additive models
386
inverse link function 421
Poisson 383, 407
quasi 383
F distribution 57, 67
first derivatives 548
fisher.test function 192
Fisher’s exact test 193, 196
fitted.values function
abbreviated fitted 575
fitted function 8, 575, 576, 585,
596, 612
fitted values
ANOVA models 585, 596, 599,
611
extracting 8

Index

Im models 242
fitting methods
formulas 37
functions, listed 8
missing data filter functions 47
optional arguments to functions
46
specifiying data frame 46
subsetting rows of data frames
46
weights 46
fitting models 554
fixed coefficients, See offsets
formula function 31
formulas 28-45, 545
automatically generating 249
categorical variables 30, 33, 34
changing terms 44, 45
conditioning plots 441
continuous variables 30, 33, 34
contrasts 39
expressions 30
fitting procedures 37
generating function 31
implications 546
interactions 32, 33, 34
intercept term 30
linear models 239
matrix terms 30
nesting 33, 34, 35
no intercept 424
offsets 424
operators 29, 31, 32, 34, 36
polynomial elements 277
simplifying 546
specifying interactions 595, 606,
609
syntax 31, 36
updating 44, 45
variables 29, 30
friedman.test function 663
Friedman rank sum test 662, 663
F-statistic
linear models 241
T statistics 416
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706

F test 416
F-test
local regression models 458
fuel.frame data 674
fuel consumption problem 690

G

gain.high data set 137
gain.low data set 137
gam function 385, 387, 404, 407
available families 386
binomial family 394
family argument 387, 404, 407
gam function 8, 24
gam function
returned object 303
gamma distribution 57, 77
gamma function 66, 67, 77
definition 64
GAMs, see generalized additive
models
Gaussian distribution. See normal
distribution
Gaussian mean
one-sample test of 224
generalized additive models
algorithm 12, 301
analysis of deviance tables 395
ANOVA tables 306
contrasted with generalized
linear models 400
degrees of freedom 303
deviance 418
fitting function 8
link function 385
lo function 386
logistic regression 394
marginal fits 421
mathematical definition 385
plotting 396
prediction 420
residual deviance 302
residuals 418
s function 386

smoothing functions 385, 386
summary of fit 394, 395, 397
generalized linear models
adding terms 390
algorithm 11
analysis of deviance tables 416
canonical links 384
composite terms 422
contrasted with generalized
additive models 400
deviance 418
dispersion parameter 383, 411,
416
fitting function 8
fixing coefficients 424
logistic regression 387
logit link function 382
log link function 383
mathematical definition 381
plotting 390, 412
Poisson regression 407
prediction 420
probit link function 382
probit regression 404
quasi-likelihood estimation 383,
415
residuals 418
safe prediction 422
specifying offsets 424
summary of fit 388, 400
using the gam function 385
geometric distribution 57, 84
relation to negative binomial
distribution 84
glm links data set 425
glm.variances data set 425
glm function 387, 404, 407
algorithm 384, 415
available families 383
binomial family 382
family argument 387, 404, 407
Poisson family 383
quasi family 383
residuals component 418
g1m function 8



GLMs, see generalized linear
models
GOF. See goodness of fit tests
goodness-of-fit measure
algorithm 307
goodness of fit tests 160
chi-square 160, 165, 174, 177
comparison of one-sample tests
174
composite 174
conservative tests 175
Kolmogorov-Smirnov 160, 168,
174, 178
one-sample 160, 165, 168, 172
Shapiro-Wilk 160, 172, 174, 175
two-sample 160, 168, 178
gradient attribute 549
groupData class 465
grouped datasets 465
guayule data set 209, 656
gun data set 629, 634

H

half-normal QQ-plots 610
Helmert contrasts 39
hessian attribute 550
hist function 408
hist function 5, 575, 584, 595
histograms 5, 123, 575, 584, 595
horshft argument 528
Hotelling-Lawley trace test 654
Huber psi functions
for M estimates of location 110
Huber rho functions
for tau estimates of scale 113
hypergeometric distribution 57, 74
hypothesis testing 120, 126
goodness of fit 160
one sample proportions 184
p-values 154
three sample proportions 190
two sample proportions 186

Index

I

identify function 20
identifying plotted points 20
I function 398
importance
in ppreg 324
inner covariates 465
interaction.plot function 582,
594
interactions 320
checking for 582, 594
specifying 32, 595, 606
specifying order 609
intercept 30
no-intercept model 424
intercept-only model 255
interquartile range
of a probability distribution 55
of a sample 101
IQR. See interquartile range
is.random function 664
iteratively reweighted least squares
384,415
score equations 384

K

Kendall’s t measure 154, 155
kernel functions 295, 296
kernel-type smoother

algorithm 295
Kolmogorov-Smirnov goodness of

fit test 160
comparison with other one-
sample tests 174

distributions 169

hypotheses tested 168

interpretation 168

mathematical definition 168

one-sample 168

two-sample 168, 178
kruskal.test function 662
Kruskal-Wallis rank sum test 662
ks.gof function 160, 176
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708

alternative argument 169
distribution argument 169
estimating parameters 175
one-sample 169
two-sample 178

ksmooth function 295
kernels available 295

KS test. See Kolmogorov-Smirnov

goodness of fit test

kurtosis
of a probability distribution 55
of a sample 104

kurtosis function 104

kyphosis data set 387, 404

kyphosis data set 5

kyphosis data set 213

L

11f1it function 370
L1 regression 370
algorithm 370
Laplace distribution. See double
exponential distribution
least absolute deviation regression
see L1 regression
least squares regression 239
algorithm 367
least squares regression,
mathematical representation 276
least squares vs. robust fitted model
objects 340
least trimmed squares regression
algorithm 367
breakdown point 369
leave-one-out residuals 294
level of significance 126
levels
experimental factor 570
likelihood models 544
linear dependency, see correlation
linear mixed-effects models
fitting 479
model definitions 479
linear models

adding terms 255
algorithm 10
confidence intervals 272
diagnostic plots 242, 243, 249,
253
dropping terms 251
fitting function 8, 239, 280
intercept-only model 255
mathematical definition 381
modifying 251, 260
pointwise confidence intervals
272
polynomial regression 275
predicted values 270
selecting 251, 257
serial correlation in 245
simultaneous confidence
intervals 272
stepwise selection 257
summary of fitted model 241
updating 260
linear models see also generalized
linear models
linear predictor 385, 420
mathematical definition 381
linear regression 237
link functions
canonical 384
in generalized additive models
385
in generalized linear models
425
log 383
logit 382
mathematical definition 381
probit 382, 425
Ime function
advanced fitting 505
arguments 481
Ime objects
analysis of variance 486
extracting components 489
ploting 487
predicting values 491
printing 483



summarizing 484
1m function 8, 18, 240
multiple regression 248
subset argument 21
Im function 239, 280
arguments 249
polynomial regression 277
ImRobMM function 335
locally weighted regression
smoothing 290, 434
algorithm 291
local maxima and minima 529
local regression models 12, 434
diagnostic plots 446
diagnostic plots for 436
dropping terms 455
fitting function 8
improving the model 455
multiple predictors 446
one predictor 435
parametric terms 455
plotting 452
predicted values 452
returned values 435
local regression smoothing 394
location.m function 111
loess 290
scatterplot smoother 290
scatterplot smoothing 291
loess.smooth function 291
l1oess function 8, 435, 436, 453
loess models see local regression
models
loess smoother function 301
lo function 386, 394
lo function 301
logistic distribution 57, 78
logistic regression 387
analysis of deviance tables 389,
395
binary response 402
contrasted with probit
regression 405
Cp statistic 390
factor response 402

Index

logit link function 382
numeric response 402
tabulated response 402
t-tests 389
using the gam function 386, 394
logit link function
mathematical definition 382
log link function
mathematical definition 383
lognormal distribution 57, 80
lprob function 546, 549
1tsreg function 367
lung cancer study 189

M

MAD. See median absolute
deviation
mad function 101
make.family function 425, 430
Mann-Whitney test statistic. See
Wilcoxon test
MANOVA 654
repeated-measures designs 660
test types available 654
manova function 654
Mantel-Haenszel test 193, 196
maximum
of a sample 98, 105
maximum likelihood estimate
for variance components
models 665
maximum likelihood method 479,
486
mcnemar.test function 199
McNemar chi-squared test 193, 199
mean 119
computing median absolute
deviation 100
computing sample moments
103
computing sample variance 99
confidence intervals 107
of a probability distribution 54
of a sample 95, 105, 110
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710

of Poisson distribution 72
standard deviation 106
standard error 106, 107
trimmed mean 96
mean absolute deviation
of a random variable 54
mean function 95
trimmed mean 96
median 124
computing median absolute
deviation 100
of a probability distribution 55
of a sample 96, 105, 110
median absolute deviation (MAD)
100
computing A estimates of scale
112
computing M estimates of
location 111
computing tau estimates of scale
113
median function 97
M estimates of location 110
asymptotic variance 112
computing A estimates of scale
112
computing tau estimates of scale
113
M-estimates of regression 372
fitting function 372
Michaelis-Menten relationship 543
mich data set 175
mich data set
created 130
Michelson speed-of-light data 129,
175
minimum
of a sample 98, 105
minimum sum 526
minimum-sum algorithm 544
minimum sum function 534
minimum sum-of-squares 526
missing data
filters 47
mixed-effects model 463

MM-estimate 335
mode
of a probability distribution 55
of a sample 97
model
mixed-effects 463
nonlinear mixed-effects 493
model.tables function 577
model.tables function 630
model data frame 579, 592, 604
models 28-45
data format 4
data type of variables 9
development steps 3
example 14
extracting information 8
fitting functions 8
iterative process 14
missing data 47
modifying 9
nesting formulas 33, 34
paradigm for creating 8
parameterization 34
plotting 9
prediction 9
specifying all terms 32
specifying interactions 32
types available in Spotfire S+ 3
models see also fitting methods
moments
of a probability distribution 55
ms function 526, 534
arguments to 554
multicomp
Lmat argument 689
multicomp function
df.residual argument 679
using summary data 679
vmat argument 679
multicomp function 675
alpha argument 683
comparisons argument 680
control argument 681
est.check argument 694
focus argument 680



simsize argument 683
valid.check option 682
multilevel linear mixed-effects
models 479
multiple comparisons 674
from summary data 679
with a control (MCC) 678
multiple regression 247
diagnostic plots 249
multiple R-squared
linear models 241
multivariate analysis of variance
see MANOVA
multivariate normal distribution 57,
82

N

namevec argument 553
negative binomial distribution 57,
84
in generalized linear models
430

nesting formulas 33, 34

nlimb function 530

nlme function
advanced fitting 505
Arguments 494

nlme function 493, ??-520

nlme objects
analysis of variance 501
extractnig components 504
plotting 501
predicting values 502
printing 497
summarizing 499

nlminb function 532

nlregb function 538

nls function 526, 537
arguments to 554

nlsList function 513

nlsList function ??-520

nnls.fit 536

nnls.fit function 535

Index

nonlinear least-squares algorithm
545
nonlinear mixed-effects models
fitting 493
model definition 493
nonlinear models 526
nonnegative least squares problem
535
nonparametric methods 121
nonparametric regression
ace 307
normal (Gaussian) distribution 57,
61
Central Limit Theorem 63, 106
in probit regression 382
lognormal 80
multivariate 57, 82
random number generation 89
stable 82
standard 62
nregb function 536
null hypothesis 126
completely specified
probabilities 186, 187
equal-probabilities 186, 187
null model 255, 390

0]

observation weights
in ppreg 326
offset function 424
offsets
in generalized linear models
424
oil.df data set 337
one-sample test
binomial proportion 229
Gaussian mean 224
one-way layout 570, 574
overall mean plus effects form
576
robust methods 662
- operator
formula 32
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operators
formula 29, 31, 32, 34, 36, 595,
606, 609
optimise function 529
optimization functions 527
options function 43
outer covariates 465
outer function 421
outliers 118
checking for 575, 576, 582
identifying 20
sensitivity to 581
over-dispersion 416
in regression models 415
overparameterized models 691

P

paired comparisons 144
paired t-test 148
pairs function 5, 439
linear models 253
pairs function 247
pairwise scatter plots
see scatterplot matrices
parameter function 547
parametrized data frames 547
param function 547
PDF. See probability density
function
pdMat classes 505
peaks function 529
Pearson product-moment
correlation 154
Pearson residuals 418
pen.design data frame
converted to model data frame
580
created 579
pen.df data frame
created 579
penicillin yield data 578, 579
perspective plots 439
local regression models 452
perspective plots, creating grid 452

persp function 421
phone.gain data set 151
phone increase data 149
pigment data 665
pigment data set 665
Pillai-Bartlett trace test 654
pilot.design data frame
created 608
pilot.df data frame
created 609
pilot.yield vector 608
pilot plant data 608
ping-pong example 539, 548, 551,
558
plot.design function 572, 580,
581, 594, 604
plot.factor function 387, 409
plot.factor function 573, 581,
594, 605
plot.gam function 392, 396, 413
plot.glm function 390, 412
ask argument 393
plot function 5, 9
plots
autocorrelation plot 152
boxplots 123, 387, 409, 573,
582, 594
conditioning plots 7, 9, 441
density plot 123
density plots 123
diagnostic 436
for ANOVA 595, 611
diagnostic for ANOVA 575
exploratory data analysis 5, 123
factor plots 387, 409
histograms 5, 123, 575, 584, 595
interactively selecting points 20
normal probability plot 9
perspective 439
qq-plots 123
quantile-quantile 5, 584, 595,
610, 611
quantile-quantile plot 123
quantile-quantile plots 575
scatterplot matrices 5, 439



surface plots 421
plotting
design data frames 580
factors 387, 409, 582
fitted models 9
generalized additive models 396
generalized linear models 390,
412
linear models 243
local regression models 436,
453
residuals in linear models 243
point estimates 156
pointwise confidence intervals
linear models 272
pointwise function 272
poison data 591, 592
poisons.design data set
created 592
poisons.df data frame
created 592
Poisson distribution 57, 71
in Poisson regression 383
mean 72
Poisson family 407
log link function 383
Poisson process 72, 76, 77, 430
Poisson regression 407
analysis of deviance tables 410,
411
log link function 383
using the gam function 386
poly.transform function 277
poly function 277
polynomial contrasts 40
polynomial regression 277
polynomials
formula elements 277
orthogonal form transformed to
simple form 277
polyroot function 528
positive-definite matrices 505
power law 600

ppreg

Index

backward stepwise procedure
324
forward stepwise procedure 322
model selection strategy 324
multivariate response 326
ppreg function 318
examples 320
predict.gam function
safe prediction 423
type argument 420
predict.glm function
type argument 420
predicted response 9
predicted values 452
predict function 9, 25
linear models 270, 272
returned value 270
prediction 25
generalized additive models 420
generalized linear models 420
linear models 270
safe 422
predictor variable 5
probability
definition 51
probability density curves 123
probability density function 52
computing 57
See also probability
distributions
probability distributions 51, 53
beta 76
binomial 69, 182
Cauchy 79
chi-square 57, 64
comparing graphically 161
computing 56
empirical 161
exponential 76, 86
F67
gamma 77
geometric 84
hypergeometric 74
listed 57
logistic 78
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714

lognormal 80
multivariate normal 82
negative binomial 84
normal (Gaussian) 61, 89, 118
Poisson 71
range of standard normals 81
stable 82
t 65
uniform 56, 60
Weibull 77
Wilcoxon rank sum statistic 56,
57,85
probit link function 425
mathematical definition 382
probit regression 404
contrasted with logistic
regression 405
probit link function 382
using the gam function 386
product development data 602
profile function 561
profile projections 560
profiles for ms 561
profiles for nls 561
profile slices 560
profile t function 561
profiling 560
projection pursuit regression
algorithm 318, 320
prop.test function 185, 186
proportions 182
confidence intervals 185, 188
one sample 184
three or more samples 189
two samples 186
propranolol data 194
puromycin experiment 542
p-values 126, 128
pwilcox function 56

Q

qchisq function 57
ggnormfunction 5,9, 575, 584, 595,
610

qqnorm function
linear models 243
qqplot function 178
qq-plots
see quantile-quantile plots
quantile function
used to compute quartiles 101
quantile-quantile plots 5, 123
full 611
half-normal 610
residuals 575, 584, 595, 611
quantiles
computing 57
of a probability distribution 55
quartiles 124
of a probability distribution 55
of a sample 101, 105
quasi family 383
quasi-likelihood estimation 383, 415
defining a new variance
function 426

R

randomized blocks 578

random number generation 56, 86
double exponential (Laplace) 87
exponential 86
normal (Gaussian) 89

random variable 52
continuous 52, 60, 76
discrete 52, 69, 84

range
of a sample 98, 105
of standard normal random

variables 81

range function 98

rat growth-hormone study 678, 693

regression
diagnostic plots 242
generalized additive models 385
generalized linear models 381
least absolute deviation 370
least squares 239
linear models 8, 10



logistic 382, 386, 387
M-estimates 372
multiple predictors 247
one variable 239
overview 237
Poisson 383, 386, 407
polynomial terms 275
probit 382, 386, 404
quasi-likelihood estimation 383,
415
robust techniques 333
simple 239
stepwise model selection 257
updating models 260
weighted 261
regression line 243
confidence intervals 272
regression splines 290
regression trees see also tree-based
models
repeated-measures designs 658
replicated factorial experiments 591
resid function 8, 575, 576, 585,
596, 612
resid function, see residuals
function
residual deviance 302
residuals
ANOVA models 575, 584, 595,
599, 611
definition 239
deviance 418
extracting 8
generalized additive models 418
generalized linear models 418
local regression models 436
normal plots 243
Pearson 418
plotting in linear models 243
response 419
serial correlation in 245
working 418
residuals function 419
type argument 419
residuals function

Index

abbreviated resid 8, 575
response
Im models 242
response residuals 419
response variable 5
logistic regression 402
response weights
in ppreg 326
restricted maximum likelihood
method (REML) 479
robust estimates 96, 100, 111
A estimates of scale 112
interquartile range (IQR) 101
median 96
median absolute deviation 100,
111,112,113
M estimates of location 110,
112,113
mode 97
tau estimates of scale 113
trimmed mean 96
robust methods 121
robust regression 333
least absolute deviation 370
M-estimates 372
Roy’s maximum eigenvalue test 654
rreg function 372
weight functions 374
runif function 56

S

salk.mat data set 193

Salk vaccine trials data 186, 192, 193

sample function 60, 69

sample mean. See mean

sample sum of squares. See sum of

squares

sample variance. See variance

scale.a function 114

scale.tau function 114

scatterplot matrices 5, 247, 253, 439

scatter plots 146

scatterplot smoothers 237, 290
locally weighted regression 291
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score equations 384
scores.treat data set 619
scores data set 619
second derivatives 550
self-starting function ??-520
biexponential model 514
first-order compartment model
514
four-parameter logistic model
514
logistic model 515
SEM. See standard error
s function 386, 394
s function 301
shapiro.test function 172, 177
allowable sample size 172
Shapiro-Wilk test for normality 160,
175
comparison with other one-
sample tests 174
interpretation 172
mathematical definition 172
shoe wear data 143
simple effects comparisons 686
simultaneous confidence intervals
273
linear models 272
skewness
of a probability distribution 55
of a sample 103
skewness function 103
smooth.spline function 298
smoothers 237
comparing 299
cubic smoothing spline 290
cubic spline 298
kernel-type 290, 295
locally weighted regression 290
variable span 290, 292
smoothing functions 385
cubic B-splines 394
local regression smoothing 394
solder.balance data set 407
solder data set 209
soybean data 476-520

Spearman’s r measure 154, 155
splines
B-splines 298
cubic smoothing splines 298
degrees of freedom 298
regression 290
split-plot designs 656
stable distribution 57, 82
stack.df data set
defined 247
stack.loss data set 247
stack.x data set 247
standard deviation 119
of a probability distribution 54
of a sample 99
of the sample mean 106
standard error
linear models 241
of the sample mean 106, 107
predicted values 270
statistical inference 125
alternative hypothesis 126
assumptions 121
confidence intervals 125
counts and proportions 182
difference of the two sample
means 139
equality of variances 139
hypothesis tests 125
null hypothesis 126
status.fac data set 195
status data set 194
stdev function 99
used to compute standard error
107
step function 257
displaying each step 259
stepwise model selection 257
straight line regression 237
Student’s t-test 127
one-sample 133
paired test 147
two-sample 139
sum contrasts 40
summarizing data 5



summary.gam function 394, 397
summary.glm function 388, 400
disp argument 411
dispersion component 416
summary function 105
generalized additive models
394, 397
generalized linear models 388,
400
summary function 5, 9, 23, 241
ANOVA models 606
sum of squares
of a sample 99, 100
super smoother 312, 317, 323
supersmoother 292
supsm function 292
supsmu
use with ppreg 323
surface plots 421
symbolic differentiation 551

T

t.test function 108
t.test function 133, 139, 147
table function 402

used to compute modes 97
table function 195
tau estimates of scale 113
t distribution 57, 65

computing confidence intervals

108
relation to Cauchy distribution
79
test.vc data set 667
textbook parameterization of the Im
model 689

t measure of correlation 154, 155
Toothaker’s two-factor design 686
transformations

variance stabilizing 312
treatment 570

ANOVA models 574

treatment contrasts 39

Index

tree-based models
fitting function 8
tree function 8
tri-cube weight function 291
trimmed mean 96
t-tests
see Student’s t-test
tukey .1 function 586
defined 589
Tukey’s bisquare functions
for A estimates of scale 112
for M estimates of location 110
Tukey’s method 677
Tukey’s one degree of freedom 586,
588
Tukey-Kramer multiple comparison
method 677
two-way layout
additive model 583
details 600
multiplicative interaction 586
power law 600
replicated 591-601
replicates 594, 596
robust methods 663
unreplicated 578-590
variance stabilizing 597, 599

U

unbiased estimates
sample mean 95
sample variance 99, 100
under-dispersion
in regression models 415
uniform distribution 56, 57, 60
random number generation 86
uniroot function 528
update function 9, 44, 437, 455
linear models 260
updating models 9
linear models 260
local regression models 437,
455
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A\

var.test function 139
varcomp function 8
varcomp function 665
varFunc classes 280, 507
var function 99
computing biased/unbiased
estimates 100
computing the sum of squares
100
SumSquares argument 100
variables
continuous 30
variance 119
biased/unbiased estimates 99
of a probability distribution 54
of a sample 99, 106
variance components models 664
estimation methods 665
maximum likelihood estimate
665
MINQUE estimate 665
random slope example 666
restricted maximum likelihood
(REML) estimate 665
winsorized REML estimates
666
variance functions 505
in generalized additive models
385
in generalized linear models
381, 425
in logistic regression 382

in Poisson regression 383
in probit regression 382
variance stabilizing 597, 599
Box-Cox analysis 601
least squares 601
vershft argument 528

W

wafer data 626
wafer data set 626
wave-soldering skips experiment
540
wear.Ascom data set 145
wear.Bscom data set 145
Weibull distribution 57, 77
weighted regression 46, 237, 261
weight gain data 136
wilcox.test 128
wilcox.test function 135, 139, 141,
148
Wilcoxon test 128, 129
one-sample 135
paired test 148
two-sample 85, 141
Wilks’ lambda test 655
working residuals 418
W-statistic. See Shapiro-Wilk test
for normality

Y

yield data set
created 579
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