)

TIBCO SPOTFIRE $+- 8.1
Application Developer’s
Guide

November 2008

TIBCO Software Inc.

IMPORTANT INFORMATION

ii

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER
TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON
FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT
LICENSED TO BE USED OR ACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS
SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE
AGREEMENT FOUND IN EITHER A SEPARATELY
EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF
THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS
DISPLAYED DURING DOWNLOAD OR INSTALLATION OF
THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SPOTFIRE $+® INSTALLATION AND ADMINISTRATION
GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO THOSE
TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to
U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO Software Inc., TIBCO, Spotfire, TIBCO Spotfire S+,
Insightful, the Insightful logo, the tagline "the Knowledge to Act,"
Insightful Miner, S+, S-PLUS, TIBCO Spotfire Axum,
S+ArrayAnalyzer, S+EnvironmentalStats, S+FinMetrics, S+NuOpt,
S+SeqTrial, S+SpatialStats, S+Wavelets, S-PLUS Graphlets,
Graphlet, Spotfire S+ FlexBayes, Spotfire S+ Resample, TIBCO
Spotfire Miner, TIBCO Spotfire S+ Server, and TIBCO Spotfire
Clinical Graphics are either registered trademarks or trademarks of
TIBCO Software Inc. and/or subsidiaries of TIBCO Software Inc. in
the United States and/or other countries. All other product and
company names and marks mentioned in this document are the
property of their respective owners and are mentioned for

Reference

Technical
Support

Important Information

identification purposes only. This software may be available on
multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time.
Please see the readme.txt file for the availability of this software
version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
DOCUMENT COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION
HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE
INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

Copyright © 1996-2008 TIBCO Software Inc. ALL RIGHTS
RESERVED. THE CONTENTS OF THIS DOCUMENT MAY BE
MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH
ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT
LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

TIBCO Software Inc. Confidential Information

The correct bibliographic reference for this document is as follows:

TIBCO Spotfire S+® 8 Application Developer’s Guide, TIBCO Software

Inc.

For technical support, please visit http://spotfire.tibco.com/support
and register for a support account.

ii

ACKNOWLEDGMENTS

iv

TIBCO Spotfire S+ would not exist without the pioneering research
of the Bell Labs S team at AT&T (now Lucent Technologies): John
Chambers, Richard A. Becker (now at AT&T Laboratories), Allan R.
Wilks (now at AT&T Laboratories), Duncan Temple Lang, and their
colleagues in the statistics research departments at Lucent: William S.
Cleveland, Trevor Hastie (now at Stanford University), Linda Clark,
Anne Freeny, Eric Grosse, David James, José Pinheiro, Daryl
Pregibon, and Ming Shyu.

TIBCO Software Inc. thanks the following individuals for their
contributions to this and earlier releases of TIBCO Spotfire S+:
Douglas M. Bates, Leo Breiman, Dan Carr, Steve Dubnoff, Don
Edwards, Jerome Friedman, Kevin Goodman, Perry Haaland, David
Hardesty, Frank Harrell, Richard Heiberger, Mia Hubert, Richard
Jones, Jennifer Lasecki, W.Q. Meeker, Adrian Raftery, Brian Ripley,
Peter Rousseeuw, J.D. Spurrier, Anja Struyf, Terry Therneau, Rob
Tibshirani, Katrien Van Driessen, William Venables, and Judy Zeh.

TIBCO Spotfire S+ Books

TIBCO SPOTFIRE S+ BOOKS

The TIBCO Spotfire S+® documentation includes books to address
your focus and knowledge level. Review the following table to help
you choose the Spotfire S+ book that meets your needs. These books
are available in PDF format in the following locations:

* In your Spotfire S+ installation directory (SHOME\help on
Windows, SHOME/doc on UNIX/Linux).

* In the Spotfire S+ Workbench, from the Help » Spotfire S+
Manuals menu item.

+ In Microsoft® Windows®, in the Spotfire S+ GUI, from the
Help » Online Manuals menu item.

Spotfire S+ documentation.

Information you need if you... See the...

Are new to the S language and the Spotfire S+ | Getting Started
GUI, and you want an introduction to importing | Guide
data, producing simple graphs, applying statistical

models, and viewing data in Microsoft Excel®.

Are a new Spotfire S+ user and need how to use | User’s Guide
Spotfire S+, primarily through the GUL

Are familiar with the S language and Spotfire S+, | Spotfire S+ Workbench
and you want to use the Spotfire S+ plug-in, or | User’s Guide
customization, of the Eclipse Integrated
Development Environment (IDE).

Have used the S language and Spotfire S+, and | Programmer’s Guide
you want to know how to write, debug, and
program functions from the Commands window.

Are familiar with the S language and Spotfire S+, | Application
and you want to extend its functionality in your | Developer’s Guide
own application or within Spotfire S+.

vi

Spotfire S+ documentation. (Continued)

Information you need if you...

See the...

Are familiar with the S language and Spotfire S+,
and you are looking for information about creating
or editing graphics, either from a Commands
window or the Windows GUI, or using Spotfire
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+,
and you want to use the Big Data library to import
and manipulate very large data sets.

Big Data
User’s Guide

Want to download or create Spotfire S+ packages
for submission to the Comprehensive S-PLUS
Archive Network (CSAN) site, and need to know
the steps.

Guide to Packages

Are looking for categorized information about
individual Spotfire S+ functions.

Function Guide

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 1 includes
information on specifying models in Spotfire S+,
on probability, on estimation and inference, on
regression and smoothing, and on analysis of
variance.

Guide to Statistics,
Vol. 7

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 2 includes
information on multivariate techniques, time series
analysis, survival analysis, resampling techniques,
and mathematical computing in Spotfire S+.

Guide to Statistics,
Vol. 2

CONTENTS

Important Information ii

Chapter 1 Introduction to the Application

Developer’s Guide 1
Developing Applications 2
Chapter 2 The Spotfire S+ Command Line and
the System Interface 3
Using the Command Line 4
Command Line Parsing 7
Working With Projects 21
Enhancing Spotfire S+ 23
The System Interface 25
Chapter 3 CONNECT/C++ 31
Introduction 32
Examples: An Application and a Called Routine 34
CONNECT/C++ Class Overview 42
CONNECT/C++ Architectural Features 45
A Simple Spotfire S+ Interface in Windows 56
Chapter 4 CONNECT/Java 61
Introduction 62

Calling Java from Spotfire S+ 63

vii

Contents

viii

Calling Spotfire S+ from Java Applications

Chapter 5 Interfacing with C and FORTRAN Code
Overview
When to Use the C and Fortran Interfaces

Using C and Fortran Code with Spotfire S+
for Windows

Calling C Routines from Spotfire S+ for Windows

Writing C and Fortran Routines Suitable for Use with
Spotfire S+ for Windows

Common Concerns in Writing C and Fortran Code
for Use with Spotfire S+ for Windows

Using C Functions Built into Spotfire S+ for Windows

Calling Spotfire S+ Functions from C Code
(Windows)

The .Cal1 Interface (Windows)
Debugging Loaded Code (Windows)
A Simple Example: Filtering Data (Unix)

Calling C or Fortran Routines From Spotfire S+
for Unix

Writing C and Fortran Routines Suitable for Use
in Spotfire S+ for Unix

Compiling and Dynamically Linking your Code
(Unix)

Common Concerns in Writing C and Fortran Code
for Use with Spotfire S+ for Unix

Using C Functions Built into Spotfire S+ for Unix
Calling Spotfire S+ Functions From C Code (Unix)
The .Cal1 Interface (Unix)

Debugging Loaded Code (Unix)

A Note on StatLib (Windows and Unix)

78

95
96

98
105

110

115
130

134
142
147
151

153

157

158

162
174
177
184
189
192

Chapter 6 Automation
Introduction

Using Spotfire S+ as an Automation Server

Using Spotfire S+ as an Automation Client

Automation Examples

Chapter 7 Calling Spotfire S+ Using DDE

Introduction
Working With DDE

Chapter 8 Extending the User Interface

Overview

Menus

Toolbars and Palettes
Dialogs

Dialog Controls
Callback Functions
Class Information

Style Guidelines

Chapter 9 Libraries
Introduction
Creating a Library
Distributing the Library

Chapter 10 Spotfire S+ Dialogs in Java

Overview
Classes
Layout
Actions

Contents

193
194
195
220
231

237
238
239

247
249
251
260
272
286
323
329
337

365
366
368
375

377
379
383
387
390

ix

Contents

Calling The Function
Modifying Menus

Style Guidelines

Example: Correlations Dialog

Example: Linear Regression Dialog

Chapter 11 User-Defined Help

Introduction to Creating Help Files in Windows

Creating, Editing, and Distributing a Help File in
Windows

Introduction to Creating Help Files in UNIX

Creating, Editing, and Distributing a Help File
in UNIX

Common Text Formats

Contents of Help Files

Chapter 12 Globalization

Introduction
Working With Locales
Using Extended Characters

Importing, Exporting, and Displaying Numeric
Data

Chapter 13 Verbose Logging

Overview
Verbose Batch Execution

Example

Chapter 14 XML Generation

XML Overview
XML and SPXML Library Overview

393
395
398
419
423

435
436

440
447

449
454
456

473
474
475
480

482

487
488
490
497

503
504
505

The SPXML Library

Reading and Writing XML Using the SPXML
Library

Examples of XSL Transformations

Chapter 15 XML Reporting
Overview
What is XSL?
Custom Reports
Summary Reports

Character Substitutions

Index

Contents

507

509
510

523
524
525
527
531
543

545

xi

Contents

Xii

INTRODUCTION TO THE
APPLICATION DEVELOPER’S
GUIDE

Developing Applications

Chapter T Introduction to the Application Developer’s Guide

DEVELOPING APPLICATIONS

As an application developer, you can use Spotfire S+® for the
following three scenarios:

Customizing the Spotfire S+ user interface.

Embedding Spotfire S+ functionality (that is, the Spotfire S+
engine and libraries) in your application, so your users can
call Spotfire S+ functions from within your application.

Creating your own Spotfire S+ functions, methods, classes,
libraries, and help files.

TIBCO Software Inc. offers a package for creating customized or
embedded OEM applications for the first two scenarios described
above. For more information about the OEM Kkit, contact TIBCO.

A Spotfire S+ application developer’s interest can include:

Extending the functionality of Spotfire S+ by creating
libraries and graphical objects.

Automating Spotfire S+ routines to be called from the system
interface.

Calling Spotfire S+ functions to or from other languages.

Customizing the graphical user interface (GUI) and other
aspects of the Spotfire S+ environment.

Writing scripts and validation routines.

Creating logs and reports.

This guide provides guidance in these areas.

THE SPOTFIRE S+
COMMAND LINE AND THE
SYSTEM INTERFACE

Using the Command Line

Command Line Parsing
Variables
Switches

Working With Projects
The Preferences Directory
The Data Directory

Enhancing Spotfire S+
Adding Functions and Data Sets to Your System

The System Interface
Using the Windows Interface
Using the DOS Interface

16

21
21
22

23
23

25
25
29

Chapter 2 The Spotfire S+ Command Line and the System Interface

USING THE COMMAND LINE

Spotfire S+ accepts a number of optional commands on the
splus.exe executable’s command line that allow users significant
control over the operation of Spotfire S+.

These facilitate running Spotfire S+ in an automated or batch
environment. They also make it possible to readily alter the behavior
of Spotfire S+ on a session by session basis. Some users may find it
handy to have several shortcuts (or program manager icons if running
older versions of Windows), each of which starts Spotfire S+ with
specific projects and options selected by default. Figure 2.1 shows an
example of the command line with the optional /BATCH switch.

S-PLUS Properties

General | Shortcut | Compatibility | Security

S-PLUS

Target type: A pplication

Target location: cmd

Target: ||\splus\cmd\5 PLUS.exe" ABATCH fuelin fuel.out|

Start in: |"EI: “Program Fileshnzightfulssplushomd' |

Shortout key: | Mone |

Fun: | Mormnal window e |
Corirment: |S-PLUS pragrarm |
[Find Target...] [Change lcon...] [Advanced. ..]

[ak,][Cancel]LrApply I

Figure 2.1: Example of a command line with optional / BATCH switch. You can
save the settings on the Target field and run the shortcut without starting up Spotfire
S+ from your desktop.

Using the Command Line

Note

This chapter refers to the splus.exe command line that is used to start execution of Spotfire S+,
not the Commands window that is used to enter commands once Spotfire S+ has started. The
Spotfire S+ command line refers to anything that follows the name of the executable (splus.exe
by default) in the shortcut, program manager icon, or batch file from which Spotfire S+ may be
started. On the Spotfire S+ command line only certain switches are permitted and have their
own syntax as discussed in this section.

Command line processing of variables is implemented in both
splus.exe and sqpe.exe, although variables that apply to the
Commands window or Commands history (S_CMDFILE,
S_CMDLINEBUF, S_CMDSAVE, S_PRINT_COMMAND, and
S_SCRSAVE) are ignored in sqpe.exe. Command line processing of
switches is only implemented for splus.exe, not for sqpe.exe.

Filenames that follow a @ symbol on the command line are
expanded in place. The command line is then tokenized, with the
following classes of tokens identified:

* Variables: Any environment variable is identified by the
trailing equal sign and uses a Variable=Value syntax. Spotfire
S+ recognizes certain variables (Table 2.1), and user-written
routines might also query and react to these.

* Switches: The predefined switches listed below can be
specified on the command line. They use a /Switch [Valuel
[Value2 [Value3 [...]]]] syntax and are parsed based on
the leading symbol (/ or -).

* Script Files: Remaining tokens are considered script files to be
run by the Spotfire S+ interpreter.

An example command line might be:

SPLUS.EXE ScriptFilel /REGKEY SPLUS1 S_PROJ=c:\Projectl

Most options set on the command line are for advanced users. Some
more generally useful options are the BATCH switch, Script file
processing, and for intermediate users, S_TMP, S_FIRST, and the

Chapter 2 The Spotfire S+ Command Line and the System Interface

ability to set up Spotfire S+ to run with different project directories
using the S_PRQJ variable. See the following section for more
information about using multiple projects.

Command Line Parsing

COMMAND LINE PARSING

The operating system passes the command line unaltered to Spotfire
S+.

File Expansion

Spotfire S+ expands files specified in the command line. Anything
between an '@' character and the first subsequent delimiter (@ sign,
double quote, single quote, or the standard delimiters: space, tab,
newline, linefeed) is considered a filename and the entire file will be
expanded in place.

The @ token can be escaped by placing a backslash before it, for
example, in “EnvVarl=EnvValueWith@Filename” the @ sign will
be active, and in “EnvVar2=EnvValueWith\@NoFilename" it will be
ignored. The escape character is removed during this stage.

Multiple file names in the command line are fine, as are further
filenames embedded within a file. Files that use a relative path are
normally located relative to the current working directorys; if they are
not found, the search will continue in the same directory where
splus.exe is found.

There is no way to specify a filename with spaces in it, nor to avoid a
trailing delimiter after the filename, nor to avoid a trailing delimiter
after the expanded file contents. As a result, keep the filenames as
simple and intuitive before the expansion.

Tokenizing

The command line is then broken into tokens. Standard command
line delimiters are space, tab, newline, and linefeed and any
combination of these are ignored at the start of the command line,
and between tokens.

If the first character of a token is a single or double quote then it will
be matched with another of the same type of quote, and anything
between will be considered part of the token but nothing thereafter.

Otherwise, a token begins with any non-delimiter and goes to the first
delimiter or equal sign (the only way to "escape" a delimiter or equal
sign is to place the entire token in quotes).

Chapter 2 The Spotfire S+ Command Line and the System Interface

Variables

Table 2.1: TVariables.

Variables

If the token is followed by an equal sign, it is considered to be part of
a variable-value pair. (This is true even if the token begins with a "-"
or "/".) If a delimiter is found trailing the equal sign, the variable is
assigned an empty string for the value. (This can be used to cancel or
override environment variables in the process environment.)
Variables are then assigned the specified value.

Switches

Any token (not followed by an equal sign) that has either "-" or "/" as
its first character is considered a switch. Each switch takes a variable
number of successive tokens. Switches are evaluated in a case-
insensitive manner. Switches are separated from successive tokens by
the normal delimiters. Unknown switches are ignored.

Script Files

Remaining tokens are then considered script files and their contents
sent to the Spotfire S+ interpreter. (Also see the /BATCH switch for
an alternative mechanism for automating Spotfire S+ sessions.)

The following is a list of the variables recognized by Spotfire S+. You
are not required to set them.

Variable Description
HOME Deprecated, replaced by the synonymous S_PROJ.
S_CMDFILE

Name of the file used to initialize, and optionally append to,
the Commands History window.

S_CMDLINEBUF

Sets the maximum number of characters that can be entered to
specify a command in the Commands window. By default,
this is 32767.

S_CMDSAVE

Number of commands to save for Commands History recall.

Table 2.1: TVariables.

Command Line Parsing

S_CWD Directs Spotfire S+ to set the current working directory to this
directory at startup. Subsequent file I/O will be done relative
to this directory.

S_DATA

A series of semicolon-separated directory paths, which is
searched for a suitable database 1 (which stores user Spotfire
S+ functions and data sets).

S_ENGINE_LOCATION No longer supported.

S_FIRST Spotfire S+ function evaluated at start-up. See section
S_FIRST=function (page 13).

SHOME

Specifies the directory where Spotfire S+ is installed.

S_LOAD_BIGDATA

Specifies that the bigdata library should be loaded.

S_NOAUDIT

Tells Spotfire S+ not to write the audit file. Set by default in
splus.exe. Not set by default in sqpe.exe.

S_NO_RECLAIM No longer supported.

S_NOSYMLOOK No longer supported.

S_PATH No longer supported; see SV4_SEARCH_PATH.
S_PREFS

Directory to use for storing user preferences.

S_PRINT_COMMAND

Windows command to use for printing the Commands
window. By default, the command is “Notepad /p”.

S_PROJ

Sets default values for S_CWD, S_DATA, and S_PREFS. See
the section Working With Projects (page 21).

S_PS2_FORMAT

Tells Spotfire S+ to put a CTRL-D at the end of any PostScript
file it generates. By default, Spotfire S+ does not do this.

Chapter 2 The Spotfire S+ Command Line and the System Interface

Table 2.1: TVariables.

S_SCRSAVE KB of Commands window output to save for scrollback.

S_SILENT_STARTUP Disable printing of copyright/version messages.

S_TMP Specifies the directory where Spotfire S+ creates temporary
scratch files.

S_WORK Deprecated; replaced by S_DATA.

SV4_SEARCH_PATH A list of semicolon-separated directories used for the initial
Spotfire S+ search path, set by default to the Spotfire S+
system databases.

10

Many of the variables in this section take effect if you set them to any
value, and do not take effect if you do not set them, so you may leave
them unset without harm. For example, to set S_NOAUDIT you can
enter:

SPLUS.EXE S_NOAUDIT=X

on the command line and Spotfire S+ will not write an audit file,
because the variable S_NOAUDIT has a value (any value); this is the
default for that variable in splus.exe. If you want Spotfire S+ to begin
writing the audit file again during your next Spotfire S+ session, unset
S NOAUDIT on the command line. To unset a variable that has
previously been set in some way, enter no value (or a space) after

typing the equal sign:
SPLUS.EXE S_NOAUDIT=
Now, S_NOAUDIT is not set, and Spotfire S+ writes the audit file.

Variables are currently implemented using environment variables. As
a consequence, advanced users can specify these variables by altering
their system or process environment variables using standard
operating system specific techniques (for example, via the Control
Panel’s System applet). Variables specified on the command line are
placed in the process environment at start-up and hence take
precedence over any previously defined for the process.

Command Line Parsing

User code can check the current values for these variables by using
getenv from C or S code.

Note

We recommend placing variables on the command line. If you want to have multiple shortcuts
use some of the same variables or switches, we recommend you place those common settings in
a file and place the file name on the command line preceded with the @ sign. For specifics, see
the File Expansion section above.

S_CMDFILE=filePath

By using the S_CMDFILE variable you can initialize the Commands
History dialog to contain the commands found in a named text file.
Optionally, the commands from your current session are appended to
this file. Below are several examples illustrating the use of the
S_CMDFILE variable. These lines would be placed on the Spotfire
S+ start-up command line.

S_CMDFILE=d:\splus\cmdhist.q
S_CMDFILE=d:\splus\cmdhist.q+
S_CMDFILE=+d:\splus\cmdhist.q
S_CMDFILE=+history.q

In all cases, a path and filename are specified, and any commands
found in the named file are placed in the Commands History dialog
at startup. In the first example, new commands from the current
session will not be appended to the file. Placing a "+" immediately
after the path and filename, as in the second example, causes the
commands from the current session to be appended to the named file.
Placing a "+" immediately before the path and filename, as in the
third example, causes the commands from the current session to be
appended to the named file and causes Spotfire S+ to create a new
file if the named file does not exist. (The directory must already exist;
only the file is created automatically.) In the final case, Spotfire S+
uses the file history.q in the start-up directory; it creates the file if it
does not already exist. If you later change your start-up directory,
another history.q will be created in that directory. You can also use
the auditing facility in Spotfire S+ to automatically save your
commands history. For this to work, you must turn on auditing and
set the S_CMDFILE variable to .AUDIT by placing the following on
the Spotfire S+ start-up command line:

11

Chapter 2 The Spotfire S+ Command Line and the System Interface

SPLUS.EXE S_NOAUDIT= S_CMDFILE=+.AUDIT

You need the "+" to avoid an error message when you start up in a
new working directory. When you use auditing, Spotfire S+ saves
more than commands in the .audit file. However, the Commands
History window will show you only the Spotfire S+ commands when
you use the auditing facility for your commands history. The .audit
file used by the auditing facility is found in the data directory. The
Commands History window will look in that directory for .audit
when the variable S_CMDFILE is set to .AUDIT.

S_CMDLINEBUF=integer

Set the S_CMDLINEBUF variable to increase or decrease the
maximum number of characters that can be entered for any one
command in the Commands window. The default is 32767.

S_CMDSAVE=integer

Set the S_CMDSAVE variable if you want to limit the number of
commands saved for command line/Commands History recall. For
example, to limit the number of commands stored to the most recent
100, set this variable as follows:

S_CMDSAVE~=100

S_CWD=directoryPath

Every operating system process, including Spotfire S+, has a current
working directory that determines where file input/output occurs (or is
relative to). The Spotfire S+ process is assigned a directory when it is
started from a shortcut (or a program manager icon in earlier versions
of Windows) or from a batch file or DOS prompt. Specifying the
S_CWD variable causes Spotfire S+ to ignore the default directory
assigned by the parent process and use a specific one instead. Note

that S_CWD defaults to S_PRQOJ.

Note

Previous versions of Spotfire S+ used the S_WORK variable to refer to the “working directory.”
To avoid confusion with the term “current working directory,” the terminology has changed and
now we use the S_DATA variable to refer to the “data directory.”

12

Command Line Parsing

S_DATA=directoryPath[;directoryPath[...]]

S_FIRST=function

S_DATA specifies a list of semicolon-separated directories that is
searched for a suitable database 1. Thus the first valid directory in the
list is used by Spotfire S+ to store user data and functions. It
traditionally is named .Data.

S_DATA defaults to .Data;%S_PRQO]J%\.Data, so Spotfire S+ will
seek a .Data directory under the current working directory (see
S_CWD), and otherwise seek a .Data directory under the project
directory. If that then fails, a dialog will ask the user for the directory
path. S_DATA replaces S_WORK that was used in previous
versions of Spotfire S+.

S_FIRST specifies a function that will be executed upon start-up,
immediately after Spotfire S+ finishes its initialization. It can be used
to execute routine tasks related to setting up your work environment,
for department wide functions or other initialization. If set, it
overrides . First. See the section Enhancing Spotfire S+ (page 23) for
specifics.

SHOME=directoryPath

SHOME refers to the directory where Spotfire S+ is installed, which
contains the Spotfire S+ application files. Spotfire S+ libraries, data
sets, and other related files are stored in subdirectories under the top-
level directory specified by SHOME. Spotfire S+ determines the
location of the Spotfire S+ installation by referring to the parent
directory where the executable is stored. You should never need to
change SHOME in Spotfire S+ but expert users can explicitly define
it if they move their Spotfire S+ files to another directory.

S_NOAUDIT=[value]

If you set this variable (to any value), Spotfire S+ does not write an
audit file. This is useful if you do not need a record of the commands
you’ve typed into Spotfire S+. (In splus.exe, the default is to not
write an audit file.) If this variable is not set, Spotfire S+ maintains a
record of your Spotfire S+ commands (and other information) in a file
called .Audit in your data directory. The audit file accumulates the

13

Chapter 2 The Spotfire S+ Command Line and the System Interface

commands from each Spotfire S+ session, so it may naturally grow
large. The following setting causes Spotfire S+ not to maintain this
record:

S_NOAUDIT=YES

If S_NOAUDIT is set to any value, the .Audit file will not be opened
or written into.

If you keep an audit file, it can grow very large. To reduce the size of
the audit file, use the /TRUNC_AUDIT command line switch. See
Page 19 for details.

S_PATH=directoryPath[;directoryPath]...]]
No longer supported; see SV4_SEARCH_PATH.
S_PREFS=directoryPath

Directory to use for storing user preferences. It defaults to
%S_PROJ%\.Prefs. See the section Working With Projects (page 21).

S_PRINT_COMMAND=WindowsCommand

Windows command to use for printing the Commands window. By
default, the command is “Notepad /p”.

S_PROJ=directoryPath

S_PROJ sets the defaults for S_PREFS, S_DATA, and S_CWD. By
default, S_PRQOJ is set as follows:

On Microsoft® Windows XP®:

C:\Documents and Settings\username\
My Documents\Spotfire S+ Projects\Project1.

On Microsoft Vista™:

C:\Users\username\Documents\
Spotfire S+ Projects\Projectl

14

Command Line Parsing

You can change S_PROJ if you want to move your Spotfire S+ data
files to another directory, or if you begin a new project. For example,
if your name is Jay and you want to create a home directory for your
personal use, you could create the directory C:\JAY, and then set
S_PROJ to C:\JAY by setting it as a command line variation:

SPLUS.EXE S_PROJ=C:\JAY

Note

S_PROJ has replaced the HOME variable used in previous versions of Spotfire S+. Internally
HOME remains a synonym for S_PRQJ for compatibility with previous versions.

S_PS2_FORMAT=[value]

If you set the S_PS2_FORMAT variable, to any value, Spotfire S+
puts a CTRL-D character at the end of any PostScript file it generates.
This is for compatibility with older PostScript formats. By default,
Spotfire S+ does not put the CTRL-D character in the file.

S_SCRSAVE=integer

Set the S_SCRSAVE variable if you want to limit the amount of
output saved for scrollback in the Commands window. For example,
to limit the number of characters saved to a maximum of 100KB, set
this variable as follows:

S_SCRSAVE=100

Note

This variable also imposes a limit on the number of commands available for recall.

S_SILENT_STARTUP=value

If you set the S_SILENT_STARTUP variable (to any value), the
Spotfire S+ copyright and version information are displayed, and the
location of S_DATA is not displayed when the Commands window
is opened. The Spotfire S+ Commands window then appears with a
prompt.

15

Chapter 2 The Spotfire S+ Command Line and the System Interface

S_TMP=directoryPath

Set the S_TMP variable to the name of the directory where you want
Spotfire S+ to create temporary scratch files. By default S_TMP is
unset, so temporary files are created in S_CWD, the process current
working directory.

If the directory specified by S_TMP does not exist or cannot be
accessed, it will be ignored. If you want Spotfire S+ to create
temporary scratch files in the C\TEMP directory, first create the
directory C\TEMP. Then, set S_TMP to CATEMP:

SPLUS.EXE S_TMP=C:\TEMP

SV4_SEARCH_PATH=directoryPath[;directoryPath[...]]

Switches

Set the SV4_SEARCH_PATH variable only if you want to override
the standard Spotfire S+ search list every time you start Spotfire S+.
By default, SV4_SEARCH_PATH is set by Spotfire S+, and it
includes the built-in Spotfire S+ functions and data set libraries. You
can display these libraries using the S command search. As with
other variables and their values, enclose the value with matched
quotes if the directory paths include spaces.

Note

Unlike variables, switches do not use equal signs between the switch and any necessary values. If
you need to include an equals sign, use quotes around the entire token.

IBATCH stdin [stdout [stderr]]

16

BATCH may be followed with one, two, or three file names
indicating where stdin, stdout, and stderr, respectively, should be
redirected. Specify “stdin,” “stdout,” or “stderr” to maintain the
default input and output processing for any of these values. stdin is
typically the name of a text file containing valid Spotfire S+
commands.

IBATCH_PROMPTS

Command Line Parsing

When Spotfire S+ is run in batch mode, a small dialog appears to
notify the user that it is running rather than the normal Spotfire S+
window. Once completed running a BATCH session, Spotfire S+
automatically terminates. Use a script file for running Spotfire S+
commands automatically without automatically terminating Spotfire
S+ when done, although that does not allow one to redirect stdin,
stdout, or stderr.

For example, save the Spotfire S+ function

test.splus.func()

to a file named test. Now, simply create a shortcut and specify the
SHOME and S_PROJ settings and the input/output names in the start-up
command line (in the Target field):

C:\Program Files\TIBCO\splus81l\cmd\splus.exe
SHOME="C:\Program Files\TIBCO\splus81”
S_PR0OJ="C:\Documents and Settings\username\My Documents\
S-PLUS Projects\Projectl”

/BATCH

“C:\Documents and Settings\username\My Documents\
S-PLUS Projects\Projectl\test”

“C:\Documents and Settings\username\My Documents\
S-PLUS Projects\Projectl\testout”

Note that test is not limited to a single line. It could include a
number of functions to run in the background.

BATCH_PROMPTS specifies whether any progress, non-fatal
warning or error, and/or exit status dialog should be displayed. By
default, whenever Spotfire S+ runs in batch mode, it displays a “Pre-
processing” and then a “thermometer” dialog to indicate the batch
session’s progress. When batch mode is completed, the progress
dialogs disappear, but no completion dialog is displayed to indicate
the batch session’s success or failure. Also, if a non-fatal warning or
error occurs that would have displayed a dialog in interactive mode,
that dialog is suppressed and its message (and default response) is
written to the batch output file. Use the /BATCH_PROMPTS switch
to change this default behavior. The value “Yes” turns on all dialogs,
“No” turns off all dialogs. To apply these values to a particular dialog,

17

Chapter 2 The Spotfire S+ Command Line and the System Interface

use the prefixes “progress:”; “non-fatal:”; and “exitstatus:”. For
example, to display the exit status dialog but suppress the progress
dialogs, use the following switch:

/BATCH_PROMPTS progress:no,exitstatus:yes

(132

When specifying the prefix/word pairs, use either “,” or “;”, but no
spaces, to separate them.

If an error occurs in one of the batch files while Spotfire S+ is in batch
mode, a dialog is displayed indicating the error, unless both progress
and exitstatus dialogs are suppressed.

/COMMANDS_WINDOW_ONLY

Starts Spotfire S+ with only the Commands window displayed,
overriding any “Open at Startup” preferences.

Note

The next two switches below provide a convenient mechanism for developers to run the utility
file of the same name (/CHAPTER runs CHAPTER.EXE and so on). All values that follow the
command line switch are passed directly to the batch file, once the SHOME environment
variable is set in the spawned process.

ICHAPTER [-b] [-d directoryPath] [-m] [-o] [-r filePath] [-s] [-u]

18

Creates a Spotfire S+ chapter, optionally compiling and linking C/
C++ and/or FORTRAN code to be dynamically loaded, and
optionally sourcing S code. This is the standard way to compile and
link your C/C++ and/or FORTRAN code for use with Spotfire S+.
The following additional switches are recognized by the CHAPTER
utility:

-b
A shortcut for specifying both the -m and -s switches.
-d directoryPath

Specifies the directory in which to create the Spotfire S+ chapter.
Remember to enclose directoryPath in quotes if it contains spaces.
By default, the Spotfire S+ chapter is created in the Spotfire S+
startup directory, which can be set with S_CWD.

Command Line Parsing

Makes an S.dll in the chapter directory, which is loaded
automatically when the chapter is attached by Spotfire S+. Any file
with a .c, .cxx, .cpp, .f, or .for extension will be compiled if it does
not have (or is newer than) an associated .obj file. The associated .obj
files will be linked with the module definition file S.def (which will be
created from the .obj files if it does not exist) to create S.dll.

-0

Creates a single file (__objects) containing all the S objects that
are to be part of the Spotfire S+ chapter. This is an alternative to the
typical user-created Spotfire S+ chapter in which each S object is
contained in its own separate file. Note that if additional objects are
assigned to the chapter in subsequent sessions of Spotfire S+, they
cannot be contained in the __objects file. The files all.Sdata and
meta.Sdata must have been previously created, using the function
dumpForObjects in the chapter directory; if the chapter already
contains a .Data directory, that directory must not contain any
objects or meta data.

-r filePath

Specifies the rules for creating S.dll. By default, this is
SHOME\cmd\mrules.mak; the default can be changed in the
Splus.ini file, located in the SHOME\cmd directory.

-s

Starts up Spotfire S+ to source any files with a .q, .s, or .ssc
extension (S source code files) and assign the resulting objects to the
chapter.

-u

Creates the necessary subdirectories that allow the Spotfire S+
function undo to operate on the chapter.

ITRUNC_AUDIT integer

Spawns the TRUNC_AUDIT program that truncates the .Audit file
(found in the data directory), removing the oldest part of the file. The
integer argument specifies the maximum size (in characters) to keep
in the audit file and defaults to 100,000; TRUNC_AUDIT only
removes entire commands, not partial commands.

19

Chapter 2 The Spotfire S+ Command Line and the System Interface

/MULTIPLEINSTANCES

Specifies that multiple instances of Spotfire S+ are allowed. For
example, more than one session of Spotfire S+ or different versions of
Spotfire S+ can be run at once if this is enabled; however, you must
specify different working databases when using multiple instances.

Q
Causes Spotfire S+ to automatically quit after any script file
processing. This is automatically set when the /BATCH switch is
specified.

/IREGISTEROLEOBJECTS

Registers Spotfire S+’s Automation components in the registry. This
permits other programs to access Spotfire S+ functions
programmatically via ActiveX Automation (previously known as
OLE Automation). See Chapter 6, Automation, for more information.

/IREGKEY KeyName

Specify alternative registry key under:
HKEY_CURRENT_USER\Software\TIBCO.

This is useful for expert users who wish to maintain multiple versions
of Spotfire S+ on one system. KeyName defaults to Spotfire S+.

/UNREGISTEROLEOBJECTS

Removes the Automation components (installed by

/REGISTEROLEOBJECTS) from the registry.
JUTILITY ProgramName values

Runs the specified ProgramName, passing it all values that follow,
once the SHOME environment variable is set in the spawned
process.

Script Files
See the Windows version of User’s Guide, Chapter 9, for information

about using script files.

20

Working With Projects

WORKING WITH PROJECTS

This section illustrates ways intermediate users can use the various
switches discussed above to customize Spotfire S+ on a project by
project basis.

Spotfire S+ now makes it quite easy to maintain distinct data and
preferences directories for each of your projects. For each project:

1. Make a copy of the Spotfire S+ desktop shortcut by holding
the CTRL key down as you drag a copy of the shortcut to its
new location,

2. Edit the command line (right-click, or, for older versions of
Windows, select it and press ALT-ENTER) to set S_PROJ:

SPLUS.EXE S_PROJ=c:\Banana\Survey

When you wuse the new shortcut, Spotfire S+ will use
c:\Banana\Survey\.Data for = the project data and
c:\Banana\Survey\.Prefs for the project preferences.

There are many ways to customize this to fit your particular needs.
For instance you may want to use various .Data directories and a
common .Prefs directory.

S_PROJ is used to set the default values for S_CWD (to %S_PRO]J%),
S PREFS (to %S _PROJ%\.Prefs) and S_DATA (to
%S_CWD%\.Data;%S_PROJ%\.Data).

The Spotfire S+ is very customizable. Your preferences are all stored in a
Preferences variety of files in a directory with the name .Prefs.
Directory

Note

The only exception to this is that the Options object is stored in the S_DATA directory for
backward compatibility reasons.

21

Chapter 2 The Spotfire S+ Command Line and the System Interface

The Data
Directory

Upon creation of a new .Prefs directory, it is populated with
“template” preference files from the %SHOME%\MasterPrefs
directory, so expert users who wish to permanently set a particular
preference may edit the templates. You should make a copy of the
original templates for future reference.

Whenever you assign the results of a Spotfire S+ expression to an
object, using the <- operator within a Spotfire S+ session, Spotfire S+
creates the named object in your data directory. The data directory
occupies position 1 in your Spotfire S+ search list, so it is also the first
place Spotfire S+ looks for a Spotfire S+ object. You specify the data
directory with the variable S_DATA, which can specify one directory
or a colon-separated list of directories. The first valid directory in the
list is used as the data directory, and the others are placed behind it in
the search list.

Like other variables, S_DATA is referenced only at the start of a
Spotfire S+ session. To change the data directory during a session,
use the attach function with the optional argument pos=1, as in the
following example that specifies MYSPLUS\FUNCS as the data
directory:

attach("C:\MYSPLUS\FUNCS", pos=1)

If S_DATA is not set, Spotfire S+ sets the data directory, to one of
two directories according to the following rules:

1. If a subdirectory named .Data exists in S_CWD, the current
working directory, Spotfire S+ sets the data directory to this
.Data subdirectory.

2. Otherwise Spotfire S+ checks to see if the %S_PRO]J%\.Data
directory exists. If so, it will be used as the default location for
objects created in Spotfire S+. If not, it will be created.

Note

Although S_DATA may be used to provide alternative directory names (other than .Data), in
practice some code depends on this being set to .Data. Therefore it is recommended that
S_DATA be used primarily to set the path to a particular directory named .Data, and not to
change the name of the directory itself.

22

Enhancing Spotfire S+

ENHANCING SPOTFIRE S+

With the instructions in this section, you can:

Add functions or modify system functions to change default
values or use different algorithms.

Note

Keep a careful log of how you modify Spotfire S+, so that you can restore your changes when
you receive the next update.

Adding You may need to add or modify Spotfire S+ functions. This section
Functions and describes how to add or modify functions.

Data Sets to L
Your System 2.

Start Spotfire S+.

Create a version of the function or data set you want to add or
modify with a command such as the one below, where
my.function is the name of the function or data set you want to
modify:

> fix(my. function)

Run my.function to make sure that it works properly (you don’t
want to install a bad version).

Create a directory for your new and modified functions:

new.database ("modfuncs")
where modfuncs is the name of your directory.
Use the search command to see a list of available Spotfire S+
system directories:

> search()

The position of a directory in this list is called its index. Each
row in the list displays the index of the first directory in the
TOW.

Create a function .First.local in the directory in search
position 2, as follows:

23

Chapter 2 The Spotfire S+ Command Line and the System Interface

> setDBStatus(2,T)

> assign(" .First.local", function()
+ attach(modfuncs, pos = 2),
+ where=2)

Each time you start Spotfire S+, Spotfire S+ executes
.First.local ifit exists. This .First.local attaches your
new and modified functions directory ahead of all built-in
Spotfire S+ functions, but behind your data.

7. Attach your modfuncs directory to your current session:

> attach("modfuncs", pos=2)

8. Assign your new or modified function to its permanent home:

> assign("my.function™, my.function, where=2)

Warning

Be careful when you modify system functions, because you may have to repeat the installation
procedure if you make a mistake. You should keep a careful change log, both to guide your own
troubleshooting and to assist support staff in solving any problems you report.

24

The System Interface

THE SYSTEM INTERFACE

Using the
Windows
Interface

Using the Spotfire S+ interfaces to Windows” and DOS, you can run
your favorite Windows and DOS applications from the Spotfire S+
prompt, or incorporate those applications in your Spotfire S+
functions. For example, the fix and edit functions use the Windows
interface to start an editor on a file containing a Spotfire S+ object to
be edited. Similarly, the objdiff function uses the DOS interface to
run the fc command on ASCII dumps of two Spotfire S+ objects to
be compared.

This chapter describes the DOS and Windows interfaces and
provides several examples of Spotfire S+ functions you can write to
incorporate spreadsheets, databases, and word processors into your
Spotfire S+ programming environment.

To run a Windows application from Spotfire S+, use the system,
systemOpen, or systemPrint functions, which all require one
argument: for system, a character string containing a command
suitable for the Windows “Run” command line, and for systemOpen
or systemPrint, a character string containing a filename or URL. For
example, to run the Windows Calculator, you could call system as
follows:

> system("calc")

The Windows Calculator accessory pops up on your screen, ready for
your calculations. By default, Spotfire S+ waits for the Windows
application to complete before returning a Spotfire S+ prompt. To
return to Spotfire S+, close the application window.

To run Windows applications concurrently with Spotfire S+, so that
you can type Spotfire S+ expressions while the Windows applications
are running, use system with the multi=T argument:

> system("calc", multi=T)

The Windows Calculator accessory pops up on your screen, and the
Spotfire S+ prompt immediately appears in your Spotfire S+
Commands window. (You can, of course, always start Windows
applications as usual.)

Commonly used calls should be written into function definitions:

25

Chapter 2 The Spotfire S+ Command Line and the System Interface

26

calc <- function() { system("calc", multi=T) }
notepad <- function() {system("notepad”, multi=T) }

The command argument to system can be generated using the paste
and cat functions. For example, the ed function, used by both fix
and edit to actually call an editor, pastes together the name of an
editor and the name of a file to create the command used by system.
(The ed function distributed with Spotfire S+ actually uses win3, a
wrapper for system, instead of calling system directly. The win3
function is now deprecated, but it predates system on the Windows
platform):

ed <- function(data, file=tempfile("ed."), editor="ed",
error.expr)

{
system(paste(editor, file), trans = T)

}

The argument trans=T is useful for converting strings containing
UNIX-type directory names (e.g., “/betty/users/rich”) to strings
containing DOS-type directory names (e.g., “\\betty\\users\\rich”).
It can also save you typing, since it allows you to substitute forward
slashes for the double backslashes required to represent a single
backslash in Spotfire S+. If trans=T, literal forward slashes must be
enclosed in single quotes. For example, Notepad uses the flag /p to
print a file. To print a file in infile.txt in the directory c:\rich, you
could use system as follows:

> system("notepad ’/p’ c:/rich/infile.txt™, trans = T)

Note that the single quotes can surround the entire flag, not just the
forward slash; in fact, one set of quotes can surround all necessary

flags.

If you try the above example on one of your own files, you will notice
that the Notepad window appears on your screen with the text of the
file while Notepad is printing. You can force Notepad to run in a
minimized window by using the minimize=T argument:

The System Interface

> system("notepad ’/p’ c:/rich/infile.txt™, trans=T,
minimize=T)

There are two arguments to system that control how it behaves when
an error occurs in starting or exiting the application. The more
commonly used is the on.exec.status argument, which controls how
system behaves when an error occurs in starting the application. If
the application specified in the command argument could not be
started, Spotfire S+ queries the operating system for a character string
that briefly describes the error that occurred. It then calls the function
specified (as a character string) in the on.exec.status argument,
passing it the error string. The default for the argument is “stop”, so
that all current Spotfire S+ expressions are terminated. For example,
if you wanted to run the Wordpad application, but the directory in
which it resides is not in your PATH environment variable, you would
get the following result:

> system(“wordpad”)

Problem in eval(expression(system("wordpad™))): Unable to
execute 'wordpad', exec.status = 2 (The system cannot find
the file specified. Full path needed?)

Use traceback() to see the call stack

Specifying the full path to the Wordpad application successfully starts

it:

> system("\\Program Files\\Accessories\\wordpad")

You may substitute the name of another function for the
on.exec.status argument, so long as the function’s only required
argument is a character string. For example, suppose you wanted to
open a file for jotting down some notes in an ASCII editor, but you
weren’t particular as to which editor you opened. You could write a
whiteboard function to call Wordpad, but use on.exec.status to try
Notepad if Wordpad wasn’t available, as follows:

> whiteboard
function()
{
system("wordpad”, multi =T,
on.exec.status = "trying.notepad")

}

The trying.notepad function is defined as follows:

27

Chapter 2 The Spotfire S+ Command Line and the System Interface

28

> trying.notepad
function(message = NULL)
{
print(message)
print("Trying to start notepad.\n")
system("notepad", multi =T,
on.exec.status = "trying.edit")

}

As in the initial whiteboard function, trying.notepad calls system
with an alternative function as its on.exec.status argument. The
trying.edit function uses a call to the dos function to start the MS-
DOS editor, and uses the default on.exec.status behavior, that is, if
you can’t find any of Wordpad, Notepad or MS-DOS editor,
whiteboard fails.

A less commonly wused argument, because most Windows
applications do not return a useful or documented exit status, is
on.exit.status, which controls how system behaves when the
application returns a non-zero exit status. The default for this
argument is "", so that no action is taken by system; you may
substitute the name of any function for this argument, again so long as
its only required argument is a character string. For example, if you
had knowledge that a particular application returned a non-zero exit
status when some condition was (or was not) met, you could have this
condition reported as follows:

> system("myapp", on.exit.status="my.report™)

If myapp returned a non-zero exit status, the function my . report would
be called with the argument "‘myapp’ returned with
exit.status=n", where n is the exit status value.

The .16.bit argument, which was useful when Spotfire S+ supported
the Win32s API, is now deprecated.

To automatically run the application associated with a particular file
type or URL, use the systemOpen or systemPrint functions. For
example, to display a web page in your default browser, you could
call systemOpen as follows:

> systemOpen(“http://www.tibco.com”)

Using the DOS
Interface

The System Interface

The arguments available to the system function (other than the
deprecated olb.bit) are also available to the systemOpen and
systemPrint functions.

The argument with is also available to the systemOpen and
systemPrint functions; this allows you to temporarily override the
association for the particular file type or URL and run the application
specified by with instead.

While the Windows interface allows you to run Windows applications
from Spotfire S+, it cannot be used to run internal DOS commands
(such as dir and copy), nor can it return a command’s output as a
Spotfire S+ vector. The DOS interface provides a way to perform
these tasks.

To run internal DOS commands from Spotfire S+, use the dos
function. For example, to get a listing of files in your home directory,
use dos with the dir command as follows:

> dos("dir")

(1] »»

[2] "™ Volume in drive C has no label"”
[3] " Volume Serial Number is 6146-07CB"
[4] " Directory of C:\\RICH"

[51 ""

[61 ". <DIR> 12-07-92 5:01p"
[71 ".. <DIR> 12-07-92 5:01p"
[8]1 "__DATA" <DIR> 12-07-92 5:02p"
[91 "DuMmP Q 74 01-14-93 2:51p"

[10] "WINWORK TEX 10053 12-13-92 4:08p"

By default, the output from the DOS command is returned to Spotfire
S+ as a character vector, one element per line of output. In the case
of the dir command, the first five to seven lines of output will seldom
change. A Spotfire S+ function that strips off this repetitive
information may be of more use than the simple call to dos:

dir <- function(directory="") {
dos(paste("dir", directory))[-(1:5)]
}

Including the directory argument allows using the function to get a
listing of an arbitrary directory.

29

Chapter 2 The Spotfire S+ Command Line and the System Interface

If you don’t want the output from the DOS command returned to
Spotfire S+, use the argument output.to.S=F in the call to dos:

> dos("copy filel b:", output = F)

The output from the DOS command is displayed in a “DOS box”,
which in this example will close automatically when the DOS
command is completed. As with the system function, you can specify
minimize=T to force the DOS box to run minimized. You can run
DOS applications concurrently with Spotfire S+ by combining
output=F with the mu1ti=T argument. For example, to open the DOS
text editor concurrently with Spotfire S+, use dos as follows:

> dos("edit", output = F, multi =T)
A DOS box opens on your screen with the DOS text editor loaded.

Warning

When you use dos with mu1ti=T, you must explicitly close the DOS box when you’re done with
it. It does not close when the DOS command finishes executing.

30

Forward slashes can be translated to backslashes using the trans=T
argument; this can save you typing (since one forward slash equals
two backslashes), and is also useful if you are sharing files on a UNIX
file system:

> dos("edit c:/rich/infile.txt", output = F, trans =T)

Two other arguments to dos are used less frequently-—-input and
redirection. The input argument can be used to write data to a file
that can then be passed as input to the DOS command. More often,
however, such data is simply pasted into the command specified by
the command argument. The redirection argument is a flag that can
be used with input; if redirection=T, the input is passed to the
command using the DOS redirection operator <, otherwise the input
is passed as an argument to command. See the dos help file for more
information.

CONNECT/C++

Introduction
Resources

Examples: An Application and a Called Routine
Creating a Simple Application
Example of Calling a C Function Via .Call
Compiling and Executing C++ on UNIX

CONNECT/C++ Class Overview
Data Object Classes
Function Evaluation Classes
Client-to-Engine Connection Classes
Evaluator Classes

CONNECT/C++ Architectural Features
CSPobject
Constructors and Generating Functions
Constructing From an Existing Object
Assignment Operators
Overloading Operators
Converting C++ Objects to Spotfire S+ Objects
Subscripting Operators
Subscript and Replacement Operations
Subscript and Arithmetic Operations
Matrix Computations
Printing to Standard Output
Named Persistent Objects
Storage Frames For Unnamed Objects

A Simple Spotfire S+ Interface in Windows
Creating a Dialog-Based Application
Connecting to Spotfire S+
Evaluating Expressions

32
32

34
34
37
40

42
42
42
43
43

45
45
45
46
47
47
48
49
50
50
51
52
52
54

56
56
57
58

31

Chapter 3 CONNECT/C++

INTRODUCTION

Resources

32

CONNECT/C++ is a tool used for interfacing C++ with the S
language. It is a convenient tool for integrating the Spotfire S+ engine
inside other programs written in C++, but it can also be used for
integrating C++ code into the Spotfire S+ environment.

To enable communication between the GUI (Graphical User
Interface) and Spotfire S+, CONNECT/C++ was developed to
provide a framework for the S language version 4-based engine used

in Spotfire S+ for Windows". In fact, the Spotfire S+ GUI provides
the most comprehensive example of using CONNECT/C++ to
integrate the Spotfire S+ engine with C++ applications. Similarly,
C++ developers could create their own GUI to interface with Spotfire
S+ using the same technique.

CONNECT/C++ is a class library providing C++ classes with
member functions that operate on Spotfire S+ objects similar to S
methods in the S language. Users can use these classes and their
member functions to create and manipulate persistent as well as local

S objects.

CONNECT/C++ provides various mechanisms for evaluating S
expressions inside a C++ program and module. Spotfire S+ ships
with several examples that illustrate how to use this library. Some of
these examples contain pairs of equivalent S and C++ functions that
perform the same tasks. The speed of the C++ functions can be many
times faster than the S code depending on the code’s complexity and
the data sizes. The examples are located in the SHOME/sconnect
directory, where SHOME is your Spotfire S+ installation directory.

For more information on CONNECT/C++:

- On Windows": go to SHOME/help/ConnectC++ Class
library.htm.

- On Linux" or Solaris”: go to SHOME/sconnect/help/
ConnectC++.Class.library.htm.

Introduction

This HTML file is a guide to the CONNECT/C++ class library for
C++ developers, and it discusses how to connect to the Spotfire S+

engine, how to create data objects, call Spotfire S+ functions, and
evaluate Spotfire S+ syntax.

33

Chapter 3 CONNECT/C++

EXAMPLES: AN APPLICATION AND A CALLED ROUTINE

Creating a
Simple
Application

34

CONNECT/C++ can be used for two distinct purposes: to create
C++ applications that can access Spotfire S+ functionality, and to
create C++ functions that can be called via the Spotfire S+ .Cal1
interface. We begin our investigation of CONNECT/C++ with a
simple example of each.

The CONNECT/C++ application used in this example is a console
application that creates two Spotfire S+ vectors. It then uses Spotfire
S+ to compute a linear model relating the two vectors.

The code begins with the inclusion of sconnect.h, the CONNECT/
C++ library which all CONNECT/C++ code must reference at the
start. It then declares a global Spotfire S+ connection object, with the
CONNECT/C++ class CSPengineConnect, before beginning the
main application function. The CSPengineConnect class generates a
connection between the client application and Spotfire S+, allowing
you to create Spotfire S+ objects in the permanent frame, notifying
you when the databases are attached or detached to the client, and
evaluating S language expressions. Here’s what the code looks like so
far:

f#Finclude "sconnect.h"

// A global connection object
CSPengineConnect g_engineConnect;

int main(int argc, char* argv[])

{

The first step in the main function is to create the actual connection
object, which opens a connection to Spotfire S+:

// Create the connection to Spotfire S+
g_engineConnect.Create(argc, argv);

We then create the variables x and y to use in the regression. The
CONNECT/C++ class CSPnumeric is used to store Spotfire S+
numeric vectors. The CSPnumeric class is one of many in
CONNECT/C++ that are used to represent Spotfire S+ objects

Examples: An Application and a Called Routine

within C++. Similar classes exist for most of the standard atomic
objects in Spotfire S+ (see Table 3.1). The Create method creates
instances of the class; the Assign method assigns the class to a
Spotfire S+ database:

// Create S object with name "x" in the current database.
// Same as x<-1:10 at the command Tine.

CSPnumeric sx;

sx.Create("1:10","x");

// Squaring sx, which is the same as S expression
// sy <- x*x in a local frame, but here we set it to Tocal
// C++ variable sy.

CSPnumeric sy = sx * sx;

// Assign the result as S object with name "y" in the
// current database.

sy.Assign("y");

Finally, we fit the linear model, passing the appropriate call to
Spotfire S+ via the CONNECT/C++ method SyncParseEval:

// Evaluate z<-Tm(y~x)
g_engineConnect.SyncParseEval("z<-Tm(y~x)");

return 1;

}

The complete code for this example is in the directory SHOME/
samples/spllm (Windows) and SHOME/sconnect/samples/splm
(UNIX). The C++ code for both platforms is in the file spllm.cxx.

To run the application, open a Command Prompt or MS-DOS
window (Windows) or compile (UNIX):

1. Change the current directory to the directory containing the
code:

cd SHOME/samples/spllm
if you are on Windows or

cd /sconnect/samples/splm

35

Chapter 3 CONNECT/C++

36

on UNIX, where SHOME is your Spotfire S+ installation directory.
2. Build the program:
msdev spllm.dsp /make
on Windows or

Splus CHAPTER -sconnectapp *.cxx
SplusSplus make

on UNIX.

3. If your are on Windows, check the PATH environment
variable to make sure it includes % SHOME%\cmd. It should
already be added by the Spotfire S+ installer. If not, you must
add it before running the next step.

4. Run the program:
splim.exe S_PROJ=.
on Windows or
Splus EXEC S.app
on UNIX.

To verify the results, start the Spotfire S+ console version in the same
directory (Windows) or start Spotfire S+ (UNIX):

sqpe.exe S_PROJ=.
on Windows and Spotfire S+ returns the following:

S-PLUS : Copyright (c) 1988, 2008 TIBCO Spotfire Inc.
S: Copyright TIBCO Spotfire Inc.
Version 8.1.1 for Microsoft Windows : 2008

Working data will be in C:/Program Files/splus8l/users/
username

or enter
Splus
on UNIX to return this:

S-PLUS : Copyright (c) 1988, 2008 TIBCO Spotfire Inc.
Version 8.1.1 for Sun SPARC, SunOS 5.8 : 2008
Working data will be in .Data

and look at the objects x, y, and z:

Examples: An Application and a Called Routine

> X

[11 1.2 3 4 5 6 7 8 9 10

>y

[11 1 4 9 16 25 36 49 64 81 100
>z

Call:

Im(formula =y ~ Xx)

Coefficients:
(Intercept) x
-22 11

Degrees of freedom: 10 total; 8 residual
Residual standard error: 8.124038

Example of The Gauss-Seidel method is a familiar technique for solving systems
Calling a C of linear equations. The algorithm is straightforward and easy to

Function Via ‘™Plementin Spotfire S+:

.Call gaussSeidel<-
gaussSeidel solves a linear system using Gauss-Seidel
J# iterative method.
f# REQUIRED ARGUMENTS:

i# A and b are numeric matrix and vector respectively.
VALUE:

i# a vector x, solution of A x =b

#

Usage:

A<-matrix(rnorm(100),nrow=10)
diag(A)<-seq(ncol(A),ncol(A)) #Make it diagonally
dominant
b<-rnorm(ncol(A))
sys.time({x1<-gaussSeidel(A,b)})
function(A,b)
{
Hard-coded relative tolerance and max iterations
tol<-1.0e-4
maxItr<-le4d

Validating
A <- as.matrix(A)

37

Chapter 3 CONNECT/C++

38

b <- as.numeric(b)
if(nrow(A)!=ncol(A) || ncol(A)!=Tength(b))
stop("nrow(A)!=ncol(A) || ncol(A)!=Tength(b)™)

Begin Gauss-Seidel step

x<-b
for(k in l:maxItr)
{
x01d<-x
for(i in l:nrow(A))
{
s<- A[i,i]*x[i]
for(j in l:ncol(A))
s <- s - A[1,31*x[J]
x[1] <- (b[il+s)/A[i,i]
}

Check convergence; continue if necessary
if(max(abs((x-x01d)/x)) < tol)
return(x);
}
warning("Solution does not converge\n")
return(x)
}

This code, which involves a nested loop, could be made more
efficient, but the intention is to illustrate the Gauss-Seidel iteration in
its most familiar form. An example including the implementation of
CONNECT/C++ is shown below, and notice that by using the
classes and methods of CONNECT/C++, this code closely resembles
the equivalent computation in Spotfire S+.

The code begins by including the sconnect.h header file to give us
access to the CONNECT/C++ library. Next, it includes the header
file required for the Gauss-Seidel code itself:

J# include "sconnect.h"
include "gausssdl.h"

We then declare the gaussSeidel object as an object of class
s_object, as required by the .Ca11 interface:

s_object* gaussSeidel(s_object* ps_A, s_object* ps_b)

Examples: An Application and a Called Routine

As is typical for Spotfire S+ code, we declare the S_EVALUATOR and
then embed the implementation in a try-catch block. Within the try
block, the tolerances are hard-coded. We then construct the C++
equivalents to the Spotfire S+ objects A and b:

{

S_

EVALUATOR

try

{

// Hard-coded relative tolerance and max iterations
double tol =le-4;
long maxItr = 1000;

// Constructing and validating C++ objects

CSPnumericMatrix A(ps_A);

CSPnumeric b(ps_b);

if(A.nrow()!=A.ncol() || A.ncol()!=b.Tength())
PROBLEM "A.nrow()!=A.ncol() || A.ncol()!=b.Tength()"
ERROR;

The actual Gauss-Seidel step follows:

}

// Begin Gauss-Seidel step
CSPnumeric x=b;
for(long k =1; k<= maxItr; k++)
{
CSPnumeric x01d = x;
for(long i= 1; i <= A.nrow(); i++)
{
double s = A(i,i) * x(i);
for(long j = 1; j <= A.ncol(); j++)
s =s - A(i,J) * x(J);
x(1) = (b(i)+s)/ACi,i);
}
// Check convergence; continue if necessary
if(Max(abs((x-x01d)/x)) < tol)
return(x);
}
PROBLEM "Solution does not converge"™ WARN;
return(x);

catch(...)

39

Chapter 3 CONNECT/C++

{
}
return(blt_in_NULL); // return the built-in NULL object

Compiling and The complete code for this example is in the directory SHOME/
Executing C++ sconnect/samples/gausssdl, with the C++ code in the file

on UNIX

40

gausssdl.cxx.
To compile and execute the C++ code:

1. Change the current directory to the directory containing the
code:

cd SHOME/sconnect/samples/gausssdl

2. Build the share library:

Splus CHAPTER -sconnectlib *.cxx
Splus make

3. Run Spotfire S+:
Splus

With the makefile created by CHAPTER, compiling your code is simple:
just run the make command as a Spotfire S+ utility as shown in step 2.

The Splus in front of make allows Spotfire S+ to set its environment
variables appropriately before calling the standard make utility; in
particular it defines the SHOME environment variable used in the
makefile.

The make utility executes the necessary commands to compile and
link the C++ code into the shared object S.so. Note that
-sconnect1ib is required to include the CONNECT/C++ library.

CONNECT/C++ called via .Cal11 runs considerably faster than the
Spotfire S+ code. The following is a comparison for a 100 column by
100 row matrix A using a Pentium IIT with 512MB of RAM on
Windows:

> A<-matrix(rnorm(10000),nrow=100); diag(A)<-seq(ncol(A),
+ ncol(A)) # Make it diagonally dominant

> b<-rnorm(100);

> sys.time({x1<-gaussSeidel(A,b)})

[1] 19.328 19.354

Examples: An Application and a Called Routine

Here is a comparison for a matrix A with 100 columns and 100 rows
on a Solaris machine:

[1] 37.00 39.35
If we compare sys.time on both platforms:
> sys.time({x2<-.Call('gaussSeidel"',A,b)})
[1] 0.07 0.07
is the Windows output, while
[1] 0.04 0.04

is the UNIX output.

The CONNECT/C++ version ran over 250 times faster in Windows
and about 1000 times in UNIX than the pure Spotfire S+ version!

41

Chapter 3 CONNECT/C++

CONNECT/C++ CLASS OVERVIEW

Data Object
Classes

Function
Evaluation
Classes

42

The class library provides a set of classes that can be used to create
and manipulate persistent data objects, run Spotfire S+ functions,
parse and evaluate Spotfire S+ expressions, and receive output and
notification when objects are changed or when databases are attached

and detached.

The following sections provide an overview of specific categories of
classes used to accomplish these operations.

Data object classes provide methods to create and operate on arrays,
matrices, and vectors. To use these classes to create a data object,
simply call the object constructor or call the Create() method. For a
persistent object, specify the name of the object and an S language
expression you want to parse, evaluate, and assign the result in order
to initialize it with data. Alternatively, a data object can be
constructed using a form of the constructor that takes an optional S
language expression as an argument. This is useful if named
(persistent) objects are not required, but initialization is required.
Once the object is created, methods can be used to operate on the
object.

To receive notification in a client application when a data object
changes, create a new class in the client application derived from the
appropriate base class and override the virtual methods for handling
object notification. When a named object is modified or removed,
those virtual methods in the client are called.

The CSPcall class allows Spotfire S+ functions to be evaluated with
arguments passed to the function. Arguments are any S_object as
well as objects derived from CSPobject, which may include data
objects and other Spotfire S+ objects. Results are returned as a
CSPobject to the client. To use this class, simply call the object
constructor with the name of the function to run and any arguments
you wish to pass from the client to the function.

Client-to-
Engine
Connection
Classes

Evaluator
Classes

CONNECT/C++ Class Overview

The CSPengineConnect class creates a connection between the client
and the Spotfire S+ engine. This connection permits creation of
objects in the permanent frame, creation of persistent unnamed
objects outside of .Ca11 routines, notification in the client when
databases are attached or detached, output routing to the client, and
evaluation of S language expressions.

To use CSPengineConnect, create a new class derived from
CSPengineConnect in the client, override the virtual methods for
receiving database attach/detach notification, and output notification,
and add a member variable to the client application class object to
record a reference to a single instance of this derived class.

Use of the CSPengineConnect class is only necessary when one or
more of the following features is desired in the client program:

+ Integrate S+ engine DLLs (Windows) or the shared library
libSqpe.so (UNIX) with another application (client).

* Notification in the client when databases are attached or
detached and when changes are made in persistent objects.

* Output redirected to the client.

For more information on using CSPengineConnect, please see the
section on this class by going to SHOME/help/Connect/C++
Library Help in Windows, or SHOME/sconnect/help/
ConnectC++.Class.library.htm in UNIX.

The CSPevaluator class manages memory resources, errors, the top-

evaluation frame, and a set of local evaluation frames. Although it is

optional, instantiating an object of CSPevaluator class at the top of a
try block can speed up the code, and the corresponding catch block
receives an exception error when an unexpected error occurs in the

Spotfire S+ engine.

To use CSPevaluator, create an instance of this class at the top of a
try block as shown below:

double minValue = 0;

try

{
// Open top-Tevel-evalutor (frame 1) if it is closed
CSPevaluator sEvaluator;
CSPnumeric myNumeric = sEvaluator.eval("1:10");

43

Chapter 3 CONNECT/C++

44

minValue = myNumeric.Min(); //minValue =1

} // Close top-level evaluator when sEvaluator is out of
// scope
catch(...)
{
// Unexpected error occurred in the engine

}

For more information on using CSPevaluator, please see the section
on this class, please see the section on this class by going to SHOME/
help/Connect/C++ Library Help in Windows, or SHOME/
sconnect/help/ConnectC++.Class.library.htm in UNIX.

CONNECT/C++ Architectural Features

CONNECT/C++ ARCHITECTURAL FEATURES

CSPobject

Constructors
and
Generating
Functions

The following sections describe the basic architectural features in the
class library and some of the specific programming features available
in the library that make it possible to perform Spotfire S+ operations
efficiently in client programs and modules written in C++. Classes
and methods discussed in this section are fully documented in the
reference sections for the classes in the online help for CONNECT/
C++.

CSPobject is the base class of most of the classes that represent
Spotfire S+ classes. It provides common functionality to its derived
classes, and its most important data member is:

s_object* CSPobject::m_ps_object

A class that represents a Spotfire S+ class inherits m_ps_object
because CSPobject is its base class. As a smart pointer, a derived class
of CSPobject provides safer methods to manipulate the data pointed
by m_ps_object as compared to using global C functions. For
example, the constructor, the destructor, and the assignment
operators automatically increment and decrement reference counts
whenever appropriate to provide the same data sharing mechanism
as that of the SV4 language.

All cSPobject-derived classes have a method called IsValid() which
allows you to test whether the member m_ps_object is valid or not.

Often, S generating functions are more convenient than the S method
new. Similarly, constructors of CONNECT/C++ classes can provide
the same convenience. They have the following form:

CSPclass::CSPclass(const char* pszExpression);
// pszExpression is a string representing valid S code.

where class is a CSPobject-derived object.

This form of the object constructor parses and evaluates
pszExpression and uses the resultant Spotfire S+ object as its value.
Normally, pszExpression should contain a Spotfire S+ expression
that calls to an appropriate generating function. However, it works for
any Spotfire S+ expression that returns a valid Spotfire S+ object, and

45

Chapter 3 CONNECT/C++

Constructing
From an
Existing Object

46

the constructor automatically coerces the returned object to the class
that it represents. It increments the reference count upon completion,
as well. In case of errors, the constructor throws an exception in the
client application.

For example:

CSPevaluator s;

CSPinteger x("1:4"); /] x<-1:4
CSPnumeric y("fuel.frame[,1]"); // y<-as(fuel.frame[,1],
// 'numeric')

CSPnumeric z("new('numeric')"); // z<- new('numeric')
CSPmatrix A("matrix(1:4, nrow=2)"); // A<-matrix(1l:4,

// nrow=2)
CSPmatrix B("1:4"); // B<-as(l:4,'matrix")

// Do something with x,y,z,A, and B

You can construct new objects from existing objects using one of the
following forms:

CSPclass::CSPclass(const CSPclass& sObject);//copy
//constructor

CSPclass::CSPclass(s_object* ps_object); //construct
//from s_object

where class is a CSPobject-derived object.

The copy constructor of a CONNECT/C++ class behaves like a
Spotfire S+ assignment operator when the Spotfire S+ object name is
first used. They both share the same data with the object names used
to construct them. However, for the CONNECT/C++ classes,
sharing is not possible if the classes are incompatible. It increments
the reference count upon completion.

An example of creating new objects from existing objects follows:

CSPevaluator s;

CSPnumeric x("1:4"); // x<-1:4
CSPnumeric u(x); // u<-x #f u shares data with x
CSPmatrix A(x); // A<-as(x,'matrix') # A shares data with x

Assignment
Operators

Overloading
Operators

CONNECT/C++ Architectural Features
CSPcharacter v(x); // v<-as(x,'character') # no sharing

s_object* ps_object = x.GetPtr();//Get pointer to s_object*
CSPnumeric U(ps_object); // U shares data with x
CSPmatrix a(ps_object); // a shares data with x

The assignment operator of an CONNECT/C++ class behaves like a
Spotfire S+ assignment operator when the Spotfire S+ object name is
already used. However, the left-hand-side object of the operator = is
an existing and valid object. The assignment operator decrements the
reference count on the old object and increments the reference count
on the new object before swapping the two object pointers:

CSPclass& CSPclass::operator=(const CSPclass& sObject);
where class is a CSPobject-derived object.

An example of the assignment operator follows:

CSPevaluator s;

CSPnumeric x("1:4"); // x<-1:4

CSPnumeric u = Xx; // u<-new('numeric'); u<-x # u shares
// data with x
CSPmatrix A = x; // A<-new('matrix'); A<-as(x,'matrix"')

// # no sharing

CSPnumeric y; // y<-new("numeric")
u=y:; // u<-y #f u switches to share data with y
A =y;//A<-as(y,'matrix"') # A switches to share data with y

CONNECT/C++ contains some useful overloading operators such
as +, -, * and /. These operators perform element-by-element
operations in the same way as in the S language. However, for the
matrix class, the * operator is different. The operator for CSPmatrix is
a real matrix multiplication operator equivalent to the S %*% operator.

CSPclass& CSPclass::operator+(const CSPclass& sObject);
CSPclass& CSPclass::operator-(const CSPclass& sObject);
CSPclass& CSPclass::operator*(const CSPclass& sObject);
CSPclass& CSPclass::operator/(const CSPclass& sObject);

where class is a CSPobject-derived object.

47

Chapter 3 CONNECT/C++

Converting
C++ Objects
to Spotfire S+
Objects

48

An example using the CSPmatrix follows:

CSPevaluator s;

CSPnumeric x("1:4"); // x<-1:4
CSPnumeric y ("4:1"); // y<-4:1
Yy = yHx*x; /1 y<-y+x*x

CSPmatrix A("matrix(l:4,nrow=2)");//A <- matrix(l:4,nrow=2)
CSPmatrix B("matrix(4:1,nrow=2)");//B <- matrix(4:1,nrow=2)
CSPmatrix D = A*A + B*B; //D <- A %*% A+ B %*% B

Objects derived from class CSPobject are C++ representations of
Spotfire S+ objects; within Spotfire S+, Spotfire S+ objects are
represented as C objects of type s_object*. Sometimes, an
application needs to access the s_object* directly. For example, the
arguments and the return value of all .Ca11 interfaces must be of type
s_object*.

The CSPobject class provides a convenient way to automatically
convert to s_object*. Simply use a CSPobject wherever a s_object*
is required. It automatically invokes a conversion operator that
returns the s_object* as appropriate.

s_object* CSPobject::operator*();
s_object* CSPobject::operator&();

For example:

s_object* myCall()

{
CSPnumeric x("1:10");
return x;

}

s_object *pReturn = myCall();

The return statement, return x, first typecasts x to type s_object*.
This invokes the conversion operator s_object *() of the
CSPnumeric class (derived from CSPobject) which ensures that the
destructor of x does not delete the object, even if the reference count
drops to zero.

CONNECT/C++ Architectural Features

Subscripting CONNECT/C++ contains some useful overloading subscripting

Operators operators () for the derived classes of CSPvector and CSParray such
as CSPnumeric and CSPmatrix. The proxy class of the returned object
provides supports for read/write and mixed-mode operations:

const double CSPnumeric::operator()(long T1Index); const
// Fortran style indexing starting from index 1
// rvalue only

CSPproxy CSPnumeric::operator()(Tong 1Index);
// Fortran style indexing and ordering
// lvalue and rvalue

An example using the subscripting operators:

CSPevaluator s;

CSPnumeric x("c(0.1, 0.2, 0.8, 0.9)"); // x<- ¢c(0.1, 0.2,
// 0.8, 0.9)

double d = x(1); // d <-x[1] # d is 0.1

d=d+ x(2); // d<- d+x[1] # d is 0.3

double e = (long) x(1); // e<-as.integer(x[2]) # e is 0

long n = x(1); // n <-as.integer(x[1]) # n is 0

n=n+ x(2); // n <- n+as.integer(x[2]) # n is still O

The following is another example using the subscripting operator for
a matrix:

CSPevaluator s;

CSPmatrix A(™matrix(c(0.1, 0.2, 0.8, 0.9), 2)™);
// A<- matrix(c(0.1, 0.2, 0.8, 0.9), 2)

double d = A(1,1); // d <-A[1,1] # d is 0.1
d=d+ A(2,1); // d<- d+A[2,1] # d is 0.3
long e = (long) A(2,1); // e<-as.integer(A[2,1]) # e is O
long n = A(1,1); // n <-as.integer(A[1,1]) # n is O

n=n+ A(2,1); //n <- n+as.integer(A[2,1]) # n is still O

49

Chapter 3 CONNECT/C++

Subscript and
Replacement
Operations

Subscript and
Arithmetic
Operations

50

If a subscript operator of a CSPobject-derived class returns an Tvalue
object of CSPproxy, the operation involves replacing an element of the
Spotfire S+ object. Since writing data is not possible for a shared
Spotfire S+ object, CSPproxy must determine whether to copy data
before replacing its elements. This action occurs in one of its
overloaded assignment operations:

CSPproxy& CSPproxy::operator=(long);
CSPproxy& CSPproxy::operator=(double);
CSPproxy& CSPproxy::operator=(const CSPproxy&);

For example:

CSPevaluator s;

CSPnumeric x("1:4"); /] x<- 1:4

x(1) = 0.0; // x[11<- 0 # x is not share,
// simply set x[1] to 0.0

X(2) = x(1); // x[2]1<- x[1] # x is not share, simply

// set x[2] to 0.0
CSPnumeric y(x); // y<- x # y shares data with x
y(1)= 10.0; // y[11<- 10 {copy and replace:
// y[1] is 10 and x[1] is O

Some overloaded operators are available to support mixed-mode
arithmetic operations involving subscripting objects of classes derived
from CSPobject. These operators, +, -, * and /, perform mixed-mode
operations following the same rules as Spotfire S+:

long CSPproxy::operator+(long)
double CSPproxy::operator+(double)

An example using the arithmetic operators:

CSPevaluator s;

CSPnumeric x("1:4"); // x<- 1:4

CSPnumeric y(x); // y<- x # y shares data with x
// A <- matrix(l:4,nrow=2)

CSPmatrix A("matrix(l:4,nrow=2)");

Matrix
Computations

CONNECT/C++ Architectural Features

// e <- A[1,1] + A[1,2]

double e = A(1,1)+A(1,2);

// A[1,2] <- e*(A[1,1]+A[2,1])
A(Ll,2) = e*(A(L,1)+A(2,1));

/1 A[2,2] <- x[11*A[1,1]+y[2]*A[2,1]
A(2,2) = x(1)*A(1,1)+y(2)*A(2,1);

// X<-array(l:16, c(2,2,2,2))
CSParray X("array(l:16, c(2,2,2,2))");
// X[1,1,1,1] <- X[2,1,1,1]+e;
X(1,1,1,1) = X(2,1,1,1) + e;

// X[2,1,1,11 <- y[1] - X[2,1,1,117;
X(2,1,1,1) = y(1) - X(2,1,1,1);

// X[1,2,1,1] = A[1,1] * X[2,1,1,17;
X(1,2,1,1) = A(1,1) * X(2,1,1,1);

Some overloaded functions are available for matrix computations,
such as the example below (in UNIX). These computations are multi-

threaded on some platforms (currently Windows 2000®, NT, and XP
on Intel multi-processor machines).

double CSPmatrix::ConditionNumber(void);

CSPmatrix SPL_Multiply(const CSPmatrix& A,
const CSPmatrix& B);

CSPnumeric SPL_Multiply(const CSPmatrix& A,
const CSPnumeric& x);

For example:

CSPevaluator s;

CSPmatrix A("matrix(5:8, nrow=2)");

// A<- matrix(5:8, nrow=2)

CSPmatrix B(A); // B<- A
CSPmatrix D = SPL_Multiply(A, B); // D<-A %*% B

CSPnumeric x("1:2"); // x<- rnorm(2)
CSPnumeric y = SPL_Multiply(A, x); // y<- A %*% x

51

Chapter 3 CONNECT/C++

Printing to

Standard
Output

Named
Persistent
Objects

52

You can use the following CONNECT/C++ method to print to the
Spotfire S+ standard output stream:

void CSPobject::Print(void);

For example:

CSPevaluator s;

CSPcharacter message("'hello'"); //message <- 'hello'
message.Print(); //print(message)

CSPmatrix M("matrix(l:4,nrow=2)");//M<-matrix(1l:4, nrow=2)
M.Print(); //print(M)

All CsPobject-derived objects are placeholders for an s_object that
exists in the engine. So, this C++ object can reference an s_object or
none at all, depending on whether the member s_object pointer
points to a valid s_object. All CSPobject-derived classes have a
method called IsValid() which allows you to test whether it is
pointing to a valid s_object or not.

All named objects are created in a permanent frame associated with a
Spotfire S+ database, and are thus persistent between calls and
between sessions in the S engine. When you create a new CSPobject
in your client program, a new s_object is created in the S engine.
When you delete this CSPobject, the s_object is also released in the
engine. However, when you execute Spotfire S+ expressions to
remove the s_object that your CSPobject points to, such as by using
rm(myObject), or you call the Remove () method on the object, the
CSPobject is not deleted in your client. The OnRemove () method of
the CSPobject in your client is called and the base class version of this
method “disconnects” your CSPobject from the now released
s_object by setting the member s_object pointer to NULL. After this
event, calling Isvalid() on the CSPobject returns FALSE.

Deleting the CSPobject in your client program does not automatically
remove the permanent frame s_object in the Spotfire S+ engine that
this CSPobject refers to. You must call the method Remove() to
remove the s_object from the engine.

You can create named objects using the Create() method of the
various object classes derived from CSPobject, such as CSPnumeric.
Whenever these objects are modified, the OnModi fy () method is

CONNECT/C++ Architectural Features

called in your client program. Whenever these objects are removed,
the OnRemove () method is called in your client program. Only named
objects support this kind of client program notification.

To create a named object in your client, first derive a new class from
the appropriate CSPobject-derived class, such as CSPnumeric. Then,
construct an instance of this derived class using the constructor, then
call the Create() method to specify the name you wish to give the
object. It is important to derive a new class from the CSPobject-
derived class instead of just using the base class directly in your client
because the OnModify () and OnRemove() methods are virtual and
must be overridden in your derived class in the client in order to be
notified when these events occur.

A CSPobject can be modified in one of two ways. It can be modified
in the client program by using the operators available for the object to
assign and operate on the elements of the object. When this kind of
modification is done, it is necessary to call the Commit () method on
the object to commit it to the Spotfire S+ engine before any changes
to the object are reflected in the persistent s_object that is referenced
by the object in the client.

Another way it can be modified is by evaluating Spotfire S+
expressions, such as by using CSPengineConnect::SyncParseEval().
When this kind of modification is done, it is not necessary to call
Commit() on the object, as the s_object is automatically updated by
the Spotfire S+ engine. For both kinds of modification, the
OnModify () method of the CSPobject is called in the client program.
It is important to call the base class OnModify() in your override of
OnModi fy (). This allows the base class to update the member
s_object pointer to point to the newly modified s_object in the
engine.

The s_object member of a CSPobject can be removed (invalidated)
in one of two ways:

1. It can be removed in the client program by calling the
Remove () method on the CSPobject. This method removes
the s_object from the permanent frame and triggers a call to
the OnRemove () method of the CSPobject in the client
program. The base class version of OnRemove (), which should
be called at the end of the overridden version in the client,
releases the member s_object from the CSPobject.

53

Chapter 3 CONNECT/C++

Storage
Frames For
Unnamed
Objects

54

2. It can be removed by evaluating Spotfire S+ expressions,
such as by calling CSPengineConnect: :SyncParseEval (). This
also triggers a call to the OnRemove () method of the CSPobject
in the client program.

In Windows, for examples of using CSPobject-derived classes in a
client program and responding to OnModify() and OnRemove()
notifications, see the example C++ client program called SSC located
in SHOME/samples/SSC in the subdirectory.

Normally, when you create an unnamed CSPobject in a client routine
that you call via .Ca11, the s_object corresponding to this CSPobject
is “alive” or is valid until the routine ends and scope changes out of
the routine.

If you create an unnamed CSPobject when the Spotfire S+ evaluator
is not open, the s_object corresponding to this CSPobject may not be
valid. For most client applications, this is usually inadequate.
Therefore, you need to do the following to ensure that an unnamed
CSPobject created in a client application does not get released until
the end of the client routine:

* Create an instance of a CSPevaluator at the top of the scope

“{.77

* Create and use any unnamed CSPobject-derived objects in
the client.

For example:

{
CSPevaluator s;
CSPnumeric x(“1:107);

}

For named objects, you do not have to use the above approach:
simply create named CSPobject-derived objects using the constructor
and a call to CSPobject::Create(). For further information, see the
online help for the classes CSPengineConnect::OpenTopLevelEval(),
CSPengineConnect::CloseTopLevelEval(), and the Create() method
for the object type to be created.

CONNECT/C++ Architectural Features

Table 3.1: CONNECT/C++ classes and their Spotfire S+ counterparts.

Spotfire S+ | CONNECT/C++

Class Class Example

any CSPobject CSPobject x("2")

numeric CSPnumeric CSPnumeric x("2.32")

integer CSPinteger CSPinteger x("2")

logical CSPlogical CSPlogical x("c(T,F")

character CSPcharacter CSPcharacter("abcd")

named CSPnamed CSPnamed("c(a=1,b=2, d=3)")

matrix CSPmatrix CSPmatrix A("matrix(1:4,2)")
CSPnumericMatrix CSPnumericMatrix A("matrix(rnorm(12,6")
CSPcharacterMatrix CSPcharacterMatrix A("matrix(letters[1:12],6)")

array CSParray CSParray B(“array(1:8,c(2,2,2))"

1ist CSPlist CSP1ist("1ist(1:2,6:700)™)

function CSPfunction CSPfunction ("function(x) x*2")

call CSPcall CSPcall("Im™)

55

Chapter 3 CONNECT/C++

A SIMPLE SPOTFIRE S+ INTERFACE IN WINDOWS

In this section, we build a small client application to accept Spotfire
S+ expressions, send these expressions to Spotfire S+ for evaluation,
then return the output from Spotfire S+. As part of this process, we
use numerous features of CONNECT/C++.

Warning

Most of this example was automatically generated using Visual C++, and it uses Microsoft
Foundation Classes (MFC). If you are not familiar with MFC, it is assumed you can ignore the
uses of MFC where they occur.

Creating a To keep our application as simple as possible, we create it as a dialog-
Dialog-Based based application in Visual C++. The basic interface is simple to

. . te:
Application create

1. Open Visual C++.

2. Choose File » New.

3. From the Projects tab, select MFCAppWizard (exe).
4

Type a project name, such as spint, in the Project name text
field.

Click OK. The MFCAppWizard appears.

6. Under What type of application would you like to
create, select Dialog-based. Click Next.

o

7. Choose the features you want included in your application.
Accept the defaults by clicking Next.

Accept the defaults in the displayed choices by clicking Next.
9. Click Finish and then OK to create your application skeleton.

The application skeleton consists of a project file plus 11 files that you
can view by selecting the File View tab in the left pane of Visual
C++; the file ReadMe.txt contains a brief description of the other
files in the skeleton. The most important for our purposes are the files

spint.cpp, spintDIg.cpp, spint.rc, spint.h, and spintDlg.h.

56

A Simple Spotfire S+ Interface in Windows

10. The file spint.rc is open for editing when the skeleton is first
created. Use the Controls palette to add two static text fields
and two edit fields to the dialog.

11. Rename the static text fields to read Spotfire S+ Commands
and Spotfire S+ Output, respectively. An edit field should
follow each static text field, and the edit field following
Spotfire S+ Output should be set to read-only via the
control’s Properties dialog (available by right-clicking the
control).

12. Rename the OK button to read Run Commands. The
completed dialog should look like the following:

S-PLUS Commands

Cancel |

S-PLUS Output

Figure 3.1: Our simple Spotfire S+ interface.

Connecting to To establish a connection between Spotfire S+ and our dialog, we

Spotfire S+ need to edit the main source file for our application, spint.cpp, and
the main header file, spint.h. The change to spint.h is simple—at the
very top of the file, include the header file sconnect.h immediately
after the resource header file:

// spint.h : main header file for the SPINT application
//

#if !defined(AFX_SPINT_H__F2C4CO5F_6855_40FB_B41D_1D50CC25A174__ INCLUDED_)
ftdefine AFX_SPINT_H__F2C4C05F_6855_40FB_B41D_1D50CC25A174__ INCLUDED_

57

Chapter 3 CONNECT/C++

ffif _MSC_VER > 1000
ffpragma once
ffendif // _MSC_VER > 1000

Jifndef _ AFXWIN_H_
#error include 'stdafx.h' before including this file for PCH
ffendif

f##include "resource.h" // main symbols
f##include "sconnect.h” // Connect/C++ Tibrary

The change to spint.cpp is more substantive, but still straightforward.
In the section of the code titled CSpintApp initialization, add the
following code immediately before the line reading CSpintD1g dlg;:

// Create and connect to S+ engine
int argc =1;

char *argv[1];

argv[0]="spint";

m_spconn.Create(argc, argv);

Evaluating We now have an interface and a connection to the engine. All that

Expressions remains is to define the code that actually reads the input from the
Spotfire S+ Commands edit field and writes the output to the
Spotfire S+ Output edit field. The following function, added at the
end of the file spintDlg.cpp, does what we want: it takes the input,
reads it into a CString object, sends it to Spotfire S+ for evaluation,
returns the output as an array of character strings, then takes the first
output string and puts it into the output field:

void CSpintDlg::0nRunCommand()

{
CWnd* pEdit = GetDIgItem(IDC_EDITI);
CString Commandsl;
pEdit->GetWindowText(Commandsl);
CSPevaluator sEvaluator;
CSPobject returnVals=sEvaluator.Eval(Commandsl);
CSPcharacter outputText=returnVals.Deparse();

58

A Simple Spotfire S+ Interface in Windows

CString outputText2=outputText[0];
CWnd* pEdit2 = GetDI1gItem(IDC_EDIT3);
pEdit2->SetWindowText (outputText?2);

}

This implementation, however, has one significant limitation: we get
only the first string in the array of strings that forms the return value.
What this means in general is that all the output pane shows us is the
first line of output.

A solution to this problem is provided by defining a new class derived
from CSPengineConnect that includes a new method for OnOutput.
You can view this solution by exploring the code in SHOME/
samples/ssc, a more sophisticated “simple” interface to Spotfire S+.

59

Chapter 3 CONNECT/C++

60

CONNECT/JAVA

Introduction
Java Tools
Example Files

Calling Java from Spotfire S+
Static Fields
Static Methods
Class Files
Instance Methods
Managing Java Object Instances

Calling Spotfire S+ from Java Applications
Running the Java Program
Evaluating Spotfire S+ Commands
Using SplusDataResult Objects
Example Applications

62
62
62

63
63
66
68
69
70

78
78
79
80
83

61

Chapter 4 CONNECT/Java

INTRODUCTION

Java Tools

Example Files

62

CONNECT/]Java is a powerful programming language with a variety
of attractive features. Its strengths include a clean object-oriented
design, a rich set of class libraries, and cross-platform capabilities.

Spotfire S+ may be used with Java in a variety of ways. Just as
Spotfire S+ can call C and Fortran routines, it can call Java methods
to perform computations. Alternatively, a Java program can call
Spotfire S+ to perform computations and create graphs.

The Spotfire S+ installation includes a copy of the Java 2 Runtime
Environment (JRE). This runtime environment includes the Java
Virtual Machine and related classes necessary to run any Java 2-
compliant compiled Java code. Users with compiled Java code need
no additional tools to use their code with Spotfire S+.

Users writing new code need a Java 2 development environment such

as the Java 2 JDK. For Spotfire S+, the desired JDK is version 1.6.
This is freely available from Sun® for Solaris®, Linux®, and

Windows® platforms, and from other vendors on other platforms.
Licensing restrictions prevent TIBCO Software Inc. from
redistributing the Java 2 JDK with Spotfire S+.

In Windows, the Java code samples for the examples discussed in this
chapter are included in *.java files in the
SHOME\library\winjava\examples directory. In UNIX, these files
are located in the SHOME/library/example5/java directory.

The java directory distributed as part of the exampleb/java library
in UNIX contains the file examples.jar. This file includes the byte-
compiled *.class files for all of the *.java files. As these classes are
available to Java by default, it is not necessary to compile or install the
Java code to run the examples.

Calling Java from Spotfire S+

CALLING JAVA FROM SPOTFIRE S+

Static Fields

Field Descriptors

Spotfire S+ can exchange information with Java via static fields and
static methods. Currently, Spotfire S+ does not have a way to directly
call non-static methods, which would require the Spotfire S+ engine
to keep track of references to particular instances of Java objects.

Functionality that is available through instance methods (non-static
methods) may be accessed by creating static Java methods that take
care of the details of creating Java instances, tracking them, and
calling methods on them. These static methods may then be called
from Spotfire S+.

Java objects may be passed from Java to Spotfire S+ through static
fields. The Spotfire S+ function .JavaField returns a field value given
the following information:

* The name of the Java class containing the field. The package
name may be forward slash or period delimited.

* The name of the field.
* The Java Native Interface (JNI) field descriptor for the field.
* The optional client argument.

For example, the following call will return the value of PI:

> .JavafField("java/lang/Math", "PI"™, "D")

The .JavaField function is the primary mechanism for transferring
values from Java into Spotfire S+.

The JNI is the standard interface for passing information between

ava and native C code. In JNI the type of a field is declared using a
J ypP g
field descriptor. For example, an int field is represented with "I", a
float field with "F", a double field with "D", a boolean field with "7",
and so on.

The descriptor for a reference type such as java.lang.String begins
with the letter "L", is followed by the class descriptor, and is terminated
by a semicolon. (The class descriptor is typically the class name
delimited with slashes.) The field descriptor for a string is "Ljava/
lang/String;".

63

Chapter 4 CONNECT/Java

Descriptors for array types consist of the "[" character, followed by
the descriptor of the component type of the array. For example, "[1"
is the descriptor for the int[] field type.

Spotfire S+ uses the field descriptors to communicate field types to
Java. Spotfire S+ can access values of type void, int, short, Tong,
boolean, float, double, byte, char, and String. It can also access
arrays of these types. Table 4.1 presents each supported Java type, the
JNTI field descriptor, and the corresponding Spotfire S+ type. All
Spotfire S+ atomic types except complex have Java equivalents.

The latest version of Spotfire S+ extends the connection to allow
access of any Java object. If the object is an array of objects or an
object whose class implements java.util.Collection (such as
Vector or Arraylist), then the result will be a Spotfire S+ list. For
any other type of object, the toString() method will be used to
return a string.

Table 4.1: JNI Field Descriptors

JNI Field Descriptor Java Type Spotfire S+ Type
v void NULL

I int integer

S short integer

J Tong integer

z boolean logical

F float single

D double double (numeric)
B byte raw

c char character
Ljava/lang/String; String character

64

Integer
Conversions

Special Values

Client Argument

Calling Java from Spotfire S+

The javap utility included with the Java 2 SDK will print out the JNI
field descriptors for a class. For example:

% javap -s -p java.lang.Math
Compiled from Math.java
public final class java.lang.Math extends java.lang.Object
{
public static final double E;

/* D */
public static final double PI;
/* D */

private static java.util.Random randomNumberGenerator;
/* Ljava/util/Random; */
private static Tong negativeZeroFloatBits;

/* J */
private static Tong negativeZeroDoubleBits;
/* J */

Spotfire S+ integers are equivalent to C longs. They are either 32 bit
or 64 bit in size depending upon whether the operating system is 32
bit or 64 bit. In Java, shorts are 16 bit, ints are 32 bit, and longs are 64
bit. All three of these types are converted to Spotfire S+ integers.

Spotfire S+ has special values NA, Inf, and - Inf to represent missing
values, positive infinity, and negative infinity, respectively. Java has
special values NaN, POSITIVE_INFINITY, and NEGATIVE_INFINITY for
these cases. These special values are mapped appropriately when
values are transferred.

Within a Java virtual machine (JVM) process, a static field will have a
uniquely determined value. In client/server mode, we have two
separate JVMs available. Sometimes we will be interested in
determining the field value for the server JVM that shares a process
with the Spotfire S+ engine, while at other times we are interested in
getting the field value from the client JVM.

The c1ient argument to .JavaField() is used to specify the JVM to
use. The default is c1ient=F, which means to use the server JVM.
Specify c1ient=T to use the client JVM.

If client=T, the Java object returned must be serializable.

65

Chapter 4 CONNECT/Java

Field Examples

The java.lang.Math class contains a few interesting static fields that
we can access from Spotfire S+:

> .JavaField("java/lang/Math™, "PI", "D")
[1] 3.141593

> .JavaField("java/lang/Math", "E", "D")
[1] 2.718282

> .JavafField("java/Tang/Double™, "NaN", "D")
[1] NA

Static Methods Scalars and arrays of primitives may be passed from Spotfire S+ to a

Method
Descriptors

66

static Java method, and a Java object may be returned from the Java
method to Spotfire S+. The Spotfire S+ function .JavaMethod takes
the following arguments:

* The name of the Java class. The package name may be
forward slash (/) or period (.) delimited.

* The name of the method.

* The JNI method descriptor indicating the types of the
arguments.

+ Optionally, one or more values used as the arguments to the
method.

* Optional client argument, which is used similarly to the
argument in .JavaField().

For example, the following call will return 2 to the power of 10:

> .JavaMethod("java/lang/Math™, "pow", "(DD)D", 2, 10)
[1] 1024

Note that .JavaMethod automatically converts the values to doubles
based on the signature of the method. Unlike with the Spotfire S+
functions .C and .Fortran, the programmer does not need to assure
that the values are of a particular type via calls to as.double().

The JNI method descriptors are formed from the field descriptors for
each method argument and the field descriptor for the return value.
The argument types appear first and are surrounded by one pair of
parentheses. Argument types are listed in the order in which they

Client Argument

Simple Examples

Calling Java from Spotfire S+

appear in the method declaration. If a method takes no arguments,
this is represented by empty parentheses. The method’s return type is
placed immediately after the right closing parenthesis.

For example, "(1)V" denotes a method that takes an int argument
and has return type void, which is returned in Spotfire S+ as a NULL.

A method that takes a String argument and returns a String is
denoted by "(Ljava/lang/String;)Ljava/lang/String;".

Arrays are again indicated with "[" character, followed by the
descriptor of the array element type. A method that takes a String
array and returns void has the method descriptor "([Ljava/lang/
String;)Vv'".

The javap utility included with the Java 2 SDK will print out the JNI
method descriptors for a class. For example:

% javap -s -p java.lang.Math
Compiled from Math.java

public final class java.lang.Math extends java.lang.Object
{

public static double toDegrees(double);
/* (D)D */
public static double toRadians(double);
/* (D)D */
}

In client/server mode, we have two separate JVMs available.
Sometimes we will need to call a Java method on the server, and at
other times we will want to call the method on the client.

The c1ient argumentto .JavaMethod() is used to specify the JVM to
use. The default is c1ient=F, which means to use the server JVM.
Specify c1ient=T to use the client JVM.

If client=T, the Java object returned must be serializable.

Here are some examples using .JavaMethod:

> .JavaMethod("java/lang/Math™, "round", "(D)J", pi)
[11 3
> .JavaMethod("java/lang/Math", "round", "(F)I", pi)
[1] 3

67

Chapter 4 CONNECT/Java

Class Files

Java Classpath

68

> .JavaMethod("java/lang/Math™, "random", "()D")

[1] 0.6300195

> .JavaMethod("java.lang.System", "getProperty",

+ "(Ljava/Tang/String;)Ljava/Tang/String;", "os.name")
[1] "SunOS"

The StaticMethodsExample class provides various examples of how
to retrieve values from Java. In Windows, the Java code for this
class is in $SHOME/library/winjava/examples, and for UNIX, it
is in $SHOME/library/example5/java.

In order for the Java virtual machine to find Java classes, the class files
must be in one of the locations where Java looks for files. The
location may be specified using either the Java classpath, or the Java
extensions mechanism.

The main difference between these two approaches appears to be a
difference in strictness of security such that any extension class can be
instantiated via reflection, while objects in the classpath may not
always be instantiated with reflection. This is unlikely to be an issue
for most users. However, if you get a “Class Not Found” exception
when using the classpath mechanism and reflection, you may want to
try the extension mechanism instead.

Java finds class files that are in a location specified in the Java
classpath. If the class files are in a jar file, the location will be the full
path to the jar file including the name of the file. If the class files are
in a directory, the location will be the full path to the directory.

Two locations you should always specify in your classpath are the
Splus.jar file, located in $SHOME/java/jre/lib/ext (Windows and
UNIX), and your current directory (or the directory in which you
create your Java code).

The classpath may be modified from the UNIX shell by setting the
CLASSPATH environment variable. An item may be added to the
CLASSPATH using syntax such as the following at a UNIX prompt:

setenv CLASSPATH {$CLASSPATH}:/homes/user/examples
for csh and tcsh, and

CLASSPATH = {$CLASSPATH}:/homes/user/examples
export CLASSPATH

Calling Java from Spotfire S+

for sh, ksh, and bash.

The classpath may be specified in Windows by setting the CLASSPATH
environment variable or using the -classpath argument to Java. As a
general rule, avoid spaces in the classpath on Windows.

Java Extensions Java will automatically find any jar files placed in the java/jre/lib/
ext. This is the default location for Java extensions.

Other directories may be added to the list of extension directories
with the -Djava.ext.dirs argument to Java. If this is specified it
must be a path which also lists the standard java/jre/lib/ext

directory.
Instance Instance methods are methods that reference a particular Java object
Methods rather than static class information. Instance methods may be called

by writing static methods that manage creation and tracking of the
necessary instances.

Random Numbers The class java.util.Random provides objects that represent

Example pseudorandom number streams. We can obtain random numbers
from Java by creating a class that instantiates a java.uti1l.Random
object and provides methods for getting values from the stream.

import java.util.Random;
public class RandomWrapperExample {
static Random ran = new Random();

public static double nextDouble(){
return ran.nextDouble();

public static int nextInt(){
return ran.nextInt();

}

After compiling this class (typically by invoking javac on the Java
source file) and adding its location to the classpath, we can call these
methods from Spotfire S+:

> .JavaMethod("RandomWrapperExample", "nextDouble", "()D")
[1] 0.9606592

69

Chapter 4 CONNECT/Java

File Chooser
Example

Managing Java
Object
Instances

70

> .JavaMethod("RandomWrapperExample™, "nextInt"™, "()I")
[1] 4026360078

The JFileChooser class provides a file chooser dialog that is useful
for locating and selecting a file. We can create a Java class that
launches this dialog and returns the path to the selected file. The
Spotfire S+ function for invoking the file chooser will let the user
specify the starting location for the browser.

The Spotfire S+ function is:

fileChooserExample <- function(startPath = getenv("PWD")){
.JavaMethod("FileChooserExample™, "showFileChooser",
"(Ljava/lang/String;)Ljava/lang/String;",
startPath, client = T)
}

Note the use of the c1ient = T argument to show the JFileChooser
is on the client side.

The Java class definition is:

import javax.swing.JFileChooser;

public class FileChooserExample {
public static String showFileChooser(String startPath){
JFileChooser fileChooser = new JFileChooser(startPath);
fileChooser.setDialogTitle("Select File™);
int exitStatus = fileChooser.showDialog(null, "OK");

String selectedFileName = "";
if (exitStatus == JFileChooser.APPROVE_OPTION)
selectedFileName =
fileChooser.getSelectedFile().getAbsolutePath();

return selectedFileName;

Spotfire S+ does not directly attempt to track instances of Java
objects. However, instances may be created using Java code, and
identifiers to these instances may be passed back to Spotfire S+ for
use in tracking the objects for further manipulation.

Calling Java from Spotfire S+

The basic technique is to use a static Vector, HashTabTe, or other type
of collection in the Java class. When a new instance is created, it is
placed in the collection and a key into the table is passed back to
Spotfire S+. This key may be passed into a static method that then
finds the object in the table and applies the relevant method to the
object.

In this example, we will create a Java class representing a person and
family relationship information about the person. When we create an
object for the person, we specify the person’s first and last name. We
then have methods to indicate family relationships between
individuals. In particular, we can indicate an individual’s mother and
father using setMother () and setFather() methods. These methods
modify the individual to note the parenting information and also
modify the parent’s object to note that the individual is their child.
We can retrieve information about the individual using the getInfo()
method.

Before showing the Java code, let’s see how these methods would be
used from within Spotfire S+. In this example, we will use
.JavaMethod() directly at the Spotfire S+ prompt. We could create
Spotfire S+ functions to call these routines in order to avoid having to
specify the class name and method signature each time we want to
use a method.

First we will create three FamilyMember objects representing a mother,
father, and son. The new FamilyMember() method creates an object
in Java and returns an integer ID, which we can use to refer to the
object.

> momId <- .JavaMethod("FamilyMember", "newFamilyMember",

"(Ljava/Tang/String;Ljava/lang/String;)I",
"Skip"™, "Jones"™)

+ "(Ljava/Tang/String;Ljava/lang/String;)I",

+ "Sue"™, "Jones")

> dadId <- .JavaMethod("FamilyMember"™, "newFamilyMember",
+ "(Ljava/lang/String;Ljava/lang/String;)I",

+ "Tom", "Jones")

> sonld <- .JavaMethod("FamilyMember", "newFamilyMember",
+

+

Next we will use the setMother() and setFather() methods to
establish the relationship between the parents and the son. Note that
we are using the identifiers returned above.

71

Chapter 4 CONNECT/Java

72

> .JavaMethod("FamilyMember", "setMother", "(II)Z",
+ sonId, momId)

(11 7T

> .JavaMethod("FamilyMember", "setFather", "(II)Z",
+ sonld, dadId)

[11 T

Now that we have created the objects and specified their relationship,
we can use getInfo() to examine the objects. The getInfo()
method uses the family relationship information to determine the
names of parents and children for the individual.

> .JavaMethod("FamilyMember"™, "getInfo",

+ "(I)[Ljava/lang/String;", sonlId)

[1] "Name: Skip Jones" "Mother: Sue Jones"
[3] "Father: Tom Jones"

> .JavaMethod("FamilyMember", "getInfo",

+ "(I)[Ljava/lang/String;", dadId)

[1] "Name: Tom Jones™ "Mother: Unknown"
[3] "Father: Unknown™ "Child: Skip Jones"

The Java code for the FamilyMember class is straightforward. We
present it here with comments describing the key points.

import java.util.Vector;

public class FamilyMember {
/* This class is an example of creating and modifying a
dynamic collection of instances using static methods.
*/

// Track instances by keeping a static Vector of

// instances. We will add each FamilyMember object to
// this Vector when it is created, and return its index
// in this Vector as the key for accessing the object.

static Vector members = new Vector();

// Instance variables. We get each person’s first and

// Tast name when the object is created. Methods are then
// used to specify their mother and father. When the

// person is specified as a mother or father, we know

// they have a child, which we also track.

Calling Java from Spotfire S+

String firstName, lastName;
FamilyMember mother, father;
Vector children = new Vector();

/* Constructor */
public FamilyMember (String first, String last){

firstName = first;
lastName = Tast;

/* Instance methods */

/* Java routines would call these */
// public methods to get names
public String getFirstName(){

return firstName;

public String getLastName(){
return lastName;

// public methods to set and get parents
public void setMother(FamilyMember mom){

mother = mom;
mother.addChild(this);

public void setFather(FamilyMember dad){
father = dad;
father.addChild(this);

public FamilyMember getMother(){
return mother;

73

Chapter 4 CONNECT/Java

public FamilyMember getFather(){
return father;

// private method to add child when parent set

private void addChild(FamilyMember kid){
children.add(kid);

// public method to get children

public Vector getChildren(){
return children;

/* Static methods */

/* Spotfire S+ would call these */

// static method to create a family member and return
// an ID to track them

public static int newFamilyMember(String first,
String Tast){

FamilyMember newMember = new FamilyMember(first, last);

// Add new instance to 1ist of members
members.add(newMember) ;

// Use the position in the members vector as an ID
return (members.size() -1);
// private method to check that ID in Tegal range

private static boolean checkId(int id){
boolean status = true;

if (id < 0 || id > (members.size()-1)){

// Could throw exception, but we’ll just print a
// message

74

Calling Java from Spotfire S+

System.out.printin("Error: ID out of range");
status = false;

}

return status;

// static methods to specify mother and father based on ID

// The basic steps in these methods are:

// 1) Check that the ID is within the range of ID’s.

// 2) Get the object from the members Vector.

// 3) Cast the object to a FamilyMember object.

// 4) Apply the relevant non-static method to the object
//

// If the ID is out of range we return false. Otherwise
// we return true.

public static boolean setMother(int personId, int momId){
boolean status = true;
if (checkId(personld) && checkId(momId))({
FamilyMember person =
(FamilyMember) members.get(personld);
FamilyMember mom = (FamilyMember) members.get(momld);
person.setMother(mom);
}
else
status = false;
return status;

public static boolean setFather(int personld, int dadId){
boolean status = true;
if (checkId(personId) && checkId(dadId)){
FamilyMember person =
(FamilyMember) members.get(personld);
FamilyMember dad = (FamilyMember) members.get(dadId);
person.setFather(dad);
}
else
status = false;
return status;

75

Chapter 4 CONNECT/Java
}
// static method to get information about a family member

public static String [] getInfo(int id){
if (!checkId(id))
return new String [] {"Name: Unknown",
"Mother: Unknown", "Father: Unknown"};

FamilyMember person = (FamilyMember) members.get(id);
FamilyMember mom = person.getMother();

FamilyMember dad person.getFather();

Vector kids = person.getChildren();

String [] info = new String [3 + kids.size()];

info[0] = "Name: " + person.getFirstName() + " " +
person.getLastName();

if (mom==null)
info[1l] = "Mother: Unknown";
else
info[l] = "Mother: " + mom.getFirstName() + " " +
mom.getLastName();

if (dad==null)
info[2] = "Father: Unknown";
else
info[2] = "Father: " + dad.getFirstName() + " " +
dad.getLastName();

for (int i = 0; i < kids.size(); i++){
FamilyMember aKid = (FamilyMember) kids.get(i);
if (!(aKid==nul1)){
info[3+i] = "Child: " + aKid.getFirstName() + " " +
aKid.getLastName();

return info;

76

Calling Java from Spotfire S+

77

Chapter 4 CONNECT/Java

CALLING SPOTFIRE S+ FROM JAVA APPLICATIONS

Running the
Java Program

UNIX

78

Spotfire S+ can be called from Java to perform computations and
create graphics. This section describes the primary Java classes for
communicating between Java and Spotfire S+. The discussion of
classes is followed by examples.

The SplusUserApp class provides a simple way for a Java application
to connect to Spotfire S+. It contains static methods that Java
applications can call to generate results and graphics. Spotfire S+
graphs created with the java.graph graphics device can be
embedded within Java application windows. This section describes
using SplusUserApp to call Spotfire S+ locally.

The SplusSession interface provides another way for a Java
application to connect to Spotfire S+. Developers can program
directly to this interface when they need more control than the
SplusUserApp class provides.

Documentation on SplusUserApp, SplusSession, and all the other
Java classes used by Spotfire S+ can be found at $SSHOME/java/
javadoc/index.html on both Windows and UNIX.

The Java program is invoked in different ways on UNIX and
Windows

As various environment variables must be set at start-up for the
Spotfire S+ engine to function properly, the SpTus or SpTusClient
script must be used to run the Java program. These scripts set various
environment variables and then use the Java virtual machine
included with Spotfire S+ to run the Java program.

Use the -userapp flag to indicate that Spotfire S+ is being run as part
of a user-written Java application. This flag should be followed by the
full name of the directory containing the class file, and the class name.
For example:

Splus -userapp /homes/user/examples TextOutputExample

Windows

Evaluating
Spotfire S+
Commands

Connection
Threads

Calling Spotfire S+ from Java Applications

You should only access methods from user applications started as
above with the -userapp option. They should not be called when
running with the -g or -j option. Attempting to do so throws a Java
exception.

To run a Java program in Microsoft Windows, specify the full path to
the java executable and the name of the Java class. This may be done
at a Windows Command prompt or in a Windows shortcut.

To call Spotfire S+, the location of SHOME must also be specified
using the Java property splus.shome. For example:

"D:\Program Files\TIBCO\splus81l\javaljre\bin\java"
-Dsplus.shome="D:\Program Files\TIBCO\splus81"
TextOutputExample

Spotfire S+ expressions can be evaluated with the following
SplusUserApp methods:

public static SplusDataResult eval(String cmd);

public static SplusDataResult eval(String cmd,
boolean Output, boolean Result, boolean Errors,
boolean Warnings, boolean Expr);

The cmd parameter contains an expression to be evaluated by Spotfire
S+. The resulting SplusDataResult object contains the result of
evaluating this expression.

The expression should be a syntactically complete Spotfire S+
expression. An SplusIncompleteExpressionException is thrown if
the expression is not complete.

The additional parameters Output, Result, Errors, Warnings, and
Expr allow the user to specify what elements to include in the
SplusDataResult. These may be specified as false to avoid the
overhead of passing unnecessary elements of the output over the data
channel. The default is to include the Result, Errors, and Warnings.

The first time SplusUserApp.eval() is called, it starts the Spotfire S+
engine process and several Java threads. It takes approximately 10
seconds for the process to complete.

79

Chapter 4 CONNECT/Java

Using
SPLUSDATARESULT
Objects

80

These Java threads remain active until the Spotfire S+ engine is shut
down, so it is typically necessary to call System.exit(0) to exit the
user Java application. Even if the application’s main thread is
finished, Java will wait forever for the Spotfire S+ connection threads
to finish.

An object deriving from SplusDataResult is produced by a call to
evalDataQuery() when using the SplusSession interface, described
later in this chapter.

The results of a query are formalized to have the following fields:

* expression:a string representing the query that was
processed.

* output: a string representing the output that the query
produced. This is the output that would be printed if the
command were evaluated as standard input. This output may be
printed to standard out or to a Java text area.

* error:a string representing the error output that the query
produced.

* warning: an array of strings representing warnings that the
query produced.

If the query produced a data result, it will have an additional field:

* result: an array of values of some primitive type determined
by the query. This will be an array of a standard atomic type, for
example, boolean, byte, double, float, Tong, or String. This is
the mechanism for passing results of computations back to Java.

The SplusDataResult parent class contains the first four fields but
lacks the result field. The following classes inherit from the
SplusDataResult class and contain a result field that is an array of
the appropriate type:

SplusBooleanDataResult
SplusByteDataResult
SplusDoubleDataResult
SplusFloatDataResult
SplusLongDataResult
SplusStringDataResult

These are the only types presently supported in accessing the Spotfire

Calling Spotfire S+ from Java Applications

S+ analytic engine from Java. The correspondence between Java
types and Spotfire S+ types is as follows:

Table 4.2: Java and Spotfire S+ correspondence.

Java Spotfire S+
booTlean logical
byte raw
double numeric
float single
long integer
string character

You must ensure that queries produce only a single vector of one of
these primitive types. The analytic engine then automatically
constructs a data result object with a class that matches the query
result type.

If the query fails to produce a result, an SplusDataResult object is
returned that does not contain a result field. If the query returns a
more complex object than a vector, a warning message is printed to
the engine’s standard output stream and an SpTusDataResult object is
returned that does not contain a result field.

The fields in data result objects are private and are available only via
accessor methods. Hence, all data result objects include the following
methods:

public String getExpression();
public String getOutput();
public String getError();
public String [] getWarning();

public Object getData();

public boolean [] getBooleanData() throws
SplusBadDataException;

81

Chapter 4 CONNECT/Java

82

public byte [] getByteData() throws
SplusBadDataException;

public double [] getDoubleData() throws
SplusBadDataException;

public float [] getFloatData() throws
SplusBadDataException;

public lTong [] getLongData() throws
SplusBadDataException;

public String [] getStringData() throws
SplusBadDataException;

Usually, only one of the getxxxData methods returns correct data,
depending on the type of the data result that is available. If the type
of the data result available does not match the type of data requested
in the get operation, an SplusBadDataException is thrown with a
string describing the condition. For instance, suppose you are
expecting a vector of Tongs as the result of a query. Thenina
simplified situation, you would use the code:

SplusDataResult result = evalDataQuery("/* some query */");
long [] values = result.getlLongData();

Now suppose further that by some mistake your query produced a
vector of doubles instead of a vector of Tongs. Then at runtime, the
call to result.getLongData would generate an
SplusBadDataException with the string:

"long" data was requested, but existing data is "double"

Under some circumstances, you may not care initially about the type
of return data. For example, you may be constructing a collection of
result vectors which you want to store as a hash-table of Java objects.
The actual type of the data would be handled at a later time, using
Java’s instanceof operator.

For such situations, the SplusDataResult class (and its derivatives)
have the method

public Object getData();

which returns the result vector as a generic Java Object. The
getData() method returns nul1 if the object has no data and an array
of primitives otherwise. This is useful when you intend to put the
result in a Java collection object such as a Vector, rather than
immediately using the result as a primitive array of a known type.

Graph
Components

Example
Applications

Calling Spotfire S+ from Java Applications

In addition to the methods discussed above, the following boolean
methods are available to determine whether the fields of the
SplusDataResult object have non-null entries:

public boolean hasExpression();
pubTic boolean hasOutput();
public boolean hasError();
public boolean hasWarning();

The SplusDataResult class and the classes that inherit from it are
intended to form a complete set of result classes reflecting the
capabilities currently offered in interacting with the Spotfire S+
analytic engine.

The Spotfire S+ java.graph() device displays Spotfire S+ graphics
within a Java component. By calling SpTusUserApp methods, a Java
application can embed a java.graph() display component within a
Java window. Spotfire S+ graphs are then displayed in this
component by evaluating Spotfire S+ graphics commands.

Typically, Spotfire S+ allows multiple graphics devices to be open at
once, and multiple graphics devices can be opened while evaluating a
single expression. When you run the Spotfire S+ graphical user
interface, notice that these appear in different windows. Currently,
SplusUserApp only supports a single graph window embedded in a
specific JComponent.

The following SpTusUserApp method returns the JComponent
containing the graph window:
public static JComponent getGraph();

This component contains a multi-page graph display than can be
embedded within another window. The component corresponds to
the last java.graph() device that was opened. When a new
java.graph() device is opened, this graph is cleared and no longer
has any association with the previous device.

In each of the following examples we create a simple Java class that
communicates with Spotfire S+ using SplusUserApp.

In Windows, the Java code for these examples is in

$SHOME/library/winjava/examples

83

Chapter 4 CONNECT/Java

Text Output

84

and in UNIX, it is located at
$SHOME/library/example5/java

This UNIX directory also contains the file examples.jar. This file
includes the *.class files for all of the *.java files other than those that
are copies of the files for the Correlations dialog and Linear
Regression dialog in the standard Spotfire S+ Java GUI

Java requires that each class be stored in a file named by appending
.java to the class name. To run each example, perform the following
steps:

1. Create a text file containing the example. Name the file based
on the class, for example, TextOutputExample.java.

2. Compile the file using a Java compiler such as javac. This will
create a file TextOutputExample.class.

3. Start the Java application.

On UNIX, use the Splus or SplusClient script to start the
application, specifying the directory containing the class file (which
will be added to the Java classpath) and the name of the class:

Splus -userapp /user/examples TextOutputExample

SplusClient -userapp /user/examples TextOutputExample

On Windows, place the class file in a location that Java can find, as
described in section “Class Files” on page 68. Then use the java
executable to start the application:

"D:\Program Files\TIBCO\Splus81l\java\jre\bin\java"
-Dsplus.client.mode=true
-Dsplus.shome="D:\Program Files\TIBCO\Splus81"
TextOutputExample

The TextOutputExample application generates the numbers 1 to 100
and returns them formatted for printing.

import com.insightful.splus.*;

public class TextOutputExample {
public static void main(String [] args){
try {
String expression = "1:100";

Calling Spotfire S+ from Java Applications

System.out.printin("Sending expression "™ +
expression);

// Get just the text output back
SplusDataResult result =
SplusUserApp.eval(expression + "\n",
true, false, false, false, false);

System.out.printin("Result from Spotfire S+:");
System.out.printin(result.getOutput());

}

catch (Exception e){
System.out.printin(e);

}

System.exit(0);

}

Returning Values The RandomNormalExample application generates 100 random normal
values and passes them back to Java. It then prints the number of
values, first value, and last value.

import com.insightful.splus.*;

public class RandomNormalExample {
public static void main(String [] args){
try {
String expression = "rnorm(100)";

// Get just the result output back
SplusDataResult result =
SplusUserApp.eval(expression + "\n",
false, true, false, false, false);

// Get the double values. We know the Spotfire S+
function

// rnorm() returns doubles. If it did not, the
// try/catch mechanism would catch the
// SplusBadDataException.

double [] randomValues = result.getDoubleData();

85

Chapter 4 CONNECT/Java

System.out.printin("Generated " +
randomValues.length +
" random normal values.");
System.out.printin("First value: " + randomValues[0]);
System.out.printin("Last value: " +
randomValues[randomValues.length - 1]);
}
catch (Exception e){
System.out.printin(e);
}

System.exit(0);

}

Passing Values to The SplusDataResult class provides a way to get values from Spotfire
Spotfire S+ S+. We can pass values needed for a computation from Java to
Spotfire S+ in two ways.

The first way is to include the values in the string passed to
SplusUserApp.eval(). This is the simplest approach when we are
specifying a few parameters to a function, as in the previous
examples.

The other way is to store the values in static fields and have the
Spotfire S+ function query the values of these fields. The
.JavaField() function will access the field value directly.
Alternatively, we might use a .JavaMethod() call to a static method
that extracts the field value. The CorrelationExample application
uses the .JavaField() approach.

import com.insightful.splus.*;
public class CorrelationExample {
// static fields to pass values to Spotfire S+
static double [] xValue;
static double [] yValue;
// Java function calling Spotfire S+ to

// compute correlation of two double arrays.
// This can be called from other

86

Calling Spotfire S+ from Java Applications

// classes.

//

// Throw an I1legalArgumentException if x or y
// inappropriate.

// Pass on other exceptions if they are thrown.

public static double getCorrelation(double [] x,
double [] y) throws I1legalArgumentException,
SplusBadDataException {

if (x == null || x.length == 0 ||
y == null || y.length == 0)
throw (new Il1legalArgumentException(
"Argument is null or length zero."));

xValue = x;
yValue Yy

// Define the Spotfire S+ expression to use.
// Note we use \" for quotes within the expression.

String expression = "cor(" +
".JavaField(\"CorrelationExample\", " +
"\"xValue\", \"[D\", client =T)," +
".JavaField(\"CorrelationExample\", " +

"\"yValue\", \"[D\", client =T))";

SplusDataResult result =
SplusUserApp.eval(expression + "\n");

return result.getDoubleData()[0];
}

public static void main(String [] args){
// Create some double arrays and get their correlations.

double [] a
double []1 b

o
~ o~
O N
o

System.out.printin(
"Getting correlation of two double arrays.");

87

Chapter 4 CONNECT/Java

try {
double d = CorrelationExample.getCorrelation(a, b);
System.out.printin("Correlation is: " + d);

}

catch (Exception e){
System.out.printin(e);

}
System.exit(0);
}
}
Embedding The GraphButtonsExample application launches a window containing
Graphs in a a graph region and buttons that generate graphs when pressed.

Custom GUI) o
import com.insightful.splus.*;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class GraphButtonsExample {
static ActionlListener buttonActionListener;
public static void main(String [] args){

// Get the graph component
JComponent splusGraph = SplusUserApp.getGraph();

// Create the window
JFrame window = new JFrame("Graph Buttons Example™);

// Create buttons which query Spotfire S+ to
// produce graphs

buttonActionListener = new ActionlListener(){
public void actionPerformed(ActionEvent e){
String cmd = e.getActionCommand() + "\n";
try {
SplusUserApp.eval(cmd, false, false,
false, false, false);

88

Calling Spotfire S+ from Java Applications

}
catch (Exception ex) {
System.out.printin(ex);

}
}s

JPanel buttonPanel = new JPanel();
buttonPanel.setlLayout(new BoxLayout(buttonPanel,
BoxLayout.Y_AXIS));
buttonPanel.add(makeButton("plot(sin(1:10))"));
buttonPanel.add(makeButton("plot(rnorm(100))"));
buttonPanel.add(makeButton(
"print(example.normal.qq())"));
buttonPanel.add(makeButton("show colors, Tinetypes",
"{image(matrix(data=1:100,nrow=10,nco1=10));" +
"for (a in 1:50) { ang <- a*0.06; " +
"lines(c(5,5+10*cos(ang))," +
"c(5,5+10*sin(ang)), col=a) };for (a in 1:50) { " +
"ang <- -a*0.06; lines(c(5,5+10*cos(ang)), " +
"c(5,5+10*sin(ang)), Tty=a) }}"));
buttonPanel.add(makeButton(
"for (x in 1:10) plot(l:x)"));

// Create an Exit button

JButton exitButton = new JButton("Exit");
exitButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae){
System.exit(0);
}
1)

// Also exit if the window is closed by the user

window.addWindowListener(new WindowAdapter(){
public void windowClosing(WindowEvent e){
System.exit(0);
}
DK

89

Chapter 4 CONNECT/Java

Sending a JDBC
ResultSet to
Spotfire S+

90

// Add the elements to the content pane

Container contentPane = window.getContentPane();
contentPane.setlLayout(new BorderlLayout());
contentPane.add(splusGraph, BorderLayout.CENTER);
contentPane.add(buttonPanel, BorderlLayout.EAST);
contentPane.add(exitButton, BorderLayout.SOUTH);

// Show the window
window.setSize(600, 400);
window.show();

// Utility methods to create a button
private static JButton makeButton(String splusCode){
return makeButton(splusCode, splusCode);

private static JButton makeButton(String buttonName,
String splusCode){
JButton b = new JButton(buttonName);
b.setActionCommand(splusCode);
b.addActionlListener(buttonActionListener);
return b;

Java provides the JDBC standard for accessing data from a database.
In JDBC, a ResultSet represents data returned from doing a
particular query to a particular database. The ResultSetUtilities
class in the com.insightful.splus.util package provides support
for creating a Spotfire S+ data.frame from a ResultSet.

This class is used by registering a ResultSet under a particular name.
The Spotfire S+ function javaGetResultSet("name") function can
then create a data.frame containing the values in the ResultSet.

The ResuTtSetExample shows how to register and access a
ResultSet. In this example, we use a LocalResultSet object. This
is an inner class defined to make the example self-contained and is
not presented here.

import com.insightful.splus.*;

Calling Spotfire S+ from Java Applications

import com.insightful.splus.util.ResultSetUtiTities;
import java.sql.*;

import java.io.*;

import java.math.BigDecimal;

public class ResultSetExample {
public ResultSetExample() {

LocalResultSet theSet = new LocalResultSet();

// Register the ResultSet with ResultSetUtilities.
ResultSetUtilities.register("mySetId"”, theSet);

// Save ResultSet data in Spotfire S+ as "test.df".

String expr = "assign(\"test.df\",
javaGetResultSet(\"mySetId\", client =T),
where = 1)\n";

SplusDataResult result = SplusUserApp.eval(expr);

// Query Spotfire S+ to print test.df to show
// it’s there

System.out.printin("Printing test.df in
Spotfire S+.");

expr = "if (exists(\"test.df\")) print(test.df) else
print(\"test.df does not exist\")\n";

result = SplusUserApp.eval(expr, true, false, false,
false, false);
System.out.printin(result.getOutput());

public static void main(String [] args) {
new ResultSetExample();
System.exit(0);

91

Chapter 4 CONNECT/Java

Sending Multiple
Columns to Java

Transferring a
Graph to the
Client

A Simple
Application

92

The SpTlusDataResult mechanism provides access to a single vector
of values. Multiple calls to eval() can be used to retrieve multiple
columns of data from a data.frame.

Java has no direct equivalent to a data.frame. However, a collection
such as a Vector or ArrayList is available for storing multiple arrays
of data. These arrays can then be used in other Java routines, such as
writing to a database via JDBC.

The DataFrameArraylListExample shows how to create an Arraylist
containing the columns of a data. frame.

All of the file operations performed by Spotfire S+ are done on the
server file system. Often it is desirable to have a file saved on the
client file system. The FileUtilities classin
com.insightful.splus.util provides a transferBytes() function
that is useful for passing a file over file streams. Typically one file
stream will be created in the client JVM, and the other will be
obtained from the SplusSession using getFileInputStream() or
getFileOutputStream().

The TransferGraphExample shows how to create a graph on the
server and transfer it to the client.

The examples above use specific methods for the given application.
The ImageCalculatorExample combines various techniques
presented above to create an application that lets the user type in
Spotfire S+ expressions that are executed to create text and graphics
output.

INTERFACING WITH C AND
FORTRAN CODE

Overview 95
When to Use the C and Fortran Interfaces 96
When Should You Consider the C or Fortran Interface? 96
Reasons for Avoiding C or Fortran 96
Using C and Fortran Code with Spotfire S+ for
Windows 98
Calling Simple C Code from Spotfire S+ 98
Calling Simple Fortran Code from Spotfire S+ 101
Calling C Routines from Spotfire S+ for Windows 105
Calling Fortran Routines from Spotfire S+ 107
Writing C and Fortran Routines Suitable for Use
with Spotfire S+ for Windows 110
Exporting Symbols 110
Modifying Header Files 111
Building a Chapter with WatcomC/Fortran 113
Dynamically Linking Your Code 114
Common Concerns in Writing C and Fortran
Code for Use with Spotfire S+ for Windows 115
Changes in S.h 115
Handling IEEE Special Values 117
1/0 in C Functions 120
1/0 in Fortran Subroutines 120
Reporting Errors and Warnings 121
Calling Fortran From C 126
Calling C From Fortran 128
Calling Functions in the Spotfire S+ Engine DLL 128

Using C Functions Built into Spotfire S+ for Windows 130
Allocating Memory 130

93

Chapter 5 Interfacing with C and FORTRAN Code

94

Generating Random Numbers

Calling Spotfire S+ Functions from C Code
(Windows)

The .Call Interface (Windows)
Requirements
Returning Variable-Length Output Vectors
S Object Macros

Debugging Loaded Code (Windows)
Debugging C Code

A Simple Example: Filtering Data (Unix)

Calling C or Fortran Routines From Spotfire S+
for Unix

Writing C and Fortran Routines Suitable for
Use in SPOTFIRE S+ for Unix

Compiling and Dynamically Linking your Code
(Unix)

Common Concerns in Writing C and Fortran
Code for Use with Spotfire S+ for Unix

Using C Functions Built into Spotfire S+ for Unix
Calling Spotfire S+ Functions From C Code (Unix)
The .Call Interface (Unix)

Debugging Loaded Code (Unix)

A Note on StatLib (Windows and Unix)

132

134

142
142
143
144

147
147

151

153

157

158

162
174
177
184
189
192

OVERVIEW

Overview

A powerful feature of Spotfire S+ is the ability to extend its
functionality, enabling you to interface with compiled languages,
including C, Fortran, and C++. Interfaces to these languages allow
you to combine the speed and efficiency of compiled code with the
robust, flexible programming environment of Spotfire S+. Your
compiled routines are loaded into Spotfire S+ via dynamic loading,
that is, your compiled code, in the form of a dynamic link library

(DLL) on Windows” or a shared library on Unix, is loaded while
Spotfire S+ is running.

After you load the compiled routines, the .C, .Cal1, and .Fortran
functions are used to call compiled routines directly from Spotfire S+.

This chapter describes how to do the following tasks:
* Decide when and where to use compiled code.

* Write C, C++, and Fortran routines suitable for use in
Spotfire S+.

+ Create a loadable object (DLL or shared library) as part of a
Spotfire S+ chapter.

* Load the object in a Spotfire S+ session.

* Troubleshoot problems you may encounter with dynamic
loading.

* Debug your compiled code.

Each of these tasks can become quite complicated, so we begin with
an overview of when to use them and provide a simple example that
shows the basic flavor of writing, compiling, and using compiled
code.

Note

Spotfire S+ for Windows is compiled with Microsoft Visual C++ 6.0 and Compaq (formerly
Digital) Visual Fortran 6.0. TIBCO Software Inc. provides several useful enhancements that
make compiling C, C++, and Fortran code quite simple in the Visual Studio environment, so
our examples use that environment for simplicity. However, any C, C++, or Fortran compiler
capable of creating a fully relocatable DLL can be used to compile code for use with Spotfire S+.

95

Chapter 5 Interfacing with C and FORTRAN Code

WHEN TO USE THE C AND FORTRAN INTERFACES

When Should
You Consider
the C or
Fortran
Interface?

Reasons for
Avoiding C or
Fortran

96

The key to effective use of compiled code is knowing when and
where not to use such code. The following subsections provide some
criteria for deciding whether compiled code is the right choice for
your situation, and outline the basic procedure for using compiled
code in Spotfire S+.

Compiled C or Fortran code runs faster than interpreted Spotfire S+
code, but is neither as flexible nor as resilient as equivalent Spotfire
S+ code. Mismatching data types and overrunning arrays are just two
types of errors that can occur in compiled code but do not occur in
Spotfire S+ code. The best time to use compiled code is when you
have such code already written and tested. Another good time to use
compiled code is when you cannot use Spotfire S+’s vectorized
functions to solve your problem without explicit loops or recursion.
Recursion in S tends to be very memory intensive; simulations that
work for small cases may fail as the number of iterations rises. If the
iterated computation is trivial, you can realize huge performance
gains by moving that portion of the calculation to compiled code.

Except via the .Ca11 interface, compiled code deals only with data
types fixed when the code is compiled. The C and Fortran interfaces
expect only the most basic data types, which correspond in Spotfire
S+ to storage modes, which underlie the Spotfire S+ class structure
and determine how data is actually stored. In general, there is a mode
corresponding to all the basic classes, such as Togical, character,
integer, single, numeric, and complex. If your code does something
numerical, it may be fine to convert all the inputs to double precision
(class numeric) and return double precision results.

If your code rearranges data, however, you probably do not want to
change the modes of the data, so Spotfire S+ code would be better
than compiled code. The C and Fortran interfaces ignore the class of
data sets, so they are not object oriented. To work on more general
types of Spotfire S+ data objects, you can still use C code, but via the
.Cal1l interface, discussed later in this chapter. Even with .Ca11,

working with objects other than those of the simple vector types is
difficult.

When to Use the C and Fortran Interfaces

It is usually harder to develop and debug compiled code than Spotfire
S+ functions. With compiled code, you must make sure not only that
the compiled code works, but also that the Spotfire S+ function that
calls it works and is compatible with the compiled code.

Compiled code is usually not as portable as Spotfire S+ code. Other

users who would like to use your code may not have the appropriate
compilers or the compilers on other machines may not be compatible
with one another. Your code may also depend upon certain libraries

that others may not have.

A good strategy is to do as much as possible in Spotfire S+ code,
including error checking, data rearrangements, selections and
conversions, storage allocation, and input/output, and use compiled
code to do only the numerical or character string calculations
required. When developing new functions in Spotfire S+, you should
probably write the entire function in Spotfire S+ code first. Then, if
the pure Spotfire S+ version is too slow or memory intensive (and
you expect it to be used a lot), look for bottlenecks and rewrite those
parts in C.

97

Chapter 5 Interfacing with C and FORTRAN Code

USING C AND FORTRAN CODE WITH SPOTFIRE S+
FOR WINDOWS

Calling Simple
C Code from
Spotfire S+

98

Spotfire S+ for Windows is compiled with Microsoft Visual C++ 6.0
and Compaq (formerly Digital) Visual Fortran 6.0. TIBCO Software
Inc. provides several useful enhancements that make compiling C,
C++, and Fortran code quite simple in the Visual Studio
environment. Our examples will use that environment for simplicity.
However, any C, C++, or Fortran compiler capable of creating a fully
relocatable DLL can be used to compile code for use with Spotfire
S+. Later in the chapter, there is an example using the Watcom
compiler.

The basic steps for interfacing C code with Spotfire S+ using the
Visual Studio/C++ Environment on Windows are as follows:

1. Obtain C source code (write it, get someone else to write it for
you, download it from the Internet, and so on).

2. Create Visual Studio project for the source code.

3. Build the Visual Studio project to create dynamic link library
(DLL) that can be loaded into Spotfire S+.

4. Load the DLL into Spotfire S+.

5. Write a Spotfire S+ function that calls your C code via the
.Cal1 function.

6. Run your Spotfire S+ function.

The steps for calling Fortran code are essentially the same, but you
use the Visual Fortran compiler within Visual Studio.

To illustrate the steps we show how to create a function to apply a
first-order linear recursive filter to a vector of data. A pure Spotfire
S+ version of the function is seen in the following example:

Ar <- function(x, phi)
{
n <- length(x)
if (n>1)
for (i in 2:n)

Using C and Fortran Code with Spotfire S+ for Windows
x[1] <- phi * x[i - 1] + x[1i]

}

Looping is one area where Spotfire S+ tends to be significantly slower
than compiled code, so this is a good candidate for implementation in
C. (Note that the Spotfire S+ filter function will efficiently compute a
recursive filter, but for the sake of the example we will ignore that).

A C function for the filter is

void arsim(double *x, long *n, double *phi)
{
long i;
for (i=1; i<*n; i++)
x[i] = *phi * x[i-11 + x[i] ;
}
This code is purely C language code; there are no dependencies on C
libraries, Spotfire S+, or the Windows API. Such code should be

portable to most operating systems and most Windows compilers. It

is quite simple to create a DLL from this code using Visual C++ 6.0®:
1. Start Visual C++ 6.0, and from the File menu, select New.
2. From the New dialog, select the Projects tab.

3. In the Project Workspace dialog, specify ar as the name for
the project and for Project Type choose Spotfire S+

Chapter DLL (.C and .Call) (not MFCAppWizard (dll)).
Press OK to create the project.

4. In the dialog that pops up, enter the full path to the file
Sqpe.dll which is typically C:\Program
Files\TIBCO\splus81\cmd\Sqpe.dll then click the
Finished button. (The C:\Program Files\TIBCO\splus81
part of the path is the location where you installed Spotfire
S+). A New Project information dialog pops up. Note the
Project directory, ending with ar, listed at the bottom. Click
OK to close it.

5. In the left pane of Visual C++, click the File View tab (at the
bottom) and then expand the ar files folder and then the
Source Files folder.

6. Double click the ar.cxx file icon to open up the sample C++
code in the right panel.

99

Chapter 5 Interfacing with C and FORTRAN Code

100

7. Select all the code ar.cxx and delete it. Replace it with the
code for the arsim function written above.

8. Double-click the ar.def file to open up the module definitions
file in the right panel.

9. Replace the comments under the section labeled EXPORTS
with arsim and press return.

10. Save the ar.def file by selecting Save from the File menu in
Visual C++.

11. From the Build menu, choose the Rebuild All selection.
This will compile the arsim function and create a dynamic
link library (DLL) called S.dll in the project directory.

The next step is load the S.dll into Spotfire S+. There are several
ways to load the DLL. After starting Spotfire S+ you can do one of
the following:

+ Explicitly load the S.dll with the dyn.open function:
dyn.open(“__path__to__ar__/ar/S.d11”)

or declare the ar project directory a Spotfire S+ chapter and
attach it, as follows:

* Open the dialog from File » Chapters » Attach/Create
Chapter and then use the Browse button to navigate to your
ar project directory. Click the OK button. This will create a
.Data subdirectory in ar, attach the directory, and load the
S.dll into Spotfire S+.

You now need a Spotfire S+ function that calls the arsim C function.
Here is the basic version:

arC <- function(x, phi)

{

.C("arsim",
as.numeric(x),
length(x),
as.numeric(phi))[[1]]

}

We are passing in three arguments to the arsim C function and we use
as.numeric to coerce the arguments to the correct type that the C
code is expecting (the length function returns an integer).

Define the function in a Spotfire S+ Script window by pressing F10.

Using C and Fortran Code with Spotfire S+ for Windows

Try running arC at the Spotfire S+ command line:
> arC(1:8, .25)

[1I] 1.000000 2.250000 3.562500 4.890625 6.222656
7.555664 8.888916 10.222229

You lose some flexibility in the function by writing it in C. Our arcC
function converts all input data to double precision, so it will not work
correctly for complex data sets or objects with special arithmetic
methods. The pure Spotfire S+ version works for all these cases. If
complex data is important for your application, you could write C
code for the complex case and have the Spotfire S+ code decide
which C function to call. Similarly, to make arC work for data in
classes with special arithmetic methods, you could have it call the C
code only after coercing the data to class numeric, so that it could not
invoke special arithmetic methods. This might be too conservative,
however, as there could be many classes of data without arithmetic
methods which could use the fast C code.

Another approach would be to make arC a generic function for which
the default method calls the C code for numeric data. For classes with
special arithmetic methods, pure Spotfire S+ code could be
dispatched. Those classes of data without special arithmetic methods
could include a class method for arC that would coerce the data to
class numeric and invoke the default method on the now numeric
data, thus using the fast compiled code, then post-process the result if
needed (perhaps just restoring the class). Using the object-oriented
approach is more work to set up, but gives you the chance to combine
the speed of compiled code with the flexibility of Spotfire S+ code.

Note

In order to recompile an existing S.dll, detach the Spotfire S+ chapter containing the S.dll,
recompile, then reattach after the DLL is compiled. Or if you use dyn.open(), call dyn.close()
prior to compiling the code.

Calling Simple
Fortran Code
from Spotfire
S+

The basic steps for interfacing Fortran code with Spotfire S+ for
Windows are essentially the same as the steps for interfacing with C
code with Spotfire S+, but you use the Visual Fortran compiler within
Visual Studio. For the sake of consistency, we will translate the C
example in the previous section to it's Fortran equivalent.

101

Chapter 5 Interfacing with C and FORTRAN Code

102

The basics steps for Fortran are the same as the steps for C code:

L.

6.

Obtain Fortran source code (write it, get someone else to
write it for you, download it from the Internet, etc.).

Create a Visual Fortran project for the source code.

Build the Visual Fortran project to create dynamic link library
(DLL) that can be loaded into Spotfire S+.

Load the DLL into Spotfire S+.

Write a Spotfire S+ function that calls your Fortran code via
the .C function.

Run your Spotfire S+ function.

We will the same first-order linear recursive filter as we used for
above for C for implementation in Fortran. An example of Fortran
implementation for the filter is the following:

subroutine arsim(x, n, phi)

¢ inputs:
double precision x(1), phi
integer n
integer i
do 10 i =2, n
x(i) = phi * x(i-1) + x(i)
10 continue
return

end

To create a DLL from this code using Visual Fortran 6:

L.
2.
3.

Start Visual Fortran 6.0, and from the File menu, select New.
From the New dialog, select the Projects tab.

In the Project Workspace dialog, specify ar as the name for
the project and for Project Type choose Spotfire S+
Chapter DLL (.Fortran) (not MFCAppWizard (dll)). Press
OK to create the project.

In the dialog that pops up, enter the full path to the file
Sqpe.dll which is typically

C:\Program Files\TIBCO\splus81\cmd\Sqpe.dil

10.
11.

12.

Using C and Fortran Code with Spotfire S+ for Windows

then click the Finished button. (The C:\Program
Files\TIBCO\splus81 part of the path is the location where
you installed Spotfire S+). A New Project information dialog
pops up. Note the Project directory, ending with ar, listed at
the bottom. Click OK to close it.

In the left pane of Visual Fortran, click the File View tab (at
the bottom) and then expand the ar files folder.

Double-click the ar.f file icon in the Resource files folder to
open up the sample Fortran code in the right panel.

Select all the code ar.f and delete it. Replace it with the code
for the arsim routine written above.

From the Project menu choose Settings.

Select the Pre-link step tab (you may have to use the arrow
keys at the right-hand side of the dialog to navigate to the
appropriate tab).

Under Pre-link command(s), click inside the outlined box.

Type the full path to spexport.exe in your SHOME\cmd
directory, specify ar.f as the output file with the -o flag, and
specify the object files for which you want symbols exported.

An example (the following should be typed on a single line):

C:\Program Files\TIBCO\splus81l\cmd\spexport.exe

-0 ar.def *.obj
From the Build menu, choose the Build S.dll selection. This
will compile the arsim function and create a dynamic link
library (DLL) called S.dll in the project directory.

The next step is load the S.dll into Spotfire S+, and there are several
ways to load it. After starting Spotfire S+, you can do the following:

Explicitly load the S.dll with the dyn.open function:

dyn.open(“__path__to__ar__/ar/S.d11”)

or declare the ar project directory a Spotfire S+ chapter and
attach it:

103

Chapter 5 Interfacing with C and FORTRAN Code

104

Open the dialog from File » Chapters > Attach/Create
Chapter and then use the Browse button to navigate to your
ar project directory. Click the OK button, which creates a
.Data subdirectory in ar, attach the directory, and load the
S.dll into Spotfire S+.

You now need a Spotfire S+ function that calls the arsim Fortran
function. Here is the basic version:

arFor <- function(x, phi) {
.Fortran(“arsim”,
as.numeric(x),
length(x),
as.numeric(phi))[[1]]
}

We are passing in three arguments to the arsim Fortran function and
we use as.numeric to coerce the arguments to the correct type that
the Fortran code is expecting (the lengthb function returns an
integer).

Trying out the arFor:

> arFor(1:8, .25)

[1I] 1.000000 2.250000 3.562500 4.890625 6.222656
7.555664 8.888916 10.222229

The rest of this chapter includes more details on using C and Fortran
code with Spotfire S+.

Calling C Routines from Spotfire S+ for Windows

CALLING C ROUTINES FROM SPOTFIRE S+ FOR WINDOWS

To call a C function, use the Spotfire S+ function .C, giving it the
name of the function (as a character string) and one Spotfire S+
argument for each C argument. For example, a typical “vectorized”
calculation, such as sin, requires you to pass a Spotfire S+ data object
x and its length n to the C function performing the calculation:

.C("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))

we will define the C routine my_sin_vec in the section Writing C and
Fortran Routines Suitable for Use with Spotfire S+ for Windows on
page 110.

To return results to Spotfire S+, modify the data pointed to by the
arguments. The value of the .C function is a list with each component
matching one argument to the C function. If you name these
arguments, as we did in the preceding example, the return list has
named components. Your Spotfire S+ function can use the returned
list for further computations or to construct its own return value,
which generally omits those arguments which are not altered by the C
code. Thus, if we wanted to just use the returned value of x, we could
call .C as follows:

.C("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))$x.

All arguments to C routines called via .C must be pointers. All such
routines should be void functions; if the routine does return a value, it
could cause Spotfire S+ to crash. Spotfire S+ has many classes that
are not immediately representable in C. To simplify the interface
between Spotfire S+ and C, the types of data that Spotfire S+ can pass
to C code are restricted to the following Spotfire S+ classes: single,
integer, double, complex, logical, character, raw, and 1ist.

105

Chapter 5 Interfacing with C and FORTRAN Code

Table 5.1shows the correspondence between Spotfire S+ modes and

C types.

Table 5.1: Correspondence between Spotfire S+ classes and C types.
Spotfire S+ Storage Mode Corresponding C Type
“lTogical” long*

“integer” long**
“single” float**
“double” double*
“complex” s_complex*
“character” char**
“raw” char*
“Tist” S_object**

Warning

Do not declare integer data as C ints, particularly if you want your code to be portable among
machines that Spotfire S+ supports. While there is currently no difference on Windows, there is

a distinction on other platforms.

The include file S.h described later in this chapter contains the
typedef for the type s_complex that defines it as the struct composed

of two doubles, re and im.

Calling C++ To call a C++ function, you also use the .C function (or, alternatively,
the .Ca11 or Connect C++ interface, mentioned later in this chapter).
Using .C is not a direct C++ interface, and hence Spotfire S+ will
have no understanding of C++ name mangling. Thus, to call a C++
function, you must declare it inside an extern "C" braced expression.
For example, here is some simple code to compute squares:

#include "S.h"
extern "C" {

106

Calling Fortran
Routines from
Spotfire S+

Calling C Routines from Spotfire S+ for Windows

void squareC(double* pdX, double* pdY, long* pllLen)
{

S_EVALUATOR

//Validate the input arguments

if((pdX == NULL) || (pdY == NULL) || plLen == NULL)
PROBLEM "Invalid input" ERROR;

//Perform element-by-element operation

//to square each element of input

for(long n=0; n< *pllLen; n++)
pdY[n]l = pdX[n]l * pdX[n];

return;

}

In the above code, the macro S_EVALUATOR is required because we are
using the macros PROBLEM and ERROR; all three macros are discussed
later in the chapter.

We can call this with . C using the simple Spotfire S+ code shown
below:

square <- function(x){
len = length(x)
y = .C("squareC",
as.double(x),
y = double(len),
len)$y

To call a Fortran subroutine, use the Spotfire S+ function .Fortran,
giving it the name of the subroutine (as a character string) and one
Spotfire S+ argument for each Fortran argument. For example, a
typical “vectorized” calculation, such as sine, requires you to pass a
Spotfire S+ data object x and its length n to the Fortran subroutine
performing the calculation:

107

Chapter 5 Interfacing with C and FORTRAN Code

.Fortran("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))

Note

You can call only Fortran subroutines fromSpotfire S+; you cannot call Fortran functions.

108

To return results to Spotfire S+, modify the data pointed to by the
arguments. The value of the .Fortran function is a list with each
component matching one argument to the Fortran subroutine. If you
name these arguments, as we did in the preceding example, the
return list has named components. Your Spotfire S+ function can use
the returned list for further computations or to construct its own
return value, which generally omits those arguments which are not
altered by the Fortran code. Thus, if we wanted to return just the
object x, we could call .Fortran as follows:

.Fortran("my_sin_vec", x = as.double(x), n =
as.integer(length(x)))$x

Spotfire S+ has many data classes that are not representable
immediately in Fortran. To simplify the interface between Spotfire S+
and Fortran, the types of data that Spotfire S+ can pass to Fortran
code are restricted to the following Spotfire S+ storage modes:
single, integer, double, complex, logical, and character. The
following table shows the correspondence between Spotfire S+
modes and Fortran types.

Table 5.2: Correspondence between Spotfire S+ classes and C types.

Spotfire S+ Storage Mode Corresponding Fortran Type
“lTogical” LOGICAL

“integer” INTEGER

“single” REAL

Calling C Routines from Spotfire S+ for Windows

Table 5.2: Correspondence between Spotfire S+ classes and C types.

Spotfire S+ Storage Mode Corresponding Fortran Type
“double” DOUBLE PRECISION

“complex” DOUBLE COMPLEX

“character” CHARACTER(*)

Warnings

Spotfire S+ will not pass arrays of character strings to Fortran routines; only the first element.

The Fortran type DOUBLE COMPLEX (or COMPLEX*16) is a complex number made of double
precision parts; it may not be available with all Fortran compilers. It is available in the Compaq
(formerly Digital) Visual Fortran and Watcom Fortran compilers.

When passing character data to Fortran routines, the compiled code should be expecting two
arguments for each character argument passed; one for the data itself and another integer
argument giving the number of characters in the previous argument. If your compiler cannot
generate code to do this, do not pass character data to Fortran routines.

109

Chapter 5 Interfacing with C and FORTRAN Code

WRITING C AND FORTRAN ROUTINES SUITABLE FOR USE
WITH SPOTFIRE S+ FOR WINDOWS

Exporting
Symbols

110

If you have a routine for which some of the arguments are not
pointers, or which returns a value, you must write a wrapper routine
which passes all data via pointer arguments, does not return a value,
and calls the routine of interest. For example, we might have a sin
function routine written in C and declared as follows:

double sin(double x)

You cannot call this via the .C interface, because it both takes a
double-precision argument by value and returns a value. You must
write an Spotfire S+-compatible wrapper for sin() as follows, and then
load both procedures:

extern double sin() ;
void my_sin (double *x)
{
*x = sin(*x) ;
}
Since sin() does not take a vector argument, you probably want to
use the wrapper function to provide a vectorized form of it:

#include <S.h>
#include <math.h> /* to declare extern double sin() */
void my_sin_vec(double *x,long *n)
{
long i
for (i=0 ; 1 < *n ; i++)
x[1] = sin(x[1]) ;

For C and C++ code, there are two ways to ensure your symbols are
exported correctly: either via header files or through the module
definition file. Your code will generally be considered cleaner if your
header files are correctly coded; use the module definition file for
compiling code without header files (often, simple C routines that are
passed around just as . c files).

Writing C and Fortran Routines Suitable for Use with Spotfire S+ for Windows

For Fortran code, which does not have header files, you must use the
module definition file to ensure your symbols are exported correctly.
We discuss both ways to ensure symbols are exported correctly.

Note

When building a chapter with Watcom C or Fortran using CHAPTER or createChapter, all
globally accessible symbols are automatically exported.

Modifying
Header Files

In general, C and C++ functions are declared in header files. If a
project includes header files that declare, appropriately exported, all
the routines it intends to call, the built application automatically
exports all the symbols it needs.

If you change or modify a function’s definition, you also need to
update its declaration in the header file. For example, when you
create a new Spotfire S+ Chapter DLL, both a source file and its
associated header file are created for you. If you modify the template
function itself, particularly if you modify the template’s parameter
list,you need to also modify the associated header file.

Specifically, consider our ar example. When we originally create the
project, it includes a source file ar.cxx containing the function arC
function as follows:

[T ririiiirrrirririrrrrirrrrrrrrrrrrrrzi
// ar.cxx: Implementation of ar2C and ar2Call

[T iiiiiirirriirirrrirrrirrrrrrrrrrrrrrrsrsi
#include "S.h"

f##include "sconnect.h”

f#include "ar.h"

[T iirririririririrrirrrrrrrrrrrrsriy
// arC() - SPLUS-interface via .C()

//

// See Chapter 16 of the "Spotfire S+ Programmer’s Guide"
// for details on how the interface works.

// See ar.ssc for implementation of the S function

// that calls ar2C()

[T iriririrririirrirrirrrirrrrrrrrrrrrrrrrli

void arC(double* pdX, double* pdY, long* pllLen)

111

Chapter 5 Interfacing with C and FORTRAN Code

Using a Module
Definition File

112

{

S_EVALUATOR

// TODO: Replace the example codes below with your own

// code.

//Validate the input arguments

if((pdX == NULL) || (pdY == NULL) || plLen == NULL)
PROBLEM "Invalid input"™ ERROR;

//Perform element by element operation

for(long n=0; n< *pllLen; n++)
pdY[nl = pdX[nl * pdX[nl; //

//The output = the input squared

return;

}

When we pull out the definition of arC and replace it with the
definition of arsim, we need to modify the header file ar.h to remove
the reference to arC and replace it with the reference to arsim. That
is, we need to change the line in ar.c reading:

AR_DLL_API(void) arC(double*, double*, long*);
to:
AR_DLL_API(void) arsim(double*, Tong*, double*);

Updating the header file’s declarations guarantees that the compiler
and linker will export the appropriate symbols.

When you create a Visual Studio project for your C, C++, or Fortran
code, a module definition file is created automatically as part of the
process. However, the created file is typically just a stub, with no real
information about exported symbols.

To create a useful module definition file, use the program
spexport.exe included with Spotfire S+ in the cmd subdirectory of
your SHOME directory. The simplest way to do this is to make it a
standard part of your build process by including it as a pre-link step in
your project settings, as follows:

1. From the Project menu in Visual Studio, choose Settings.

2. Select the Pre-link step tab (you might have to use the arrow
keys at the right-hand side of the dialog to navigate to the
appropriate tab).

Building a
Chapter with
Watcom(/
Fortran

Writing C and Fortran Routines Suitable for Use with Spotfire S+ for Windows

3. Under Pre-link command(s), click inside the outlined box.

4. Type the full path to spexport.exe, specify an output file
using the -o flag, and specify the object files for which you
want symbols exported.

For example (the following should be typed on a single line):

c:\Program Files\TIBCO\splus81l\cmd\spexport.exe -o ar.def
*.0bj

You can also create your own module definition file by hand. To get a
list of symbols from a DLL, use the DUMPBIN utility described in the
section Listing Symbols Using DUMPBIN on page 128.

To create a module definition file for use with the Watcom compiler,
use the spexport.exe program as shown in Step 4 of the above
example, but add the -w flag. Watcom Version 11 is assumed; if you
have version 10.x, specify -w10.

If you are using Watcom C or Fortran, you can build a new chapter
for Spotfire S+ very easily as follows:

1. Ensure that the directories containing your compiler, linker,
and make utility are included in your PATH environment
variable. Ensure that your WATCOM environment variable is set
to the directory containing your Watcom compiler.

2. Ensure that the Splus.ini file located in the cmd directory
under your Spotfire S+ installation directory refers to the
correct files. The contents of the file should read as follows:

[chapter]
rules = wrules.mak
make = wmake.exe

3. From a Commands Prompt or DOS window, call the CHAPTER
utility as follows:

splus CHAPTER -d c:\myproj -m
or, from within Spotfire S+, call the createChapter function:

> createChapter("c:\\myproj"™, T)

113

Chapter 5 Interfacing with C and FORTRAN Code

Dynamically
Linking Your
Code

114

Whenever you attach a Spotfire S+ chapter containing a shared
object S.dll, including whenever you start up Spotfire S+ in such a
chapter, the shared object is opened and the code it contains is loaded
into Spotfire S+.

You can open shared objects without attaching a chapter by using the
dyn.open function. For example, if your colleague Fred has C code
you want to access from your own set of Spotfire S+ functions, you
might open Fred’s S.dll shared object as follows (assuming his files
are mapped to your H: drive):

> dyn.open("H:/mysplus/S.d11")
You can close previously opened shared objects using dyn.close:
> dyn.close("H:/mysplus/S.d11™)

If you are actively developing code, you may want to load, test,
rebuild, unload, and reload your code repeatedly during a given
Spotfire S+ session. To do this, you could use the dyn.open and
dyn.close functions described above, but you may find, especially if
you initially loaded your code automatically on startup, that
dyn.close does not completely remove the DLL from your session. A
safer and surer way to ensure that the old DLL (and all its symbols)
are unloaded before the new DLL is loaded is to call synchronize
after rebuilding the DLL. For example, if you are developing your
code in your current working chapter, you could unload and reload
the DLL with the following call:

> synchronize(l)

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

COMMON CONCERNS IN WRITING C AND FORTRAN CODE
FOR USE WITH SPOTFIRE S+ FOR WINDOWS

Changes in S.h

While the actual calls to .C and . Fortran are straightforward, you
may encounter problems loading new compiled code into Spotfire S+
and we will discuss some common problems. We also describe some
C procedures and macros which you may use to write more portable
code, to generate random numbers from C code, to call Spotfire S+
functions from your C code, to report errors, to allocate memory, and
to call Fortran procedures from C code.

In order to have access in C to most functions and macros described
below, you will have to include the header file S.h in your source
files:

fHinclude <S.h>

and make sure that you specify the %SHOME%\include include
directory in your compiler directives. That directory is specified
automatically when you create your projects using Visual C++. If you
will be using any Windows API calls in your code, so that you need to
include windows.h, include windows.h first, then S.h and any other
include files you need.

The file S.h has changed significantly since Spotfire S+ 2000; if you
have existing code that includes S.h, you may have to modify your
calls to the internal Spotfire S+ routines. In particular, most of the
calls now require the use of the macro S_EVALUATOR and an additional
argument, S_evaluator. For examples of using the newer macro and
the new argument, see the following:

+ section Using C Functions Built into Spotfire S+ for Windows
on page 130

or

+ section Using C Functions Built into Spotfire S+ for Unix on
page 174

In addition, some variables have been renamed and some routines
which previously had declarations in S.h have had their declarations
moved elsewhere. In general, these changes affect only variables and

115

Chapter 5 Interfacing with C and FORTRAN Code

routines which were previously undocumented. A new variable,
S_COMPATIBILITY, allows you to compile code that uses some of the
redefined variables. If you define S_COMPATIBILITY (before including
S.h) as follows:

ftdefine S_COMPATIBILITY 1

116

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

you obtain the old definitions of the following variables:
* TRUE, FALSE, and MAYBE (now S_TRUE, S_FALSE, and S_MAYBE);
« complex (now s_complex);
* NULL_MODE (now S_MODE_NULL);
* LGL, INT, REAL, DOUBLE, CHAR, LIST, COMPLEX, RAW;

* ANY, STRUCTURE, MAX_ATOMIC, atomic_type (IlOW S_MODE_LGL,
and so on).

Defining S_COMPATIBILITY as 10 instead of 1 adds the following old
definitions:

vector, booTean, void_fun, fun_ptr (now s_object, s_boolean,
s_void_fun, and s_fun_ptr respectively)

We recommend that you migrate any code that uses the old variable
names to use the new names, because of potential conflicts with other
applications, particularly under the Windows operating systems.

Handling IEEE Spotfire S+ handles IEEE special values such as NaN, Inf or -Inf, for
Special Values all supported numeric classes (integer, single or double).

* NaN represents the number you obtain when you divide 0 by

0.

* Inf represents the number you obtain when you divide 1 by
0.

* -Inf represents the number you obtain when you divide -1 by
0.

In addition, Spotfire S+ supports NA, which represents a missing
value: that is, a value to use when none is available. Spotfire S+
functions attempt to handle properly computations when missing
values are present in the data. Both NaN and NA are displayed as NA,
but the data values are properly kept as different values.

The .C and .Fortran functions have two arguments, the NAOK and the
specialsok argument, that you can use to specify whether your code
can handle missing values or IEEE special values (Inf and NaN),
respectively. Their default value is FALSE: if any argument to .C or
.Fortran contains an NA (or Inf or NaN), you get an error message and

117

Chapter 5 Interfacing with C and FORTRAN Code

your code is not called. To specify these arguments, you must use
their complete names, and you cannot use these names for the
arguments passed to your C or Fortran code.

Warning

The NAOK and specialsok arguments refer to all of the arguments to your compiled code. You
can allow NAs or IEEE special values in all of the arguments or none of them. Because typically
you do not want NAs for certain arguments, such as the length of a data set, you must specially
check those arguments if you use NAOK=T (or specialsok=T).

118

Dealing with IEEE special values is easily done in C as long as you
use the macros described below. It is possible, yet undocumented
here, to do the same in Fortran, but refer to your Fortran compiler
documentation for details.

It is often simplest to remove NAs from your data in the Spotfire S+
code, but is sometimes better done in C. If you allow NAs, you should
deal with them using the C macros is_na() and na_set() described
below. The arguments to.C and . Fortran cannot contain any NAs
unless the special argument NAOK is T. The following macros test for
and set NAs in your C code:

is_na(x,mode)
na_set(x,mode)

The argument x must be a pointer to a numeric type and the
argument mode must be one of the symbolic constants S_MODE_LGL
(Spotfire S+ class "1ogical"), S_MODE_INT (Spotfire S+ class
"integer"), S_MODE_REAL (Spotfire S+ class "single"),
S_MODE_DOUBLE, or S_MODE_COMPLEX, corresponding to the type x
points to: Tong, long, float, double, or complex, respectively. For
example, the following C code sums a vector of double precision
numbers, setting the sum to NA if any addends are NA:

f#finclude <S.h>
void my_sum(double *x, long *n, double *sum) {
long i;
*sum = 0 ;
for (i =0 ; i < *n ; i++)
if (is_na(&x[i], S_MODE_DOUBLE)) {
na_set(sum, S_MODE_DOUBLE);

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

break;
}
else
*sum += x[i1];
}

Use the following Spotfire S+ function to call this routine:

> my.sum <- function(x) .C("my_sum", as.double(x),
as.integer(length(x)), double(1), NAOK = T)[[3]]

Call this from Spotfire S+ as follows:
> my.sum(c(1,NA,2))

[11 NA

> my.sum(1l:4)

[1] 10

If you omit the argument NAOK=T in the call to .C, you get the
following message:

> my.sum <- function(x)

.C("my_sum", as.double(x), as.integer(length(x)),
double(1))[[3]]

> my.sum(c(1,NA,2))

Problem in .C("my_sum",: subroutine my_sum: 1 missing
value(s) in argument 1

Use traceback() to see the call stack

Warning

Both is_na() and na_set() have arguments that might be evaluated several times; therefore, do
not use expressions with side effects in them, such as na_set (&x[i++], S_MODE_DOUBLE).
Otherwise, the side effects may occur several times. The call is_na(x,mode) returns 0 if *x is not
an NA and nonzero otherwise (the nonzero value is not necessarily 1). The return value tells what
sort of value *x is: Is_NA meaning a true NA and Is_NaN meaning an IEEE not-a-number. To
assign a NaN to a value, use the alternative macro na_set3(x,mode, type), where type is either
Is_NA or Is_NaN. The macro na_set(x,mode) is defined as na_set3(x,mode,Is_NA).

119

Chapter 5 Interfacing with C and FORTRAN Code

1/0 in C
Functions

1/0 in Fortran
Subroutines

120

You can use the macros is_inf(x,mode) and inf_set(x,mode,sign)
to deal with IEEE infinities. If you allow IEEE special values, your
code should be aware that x != x is TRUE if x is a NaN. On machines
supporting IEEE arithmetic (including most common workstations),
1/0 is Inf and 0/0 is NaN without any warnings given. You must set
the .C argument specialsok to T if you want to let Spotfire S+ pass
NaNs or Infs to your C code. The call is_inf(x,mode) returns 0 if *x
is not infinite and +1 if *x is + ?, respectively. The call
set_inf(x,mode,sign) sets *x to an infinity of the given mode and
sign, where the sign is specified by the integer +1 for positive infinities
and -1 for negative infinities. Similarly, the call is_nan(x, mode)
returns 0 if *x is not a NaN and 1 if it is.

File input and output is fully supported in C code called from Spotfire
S+, but input and output directed to the standard streams STDIN,
STDOUT, and STDERR requires special handling. This special handling is
provided by the header file newredef.h, which is included when you
include S.h. For example, if you use the printf() function to add
debugging statements to your code, you must include S.h, which
includes newredef.h, to ensure that your messages appear in a
Spotfire S+ GUI window rather than simply disappear. The
newredef.h file does not support scanf(); to read user input from
the Spotfire S+ GUI, use fgets() to read a line, and then use
sscanf() to interpret the line.

Fortran users cannot use Fortran WRITE or PRINT statements because
they conflict with the I/O in Spotfire S+. Therefore, Spotfire S+
provides the following three subroutines as analogs of the Spotfire S+
cat function:

* DBLEPR Prints a double precision variable.
* REALPR Prints a real variable.
* INTPR Prints an integer variable

As an example of how to use them, here is a short Fortran subroutine
for computing the net resistance of 3 resistors connected in parallel:

SUBROUTINE RESIS1(R1, R2, R3, RC)
C COMPUTE RESISTANCES
RC =1.0/(1.0/R1 + 1.0/R2 + 1.0/R3)
CALL REALPR('First Resistance', -1, R1,1)

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

Reporting
Errors and
Warnings

C Functions

RETURN
END

The second argument to REALPR specifies the number of characters in
the first argument; the -1 can be used if your Fortran compiler inserts
null bytes at the end of character strings. The fourth argument is the
number of values to be printed.

Here is a Spotfire S+ function that calls RESIS1:

> parallel<-function(rl,r2,r3) {
.Fortran("resisl",as.single(rl),as.single(r2),
as.single(r3),as.single(0))[[4]]
}

Running parallel produces the following:

> parallel(25,35,75)

First Resistance
[1] 25
[1] 12.2093

Spotfire S+ provides two functions, stop and warning, for detecting
and reporting error and warning conditions. In most cases, you
should try to detect errors in your Spotfire S+ code, before calling
your compiled code. However, Spotfire S+ does provide several tools
to aid error reporting in your compiled code.

The include file S.h defines macros that make it easy for your C code
to generate error and warning messages. The PROBLEM and ERROR
macros together work like the Spotfire S+ function stop:

PROBLEM "format string"™, argl, ..., argn
ERROR

The PROBLEM and WARN macros together work like the warning
function:

PROBLEM "format string”, argl, ..., argn
WARN

121

Chapter 5 Interfacing with C and FORTRAN Code

The odd syntax in these macros arises because they are wrappers for
the C library function sprintf(); the PROBLEM macro contains the
opening parenthesis and the ERROR and WARN macros both start with
the closing parenthesis. The format string and the other arguments
must be arguments suitable for the printf() family of functions. For
example, the following C code fragment:

#include <S.h>
double x ;
S_EVALUATOR

if (x <= 0)

PROBLEM "x should be positive, it is %g", x
ERROR ;

is equivalent to the Spotfire S+ code:
> if (x<=0) stop(paste("x should be positive, it is", x))

Both print the message and exit all of the currently active Spotfire S+
functions calls. Spotfire S+ then prompts you to try again. Similarly,
the C code:

f#include <S.h>
double x ;
S_EVALUATOR

if (x <= 0)

PROBLEM "x should be positive, it is %g", x
WARN;

is equivalent to the Spotfire S+ code:

> if (x<=0) warning(paste("x should be positive, it is",
X))

Warning

The messages are stored in a fixed length buffer before printing, so your message must not
overflow this buffer. The buffer length is given by ERROR_BUF_LENGTH in S.h and is currently
4096 bytes. If your message exceeds this length, Spotfire S+ is likely to crash.

122

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

Fortran
Subroutines

Many of the I/0O statements encountered in a typical Fortran routine
arise in error handling-when the routine encounters a problem, it
writes a message.

A previous section proposed using DBLEPR, REALPR, and INTPR for any
necessary printing. An alternative approach in Spotfire S+ is to use
the Fortran routines XERROR and XERRWV for error reporting, in place of
explicit WRITE statements. For example, consider again the Fortran
routine RESIS1, which computes the net resistance of 3 resistors
connected in parallel. A check for division by 0 is appropriate, using
XERROR:

SUBROUTINE RESIS1(R1, R2, R3, RC)

C COMPUTE RESISTANCES
IF (Rl .EQ. 0 .OR. R2 .EQ. O .OR. R3 .EQ. 0) THEN
CALL XERROR(’Error : division by 0’
+LEN(’Error : division by 0°),99,2)
RETURN
END IF
RC =1.0/(1.0/R1 + 1.0/R2 + 1.0/R3)
CALL REALPR(’First Resistance’, -1, R1,1)

RETURN
END

XERROR takes four arguments: a character string message, an integer
giving the length of the string in message, an error number (which
must be unique within the routine), and an error level. If message is a
quoted string, the length-of-message argument can be given as
LEN(message).

The XERRWV routine acts like XERROR but also allows you to print two
integer values, two real values, or both.

The first four arguments to XERRWV, like the first four arguments to
XERROR, are the message, the message length, the error ID, and the
error level. The fifth and eighth arguments are integers in the range 0-
2 that indicate, respectively, the number of integer values to be
reported and the number of real (single precision) values to be
reported. The sixth and seventh arguments hold the integer values to
be reported, the ninth and tenth arguments hold the real values to be
reported.

123

Chapter 5 Interfacing with C and FORTRAN Code

In the following call to XERRWV, the fifth argument is 1, to indicate that
one integer value is to be reported. The sixth argument says that n is
the integer to be reported:

XERRWV(MSG, LMSG,1,1,1,n,0,0,0.0,0.0)

The following Fortran subroutine, test.f, shows a practical
application of XERRWV:

subroutine test(x, n, ierr)

real*8 x(1)

integer n, ierr, LMSG

character*100 MSG

ierr =0

if (n.1t.3) then
MSG ='Integer (I1) should be greater than 2°'
LMSG = len('Integer (I1) should be greater than 2°'
CALL XERRWV(MSG,LMSG,1,1,1,n,0,0,0.0,0.0)
ierr =1
return

endif

do 10 i =2, n

10 x(1) = x(1) + x(i)
return
end

> .Fortran("test", as.double(1:2), length(1l:2),
as.integer(1))

[[1]1]:
[111 2
[[2]1]:
[1] 2

Warning messages:

1: Integer (I1) should be greater than 2 in:
.Fortran("test",

2: in message above, il=2 in:
.Fortran("test",

The error message is duplicated because our Spotfire S+ code
interprets the error status from the Fortran. The messages issued by
XERROR and XERRWV are stored in an internal message table. Spotfire

124

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

S+ provides several functions you can use to manipulate this message
table within functions that call Fortran routines using XERROR and
XERRWV:

* xerror.summary prints out the current state of the internal
message summary table, listing the initial segment of the
message, the error number, the severity level, and the
repetition count for each message.

* xerror.clear clears the message table. This function takes an
optional argument, doprint. If doprint=T, the message table
is printed before it is cleared.

* xerror.maxpr limits the number of times any one message is
queued or printed. The default is 10.

For example, we can write a Spotfire S+ test function to take
advantage of these functions as follows:

test <- function(x)
{
xerror.clear()
val <- .Fortran("test",
as.double(x),
length(x),
ierr = integer(1l))
if(options()$warn == 0)
xerror.summary ()
val[[1]]1[1]
}

Calling it as before (after setting the option warn to 0) yields the
following result:

> test(1:2)

error message summary

message start nerr level count
Integer (I1) should be greater than 2 1 1 1
other errors not individually tabulated = 0

[111

Warning messages:
1: Integer (I1) should be greater than 2 in:
.Fortran("test",

125

Chapter 5 Interfacing with C and FORTRAN Code

Calling Fortran
From C

126

2: in message above, il = 2 in:
.Fortran("test",

See the xerror help file for more information on the Spotfire S+
functions used with XERROR, and the XERROR help file for more
information on XERROR and XERRWV.

Spotfire S+ contains a few C preprocessor macros to help smooth
over differences between machines in how to call C code from
Fortran and vice versa. The following macros are needed to allow
distinctions between the declaration, definition, and invocation of a
Fortran common block or Fortran subroutine (coded in either C or
Fortran):

Table 5.3: Fortran macros to call from C.

Macro Name Description

F77_NAME Declaration of a Fortran subroutine.
F77_SUB Definition of a Fortran subroutine.
F77_CALL Invocation of a Fortran subroutine.
F77_COMDECL Declaration of a Fortran common block.
F77_COM Usage of a Fortran common block.

As an example of the proper use of the F77 macros, consider the
following example C code fragment:

/* declaration of a common block defined in Fortran */
extern long F77_COMDECL(Forblock)[100];

/* declaration of a subroutine defined in Fortran */
void F77_NAME(Forfun)(double *, Tong *, double *);

/* declaration of a function defined in C, callable by
* Fortran */
double F77_NAME(Cfun)(double *, Tong *);

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

/* usage of the above common block */
for (i = 0; i < 100; i++) F77_COM(Forblock)[i]l = 0;

/* invocation of the above functions */
F77_CALL(Forfun)(sl, nl, result);
if (F77_CALL(Cfun)(s2, n2) < 0.0)

/* definition of the above ’callable by Fortran’ function
*/

double F77_SUB(Cfun)(double *weights, long
*number_of_weights);

If you are loading code originally written for a specific UNIX
compiler (including some submissions to StatLib), you may find that
that code does not compile correctly in Windows because not all of
these macros are used. Usually, such code does not use the F77_CALL
macro to invoke the functions (using F77_SUB instead), does not use
the F77_COMDECL macro to declare the Fortran common block (using
F77_COM instead), and leaves out the F77_NAME macro altogether. If
you attempt to load such code without substituting F77_CALL for
F77_SUB at the appropriate places, you get compilation errors such as
the following:

xxx.c(54): Error! E1063: Missing operand
xxx.c(54): Warning! W11l: Meaningless use of an expression
xxx.c(54): Error! E1009: Expecting ’;’ but found ’fortran’

Similarly, if you attempt to statically load code without substituting
F77_COMDECL for F77_COM where appropriate, you get a link error such
as the following:

file xxx.obj(xxx.c): undefined symbol Forblock

Finally, if you attempt to statically load code without using F77_NAME
to declare the subroutine, you get a link error of the following form:

file xxx.obj(xxx.c): undefined symbol Cfun

127

Chapter 5 Interfacing with C and FORTRAN Code

Fortran passes all arguments by reference, so a C routine calling
Fortran must pass the address of all the arguments.

Warning

Fortran character arguments are passed in many ways, depending on the Fortran compiler. It is
impossible to cover up the differences with C preprocessor macros. Thus, to be portable, avoid
using character and logical arguments to Fortran routines which you would like to call from C.

Calling C From
Fortran

Calling
Functions in
the Spotfire S+
Engine DLL

Listing Symbols
in Your DLL

Listing Symbols
Using DUMPBIN

128

You cannot portably call C from Fortran without running the Fortran
though a macro processor. You need a powerful macro processor like
m4 (and even m4 cannot do all that is needed) and then your code
does not look like Fortran any more. We can give some guidelines:

+ Try not to do it.

+ To be portable, do not use logical or character arguments (this
applies to C-to-Fortran calls as well) because C and Fortran
often represent them differently.

If your DLL calls internal Spotfire S+ functions, you will need an
import library from the Spotfire S+ engine, Sqpe.dll, to resolve those
calls. When you install Spotfire S+, you install import libraries, all
named Sqpe.lib created with Microsoft Visual C++ Version 6 and
Watcom 10.5. If you are using one of these compilers, you are all set.
If you are not using one of those compilers, the import libraries might
not work with your compiler.

When you load a DLL with dyn.open or by attaching the chapter that
contains it, all its exported symbols are immediately accessible via the
functions .C, .Fortran, and .Ca11. If Spotfire S+ complains that a
symbol is not in its load table, most likely the symbol is not properly
exported (for instance, because it includes C++ name mangling). To
help solve such problems, many compilers offer utilities to help you
list symbols exported from a DLL.

If you have Visual C++, you can use the DUMPBIN utility to view a list
of exported symbols in your DLL. You run the DUMPBIN utility from a
command prompt, as follows:

DUMPBIN /exports [/out:filename] dlTname

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

The /exports switch tells DUMPBIN to report all exported symbols; the
optional /out switch allows you to specify a file name for DUMPBIN’s
output. (This is very useful if your DLL exports a lot of symbols.)

For example, to view the symbols exported from the S.dll in our
examples directory, we can use DUMPBIN as follows:

E:\splusé6\library\examples\>dumpbin /exports S.d11
Microsoft (R) COFF Binary File Dumper Version 6.00.8447
Copyright (C) Microsoft Corp 1992-1998. Al11 rights
reserved.

Dump of file S.dl1
File Type: DLL
Section contains the following exports for S.d11

0 characteristics
3B385498 time date stamp Tue Jun 26 02:23:36 2001
0.00 version

1 ordinal base

3 number of functions

3 number of names 0 3

number of functions
3 number of names

ordinal hint RVA name
1 0 00001000 quantum
2 1 000010EOQ randu
3 2 00001130 zero_find
Summary
1000 .data
1000 .rdata
1000 .reloc
5000 .text

As expected, there are only three exported symbols in this DLL. If we
are obtaining a DLL compiled by someone else, DUMPBIN /exports
might be an essential part of using the DLL.

129

Chapter 5 Interfacing with C and FORTRAN Code

USING C FUNCTIONS BUILT INTO SPOTFIRE S+ FOR
WINDOWS

In the previous section, we introduced a number of routines built into
Spotfire S+ with the purpose of avoiding certain difficulties in
compiling code and generating useful output. This section describes
some more generally useful routines that can help you allocate
memory as Spotfire S+ does or generate random numbers.

For a more general interface to Spotfire S+ routines and objects, see

Chapter 3, CONNECT/C++.

Allocating Spotfire S+ includes two families of C routines for storage allocation

M emory and reallocation. You can use either of these families, or use the
standard library functions malloc(), calloc(), realloc(), and
free().

However, be very careful to use only one family for any particular
allocation; mixing calls using the same pointer variable can be
disastrous. The first Spotfire S+ family consists of the two routines
S_alloc() and S_realloc(), which may be used instead of the
standard malloc() and realloc(). The storage they allocate lasts
until the current evaluation frame goes away (at the end of the
function calling . C). If space cannot be allocated, S_alloc() and
S_realloc() perform their own error handling; they will not return a
NULL pointer. You cannot explicitly free storage allocated by
S_alloc() and S_realloc(), but you are guaranteed that the storage
is freed by the end of the current evaluation frame. (There is no
S_free() function, and using free() to release storage allocated by
S_alloc() might cause Spotfire S+ to crash.) S_alloc() and
S_realloc() are declared a bit differently from mal1oc() and
realloc(). (However, S_alloc has many similarities to calloc(). For
example, it zeroes storage and has two sizing arguments). S_alloc()
is declared as follows in S.h:

char * S_alloc(long n, int size);
Similarly, S_realloc() is declared as follows in S.h:
char * S_realloc(char *p, long new, long old, int size,

s_evaluator *S_evaluator);

130

Using C Functions Built into Spotfire S+ for Windows

S_alloc() allocates (and fills with Os) enough space for an array of n
items, each taking up size bytes. For example, the following call
allocates enough space for ten doubles:

S_EVALUATOR

S_alloc(1l0, sizeof(double), S_evaluator)

The macro S_EVALUATOR is required to properly declare the
S_evaluator argument. S_realloc() takes a pointer, p, to space
allocated by S_alloc() along with its original length, old, and size,
size, and returns a pointer to space enough for new items of the same
size. For example, the following expands the memory block size
pointed to by p from 10 doubles to 11 doubles, zeroing the 11th
double location:

S_EVALUATOR

S_realloc(p,11,10, sizeof(double), S_evaluator)

The contents of the original vector are copied into the beginning of
the new one and the trailing new entries are filled with zeros. You
must ensure that old and size were the arguments given in the call to
S_alloc()(or a previous call to S_realloc()) that returned the
pointer p. The new length should be longer than the old. As a special
case, if p is a NULL pointer (in which case o1d must be 0L), then
S_realloc() acts just like S_alloc().

The second Spotfire S+ family of allocation routines consists of the
three macros Calloc(), Realloc(), and Free(). (Note the
capitalization.)

Calloc() and Realloc() are simple wrappers for calloc() and
realloc() that do their own error handling if space can not be
allocated (they will not return if the corresponding wrapped function
returns a NULL pointer). Free() is a simple wrapper for free() that

131

Chapter 5 Interfacing with C and FORTRAN Code

sets its argument to NULL. As with calloc(), realloc(), and free(),
memory remains allocated until freed. This may be before or after the
end of the current frame.

Warning

If youuse malloc() or realloc() directly, you must free the allocated space with free().
Similarly, when using Calloc() or Realloc(), you must free the allocated space with Free().
Otherwise, memory will build up, possibly causing Spotfire S+ to run out of memory
unnecessarily. However, be aware that because S processing may be interrupted at any time (for
example, when the user presses the interrupt key, or if further computations encounter an error
and dump), it is sometimes difficult to guarantee that the memory allocated with malloc() or
realloc() (or Calloc() or Realloc()) is freed.

Note

If,in a call to S_alloc(), S_realloc(), Calloc() or Realloc(), the requested memory allocation
cannot be obtained, those routines call ERROR. See the section Reporting Errors and Warnings on
page 121 for more information on the ERROR macro.

Generating Spotfire S+ includes user-callable C routines for generating standard
Random uniform and normal pseudo-random numbers. It also includes
procedures to get and set the permanent copy of the random number
generator’s seed value. The following routines each return one
pseudo-random number:

Numbers

double unif_rand(S_evaluator *S_evaluator);
double norm_rand(S_evaluator *S_evaluator);

Before calling either function, you must get the permanent copy of
the random seed from disk into Spotfire S+ (which converts it to a
convenient internal format) by calling seed_in((Tong *)NULL,
S_evaluator *S_evaluator). You can specify a particular seed using
setseed(long *seed, S_evaluator *S_evaluator), which is
equivalent to the Spotfire S+ function set.seed. When you are
finished generating random numbers, you must push the permanent
copy of the random seed out to disk by calling seed_out((1ong
*)NULL, S_evaluator *S_evaluator).If you do not call seed_in()

132

Using C Functions Built into Spotfire S+ for Windows

before the random number generators, they fail with an error
message. If you do not call seed_out () after a series of calls to
unif_rand() or norm_rand(), the next call to seed_in() retrieves the
same seed as the last call and you get the same sequence of random
numbers again.

The seed manipulation routines take some time so we recommend
calling seed_in() once, then calling unif_rand() or norm_rand() as
many times as you need to, then calling seed_out () before returning
from your C function. A simple C function to calculate a vector of
standard normals is implemented as follows:

fHinclude <S.h>

my_norm(double *x, long *n) {

S_EVALUATOR

long i;

seed_in((long *) NULL, S_evaluator);

for (i=0 ; i<*n ; i++)

x[i] = S_DOUBLEVAL(norm_rand(S_evaluator));
seed_out((long *) NULL, S_evaluator);

}

To call it from Spotfire S+, define the function my.norm as follows:

> my.norm <- function(n)
.C("my_norm", double(n), as.integer(n))[[1]]

Of course, it is simpler and safer to use the Spotfire S+ function rnorm
to generate a fixed number of normal variates to pass into an analysis
function. We recommend that you generate the random variates in C
code only when you cannot tell how many random variates you need,
as when using a rejection method of generating nonuniform random
numbers.

Warning

Because of possible differences in the way Microsoft Visual C++ and other compilers
(particularly Watcom C/C++) handle return values from floating point functions, the example
above uses the S_DOUBLEVAL macro (defined when S.h is included). The S_DOUBLEVAL or
S_FLOATVAL macros, defined in compiler.h, may be needed when calling floating point
functions internal to Spotfire S+ from DLLs compiled with other non-Microsoft compilers; see
the section Calling Functions in the Spotfire S+ Engine DLL on page 128.

133

Chapter 5 Interfacing with C and FORTRAN Code

CALLING SPOTFIRE S+ FUNCTIONS FROM C CODE

(WINDOWS)

134

To this point, we have shown how to call C and Fortran routines from
Spotfire S+ functions. You can also call Spotfire S+ functions from C
code, using the supplied C routine cal1_S(). The cal1_S() routine is
useful as an interface to numerical routines which operate on C or
Fortran functions, but it is not a general purpose way to call Spotfire
S+ functions. The C routine calling cal1_S() must be loaded into
Spotfire S+, the arguments to the function must be simple, and the
nature of the output must be known ahead of time. Because of these
restrictions, cal1_S() cannot be used to call Spotfire S+ functions
from an independent C application, as you might call functions from
a subroutine library.

For a more general interface to Spotfire S+ routines and objects, see

Chapter 3, CONNECT/C++.

The C function cal1_S() calls a Spotfire S+ function from C, but
cal1_S() must be called by C code called from Spotfire S+ via .C.
The cal1_S() function has the following calling sequence:

call_S(void *func, Tong nargs, void **arguments,
char **modes, long *lengths, char **names,
long nres, void **results);

where:

* func is a pointer to a list containing one Spotfire S+ function.
This should have been passed via an argumentina .C call, as
follows:

.C("my_c_code",list(myfun))
This calls C code starting with the following lines:

my_c_code(void **Sfunc) {

call_S(*Sfunc, ...);

Calling Spotfire S+ Functions from C Code (Windows)

The Spotfire S+ function must return an atomic vector or list
of atomic vectors.

* nargs is the number of arguments to give to the Spotfire S+
function func.

* arguments is an array of nargs pointers to the data being
passed to func. These can point to any atomic type of data,
but must be cast to type void* when put into arguments.

* modes is an array of nargs character strings giving the Spotfire
S+ names, for example, "double" or "integer", of the modes
of the arguments given to func.

* lengths is an array of nargs longs, giving the lengths of the
arguments.

* names is an array of nargs strings, giving the names to be used
for the arguments in the call to func. If you do not want to call
any arguments by name, names may be (char **)NULL; if you
do not want to call the ith argument by name, names[i] may
be (char *)NULL.

* nres is the maximum number of components expected in the
list returned by func (if func is expected to return an atomic
vector, then nres should be 1).

* resultsisfilled in by cal1_S(); it contains generic pointers to
the components of the list returned by func (or a pointer to
the value returned by func if the value were atomic).

Your C code calling cal1_5S() should cast the generic pointers to
pointers to some concrete type, like f1oat or int, before using them.
If func returns a list with fewer components than nres, the extra
elements of results are filled with NULLs. Notice that cal1_S() does not
report the lengths or modes of the data pointed to by results; you
must know this a priori.

To illustrate the use of cal1_S(), we construct (in Fortran) a general
purpose differential equation solver, heun(), to solve systems of
differential equations specified by a Spotfire S+ function. Other
common applications involve function optimization, numerical
integration, and root finding.

The heun() routine does all its computations in single precision and
expects to be given a subroutine of the following form:

135

Chapter 5 Interfacing with C and FORTRAN Code

136

f(t, y, dydt)

where the scalar t and vector y are given, and the vector dydt, the
derivative, is returned. Because the f () subroutine calls the Spotfire
S+ function, it must translate the function’s argument list into one that
call_S() expects. Because not all the data needed by cal1_S can be
passed into f() via an argument list of the required form, we must
have it refer to global data items for things like the pointer to the
Spotfire S+ function and the modes and lengths of its arguments. The
following file of C code, dfeq.c, contains a C function () to feed to
the solver heun(). It also contains a C function dfeq() which
initializes data that f () uses and then calls heun() (which repeatedly
calls f()):

f#include <S.h>
extern void F77_NAME(heun)();
/* pointer to Splus function to be filled in */
static void *Sdydt ;
/* descriptions of the functions’s two arguments */
static char *modes[] = {"single", "single" };
static long lengths[] = {1, 0 };

/* neqn = lengths[1] to be filled in */
static char *names[] = { "t", "y" };

/*
t [inputl: 1 long ; y [input]: neqgn long ;
yp [output]: negn Tong
*/
static void f(float *t, float *y, float *yp) {
void *in[2] ; /* for two inputs to Splus function,
t and y */
void *out[1l] ; /* for one output vector of
Splus function */

int i;

in[0] = (void *)t;

in[1] = (void *)y;

call_S(Sdydt, 2L,
in, modes, Tlengths, names, /* 2 arguments */
1L, out/* 1 result */);

/* the return value out must be 1 Tong - i.e., Splus

Calling Spotfire S+ Functions from C Code (Windows)

function must return an atomic vector or a Tist of one

atomic vector. We can check that it is at Teast 1 long.

if (lout[01)
PROBLEM
"Splus function returned a 0 long Tist"
RECOVER(NULL_ENTRY);

/* Assume out[0] points to Tengths[1] single precision
numbers. We cannot check this assumption here. */
for(i=0;i<lengths[1];i++)
yp[il = ((float *)out[01)[i] ;
return ;

}

/* called via .C() by the Splus function dfeq(): */
void dfeq(void **Sdydtp, float *y, long *neqn,
float *t_start, float *t_end, float *step,
float *work) {
/* Store pointer to Splus function and
number of equations */
Sdydt = *Sdydtp ;

/* call Fortran differential equation solver */

*/

F77_CALL(heun)(f, neqn, y, t_start, t_end, step, work);

Warning

In the C code, the value of the Spotfire S+ function was either atomic or was a list with at least
one atomic component. To make sure there was no more than one component, you could look

for two values in results and make sure that the second is a null pointer.

The following Spotfire S+ function, dfeq, does some of the
consistency tests that our C code could not do (because cal1_s did
not supply enough information about the output of the Spotfire S+
function). It also allocates the storage for the scratch vector. Then it
repeatedly calls the C routine, dfeq(), to have it integrate to the next
time point that we are interested in:

> dfeq <- function(func, y , t0 =10, t1 =1, nstep = 100,

stepsize = (t1-t0)/nstep)

137

Chapter 5 Interfacing with C and FORTRAN Code

138

{

}

if (length(func) !=3 ||
any(names(func) !I= c("t","y", "")))
stop("arguments of func must be called t and y")
y <- as.single(y)
t0 <- as.single(t0)
neqn <- length(y)
test.val <- func(t = t0, y =y)
stop("y and func(t0,y) must be same Tength")
if(storage.mode(test.val) != "single")
stop("func must return single precision vector")
val <- matrix(as.single(NA), nrow = nstep + 1,
ncol = negn)
vall[l, 1 <-y
time <- as.single(t0 + seq(0, nstep) * stepsize)
for(i in l:nstep) {
valli + 1, 1 <- .C("dfeq"™, list(func), y=valli, 1,
neqn=as.integer(neqgn),
t.start=as.single(time[i]),
t.end=as.single(time[i + 11),
step=as.single(stepsize),
work=single(3 * neqn))s$y
}
list(time=time, y=val)

The following subroutine is the Fortran code, heun.f, for Heun’s
method of numerically solving a differential equation. It is a first
order Runge-Kutta method. Production quality differential equation
solvers let you specify a desired local accuracy rather than step size,
but the code that follows does not:

OO OO0

Heun’s method for solving dy/dt=f(t,y),
using step size h :

kI = h f(t,y)

k2 = h f(t+h,y+kl)

ynext =y + (kl+k2)/2

subroutine heun(f, neqgn, y, tstart, tend, step, work
integer neqgn

real*4 f, y(neqn), tstart, tend, step, work(negn,3)
work(1l,1) is k1, work(1l,2) is k2, work(1,3) is y+kl

10

20
30

Calling Spotfire S+ Functions from C Code (Windows)

integer i, nstep, istep
real*4 t
external f
nstep = max((tend - tstart) / step, 1.0)
step = (tend - tstart) / nstep
do 30 istep = 1, nstep

t = tstart + (istep-1)*step

call f(t, y, work(1l,1))

do 10 i = 1, negn

work(i,1) = step * work(i,1)
work(i,3) = y(i) + work(i,1)

continue
call f(t+step, work(1l,3), work(1l,2))
do 20 i = 1, negn

work(i,2) = step * work(i,2)

y(i) = y(i) + 0.5 * (work(i,1) + work(i,2))
continue
continue
return
end

To try out this example of cal1_S, exercise it on a simple one
dimensional problem as follows:

> graphsheet()

> a <- dfeq(function(t,y)t”2, t0=0, t1=10, y=1)
> plot(a$time,asy)

> lines(a$time, a$time~3/3+1) # compare to

Jtheoretical solution

You can increase nstep to see how decreasing the step size increases

the accuracy of the solution. The local error should be proportional to
the square of the step size and when you change the number of steps
from 100 to 500 (over the same time span) the error does go down by
a factor of about 25. An interesting three-dimensional example is the
Lorenz equations, which have a strange attractor:

> chaos.func<-function(t, y) {

as.single(c(10 * (y[2] - y[11),
- y[11 * y[31 + 28 * y[1] - y[2],
y[11 * y[2] - 8/3 * y[31))

139

Chapter 5 Interfacing with C and FORTRAN Code

> b <- dfeq(chaos.func, y=c(5,7,19), t0=1, tl=10,
nstep=300)

> b.df <- data.frame(b$time,b$y)

> pairs(b.df)

246 810
-20 0 10 20

The resulting plot is shown in Figure 5.1.
3R et egcRed
4 @msc%ogﬁ"m 00 0 @ 008 "% oﬁgﬁgy‘)oc ®@ol

@
@0 8830 ®0® 03%5 B g 20 000 0@
1 ®RE @808 @5 5.2 020 00 l o
i @08, @R XYoo
b.time i B30 50
ﬁ&: 90 8%0
1 * @808 0% 00 ptoo0® oo | @, S BRI, o ool
P 08009 0V ® 0;?81%’025 0gomo
9 SFRw) %&] 99 8 oo Fev
R Bobsm 303 808 @

=
N
0
o
0
8 re
o
0
o
B
= 5
. 3 ° L
¥ %5 & 8% >
° o ?
o]83c ca8dcs T8l I
Dl R0 0 0BRD 0 oN®V O
9 o 93984800 B o Q0
039000 99700303 % % 05808
0808 9 %% 90003 %
o
8—3%%00 g%oo —
% %
o] I

Figure 5.1: Viewing the Lorenz equations, as solved by dfreq.

140

Calling Spotfire S+ Functions from C Code (Windows)

Warnings

Because cal1_S does not describe the output of the Spotfire S+ function it calls, you must know
about it ahead of time. You can test the function for a variety of values before calling cal1_S to
check for gross errors, but you cannot ensure that the function will not return an unacceptable
value for certain values of its arguments.

The cal1_S function expects that the output of the function given to it has no attributes. If it
does have attributes, such as dimensions or names, they are stripped.

141

Chapter 5 Interfacing with C and FORTRAN Code

THE .CALL INTERFACE (WINDOWS)

Requirements

142

The .Cal1 interface is a powerful interface that allows you to
manipulate Spotfire S+ objects from C code. It is more efficient than
the standard . C interface, but because it allows you to work directly
with Spotfire S+ objects, without the usual Spotfire S+ protection
mechanisms, you must be careful in programming with it to avoid
memory faults and corrupted data.

The .Cal11 interface provides you with several capabilities the
standard . C interface lacks, including the following:

* The ability to create variable-length output variables, as
opposed to the pre-allocated objects the .C interface expects
to write to.

* A simpler mechanism for evaluating Spotfire S+ expressions
within C.

* The ability to establish direct correspondence between C
pointers and Spotfire S+ objects.

The .Ca11 interface is also the point of departure for using
CONNECT/C++, a powerful suite of C++ classes and methods to
give C++ programmers access to Spotfire S+ objects and methods.
See Chapter 3, CONNECT/C++, for more information.

To use the .Cal1 interface, you must ensure your code meets the

following requirements L

* The return value and all arguments have C type
"s_object *".

* The code must include the standard Spotfire S+ header file
S.h.

* If the routine deals with Spotfire S+ objects, it must include a
declaration of the evaluator using the macro S_EVALUATOR,
appearing in the declaration part of the routine and not
followed by a semicolon.

1. Chambers, .M. (1998) Programming with Data. New York:
Springer-Verlag. p. 429.

Returning
Variable-
Length Output
Vectors

The . Call Interface (Windows)

As with .C, the required arguments to .Ca11 include the name of the
C routine being called and one argument for each argument to the C
routine.

Occasionally, we do not know how long the output vector of a
procedure is until we have done quite a bit of processing of the data.
For example, we might want to read all the data in a file and produce
a summary of each line. Until we have counted the lines in the file, we
do not know how much space to allocate for a summary vector.
Generally, .C passes your C procedure a pointer to a data vector
allocated by your Spotfire S+ function so you must know the length
ahead of time. You could write two C procedures: one to examine the
data to see how much output there is and one to create the output.
Then you could call the first in one call to .C, allocate the correct
amount of space, and call the second in another call to .C. The first
could even allocate space for the output vector as it is processing the
input and have the second simply copy that to the vector allocated by
your Spotfire S+ function.

With the .Ca11 interface, however, you can create the desired
Spotfire S+ object directly from your C code.

Here is an example which takes a vector x of integers and returns a
sequence of integers, of length max(x):

f#include "S.h"
s_object *makeseq(s_object *sobjX)
{
S_EVALUATOR
long i, n, xmax, *seq, *X ;
s_object *sobjSeq ;

/* Convert the s_objects into C data types: */
sobjX = AS_INTEGER(sobjX) ;
x = INTEGER_POINTER(sobjX) ;
n = GET_LENGTH(sobjX) ;

/* Compute max value: */
xmax = x[0] ;
if(n > 1) {
for(i=1l; i<n; i++) {
if(xmax < x[i]) xmax = x[i] ;

143

Chapter 5 Interfacing with C and FORTRAN Code

}
}
if(xmax < 0)
PROBLEM "The maximum value (%1d) is
negative.", xmax ERROR ;

/* Create a new s_object, set its length and get a C integer
pointer to it */

sobjSeq = NEW_INTEGER(OQ) ;

SET_LENGTH(sobjSeq, xmax) ;

seq = INTEGER_POINTER(sobjSeq) ;

for(i=0; i<xmax; i++) {
seq[il =i + 1 ;

return(sobjSeq) ;

Use the following Spotfire S+ code to call makeseq():

"makeseq" <-
function(x)
{
x <- as.integer(x)
.Call("makeseq™, x)

}
i e makeseq example has several interesting features, but perhaps the
S Object The mak pleh l interesting features, but perhaps th
Macros most useful is its extensive use of S object macros. These macros are

defined when you include S.h, and allow you to create, modify, and
manipulate actual Spotfire S+ structures from within your C code.
There are five basic macros, each of which is implemented
particularly for the basic data types listed in Table 5.1. These macros
are described in Table 5.4. To obtain the full name of the desired
macro, just substitute the basic data type from Table 5.1 in ALLCAPS
for the word type in the macro name given in Table 5.4. Thus, to
create a new numeric Spotfire S+ object, use the macro NEW_NUMERIC.

144

Evaluating
Spotfire S+
Expressions from
C

The . Call Interface (Windows)

Table 5.4: S object macros

Macro Description

NEW_type(n) Create a pointer to an S object of class fype and
length n.

AS_type(obj) Coerce obj to an S object of class Zype.

IS_type(obj) Test whether obj is an S object of class Zype.

type_POINTER(obj) | Create a pointer of type #ypeto the data part of
obj.

type_VALUE(obj) Returns the value of obj, which should have
length 1.

The makeseq code uses the AS_INTEGER macro to coerce the sobjX
object to type INTEGER; the NEW_INTEGER macro to create the returned
sequence object; and the INTEGER_POINTER macro to access the data
within those objects.

The makeseq code also uses built-in macros for getting and setting
basic information about the S objects: in addition to the GET_LENGTH
and SET_LENGTH macros used in makeseq, there are also GET_CLASS
and SET_CLASS macros to allow you to obtain class information about
the various S objects passed into your code.

You can evaluate a Spotfire S+ expression from C using the macros
EVAL and EVAL_IN_FRAME. Both take as their first argument a Spotfire
S+ object representing the expression to be evaluated; EVAL_IN_FRAME
takes a second argument, n, representing the Spotfire S+ frame in
which the evaluation is to take place.

For example, consider the internal C code for the Tapply function,
which was first implemented by John Chambers in his book
Programming with Data:

f#Hinclude "S_engine.h"
/* See Green Book (Programing with Data by J.M. Chambers)
appendix A-2 */

145

Chapter 5 Interfacing with C and FORTRAN Code

s_object *
S_qapply(s_object *x, s_object *expr, s_object *name_obj,
s_object *frame_obj)
{
S_EVALUATOR
long frame, n, 1i;
char *name;
s_object **els;
x = AS_LIST(x)
els = LIST_POINTER(X);
n = LENGTH(x);
frame = INTEGER_VALUE(frame_obj) ;
name = CHARACTER_VALUE(name_obj) ;
for(i=0;i<n;i++) {
ASSIGN_IN_FRAME(name, els[i], frame) ;
SET_ELEMENT(x, i, EVAL_IN_FRAME(expr,
frame)) ;
}
return x;

}

This uses the more general macro EVAL_IN_FRAME to specify the
specific frame in which to evaluate the specified expression. Note also
the SET_ELEMENT macro; this must always be used to perform
assignments into Spotfire S+ list-like objects from C.

146

Debugging Loaded Code (Windows)

DEBUGGING LOADED CODE (WINDOWS)

Debugging C
Code

Debugging C
Code Using a
Wrapper
Function

Frequently the code you are dynamically linking is known, tested,
and reliable. But what if you are writing new code, perhaps as a more
efficient engine for a routine developed in Spotfire S+? You may well
need to debug both the C or Fortran code and the Spotfire S+
function that calls it. The first step in debugging C and Fortran
routines for use in Spotfire S+ is to make sure that the C function or
Fortran subroutine is of the proper form, so that all data transfer from
Spotfire S+ to C or Fortran occurs through arguments. Both the input
from Spotfire S+ and the expected output need to be arguments to
the C or Fortran code. The next step is to ensure that the classes of all
variables are consistent. This often requires that you add a call such as
as(variable, "single") in the call to .C or .Fortran. If the Spotfire
S+ code and the compiled code disagree on the number, classes, or
lengths of the argument vectors, Spotfire S+’s internal data might be
corrupted and it will probably crash. By using .C or .Fortran you are
trading the speed of compiled code for the safety of Spotfire S+ code.
In this case, you usually get an application error message before your
Spotfire S+ session crashes. Once you have verified that your use of
the interface is correct, and you have determined there is a problem
in the C or Fortran code, you can use an analog of the cat statement
to trace the evaluation of your routine.

If you are a C user, you can use C I/O routines, provided you include
S.h. Thus, you can casually sprinkle printf statements through your
C code just as you would use cat or print statements within a
Spotfire S+ function. (If your code is causing Spotfire S+ to crash, call
fflush() after each call to printf() to force the output to be printed
immediately.)

If you cannot uncover the problem with generous use of printf(),
the following function, .Cdebug, (a wrapper function for .C) can
sometimes find cases where your compiled code writes off the end of
an argument vector. It extends the length of every argument given to
it and fills in the space with a flag value. Then it runs .C and checks
that the flag values have not been changed. If any have been changed,
it prints a description of the problem. Finally, it shortens the
arguments down to their original size so its value is the same as the
value of the corresponding . C call.

147

Chapter 5 Interfacing with C and FORTRAN Code

148

.Cdebug <- function(NAME, ..., NAOK = F, specialsok = F,
ADD = 500, ADD.VALUE = -666)
{

args <- Tist(...)

tail <- rep(as.integer(ADD.VALUE), ADD)

for(i in seq(along = args))

{
tmp <- tail
storage.mode(tmp) <- storage.mode(args[[i]])
args[[i]] <- c(args[[il], tmp)

}

args <- c(NAME = NAME, args, NAOK = NAOK,
specialsok = specialsok)

val <- do.call(".C", args)

for(i in seq(along = val))

{
tmp <- tail
storage.mode(tmp) <- storage.mode(args[[il])
taili <- val[[ill[seq(to = length(val[[il]l),
length = ADD)]
if((s <- sum(taili != tmp)) > 0) {
cat("Argument ", i, "(", names(val)[i],
") to ™, NAME, " has ", s, " altered
values after end of array\n ",
sep ="")
}
length(val[[i]]) <- length(val[[i]]) - ADD
}
}
val
}

For example, consider the following C procedure, oops():

oops(double *x, long* n)
{
long i;
for (i=0 ; i <= *n ; i++) /* should be <, not <= */
x[i1] = x[i] + 10 ;
}

Source-Level
Debugging

Debugging Loaded Code (Windows)

Because of the misused <=, this function runs off the end of the array
x. If you call oops () using .C as follows, you get an Application Error
General Protection Fault that crashes your Spotfire S+ session:

> .C("oops", x=as.double(l:66), n=as.integer(66))

If you use .Cdebug instead, you get some information about the
problem:

> .Cdebug("oops", x=as.double(1l:66), n=as.integer(66))

Argument 1(x) to oops has 1 altered values after end of
array

X:

[1] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[19] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
[37]1 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
[55] 65 66 67 68 69 70 71 72 73 74 75 76

n:

[1] 66

The .Cdebug function cannot tell when you run off the beginning of
an argument vector or when you write anywhere else in memory. If
inspecting your source code and using Spotfire S+ functions like
.Cdebug is not enough to pinpoint a problem, try the following:

1. Write a short main program that calls your procedure.

2. Compile and link the main program and your procedure for

debugging.

If your compiled routines are fairly complicated, you may want more
help in debugging than can be provided by simple print statements.
Microsoft Visual C++ and Compaq Visual Fortran come with
sophisticated visual debuggers.

If you are using Microsoft Visual C++, you can easily do source-level
debugging of your code. Simply follow the instructions for creating a
DLL as outlined in the section Using C and Fortran Code with
Spotfire S+ for Windows on page 98.

Before creating the DLL, you should ensure that the default project
configuration (under Build P Set Active Configuration) is set to
Win32 Debug. You must also specify the executable to be used for

your debug session. To do this, select Project » Settings to display

149

Chapter 5 Interfacing with C and FORTRAN Code

150

the Project Settings dialog box, and then select the Debug tab.
Under Settings For, select Win32 Debug, and for Executable for
debug session, provide the full path to the Spotfire S+ executable
(SPLUS.EXE in the XMA subdirectory of your Spotfire S+
installation). You should also set your S_PROJ directory to the
current project chapter in Program arguments as follows:

S_PROJ=.

(The period says to use the current directory.) When you have started
your debug session, remember that the DLL will have been created in
the Debug subdirectory of your project directory.

A Simple Example: Filtering Data (Unix)

A SIMPLE EXAMPLE: FILTERING DATA (UNIX)

In this section, we develop a function to apply a first order linear recursive
filter to a vector of data. The Spotfire S+ function filter does what we
want, but we'll ignore it for now in favor of the following pure S code:

Ar <- function(x, phi)

{
n <- length(x)
if (n>1)
for (i in 2:n)
x[i] <- phi * x[i - 1] + x[i]
X
}

Looping is traditionally one area where Spotfire S+ tends to be significantly
slower than compiled code, so we can rewrite the above code in C as follows,
creating a file Ar.c:

void arsim(double *x, long *n, double *phi)

{
long 1i;
for (i=1; i<*n; i++)
x[i]l = *phi * x[i-11 + x[i] ;
}

This code is purely C language code; there are no dependencies on C
libraries, or on Spotfire S+. Such code should be portable to most operating
systems. It is quite simple to create a shared object from this code:

1. Create the file Ar.c shown above.

2. Run the Spotfire S+ CHAPTER utility with Ar.c as a parameter:
Splus CHAPTER Ar.c
The CHAPTER utility creates a makefile for use with the make
utility.

3. Run the Spotfire S+ make utility:
Splus make
The result is a shared object file, S.so.

If you've done the above three steps from within Spotfire S+, you can open
the file S.so simply by calling dyn.open("S.so"). If you performed them
outside of SPOTFIRE S+, simply start SPOTFIRE S+ within the current
SPOTFIRE S+ chapter, and the S.so file will be opened automatically.

151

Chapter 5 Interfacing with C and FORTRAN Code

152

To run the filtering code, we can either call .C directly, or we can write a
simple S function to do it for us. If we want to use our loaded call very often,
it will save us time to define the function:

ar.compiled <-
function(x, phi)

{

.C("arsim",
as.double(x),
length(x),
as.double(phi))[[1]1]

}

Trying the code with a call to ar.compiled yields the following:

> ar.compiled(1:20, .75)

[1] 1.000000 2.750000 5.062500 7.796875 10.847656
[6] 14.135742 17.601807 21.201355 24.901016 28.675762
[11] 32.506822 36.380116 40.285087 44.213815 48.160362
[16] 52.120271 56.090203 60.067653 64.050739 68.038055

You lose some flexibility in the function by writing it in C. Our
ar.compiled function converts all input data to double precision, so it won't
work correctly for complex data sets nor objects with special arithmetic
methods. The pure Spotfire S+ version works for all these cases. If complex
data is important for your application, you could write C code for the
complex case and have the Spotfire S+ code decide which C function to call.
Similarly, to make ar.compiled work for data in classes with special
arithmetic methods, you could have it call the C code only after coercing the
data to class "numeric”, so that it could not invoke special arithmetic
methods. This might be too conservative, however, as there could be many
classes of data without arithmetic methods which could use the fast C code.

Another approach would be to make ar.compiled a generic function, for
which the default method calls the C code for numeric data. For classes with
special arithmetic methods, pure Spotfire S+ code could be dispatched.
Those classes of data without special arithmetic methods could include a c/ass
method for ar.compiled that would coerce the data to class "numeric" and
invoke the default method on the now numeric data, thus using the fast
compiled code, then post-process the result if needed (perhaps just restoring
the class). Using the object-oriented approach is more work to set up, but
gives you the chance to combine the speed of compiled code with the
flexibility of Spotfire S+ code.

Calling C or Fortran Routines From Spotfire S+ for Unix

CALLING C OR FORTRAN ROUTINES FROM SPOTFIRE S+

FOR UNIX

Calling C

To call a C function, use the Spotfire S+ function .C(), giving it the name of
the C function (as a character string) and one Spotfire S+ argument for each
C argument. For example, a typical “vectorized” calculation, such as sine,
requires you to pass a Spotfire S+ data object x and its length n to the C
function performing the calculation:

.C("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))

(We'll define the C routine my_sin_vec in the section Writing C and
Fortran Routines Suitable for Use in SPOTFIRE S+ for Unix (page 157).)

To return results to Spotfire S+, modify the data pointed to by the
arguments. The value of the .C() function is a list with each component
matching one argument to the C function. If you name these arguments, as
we did in the preceding example, the return list has named components. Your
Spotfire S+ function can use the returned list for further computations or to
construct its own return value, which generally omits those arguments which
are not altered by the C code. Thus, if we wanted to just use the returned
value of x, we could call .C() as follows:

.C("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))$x.

All arguments to C routines called via .C() must be pointers. All such
routines should be void functions; if the routine does return a value, it could
cause Spotfire S+ to crash. Spotfire S+ has many classes that are not
immediately representable in C. To simplify the interface between Spotfire
S+ and C, the types of data that Spotfire S+ can pass to C code are restricted
to the following Spotfire S+ classes: "single”, "integer™, "numeric",
"complex”, "logical”, and "character”. Table5.5 shows the
correspondence between Spotfire S+ classes and C types.

Table 5.5: Correspondence between Spotfire S+ classes and C types.

SPOTFIRE S+ classes Corresponding C type
“logical” long *
“integer” long *

153

Chapter 5 Interfacing with C and FORTRAN Code

Table 5.5: Correspondence between Spotfire S+ classes and C types.

“single” float *
“numeric” double *
“complex” s_complex *
“character” char **
“raw” char *
“list” s_object **

‘Warning

other platforms.

Do not declare integer data as C ints, particularly if you want your code to be portable among machines
that Spotfire S+ supports. While there is currently no difference on Windows, there is a distinction on

Calling C++

154

The include file S.h described later in this chapter contains the typedef for
the type s_complex that defines it as the struct composed of two doubTes,
reand im.

To call a C++ function, you also use the .C function (or, alternatively, the
.Call function discussed later in this chapter). There is no direct C++
interface, and hence SPOTFIRE S+ has no understanding of C++ name
mangling. Thus, to call a C++ function, you must declare it inside an extern
"C" braced expression. For example, here is some simple code to compute
squares:

f#ginclude "S.h"
extern "C" {

void squareC(double* pdX, double* pdY, long* pllLen)
{
S_EVALUATOR
//Validate the input arguments
if((pdX == NULL) || (pdY == NULL) || plLen == NULL))
PROBLEM "Invalid input™ ERROR;
//Perform element-by-element operation
//to square each element of input

Calling C or Fortran Routines From Spotfire S+ for Unix

for(long n=0; n< *plLen; n++)
pdY[n] = pdX[n] * pdX[n];
return;
}
}

We can call this with . C using the simple SPOTFIRE S+ code shown below:

square <- function(x)

{
len = Tength(x)
y = .C("squareC",
as.double(x),
y = double(len),
len)$y
Yy
}

Calling Fortran To call a Fortran subroutine, use the Spotfire S+ function .Fortran(),
giving it the name of the subroutine (as a character string) and one Spotfire
S+ argument for each Fortran argument. For example, a typical “vectorized”
calculation, such as sine, requires you to pass a Spotfire S+ data object x and
its length n to the Fortran subroutine performing the calculation:

.Fortran("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))

Note

You can call only Fortran subroutines from Spotfire S+; you cannot call Fortran functions.

To return results to Spotfire S+, modify the data pointed to by the
arguments. The value of the .Fortran() function is a list with each
component matching one argument to the Fortran subroutine. If you name
these arguments, as we did in the preceding example, the return list has
named components. Your Spotfire S+ function can use the returned list for
further computations or to construct its own return value, which generally
omits those arguments which are not altered by the Fortran code. Thus, if we
wanted to return just the object x, we could call . Fortran() as follows:

155

Chapter 5 Interfacing with C and FORTRAN Code

.Fortran("my_sin_vec", x = as.double(x), n =
as.integer(length(x)))$x

Spotfire S+ has many data classes that are not immediately representable in
Fortran. To simplify the interface between Spotfire S+ and Fortran, the types
of data that Spotfire S+ can pass to Fortran code are restricted to the

following ~ Spotfire

classes: "single™, "integer", "numeric",

"complex", "lTogical", and "character". The following table shows the
correspondence between Spotfire S+ classes and Fortran types.

SPOTFIRE S+ classes Corresponding FORTRAN type
“logical” LOGICAL

“integer” INTEGER

“single” REAL

“numeric” DOUBLE PRECISION
“complex” DOUBLE COMPLEX
“character” CHARACTER(*)

‘Warnings

Spotfire S+ will not pass arrays of character strings to Fortran routines; only the first element.

The Fortran type DOUBLE COMPLEX (or COMPLEX*16) is a complex number made of double precision
parts; it may not be available with all Fortran compilers.

156

Writing C and Fortran Routines Suitable for Use in SPOTFIRE S+ for Unix

WRITING C AND FORTRAN ROUTINES SUITABLE FOR USE
IN SPOTFIRE S+ FOR UNIX

If you have a routine for which some of the arguments are not pointers, or
which returns a value, you must write a wrapper routine which passes all data
via pointer arguments, does not return a value, and calls the routine of
interest. For example, we might have a sine function routine written in C and
declared as follows:

double sin(double x)

You cannot call this via the .C interface, because it both takes a double-
precision argument by value and returns a value. You must write a Spotfire
S+-compatible wrapper for sin() as follows, and then load both procedures:

extern double sin() ;
void my_sin (double *x)
{

*X = sin(*x) ;

}

Since sin() does not take a vector argument, you probably want to use the
wrapper function to provide a vectorized form of it:

f##include <S.h>
f##include <math.h> /* to declare extern double sin() */
void my_sin_vec(double *x,Tong *n)
{
long i ;
for (i=0 ; 1 < *n ; i++)
x[i1] = sin(x[i]1) ;

}

(To work along with the following section, you might want to save the above
vectorized code in a file mysin.c in an existing Spotfire S+ chapter.)

157

Chapter 5 Interfacing with C and FORTRAN Code

COMPILING AND DYNAMICALLY LINKING YOUR CODE

(UNIX)

Using the
CHAPTER
Utility with
Source Code

158

Spotfire S+ 5.x and later abandon the old Spotfire S+ techniques of static and
dynamic loading in favor of a dynamic linking process using shared objects or
libraries (.so files). In practice, this new process is generally more convenient
than the old, and involves only four steps:

1. Create your C or Fortran code, as in mysin.c, in a Spotfire S+
chapter.

2. Call the Spotfire S+ CHAPTER utility with your code files as
parameters.

CHAPTER creates a makefile for use with the make utilicy. This
makefile sets flags appropriate for code to be used with Spotfire S+.

3. Call the make utility as a Spotfire S+ utility.

The make utility compiles the code according to the rules specified
in the makefile, and links the code into a shared object, by default
named S.so.

4. Attach the chapter in a Spotfire S+ session (for example, by starting
Spotfire S+ from the chapter). Spotfire S+ automatically opens the
file S.so, if it exists, and loads all the symbols contained therein into
the SPOTFIRE S+ load table, so your C and Fortran routines are
instantly available for your use.

You can, of course, perform at least steps 2 and 3 from within Spotfire S+. In
that case, you don’t need to stop your Spotfire S+ session and restart; instead,
you can use the dyn.open function to open your newly compiled S.so file. (If
you've just recompiled an existing S.so, you should use dyn.close to close
the shared object before calling dyn.open to reopen it.)

You've seen several examples of writing C code for use with Spotfire S+; now
let’s take a closer look at steps 2—4.

You've probably used the CHAPTER utility often to create new SPOTFIRE S+
work directories or projects. You may have also used it to add help files for
your own SPOTFIRE S+ functions to the system help. Using CHAPTER with
source code is similar to using it with help files.

Compiling and Dynamically Linking your Code (Unix)

CHAPTER creates a makefile for all the source files (C, C++, Fortran, Ratfor
[a structured form of Fortran], Spotfire S+, or SGML help) found in the
specified chapter, with rules for turning your source code into a shared object
that Spotfire S+ can use. The makefile includes compiler flags compatible
with those used by the code already in Spotfire S+, and on various platforms
may include flags that, for example, specify the way Fortran character strings
are passed or specify which memory model is used.

For example, suppose you have the file mysin.c shown in the previous section.
You can create a makefile including this file (or modify an existing makefile)
by calling CHAPTER as follows from the directory containing mysin.c:

Splus CHAPTER mysin.c

If you've created mysin.c in a new directory, CHAPTER will both create the
appropriate makefile and initialize the directory as a valid Spotfire S+ chapter.
If you add mysin.c to an existing Spotfire S+ chapter, CHAPTER will leave
the previously initialized database alone, and only create or modify the
makefile. To use the resulting makefile, your system must have the
appropriate compiler (C, C++, and/or Fortran) and libraries.

You can, if you need to, modify the makefile created by CHAPTER. Below is
the makefile created by the above call to CHAPTER:

J# makefile for local CHAPTER
SHELL=/bin/sh

SRC= mysin.c
0BJ= mysin.o
FUN=
HELPSGML=

Use LOCAL_CFLAGS to add arguments for the C compiler
LOCAL_CFLAGS=

Use LOCAL_CXXFLAGS to add arguments for the C++ compiler
LOCAL_CXXFLAGS=

J# Use LOCAL_FFLAGS to add arguments for the FORTRAN

compiler

LOCAL_FFLAGS=

Use LOCAL_LIBS to add arguments or additional libraries
to the Tinker

f# LOCAL_LIBS="-1f2c"

LOCAL_LIBS=

159

Chapter 5 Interfacing with C and FORTRAN Code

160

include $(SHOME)/1ibrary/S_FLAGS
all: install.funs S.so install.help

install.funs: $(FUN)
@if [X$(FUN) != X 1 ; then \
cat $(FUN) | $(SHOME)/cmd/Splus ; \
fi

install.help: $(HELPSGML)
@if [X$(HELPSGML) != X 1 ; then \
$ (SHOME) /cmd/Splus HINSTALL ./.Data $(HELPSGML) ; \
$ (SHOME) /cmd/Splus BUILD_JHELP ; \
fi

S.so: $(0BJ)
@if [X$(0BJ) != X 1; then \
$(SHOME) /cmd/Splus LIBRARY S.so $(0BJ) \
$(LOCAL_LIBS) ; \

fi
dump:
@if test -d ./.Data; then Splus dumpChapter $(SRC);\
fi
boot:
@if test -s all.Sdata; \
then (BOOTING_S="TRUE" export BOOTING_S; echo \
"terminate(should have been booting S)"| \
$(SHOME) /cmd/Splus); \
fi
clean:
-rm $(0BJ)

This makefile includes three primary targets: install.funs, S.so, and
install.help. For the purposes of this chapter, the most importantis S. so,
which causes your code to be compiled and linked into the shared object S.so.
Do not attempt to modify $SHOME/library/S_FLAGS; this will probably
make your code incompatible with SPOTFIRE S+.

Compiling and Dynamically Linking your Code (Unix)

Compiling Your With the makefile created by CHAPTER, compiling your code is simple: just

Code

Dynamically
Linking Your
Code

run the make command as a Spotfire S+ utility as follows:

Splus make

The “Splus” in front of make allows Spotfire S+ to set its environment
variables appropriately before calling the standard make utility; in particular
it defines the SHOME environment variable used in the makefile.

The make utility executes the necessary commands to compile your code into
the shared object S.so.

Whenever you attach a Spotfire S+ chapter containing a shared object S.so,
including whenever you start up Spotfire S+ in such a chapter, the shared
object is opened and the code it contains is loaded into Spotfire S+.

You can open shared objects without attaching a chapter by using the
dyn.open function. For example, if your colleague Fred has C code you want
to access from your own set of Spotfire S+ functions, you might open his S.so
shared object as follows:

> dyn.open("/users/fred/mysplus/S.so")

You can close previously opened shared objects using dyn.close:

> dyn.close("/users/fred/mysplus/S.so")

161

Chapter 5 Interfacing with C and FORTRAN Code

COMMON CONCERNS IN WRITING C AND FORTRAN CODE
FOR USE WITH SPOTFIRE S+ FOR UNIX

162

While the actual calls to .C() and .Fortran() are straightforward, you may
encounter problems loading new compiled code into Spotfire S+ and we will
discuss some common problems. We also describe some C procedures and
macros which you may use to write more portable code, to generate random
numbers from C code, to call Spotfire S+ functions from your C code, to
report errors, to allocate memory, and to call Fortran procedures from C
code.

In order to have access in C to most functions and macros described below,
you will have to include the header file S.h in your source files:

#include <S.h>

and make sure that you specify the $SHOME/include include directory in
your compiler directives. That directory is specified automatically by the
makefile created by the CHAPTER utility (as part of $SHOME/library/
S_FLAGS).

The file S.h has changed significantly since SPOTFIRE S+ 5.1; some variables
have been renamed, some routines which previously had headers in S.h have
had their headers moved elsewhere. In general, these changes affected only
variables and routines which were undocumented. @A new variable,
S_COMPATIBILITY, allows you to compile code that uses some of the
redefined variables. If you define S_COMPATIBILITY (before including S.h)
as follows:

ffdefine S_COMPATIBILITY 1
you obtain the old definitions of the following variables:

TRUE, FALSE, and MAYBE (now S_TRUE, S_FALSE, and S_MAYBE)
complex (now s_complex)

NULL_MODE (now S_MODE_NULL)

LGL, INT, REAL, DOUBLE, CHAR, LIST, COMPLEX, RAW

ANY, STRUCTURE, MAX_ATOMIC, atomic_type (now S_MODE_LGL, etc.)

Defining S_COMPATIBILITY as 10 instead of 1 adds the following old
definitions:

vector, boolean, void_fun, fun_ptr (now s_object, s_boolean,
s_void_fun, and s_fun_ptr, respectively)

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

We recommend that you migrate any code that uses the old variable names to
use the new names, because of potential conflicts with other applications,
particularly under the Windows operating systems.

If you have code that still won’t compile after defining S_COMPATIBILITY
because of routines with missing headers, you can try including the header
file S_engine.h instead of S.h.

‘Warning;:

The routines with headers in S_engine.h are used and needed by Spotfire S+, but they are NOT
RECOMMENDED for use by programmers outside TIBCO Software Inc. Such use is not
supported, and may fail with catastrophic results. All risks associated with such unsupported use
are the programmer’s responsibility.

Handling IEEE
Special Values

SPOTFIRE S+ handles IEEE special values such as NaN, Inf, or -Inf, for all
supported numeric classes (integer, single or numeric). NaN represents the
number your obtain when you divide 0 by 0. Inf represents the number your
obtain when you divide 1 by 0. -Inf represents the number your obtain
when you divide -1 by 0. In addition, SPOTFIRE S+ supports NA, which
represents a missing value, i.e., a value to use when none is available.
SPOTFIRE S+ functions attempt to properly handle computations when
missing values are present in the data. Both NaN and NA are displayed as NA,
but the data values are properly kept as different values.

The .C() and .Fortran() functions have two arguments, the NAOK and the
specialsok argument, that you can use to specify whether your code can
handle missing values or IEEE special values (Inf and NaN), respectively.
Their default value is FALSE: if any argument to .C() or .Fortran()
contains an NA (or Inf or NaN), you get an error message and your code is not
called. To specify these arguments, you must use their complete names, and
you cannot use these names for the arguments passed to your C or Fortran
code.

‘Warning

The NAOK and specialsok arguments refer to all of the arguments to your compiled code—you can
allow NAs or IEEE special values in all of the arguments or none of them. Since typically you don’t want

NAs for certain arguments, such as the length of a data set, you must specially check those arguments if you
use NAOK=T (or specialsok=T).

163

Chapter 5 Interfacing with C and FORTRAN Code

164

Dealing with IEEE special values is easily done in C as long as you use the
macros described below. It is possible, yet undocumented here, to do the
same in Fortran, but refer to your Fortran compiler documentation for
details.

It is often simplest to remove NA's from your data in the Spotfire S+ code, but
is sometimes better done in C. If you allow NAs, you should deal with them
using the C macros is_na() and na_set () described below. The arguments
to .C() and .Fortran() cannot contain any NAs unless the special argument
NAOK is T. The following macros test for and set NA’s in your C code:

is_na(x,mode)
na_set(x,mode)

The argument x must be a pointer to a numeric type and the argument mode
must be one of the symbolic constants S_MODE_LGL (Spotfire S+ class
"logical™), S_MODE_INT (Spotfire S+ class "integer"), S_MODE_REAL
(Spotfire S+ class "single”), S_MODE_DOUBLE, or S_MODE_COMPLEX,
corresponding to the type x points to: Tong, long, float, double, or
s_complex, respectively. For example, the following C code sums a vector of
double precision numbers, setting the sum to NA if any addends are NA:

Hinclude <S.h>
void my_sum(double *x, Tong *n, double *sum) {
long i;
*sum = 0 ;
for (i =0 ; i < *n ; i++)
if (is_na(&x[i], S_MODE_DOUBLE)) {
na_set(sum, S_MODE_DOUBLE);
break;
}
else
*sum += x[1];

}

Use the following Spotfire S+ function to call this routine:

> my.sum <- function(x) .C("my_sum", as.double(x),
as.integer(length(x)),
double(l), NAOK = T)[[3]]

Call this from Spotfire S+ as follows:

> my.sum(c(1,NA,2))
[1] NA

> my.sum(l:4)

[1] 10

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

If you omit the argument NAOK=T in the call to .C(), you get the following
message:

> my.sum2 <- function(x)
.C("my_sum", as.double(x),
as.integer(length(x)), double(1))[[3]]
> my.sum2(c(1,NA,2))
Problem in .C("my_sum",: subroutine my_sum: Missing values
in argument 1
Use traceback() to see the call stack

‘Warning

Both is_na() and na_set () have arguments that may be evaluated several times. Therefore don’t use
expressions with side effects in them, such as na_set (&x[i++], S_MODE_DOUBLE). Otherwise, the
side effects may occur several times. The call is_na(x,mode) returns O if *x is not an NA and non-zero
otherwise—the non-zero value is not necessarily 1. The return value tells what sort of value *x is: Is_NA
meaning a true NA and Is_NaN meaning an IEEE not-a-number. To assign a NaN to a value, use the
alternative macro na_set3(x,mode, type), where type is either Is_NA or Is_NaN. The macro
na_set(x,mode) is defined as na_set3(x,mode, Is_NA).

1/0 in C
Functions

You can use the macros is_inf(x,mode) and inf_set(x,mode,sign) to
deal with IEEE infinities. If you allow IEEE special values, your code should
be aware that x != x is TRUE if x is a NaN. In any case you should be aware
that on machines supporting IEEE arithmetic (that includes most common
workstations), 1/0 is Inf and 0/0 is NaN without any warnings given. You
must set the .C() argument specialsok to T if you want to let Spotfire S+
pass NaN’s or Inf’s to your C code. The call is_inf(x,mode) returns O if *x
is not infinite and 1 if *x is o3 respectively. The call
set_inf(x,mode,sign) sets *x to an infinity of the given mode and sign,
where the sign is specified by the integer +1 for positive infinities and -1 for
negative infinities. Similarly, the call is_nan(x,mode) returns 0 if *x is not a
NaN, and 1 if it is.

File input and output is fully supported in C code called from Spotfire S+,
but input and output directed to the standard streams STDIN, STDOUT,
and STDERR require special handling. This special handling is provided by
the header files S_newio.h and newredef.h, which are included automatically
when you include S.h. This allows you, for example, to use the printf()
function to add debugging statements to your code.

You can override the special handling by using the define NO_NEWIO in your
code before including S.h. For example:

165

Chapter 5 Interfacing with C and FORTRAN Code

1/0 in Fortran
Subroutines

166

f#fdefine NO_NEWIO
f#include <S.h>

The special handling does not support scanf(); if you need to read user
input from the GUI, use fgets() to read a line then use sscanf() to
interpret the line.

Fortran users cannot use any Fortran WRITE or PRINT statements since they
conflict with the I/O in SPOTFIRE S+. Therefore, Spotfire S+ provides the
following three subroutines as analogs of the Spotfire S+ cat function:

DBLEPR Prints a double precision variable
REALPR Prints a real variable
INTPR Prints an integer variable

As an example of how to use them, here is a short Fortran subroutine for
computing the net resistance of 3 resistors connected in parallel:

SUBROUTINE RESISI1(R1, R2, R3, RC)
C COMPUTE RESISTANCES
RC =1.0/(1.0/R1 + 1.0/R2 + 1.0/R3)
CALL REALPR(’First Resistance’, -1, R1,1)
RETURN
END

The second argument to REALPR specifies the number of characters in the
first argument; the -1 can be used if your Fortran compiler inserts null bytes
at the end of character strings. The fourth argument is the number of values
to be printed.

Here is a Spotfire S+ function that calls RESIS1:

> parallel.resistance<-function(rl,r2,r3) {
.Fortran("resisl™,as.single(rl),as.single(r2),
as.single(r3),as.single(0))[[4]]

}

Running parallel produces the following:

> parallel(25,35,75)
First Resistance
[1] 25

[1] 12.2093

Reporting
Errors and
Warnings

C Functions

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

Spotfire S+ provides two functions, stop and warning, for detecting and
reporting error and warning conditions. In most cases, you should try to
detect errors in your Spotfire S+ code, before calling your compiled code.
However, Spotfire S+ does provide several tools to aid error reporting in your
compiled code.

The include file S.h defines macros that make it easy for your C code to
generate error and warning messages. The PROBLEM and RECOVER macros
together work like the Spotfire S+ function stop:

PROBLEM "format string"™, argl, ..., argn
RECOVER(NULL_ENTRY)

The PROBLEM and WARNING macros together work like the warning function:

PROBLEM "format string"”, argl, ..., argn
WARNING(NULL_ENTRY)

The odd syntax in these macros arises because they are wrappers for the C
library function sprintf(); the PROBLEM macro contains the opening
parenthesis and the RECOVER and WARNING macros both start with the closing
parenthesis. The format string and the other arguments must be arguments
suitable for the printf() family of functions. For example, the following C
code fragment:

Hinclude <S.h>
double x ;

if (x <= 0)
PROBLEM "x should be positive, it is %g", x
RECOVER(NULL_ENTRY) ;

is equivalent to the Spotfire S+ code:

if (x<=0) stop(paste("x should be positive, it is", x))

Both print the message and exit all of the currently active Spotfire S+
functions calls. Spotfire S+ then prompts you to try again. Similarly, the C
code:

#include <S.h>
double x ;

if (x <= 0)
PROBLEM "x should be positive, it is %g", x
WARNING(NULL_ENTRY) ;

is equivalent to the Spotfire S+ code:

167

Chapter 5 Interfacing with C and FORTRAN Code

Fortran
Subroutines

168

if (x<=0) warning(paste("x should be positive, it is", x))

Many of the I/O statements encountered in a typical Fortran routine arise in
error handling—when the routine encounters a problem, it writes a message.

A previous section proposed using DBLEPR, REALPR, and INTPR for any
necessary printing. An alternative approach in Spotfire S+ is to use the
Fortran routines XERROR and XERRWV for error reporting, in place of explicit
WRITE statements. For example, consider again the Fortran routine RESISI,
which computes the net resistance of 3 resistors connected in parallel. A
check for division by 0 is appropriate, using XERROR:

SUBROUTINE RESIS1(RI, R2, R3, RC)

(]

COMPUTE RESISTANCES

IF (Rl .EQ. O .OR. R2 .EQ. O .OR. R3 .EQ. 0) THEN
CALL XERROR("Error : division by 0",
+ LEN("Error : division by 0"),99,2)
RETURN
END IF
RC =1.0/(1.0/R1 + 1.0/R2 + 1.0/R3)
CALL REALPR("First Resistance"™, -1, R1,1)
RETURN
END

XERROR takes four arguments: a character string message, an integer giving
the length of the string in message, an error number (which must be unique
within the routine), and an error level. If message is a quoted string, the
length-of-message argument can be given as LEN(message).

The XERRWV routine acts like XERROR but also allows you to print two integer
values, two real values, or both.

The first four arguments to XERRWY, like the first four arguments to XERROR,
are the message, the message length, the error ID, and the error level. The
fifth and eighth arguments are integers in the range 0-2 that indicate,
respectively, the number of integer values to be reported and the number of
real (single precision) values to be reported. The sixth and seventh arguments
hold the integer values to be reported, the ninth and tenth arguments hold
the real values to be reported.

In the following call to XERRWY, the fifth argument is 1, to indicate that one
integer value is to be reported. The sixth argument says that n is the integer to
be reported:

XERRWV(MSG, LMSG,1,1,1,n,0,0,0.0,0.0)

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

The following Fortran subroutine, test.f, shows a practical application of

XERRWV:

10

subroutine test(x, n, ierr)

real*8 x(1)

integer n, ierr, LMSG

character*100 MSG

ierr = 0

if (n.1t.3) then
MSG ="Integer (I1) should be greater than 2"
LMSG = len("Integer (I1) should be greater than 2")
CALL XERRWV(MSG,LMSG,1,1,1,n,0,0,0.0,0.0)
ierr =1
return

endif

do 10 i =2, n

x(1) = x(1) + x(i)

return

end

> .Fortran("test", as.double(1:2), Tength(1l:2), integer(1l))

(0111
[1]11

[[21]
(11 2

[[311]
(111

2

Warning messages:

1: Integer (I1) should be greater than 2 in:
.Fortran("test", .

2: in message above, il=2 in:
.Fortran("test",

The error message is duplicated because our Spotfire S+ code interprets the
error status from the Fortran code. The messages issued by XERROR and
XERRWV are stored in an internal message table. Spotfire S+ provides several
functions for manipulating the message table within functions that call
Fortran routines using XERROR and XERRWV:

xerror.

summary Prints out the current state of the internal message
summary table. Lists the initial segment of the message,
the error number, the severity level, and the repetition
count for each message.

169

Chapter 5 Interfacing with C and FORTRAN Code

xerror.clear Clears the message table. Takes an optional argument
doprint: if doprint=T, the message table is printed
before it is cleared.

170

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

Xerror.maxpr Limits the number of times any one message is queued
or printed. The default is 10.

For example, we can rewrite our Spotfire S+ test function to take advantage
of these functions as follows:

test <- function(x)
{
xerror.clear()
val <- .Fortran("test",
as.double(x),
length(x),
integer(1l))
if(options()$warn == 0)
xerror.summary()
val[[1]1]1[1]
}

Calling it as before (after setting the option warn to 0) yields the following
result:

> test(1:2)

error message summary
message start nerr level count
Integer (I1) should be greater than 2 1 1 1
other errors not individually tabulated = 0

[1]11

Warning messages:

1: Integer (I1) should be greater than 2 in:
.Fortran("test", .

2: in message above, il = 2 in:
.Fortran("test",

See the xerror help file for more information on the Spotfire S+ functions
used with XERROR, and the XERROR help file for more information on XERROR
and XERRWV.

Calling Fortran Spotfire S+ contains a few C preprocessor macros to help smooth over

From C

differences between machines in how to call C code from Fortran and vice
versa. The following macros are needed to allow distinctions between the
declaration, definition, and invocation of a Fortran common block or
Fortran subroutine (coded in either C or Fortran):

F77_NAME declaration of a Fortran subroutine.

F77_SUB definition of a Fortran subroutine.

171

Chapter 5 Interfacing with C and FORTRAN Code

172

F77_CALL invocation of a Fortran subroutine.
F77_COMDECL declaration of a Fortran common block.
F77_COM usage of a Fortran common block.

As an example of the proper use of the F77 macros, consider the following
example C code fragment:

/* declaration of a common block defined in Fortran */
extern long F77_COMDECL(Forblock)[100];

/* declaration of a subroutine defined in Fortran */
void F77_NAME(Forfun)(double *, Tong *, double *);

/* declaration of a function defined in C, callable by
* Fortran */
double F77_NAME(Cfun)(double *, long *);

/* usage of the above common block */
for (i = 0; i < 100; i++) F77_COM(Forblock)[i]l = 0;

/* invocation of the above functions */
F77_CALL(Forfun)(sl, nl, result);
if (F77_CALL(Cfun)(s2, n2) < 0.0)

/* definition of the above ’callable by Fortran’ function
*/

double F77_SUB(Cfun)(double *weights, Tong
*number_of_weights);

If you are loading code originally written for a specific UNIX compiler
(including some submissions to StatLib), you may find that code does not
compile correctly in Windows because not all of these macros are used.
Usually, such code does not use the F77_CALL macro to invoke the functions
(using F77_SUB instead), does not use the F77_COMDECL macro to declare the
Fortran common block (using F77_COM instead), and leaves out the
F77_NAME macro altogether. If you attempt to load such code without
substituting F77_CALL for F77_SUB at the appropriate places, you get
compilation errors such as the following:

xxx.c(54): Error! E1063: Missing operand
xxx.c(54): Warning! W111l: Meaningless use of an expression

xxx.c(54): Error! E1009: Expecting ’;’ but found ’fortran’

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

Similarly, if you attempt to statically load code without substituting
F77_COMDECL for F77_COM where appropriate, you get a link error such as
the following:

file xxx.obj(xxx.c): undefined symbol Forblock

Finally, if you attempt to statically load code without using F77_NAME to
declare the subroutine, you get a link error of the following form:

file xxx.obj(xxx.c): undefined symbol Cfun

Fortran passes all arguments by reference, so a C routine calling Fortran must
pass the address of all the arguments.

‘Warning

Fortran character arguments are passed in many ways, depending on the Fortran compiler. It is impossible
to cover up the differences with C preprocessor macros. Thus, to be portable, avoid using character and
logical arguments to Fortran routines which you would like to call from C.

CaIIing C From You cannot portably call C from Fortran without running the Fortran

Fortran

though a macro processor. You need a powerful macro processor like m4
(even it cannot do all that is needed) and then your code doesn't look like
Fortran any more.

We can give some guidelines:
* Try not to do it.
* To be portable, do not use logical or character arguments (this

applies to C-to-Fortran calls as well) because C and Fortran often
represent them differently.

173

Chapter 5 Interfacing with C and FORTRAN Code

USING C FUNCTIONS BUILT INTO SPOTFIRE S+ FOR UNIX

Allocating
Memory

174

In the previous section, we introduced a number of routines built into
Spotfire S+ with the purpose of avoiding certain difficulties in compiling
code and generating useful output. This section describes some more
generally useful routines that can help you allocate memory as Spotfire S+
does or generate random numbers.

Spotfire S+ includes two families of C routines for storage allocation and
reallocation. You can use either of these families, or use the standard library
functions malloc(), calloc(), realloc(), and free(). However, be very
careful to use only one family for any particular allocation; mixing calls using
the same pointer variable can be disastrous. The first Spotfire S+ family
consists of the two routines S_alloc() and S_realloc(), which may be
used instead of the standard malloc() and realloc(). The storage they
allocate lasts until the current evaluation frame goes away (at the end of the
function calling .C()) or until memory compaction in a Spotfire S+ loop
reclaims it. If space cannot be allocated, S_alloc() and S_realloc()
perform their own error handling; they will not return a NULL pointer. You
cannot explicitly free storage allocated by S_alloc() and S_realloc(), but
you are guaranteed that the storage is freed by the end of the current
evaluation frame. (There is no S_free() function, and using free() to
release storage allocated by S_alloc() will cause Spotfire S+ to crash.)
S_alloc() and S_realloc() are declared a bit differently from malloc()
and realloc() (although S_alloc has many similarities to calloc()—for
example, it zeroes storage and has two arguments). S_alloc() is declared as
follows in S.h:

void * S_alloc(long n, size_t size, s_evaluator
*S_evaluator);

Similarly, S_realloc() is declared as follows in S.h:

void * S_realloc(void *p, Tong New, long old, size_t size,
s_evaluator *S_evaluator);

S_alloc() allocates (and fills with 0’s) enough space for an array of n items,
each taking up size bytes. For example, the following call allocates enough
space for ten doubles:

S_alloc(10, sizeof(double), S_evaluator)

Using C Functions Built into Spotfire S+ for Unix

S_realloc() takes a pointer, p, to space allocated by S_alloc() along with
its original length, 01d, and size, size, and returns a pointer to space enough
for New items of the same size. For example, the following expands the
memory block size pointed to by p from 10 doubles to 11 doubles, zeroing
the 11th double location:

S_realloc(p,11,10, sizeof(double), S_evaluator)

The contents of the original vector are copied into the beginning of the new
one and the trailing new entries are filled with zeros. You must ensure that
old and size were the arguments given in the call to S_alloc()(or a
previous call to S_realloc()) that returned the pointer p. The new length
should be longer than the old. As a special case, if p is a NULL pointer (in
which case 01d must be 0L), then S_realloc() acts just like S_alloc().

The second Spotfire S+ family of allocation routines consists of the three
macros Calloc(), Realloc(), and Free(); note the capitalization.
Calloc() and Realloc() are simple wrappers for calloc() and
realloc() that do their own error handling if space can not be allocated
(they will not return if the corresponding wrapped function returns a NULL
pointer). Free() is a simple wrapper for free() that sets its argument to
NULL. As with calloc(), realloc(), and free(), memory remains
allocated until freed—this may be before or after the end of the current
frame.

Warning

If you use malloc() or realloc() directly, you must free the allocated space with free(). Similarly,
when using Calloc() or Realloc(), you must free the allocated space with Free(). Otherwise,
memory will build up, possibly causing Spotfire S+ to run out of memory unnecessarily. However, be
aware that because S processing may be interrupted at any time (e.g., when the user hits the interrupt key
or if further computations encounter an error and dump), it is sometimes difficult to guarantee that the
memory allocated with malloc() or realloc() (orCalloc() or Realloc()) is freed.

Note

If,inacall to S_alloc(), S_realloc(), Calloc() or Realloc(), the requested memory allocation
cannot be obtained, those routines call RECOVER (). See the section Reporting Errors and Warnings (page
167) for more information on the RECOVER () macro.

175

Chapter 5 Interfacing with C and FORTRAN Code

Generating
Random
Numbers

176

Spotfire S+ includes user-callable C routines for generating standard uniform
and normal pseudo-random numbers. It also includes procedures to get and
set the permanent copy of the random number generator’s seed value. The
following routines (which have no arguments) each return one pseudo-
random number:

double unif_rand(void);

double norm_rand(void);

Before calling either function, you must get the permanent copy of the
random seed from disk into Spotfire S+ (which converts it to a convenient
internal format) by calling seed_in((lTong *)NULL, S_evaluator). You
can specify a particular seed using setseed(long *seed), which is
equivalent to the Spotfire S+ function set.seed. When you are finished
generating random numbers, you must push the permanent copy of the
random seed out to disk by calling seed_out((long *)NULL,
S_evaluator). If you do not call seed_in() before the random number
generators, they fail with an error message. If you do not call seed_out()
after a series of calls to unif_rand() or norm_rand(), the next call to
seed_in() retrieves the same seed as the last call and you get the same
sequence of random numbers again. The seed manipulation routines take
some time so we recommend calling seed_in() once, then calling
unif_rand() or norm_rand() as many times as you wish, then calling
seed_out () before returning from your C function. A simple C function to
calculate a vector of standard normals is implemented as follows:

#include <S.h>
void my_norm(double *x, Tong *n_p) {
long i, n = *n_p ;
seed_in((Tong *) NULL, S_evaluator);
for (i=0 ; i<n ; i++)
x[i] = norm_rand(S_evaluator);
seed_out((Tong *) NULL, S_evaluator);
}

To call it from Spotfire S+, define the function my .norm as follows:

my.norm <- function(n)
.C("my_norm", double(n), as.integer(n))[[1]]

Of course it is simpler and safer to use the Spotfire S+ function rnorm to
generate a fixed number of normal variates to pass into an analysis function.
We recommend that you generate the random variates in C code only when
you cannot tell how many random variates you will need, as when using a
rejection method of generating non-uniform random numbers.

Calling Spotfire S+ Functions From C Code (Unix)

CALLING SPOTFIRE S+ FUNCTIONS FROM C CODE (UNIX)

To this point, we have shown how to call C and Fortran routines from
Spotfire S+ functions. You can also call Spotfire S+ functions from C code,
using the supplied C routine cal1_S(). The cal1_S() routine is useful as
an interface to numerical routines which operate on C or Fortran functions,
but it is not a general purpose way to call Spotfire S+ functions. The C
routine calling cal1_S() must be loaded into Spotfire S+, the arguments to
the function must be simple, and the nature of the output must be known
ahead of time. Because of these restrictions, cal1_S() cannot be used to call
Spotfire S+ functions from an independent C application, as you might call
functions from a subroutine library.

The C function call_S() calls a Spotfire S+ function from C, but
cal1_S() must be called by C code called from Spotfire S+ via .C(). The
cal1_S() function has the following calling sequence:

call_S(void *func, Tong nargs, void **arguments,
char **modes, long *lengths, char **names,
long nres, void **results);

where:

func is a pointer to a list containing one Spotfire S+
function. This should have been passed via an argument
in a .C call, as follows:
.C("my_c_code”,1ist(myfun))
This calls C code starting with the following lines:
my_c_code(void **Sfunc) {

call_S(*Sfunc, ...);

}
The Spotfire S+ function must return an atomic vector
or list of atomic vectors.

nargs is the number of arguments to give to the Spotfire S+
function func.

arguments is an array of nargs pointers to the data being passed to
func. These can point to any atomic type of data, but
must be cast to type void* when put into arguments.

modes is an array of nargs character strings giving the Spotfire
S+ names, e.g., "double™ or "integer", of the modes
of the arguments given to func.

177

Chapter 5 Interfacing with C and FORTRAN Code

178

lengths is an array of nargs longs, giving the lengths of the
arguments.
names is an array of nargs strings, giving the names to be used

for the arguments in the call to func. If you don’t want
to call any arguments by name, names may be (char
**)NULL; if you don’t want to call the ith argument by
name, names[i] may be (char *)NULL.

nres is the maximum number of components expected in
the list returned by func (if func is expected to return
an atomic vector, then nres should be 1).

results is filled in by cal1_S(); it contains generic pointers to
the components of the list returned by func (or a
pointer to the value returned by func if the value were
atomic).

Your C code calling cal1_S() should cast the generic pointers to pointers to
some concrete type, like float or int, before using them. If func returns a
list with fewer components than nres, the extra elements of results are filled
with NULLs. Notice that cal1_S() does not report the lengths or modes of
the data pointed to by results; you must know this a priori.

To illustrate the use of cal1_S(), we construct (in Fortran) a general purpose
differential equation solver, heun (), to solve systems of differential equations
specified by a Spotfire S+ function. Other common applications involve
function optimization, numerical integration, and root finding.

The heun() routine does all its computations in single precision and expects
to be given a subroutine of the following form:

f(t, y, dydt)

where the scalar t and vector y are given and the vector dydt, the derivative,
is returned. Because the f () subroutine calls the Spotfire S+ function, it must
translate the function’s argument list into one that cal1_S() expects. Since
not all the data needed by ca11_S can be passed into f () via an argument list
of the required form, we must have it refer to global data items for things like
the pointer to the Spotfire S+ function and the modes and lengths of its
arguments. The following file of C code, dfeq.c, contains a C function f() to
feed to the solver heun(). It also contains a C function dfeq() which
initializes data that f() uses and then calls heun() (which repeatedly calls
f()):

#include <S.h>
extern void F77_NAME(heun)();
/* pointer to Splus function to be filled in */

Calling Spotfire S+ Functions From C Code (Unix)

static void *Sdydt ;

/* descriptions of the functions’s two arguments */
static char *modes[] = {"single", "single" };
static long Tengths[] = {1, 0 };

/* neqn = lengths[1] to be filled in */
static char *names[] = { "t", "y" };

/*
t [input]: 1 long ; y [input]l: negn long ;
yp [outputl: negn Tlong
*/
static void f(float *t, float *y, float *yp) {
char *in[2] ; /* for two inputs to Splus function,
t and y */
char *out[l1] ; /* for one output vector of
Splus function */
int i;
in[0] = (void *)t;
in[l1] = (void *)y;
call_S(Sdydt, 2L,
in, modes, lengths, names, /* 2 arguments */
1L, out/* 1 result */);

/* the return value out must be 1 Tong - i.e., Splus
function must return an atomic vector or a list of one

atomic vector. We can check that it is at least 1 long.

if (lout[01)
PROBLEM
"Splus function returned a 0 long 1ist"
RECOVER(NULL_ENTRY);

/* Assume out[0] points to lengths[1l] single precision
numbers. We cannot check this assumption here. */

for(i=0;i<lengths[1];i++)
ypl[i]l = ((float *)out[0I)[i] ;
return ;

}

/* called via .C() by the Splus function dfeq(): */
void dfeq(void **Sdydtp, float *y, long *neqn,

float *t_start, float *t_end, float *step,

float *work) {

/* Store pointer to Splus function and
number of equations */
Sdydt = *Sdydtp ;
lengths[1] = *neqgn ;

*/

179

Chapter 5 Interfacing with C and FORTRAN Code

/* call Fortran differential equation solver */
F77_CALL(heun)(f, negn, y, t_start, t_end, step, work);
}

‘Warning

In the C code, the value of the Spotfire S+ function was either atomic or was a list with at least one atomic
component. To make sure there was no more than one component, you could look for 2 values in
results and make sure that the second is a null pointer.

180

The following Spotfire S+ function, dfeq, does some of the consistency tests
that our C code could not do (because call_S did not supply enough
information about the output of the Spotfire S+ function). It also allocates
the storage for the scratch vector. Then it repeatedly calls the C routine,
dfeq(), to have it integrate to the next time point that we are interested in:

> dfeq <- function(func, y , t0 =10, t1 =1, nstep = 100,

stepsize = (t1-t0)/nstep)

{
if (length(func) =3 ||
any(names(func) != c("t","y", "")))
stop("arguments of func must be called t and y")
y <- as.single(y)
t0 <- as.single(t0)
neqn <- length(y)
test.val <- func(t = t0, y =y)
if(negn != Tength(test.val))
stop("y and func(tO,y) must be same length")
if(storage.mode(test.val) != "single")
stop("func must return single precision vector™)
val <- matrix(as.single(NA), nrow = nstep + 1, ncol =
neqn)

vall[l, 1 <-y

time <- as.single(t0 + seq(0, nstep) * stepsize)

for(i in l:nstep) {

val[i + 1,] <- .C("dfeq"™, list(func), y=valli, 1,

negn=as.integer(neqn),
t.start=as.single(timel[i]),
t.end=as.single(time[i + 1]),
step=as.single(stepsize),
work=single(3 * neqgn))s$y

}

Tist(time=time, y=val)

Calling Spotfire S+ Functions From C Code (Unix)

The following subroutine is the Fortran code, heun. f, for Heun’s method of
numerically solving a differential equation. It is a first order Runge-Kutta
method. Production quality differential equation solvers let you specify a
desired local accuracy rather than step size, but the code that follows does
not:

Heun’s method for solving dy/dt=f(t,y),
using step size h :

ki =h f(t,y)

k2 = h f(t+h,y+kl)

ynext =y + (kl+k2)/2

OO OO

subroutine heun(f, negn, y, tstart, tend, step, work)
integer neqgn
real*4 f, y(neqn), tstart, tend, step, work(neqn,3)
C work(1l,1) is k1, work(1l,2) is k2, work(1l,3) is y+kl
integer i, nstep, istep
real*4 t
external f
nstep = max((tend - tstart) / step, 1.0)
step = (tend - tstart) / nstep
do 30 istep = 1, nstep
t = tstart + (istep-1)*step
call f(t, y, work(1l,1))
do 10 i = 1, negn
work(i,1l) = step * work(i,1l)
work(i,3) = y(i) + work(i,1)
10 continue
call f(t+step, work(1,3), work(1,2))
do 20 i = 1, negn
work(i,2) = step * work(i,2)
y(i) = y(i) + 0.5 * (work(i,1) + work(i,2))

20 continue
30 continue
return
end

To try out this example of call1_S, exercise it on a simple one-dimensional
problem as follows:

> a <- dfeq(function(t,y)t”2, t0=0, t1=10, y=1)

> plot(a$time,as$y)

> lines(a$time, a$time~3/3+1) # compare to
fitheoretical solution

181

Chapter 5 Interfacing with C and FORTRAN Code

182

You can increase nstep to see how decreasing the step size increases the
accuracy of the solution. The local error should be proportional to the square
of the step size and when you change the number of steps from 100 to 500
(over the same time span) the error does go down by a factor of about 25. An
interesting three-dimensional example is the Lorenz equations, which have a
strange attractor:

> chaos.func<-function(t, y) {
as.single(c(10 * (y[2] - y[11),
- y[11 * y[3]1 + 28 * y[1] - y[2],
y[1] * y[2] - 8/3 * y[31))
}
> b <- dfeq(chaos.func, y=c(5,7,19), t0=1, t1=10,
nstep=300)
> b.df <- data.frame(b$time,bs$y))
> pairs(b.df)

The resulting plot is shown in Figure 5.2.

Calling Spotfire S+ Functions From C Code (Unix)

10 20 30 40

L ! ! ! ! N h

N f

@o P @
P @G80
S C Ry

10

1 OOO%OOSOGE\O ooooooQSé’OGOOO ®ol ©
©0% 0Bodl) a2 200 %° 0o

b.time

@8 O 000 00 L
P) ‘i{%ww ©
4 b
o elele)
8o & 3

10
o0

]
o 3Wee

-10

40
3 &R
08 RO
08020

0o o
00000

Figure 5.2: Viewing the Lorenz equations, as solved by dfeq.

‘Warnings

Since cal1_S doesn’t describe the output of the Spotfire S+ function it calls, you must “know” about it
ahead of time. You can test the function for a variety of values before calling cal1_S to check for gross
errors, but you cannot ensure that the function won't return an unacceptable value for certain values of its
arguments.

The cal1_S function expects that the output of the function given to it has no attributes. If it does have
attributes, such as dimensions or names, they are stripped.

183

Chapter 5 Interfacing with C and FORTRAN Code

THE .CALL INTERFACE (UNIX)

The .Cal1 interface is a powerful, yet dangerous, interface that allows you to
manipulate SPOTFIRE S+ objects from C code. It is more efficient than the
standard . C interface, but because it allows you to work directly with Spotfire
S+ objects, without the usual Spotfire S+ protection mechanisms, it also
allows you to create a variety of bugs, including memory faults and corrupted
data.

The .Call interface provides you with several capabilities the standard .C
interface lacks, including the following

* the ability to create variable-length output variables, as opposed to
the preallocated objects the . C interface expects to write to.

* a simpler mechanism for evaluating Spotfire S+ expressions within

C.

* the ability to establish direct correspondence between C pointers and
Spotfire S+ objects.

Requirements To use the .Call interface, you must ensure your code meets the following
requirementsl :
1. The return value and all arguments have C type "s_object *".

2. The code must include the standard Spotfire S+ header file S.h.

3. If the routine deals with Spotfire S+ objects, it must include a
declaration of the evaluator using the macro S_EVALUATOR,
appearing in the declaration part of the routine and 7ot followed by a
semicolon.

As with .C, the required arguments to .Call include the name of the C
routine being called and one argument for each argument to the C routine.

1. Chambers, J.M. (1998) Programming with Data. New York: Springer-
Verlag. p. 429.

184

Returning
Variable-
Length Output
Vectors

The . Call Interface (Unix)

Occasionally, we do not know how long the output vector of a procedure is
until we have done quite a bit of processing of the data. For example, we
might want to read all the data in a file and produce a summary of each line.
Until we have counted the lines in the file, we don’t know how much space to
allocate for a summary vector. Generally, .C passes your C procedure a
pointer to a data vector allocated by your Spotfire S+ function so you must
know the length ahead of time. You could write two C procedures: one to
examine the data to see how much output there is and one to create the
output. Then you could call the first in one call to .C, allocate the correct
amount of space, and call the second in another call to .C. The first could
even allocate space for the output vector as it is processing the input and have
the second simply copy that to the vector allocated by your Spotfire S+
function.

With the .Call interface, however, you can create the desired Spotfire S+
object directly from your C code.

Here is an example which takes a vector x of integers and returns a sequence
of integers, of length max(x):

#include "S.h"
s_object *makeseq(s_object *sobjX)
{
S_EVALUATOR
long i, n, xmax, *seq, *x ;
s_object *sobjSeq ;

/* Convert the s_objects into C data types: */
sobjX = AS_INTEGER(sobjX)
X = INTEGER_POINTER(sobjX) ;
n = GET_LENGTH(sobjX) ;

/* Compute max value: */
xmax = x[0] ;
if(n > 1) {
for(i=1; i<n; i++) {
if(xmax < x[i]) xmax = x[i] ;

if(xmax < 0)
PROBLEM "The maximum value (%1d) is
negative.", xmax ERROR ;

185

Chapter 5 Interfacing with C and FORTRAN Code

S Object
Macros

186

/* Create a new s_object, set its length and get a C integer
pointer to it */

sobjSeq = NEW_INTEGER(O) ;
SET_LENGTH(sobjSeq, xmax) ;
seq = INTEGER_POINTER(sobjSeq) ;

for(i=0; i<xmax; i++) {
seq[il =1 + 1 ;

return(sobjSeq) ;
}

Use the following Spotfire S+ code to call makeseq():

"makeseq" <-

function(x)

{
x <- as.integer(x)
.Call("makeseq", x)

The makeseq example has several interesting features, but perhaps the most
useful is its extensive use of S object macros. These macros are defined when
you include S.h, and allow you to create, modify, and manipulate actual
Spotfire S+ structures from within your C code. There are five basic macros,
each of which is implemented particularly for the basic data types listed in

Table 5.5. These macros are described in Table 5.6. To obtain the full name

Table 5.6: S object macros.

Macro Description

NEW_zgype(n) Create a pointer to an S object of class zype and
length n.

AS_zype(obj) Coerce 0bj to an S object of class #ype.

IS_zype(ob) Test whether 0bj is an S object of class zype.

Evaluating
Spotfire S+
Expressions
from C

The . Call Interface (Unix)

Table 5.6: S object macros.

Macro Description

type_POINTER(obj) Create a pointer of type #ype to the data part of 0bj.

type_VALUE (obj) Returns the value of obj, which should have length
1.

of the desired macro, just substitute the basic data type from Table 5.5 in
ALLCAPS for the word #ype in the macro name given in Table 5.6. Thus, to
create a new numeric Spotfire S+ object, use the macro NEW_NUMERIC.

The makeseq code uses the AS_INTEGER macro to coerce the sobjX object
to type INTEGER; the NEW_INTEGER macro to create the returned sequence
object; and the INTEGER_POINTER macro to access the data within those
objects.

The makeseq code also uses built-in macros for getting and setting basic
information about the S objects: in addition to the GET_LENGTH and
SET_LENGTH macros used in makeseq, there are also GET_CLASS and
SET_CLASS macros to allow you to obtain class information about the
various S objects passed into your code.

You can evaluate a Spotfire S+ expression from C using the macros EVAL and
EVAL_IN_FRAME. Both take as their first argument a Spotfire S+ object
representing the expression to be evaluated; EVAL_IN_FRAME takes a second
argument, n, representing the SPOTFIRE S+ frame in which the evaluation is
to take place.

For example, consider the internal C code for the Tapply function, which
was first implemented by John Chambers in his book Programming with
Data:

#include "S_engine.h"
/* See Green Book (Programing with Data by J.M. Chambers)

appendix A-2 */
s_object *
S_qapply(s_object *x, s_object *expr, s_object *name_obj,

s_object *frame_obj)

S_EVALUATOR

187

Chapter 5 Interfacing with C and FORTRAN Code

188

}

long frame, n, i;

char *name;

s_object **els;

X = AS_LIST(x) ;

els = LIST_POINTER(x);

n = LENGTH(x);

frame = INTEGER_VALUE(frame_obj) ;

name = CHARACTER_VALUE(name_obj) ;

for(i=0;i<n;i++) {
ASSIGN_IN_FRAME(name, els[i], frame) ;
SET_ELEMENT(x, i, EVAL_IN_FRAME(expr,

frame)) ;
}

return Xx;

This uses the more general macro EVAL_IN_FRAME to specify the specific
frame in which to evaluate the specified expression. Note also the
SET_ELEMENT macro; this must @/ways be used to perform assignments into

Spotfire S+ list-like objects from C.

Debugging Loaded Code (Unix)

DEBUGGING LOADED CODE (UNIX)

Debugging C
Code

Debugging C
Code Using a
Wrapper
Function

Frequently the code you are dynamically linking is known, tested, and
reliable. But what if you are writing new code, perhaps as a more efficient
engine for a routine developed in Spotfire S+? You may well need to debug
both the C or Fortran code and the Spotfire S+ function that calls it. The first
step in debugging C and Fortran routines for use in Spotfire S+ is to make
sure that the C function or Fortran subroutine is of the proper form, so that
all data transfer from Spotfire S+ to C or Fortran occurs through arguments.
Both the input from Spotfire S+ and the expected output need to be
arguments to the C or Fortran code. The next step is to ensure that the classes
of all variables are consistent. This often requires that you add a call such as
as.single(variable) in the call to .C or .Fortran. If the Spotfire S+
code and the compiled code disagree on the number, classes, or lengths of the
argument vectors, Spotfire S+’s internal data may be corrupted and it will
probably crash—by using .C or .Fortran you are trading the speed of
compiled code for the safety of Spotfire S+ code. In this case, you usually get
an application error message before your Spotfire S+ session crashes. Once
you've verified that your use of the interface is correct, and you've determined
there’s a problem in the C or Fortran code, you can use an analog of the cat
statement to trace the evaluation of your routine.

If you are a C user, you can use C I/O routines, provided you include S.h.
Thus, you can casually sprinkle printf statements through your C code just
as you would use cat or print statements within a Spotfire S+ function. (If
your code is causing Spotfire S+ to crash, call fflush() after each call to
printf() to force the output to be printed immediately.)

If you cannot uncover the problem with generous use of printf(), the
following function, .Cdebug, (a wrapper function for .C) can sometimes
find cases where your compiled code writes off the end of an argument
vector. It extends the length of every argument given to it and fills in the
space with a flag value. Then it runs . C and checks that the flag values have
not been changed. If any have been changed, it prints a description of the
problem. Finally, it shortens the arguments down to their original size so its
value is the same as the value of the corresponding . C call.

.Cdebug <- function(NAME, ..., NAOK = F, specialsok = F,
ADD = 500, ADD.VALUE = -666)
{

args <- Tlist(...)

189

Chapter 5 Interfacing with C and FORTRAN Code

tail <- rep(as.integer(ADD.VALUE), ADD)
for(i in seq(along = args))
{
tmp <- tail
storage.mode(tmp) <- storage.mode(args[[i]])
args[[i]1] <- c(args[[il], tmp)
}
args <- c(NAME = NAME, args, NAOK = NAOK,
specialsok = specialsok)
val <- do.call(".C", args)
for(i in seq(along = val))

{
tmp <- tail
storage.mode(tmp) <- storage.mode(args[[i]])
taili <- val[[ill[seq(to = length(vall[[i11),
length = ADD)]
if((s <- sum(taili != tmp)) > 0) {
cat("Argument ", i, "(", names(val)[i],
") to ", NAME, " has ", s, " altered
values after end of array\n ",
sep ="")
}
Tength(val[[i]]) <- length(val[[i]]) - ADD
}
val

}

For example, consider the following C procedure, oops ():

oops(double *x, Tong* n)

{

long i;

for (i=0 ; i <= *n ; i++) /* should be <, not <= */
x[i] = x[i] + 10 ;

}

Because of the misused <=, this function runs off the end of the array x. If
you call oops () using .C as follows, you crash your Spotfire S+ session:

> .C("oops", x=as.double(l:66), n=as.integer(66))

If you use .Cdebug instead, you get some information about the problem:

> .Cdebug("oops", x=as.double(l:66), n=as.integer(66))
Argument 1(x) to oops has 1 altered values after end of
array

X:

190

Debugging Loaded Code (Unix)

[1] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[19] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
[37] 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
[55] 65 66 67 68 69 70 71 72 73 74 75 76

n:
[1] 66

The .Cdebug function cannot tell when you run off the beginning of an
argument vector or when you write anywhere else in memory. If inspecting
your source code and using Spotfire S+ functions like . Cdebug is not enough
to pinpoint a problem, try the following:

1. Write a short main program that calls your procedure.

2. Compile and link the main program and your procedure for

debugging.

191

Chapter 5 Interfacing with C and FORTRAN Code

A NOTE ON STATLIB (WINDOWS AND UNIX)

192

StatLib is a system for distributing statistical software, data sets, and
information by electronic mail, FTP, and the World Wide Web. It
contains a wealth of user-contributed Spotfire S+ functions, many of
which rely upon C and Fortran code that is also provided. Much of
this code has been precompiled for use with Spotfire S+ for Windows.

To access StatLib by FTP, open a connection to:
lib.stat.cmu.edu. Login as anonymous and send your e-mail
address as your password. The FAQ (frequently asked
questions) is in /S/FAQ, or in HTML format at
http://www.stat.math.ethz.ch/S-FAQ.

To access StatLib with a web browser, visit
http://lib.stat.cmu.edu/.

To access StatLib by e-mail, send the message: send index
from S to statlib@lib.stat.cmu.edu. You can then request any
item in StatLib with the request send item from S where
itemn is the name of the item.

If you find a module you want, check to see if it is pure S code or if it
requires C or Fortran code. If it does require C or Fortran code, see if
there is a precompiled Windows version-look in the /DOS/S
directories. The precompiled versions generally require you to do
nothing more than install the code.

AUTOMATION

Introduction 194
Using Spotfire S+ as an Automation Server 195
A Simple Example 195
Exposing Objects to Client Applications 201
Exploring Properties and Methods 203
Programming With Object Methods 205
Programming With Object Properties 215
Passing Data to Functions 216
Automating Embedded Spotfire S+ Graph Sheets 219
Using Spotfire S+ as an Automation Client 220
A Simple Example 220
High-Level Automation Functions 226
Reference Counting Issues 228
Automation Examples 231
Server Examples 231
Client Examples 235

193

Chapter 6 Automation

INTRODUCTION

Automation, formerly known as OLE automation, makes it possible for
one application, known as the automation client, to directly access the
objects and functionality of another application, the automation
server. The server application exposes its functionality through a type
library of objects, properties, and methods, which can then be
manipulated programmatically by a client application. Automation
thus provides a handy way for programs and applications to share
their functionality.

In this chapter, we explore the procedures for using Spotfire S+ as
both an automation server and an automation client. We begin by
showing you how to expose Spotfire S+ objects and functions and
how to use them as building blocks in the program code of client
applications. Later in the chapter, we examine the functions provided
in the Spotfire S+ programming language for accessing and
manipulating the automation objects exposed by server applications.

Note

This chapter is dedicated to Microsoft Windows® users running the Spotfire S+ GUI. You must
call all automation client functions from the Spotfire S+ GUIL If you call the automation
functions from the Console program, they generate errors.

194

Using Spotfire S+ as an Automation Server

USING SPOTFIRE S+ AS AN AUTOMATION SERVER

A Simple
Example

Programs and applications supporting automation client features can
access all the functionality of Spotfire S+ by referring to the Spotfire
S+ type library or the HTML-based object help system. The type
library is a disk file containing information about Spotfire S+ objects
and functions, as well as help and syntax information. The object help
system is a set of HTML files with an index.htm showing the object
hierarchy of objects exposed by Spotfire S+ via automation and how
to use them in a Visual Basic script.

Before explaining in detail how to program with Spotfire S+
automation objects, let’s first take a look at a simple example.

To demonstrate how to use Spotfire S+ as an automation server, we
present a simple example using automation to pass data from an
Excel worksheet to Spotfire S+, which then performs a covariance
estimation on the data and returns the resulting covariance matrix to
Excel.

Consider the sample data shown in Figure 6.1. Sheetl of the Excel
workbook Book1.xls contains data in 4 columns of 39 rows (not all
rows are shown in Figure 6.1).

(i Book1.xls H=]1E3
A B © D E g
|1 8.80 471 5.82 1297
| 2 | 8.79 470 5.83 1297
| 3 | 8.79 4.69 5.83 12958
EN 5.581 4.69 5.84 12958
hi] 5.581 464 5.85 12958
| 6 | 5.9 4.63 5.86 1299
| 7 8.94 4.62 5.88 1299
| 8 | 8.95 4.62 5.90 1299
EN 8.95 461 5.93 13.00
| 10| 9.0 461 5.94 13.00
111 | 9.03 4.60 5.95 13.01
| 12 | 9.0v 469 5.96 13.02
| 13 | 9.06 468 5.95 13.02
| 14 | 91 469 6.00 13.03
| 15| 9.13 468 6.03 13.04
16 (= b AET [=ue] 1204 r
144 [» [p]sSheet1 / shestz 7 1] »ll

Figure 6.1: Sample data in Book1.xls.

195

Chapter 6 Automation

Note

The sample data in Bookl.xls are taken from the freeny.x matrix included with Spotfire S+.
You can recreate this example by exporting the data into a new Excel worksheet and following
the steps outlined below.

By writing a program in Visual Basic for Applications (Office 97), we
can automate a conversation between Excel and Spotfire S+ to
perform our task. The complete code for one such program is shown
in Figure 6.2.

§; Book1_xls - Sheet1 [Code) I [=]

I(General} =l |Runnutomationc0\r =l
=

Sub RunlutomationCovi()
Dim pDataValues As Variant
Convert3heetRangeToArray pDataValues, Sheets ("2heetl"”) . Range ("A1:D39™)
Dim automationCoV As Object
Set automationCOV = Createdbject ("S-PLUS.automationCov™)
automationCiWV.x = phataValues
automat ionCovV. Fun
Dim pCovarianceDataFrame As Obhject
Set pCovarianceDataFrame = GetDataFrame ("CovDF™
ConvertiArrayToZheetRange "A", "1", "Zheetz", _
pCovariancebataFrame.Datalsirray
End Sub
Sub ConvertZheetRangeTolArray (pArray As Variant, _
EvRef rangeToConvert Ls Range)
phrray = rangeToConvert.Value
End Sub
Function GetDataFrame (sDataFramelName As String) As Chiject
Dim plpp As Object
Set plipp = CreateChject ("3-PLU3.Application™)
SGet GetDataFrame = plpp.Getlbject ("DataFrame®, sDataFramelName)
End Function
Sub ConvertiArrayToSheetRange (s3tartCol As S3tring, s3tartRow As String,
s3heetName As S3tring, plrray As Variant)
UpperBoundl = UBound (phrray, 1)
UpperBoundZ = UBound (phrray, 2)
sRangeToFill = Trim§(sStartCol] + Trim§(sStartRow) + ":" +
Chr (Asc (UCase§ (s3tartCol)) + (Trim(3tr (UpperBound2)) - 1)) + _
Trim(3tr (UpperBoundl))
Sheets (s3heetName) . RBange (sRangeToFill) .Walue = plrray
End Sub

Figure 6.2: Complete code for our VBA program.

Hint

The example shown in Figure 6.2 can be found in samples/oleauto/vba/excel/Book1.xls in
the Spotfire S+ program folder.

196

Using Spotfire S+ as an Automation Server

Before we examine the VBA code in detail, let’s first define a new
Spotfire S+ function and register it for use as an automation object.

1. Open a new Script window in Spotfire S+ and enter the code
shown in Figure 6.3.

Q Scriptl - program H=]1E3
1 1 v

automationCOV <- function(x)

i
assigm("new”, cov.wt(x, wt = rep(l, nrow(x)), cor = F, center = T), where = 1)
assigm("CovDF", data.frame (newicov), where = 1)

'

register.ole.object("autonationCOv™)

Figure 6.3: Defining and registering a new Spotfire S+ function.

Our new function, automationCOV, calls the built-in Spotfire S+
function cov.wt to perform a weighted covariance estimation on the
data received from Excel and extracts the cov component of the
resulting list for return to Excel. After defining the new function, we
use the register.ole.object command to make it available to Excel.

2. Click the Run button “* on the Script window toolbar. As
shown in Figure 6.4, automationCOV is now defined and
registered as an automation object.

197

Chapter 6 Automation

Q Scriptl - program H=]1E3
1 1 v

automationCOV <- function(x)

i

assigm("new”, cov.wt(x, wt = rep(l, nrow(x)), cor = F, center = T), where = 1)
assigm("CovDF", data.frame (newicov), where = 1)
'

register.ole.object("autonationCOv™)

» automationCOV <- function(x)
i
assigm("new”, cov.wt(X, wt = rep(l, nrow(x)), cor = F, center = T),
where = 1)
assigm("CovDF", data.frame (newicov), where = 1)
'
» register.ole.object("autonationCOv™)
[1] T

Figure 6.4: Running the script.

3. Close the Script window. At the prompt to save the scriptin a
file, click No.

Note

If you prefer, you can define and register automationCoV directly from the Commands window.

Now that we have defined and registered our Spotfire S+ function,
the next step is to write the module in Visual Basic.

4. With Bookl.xls open in Excel, choose Tools » Macro »
Visual Basic Editor from the main menu.

5. If the Project Explorer window is not open, open it by
choosing View P> Project Explorer.

6. Double-click Sheetl under the Book1.xls project to open the
code window for Sheetl.

7. Enter the code for the first procedure in the module,
RunAutomationCOV, as shown in Figure 6.5.

198

Using Spotfire S+ as an Automation Server

§; Book1_xls - Sheet1 [Code) I [=] F3
I(General} =l |Runnutomationc0\r =l
Sub RunlutomationCovi() -

Dim pDataValues As Variant
Convert3heetRangeToArray pDataValues, Sheets ("2heetl"”) . Range ("A1:D39™)

Dim automationCoV As Object

Set automationCOV = Createdbject ("S-PLUS.automationCov™)
automationCiWV.x = phataValues

automat ionCovV. Fun

Dim pCovarianceDataFrame As Obhject

Set pCovarianceDataFrame = GetDataFrame ("CovDF™

ConvertiArrayToZheetRange "A", "1", "Zheetz", _
pCovariancebataFrame.Datalsirray

End Sub -
JE0 Y[

Figure 6.5: The RunAutomationCOV procedure.

RunAutomationCOV represents the central task we want to automate. In
the first section of code, we declare a variable, pDataValues, in which
to store the data on Sheetl. A call to the next procedure we will
write, ConvertSheetRangeToArray, converts the range data into an
array.

8. Enter the code for ConvertSheetRangeToArray, as shown in

Figure 6.6.
54 Book1_xls - Sheetl (Code] 18 [=] e
I(General} j IConuertSheetRangeToArray j
Sub ConvertZheetRangeTolArray (pArray As Variant, _ -

EvRef rangeToConvert Ls Range)

phrray = rangeToConvert.Value —
End Sub -
=|= <| | vz

Figure 6.6: The ConvertSheetRangeToArray procedure.
In the next section of code in RunAutomationCOV (see Figure 6.5), we

declare a variable to capture our automationCOV function, pass the
Excel data as a parameter to the function, and then run the function.

199

Chapter 6 Automation

In the final section of code in RunAutomationCOV (see Figure 6.5), we
declare a variable, pCovarianceDataFrame, in which to store our
results and call the GetDataFrame function, the next procedure we will
write, to return the results to Excel.

9. Enter the code for GetDataFrame, as shown in Figure 6.7.

§; Book1_xls - Sheet1 [Code) I [=] F3

I(General} j IGetDataFrame j

Function GetDataFrame (sDataFramelName As String) As Chiject -

Dim plpp As Object
Set plipp = CreateChject ("3-PLU3.Application™)

SGet GetDataFrame = plpp.Getlbject ("DataFrame®, sDataFramelName) _I
End Function -|
=|= <| | vz

Figure 6.7: The GetDataFrame function.

The last procedure we will write, ConvertArrayToSheetRange, is
called in the last line of RunAutomationCOV and returns the covariance
matrix to Sheet2 in Book1.xls.

10. Enter the code for ConvertArrayToSheetRange, as shown in
Figure 6.8.

§; Book1_xls - Sheet1 [Code) I [=] F3

I(General} j IConuertArrayToSheetRange j

Sub ConvertiArrayToZheetRange (s3tartCol As 3tring, s3tartRow As 3tring, _ j
s3heetName As S3tring, plrray As Variant)

UpperBoundl UBound (phrray, 1)
UpperBoundz2 UBound (phrray, 2)
sRangeToFill = Trim§(sStartCol] + Trim§(sStartRow) + ":" +
Chr (Asc (UCase§ (s3tartCol)) + (Trim(3tr (UpperBound2)) - 1)) + _ J

Trim(3tr (UpperBoundl))
Sheets (s3heetName) . RBange (sRangeToFill) .Walue = plrray

End Sub -

= Sl — 1p7

Figure 6.8: The ConvertArrayToSheetRange procedure.

With all the coding complete, it’s time to run the module.

200

Using Spotfire S+ as an Automation Server

11. Click the Run Sub/User Form button "* on the Visual

Basic toolbar. The results are shown in Figure 6.9.

‘@l Book1.xls H=]1E3
A B © D E g
LI 0.095968 -0.04056 0.036343 0.019772
| 2 | 004056 0017323 -0.01493 -0.00329 J
| 3 | 0.036343 -0.01493 0.014135 0.007352
| 4 | 009772 -0.00523 0007332 0.004054
5
6
? -
[[4]0 Ml Shesti Sheetz /4| | Il

Figure 6.9: The covariance matrix returned to Excel.

Exposing When you start Spotfire S+ for the first time, the single automation
Objects to object S-PLUS.Application is exposed for use by automation client
Client programs. By default, no other objects are exposed.

Applications There are a number of ways in which Spotfire S+ automation objects

can be exposed to, or hidden from, client applications. Table 6.1 lists

the Spotfire S+ functions that you can use at any time to register or
unregister automation objects.

Table 6.1: Spotfire S+ functions for exposing and hiding automation objects.

Function

Description

register.all.ole.objects

This function registers all Spotfire S+ objects with the
system registry and builds or rebuilds the type library file.

Returns T for success or F for failure.

unregister.all.ole.objects

This function unregisters all Spotfire S+ objects and
removes the type library file.

Returns T for success or F for failure.

register.ole.object

This function registers one or more Spotfire S+ objects with
the system registry and builds or rebuilds the type library
file.

Returns T for success or F for failure.

201

Chapter 6 Automation

Table 6.1: Spotfire S+ functions for exposing and hiding automation objects. (Continued)

Function Description
unregister.ole.object This function unregisters one or more Spotfire S+ objects
and rebuilds the type library file.
Returns T for success or F for failure.
With the exception of functions, all the built-in Spotfire S+ objects
can be exposed simultaneously with a call to:
register.all.ole.objects()
Due to their large number, function objects are not exposed at one
time because it would be too time-consuming. Instead, to expose any
of the built-in functions, or any of those that you have defined, call:
register.ole.object(names)
where names is a character vector of the function names you want to
expose. You can also use this function to register one or more
particular Spotfire S+ objects.
To unregister all your Spotfire S+ objects, making them no longer
available to automation clients, call:
unregister.all.ole.objects()
To unregister one or more particular Spotfire S+ objects, call:
unregister.ole.object(names)
with the desired names argument.
Caution

Unregistering your Spotfire S+ objects means that no automation client will be able to access
those objects, which could potentially cause a client program to fail.

202

When you expose Spotfire S+ objects for use in automation, several
entries are added to your Windows system registry. Automation
client programs use these entries to identify what objects can be

Using Spotfire S+ as an Automation Server

automated and which application to use to automate them. When you
hide your Spotfire S+ objects, these registry entries are removed so
that client programs can no longer find them.

Note

Among these registry entries, the ProgID (program identifier) entry or human-readable name of
the object (for example, S-PLUS.Application or S-PLUS.GraphSheet) is what you refer to in your
client program script. This ProgID entry is mapped to a universally unique number entry called
a UUID (universally unique identifier) in the Windows system registry. Under this UUID entry
is stored the pathname on your system to the Spotfire S+ program, which is used by your client
program to create and automate the object.

Exploring To start a conversation with Spotfire S+ from a client application, you
Properties and must first create or get a Spotfire S+ object. Once an instance of the
Methods object has been created, it can be manipulated through its properties

and methods.

The Spotfire S+ type library (installed by default to cmd\Sp6obj.tlb
in the Spotfire S+ program folder) is useful for knowing what
methods and properties are available for particular Spotfire S+
objects when programming in an automation client such as Visual
Basic. However, the type library does not reveal the object hierarchy
or how objects are related in Spotfire S+, nor does it provide much
information on how to use the properties of Spotfire S+ objects.

Note

Although Spotfire S+ has an automation type library, it does not support “early binding” in an
automation client such as Visual Basic. The types listed in the type library file are listed for
informational purposes only. When you declare a Spotfire S+ variable in a client, you must
declare it as the generic “object” type. Spotfire S+ supports only the “IDispatch” interface and
“late binding” for all objects that are automatable.

For an easier way of seeing how to program Spotfire S+ objects, use
the HTML-based object help system. In the
help\AutomationObjects folder of the Spotfire S+ program folder,
you will find a complete set of HTML files documenting the Spotfire
S+ object hierarchy as distributed with the program, including an
index.htm file displaying the entire Spotfire S+ object hierarchy.

203

Chapter 6 Automation

These files provide detailed programming information, listing, for
each automation object, not only its properties and methods, but also
its possible containment paths, possible container objects, and
possible child objects.

You can update the object help system at any time to reflect the
complete object hierarchy for all objects currently registered,
including any Spotfire S+ functions you write and expose using
register.ole.object. If you choose, you can also create a new set of
HTML files in a different folder on your system.

Table 6.2 lists the Spotfire S+ functions you can use to refresh or
remove the type library or to refresh the object help system.

Table 6.2: Spotfire S+ functions for documenting automation objects.

Function

Description

rebuild.type.library

This function removes and then rebuilds the type library
file with all currently registered Spotfire S+ objects.

Returns T for success or F for failure.

destroy.type.library

This function removes the type library file from disk. Note
that executing this command does not unregister any
objects but simply removes the type library.

Returns T for success or F for failure.

rebuild.html.library(html.path,
method.language.type = "basic"

Argument html.path specifies the path, including drive
letter, where you want the set of HTML files to be saved to
disk. Optional argument method.language.type specifies
the language used to write out the example syntax for
methods in the HTML files; the default value for this
argument is basic, but ¢ or c++ can also be used.

This function creates the htm1.path specified, if it does not
already exist, and writes an index.htm file that shows the
complete object hierarchy for the automatable Spotfire S+
object system.

Returns T for success or F for failure.

204

Using Spotfire S+ as an Automation Server

Note

The function rebuild.html.Tibrary uses only the currently registered objects to form the
hierarchy and list of objects. Therefore, be sure to run register.all.ole.objects prior to calling
this function to ensure that all objects appear in the help files.

Programming Spotfire S+ automation objects are owned by Spotfire S+ but can be
With Object created and manipulated remotely through their properties and
Method methods. For example, to start Spotfire S+ from a client application,

ethods simply call the CreateObject method on the Spotfire S+ application
object. In automation terminology, Spotfire S+ is said to be
instantiated.

Since, by default, only the S-PLUS.Application object is exposed,
how then do you create, for example, an S-PLUS.GraphSheet object in
your client program? If you try to do so directly, you will get an error
in your client program indicating that the S-PLUS.GraphSheet object
cannot be found. The following example in Visual Basic illustrates the
point.

Dim pApplication As Object

Set pApplication = CreateObject("S-PLUS.Application™)
"The above CreateObject succeeds because the Application
‘object is exposed by Spotfire S+.

Dim pGraphSheet As Object

Set pGraphSheet = CreateObject("S-PLUS.GraphSheet")
>The above CreateObject fails because the GraphSheet
’object has not yet been exposed by Spotfire S+.

There are two ways in which you can create unexposed objects in an
automation client program:

1. Call the Spotfire S+ function register.all.ole.objects to
simultaneously expose all the built-in objects (and any
function objects you have previously registered with
register.ole.object). Once all your objects are registered,
you can simply create an object directly in the client program.

205

Chapter 6 Automation

2. TFollow the object hierarchy shown in the index.htm file of
the object help system to see how to create one object from
another parent object until you get to the object you desire.
This approach can be used, for example, to automate
functions that you have not yet exposed using
register.ole.object.

As an example of the second approach, consider again our question
of how to create an S-PLUS.GraphSheet object in a client program.
The object hierarchy shows that a GraphSheet object is a child of the
Application object. To create a GraphSheet object, you must first
create the Application object and then use the CreateObject method
of the Application object to create the GraphSheet, as shown in the
following Visual Basic script.

Dim pApplication As Object

Set pApplication = CreateObject("S-PLUS.Application™)
>The above CreateObject succeeds because the Application
’object is exposed by S-PLUS.

Dim pGraphSheet As Object

Set pGraphSheet = pApplication.CreateObject("S-PLUS.GraphSheet")
>The above CreateObject succeeds because S-PLUS
automatically exposes the GraphSheet object when you
’create it as a child of the Application object.

Because a GraphSheet object is recognized as a child of the
Application object, Spotfire S+ automatically exposes the
GraphSheet object once you create it for the first time by calling the
CreateObject method of the Application object. Once you create a
child object in this way, you can create the child object type directly,

as in the following Visual Basic script.

Dim pGraphSheet As Object

Set pGraphSheet = CreateObject("S-PLUS.GraphSheet™)
>The above CreateObject now succeeds because you
‘previously created a GraphSheet object as a child
*of the Application object.

206

Using Spotfire S+ as an Automation Server

The following example in Visual Basic shows you how to create a
GraphSheet object and then add an arrow to it using the
CreateObject method.

Function CreateArrowInSPlus () As Integer
Dim mySplus As Object
Dim myGS As Object
Dim myArrow As Object

'Instantiate the Application object

Set mySplus

'Instantiate the GraphSheet object
Set myGS = mySplus.CreateObject("GraphSheet™)

'Add an arrow to this GraphSheet object

Set myArrow
End Function

CreateObject("S-PLUS.Application™)

myGS.CreateObject("S-PLUS.Arrow")

Common Object
Methods

Notice the form in which Create0Object is used in its third occurrence.
Here, CreateObject is called as a method of the GraphSheet object
and so creates the arrow as a child object of the GraphSheet container.
Had we instead used

CreateObject("S-PLUS.Arrow")

a new GraphSheet object would have been created with the arrow
added to that one.

Another method common to most Spotfire S+ automation objects is
the GetObject function. You can use GetObject to get a reference to
an object that already exists in Spotfire S+. In the next section, we list
the common methods available for most automation objects.

Except for function objects, all Spotfire S+ automation objects have a
set of common methods, listed in Table 6.3. Once an object has been
created using CreateObject or GetObject, the other methods can be
called. Consult the HTML files discussed on page 203 for detailed

information concerning parameters for these methods.

207

Chapter 6 Automation

Table 6.3: Common object methods.

Method

Description

BeginTransaction

Starts remembering property set calls so that all changes can
be applied at once when CommitTransaction is called.

CancelTransaction

Cancels remembering property set calls made after the last call
to BeginTransaction.

ClassName

Returns a string representing this object’s class name.

CommitTransaction

Commits all property changes made since the last call to
BeginTransaction.

Containees

Returns an array of objects contained by this object. Returns
an array of containee objects of the class name specified or an
empty array if none are found.

Container

Returns the object that is the container of this object.

CreateObject

Creates an object or child object of a particular type.

GetMethodArgumentNames

Returns a string array of argument names that can be used
with the specified method for this object.

GetMethodArgumentTypes

Returns a string array of argument data types that must be
passed as parameters to the specified method for this object.
Data types returned depend on the language type specified.

GetMethodHelpString Returns a string containing a description of the method
specified for this object.
GetObject Gets an object or child object of the type specified, identified

by an object path name.

GetObjectPicture

Returns an array of byte values in a variant representing the
Windows metafile format picture of this object. If unsuccessful,
returns an empty variant.

208

Using Spotfire S+ as an Automation Server

Table 6.3: Common object methods. (Continued)

Method Description

GetObjectRectangle Returns the rectangular coordinates (client or screen,
depending on the input parameter) in a variant that contains
this object. If unsuccessful, returns an empty variant.

GetPropertyAllowedValues Returns a string array of allowable values or allowable range of
values for the specified property for this object.

GetPropertyInformation Returns a string array of information about the specified
property for this object.

GetSelectedObjects Returns an array of currently selected objects that are
contained in this object.

GetSelectedText Returns a string containing the currently selected text in this
object. If no selected text is found, returns an empty string.

Methods Returns a comma-delimited string listing all allowable
methods for this object.

MethodsList Returns a string array of method names that can be called on
this object.

Objects Called with Containees parameter, returns a comma-delimited
string listing all allowable child objects for this object. Called
with Containers parameter, returns a list of objects that could
contain this object.

ObjectsList Depending on the parameter specified, returns a string array of
class names for objects that can be valid children or parents of
this object.

PathName Returns a string representing this object’s path name in
Spotfire S+.
Properties Returns a comma-delimited string listing all the properties for

this object.

209

Chapter 6 Automation

Table 6.3: Common object methods. (Continued)

Method

Description

PropertiesList

Returns a string array of property names that can be used with
this object to set or get values.

RemoveObject

Removes a child object from this container object.

SelectObject

Selects this object in all views, returning TRUE if successful or
FALSE if not.

ShowDialog

Displays a modal property dialog for this object that allows
you to change any or all of its properties, pausing the client
program until OK or Cancel is pressed in the dialog.

ShowDialogInParent

Displays a modal property dialog for this object in the client
program, pausing the program while the dialog is displayed.
Returns TRUE if successful or FALSE if not.

ShowDialogInParentModeless Displays a modeless property dialog for the object in the client

program, which continues executing while the dialog is
displayed. Returns TRUE if successful or FALSE if not.

Additional
Methods for the
Application
Object

The Spotfire S+ “application” object is used to instantiate a Spotfire
S+ session within a client application. All the common object
methods can be applied to the application object. In addition, it has a
number of specific methods, listed in Table 6.4. For detailed
information concerning parameters for these methods, consult the
HTML files discussed on page 203.

Table 6.4: Methods for the application object.

Method

Description

ChooseGraphAndPTlotType Displays the graph gallery dialog similar to that displayed

by the CreatePlotsGallery function. The dialog allows the
selection of axis and plot types and returns the axis and
plot type strings selected when the dialog is accepted.

210

Using Spotfire S+ as an Automation Server

Table 6.4: Methods for the application object. (Continued)

Method

Description

ChooseGraphAndP1otTypeModeless

Displays the graph gallery dialog similar to that displayed
by the ChooseGraphAndPTotType function except that it is
modeless and allows the client program to continue
running while the dialog is displayed. Returns a dialog
handle that can be used in the functions
GetHwndForModelessDialog and CloseModelessDialog.

CloseModelessDialog

Closes and destroys the dialog specified by the dialog
handle. Returns FALSE on failure.

ExecuteString

Executes a string representing any valid Spotfire S+
syntax.

ExecuteStringResult

Returns a string representing the output from executing
the string passed in. The format of the return string
depends on the setting of the second parameter. If TRUE,
the older Spotfire S+ 3.3 output formatting is applied. If
FALSE, the new format is used.

GetHwndForModelessDialog

Gets the window handle (identifier) for a dialog handle as
returned by the ChooseGraphAndPlotTypeModeless
function.

GetOptionValue

Gets the current setting for an option (as in the Options P
General Settings dialog).

GetSAPIObject

Returns a binary SAPI object into a variant byte array
given the name of the object in Spotfire S+. If no object is
found, returns an empty variant.

GetSelectedGraphAndPlotType

Returns the selected graph and plot type as strings from
the dialog handle specified. (An empty variant is returned
for no selection.) Use the function
ChooseGraphAndPTotTypeModeless to get the dialog handle
to use in this function.

211

Chapter 6 Automation

Table 6.4: Methods for the application object. (Continued)

Method Description

SetOptionValue Sets an option value in the program (as in the Options P>
General Settings dialog).

SetSAPIObject Sets a binary SAPI object created in the client program
into Spotfire S+, making it available to other Spotfire S+
operations. Returns TRUE if successful or FALSE if not.

Additional In addition to the common object methods listed in Table 6.3, Table
Methods for 6.5 lists a number of methods available specifically for creating
Graph Objects graphs and plots. Consult the HTML files discussed on page 203 for

detailed information concerning parameters for these methods.

Table 6.5: Methods for graph objects.

Method Description

ChooseGraphAndPlotType Displays the graph gallery dialog similar to
that displayed by the CreatePlotsGallery
function. The dialog allows the selection of
axis and plot types and returns the axis and
plot type strings selected when the dialog is

accepted.
CreateConditionedPlots Returns TRUE if successful or FALSE if not.
CreateConditionedPlotsGallery Returns TRUE if successful or FALSE if not.
CreateConditionedPlotsSeparateData Returns TRUE if successful or FALSE if not.

CreateConditionedPlotsSeparateDataGallery Returns TRUE if successful or FALSE if not.

CreatePlots Returns TRUE if successful or FALSE if not.

CreatePlotsGallery Returns TRUE if successful or FALSE if not.

212

Using Spotfire S+ as an Automation Server

Table 6.5: Methods for graph objects. (Continued)

Method Description

ExecuteStringResult Takes in a string representing any valid
Spotfire S+ syntax and a boolean parameter
indicating how the result should be formatted.
Returns a string representing the result of
executing the syntax passed in. (You can use
%GSNAME% in the syntax string to get the
GraphSheet object name substituted in the
command.)

Methods for Function objects differ from other Spotfire S+ objects in that they do
Function Objects not have all the same methods as other automation objects. The
methods available for functions are listed Table 6.6. For detailed
information concerning parameters for these methods, consult the

HTML files discussed on page 203.
Table 6.6: Methods for function objects.

Method Description
ClassName Returns a string representing this object’s class name.
GetMethodArgumentNames Returns a string array of argument names that can be used

with a specified method for this object.

GetMethodArgumentTypes Returns a string array of argument data types that must be
passed as parameters to the specified method for this object.
Data types returned depend on the language type specified.

GetMethodHelpString Returns a string containing a description of the method
specified for this object.

GetParameterClasses Returns an array of strings representing the class names of the
return value followed by each of the parameters of this
function.

GetPropertyAllowedValues Returns a string array of allowable values or range of values for

the specified property for this object.

213

Chapter 6 Automation

Table 6.6: Methods for function objects. (Continued)

Method

Description

GetPropertyInformation

Returns a string array of information about the specified
property for this object.

Methods Returns a comma-delimited string listing all allowable
methods for this function.

MethodsList Returns a string array of method names that can be called on
this object.

PathName

Returns a string representing this object’s path name in
Spotfire S+.

Properties

Returns a comma-delimited string listing all allowable
arguments (parameters) for this function.

PropertiesList

Returns a string array of property names that can be used with
this object to set or get values.

Run

Runs this function using the arguments (properties) most
recently set.

SetParameterClasses

Specifies the class of function parameters. Returns TRUE if
successful or FALSE if not.

ShowDialog

Displays a dialog for this function that allows you to change
any or all of the function’s arguments, pausing the client
program until OK or Cancel is pressed in the dialog.

ShowDialogInParent

Displays a modal property dialog for this object in the client
program, pausing the program while the dialog is displayed.
Returns TRUE if successful or FALSE if not.

ShowDialogInParentModeless

Displays a modeless property dialog for this object in the client
program, which continues executing while the dialog is
displayed. Returns TRUE if successful for FALSE if not.

214

Programming
With Object
Properties

Using Spotfire S+ as an Automation Server

You can set and get the properties of an automation object to modify
its appearance or behavior. For example, a property of the
application object called Visible controls whether the Spotfire S+
main window will be visible in the client application.

When setting a series of properties for an object, you can use the
BeginTransaction and CommitTransaction methods in a block to
apply the changes all at once. The following example in Visual Basic
illustrates how to use BeginTransaction and CommitTransaction to
set color properties for an arrow on a GraphSheet object.

Sub ChangeArro
Dim myGS As
Dim myArrow

Set myGS =
Set myArrow

‘Set proper
myArrow.Beg
myArrow.Lin
myArrow.Hea
myArrow.Com

sLineColor
End Sub

wPropertiesInSPTus()
Object
As Object

CreateObject("S-PLUS.GraphSheet")
= myGS.CreateObject("S-PLUS.Arrow")

ties for the Arrow object
inTransaction

eColor = "Green"

dColor = "Green"
mitTransaction

= myArrow.LineColor

Because an object updates itself whenever a property is set, using a
BeginTransaction/CommitTransaction block can save you time and
speed up your client program.

Unlike other Spotfire S+ objects, function objects only update when
the Run method is called. Therefore, the BeginTransaction and
CommitTransaction (and CancelTransaction) methods are not
supported, or even needed, for function objects.

As an example, suppose the following function has been defined and
registered in a Spotfire S+ script as follows:

myFunction <- function(a,b) {return(a)}
register.ole.object("myFunction™)

215

Chapter 6 Automation

The following Visual Basic example illustrates how to set a series of
properties, or parameters, for the function object defined above.

End Sub

Sub RunSPlusFunction()
Dim mySFunction As Object
Set mySFunction = CreateObject("S-PLUS.myFunction")

‘Set properties for the function object

mySFunction.a = "1"
mySFunction.b = "2"
mySFunction.ReturnValue = "myVariable"

mySFunction.Run

Passing Data
to Functions

216

The parameters, or arguments, of a function (and the function’s return
value) are properties of the function object and can be passed by
value or by reference. When the data already exist in Spotfire S+,
passing by reference is faster because the data do not have to be
copied into the client before they can be used. However, when the
data to be passed are from a variable defined in the client, the data
should be passed by value. Note that the return value must not be
passed by reference.

By default, all parameter data are passed by value as a data frame.
This default behavior could cause errors if the function expects a data
type other than a data frame. You can control the data types used in a
function object in one of two ways:

* By calling the SetParameterClasses method of the function
with a comma-delimited string specifying the data types (or
class names) for each of the parameters and the return value
of the function.

* By setting the ArgumentClassList property of the
FunctionInfo object with a comma-delimited string
specifying the data types (or class names) for each of the
parameters and the return value of the function.

For any parameter you want to pass by reference instead of by value,
place an ampersand character (&) at the beginning of its class name in
the string.

Using Spotfire S+ as an Automation Server

We can use the following Spotfire S+ script to define and register a
function called MyFunction:

MyFunction <- function(a) {return(as.data.frame(a))}
register.ole.object("MyFunction™)

and then use SetParameterClasses to adjust how the data from
Visual Basic are interpreted by MyFunction.

Dim pArray(l to 3) as double
pArray (1)
pArray(2)
pArray(3)

1.
2.
3.

o O o

Dim pMyFunction as Object
Set pMyFunction = CreateObject("S-PLUS.MyFunction")

if (pMyFunction.SetParameterClasses("data.frame,vector™) = TRUE) then
pMyFunction.a = pArray
pMyFunction.Run

Dim pReturnArray as Variant
pReturnArray = pMyFunction.ReturnValue
end if

The following example shows how a vector in Spotfire S+ can be
passed by reference to MyFunction in Spotfire S+, instead of passing
data from variables in Visual Basic.

217

Chapter 6 Automation

Dim pApp as 0bj
Set pApp = Crea

Dim pMyVectorIn
Set pMyVectorIn

Dim pMyFunction
Set pMyFunction

if (pMyFunctio
Set pMyFuncti

Dim pReturnAr
pReturnArray
end if

pMyFunction.Run

ect
teObject ("S-PLUS.Application™)

SPLUS as Object
SPLUS = pApp.GetObject("vector™, "MyVector™)

as Object
= pApp.CreateObject("MyFunction")

n.SetParameterClasses("data.frame,&vector”) = TRUE) then

on.a = pMyVectorInSPLUS

ray as Variant
= pMyFunction.ReturnValue

218

Notice how the vector object MyVector is obtained from Spotfire S+
using GetObject and assigned directly to pMyFunction.a to avoid
having to get the data from MyVector into a variant and then assign
that variant data to pMyFunction.a. This is possible when you specify
the & before a class name in SetParameterClasses.

As an alternative to using SetParameterClasses in the client, you can
define the parameter classes using the ArgumentClassList property
when you define the FunctionInfo object to represent the function in
Spotfire S+. This approach has the advantage of simplifying the
automation client program code but does require some additional
steps in Spotfire S+ when defining the function.

Consider the following Spotfire S+ script to define the function
MyFunction and a FunctionInfo object for this function:

MyFunction <- function(a)

{
return(a)

guiCreate(
"FunctionInfo"™, Function = "MyFunction",
ArgumentClassList = "vector, vector")

Using Spotfire S+ as an Automation Server

The script sets ArgumentClassList to the string "vector, vector"”
indicating that data passed into and out of MyFunction via automation
will be done using Spotfire S+ vectors. When this approach is used,
the corresponding client code becomes simpler because we no longer
need to set the parameter classes for the function before it is used.

Dim pArray(l to 3) as double
pArray (1) 1.
pArray(2) = 2.
pArray(3) 3.

I
o o o

Dim pMyFunction as Object

Set pMyFunction = CreateObject("S-PLUS.MyFunction")
pMyFunction.a = pArray

pMyFunction.Run

Dim pReturnArray as Variant
pReturnArray = pMyFunction.ReturnValue

Automating With Spotfire S+ automation support, it is easy to embed Graph
Embedded Sheets in any automation client, such as Visual Basic, Excel, Word,
and others. You can create, modify, and save an embedded Graph
Spotfire S+ Y P
Gp h Sh Sheet with plotted data without ever leaving your client program.
rap eets

The vbembed example that ships with Spotfire S+ demonstrates how
to embed a Spotfire S+ Graph Sheet, add objects to it, modify these
objects by displaying their property dialogs in the client program,
delete objects from it, and save a document containing the embedded
Graph Sheet. The vcembed example is a Visual C++/MFC
application that shows how to embed and automate a Spotfire S+
Graph Sheet in a C++ automation client. The PlotData.xls
example illustrates how to embed a Spotfire S+ Graph Sheet, add a
plot to it, send data from an Excel worksheet to be graphed in the
plot, and modify the plot’s properties using property dialogs. See
Table 6.9 on page 231 for help in locating these examples.

219

Chapter 6 Automation

USING SPOTFIRE S+ AS AN AUTOMATION CLIENT

A Simple
Example

220

In addition to being used as an automation server, Spotfire S+ can
also function as an automation client. A program in the Spotfire S+
programming language can create and manipulate the automation
objects exposed by other applications through their type libraries.
Spotfire S+ provides a number of functions that allow you to create
objects, set and get properties, call methods, and manage reference
counting. Before discussing these functions in detail, let’s take a look
at a simple example.

To demonstrate how to use Spotfire S+ as an automation client, we
revisit the simple example presented on page 195, this time reversing
the roles of Spotfire S+ and Excel. In this scenario, Spotfire S+
functions as the client application, retrieving data from an Excel
worksheet, performing a covariance estimation on the data, and
returning the resulting covariance matrix to Excel.

Consider again the sample data of Figure 6.1, reproduced in Figure
6.10. Sheetl of the Excel workbook Bookl.xls contains data in 4
columns of 39 rows (not all rows are shown in Figure 6.10).

A B © j
|1 8.80 471 5.82 12,97
| 2 | 8.79 470 5.83 12,97
| 3 | 8.79 469 5.83 12,98
EN 8.81 469 5.84 12,98
il 8.81 464 5.85 12,98
| 6 | 8.91 463 5.86 12,99
| 7 8.94 462 5.88 12,99
| 8 | 8.96 462 5.90 12,99
EN 8.96 461 5.93 13.00
| 10| 9.0 461 5.94 13.00
111 | 9.03 4,60 5.95 130
| 12 | 9.07 458 5.96 13.02
| 13 | 9.06 4.58 5.98 13.02
| 14 | 9.1 458 6.00 13.03
| 15| 9. 13 4.58 6.03 13.04

AL AET [~y 12 A r

W 40> b\ Sheet1 | Sheetz / JEN— 0

Figure 6.10: Sample data in Book1.xls.

Using Spotfire S+ as an Automation Client

Note

The sample data in Bookl.xls are taken from the freeny.x matrix included with Spotfire S+.
You can recreate this example by exporting the data into a new Excel worksheet and following
the steps outlined below.

By writing a script in the Spotfire S+ programming language, we can
automate a conversation between Spotfire S+ and Excel to perform

our task. The complete code of one such script is shown in Figure
6.11.

.$SC - program 9 =] B
1 1 A

pExcel <- create.ole.object("Excel.ipplication™) I
ExcelVisible <- get.ole.property(pExcel, "Visible™)§Viszible
if ['ExcelVisible) set.ole.property(pExcel, list(Visible=T))
pWorkbooks <- get.ole.property(pExcel, "Workbooks")[[1]]
pBookl <- call.ole.method|
pWorkbooks,
"Open”,
paste (getenv ("3 _HOME™), "™\‘\samples)ioleautolysplusyy™, "CliTestI.xls™, sep=""),
Readlnly=F)
pSheets <- get.ole.property(pBookl, "Sheets")[[1]]
pSheetl <- call.ole.nmethod(pSheets, "Iten”, "Sheetl™)
pRangel <- call.ole.method(pSheetl, "Range™, "41:D397)
phata «<- as.data.frawme(get.ole.propertyipRangel, "Value™)iValue)
CovMatrix <- cov.wt(pData, wt=rep(l, nrow(pData)))fcov
CovDF <- data.frame (CovMatrix)
pSheetZ <- call.ole.nethod(pSheets, "Iten”, "Sheet2™)
pRangeZ <- call.ole.nmethod(pSheetZ, "Range™, "41:D4")
bResults <- set.ole.property(pRangez, list(Value=CovDF))
bNewBookl <- call.ole.method(pBookl, "Sawve™)
GameOver <- call.ole.method(pExcel, "Quit™)

release.ole.object (pRange2)
release.ole.object(pSheet?)
release.ole.object (pRangel)
release.ole.object(pSheetl)
release.ole.object(pSheets)
release.ole.object(pBookl)
release.ole.object (pWorkbooks)
release.ole.object(pExcel)

ruw(pExcel, ExcelVisible, pWorkbooks, pBookl, pSheets, pSheetl, pRangel,
phata, CovMatrix, CovDF, pSheetZ, pRangeZ, bResults, bNewBookl, GameOwer)

| ja|

Figure 6.11: Complete code for our Spotfire S+ script.

221

Chapter 6 Automation

Hint

The example shown in Figure 6.11 can be found in samples/oleauto/splus/Clitesti.ssc in the
Spotfire S+ program folder.

1. Open a new Script window in Spotfire S+ and enter the first
block of code, as shown in Figure 6.12.

Q Clitesti.ssc - program H=]1E3
i

pExcel <- create.ole.object("Excel.ipplication™)
ExcelVisible <- get.ole.property(pExcel, "Visible™)§Viszible
if ['ExcelVisible) set.ole.property(pExcel, list(Visible=T))
pWorkbooks <- get.ole.property(pExcel, "Workbooks")[[1]]
pBookl <- call.ole.method|
pWorkbooks,
"Open”,
paste (getenv("3_HOME™), "\ysamples)ioleautolysplusyy™, "CliTestI.xls™, sep=""],
Readlnly=F)
pSheets <- get.ole.property(pBookl, "Sheets")[[1]]
pSheetl <- call.ole.nmethod(pSheets, "Iten”, "Sheetl™)
pRangel <- call.ole.method(pSheetl, "Range™, "41:D397)
phata «<- as.data.frawme(get.ole.propertyipRangel, "Value™)iValue)
CovMatrix <- cov.wt(pData, wt=rep(l, nrow(pData)))fcov
CovDF <- data.frame (CovMatrix)
pSheetZ <- call.ole.nethod(pSheets, "Iten”, "Sheet2™)
pRangeZ <- call.ole.nmethod(pSheetZ, "Range™, "41:D4")
bResults <- set.ole.property(pRangez, list(Value=CovDF))
bNewBookl <- call.ole.method(pBookl, "Sawve™)
GameOver <- call.ole.method(pExcel, "Quit™) -
P

1

-

Figure 6.12: The core code for our Spotfire S+ script.

The code in Figure 6.12 represents the central task we want to
automate. Let’s examine each line in detail.

We start a conversation with Excel from Spotfire S+ by creating an
instance of Excel using the Spotfire S+ function create.ole.object:

pExcel <- create.ole.object("Excel.Application™)

222

Using Spotfire S+ as an Automation Client

To see what’s happening in Excel as the script runs, we can set the
Visible property of the Excel application object to True. To do so,
we first capture the value of the Visible property using the
get.ole.property function:

ExcelVisible <- get.ole.property(pExcel,"Visible")$Visible

Note

The get.ole.property function returns a list of properties. Use the $ or [[]] operator to extract
the value of an individual component of the list.

We then test the value of the Visible property and set it to True using
the set.ole.property function:

if (!ExcelVisible) set.ole.property(pExcel,Tist(Visible=T))

Note

The set.ole.property function expects a list of properties to set.

To open the Bookl.xls workbook, we first get the value of the
Workbooks property of the Excel application object:

pWorkbooks <- get.ole.property(pExcel, "Workbooks")[[11]
and then call the Open method on the pWorkbooks object using the
Spotfire S+ function call.ole.method:

pBookl <- call.ole.method(pWorkbooks, "Open",
paste(getenv("SHOME"), "\\samples\\oleauto\\splus\\",
"CliTestI.x1s", sep=""), ReadOnly=F)

Note

When using call.ole.method to call a method on an automation object, consult the type library
of the server application for a list of arguments relevant to the method you are calling.

When using call.ole.method to call a method on an automation object, you can specify the
parameters as nul11 if you do not want to specify a parameter in the method you are calling.

223

Chapter 6 Automation

In this example, we are automating a conversation with Excel;
therefore, we must follow the Excel object model and navigate
through Excel’s object hierarchy in order to access a range of cells:

pSheets <- get.ole.property(pBookl, "Sheets")[[1]1]
pSheetl <- call.ole.method(pSheets, "Item", "Sheetl™)
pRangel <- call.ole.method(pSheetl, "Range", "A1:D39")

Having arrived at the level of actual cell contents, we can now capture
our data with the following statement:
pData <- as.data.frame(get.ole.property(pRangel,
"Value™)$Value)

In the next two statements, we use standard Spotfire S+ functions to
perform the covariance estimation and convert the resulting matrix
into a data frame:

CovMatrix <- cov.wt(pData, wt=rep(l, nrow(pData)))$cov
CovDF <- data.frame(CovMatrix)

With the results now stored in a Spotfire S+ variable, we again
navigate through the Excel object hierarchy to the target range of
cells on Sheet2:

pSheet2 <- call.ole.method(pSheets, "Item", "Sheet2")
pRange2 <- call.ole.method(pSheet2, "Range"™, "Al1:D4")

and place the results in the target range:

bResults <- set.ole.property(pRange2, list(Value=CovDF))
Finally, the last two statements save the workbook and close the Excel
application:

bNewBookl <- call.ole.method(pBookl, "Save")

GameOver <- call.ole.method(pExcel, "Quit")

2. Now add the second block of code to the script, as shown in
Figure 6.13.

224

Using Spotfire S+ as an Automation Client

Q Clitesti.ssc - program H=]1E3
22 1 G
release.ole.object (pRange2) ;I

1

releasze.
releasze.
releasze.
releasze.
releasze.
releasze.
releasze.

ole.
ole.
ole.
ole.
ole.
ole.
ole.

object(pSheetl)
object (pRangel)
object(pSheetl)
object(pSheets)
object(pBookl)

object (pWorkbooks)

object(pExcel)

Figure 6.13: Code for releasing all OLE objects.

As we will see in Reference Counting Issues on page 228, objects that
are created directly or indirectly during program execution must be
released at program end to allow the server application to close. This
is accomplished in the our second block of code.

After releasing all the OLE objects, the last thing to do is to clean up
our working data by deleting all the data objects created during
execution of the script.

3. Add the last block of code to the script, as shown in Figure

Q Clitesti.ssc - program H=]1E3
A 1 b
ruw(pExcel, ExcelVisible, pWorkbooks, pBookl, pSheets, pSheetl, pRangel, ;I
phata, CovMatrix, CovDF, pSheetZ, pRangeZ, bResults, bNewBookl, GameOwer)

-
4| |_’|:I

Figure 6.14: Code for removing all data objects.

With all the coding complete, it’s time to run the script.

4. Click the Run button “* on the Script window toolbar.

225

Chapter 6 Automation

High-Level
Automation
Functions

226

5. After the script finishes running, start Excel, open the
CliTestl.xls workbook (saved in your default folder), and
click the tab for Sheet2. The results are shown in Figure 6.15.

A E B D E -

0.096965 -0.04056 0.036343 0.018772
-0.04056 0.017328 -0.01493 -0.00529
0.036343 -0.01453 0.014135 0.007392
0.019772 -0.00829 0.007352 0.004054

L llx]

o e

-

14 [4> [»[Shest1 %, sheetz i shee |4 | | »ll

Figure 6.15: The covariance matrix sent to Excel.

As demonstrated in the last section, you can use Spotfire S+ as an
automation client by writing a program in the Spotfire S+
programming language to create and manipulate the automation
objects of other applications.

Spotfire S+ provides the functions listed in Table 6.7 for creating
objects, setting and getting properties, and calling methods. The
automation objects of the server application are passed as arguments
to these functions. In addition, Spotfire S+ provides several other
functions for managing reference counting; see page 228 for details.

For each of the functions listed in Table 6.7, two optional character
vector attributes called “error” and “warning” may be returned with
each return value. These attributes can be used to stop the program
and display warnings, errors, etc.

Table 6.7: High-level automation functions.

Using Spotfire S+ as an Automation Client

Function

Description

create.ole.object(name)

The name argument is the name of the instance,
a character vector of length 1.

This function returns a character vector of
class OLECTient, representing the particular
instance. The first string in the vector is the
instance ID of the object, stored in Spotfire S+.
The other strings are various pieces of
information about the instance (such as server
name). On error, NULL is returned.

set.ole.property(instance, properties)

The instance argument is an object previously
created within the same session. The
properties argument is a list of elements, each
element being a property name set to a desired

value, which must be an atomic type of length
L.

This function returns a vector of logicals, with
T for each property successfully set and F
otherwise.

get.ole.property(instance, property.names)

The instance argument is an object previously
created within the same session. The
property.names argument is a character vector
of property names appropriate to the instance,
as specified in the type library of the server
application.

This function returns a list of the values of the
properties specified in the property.names
argument. NULL is returned for a property that
cannot be fetched.

227

Chapter 6 Automation

Table 6.7: High-level automation functions. (Continued)

Function

Description

call.ole.method(instance, method.name, ...) | The instance argument is an object previously

created within the same session. The
method.name argument is the name of the
method to be invoked on the instance object.
“...” represents the arguments to be passed as
arguments to the method. You can pass null
arguments to the automation server object if
you do not want to specify its parameters.
Otherwise, only supported types may be
passed. That is, at this point, atomic types
(character, single, integer, numeric vectors) of
length 1. Methods for particular objects and
arguments to specific methods can be found in
the type library of the server application.

This function returns a Spotfire S+ object
containing the result of calling the method on
the particular instance. On error, NULL is
returned.

Reference
Counting
Issues

228

When you create an object using create.ole.object, or when an
object is created indirectly from the return of a property using
get.ole.property or call.ole.method, the object is given a
reference count of one. This means that your Spotfire S+ program has
a lock on the object and the server application that created the object
for your program cannot close until you release the references to it by
reducing the reference count to zero.

If you assign the variable that represents one of these objects to
another object, you should increment the object’s reference count by
one to indicate that an additional variable now has a lock on the
object. If you remove a variable or a variable that represents an
automation object goes out of scope, you should decrement the
reference count of the object the variable being destroyed represents.

To help you manage reference counting on automation objects,
Spotfire S+ provides the four functions listed in Table 6.8. For each of
these functions, two optional character vector attributes called “error”

Using Spotfire S+ as an Automation Client

and “warning” may be returned with each return value. These
attributes can be used to stop the program and display warnings,

errors, etc.

Table 6.8: Functions for managing reference counting.

Function

Description

ole.reference.count(instance)

The instance argument is an object previously created within
the same session.

This function returns the value of the reference count for the
instance. On error, -1 is returned.

add.ole.reference(instance)

The instance argument is an object previously created within
the same session.

This function increments the reference count for the instance
by 1 and returns the new value. On error, -1 is returned.

release.ole.object(instance)

The instance argument is an object previously created within
the same session.

This function decrements the reference count for the instance
by 1 and returns the new value. On error, -1 is returned.

is.ole.object.valid(instance)

The instance argument is an object previously created within
the same session.

This function returns T if the instance is valid or F otherwise.

Although reference counting must be handled manually, Spotfire S+
guards against the two major types of reference counting bugs:
resource leaks and freezing due to using an invalid object handle.

If you release all reference counts on an object and then attempt to set
or get a property or call a method on this object, Spotfire S+ gives
you an error that the object is no longer valid. You can check the
validity of any automation object by using the Spotfire S+ function
is.ole.object.valid.

229

Chapter 6 Automation

230

If you fail to release all references to objects you create during a
Spotfire S+ session, the server application owning the objects will
remain loaded and running. However, exiting Spotfire S+
automatically releases all objects, reduces all reference counts to zero,
and closes all server applications.

Automation Examples

AUTOMATION EXAMPLES

Spotfire S+ ships with a number of examples that illustrate how to use
Spotfire S+ as both an automation server and an automation client.

Server The examples listed in Table 6.9 can be found in the samples/
Examples oleauto folder in the Spotfire S+ program folder.

Table 6.9: Automation server examples.

Name Client Application | Description
vb/ChoosePt Visual Basic 6 Project showing how to use the
ChooseGraphAndPlotType automation

method to display the Insert Graph dialog
and allow a user select the graph and plot

type.

vb/CreatePt Visual Basic 6 Project showing how to use the following
automation methods:

* CreatePlots
* CreateConditionedPlots

* CreateConditionedPlotsSeparateData

vb/Dialogs Visual Basic 6 Project showing how to use the following
automation methods:

* ShowDialog
* ShowDialogInParent

¢ ShowDialogInParentModeless

vb/gspages Visual Basic 6 Project showing how to embed a Graph
Sheet with multiple pages, set up a tab
control that has tabs for each page, and
support changing active pages in the
embedded Graph Sheet by clicking on
tabs in the tab control.

231

Chapter 6 Automation

Table 6.9: Automation server examples. (Continued)

Name

Client Application

Description

vb/mixeddf

Visual Basic 6

Project showing how to create a two-
dimensional array of mixed data (that is,
columns of different data types) and send it
to a data.frame object in Spotfire S+ and
also how to retrieve the data from the
data.frame object into Visual Basic for

display.

vb/objects

Visual Basic 6

Project showing how to use the following
automation methods:

* ObjectContainees
* ObjectContainer
* ClassName

* PathName

vb/vbclient

Visual Basic 6

Project showing how to create a Graph
Sheet, add an arrow to it, change the
properties of the arrow, show a dialog for
the arrow, execute Spotfire S+ commands,
modify option values, get an object, and
send and receive data.

vb/vbembed

Visual Basic 6

Project showing how to embed a Spotfire
S+ Graph Sheet, modify it, save it, and
delete objects in it, and how to display an
object dialog.

vb/vbrunfns

Visual Basic 6

Project showing how to register a Spotfire
S+ function, pass binary data to the
function, and receive the result back into
Visual Basic.

vba/excel/auto_VBA.xls

Visual
Applications
Excel 97

Basic for
with

Example showing how to send and receive
data and convert Excel ranges to arrays.

232

Table 6.9: Automation server examples. (Continued)

Automation Examples

Name

Client Application

Description

vb/mixeddf

Visual Basic 6

Project showing how to create a two-
dimensional array of mixed data (that is,
columns of different data types) and send it
to a data.frame object in Spotfire S+ and
also how to retrieve the data from the
data.frame object into Visual Basic for

display.

vb/objects

Visual Basic 6

Project showing how to use the following
automation methods:

* ObjectContainees
* ObjectContainer
* ClassName

* PathName

vb/vbclient

Visual Basic 6

Project showing how to create a Graph
Sheet, add an arrow to it, change the
properties of the arrow, show a dialog for
the arrow, execute Spotfire S+ commands,
modify option values, get an object, and
send and receive data.

vb/vbembed

Visual Basic 6

Project showing how to embed a Spotfire
S+ Graph Sheet, modify it, save it, and
delete objects in it, and how to display an
object dialog.

vb/vbrunfns

Visual Basic 6

Project showing how to register a Spotfire
S+ function, pass binary data to the
function, and receive the result back into
Visual Basic.

vba/excel/auto_VBA.xls

Visual
Applications
Excel 97

Basic for
with

Example showing how to send and receive
data and convert Excel ranges to arrays.

233

Chapter 6 Automation

Table 6.9: Automation server examples. (Continued)

Name Client Application | Description
vba/excel/Book1.xls Visual Basic for | Example showing how to pass data from an
Applications with | Excel worksheet to Spotfire S+, which then
Excel 97 performs a covariance estimation on the
data and returns the resulting covariance
matrix to Excel.
vba/excel/PlotData.xls | Visual Basic for | Example showing how to embed a Graph
Applications ~ with | Sheet and add and modify a plot in it.
Excel 97
vba/excel/XferToDF.xls | Visual Basic for | Example showing how to transfer Excel
Applications with | ranges to Spotfire S+ data frames and back
Excel 97 to Excel ranges.
visualc/autoclnt Visual C++ 6.0 Non-MFC based C++ project showing how
to use automation to access the Spotfire S+
command line.
visualc/vcembed Visual C++ 6.0 Project showing how to create and

manipulate an embedded Graph Sheet in
an MFC application.

This example uses several MFC classes that
make interacting with automation objects
from Spotfire S+ much easier in MFC code.
See the readme.txt in the vcembed
directory for more information.

234

Client
Examples

Automation Examples

The examples listed in Table 6.10 can be found in the samples/
oleauto/splus folder in the Spotfire S+ program folder.

Table 6.10: Automation client examples.

Name

Server Application

Description

Clitesta.ssc

Excel 97

Script showing how to use Spotfire S+ commands to
start Excel and call method of Excel to convert inches
to points and return the result in Spotfire S+.

Clitestb.ssc

Excel 97

Script showing how to use Spotfire S+ commands to
start Excel, set a property, and get a property.

Clitestc.ssc

Excel 97

Script showing how to use Spotfire S+ commands to
set a range of data in an Excel worksheet with data
from a Spotfire S+ vector and then how to get the data
back from Excel into another vector.

Clitestd.ssc

Excel 97

Script showing how to get a property value from
Excel.

Cliteste.ssc

Excel 97

Script showing how to send a vector from Spotfire S+
to Excel and transpose it to a row in Excel.

Clitestf.ssc

Excel 97

Script showing how to send a vector from Spotfire S+
to Excel and transpose it to a row in Excel using a
different set of steps than in Cliteste.ssc.

Clitestg.ssc

Excel 97

Script showing how to send the data from a data frame
in Spotfire S+ into a new worksheet and range in
Excel and then how to get the range data from Excel
back into a new data frame in Spotfire S+.

235

Chapter 6 Automation

Table 6.10: Automation client examples. (Continued)

Name

Server Application

Description

clitesth.ssc

Visual Basic 6

Example combining a Visual Basic automation server
project called GetArray with a Spotfire S+
automation client script that calls it to retrieve data
into a data frame (used in conjunction with the VB
automation server in the Getarray folder). The
automation server exposes an object type called
MyArrayObject having a method called GetArray that
gets a randomly generated, two-dimensional array of
mixed data (that is, columns having different data
types). The Spotfire S+ script uses this method to get
the array and then set it into a newly created data
frame.

Clitesti.ssc

Excel 97

Script showing how to retrieve data from an Excel
worksheet, perform a covariance estimation on the
data, and return the resulting covariance matrix to
Excel.

236

CALLING SPOTFIRE S+
USING DDE

Introduction 238
Working With DDE 239
Starting a DDE Conversation 240
Executing Spotfire S+ Commands 242
Sending Data to Spotfire S+ 242
Getting Data From Spotfire S+ 244
Enabling and Disabling Response to DDE Requests 246

237

Chapter 7 Calling Spotfire S+ Using DDE

INTRODUCTION

Communications between programs can take place in a number of
ways. For example, data can be passed between programs by having
one program write an ASCII file to disk and having another program
read that file. It is also possible for programs to exchange data by

using the Windows” clipboard. In each of these methods, the process
is sequential and normally requires human intervention to coordinate
the action.

Dynamic Data Exchange (DDE), on the other hand, is a mechanism
supported by Microsoft Windows that permits two different programs
running under Windows to communicate in real time without outside
intervention. This communication can take the form of two programs
passing data back and forth or it can take the form of one program
requesting another program to take specific action. It can also take
place under program control (without human intervention) and as
often as required.

In this chapter, we explain how to communicate with Spotfire S+
using DDE and provide some example code.

Note

This chapter is dedicated to Windows users.

238

Working With DDE

WORKING WITH DDE

DDE uses the metaphor of a conversation. In a DDE conversation,
one program initiates the conversation and another program
responds. The program initiating the conversation is called the
destination program, or client, while the responding program is called
the source program, or server.

Spotfire S+ can function as a DDE server, although not as a DDE
client (except via the Windows clipboard). Any application that
supports DDE client functions, such as Visual Basic, Visual C++,
Excel, Lotus 1-2-3, and PowerBuilder, can initiate a DDE
conversation with Spotfire S+. Spotfire S+ supports the basic DDE
functions Connect, Execute, Poke, Request, Advise, Unadvise, and
Terminate.

Note

Spotfire S+ can function as a DDE server or a DDE client via the clipboard by using Copy Paste

Link:

You can copy data from a Spotfire S+ data object, such as a data frame or vector, into
the clipboard and then paste the data into another OLE- or DDE-supporting program as
a DDE link to the data in Spotfire S+. This connection is a hot link between a block of
cells in the Spotfire S+ data object and a block in the document of the other program. If
DDE server support is enabled in Spotfire S+, whenever you copy data from a data
object to the clipboard, DDE link information is transferred at the same time. Then
when you paste into another program, the Paste Special or Paste Link option will be
enabled if that client program supports DDE linking.

You can copy data from a server program that supports DDE linking into the clipboard
and then choose Paste Link from the Edit menu when a Spotfire S+ data object, such as
a data frame or vector, is in focus. (Note that string data will always be represented in
Spotfire S+ as character, not factor, data when you Paste Link from a DDE server
application.) This will paste the link into the data object that currently has the focus,
starting the pasted block at the current cell location. This tells Spotfire S+ to request a
DDE link to the data specified in the server program’s document. Then whenever the
data change in the server document, the changes are automatically updated in the
Spotfire S+ data object where you pasted the linked data.

239

Chapter 7 Calling Spotfire S+ Using DDE

Starting a DDE
Conversation

Spotfire S+ supports DDE conversations in the Microsoft CF_TEXT
format, which is simply an array of text characters terminated by a
null character and with each line ending with a carriage return—
linefeed (CR-LF) pair. Binary transfers are not supported.

The three steps of a DDE conversation are as follows:
1. Initiate the conversation.
2. Issue one or more DDE commands.
3. Terminate the conversation.

A DDE client application opens a conversation with a particular
server. Each server has a server name to which it will respond; the
server name for Spotfire S+ is Spotfire S+

Because an application can have multiple DDE conversations open at
the same time, it is necessary to have an identifier, called the channel
number, for each conversation. A channel number is established when
the DDE conversation is initiated.

A DDE conversation must also have a topic. Table 7.1 lists the DDE
conversation topics supported by Spotfire S+.

Table 7.1: Supported topics for DDE conversations.

request special information
from Spotfire S+. This
information includes the
names of data objects (such
as data frames and vectors)
that can be wused in
conversations, allowable
conversation topic names,
and other information.

Topic Description Example in Visual Basic for Applications
System The System topic is used to | Channel = Application.DDEInitiate(_
[System] "Spotfire S+", "System")

Info = Application.DDERequest(_
Channel, "Topics")
Application.DDETerminate Channel
Info = {

"System"”

"[DataSheet]",

"[Executel™,

"SCommand™ }

240

Working With DDE

Table 7.1: Supported topics for DDE conversations. (Continued)

Topic Description Example in Visual Basic for Applications
[DataSheet] The [DataSheet] topic is an Channel = Application.DDEInitiate(_
identifier used to specify that | "Spotfire S+, "[Datasheetlexsurf”)
. . Info = Application.DDERequest(_
the conversation is about a Channel, "rlel:r3co®)
block of data from a data Application.DDETerminate Channel
object. This topic is optional; | Info = {
you can simply specify the -2.00, -2.00;
name of the data object as -1.87, -2.00;
. . -1.74, -2.00 }
the conversation topic.
Any data | Same as the [DataSheet] Channe1. = Application.DDEInitiate(_
object name | topic above. Spotfire S+*, "exsurf")
(such as the Info = Application.DDERequest(_
Channel, "rlcl:r3c2")
name of a Application.DDETerminate Channel
data frame or Info = {
Vector) ‘2.00, ‘2.00;
-1.87, -2.00;
-1.74, -2.00 }
SCommand SCommand or [Execute] | Channel = Application.DDEInitiate(_
[Execute] identifies that the "Spotfire S+", "SCommand"™)
conversation contains strings Info = Application.DDERequest(_
: : 85 | Channel, "objects(0)")
of valid Spotfire S+ Application.DDETerminate Channel
commands or expressions to | Info = {
be executed by Spotfire S+. ".Copyright .Options .Program version" }

The following example illustrates a simple DDERequest conversation
in which Visual Basic for Applications (VBA), as used by Microsoft
Word or Excel, is the client and Spotfire S+ is the server.

exec_channel
ReturnResult
Application.DDETerminate exec_channel

Application.DDEInitiate("Spotfire S+", "SCommand™)
Application.DDERequest(exec_channel, "summary(corn.rain)")

Note

A sample Visual Basic DDE client program called vbclient, as well as example Excel
spreadsheets with VBA and macro scripts demonstrating connection to Spotfire S+ via DDE,
can be found in the samples/dde folder of the Spotfire S+ program folder.

241

Chapter 7 Calling Spotfire S+ Using DDE

Executing
Spotfire S+
Commands

The first statement initiates a conversation with Spotfire S+ using the
topic SCommand. (You can use either SCommand or [Execute] for
executing a Spotfire S+ command and requesting the result via
DDERequest.) This statement returns the channel number for the
conversation and assigns it to exec_channel, which is then used in the
DDERequest statement. The DDERequest statement executes the
command summary(corn.rain) in Spotfire S+ and returns the result
of the execution in an array called ReturnResult. Finally, the
conversation is ended by calling DDETerminate.

The DDEExecute command executes a command in Spotfire S+ but
does not return the output from the execution. You can use either
SCommand or [Execute] as the topic of a DDEExecute conversation.

Consider the following example of DDEExecute, written in VBA.

exec_channel = Application.DDEInitiate("Spotfire S+", "SCommand")
Application.DDEExecute exec_channel, "summary(corn.rain)"
Application.DDETerminate exec_channel

Sending Data
to Spotfire S+

242

First, a conversation is initiated with the DDEInitiate command.
Next, DDEExecute is used to execute the Spotfire S+ command
summary (corn.rain). The output from this command will go either to
the Commands window, if open, or to a Report window in Spotfire
S+. No output is returned to the calling program. Finally, the
conversation is ended with a call to DDETerminate.

The exact format of the DDEExecute command will vary from
program to program; that is, Excel has its own format, as does Lotus
1-2-3 and Visual Basic. The essential requirements, however, are the
same—a channel number and a command string.

A client program can issue multiple DDE commands, including
DDEExecute, DDEPoke, and DDERequest, to Spotfire S+ as long as the
DDE conversation with the topic SCommand or [Execute] is open.

When used in a conversation with the topic SCommand or [Execute],
the DDEPoke command behaves in the same way as the DDEExecute
command; that is, it executes the commands you poke but does not
return any results.

Working With DDE

Consider the following VBA script in Excel using DDEPoke.

Channel = Application.DDEInitiate("Spotfire S+", "SCommand")
Application.DDEPoke Channel, "", Sheets("Sheetl").Range("Al")
Application.DDETerminate Channel

First, DDEInitiate is used to open an SCommand conversation with
Spotfire S+. Next, DDEPoke is used to send the string located in the cell
at Al in Sheetl of the current workbook from Excel to Spotfire S+.
Spotfire S+ then executes this string, sending any output from the
command either to the Commands window, if open, or to a Report
window in Spotfire S+. Finally, the conversation is terminated using
the DDETerminate command.

Like DDEExecute, DDEPoke must have a channel number specifying the
conversation. The second parameter, called the item text, is ignored by
Spotfire S+ when poking commands using an SCommand or [Execute]
conversation. The item text parameter can be set to any value; VBA
requires that it be set to some value. The third parameter is a cell
reference telling Excel where to find the string representing the
commands to send to Spotfire S+. Whatever is in that cell will be
executed.

You can also use DDEPoke to send data from a DDE client program
into an existing Spotfire S+ data object, such as a data frame or
vector, when used in a conversation with the topic [DataSheet] or the
name of the data object in which you want to change the data.

Consider the following example of DDEPoke in a VBA script in Excel.

Channel = Application.DDEInitiate("Spotfire S+", "exsurf™)
Application.DDEPoke Channel,"rlcl:r3c2", Sheets("Sheetl™).Range("Al:B3™)
Application.DDETerminate Channel

First, a conversation is initiated with the topic name set to the name of
an existing Spotfire S+ data object, in this case, the data frame
exsurf. Next, the data in Sheetl in the range A1l through B3 of the
current workbook in Excel are sent to the cells ricl:r3c2 in exsurf,
that is, to the cells starting at row 1, column 1 and extending to row 3,
column 2. The statement Sheets("Sheet1").Range("A1:B3") is the
Excel syntax for specifying the data for Excel to send to Spotfire S+;

243

Chapter 7 Calling Spotfire S+ Using DDE

Getting Data
From Spotfire
S+

the rlcl:r3c2 string specifies the item string of the DDEPoke command
and tells Excel where to put the data in the exsurf data frame.
Finally, the conversation is ended with a call to DDETerminate.

DDEExecute and DDEPoke let you send commands and data to Spotfire
S+; with DDERequest, you can ask Spotfire S+ to send data back to the
calling program.

When used in a conversation with the topic SCommand or [Execute],
the DDERequest command behaves in the same way as the DDEExecute
command except that any output from the execution is sent back to
the calling application; that is, it executes the commands specified
and returns the result of the execution to the variable assigned to the
DDERequest call.

Consider the following VBA script in Excel using DDERequest to
execute commands in Spotfire S+ and return the results.

Channel = Application.DDEInitiate("Spotfire S+", "SCommand")
ReturnData = Application.DDERequest(Channel, "summary(corn.rain)"™)
Application.DDETerminate Channel

stringRangeToFil1Spec = "A1" + ":" + "A" + Trim(Str(UBound(ReturnData)))
Sheets("Sheetl").Range(stringRangeToFillSpec).Value = _
Application.Transpose(ReturnData)

244

First, DDEInitiate is used to open an SCommand conversation with
Spotfire S+. Next, DDERequest is used to send the string
summary(corn.rain) to Spotfire S+ for execution. The output from
this command is passed back to Excel to the array ReturnData.
Finally, the conversation is terminated using the DDETerminate
command.

The string variable stringRangeToFi11Spec is created using the upper
bound of the ReturnData array (the call to Ubound(ReturnData)) to
specify the range of cells in Sheetl of the current workbook to
receive the returned data. The ReturnData array is then transposed so
that each element of the array is in a row of column A in Sheetl.
Sheetl, column A now contains the summary data for the data frame
corn.rain.

Working With DDE

Note

The format of the text in an array returned by DDERequest in an SCommand or [Execute]
conversation can be controlled via an option in Spotfire S+. By default, output is sent back using
a method of most Spotfire S+ objects called print, which provides the best general purpose
formatting for returned results. However, if you depend on the format as returned in earlier
versions of Spotfire S+, you can set this option to use the older formatting style. To do so, choose
Options P General Settings from the main menu. In the DDE Server Support group, select
the Old Format for DDE Request check box.

Like DDEExecute and DDEPoke, DDERequest must have a channel
number specifying the conversation. The item text parameter
specifies the commands to execute in Spotfire S+ when using an
SCommand or [Execute] conversation.

You can also use DDERequest to transfer data from an existing Spotfire
S+ data object, such as a data frame or vector, into a DDE client
program when used in a conversation with the topic [DataSheet] or
the name of the data object from which you want to transfer the data.

Consider the following example of DDERequest in a VBA script in
Excel.

Channel = Application.DDEInitiate("Spotfire S+", "exsurf")
ReturnData = Application.DDERequest(Channel, "rlcl:r3c2")
Application.DDETerminate Channel

sStartCell = "Al1"
sSheetName = "Sheetl"
sRangeToFill = sStartCell + ":" + _

Chr(Asc("A") + (Trim(Str(UBound(ReturnData, 2))) - 1)) + _
Trim(Str(UBound(ReturnData, 1)))
Sheets(sSheetName).Range(sRangeToFill).Value = ReturnData

First, a conversation is initiated with the topic name set to the name of
an existing Spotfire S+ data object, in this case, the data frame
exsurf. Next, the data in the cells ricl:r3c2 in exsurf, that is, in the
cells starting at row 1, column 1 and extending to row 3, column 2,
are sent to Excel into the array ReturnData. The rlcl:r3c2 string

245

Chapter 7 Calling Spotfire S+ Using DDE

Enabling and
Disabling
Response to
DDE Requests

246

specifies the item string of the DDERequest command and tells Spotfire
S+ which cells from the data frame exsurf to send back to Excel.
Finally, the conversation is ended with a call to DDETerminate.

Two strings are assigned values specifying the starting cell (A1) and
the sheet (Sheetl) where the subsequent commands are to copy the
data in the ReturnData array. Using the upper bounds of the
ReturnData array (calls to UBound), the array of data is copied into the
cells of the desired sheet.

At any time during a Spotfire S+ session, you can suspend Spotfire
S+’s response to messages sent from DDE client applications.

To temporarily suspend all links to any Spotfire S+ data objects, do
the following:

1. From the main menu, choose Options P General Settings
to open the General Settings dialog with the General page
in focus, as shown in Figure 7.1.

| o] x|

General Settings

General | [rata | Startup | Computations |

DDE Server Support
V¥ BRespond to DDE Requests

r%gld Format for DDE Regquest

— Prompts Closing Documents
V' Prompt to Save Graph Sheets

™ Prompt to Save Data Files

Bemove Data from Database

I Mever Remove l

™ Show Commit Dialog on Esit

V¥ Enable ToolTips
V' Color Toolbar

™ Large Buttons
— Automation

¥ Echo ExecuteSting) V¥ Enable Graph DataTips

¥ | Show ErecuteStingl] output

IV Send Missings as%T_ERROR

Eancell Help |
Figure 7.1: The General page of the General Settings dialog.

2. Inthe DDE Server Support group, deselect the Respond to
DDE Requests check box.

EXTENDING THE USER
INTERFACE

Overview 249
Motivation 249
Approaches 249
Architecture 250

Menus 251
Creating Menu Items 251
Menu Item Properties 252
Modifying Menu Items 256
Displaying Menus 258
Saving and Opening Menus 259

Toolbars and Palettes 260
Creating Toolbars 260
Toolbar Object Properties 261
Modifying Toolbars 263
Creating Toolbar Buttons 264
ToolbarButton Object Properties 265
Modifying Toolbar Buttons 267
Displaying Toolbars 269
Saving and Opening Toolbars 270

Dialogs 272
Creating Dialogs 274
Creating Property Objects 275
Property Object Properties 276
Modifying Property Objects 278
Creating FunctionInfo Objects 278
FunctionInfo Object Properties 280
Modifying FunctionInfo Objects 281
Displaying Dialogs 282
Example: The Contingency Table Dialog 283

Dialog Controls 286
Control Types 286

247

Chapter 8 Extending the User Interface

Copying Properties
ActiveX Controls in Spotfire S+ dialogs

Callback Functions
Interdialog Communication
Example: Callback Functions

Class Information
Creating ClassInfo Objects
ClassInfo Object Properties
Modifying ClassInfo Objects

Example: Customizing the Context Menu

Style Guidelines
Basic Issues
Basic Dialogs
Modeling Dialogs
Modeling Dialog Functions
Class Information

Dialog Help

248

299
303

323
325
325

329
329
330
332
332

337
337
338
347
353
360
362

OVERVIEW

Overview

In Spotfire S+, it is easy to create customized dialogs and invoke them
with toolbar buttons and menu items. Similarly, menus and toolbars
can be created and modified by the user. This chapter describes in
detail how to create and modify the dialogs, menus, and toolbars
which make up the interface.

Note

This chapter is dedicated to Windows® users.

Motivation

Approaches

Users may be interested in customizing and extending the user
interface to varying degrees. Possible needs include:

* Removing menu items and toolbars to simplify the interface.
+ Changing menu item and toolbar layout.

* Creating new menu items or toolbars to launch scripts for
repetitive analyses.

* Developing menus and dialogs for new statistical functions,
either for personal use or for distribution to colleagues.

The tools for creating menus, toolbars, and dialogs in Spotfire S+ are
quite flexible and powerful. In fact, all of the built-in statistical
dialogs in Spotfire S+ are constructed using the tools described in this
chapter. Thus, users have the ability to create interfaces every bit as
sophisticated as those used for built-in functionality.

This chapter discusses both point-and-click and command-based
approaches for modifying the user interface. The point-and-click
approach may be preferable for individual interface customizations,
such as adding and removing toolbars. Programmers interested in
sharing their interface extensions with others will probably prefer
using commands, as this enables easier tracking and distribution of
interface modifications.

249

Chapter 8 Extending the User Interface

Architecture

250

The Spotfire S+ graphical user interface is constructed from interface
objects. Menu items, toolbars, toolbar buttons, and dialog controls are
all objects. The user modifies the interface by creating, modifying,
and removing these objects.

The two components of extending the interface are:
+ Creating user interface objects.

* Creating functions to perform actions in response to the
interface.

The user interface objects discussed here are:
* Menultem objects used to construct menus.
* Toolbar objects defining toolbars.
* ToolbarButton objects defining the buttons on toolbars.
* Property objects defining dialog controls, groups, and pages.

* FunctionInfo objects connecting dialog information to
functions.

* ClassInfo objects describing right-click and context menu
actions for objects in the Object Explorer.

The two types of functions used with the user interface are:

* Callback functions which modify dialog properties based on
user actions within a dialog.

+ Functions executed when OK or Apply is pressed in a dialog.
While any standard Spotfire S+ function may be called from a
dialog, we provide style guidelines describing the conventions
used in the built-in statistical dialogs.

The following sections discuss these topics from both command and
user interface perspectives.

MENUS

Creating Menu
Items

Using Commands

Menus

Menus are represented as a hierarchy of Menultem objects. Each
object has a type of Menu, MenuItem, or Separator:

e Menu creates a submenu.
e Menultem causes an action to occur when selected.

* Separator displays a horizontal bar in the menu, visually
separating two group of menu items.

Different menus may be created by modifying MenuItem objects. By
default, the main menu in Spotfire S+ is SPTusMenuBar. A Menultem
may be added to or deleted from this menu to modify the interface.
Alternately, users may create whole new menus which may be saved,
opened, and used as the default menu.

A Menultem is also used to construct context menus. These are the
menus displayed when a user right-clicks on an object in the Object
Explorer. Context menus are discussed in detail in the section
Context Menu (page 361).

A Menultem may be created using commands or from within the
Object Explorer.

To create a menu item, use the guiCreate function with
classname="Menultem”. The name of the object will specify the
location of the menu item in the menu hierarchy. Specify
Type="Menu” for a menu item which will be the “parent” for another
menu item, Type="Menultem” for a menu item which performs an
action upon select, or Type="Separator” for a separator bar.

The following commands will create a new top-level menu item with
two child menu items launching dialogs for the sqrt and Tme
functions:

guiCreate(classname="Menultem",
Name="$$SPTusMenuBar$MyStats",
Type="Menu", MenultemText="&My Stats", Index="11",
StatusBarText="My Statistical Routines")

guiCreate(classname="Menultem",
Name="$$SPlusMenuBar$MyStats$Sqrt",

251

Chapter 8 Extending the User Interface

Using the Object
Explorer

Menu Item
Properties

252

Type="Menultem", MenultemText="&Square Root...",
Action="Function"”, Command="sqrt")

guiCreate(classname="Menultem",
Name="$$SPlusMenuBar$MyStats$Lme",
Type="Menultem", MenultemText="Linear &Mixed Effects...",
Action="Function”™, Command="1me")

See the section Menu Item Properties (page 252) for details regarding
property names and values.

To create a menu item, first open the Object Explorer and filter by
Menultem to see the hierarchy of menu items. Navigate to the menu
item above where the new menu item should appear. Right-click on
this menu item, and select Insert Menultem from the context menu.
The Menultem Object dialog shown in Figure 8.1 appears.

Menultem Obiject [11] M= E |

b enultem | Command |

M arne: Im benultem Text: ||'~-1_I,I Stats
Type: I|‘--'|er‘|u "I StatuzBar Text: IM_I,I Statiztic:al Fouti

Docurment Typels]: I.-i‘-.nj,I D ocuments j

Action;: I Mone * I

™ Hide
v Deletable
[V Enable Menultem

0K | cancel | ool ||] cument Help |

Figure 8.1: The Menultem page of the Menultem Object property dialog.

The properties of a MenuItem object determine characteristics such as
the prompt for the menu item and the action performed when the
menu item is selected. These properties may be specified and
modified using the property dialog for the Menultem object, or
programmatically via the commands guiCreate and guiModify. See
the guiCreate("MenuItem") help file in the Language Reference help
for syntax details.

Menus

The following properties are specified on the first tab of the
Menultem Object property dialog, shown in Figure 8.1:

Name The name of the MenuItem object. The name determines the
menu to which the menu item belongs, and the position within the
menu hierarchy.

Type The type of MenuItem object.
« Menu creates a submenu.
* Menultem causes an action to occur when selected.

* Separator displays a horizontal bar in the menu, visually
separating two group of menu items.

Document Type Depending on the type of document window
type—Graph Sheet, Commands window, etc.—which has the focus,
the item may or may not be visible. Document Type specifies the
document types for which the item should be visible in the menu
system. Selecting All Documents causes the item to be always
visible. Selecting No Documents ensures that the item will be visible
when no document window has the focus; for example, when no
document window is open.

Action The following options apply to Menultem objects of type
Menultem:

* None. No action is performed when the item is selected. This
is useful when designing a menu system. It is not necessary to
specify commands to execute when the type is set to None.

* BuiltIn. One of the actions associated with the default menus
or toolbars is performed when the item is selected. These are
listed on the Command page in the Built-In Operation
dropdown box. This option allows you to use any of the
“intrinsic” menu actions in a customized dialog, such as
Window P Cascade.

* Function. Under this option, a Spotfire S+ function, either
built-in or user-created, is executed when the item is selected.

* Open. The file specified on the Command page is opened
when this item is selected. The file will be opened by the
application associated to it by the operating system.

253

Chapter 8 Extending the User Interface

254

+ Print. The file specified on the Command page is printed
when this item is selected. The file will be printed from the
application currently associated to it by the operating system.

* Run. The file specified on the Command page is opened and
run as a script by Spotfire S+ when this item is selected.

Menultem Text The text which will represent the item in the menu
system. This does not apply to Separator items. Include an
ampersand (&) to specify the keyboard accelerator value.

StatusBar Text The text which will appear in the status bar when the
item has the focus in the menu.

Hide Logical value indicating whether to make the item invisible.
When the item is hidden, its icon in the Object Explorer appears
grayed out. This can also be specified through the context menu.

Deletable Logical values indicating whether to allow the item to be
deleted.

The rest of the properties are found on the Command page, as
shown in Figure 8.2.

Menultem Obiject [25] M= B |

tenultem | Command |

— Command O ptions
Built-ln Operation: I j

Cormmand: I

Hrowee. |

Parameters: I

¥} St ialog M B

¥ | &liways s Defauls

Eancell I<| >| cument Help |

Figure 8.2: The Menultem Object property dialog for a MenuItem object,
Command page.

Menus

Built-In Operation desired when Action is set to BuiltIn. Built-in
actions are actions performed by the interface such as launching the

Open File dialog.

Command The name of a Spotfire S+ function, or a path and
filename. This field is enabled when Action is set to Function,
Open, Print, or Run on the Menultem page. Use the Object
Explorer to identify the folder.

Parameters This is relevant when Action is set to Function. This
property specifies the arguments for the function which will execute
when the item is selected. The easiest way to specify these arguments
is to work through the Customize dialog available through the
context menu for the Menultem in the Object Explorer. For details
on doing this, see the section Using the Context Menu (page 257)
below.

Show Dialog On Run This is relevant when Action is set to
Function on the Command page. It is a logical value which indicates
whether the dialog associated to the function should open when the
item is selected. This can also be specified through the context menu.

Always Use Defaults This is relevant when Action is set to
Function on the Command page. Logical value indicating whether to
force the use of the default values when the function executes. This
can also be specified through the context menu.

Spotfire S+ makes a distinction between the default argument values
for a function as defined in the function’s dialog (via the
FunctionInfo object) and as defined by the function itself. Always
Use Defaults refers to the “dialog” defaults. Table 8.1 summarizes
how Show Dialog On Run and Always Use Defaults work
together. In it, “function” refers to the Spotfire S+ function associated
to the menu item, and “dialog” refers to the dialog associated to that

255

Chapter 8 Extending the User Interface

function.

Table 8.1: Summary of Show Dialog On Run and Always Use Defaults.

15{1111(1)1w Dialog On gi‘;’:lﬂisuse Action when the menu item is selected.
checked checked The dialog always opens in its default state when the
menu item is selected. Changes are accepted, but do
not persist as dialog defaults.
checked unchecked The dialog always opens when the menu item is
selected. Changes are accepted and persist as dialog
defaults.
unchecked checked The dialog does not appear and the function executes
using the current dialog defaults.
unchecked unchecked The dialog will appear once; either when the menu
item is selected or when Customize is selected from
the menu item’s context menu in the Object
Explorer. After that, the dialog does not appear and
the function executes using the current dialog
defaults.
Modifying Menultem objects can be modified using either programming
Menu ltems commands, their property dialogs, or their context menus.

Using Commands

256

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUL If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing menu item.
Specify the name of the MenuItem to modify, and the properties to
modify with their new values.

The following command will add status bar text for the “Square Root”
dialog created in the section Creating Menu Items (page 251).

guiModify(classname="Menultem",
Name="$$SPTusMenuBar$MyStats$Sqrt",
StatusBarText="Calculate a square root.")

Using the
Property Dialog

Using the
Context Menu

Menus

MenuItem objects can be modified through the same property dialogs
which are used to create them. To modify a MenuItem object, open the
Object Explorer to a page with filtering set to Menultem. Right-click
on the Menultem object’s icon in the right pane and choose
Menultem from the context menu. See the previous sections for
details on using the property dialog.

MenuItem objects can be modified with their context menus which are
accessible through the Object Explorer. The following choices appear
after right-clicking on a MenuItem object in the Object Explorer.

Insert Menultem Select this to create a new MenuItem object.

Customize This appears when Action is set to Function. Select this
to open the dialog associated to the function. Any changes to the
dialog persist as dialog defaults.

Show Dialog On Run This appears when Action is set to
Function. Check this to cause the dialog associated to the function to
open when the item is selected. See Table 8.1 for details.

Always Use Defaults This appears when Action is set to Function.
Check this to force the use of the default values when the function
executes. See Table 8.1 for details. Spotfire S+ makes a distinction
between the default argument values for a function as defined in the
function’s dialog (via the FunctionInfo object) and as defined by the
function itself. Always Use Defaults refers to the “dialog” defaults.

Hide Select this to hide the menu item. It will not appear in the
menu system and the MenuItem object icon will appear grayed out.

Delete Select this to delete the MenuItem object. The menu item will
no longer be available.

Save Select this to save the MenuItem object (and any other MenuItem
it contains in the menu hierarchy) to a file.

Save As Similar to Save, but this allows you to save a copy of the
MenuItem object to a different filename.

Menultem Select this to access the Menultem page of the MenuItem
object’s property dialog.

Command Select this to access the Command page of the MenuItem
object’s property dialog.

257

Chapter 8 Extending the User Interface

Manipulating
Menu Items in
the Object
Explorer

Displaying
Menus

258

Show Menu In Spotfire S+ Select this to cause the menu to be
displayed in the main Spotfire S+ menu bar. This choice is available
only for MenuItem objects having Type Menu.

Restore Default Menus Select this to restore the default Spotfire S+
menus in the main menu bar. For example, this will undo the effect of
selecting Show Menu In Spotfire S+. This choice is available only for
MenuItem objects having type Menu.

Save Menultem Object as default Select this to make the
MenuItem object the default. When a new MenuItem object is created,
its property dialog will initially resemble that of the default object,
except in the Name field.

Help Select this to open a help page describing MenuItem objects.
Menu items are easily copied, moved, and deleted through the Object
Explorer.

Moving Menu Items

To move a menu item into a different menu, locate the menu item
icon in the Object Explorer. Select the icon, hold down the ALT key,
and drag it onto the menu where it will be added.

To move the menu item within its current menu, hold down the SHIFT
key and drag the menu item icon to the desired location.

Copying Menu Items

To copy a menu item into a different menu, hold down the CTRL key
and drag its icon onto the menu to which it is to be added.

To copy a menu item within its current menu, hold down the SHIFT
and CTRL keys and drag the menu item icon to the desired location.

Deleting Menu Items

To delete a menu item, right-click on the menu item in the Object
Explorer and select Delete from the context menu.

If the user modifies the default menu, which by default is named
SPlusMenuBar, the modifications will be displayed upon changing
the window in focus. If the user creates a new menu, the menu must
be explicitly displayed in Spotfire S+. This may be done
programmatically or in the Object Explorer.

Using Commands

Using the Object
Explorer

Saving and
Opening Menus

Using Commands

Using the Object
Explorer

Menus

The function guiDisplayMenu will display the specified menu as the
main menu in Spotfire S+. As a simple example, we can set the
context-menu for Tm to be the main menu bar, and then restore the
menus to the default of SPTusMenuBar:

guiDisplayMenu("1m™)
guiDisplayMenu("SPlusMenuBar")

After creating a menu system, right-click on the MenuItem object in
the Object Explorer that you want used as the main menu. Select
Show Menu In Spotfire S+ from the context menu to display the
menu system.

To restore the default Spotfire S+ menus, select Restore Default
Menus in the context menu for that same Menultem object.
Alternatively, select Show Menu In Spotfire S+ in the context
menu for the MenuItem object which represents the default Spotfire
S+ menus.

Menus may be saved as external files. These files may be opened at a
later time to recreate the menu in Spotfire S+.

The guiSave command is used to save a menu as an external file:

guiSave(classname="Menultem", Name="SPlusMenuBar",
FileName="MyMenu.smn")

The guiOpen command is used to open a menu file:
guiOpen(classname="Menultem", FileName="MyMenu.smn")

To save a menu to an external file, right-click on the MenuItem object
in the Object Explorer and select Save As in the context menu. Enter
a filename in the Save As dialog and click OK. The extension .smn
is added to the filename.

To open a menu which has been saved in an external file, right-click
on the default MenuItem object and select Open from the context
menu. In the Open dialog, navigate to the desired file, select it, and
click OK. The new menu is visible in the Object Explorer. Its name is
the name of the external file, without the extension .smn.

259

Chapter 8 Extending the User Interface

TOOLBARS AND PALETTES

Creating
Toolbars

Using Commands

Using the Object
Explorer

260

In Spotfire S+, toolbars and palettes represent the same type of
object. When a toolbar is dragged into the client area below the other
toolbars, it is displayed there as a palette. When a palette is dragged
to the non-client area, close to a toolbar or menu bar, it “docks” there
as a toolbar.

Toolbars are represented in the Object Explorer as Toolbar objects.
These contain ToolbarButton objects which represent their buttons.

While it is not hard to create or modify toolbars through the user
interface (as shown in this section), it is sometimes easier to work with
toolbars programmatically using the guiCreate and guiModify
commands. For details on the syntax, see the guiCreate(“Toolbar”)
and guiCreate(“ToolbarButton”) help files in the Language
Reference help.

Toolbars may be created using commands or from within the Object
Explorer.

To create a menu item, use the guiCreate function with
classname="Toolbar”.

The following command will create a new toolbar:

guiCreate(classname="Toolbar", Name="My Toolbar")

This will add a small empty toolbar which by default will be docked
below the active document toolbar. Until we add buttons, the toolbar
is not particularly interesting or useful.

To create a Toolbar object, first open the Object Explorer and filter
by Toolbar to see the toolbars and toolbar buttons. To create a new
toolbar, right-click on the default object icon (labeled Toolbar) in the
left pane of the Object Explorer. Select New Toolbar from the
context menu. (Alternatively, right-click in the Spotfire S+ application
window, outside of any open document window, and choose New
Toolbar from the context menu.) The New Toolbar dialog appears,

Toolbar Object
Properties

Toolbars and Palettes

as shown in Figure 8.3.
New Toolbar E

Toolbar Name:

Make Toolbar far this Folder;

I Browse... |

Document Type:
IAII Documents j

“ou can make a new toolbar from an existing folder, or create a blank one

from scratch.
0] I Cancel

Figure 8.3: New Toolbar dialog.

To modify the default settings that appear in this property dialog in
the future, right-click on the default object icon, choose Properties
from the context menu, fill out the dialog with the desired defaults,

and click OK.

Toolbar Name Enter a name for the new toolbar.

Make Toolbar for this Folder Enter a path for a folder (directory).
The new toolbar will contain a toolbar button for each file in the
indicated folder. Use the Browse button, if desired, to identify the
folder. If no folder is specified, the toolbar will contain a single button
with the ToolbarButton defaults.

Document Type Select the document types which will, when in
focus, allow the toolbar to be visible.

Click OK and a new Toolbar object appears in the Object Explorer.

The properties of a TooTbar object determine characteristics such as
the name and location of the toolbar. These properties may be
specified and modified using the property dialog for the Toolbar
object, or programmatically via the commands guiCreate and
guiModify. See the guiCreate(“Toolbar”) help file in the Language
Reference help for syntax details.

261

Chapter 8 Extending the User Interface

262

The following properties are specified in the Toolbar property dialog,
shown in Figure 8.4.

Toolbar Dbiject [Toolbar1) [16] M|E E3 |
I ame: IT::u:uII:uar1
Document Type: I.-‘-‘-.n_l,l Documents j

— Toolbar Layout Options
Docked To TOP -

Toolbar Top: I.ﬁ.utu:u "I
Toolbar Left; I.ﬁ.utn vI
™ Hide
Button Rows: |1 vI
v Deletable

Ear‘u:ell [« =] current Help |

Figure 8.4: Toolbar Object properties dialog.

¥ ColorButtors
¥ ToolTips

[LargeButtons

Document Type Depending on the type of document window—
Graph Sheet, Commands window, etc.--which has the focus, a toolbar
may or may not be visible. Specify the document types for which the
toolbar should be visible. Selecting All Documents causes the
toolbar to be always visible. Selecting No Documents ensures that
the toolbar will be visible when no document window has the focus;
for example, when no window is open.

ColorButtons Logical value indicating whether to display button
images in color.

ToolTips Logical value indicating whether to enable tool tips for the
toolbar.

LargeButtons Logical value indicating whether to display large-
sized buttons.

Hide Logical value indicating whether to hide the toolbar.

Deletable Logical value indicating whether to allow permanent
deletion of the toolbar.

Docked To The side of the Spotfire S+ window to which the toolbar
will be docked, or None to float the toolbar as a palette.

Toolbar Top The top coordinate of the toolbar in pixels.

Modifying
Toolbars

Using Commands

Using the
Property Dialog

Using the
Context Menu

Toolbars and Palettes

Toolbar Left The left coordinate of the toolbar in pixels.

Button Rows The number of rows of buttons in the toolbar.

Toolbar objects can be modified using either programming
commands, their property dialogs, or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUIL If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing Toolbar.
Specify the name of the Toolbar to modify and the properties to
modify with their new values.

The position of the Toolbar on the screen is specified by the pixel
location of the Top and Left corners of the Toolbar. The following
command will automatically set these values so that the Toolbar is
placed in the upper left corner of the screen:

guiModify(classname="Toolbar", Name="My Toolbar",
Top="Auto", Left="Auto")

Toolbar objects can be modified through the same property dialogs
which are used to create them. To modify a Toolbar object, open the
Object Explorer to a page with filtering set to Toolbar. Right-click on
the Toolbar object’s icon in the right pane and choose Properties
from the context menu. See the previous sections for details on using
the property dialog.

Toolbar objects can be modified with their context menus which are
accessible through the Object Explorer. The following choices appear
after right-clicking on a Toolbar object in the Object Explorer.

New Toolbar Select this to open a new toolbar.

New Button Select this to add a new button to the toolbar.
Hide Select this to hide the toolbar.

Delete Select this to delete the toolbar.

Open Select this to open a toolbar that has been saved in an external
file.

Save Select this to save a toolbar to its external file, when one exists.

263

Chapter 8 Extending the User Interface

Creating
Toolbar
Buttons

Using Commands

264

Save As Select this to save a toolbar to an external file.

Unload Select this to unload a toolbar from memory. The toolbar is
no longer available for display. To reload a built-in toolbar, restart
Spotfire S+. To reload a toolbar that has been saved to an external
file, open that file.

Restore Default Toolbar Select this to restore a built-in toolbar to
its default state after it has been modified.

Properties Select this to display the property dialog for the Toolbar
object.

Buttons Select this to display a dialog used for displaying or hiding
different buttons on the toolbar.

Refresh Icons Select this to refresh the icon images on the toolbar
buttons after they may have been modified.

Save Toolbar Object as default Save a modified version of a
toolbar as the default for that toolbar.

Help Select this to display a help page on toolbars.

A Toolbar generally contains multiple toolbar buttons, each of which
performs an action when pressed. Toolbar buttons may be created
using commands or from within the Object Explorer.

To create a ToolbarButton, use the guiCreate function with
classname="ToolbarButton”. The name of the button determines the
toolbar upon which it is placed.

The following command creates a toolbar button which launches the
Linear Regression dialog:

guiCreate("ToolbarButton"™, Name = "My Toolbar$Linreg",
Action="Function", Command="menulLm")

Creating sophisticated dialogs such as the Linear Regression dialog is
discussed later in the section Dialogs (page 272) and the section Style
Guidelines (page 337).

Toolbar buttons can also be used to call built-in Windows interface
commands. The following command will create a toolbar button
which launches the standard file Open dialog:

Using the Object
Explorer

ToolbarButton
Object
Properties

Toolbars and Palettes

guiCreate("ToolbarButton", Name = "My Toolbar$Open",
Action="BuiltIn",
BuiltInOperation="$$SPlusMenuBar$No_Documents$File$0Open™)

To add a button to an existing toolbar, right-click on the
corresponding Toolbar object in the Object Explorer and select New
Button from the context menu. The ToolbarButton property dialog
appears, as in Figure 8.5.

ToolbarButton Obiect [1] I B3 |
Buttan | Command | Image |
Marne: Editable Graphs [Hide

Type: IBLITTEIN "I ¥ Deletable
Achian: IBuiItIn "I ¥ Enable Button

Docurment Typels]: I.ﬁ.n_l,l Documents j

Tip Test: IEditaI:uIe Graphz

0k | cancel | ool | 1]] sument Help |

Figure 8.5: ToolbarButton property dialog.

The properties of a ToolbarButton object determine characteristics
such as the button image for the menu item and the action performed
when the button is selected. These properties may be specified and
modified using the property dialog for the TooTlbarButton object, or
programmatically via the commands guiCreate and guiModify. See
the guiCreate(“ToolbarButton”) help file in the Language Reference
help for syntax details.

The following properties are specified on the Button page of the
ToolbarButton property dialog, shown in Figure 8.5:

Name The name of the button.

Type Select BUTTON to create a button, or select SEPARATOR to
create a gap between buttons in the toolbar.

265

Chapter 8 Extending the User Interface

266

Action This applies to ToolbarButton objects of type BUTTON.

None. No action is performed when the button is clicked.

BuiltIn. One of the actions associated with the default menus
or toolbars is performed when the item is selected. These are
listed on the Command page in the Built-In Operation
dropdown box. This option allows you to use in a customized
toolbar any of the "intrinsic" menu or toolbar actions, such as
Window P Cascade.

Function. A Spotfire S+ function is executed when the button
is clicked. Optionally, the dialog for the function can be made
to appear.

Open. The file specified on the Command page is opened
when the button is clicked. The file will be opened by the
application associated to it by the operating system.

Print. The file specified on the Command page is printed
when the button is clicked. The file will be printed by the
application currently associated to it by the operating system.

Run. The file specified on the Command page is opened and
run as a script by Spotfire S+ when the button is clicked.

Expression. Enter a valid Spotfire S+ expression in the
Command tab, and this expression is executed when the
button is pressed.

Tip Text The tool tip text for the button.

Hide Logical value indicating whether to make the button invisible.
When the item is hidden, its icon in the Object Explorer appears
grayed out. This can also be specified through the context menu.

Deletable Logical value indicating whether to allow the item to be
deleted.

The next set of properties are found on the Command page of the
ToolbarButton property dialog.

Built-In Operation Type of action to perform when the button is

selected.

Modifying
Toolbar
Buttons

Toolbars and Palettes

Command The name of a Spotfire S+ function, or path and
filename. This field is enabled when Action is set to Function, Open,
Print, or Run on the button page. Use the Browse button to identify
the folder.

Parameters This is relevant when Action is set to Function. This
property specifies the arguments for the function which will execute
when the item is selected. The easiest way to specify these arguments
is to work through the Customize dialog available through the
context menu for the ToolbarButton in the Object Explorer. For
details on doing this, see the section Using the Context Menu (page
268) below.

Show Dialog On Run This is relevant when Action is set to
Function. Logical value indicating whether to display the dialog
associated with the specified function when the button is selected.

Always Use Defaults This is relevant when Action is set to
Function. Logical value indicating whether to force the use of the
default values when the function executes.

Spotfire S+ makes a distinction between the default argument values
for a function as defined in the function’s dialog (via the
FunctionInfo object) and as defined by the function itself. Always
Use Defaults refers to the dialog defaults. Table 8.1 above
summarizes how Show Dialog On Run and Always Use Defaults
work together.

The next set of properties are found on the Image page of the
ToolbarButton property dialog.

Image FileName The path and filename of a bitmap file whose
image will be displayed on the toolbar button. Use the Browse
button, if desired, to identify the file.

To modify a ToolbarButton object, use either the ToolbarButton
property dialog described above or the context menu, described
below.

ToolbarButton objects can be modified using either programming
commands, their property dialogs or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUIL If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

267

Chapter 8 Extending the User Interface

Using Commands The guiModify command is used to modify an existing toolbar

Using the
Property Dialog

Using the
Context Menu

268

button. Specify the name of the ToolbarButton to modify, and the
properties to modify with their new values.

The following command will specify a new value for the tooltip text,
which is the text displayed when the mouse is hovered over the
button:

guiModify("ToolbarButton", Name = "My Toolbar$Open",
TipText="0pen Document")

ToolbarButton objects can be modified through the same property
dialogs which are used to create them. To modify a ToolbarButton
object, open the Object Explorer to a page with filtering set to
Toolbar. Right-click on the ToolbarButton object’s icon in the right
pane and choose Button from the context menu. See the previous
sections for details on using the property dialog.

ToolbarButton objects can be modified with their context menus
which are accessible through the Object Explorer. The following
choices appear after right-clicking on a ToolbarButton object in the
Object Explorer.

Insert Button Select this to insert a new toolbar button next to the
current one.

Customize This appears when Action is set to Function. Select this
to open the dialog associated to the function. Any changes to the
dialog persist as dialog defaults.

Hide Select this to hide the toolbar button.
Delete Select this to delete the toolbar button.

Edit Image Select this to open the bitmap file, using the operating
systems default bitmap editor, which contains the icon image of the
toolbar button.

Button. Select this to open the Button page of the property dialog for
the toolbar button.

Command Select this to open the Command page of the property
dialog for the toolbar button.

Image Select this to open the Image page of the property dialog for
the toolbar button.

Save ToolbarButton Object as default Select this to save a copy of
the ToolbarButton object as the default ToolbarButton object.

Help Select this to open a help page on toolbar buttons.

Manipulating
Toolbars in the
Object Explorer

Displaying
Toolbars

Using Commands

Using the
Toolbars Dialog

Toolbars and Palettes

Toolbar buttons are easily copied, moved, and deleted through the
Object Explorer.

The Hide property of a toolbar determines whether or not it is
displayed. To display a toolbar, set this property to false:

guiModify(classname="Toolbar", Name="My Toolbar", Hide=F)
To hide the toolbar, set this property to true:
guiModify(classname="Toolbar", Name="My Toolbar"™, Hide=T)

To hide (or unhide) a toolbar, right-click on the Toolbar object and
select Hide (or Unhide) from the context menu. To selectively hide
or display toolbars, right-click outside of any open windows or
toolbars and select Toolbars from the context menu. A dialog like
that shown in Figure 8.6 appears. Use the checkboxes to specify
which toolbars will be visible.

Toolbars

Toolbars:

Standard
[(1Graph
[(DataSet
[Script
[v] ObjectE splorer
[0 utputiaindow
[Commandifindo
[IReportitfindow
[CIPlatz20

[|Platz30

[

¥ Color Buttons
[Large Buttonsz

¥ Show ToolTips

Figure 8.6: The Toolbar dialog.

269

Chapter 8 Extending the User Interface

Saving and
Opening
Toolbars

Using Commands

To hide (or unhide) a toolbar button, right-click on the ToolbarButton
object and select Hide (or Unhide) from the context menu. To
selectively hide or display the buttons in a toolbar, right-click the
Toolbar object and select Buttons from the context menu. A dialog
similar to that shown in Figure 8.7 appears. Use the checkboxes to
specify which buttons will be visible in the toolbar.

Standard Buttons

Buttons:

[w]Open

[w]Save
[w[SEFARATOR]
[w]Print
[w[SEFARATOR]
[w]Cuit

[w]|Copy

[w|Pazte
[w[SEPARATOR]

Delete |

[

Figure 8.7: The Buttons dialog.

A toolbar and the related toolbar buttons may be saved to an external
file. This file may be opened at a later time to restore the toolbar and
the toolbar buttons.

The guiSave command is used to save a toolbar as an external file:

guiSave(classname="Toolbar",
FileName="MyToolbar.stb™)

Name="My Toolbar",

The guiOpen command is used to open a toolbar file:

guiOpen(classname="Toolbar", FileName="MyToolbar.stbh")

Note

Do not try to open a toolbar file while the toolbar it represents is loaded into Spotfire S+; this
results in an error message. You can see which toolbars are currently loaded by right-clicking in
the Spotfire S+ window outside of any open document windows. To unload a toolbar, go to the
Object Explorer, right-click on the toolbar item, and choose Unload.

270

Using the Object
Explorer

Toolbars and Palettes

To save a toolbar to an external file, right-click on the Toolbar object
in the Object Explorer and select Save As in the context menu. Enter
a filename in the Save As dialog and click OK. The extension .STB
is added to the filename.

To open a toolbar which has been saved in an external file, right-click
on the default Toolbar object and select Open from the context
menu. In the Open dialog, navigate to the desired file, select it, and
click OK. The new toolbar is visible in the Object Explorer. Its name
is the name of the external file, without the extension .STB.

271

Chapter 8 Extending the User Interface

DIALOGS

272

Almost all of the dialogs in Spotfire S+ have either a corresponding
graphical user interface object or a corresponding function.

The dialog for a GUI object such as a BoxP1ot displays the properties
of the object, and allows the modification of these properties. When
Apply or OK is pressed, the object is then modified to have the
newly specified properties. While these dialogs are created using the
same infrastructure as is discussed here, they are not generally
modified by the user.

The dialog for a function allows the user to specify the arguments to
the function. The function is then called with these arguments when
Apply or OK is pressed. In Spotfire S+, users may write their own
functions and create customized dialogs corresponding to the
functions. This section discusses the creation of such dialogs.

Think of a function dialog as the visual version of some Spotfire S+
function. For every function dialog there is one Spotfire S+ function,
and for every Spotfire S+ function there is a dialog. The dialog
controls in the dialog correspond to arguments in the function, and
vice versa. In addition, all function dialogs are displayed with OK,
Cancel, Apply (modeless) buttons that do not have any
corresponding arguments in the functions. When the OK or Apply
button is pressed, the function is executed with argument values taken
from the current values of the dialog controls.

A dialog typically consists of one to five tabbed pages, each
containing groups of controls. The characteristics of the controls in
the dialog are defined by Property objects. Properties may be of
type Page, Group, or Normal. A Page will contain Groups which
in turn contain Normal properties. The primary information
regarding Pages and Groups is their name, prompt, and what other
properties they contain. Normal properties have far more
characteristics describing features such as the type of control to use,
default values, option lists, and whether to quote the field’s value
when providing it in the function call. Together the Property objects
determine the look of the dialog and its controls.

Dialogs

Filter by Property in the Object Explorer (Figure 8.8) to see objects

of this type.

= Object Explorer

Cartents of: |Property

- - Data

- J Graphs
=
..... |_ Hepn:lrtS
& Scripts

I Y SearchPath

M[=]

Object | Foz | Data Class I Dimenzions +

% alphaPowerSeqStat 905 Property b
%.ﬁ.ltEnnfLevel 1053 Property
%.ﬁ.ltlzwerage 1035 Property
%.ﬁ.ltlzwerageﬁ 1036 Property
%.ﬁ.ltEnxphT ermsButto... 981 Property
%.ﬁ.ltlzrnss‘afalue 1033 Property
%f-‘«lt[ﬁl ataFrames 1031 Property
52 AIE ditButton 1039 Property
B2 AlFit 1028 Property
%.&Itﬁraph\-"iewpairs 1249 Property
%ﬂltﬁraph\-"iewplut 1248 Property
%.ﬁ.ltﬁrnupEDmbinedL... 1244 Property
%.ﬁ.ltﬁrnupEutPDintD n.. 1241 Property
%.ﬁ.ltﬁrnupEutF‘Dints 1240 Property
1234 Pranertu

%' AlH=rannl atalalme
4

| of”

Figure 8.8: The Object Explorer showing all Property objects

While the Property objects define the controls in a dialog, they do
not contain information on which Property objects relate to each of
the arguments in the function. This information is contained in a
FunctionInfo object. Each function for which a dialog is constructed
needs a FunctionInfo object describing what Property objects to use
when constructing the dialog for the function, as well as other related
information. If a function does not have a FunctionInfo object and
its dialog is requested by a Menultem or ToolbarButton, a simple
default dialog will be launched in which an edit field is present for
each argument to the function.

273

Chapter 8 Extending the User Interface

Filter by FunctionInfo in the Object Explorer (Figure 8.9) to see
objects of this type.

= Object Explorer

=] E3

Cantents af: [Functionlnfo

- = Data

-
- Eraphs
----- |_ Reports
: ! Scripts
I @ SearchPath

bject | Fos | D ata Clasz | Dimengions
blp.cbPathConfigure 223 Functionlkfo |
clear.col 43 Functionlnfo
clear. o 43 Functionlnfo
corvert.col lype 115 Functionlnfo
copy. ol 44 Furictionlnfo
COp. IO) Furictionlnfo
dialogTimeSenesPlot: 167 Functionlnfo
Functionlnfo 1 Functionlnfo
qui. append. ol 189 Functionlnfo
qui. clear. block 170 Functionlnfo
qui. clear. col 168 Functionlnfo
qui. clear. row 169 Functionlnfo
qui. copy. block 176 Functionlnfo
qui. copy. col 174 Functionlnfo

AL Cnrg o 177 Fuartinnl nfo I _ILI
3

o

< iR R R s e R R R 8

E

Figure 8.9: The Object Explorer showing all FunctionInfo objects.

While it is not hard to create or modify Property and FunctionInfo
objects through the user interface, as shown in this section, it is
usually preferable to work with them programmatically using the
guiCreate and guiModify commands. For details on the syntax, see
the guiCreate(“Property”) and guiCreate(“FunctionInfo”) help
files in the Language Reference help.

Creating To create a dialog in Spotfire S+, follow these steps:
Dialogs 1. Identify the Spotfire S+ function which will be called by the
dialog. This can be either a built-in or a user-created function.
2. Create the “Property” objects, such as pages, group boxes, list
boxes, and check boxes, which will populate the dialog.
3. Create a FunctionInfo object having the same name as the

274

function in step 1. The FunctionInfo object holds the layout
information of the dialog, associates the values of the Property

Creating
Property
Objects

Using Commands

Using the Object
Explorer

Dialogs

objects in the dialog with values for the arguments of the
Spotfire S+ function, and causes the Spotfire S+ function to
execute.

Property objects may be created using commands or from within the
Object Explorer.

To create a Property object, wuse guiCreate with
classname="Property”. The following command creates a list box:

guiCreate(classname="Property™, Name="MyListProperty",
Type="Normal"™, DialogControl="List Box",
DialogPrompt="Method", OptionlList=c("MVE"™, "MLE",
"Robust™), DefaultValue="MLE")

To create a Property object, open the Object Explorer to a page with
filtering set to Property. Right-click on any property in the right pane
and choose Create Property from the context menu. The property
dialog shown in Figure 8.10 appears.

Property Object [1903] M= E

MHare: stProperty LCopy From: I—
Tvpe: INolmaI 'I DOption List Delin: I

Default alue: MLE Help String: I—
Earent Praperty l— Save In File: I—
Dialog Prompt: W ™ |z Required

Dialog Contral: m [Use Quates

[Eortiol Bragld: l— [No Quotes

[Eartiol Bathld anie: l— ™ Iz List

FEange; I ™ Mo Function Arg
Dption List: I "MVE" "MLE" "R " Disable
Eropert et I [|sFead Orly

[Mo Ship Spaces

Ok I Cancell .t’-‘«pplyl |<| >| current

Figure 8.10: The property dialog for a Property object.

Help |

275

Chapter 8 Extending the User Interface

Property
Object
Properties

276

The properties of a Property object determine characteristics such as
the prompt text, control type, and default value. These properties
may be specified and modified using the property dialog for the
Property object, or programmatically via the commands guiCreate
and guiModify. See the guiCreate(“Property”) help file in the
Language Reference help for syntax details.

The following properties are specified in the Property object property
dialog, shown in Figure 8.10.

Name The name of the Property object. To create a Property object,
a name must be specified.

Type The type of property. Group or WideGroup creates a group
box. Page creates a tabbed page. Normal to creates any other type of
Property object.

Default Value The default value for the Property object. This will
be displayed when the dialog opens.

Parent Property The name of a parent property, if any. This is used
by certain internal Property objects.

Dialog Prompt The text for the label which will appear next to the
control in the dialog.

Dialog Control The type of control to use. Examples are Button,
Check Box, List Box, and Combo Box. Control types are described
in the section Dialog Controls (page 286).

Range The range of acceptable values for the function argument
associated with this property. For instance, if the values must be
between 1 and 10, enter 1:10.

Option List A comma-separated list. The elements of the list are
used, for example, as the labels of Radio Buttons or as the choices in
the dropdown box of a String List Box. A property may have either a
range or an option list, but not both. Ranges are appropriate for
continuous variables. Option lists are appropriate where there is a
finite list of allowable values.

Dialogs

Property List A comma-separated list of the Property objects
included in the Group box or on the Page. This applies to Property
objects having Type Page or Group.

Tip...

A Property object may only be called once by a given FunctionInfo object.

Copy From The name of a Property object to be used as a template.
The current Property object will differ from the template only where
specified in the property dialog. See the section Dialog Controls (page
286) for lists of internal and standard Property objects that can be
used in dialogs via Copy From.

Option List Delim A character used as the delimiter for Option
List, such as comma, colon or semi-colon. Comma is the default.

Help String The text of the tool tip for this Property object.

Save in File The name of the file in which to save the Property
definition.

Is Required Logical value indicating whether to require the
Property object to have a value when OK or Apply is clicked in the
dialog.

Use Quotes Logical value indicating whether to force quotes to be
placed around the value of the Property object when the value is
passed to the Spotfire S+ function.

No Quotes Logical value indicating whether to prohibit quotes from
being placed around the value of the Property object when the value
is passed to the Spotfire S+ function. This option is ignored when Is
List (described below) is not checked.

Is List Logical value indicating whether to cause a multiple selection
in a drop-down list to be passed as a Spotfire S+ list object to the
Spotfire S+ function.

No Function Arg Logical value indicating whether to not pass the
value of this Property object as an argument to the Spotfire S+
function. The Property object must still be referenced by the
FunctionInfo object.

277

Chapter 8 Extending the User Interface

Modifying
Property
Objects

Using Commands

Using the
Property Dialog

Using the
Context Menu

Creating
Functioninfo
Objects

Using Commands

278

Disable Logical value indicating whether to cause the Property
object to be disabled when the dialog starts up.

Is Read Only Logical value indicating whether the corresponding
control is for read only.

No Strip Spaces Logical value indicating whether to include or
remove spaces between elements in the Option List.

Property objects can be modified using either programming
commands, their property dialogs, or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUI If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing Property
object. Specify the Name of the Property object to modify, and the
properties to modify with their new values.

guiModify(classname="Property", Name="MyListProperty",
DefaultValue="Robust")

Property objects may be modified through the Property object
property dialog.

To modify a Property object, open the Object Explorer to a page with
filtering set to Property. Right click on the Property object’s icon in
the right pane and choose Properties from the context menu. Refer
to the previous sections for details on using the property dialog.

Property objects can be modified with their context menus. The
context menu for an object is launched by right-clicking on the object
in the Object Explorer. The context menu provides options such as
creating, copying, and pasting the object, as well as a way to launch
the property dialog.

FunctionInfo objects may be created using commands or from
within the Object Explorer.

To create a FunctionInfo object, use the guiCreate command with
classname="FunctionInfo”.

Dialogs

As a simple example, we will create a function my.sqrt which
calculates and prints the square root of a number. We will create a
dialog for this function and add a menu item to the Data menu which
launches the dialog. We will create a property MySqrtInput
specifying the input value, and since we don’t want to store the result,
we will use the standard property SPropInvisibleReturnObject for
the result.

my.sqrt <- function(x){
y <- sqrt(x)
cat("\nThe square root of ",x," is ",y, ".\n",sep="")

invisible(y)

guiCreate(classname="Property"™, Name="MySqrtInput",
DialogControl="String", UseQuotes=F,
DialogPrompt="Input Value")

guiCreate(classname="FunctionInfo", Name="my.sqrt",
DialogHeader="Calculate Square Root",
PropertyList="SPropInvisibleReturnObject, MySqrtInput”,
ArgumentList="#0=SPropInvisibleReturnObject,

#1=MySqrtInput")

guiCreate(classname="Menultem",
Name="$$SPTusMenuBar$Data$MySqrt",
Type="Menultem" ,MenultemText="Square Root...",
Action="Function"”, Command="my.sqrt")

279

Chapter 8 Extending the User Interface

Using the Object Open the Object Explorer to a page with filtering set to

Explorer

Functioninfo
Object
Properties

280

FunctionInfo. Right-click on any FunctionInfo object in the right
pane and choose Create FunctionInfo from the context menu. The
property dialog shown in Figure 8.11 appears.

Function Information [115] M= E |

arvert. ool b FPrompt Lizt: I—
Dialog Header: Im Defaultyalue List: I—
Status String: I— LCallBack Function: m
Broperty Lizt: Im Help Command: I—
Argument List; Im Save In File: I—
Argument Clazses: I— ¥ wiite g Mames

[Display
0k | cancel | ool | 1]] sument Help |

Figure 8.11: The property dialog for a FunctionInfo object.

Function:

The properties of a FunctionInfo object describe how the properties
in a dialog correspond to the related function. These properties may
be specified and modified using the property dialog for the
FunctionInfo object, or programmatically via the commands
guiCreate and guiModify. See the guiCreate(“FunctionInfo”) help
file in the Language Reference help for syntax details.

The following properties are specified in the FunctionInfo object
property dialog, shown in Figure 8.11.

Function The name of the Spotfire S+ function which will execute
when OK or Apply is clicked in the dialog. This is also the name of
the FunctionInfo object.

Dialog Header The text that will appear at the top of the dialog.
Status String The string displayed when you move the mouse over
the property in the dialog.

Property List A comma-separated list of Property objects to be
displayed in the dialog. A given Property object can only occur once
in this list. If pages or group boxes are specified, it is not necessary to

Modifying
Functioninfo
Objects

Dialogs

specify the Property objects that they comprise. Property objects in
the list will be displayed in two columns, moving in order from top to
bottom, first in the left-hand column and next in the right-hand
column.

Argument List A comma-separated list in the form #0 =
PropNamel, #1 = PropName2, Here PropNamel, PropNameZ2, ..., are
names of Property objects, not including page and group objects, and
#1, ..., refer in order to the arguments of the function indicated in
Function Name. The argument names may used in place of #1, #2,
... . The first item, #0, refers to the returned value of the function. Use
Argument List if the order of the Property objects in the dialog
differs from the order of the corresponding arguments of the Spotfire
S+ function.

Argument Classes A comma-separated list of classes that are used in
in the dialog.

Prompt List A comma-separated list of labels for the Property
objects in the dialog. These will override the default labels. The
syntax for this list is the same as that for Argument List.

Default Value List A comma-separated list of default values for the
Property objects. These will override the default values of the
Property objects. The syntax for this list is the same as that for
Argument List.

CallBack Function The name of a function which will be executed
on exit of any Property object in the dialog. CallBack Functions are
described in detail in the section Callback Functions (page 323).

Help Command The command to be executed when the Help
button is pushed. This is a Spotfire S+ expression such as
“help(my.function)”.

Save in File The function information can be written to a file, which
can be edited in the Command line or in the GUL

Write Argument Names Logical value indicating whether to have
argument names written when the function call is made.

Display Logical value indicating whether to cause information about
the FunctionInfo object to be written in a message window (or in the
output pane of a script window when the dialog is launched by a
script). This debugging tool is turned off after OK or Apply is clicked
in the dialog.

FunctionInfo objects can be modified using either programming
commands, their property dialogs, or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUL If

281

Chapter 8 Extending the User Interface

Using Commands

Using the
Property Dialog

Using the
Context Menu

Displaying
Dialogs

282

you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing FunctionInfo
object. Specify the Name of the FunctionInfo object to modify, and
the properties to modify with their new values.

guiModify(classname="FunctionInfo", Name="my.sqrt",
DialogHeader="Compute Square Root™)

FunctionInfo objects may be modified through the FunctionInfo
object property dialog.

To modify a FunctionInfo object, open the Object Explorer to a page
with filtering set to FunctionInfo. Right click on the FunctionInfo
object’s icon in the right pane and choose Properties from the context
menu. Refer to the previous sections for details on using the dialog.

FunctionInfo objects can be modified with their context menus. The
context menu for an object is launched by right-clicking on the object
in the Object Explorer. The context menu provides options such as
creating, copying, and pasting the object, as well as a way to launch
the property dialog.

There are several ways to display a dialog in Spotfire S+.

* Locate the associated function in the Object Explorer and
double-click on its icon. If a function is not associated with a
FunctionInfo object, then double-clicking on its icon will
cause a default dialog to be displayed.

* Click on a toolbar button which is linked to the associated
function.

* Select a menu item which is linked to the associated function.

* Use the function guiDisplayDialog in a Script or
Commands window:

guiDisplayDialog("Function",Name="menulLm")

* Write the name of the function in a Script window, double-
click on the name to select it, right-click to get a menu, and
choose Show Dialog.

Dialogs

Example: The This example looks into the structure behind the Contingency Table
Contingency dialog. The Contingency Table dialog in Spotfire S+ (Figure 8.12) is

. found under Statistics » Data Summaries » Crosstabulations.
Table Dialog

Crozstabulations [_ (]
todel | Options |
—Data Rezults

Data Set; I VI Save Az I

IV Print Fesults

Wariables:

LCounts Yariable: I vl
Subsget Bows with: I

tethod to Handle Missing Yalues:

IFaiI vl
(0] I Can-:ell Applyl I<| >| curent Help |

Figure 8.12: The Contingency Table dialog.

It has two tabbed pages named Model and Options. On the Model
page are two group boxes, named Data and Results.

The FunctionInfo object for this dialog is called menuCrosstabs; its
property dialog is shown in Figure 8.13 and is described below.

Function Information [28] I [E]=]
Function: menuCrosstabs Prompt List: I—
Dialog Header: IW Defaultyalue List: I—
Status String: l— LallB ack Function: W
Property List; lSF'ropCrom Help Command: I—
Argument List: lm Save [n File: I—
Argument Clazses: l— [V wiite Arg Mames

[Display
Ok I Cancell .t’-‘«pplyl |<| >| current Help |

Figure 8.13: The property dialog for the FunctionInfo object menuCrosstabs.

Function Notice that this value is also menuCrosstabs; the Spotfire S+
function associated with this dialog has the same name as the
FunctionInfo object. To look at the code behind the function

283

Chapter 8 Extending the User Interface

284

menuCrosstabs, type menuCrosstabs, or page(menuCrosstabs) at the
prompt in the Commands window.

Dialog Header This is the header which appears at the top of the
Contingency Table dialog. Try changing this and opening the dialog.
The dialog will reflect the change. This change persists when Spotfire
S+ is exited and restarted.

Status String This is currently empty. Try entering text here (do not
forget to click Apply or OK) and opening the dialog.

Property List This shows only the Property objects for the two
tabbed pages: SPropCrosstabsDataPage and
SPropCrosstabsOptionsPage. To more easily see these values, right-
click in the edit field and select Zoom. The zoom box shown in
Figure 8.14 appears.

Zoom (Edit Box) =l

|

Figure 8.14: The Zoom box shows the Property List.

Dialogs

Using the Object Explorer, open the property dialog for the first of
these. This is shown in Figure 8.15.

Property Object [155] M= E

[EapEy Eran: I—
i st e i I—
Helm St I—
Barent Bropert; I— Save In Eile: I—
Dialog Frompt: W = [Feauited

[l mE Eamtial: Im = e Buntes

[Cantral Eroald: I— = Ko Buntes

[Cattie] Bathi ame: I— = [LLigt

Hatae: I— = Wi Functian A

[it s I— = igatile

Property List: Im = [Bead i

Qg I Eancell Applyl I<| >l cument Help |

Figure 8.15: The Property dialog for the SPropCrosstabsDataPage Property object.

Marme:

Tupe:

[Vefault balie:

Argument List Use zoom, if desired, to view the assignments of
Property object values to arguments of the function menuCrosstabs.
Notice in Figure 8.13 that the return value is set to SPropSaveObj.
This has been done consistently throughout the user interface.
Prompt List Since this is empty, fields in the dialog will have their
default prompts (labels) as specified in their corresponding property
objects.

Default Value List Since this is empty, fields in the dialog will have
the default values as specified in their corresponding property objects.
Call Back Function The Spotfire S+ function backCrosstabs is
executed each time a control in the dialog is exited. To look at the
code behind the function, type

> backCrosstabs

at the prompt in the Commands window. Callback functions are
discussed in the section Callback Functions (page 323).

Write Arg Names This is currently empty.

Display This is not checked, so debugging messages will not be
shown when the dialog is displayed.

285

Chapter 8 Extending the User Interface

DIALOG CONTROLS

Control Types

286

Spotfire S+ has a variety of dialog controls that can be used to
represent the properties of an object (such as a user-defined function)
in a dialog, which are described in Table 8.2. Note that the control
type (first column) and the DialogControl (in the Example column)
in Table 8.2 must be exactly the same when you use them in the
guiCreate function. For more information on dialog controls, see the
guiCreate("Property") help file in the Language Reference help.

Table 8.2: Dialog control types.

Dialog Controls

where one state is checked and the
other is unchecked.

The “DefaultValue” subcommand
is used to set the state of the check
box. If set to “0” or “F”, the box
will be unchecked. If “1” or “T”,
the box will be checked.

Control .
Description Example
Type
Invisible A control which does not appear guiCreate("Property”,
on the dialog. Name = "ReturnValue",
Type = "Normal",
DialogControl = "Invisible")
Button A push-button control. guiCreate("Property",
Name = "myButton",
The “DialogPrompt” subcommand g¥p$ =P"N°”Ea]";'&M Button®
. . jalogPrompt = yButton",
is used to set the text inside the DialogControl = "Button”)
button.
Check Box A two-state check box control guiCreate("Property",

Name = "myCheckBox",

Type = "Normal",

DefaultValue = "T",
DialogPrompt = "&My CheckBox",
DialogControl ="Check Box")

Static Text

A text field that is not editable usu-
ally used before other controls to
title them.

The “DialogPrompt” subcommand
is used to specify the text of this
static text field.

guiCreate("Property",

Name = "myStaticText",

Type = "Normal",

DialogPrompt = "MyStaticText",
DialogControl = "Static Text")

String

An editable field used to enter text.

If the subcommand “UseQuotes” is
set to TRUE, the string returned to
the user function from this dialog
has quotes around it. If not speci-
fied, no quotes are added.

guiCreate("Property",

Name = "myString",

Type = "Normal",
DialogControl = "String",
DialogPrompt = "&My String",
UseQuotes=T)

287

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

ontrol A
Contr Description Example
Type
Hidden Same as “String” except that this guiCreate("Property",
String control is hidden. Name = "myHiddenString",

Type = "Normal",

DialogControl = "Hidden String",
DialogPrompt = "&My Hidden String",
UseQuotes=T)

Wide String

Same as “String” except that this
control takes up two dialog col-
umns.

guiCreate("Property",

Name = "myWideString",

Type = "Normal",

DialogControl = "Wide String",
DialogPrompt = "&My String™,
UseQuotes=T)

line String

that this control takes up two dia-
log columns.

Multi-line Same as “String” except that this guiCreate("Property",
String control can accept strings with Name = "myMulti-line String”,
multiple lines. Type = "Normal™, o]

DialogControl = "Multi-1ine String",
DialogPrompt = "&My Multi-line
String",
UseQuotes=T)

Wide Multi- Same as “Multi-line String” except | guiCreate("Property",

Name = "myWide Multi-line String",
Type = "Normal",

DialogControl = "Wide Multi-Tline
String”,

DialogPrompt = "&My Wide Multi-line
String",

UseQuotes=T)

288

Table 8.2: Dialog control types.

Dialog Controls

umns.

Control Description Example

Type

List Box A drop-list of strings. Only one guiCreate("Property",
string can be selected at a time. Name = "myListBox",
The selected string is not editable. | Type = "Normal®,
The “DefaultValue” is used to spec- B$:$z1tVa1ue _ ezt

gPrompt A ListBox",

ify the string from the list that is DialogControl = "List Box",
selected by default. The list of OptionList = "Optl, Opt2,
strings is specified as a comma- Opt3”,
delimited list in “OptionList”. An | OptionListDelimiter = ™,")
optional subcommand “Option-
ListDelimiter” can be used to spec-
ify the delimiter.

Wide List Same as “List Box” except that this | guiCreate("Property"”,

Box control takes up two dialog col- Name = "myWidelListBox",

Type = "Normal",
DefaultValue = "Opt2",
DialogPrompt =

"Wide ListBox",
DialogControl =

"Wide List Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Sorted Wide Same as “Wide List Box” except
List Box that this control sorts columns.

guiCreate("Property",
Name = "mySortedWidelListBox",
Type = "Normal",
DefaultValue "Opt2",
DialogPrompt =

"SortedWide ListBox",
DialogControl =

"Sorted Wide List Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

289

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

be made from the string list.

Control -
Description Example
Type
Multi-select Similar to the “List Box” control guiCreate("Property",
List Box except that multiple selections can | Name = "myMultiSellistBox",

Type = "Normal",
DefaultValue = "Opt2",
DialogPrompt =

"MultiSel ListBox",
DialogControl =

"Multi-select List Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Wide Multi- Similar to the “Multi-select List

guiCreate("Property",

except that the selected string is
editable. This allows the user to
enter a string which is not part of
the drop-list. Only one string can
be selected at a time.

select List Box” control except this control Name = "myWideMultiSelListBox",
Box takes up two dialog columns. Type = "Normal™,
DefaultValue = "Opt2",
DialogPrompt =
"Wide MultiSel ListBox",
DialogControl =
"Wide Multi-select List Box",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")
Combo Box Similar to a “List Box” control guiCreate("Property",

Name = "myComboBox",
Type = "Normal",
DefaultValue = "0Opt3",
DialogPrompt "A ComboBox",
DialogControl = "Combo Box",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

Wide Combo | Same as “Combo Box” except that
Box this control takes up two dialog col-
umns.

guiCreate("Property",
Name = "myWideComboBox",
Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt =
"Wide Combo Box",
DialogControl =
"Wide Combo Box",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

290

Table 8.2: Dialog control types.

Dialog Controls

Combo Box trol except that multiple selections
can be made from the drop-list of
strings.

Control -
Type Description Example
Sorted Wide Same as “Wide Combo Box” guiCreate("Property",
Combo Box except that this control sorts col- Name = "mySortedWideComboBox",
umns. Type = "Normal",
DefaultValue = "Opt2",
DialogPrompt =
"Sorted Wide Combo Box",
DialogControl =
"Sorted Wide Combo Box",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")
Multi-select Similar to the “Combo Box” con- guiCreate("Property",

Name = "myMultiSelCombo",
Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt =

"MultiSel Combo",
DialogControl =

"Multi-select Combo Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Wide Multi- Similar to the “Multi-select Combo
select Combo | Box” control except this control
Box takes up two dialog columns.

guiCreate("Property",
Name = "myWideMultiSelCombo",
Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt =
"Wide MultiSel Combo™,
DialogControl =
"Wide Multi-select Combo Box"
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

201

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

Control

Type

Description

Example

Sorted Multi- | Similar to the “Multi-select Combo
select Combo | Box” control except this control
Box sorts columns .

guiCreate("Property",
Name = "mySortedMultiSelComboBox",
Type = "Normal",
DefaultValue = "0Opt3",
DialogPrompt =

"Sorted Multi-Select Combo Box",
DialogControl =

"Sorted Multi-select Combo Box",

OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Sorted Wide Similar to the “Wide Multi-select
Multi-select Combo Box” control except this
Combo Box control sorts columns.

guiCreate("Property",
Name =
"mySortedWideMultiSelComboBox",
Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt =

"Sorted Wide MultiSel Combo Box",
DialogControl =

"Sorted Wide Multi-select Combo

Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Float Similar to a String control. This
control accepts floating point num-
bers.

guiCreate("Property",
Name = "myFloat",

Type = "Normal",
DefaultValue = "2.54",
DialogPrompt = "A Float",
DialogControl = "Float")

Float Auto Similar to a ComboBox except that
there is only one string “Auto” in
the drop-list. You can enter a float-
ing point number or select “Auto”
from the drop list.

guiCreate("Property",

Name = "myFloatAuto",

Type = "Normal",

DefaultValue = "2.54",
DialogPrompt = "A FloatAuto",
DialogControl = "Float Auto")

292

Table 8.2: Dialog control types.

Dialog Controls

gers.

Control -
Type Description Example
Float Range Similar to the Float control except | guiCreate("Property",
that a range of values can be speci- | Name = "myFloatRange",
fied using the “Range” subcom- Type = "Normal™,
. DefaultValue = "2.54",
mand. If the value entered is - e "
. DialogPrompt = "A Float Range",
outside of the range, then an error DialogControl = "Float Range",
will be displayed and the dialog Range = "1.00:3.00")
will remain open.
Integer Similar to the Float control. This guiCreate("Property",
control accepts integer whole num- | Name = "myInteger”,
bers. Type = "Normal",
DefaultValue = "2",
DialogPrompt = "An Int",
DialogControl = "Integer")
Wide Integer | Same as “Integer” except this dia- | guiCreate("Property",
log control takes up two columns. Name = "myInteger",
Type = "Normal",
DefaultValue = "2",
DialogPrompt = "An Int",
DialogControl = "Wide Integer")
Integer Auto | Similar to a “Float Auto” control guiCreate("Property",
except this control accepts inte- Name = "myIntAuto",
Type = "Normal",
gers.
DefaultValue = "2",
DialogPrompt = "An IntAuto",
DialogControl = "Integer Auto")
Integer Similar to a “Float Range” control guiCreate("Property",
Range except this control accepts inte- Name = "myIntRange”,

Type = "Normal",
DefaultValue = "2",
DialogPrompt = "An IntRange",
DialogControl =

"Integer Range",
Range = "1:3")

293

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

of controls to a dialog. You must
have at least one group of controls
on a page before the page will dis-

play.

Control -
Type Description Example
Color List A drop-list that allows selection of | guiCreate("Property",
one element from a list of strings Name = "myColorList",
representing colors (i.e. Red, Type = "Normal™,
. DefaultValue = "Red",
Green, etc.) Each list element has ; e -
o DialogPrompt = "A ColorList",
drawn a color sample next to it if DialogControl = "Color List",
the string represents a valid color OptionList = "Blue, Red,
name. Use the “OptionList” sub- Green”)
command to specify colors in the
list.
New Line Inserts an empty area the height of | guiCreate("Property"”,
a single control between controls. Name = "xLINEFEED",
Useful for inserting space in the Type = "Normal™,)
. . DialogPrompt = "A New Line",
second column of controls in a dia- X o o
. DialogControl = "New Line")
log so that a wide control can be
used in the first column without guiCreate("FunctionInfo",
overlapping controls in the second | Function = "TestFn",
column. The “DialogPrompt” sub- | DialogHeader = "Test",
. PropertyList = c(
command is not used. " "
ReturnValue",
"aStringl",
As an example, suppose you have "aWideString”,
six controls (not counting the invis- | "aString2",
ible ReturnValue). The first is a "ai EEEEEED
String, the second is a Wide String, ")a(Stm' roan .
and all others are non-Wide con- "aStrings" '
trols. If you want to lay out the),
controls so that no overlap occurs
in the second column from the sec-
ond Wide String in the first col-
umn, you could insert a New Line
control in the PropertyList sub-
command for the FunctionInfo
object.
Page Tab Adds a page of controls and groups | guiCreate("Property",

Name = "myPageOne",

Type = "Page",
DialogPrompt = "Page 1",
PropertyList =

c("myGroupl™, "myString™))

294

Table 8.2: Dialog control types.

Dialog Controls

selected. The buttons are exclu-
sive which means that if one button
is selected and another is clicked
on, the original button is dese-
lected and the button clicked on is
selected. The “OptionList” sub-
command is used to specify the
names of the buttons in the group.
This name is returned when a but-
ton is selected, as in the other list
controls.

Control .
Description Example
Type
String List A list box of strings that allows guiCreate("Property",
Box only single selections. This control | Name = "myStringlist",
differs from the List Box and gy?e TtVN$rmal LN
Combo Box controls in that the list erautia ue__" pLo=,
: . o DialogPrompt = "String List",
of strings is always visible. The DialogControl =
“OptionList” subcommand is used "String List Box",
to fill the list. OptionList = "Optl, Opt2z,
0pt3™)
Radio But- A group of radio buttons which guiCreate("Property"”,
tons allow only one button to be Name = "myRadioButtons”,

Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt = "Radio Buttons",
DialogControl =
"Radio Buttons",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

Wide Radio Same as “Radio Buttons” except
Buttons this dialog control takes up two col-
umns.

guiCreate("Property",

Name = "myWideRadioButtons",
Type = "Normal",
DefaultValue = "0Opt3",

DialogPrompt = "Wide Radio Buttons",

DialogControl =
"Wide Radio Buttons™,
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

295

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

adjustment of a numeric value by
dragging a lever from one side of
the control to the other. The left
and right arrow keys can be used
to move the slider by the small
increment and the page up and
page down keys can be used to
move by the large increment. Use
the “Range” subcommand to spec-
ify the start and end of the range of
numbers allowed and to specify
the small and large increments.

%(l);;rol Description Example
Integer Spin- | An edit field with two buttons guiCreate("Property",
ner attached to increase or decrease Name = "myIntSpinner",
the value in the edit field by some | TYP€ = “Normal .
fixed increment. Use the “Range” B?:?? tvalue _ Ve "
gPrompt Int Spinner",
subcommand to specify the start DialogControl =
and end of the range of numbers "Integer Spinner",
allowed in the edit field and to Range = "-40:40,1,5")
specify the small and large incre-
ments. The small increment is
used when you single-click once on
the spinner arrows. The large
increment is used when you click
and hold on the spinner arrows.
Float Spinner | Similar to the Integer Spinner con- | guiCreate("Property",
trol except this control accepts Name = "myFloatSpinner™,
floating point numbers. Type = "Normal®, =
DefaultValue = "2.5",
DialogPrompt = "Float Spinner",
DialogControl =
"Float Spinner",
Range = "-40.5:40.5,0.1,1.0")
Integer Slider | A visual slider control that allows guiCreate("Property",

Name = "myIntSlider™,
Type = "Normal",
DefaultValue "2,
DialogPrompt "Int Slider",
DialogControl =

"Integer Slider",
Range = "-10:10,1,2")

296

Table 8.2: Dialog control types.

Dialog Controls

dialog column which can contain a
Windows metafile picture (either
Aldus placable or enhanced).

The picture to draw in this control
is specified as a string in the
“DefaultValue” subcommand con-
taining either the pathname to the
WMTF file on disk, or a pathname
to a Windows 32-bit DLL followed
by the resource name of the meta-
file picture in this DLL.

Control Description Example
Type
Float Slider Similar to the Integer Slider con- guiCreate("Property",
trol except this control accepts Name = "myFloatSlider™,
floating point numbers and incre- | Type = "Normal™,
DefaultValue = "2.1",
ments less than 1. DialogPrompt = "Float Slider",
DialogControl = "Float Slider",
Range = "-5:5,0.1,1")
OCX String Adds any specially written ActiveX | guiCreate("Property",
control to the dialog. Use the Name = "myOCXControl™,
“ControlProgld” subcommand to | Type = "Normal™,
specify the ProgID of the ActiveX DefaultValue = 2%,

P Y & DialogPrompt = "My 0CX",
control you want to add, and use DialogControl = "0CX String",
the “ControlServerPathName” sub- | controlProgld =
command to specify the pathname "MyO0CXServer.MyCtr1.1",
of the ActiveX control server pro- Contrg] ServerPathName = .

c:\\myocx\\myocx.ocx")
gram.
See the ActiveX Controls in Spot-
fire S+ dialogs on page 303 for
more information about ActiveX
controls in Spotfire S+ dialogs.
Picture A small rectangle taking up one guiCreate(

"Property",

Name = "myPicture",

DialogControl = "Picture",

DialogPrompt "My Picture",

DefaultValue =
"c:\\pics\\mypict.wmf");

297

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

Control

Type

Description

Example

Wide Picture

Same as “Picture” except this dia-
log control takes up two columns.

guiCreate(

"Property",
Name = "myWidePicture",
DialogControl = "Wide Picture"”,

DialogPrompt = "My Wide Picture"”,

DefaultValue =
"c:\\pics\\mypict.wmf");

Wide Picture
List Box

Same as “Wide Picture” except this
dialog control is a drop-list of
strings. Only one string can be
selected at a time.

guiCreate(

"Property",
Name = "myWidePicture",
DialogControl = "Wide Picture",

DialogPrompt = "My Wide Picture”,

DefaultValue =
"c:\\pics\\mypict.wmf");

298

Picture Controls

Copying
Properties

Dialog Controls

For both the Picture and the Picture List Box controls, you can specify
either a pathname to a Windows metafile on disk or a pathname to a
Windows 32-bit DLL and the resource name of the metafile in this
DLL to use. The syntax for each of these is specified below:

Table 8.3: Picture control pathname syntax.

DLL Pathname and
resource name of
metafile

Pathname to Windows metafile

" [pathname]" " [pathname to
Example: "c:/spluswin/home/ DLL], [metafile resource
Metal.WMF" name]

Example:
";c:/myd11/myd11.d11,
MyMetaFile"

Please note that the lead-
ing semicolon is required in
this case and the comma is
required between the DLL
pathname and the name of
the metafile resource.

Several example Spotfire S+ scripts are available on disk which
demonstrate how to use these new controls for your own dialogs. See
the files PictCtll.ssc and PictCtl2.ssc in the Samples\Documents
directory within the directory where Spotfire S+ is installed.

When creating a new dialog, it is often desirable to have controls
similar to those used in previously existing dialogs. To use a Property
already present in another dialog, simply refer to this Property when
creating the FunctionInfo object and perhaps in the group or page
containing the Property. Any of the properties used in the statistical
dialogs are directly available for use by dialog developers.

Additionally, the dialog developer may wish to have a property which
is a modified version of an existing property. One way to do so is to
refer to the Property directly, and to overload specific aspects of the
Property (such as the DialogPrompt or DefaultValue) in the
FunctionInfo object.

299

Chapter 8 Extending the User Interface

Standard
Properties

300

Another way to create a new Property based on another Property is to
specify the Property to CopyFrom when creating the new Property.
The new Property will then be based on the CopyFrom Property,
with any desired differences specified by the other properties of the
object.

In this section we mention standard properties commonly used in
Spotfire S+ dialogs, as well as internal properties useful for filling
default values and option lists based on current selections.

Any Property used in a built-in statistics dialog is available for reuse.
To find the name of a particular Property, start by looking at the
Property List in the FunctionInfo object for the dialog of interest.
This will typically list Page or Group properties used in the dialog in
order of their appearance in the dialogs (from top left to lower right).
For a single-page dialog, locate the name of the Group object
containing the Property of interest, and then examine the Property
List for that Group object to locate the name of the Property of
interest. For multi-page dialogs, find the name of the Property by
looking at the FunctionInfo object for the Page name, then the Page
object for the Group name, then the Group object for the desired
Property name.

Once you know the name of the Property object, you may include it
directly in a dialog by placing it in the Property List for the dialog or
one of its groups or pages. Alternatively, you may create a new
Property using CopyFrom to base the new Property on the existing
Property.

For easy reference, Table 8.4 lists some of the properties used in the
Linear Regression dialog which are reused in many of the other
statistical dialogs. For the names of additional properties, examine
the FunctionInfo object for menuLm and the related Property objects.
Note that the naming convention used by TIBCO Software Inc. is

Dialog Controls

generally to start property names with SProp. When creating new
properties, users may wish to use some other prefix to avoid name
conflicts.

Table 8.4: Linear Regression dialog properties.

Dialog Prompt Property Name
Data group

Data Frame SPropDataFramelist
Weights SPropWeights
Subset Rows with SPropSubset

Omit Rows with Missing Values SPropOmitMissing

Formula group

Formula SPropPFFormula
Create Formula SPropPFButton
Save Model Object group

Save As SPropReturnObject
Printed Results group

Short Output SPropPrintShort
Long Output SPropPrintlLong
Saved Results group

Save In SPropSaveResultsObject
Fitted Values SPropSaveFit
Residuals SPropSaveResid

301

Chapter 8 Extending the User Interface

Internal
Properties

302

Table 8.4: Linear Regression dialog properties.

Dialog Prompt Property Name
Predict page

New Data SPropPredictNewdata
Save In SPropSavePredictObject
Predictions SPropPredictSavePred
Confidence Intervals SPropPredictSaveCl
Standard Errors SPropPredictSaveStdErr
Confidence Level SPropConflevel

Some other widely used properties and their associated purpose are
listed below.

SProplnvisibleReturnObject

This Property object has an invisible control which does not appear in
the dialog. It is used as the return value argument for dialogs whose
results are never assigned.

SPropCurrentObject

This Property object is an invisible control whose default value is the
name of the currently selected object. It is used by method dialogs
launched from context menus, as discussed in the section Method
Dialogs (page 362).

SPropFSpacel, ..., SPropFSpace8

These Property objects have a newline control. They are used to
place spaces between groups to adjust the dialog layout.

Internal properties are specifically designed to fill the default values
and option lists based on the currently selected objects. For example,
internal properties can be used to create a list box containing the
names of the variables in the currently selected data frame.

AcTIVEX
Controls in
Spotfire S+
dialogs

Dialog Controls

If the dialog needs to fill these values in a more sophisticated way, this
may be accomplished using callback functions. See the section
Method Dialogs (page 362) for details.

Here are several internal property objects that can be used in dialogs
either alone or by means of CopyFrom.

TXPROP_DataFrames

This Property object displays a dropdown box listing all data frames
filtered to be displayed in any browser.

TXPROP_DataFrameColumns

This Property object displays a dropdown box listing all columns in
the data frame selected in TXPROP_DataFrames. If no selection in
TXPROP_DataFrames has been made, default values are supplied.

TXPROP_DataFrameColumnsND

This Property object displays a dropdown box of all columns in the
data frame selected in TXPROP_DataFrames. If no selection in
TXPROP_DataFrames has been made, default values are not supplied.

TXPROP_SplusFormula

This Property object causes a Spotfire S+ formula to be written into
an edit field when columns in a data sheet view are selected. The
response variable is the first column selected, and the predictor
variables are the other columns.

TXPROP_WideSplusFormula

This Property object differs from TXPROP_SplusFormula only in that
the formula is displayed in an edit field which spans two columns of
the dialog, instead of one column.

Spotfire S+ supports the use of ActiveX controls in dialogs for user-
defined functions created in the Spotfire S+ programming language.
This feature allows greater flexibility when designing a dialog to
represent a function and its parameters. Any ActiveX control can be
added to the property list for a dialog, however, most ActiveX
controls will not automatically communicate changed data back to the
Spotfire S+ dialog nor will most tell Spotfire S+ how much space to
give the control in the dialog. To fully support Spotfire S+ dialog

303

Chapter 8 Extending the User Interface

Adding an
ActiveX control
to a dialog

304

layout and data communication to and from Spotfire S+ dialogs, a
few special ActiveX methods, properties, and events need to be
implemented in the control by the control designer.

Examples of ActiveX controls which implement support for Spotfire
S+ dialog containment are provided on disk in the samples/oleauto/
visualc/vcembed directory beneath the program directory. These
examples are C++ projects in Microsoft Visual C++ 4.1 using MFC
(Microsoft Foundation Classes). Any MFC ActiveX project can be
modified to support Spotfire S+ dialogs easily, and this will be
discussed later in this section. The samples/oleauto/visualc/
vcembed directory includes example scripts which use Spotfire S+ to
test these ActiveX controls.

To use an ActiveX control for a creating a property in a dialog,
specify a “DialogControl” of type “OCX String” and specify the
program id (or PROGID) of the control using the “ControlProgld”
subcommand. Below is an example Spotfire S+ script which creates a
property that uses an ActiveX control:

guiCreate("Property",
name = "0CXStringField",
DialogControl = "0CX String",
ControlProgld "TXTESTCONTROL1.TxTestControllCtrl.1",
ControlServerPathName = "c:/myocx/myocx.ocx",
DialogPrompt = "&0CX String");

If you are editing or creating a property using the Object Explorer,
the Property object dialog for the property you are editing allows you
to set the dialog control type to “OCX String” from the “Dialog
Control” drop-down list. When this is done, the “Control Progld”
and “ControlServerPathName” fields become enabled, allowing you
to enter the PROGID of the ActiveX control and its location on disk,
respectively. The “ControlServerPathName” value is used to
autoregister the control, if necessary, before using the control.

If you are editing or creating a property using the Object Explorer,
the Property object dialog for the property you are editing allows you
to set the dialog control type to “OCX String” from the “Dialog
Control” drop-down list. When this is done, the “Control Progld”
field becomes enabled allowing to you enter the PROGID of the
ActiveX control.

Where can the
PROGID for the
control be found?

Dialog Controls

When you add an ActiveX control to a Spotfire S+ dialog, you need
to specify its PROGID, as mentioned above. The PROGID is a
string which uniquely identifies this control on your system. If you
create controls using the ControlWizard in Developer Studio as part
of Microsoft Visual C++ 4.0 or higher, a default value for the
PROGID is created by the ControlWizard during control creation
that is based on the name of the project you use. For example, if your
ControlWizard project name is “MyOCX”, the PROGID that is
generated is “MYOCX.MyOCXCitrl.1”. The pattern takes the form
[Project name].[Control class name without the leading ‘C’|.1. You
can also find the PROGID used in an MFC ControlWizard project in
the implementation CPP file of the control class. Search for the
IMPLEMENT_OLECREATE_EX () macro in this file. The second parameter
in this macro is the PROGID string you are looking for.

If you are using the OLE ControlWizard as part of Microsoft Visual
C++ 4.0 or higher to develop your control, you can change the
PROGID string for your control before it gets created by editing the
names used for the control project. During the ControlWizard steps,
you will see a dialog with the button “Edit Names” on it:

OLE Controlwizard - Step 2 of 2 E3

Select the control whose options pou wish ta
browze or edit. vou may edit its class and file
names if you wish.

Blip |

Wihich features would you ke this contral ta

have?
Contents
Eearch for Help on... W Activates when visible
Haw Eo uze Help
Abaut MyCentrol.. ™ Inwisible at wntime

[~ Available in "nzert Object” dislog
W Has an "dbout" box
= [Acts as a simple frame contral

Which window clazs, if any, should this
control zubclagzs?

I[nnne] j

< Back [et | Finigh | Cancel | Help

305

Chapter 8 Extending the User Interface

Registering an
ActiveX control

306

Click on this button and you will get another dialog allowing you to
change the names used for classes in this project. Every control
project in MFC has a class for the control and a class for the property
sheet for the control. In the control class section of this dialog you
will see the “Type ID” field. This is the PROGID for the control:

Edit Names E
Cancel |
— Control Help |
LClazs Mame: Header File: Tupe Marne:
|CElipCHl |BlipCH b e
Implementation Fils:
IBIipl:tI.cpp BLIP.ElipChl.1
— Property Fage
Clazs Mame: Header File: Tope Mame;
CBlipPropPage IBIipF'pg.h IBIip Property Page
|Implementation File; Tepe [D:
IBIipF'pg.cpp |BLIF'.BIipF'ropF'age.1

It is important to register an ActiveX control with the operating
system at least once before using it so that whenever the PROGID of
the control is referred to (such as in the “ControlProgld”
subcommand above), the operating system can properly locate the
control on your system and run it. Registering an ActiveX control is
usually done automatically during the creation of the control, such as
in Microsoft Visual C++ 4.0 or higher. If the subcommand
“ControlServerPathName” is specified in a Spotfire S+ script using
the control, then this value will be used to register the control
automatically. A control can also be registered manually by using a
utility called RegSvr32.exe. This utility is included with
development systems that support creating ActiveX controls, such as
Microsoft Visual C++ 4.0 or higher. For your convenience, a copy of
RegSvr32.exe is located in the samples/oleauto/visualc/vcembed
directory, along with two useful batch files, RegOCX.bat and
UnRegOCX.bat, which will register and unregister a control. You
can modify these batch files for use with controls you design.

Why only “0CX
String”?

Common error
conditions when
using ActiveX
controls in
Spotfire S+

Dialog Controls

You typically do not ever need to unregister an ActiveX control,
unless you wish to remove the control permanently from your system
and no longer need to use it with any other container programs such
as Spotfire S+. If this is the case, you can use RegSvr32.exe with the
‘/0’ command line switch (as in UnRegOCX.bat) to unregister the
control.

In Spotfire S+, several different types of properties exist. There are
string, single-select lists, multi-select lists, numeric, and others. This
means that a property in a dialog communicates data depending on
the type of property selected. A string property communicates string
data to and from the dialog. A single-select list property
communicates a number representing the selection from the list, a
multi-select list communicates a string of selections made from the list
with delimiters separating the selections. For ActiveX controls, only
string communication has been provided in this version. This means
that the control should pass a string representing the “value” or state
of the control back to Spotfire S+. In turn, if Spotfire S+ needs to
change the state of the control, it will communicate a string back to
the control. Using a string permits the most general type of
communication between Spotfire S+ and the ActiveX control,
because so many different types of data can be represented with a
string, even for example lists. In future versions, other Spotfire S+
property types may be added for ActiveX controls.

The most common problem when using an ActiveX control in a
Spotfire S+ dialog is that the control does not appear; instead, a string
edit field shows up when the dialog is created. This is usually caused
when the ActiveX control is not registered with the operating system.
After a control is first created and before it is ever used, it must be
registered with the operating system. This usually occurs
automatically in the development system used to make the control,
such as Microsoft Visual C++. However, you can also manually
register the control by using a utility called RegSvr32.exe, located in
the samples/oleauto/visualc/vcembed directory. This utility is
included with development systems that support creating ActiveX
controls, such as Microsoft Visual C++ 4.0 or higher. You can modify
these batch files for use with controls you design. More information is
found in the section Registering an ActiveX control on page 306.

307

Chapter 8 Extending the User Interface

Designing ActiveX As mentioned earlier, examples of ActiveX controls which implement

controls that
support Spotfire
S+

308

support for Spotfire S+ are provided on disk in the
samples\oleauto\visualc\vcembed\MyOCX directory beneath the
program directory. One of the examples in this directory is called
MyOCX, and it is a C++ project in Microsoft Visual C++ 4.1 using
MFC. There is also an example Spotfire S+ script in MyOCX which
shows how to use this ActiveX control in a Spotfire S+ dialog. This
example will be used here to show how to implement ActiveX
controls for Spotfire S+. If you would rather skip this section and
simply study the changes in the source files for MyOCX, all changes
are marked in the source files with the step number (as listed below)
that the change corresponds to. Just search for the string “Spotfire S+
Dialog change (STEP” in all the files of the MyOCX project to find
these modifications.

Version 4.0 or higher of Microsoft Visual C++ is used to demonstrate
ActiveX control creation. Higher versions can also be used to create
controls for Spotfire S+ but the dialogs and screens shown may be
different.

I. Create the basic control

The first step to designing an ActiveX control in MFC should be to
use the OLE ControlWizard that is part of the Developer Studio.
Select New from the File menu in Developer Studio and then choose
Project Workspace to start a new project.

Hew

Hew: oK.
T et File

Cancel
Rezource Script
Resaurce Template Help
Binary File
Bitmap File
Icon File
Curzor File
Test Resource

i

Dialog Controls

From the workspace dialog that appears, select OLE ControlWizard
from the list of workspace types available. Enter a name for the
project and specify the location, then click the Create... button.

Mew Project Workspace

Type: Narme: Create. .

3 <] [Myoc<
gMFEAppWizard[exe] Al My Cod

g

'Tr:' MFC Apptwizard (dI]

Help

aili.

OLE Controldfizard

1 Platfarms:
Application winaz
Diynarnic-Link Librany
Locatioh:
.ﬁ Console Applicati
-------- OrEole Applcation ﬂ IE:'\M}'UEX %l

After accepting this dialog, you will see a series of dialogs associated
with the OLE Control Wizard, asking questions about how you want
to implement your control. For now, you can simply accept the
defaults by clicking Next on each dialog. When you reach the last
dialog, click the Finish button. You will see a confirmation dialog
showing you the choices you selected and names of classes that are
about to be created. Click the OK button to accept and generate the
project files.

In the ClassView page of the Project Workspace window in Visual
C++, you will see the classes that the OLE ControlWizard created for
your ActiveX control:

309

Chapter 8 Extending the User Interface

310

-3 MpDCX classes |
- B CMyOCHApp
- M2 Chp0CHCHl
.[; CMy0C#PropPage
=129 Globals
----- @ DIRegisterS erver)
----- @ DlUnreqgisterServer()
..... o _tid
----- g _wiherhd ajor
----- g _wherhinor
----- o IID_DMy0CH
----- ¢ ID_DMp0CHE vents
..... ¢ thE."l".l:ll:l

2. Add the Spotfire S+ support classes

To start adding support for Spotfire S+ dialogs to your ActiveX
control, copy the following files from the samples/oleauto/visualc/
vcembed/support control example directory into the new ActiveX
control project directory you just created:

0CXUtils.cpp
0CXUtils.h
SPDgCInf.cpp
SPDgCInf.h
SP1usOCX.cpp
SPTus0CX.h
SPTus0CX.id1

You also need to add these classes to your project before they will be
compiled and linked to your control. To do this, select Files into
Project... from the Insert menu in Visual C++. You will then see a
standard file open dialog. Use this dialog to select the following files:

0CXUtils.cpp
SPDgCInf.cpp
SPTusQOCX.cpp

To select all these files at once, hold down the CTRL key while using
the mouse to click on the filenames in the list.

Inzert Files into Project E

Look in:

| 2 My0Cx

Dialog Controls

Stddfe.cpp

Mu0CH. cpp
MyOCKCH.cpp

File name: I"SF'IusDDﬂ'.cpp" "SPOgCInt.cpp" "0Cutls.cp

Files of type: ISnurce Files (%0 cpp:® cus)

Add to project:

{MyOCx =l

Add I
ﬂ Cancel |
Help |

When these files are selected, click the Add button and the classes
will appear as entries in your Project Workspace window.

- M2 CMyOCHApp

M2 CMyOCHCHI

l[; ChMyDCxPropPage

- W2 C5PlusDialogControllnfo
M2 C5PlusOCH

=3 Globals

----- @ BSTRCHARPTRI)

----- @ BSTRtaCSking])

----- @ CalSPlust ethod()

----- @ ConvertWanantT o aidPh)
----- @ ConvertyoidPhT oV ariant])
----- @ DR egisterS erver)

311

Chapter 8 Extending the User Interface

312

3. Modify class inheritance

Next, we need to modify the inheritance of the class representing
your ActiveX control so that it inherits from CSPlusOCX instead of
from COleControl. CSPlusOCX is a parent class from which all
ActiveX controls for which you desire support for Spotfire S+ dialogs
can inherit. CSPlusOCX inherits directly from COleControl and its
complete source code can be found in the SPlusOCX.cpp and
SPlusOCX.h files.

To do this, first double-click on the class representing your ActiveX
control in the ClassView page of the Project Workspace window to

open the header for this class into your editor. In this example that is
the CMyOCXCltrl class. Go to the top of this file in the editor.

=23 MyOCX classes
- B8 CMyOCHApp
-
l[; ChyOC<PropPage

Add the following line before the class declaration line for
CMyOCXCtrl at the top of this header file:
f#include "SPTusOCX.h"

Modify the class declaration line

class CMyOCXCtrl : public COleControl

to read

class CMyOCXCtrl : public CSP1us0CX

Next, expand the class listing for CMyOCXCtr]l so that all the
methods are shown. To do this, click on the ‘4’ next to
CMyOCXCtrl in the ClassView page of the Project Workspace

window.

Dialog Controls

=23 MyDCX classes
-8 CMy0CApp
= B2 CMyOCKCHl

28 AboutB ou]

L G

b CMpOCHCHI)

& DoPropExchange(]

..... @ OrDraw)

i @ OrPResetState])

- B8 CMy0CHPropPage

| »

Then double-click on the constructor CMyOCXCtr1() to open the
implementation CPP file for this class in your editor. Go to the top of
this file. Using the find and replace function of the Developer Studio,
replace all occurrences of ColeControl base class with the new base
class name CSPlusOCX in this file:

Heplace
Find what: j ﬂ Find Mext |
Reglace withi [CSPsOCK M Replace |
[~ b atch whale waord only Feplace in Feplace Al |
[Match case 1 Selection =
™ Regular expression £+ whole file

Help |

4. Modify your control’s type library definition file

Switch to the FssileView page in the Project Workspace window and
find the type library definition file (ODL) for your ActiveX control.
In this example it is MyOCX.odl. Double-click on this entry in the
list to open this file into your editor. Go to the top of this file.

313

Chapter 8 Extending the User Interface

=3 My0OC¥ files

B MyDC.cpp
MO T3 det
b B ty0 < odl
----- M0 C 1

(LY P el oY .

Find the “properties” definition section for the dispatch interface
_DMyOCX in this file. It should look like:

dispinterface _DMyO0CX
{
properties:

// NOTE - ClassWizard will maintain property information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_PROP(CMyOCXCtrl)
//}}YAFX_ODL_PROP

Add the following lines at the end of this section:

ftdefine SPLUSOCX_PROPERTIES
ffinclude "SPTusOCX.id1"
ffundef SPLUSOCX_PROPERTIES

The section should now appear as follows:

dispinterface _DMyO0CX
{

properties:

// NOTE - ClassWizard will maintain property information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_PROP(CMyOCXCtrl)
//}}YAFX_ODL_PROP

ffdefine SPLUSOCX_PROPERTIES
ffinclude "SPTusOCX.id1"
ffundef SPLUSOCX_PROPERTIES

314

Dialog Controls

methods:

// NOTE - ClassWizard will maintain method information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_METHOD(CMyOCXCtr1)
//3}}YAFX_ODL_METHOD

[id(DISPID_ABOUTBOX)] void AboutBox();
}s

Now, add the following lines at the end of the “methods” section just
below the “properties” section you just modified:

fdefine SPLUSOCX_METHODS
f#include "SPTusOCX.id1"
ffundef SPLUSOCX_METHODS

This whole section should now appear as follows:

dispinterface _DMy0CX
{
properties:

// NOTE - ClassWizard will maintain property information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_PROP(CMyOCXCtrTl)
//}}YAFX_ODL_PROP

Jfdefine SPLUSOCX_PROPERTIES
#include "SPTusOCX.id1"
Jundef SPLUSOCX_PROPERTIES

methods:

// NOTE - ClassWizard will maintain method information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_METHOD(CMyOCXCtr1)
//3}}YAFX_ODL_METHOD

[id(DISPID_ABOUTBOX)] void AboutBox();
ffdefine SPLUSOCX_METHODS

Jinclude "SPTusOCX.id1"
Jundef SPLUSOCX_METHODS

315

Chapter 8 Extending the User Interface

s
Next, locate the event dispatch interface sections. In this example, it
appears as:

dispinterface _DMyOCXEvents
{
properties:
// Event interface has no properties

methods:
// NOTE - ClassWizard will maintain event information
here.
// Use extreme caution when editing this section.

//{{AFX_ODL_EVENT(CMyOCXCtr1)
//}}YAFX_ODL_EVENT
}s

Add the following lines in the “events” section:

#define SPLUSOCX_EVENTS
#include "SPlusOCX.id1"
Jfundef SPLUSOCX_EVENTS

The section should now appear as:

dispinterface _DMyOCXEvents
{
properties:
// Event interface has no properties

methods:
// NOTE - ClassWizard will maintain event information
here.
// Use extreme caution when editing this section.

//{{AFX_ODL_EVENT(CMyOCXCtr1)
//}}YAFX_ODL_EVENT

ffdefine SPLUSOCX_EVENTS
Jinclude "SPTusOCX.id1"
Jfundef SPLUSOCX_EVENTS

}s

316

Dialog Controls

Do not modify any other parts of this file at this time.

5. Build the control

Now is a good time to build this project. To do this, click on the Build
toolbar button or select Build MyOCX.OCX from the Build menu in
the Developer Studio. If you receive any errors, go back through the
above steps to make sure you have completed them correctly. You
may receive warnings:

0CXutils.cpp(125) : warning C4237: nonstandard extension

used : 'bool' keyword is reserved for future use
0CXutils.cpp(216) : warning C4237: nonstandard extension
used : 'bool' keyword is reserved for future use

These warnings are normal and can be ignored.

Several overrides of CSPlusOCX virtual methods still remain to be
added to your ActiveX control class, but compiling and linking now
gives you a chance to review the changes made and ensure that
everything builds properly at this stage.

6. Add overrides of virtual methods to your control class

To support Spotfire S+ dialog layout and setting the initial value of
the control from a Spotfire S+ property value, you need to override
and implement several methods in your control class. To do this, edit
the header for your control class. In this example, edit the
MyOCXCtLh file. In the declaration of the CMyOCXCltrl class, add

the following method declarations in the “public” section:

virtual long GetSPlusDialogVerticalSize(void);
virtual long GetSPlusDialogHorizontalSize(void);

virtual BOOL SPlusOnInitializeControl(const VARIANT FAR&
vinitialValue);

317

Chapter 8 Extending the User Interface

318

Next, open the implementation file for your control class. In this
example, edit the file MyOCXCtl.cpp. Add the following methods

to the class:

long CMyOCXCtrl::GetSPlusDialogVerticalSize()
{
return 3; // takes up 3 Tines in dialog

lTong CMyOCXCtrl::GetSPlusDialogHorizontalSize()
{
return 1; // takes up 1 column in dialog

BOOL CMyOCXCtrl::SPlusOnInitializeControl(const VARIANT
FAR& vInitialValue)

{
CString sInitialValue; sInitialValue.Empty();
if (GetStringFromVariant(
sInitialValue,
vinitialValue,
"InitialValue™))

// Set properties here

return TRUE;
}

These three methods should be implemented in the control class of
any ActiveX control supporting Spotfire S+ dialogs fully. The first
two methods support dialog layout, while the third supports setting
values for the control fromSpotfire S+.

The value returned by GetSPlusDialogVerticalSize() should be a
long number representing the number of lines the control takes up in
a Spotfire S+ dialog. A line is the size of an String edit field property
in a Spotfire S+ dialog. The value returned by
GetSPlusDialogHorizontalSize() should be either 1 or 2. Returning
1 means that this control takes up only one column in a Spotfire S+
dialog. Returning 2 means the control takes up two columns. A
column in a Spotfire S+ dialog is the width of a single String property

Dialog Controls

field. There are at most two columns in a Spotfire S+ dialog. In the
example above, the MyOCX control takes up three lines and only
one column in a Spotfire S+ dialog.

SPlusOnInitializeControl() is called when the control is first
enabled in the Spotfire S+ dialog and every time the property that
this control corresponds to in Spotfire S+ is changed. It receives a
variant representing the initial value or current value (if any) for the
control. This method should return TRUE to indicate successful
completion and FALSE to indicate failure. Included in the file
OCXUtils.h (copied previously into your control project directory)
are numerous helper functions such as the one used here
GetStringFromVariant() which will convert the incoming variant
into a string if possible. You can then use this string to set one or
more properties in your control.

To use the SPTusOnInitializeControl() in this example ActiveX
control, first add a member string to the control class. Edit the
MyOCXCtLh file and add a CString member variable called
m_sValue to the CMyOCXCltrl class:

private:
CString m_sValue;

Next, initialize this value in the constructor for CMyOCXCitrl by
modifying the constructor definition in MyOCXCltl.cpp:

CMyOCXCtrl1::CMy0CXCtrl1()

{
InitializelIDs(&IID_DMyOCX, &IID_DMyOCXEvents);
// TODO: Initialize your control's instance data here.

m_sValue.Empty();
}

Then, add lines to the definition of the override of
SPTusOnInitializeControl() in your control class to set this member

variable and refresh the control by modifying MyO CXCltl.cpp:

BOOL CMyOCXCtrl::SPlusOnInitializeControl

const VARIANT FAR& vInitialValue)

{
CString sInitialValue; sInitialValue.Empty();
if (GetStringFromVariant(

319

Chapter 8 Extending the User Interface

sInitialValue,
vinitialValue,
"InitialValue"))

{
// Set properties here
m_sValue = sInitialValue;
Refresh();

}

return TRUE;
}

Finally, so we can see the effects of SPTusOnInitializeControl(),
add a line to the OnDraw method of CMyOCXCtrl by editing the
definition of this method in MyO CXCltl.h:

void CMyOCXCtrl::0nDraw(
CDC* pdc, const CRect& rcBounds, const CRect& rclnvalid)
{

// TODO: Replace the following code with your
// own drawing code.

pdc->Fil1Rect(rcBounds,
CBrush::FromHandle((HBRUSH)GetStockObject (WHITE_BRUSH)));
pdc->E1Tlipse(rcBounds);

// Display Tatest value
pdc->DrawText(
m_sValue, (LPRECT)&rcBounds, DT_CENTER | DT_VCENTER);

}
Rebuild the project now to test these changes.

7. Test your new control in Spotfire S+

To try out your new control in Spotfire S+ you’ll need to create a
Spotfire S+ script which creates properties and displays a dialog.
Open Spotfire S+ and open the script file from samples/oleauto/
visualc/0cx/MyOCX called MyOCX.ssc. Notice that the script
begins by creating three properties, one for the return value from a
function and the other two for the parameters of a function. The
property for MyOCX uses the type OCX String and the PROGID for

the control we just created:

320

Dialog Controls

guiCreate("Property",
name = "MyOCX",
DialogControl = "0CX String",
ControlProglId = "MYOCX.MyOCXCtrl1.1",
DialogPrompt = "My &0CX");

Run the script MyOCX.ssc and you will see a dialog containing an
edit field and the MyOCX control you just created. When the dialog
appears, the ActiveX control contains the text “He110” because this is
set as the initial value in the Spotfire S+ script callback function:

callbackMyOCXExample <- function(df)
{
if(IsInitDialogMessage(df)) # Am I called to initialize
the properties?
{
Set the initial value of the MyOCX property
df <- cbSetCurrValue(df,"MyOCX", "\"Hello\"")

When you enter a string (use quotes around any string you enter in
these dialog fields) in the edit field, the ActiveX control updates to
show that string. When you click the OK or Apply buttons in the
dialog, you will see the values of both properties printed in a report
window.

Summary of steps to support Spotfire S+ dialogs in ActiveX controls

To summarize the above steps, the list below shows you the tasks
necessary to adapt your MFC ActiveX control project to support
Spotfire S+ dialogs:

1. Add Spotfire S+ dialog support files to your project:

0CXUtils.cpp
0CXUtils.h
SPDgCInf.cpp
SPDgCInf.h
SPTusOCX.cpp
SPTus0CX.h
SPTusOCX.id1

2. Change the inheritance of your control class from base class

COleControl to CSPlusOCX.

321

Chapter 8 Extending the User Interface

Examples of
ACTIVEX controls
included with
Spotfire S+

322

3. Modify your control’'s ODL (type library definition file) to
include SPlusOCX.idl sections.

4. Add virtual overrides of key CSPlusOCX methods to your
control class:

virtual long GetSPlusDialogVerticalSize(void);
virtual long GetSPlusDialogHorizontalSize(void);

virtual BOOL SPTusOnInitializeControl(const VARIANT
FAR& vInitialValue);

Examples of ActiveX controls which implement support for Spotfire
S+ dialog containment are provided on disk in the
samples\oleauto\visualc\vcembed directory beneath the program
directory. These examples are C++ projects in Microsoft Visual C++
4.1 using MFC (Microsoft Foundation Classes) and are intended for
developers.

samples\oleauto\visualc\vcembed

myocx Microsoft Visual C++ 4.1 MFC project demonstrating
how to write ActiveX controls that fully support Spotfire S+ dialogs.

ocxl Microsoft Visual C++ 4.1 MFC project demonstrating
how to write ActiveX controls that fully support Spotfire S+ dialogs.

support Microsoft Visual C++ 4.1 MFC headers and source
files necessary for making ActiveX controls that fully support Spotfire
S+ dialogs.

Callback Functions

CALLBACK FUNCTIONS

In Spotfire S+, virtually any GUI object has an associated dialog. For
example, a line plot is an object whose properties can be modified via
its associated dialog. Similarly, a Spotfire S+ function can have an
associated dialog. The properties of a function object are mapped to
the function arguments, which can then be modified through its
associated dialog. The function dialog can have an attached callback
Junction.

A callback function provides a mechanism for modifying and
updating properties (controls) of a live dialog. It is a tool for
developing complex dialogs whose properties are dynamically
changing based on the logic written in the callback function. The
dialog subsystem executes the callback function while its associated
dialog is up and running, in the following instances:

* Once, just before the dialog is displayed.

* When a dialog property (control) value is updated or
modified by another mechanism, such as by the user.

* A button is clicked.

The user associates a callback function with a dialog by specifying its
name in the corresponding function info object. The callback
function takes a single data frame as its argument. This data frame
argument has the dialog property names as row names. The elements
in the data frame define the present state of the dialog. The Spotfire
S+ programmer can access and modify these elements directly,
however, there is a set of utility functions that simplify this task.
Table 8.5 lists the utility functions that can be used inside a callback
function to modify a dialog state. To get more complete information
on these functions see the Language Reference help.

323

Chapter 8 Extending the User Interface

Table 8.5: Utility functions for use inside a callback function.

cbIsInitDialogMessage() Returns TRUE if the callback function is called before the dialog
window is displayed on the screen.

cbIsUpdateMessage() Returns TRUE if the callback function is called when the user
updates a property.

cbIsOkMessage() Returns TRUE if the callback function is called when the OK
button is clicked.

cbIsCancelMessage() Returns TRUE if the callback function is called when the Can-
cel button is clicked.

cbIsApplyMessage() Returns TRUE if the callback function is called when the Apply
button is clicked.

cbGetActiveProp() Gets the current active property in a dialog.

cbGetCurrvalue() Gets the current value of a property.

chSetCurrValue() Sets the current value of a property.

cbGetEnableFTag() Gets the current state of the enable/disable flag of a property.

cbSetEnableFlag() Sets the state of the enable/disable flag of a property.

chGetOptionList() Gets the list of items from list based properties, such as List-
Box, ComboBox, Multi-selected ComboBox, and so on.

cbSetOptionList() Sets the list of items from list based properties, such as ListBox,
ComboBox, Multi-selected ComboBox, and so on.

cbGetPrompt () Gets the Prompt string of a property.

cbSetPrompt() Sets the Prompt string of a property.

cbGetDialogId() Returns the unique ID of the dialog instance.

Since the usage of these functions facilitate readability and portability
of the Spotfire S+ callback functions, we recommend that you use
them instead of direct access to the data frame object.

324

Callback Functions

Callback functions are the most flexible way to modify dialog
properties such as default values and option lists. However, for
specific cases it may be more straightforward to use a property based
on an internal property, as described in the section Copying
Properties (page 299). In particular, this is the easiest way to fill a
field with the name of the currently selected data frame or a list of the
selected data frame’s variables.

Interdialog In some circumstances it may be useful to launch a second dialog

Communication When a dialog button is pushed. For example, the Formula dialog is
available as a child dialog launched by the Linear Regression dialog.
Information may then be communicated between dialogs using
interdialog communication.
The child dialog is launched wusing guiDisplayDialog.
Communication between the dialogs is performed by the functions
cbGetDialogld and guiModifyDialog. The script file samples/
dialogs/dlgcomm.ssc in the Spotfire S+ directory contains an
example of such communication.

Example: The example script below creates and displays a function dialog that

Callback uses a callback function to perform initialization, communication and

Functi updating properties within an active dialog. It is a complete script file

unctions (called propcomm.ssc) that can be opened into a script window and

run.

R

propcomm.ssc: creates and displays a function dialog.

it It shows how to use a dialog callback function to perform

i initialization, communication and updating properties within an

active dialog.
R
f-------

propcomm<- function(argl, arg2) { print("0k or Apply button in simplel dialog
is pushed!™) }

325

Chapter 8 Extending the User Interface

UaREEEEE

Step 2: create individual properties that we want to use for arguments in the
function

UAREEREE

guiCreate("Property"”™, Name= "propcommInvisible™, DialogControl= "Invisible");

guiCreate("Property™, Name= "propcommListBox™, DialogControl= "List Box",
DialogPrompt= "&Grade",DefaultValue= "3",

OptionList= c("4", "3", "2", "1"))
guiCreate("Property™, Name= "propcommCheckBox™, DialogControl= "Check Box",
DialogPrompt= "&Numerical Grade");

e

Step 3: create the function info object

USREEEES

guiCreate("FunctionInfo™, Function = "propcomm™, PropertylList =
c("propcommInvisible™, "propcommListBox"™, "propcommCheckBox"),

Call1BackFunction = "propcommCallBack™, Display ="T")

e

Step 4: define a callback function to be called by an instance of the dialog.

i# This callback mechanism is used to initialize, communicate and update
properties in an active dialog.

USREEEES

propcommCallBack <- function(df)
{
if(IsInitDialogMessage(df)) # Am I called to initialize the properties?
{
override option list of a property

df <- cbSetOptionList(df, "propcommListBox", "exellent, good, fair,
poor, fail™)

override default value of a property
df <- cbSetCurrValue(df,"propcommListBox™, "fair™)
df <- cbhSetOptionList(df, "propcommCheckBox", "F")

}
else if(cbIsOkMessage(df)) # Am I called when the Ok buttom is pushed?
{

display.messagebox("0k!"™)

326

Callback Functions

}
else if(cbIsCancelMessage(df)) # Am I called when the Cancel buttom is
pushed?
{
display.messagebox("Cancel!™)
}
else if(cbIsApplyMessage(df)) # Am I called when the Apply buttom is
pushed?
{
display.messagebox("Apply!™)
}
else # Am I called when a property value is updated?
{
if (cbGetActiveProp(df) =="propcommCheckBox") # the check box was
clicked?
{
change the option Tist
if(cbGetCurrValue(df, "propcommCheckBox") == "T")
{
df <- cbSetOptionList(df, "propcommListBox", "4.0, 3.0, 2.0, 1.0,
0.0")
df <- cbSetCurrValue(df,"propcommListBox", "4.0™)
}
else
{
df <- cbSetOptionList(df, "propcommListBox", "exellent, good, fair,
poor, fail")
df <- cbhSetCurrValue(df,"propcommListBox", "good")
}
}
}
df
}
f#-------
Step 5: display the dialog
foemmee

guiDisplayDialog("Function™, Name="propcomm™);

327

Chapter 8 Extending the User Interface

PropComm | _] %] |
Grade I vI W Mumerical Grade

0k | Cancel | apply | 1] [cument Help |

Figure 8.16: Selecting the Numerical Grade checkbox will illustrate the callback function working.

328

Class Information

CLASS INFORMATION

Overview

Creating
ClassInfo
Objects

Using Commands

A ClassInfo object allows information to be specified about both
user-defined and interface objects. It is similar to the FunctionInfo
object, which allows information to be specified for functions
(primarily for the purpose of defining function dialogs).

There are three main uses of the ClassInfo object:
1. Defining a context menu (right-click menu) for objects.

2. Defining the double-click action for objects. That is, you can
use it to specify what will happen when the user double-clicks
or right-clicks on an object in the Object Explorer.

3. It allows the dialog header and dialog prompts for interface
objects to be overridden.

ClassInfo objects may be created using commands or from within
the Object Explorer.

To create a ClassIinfo object, wuse guiCreate with
classname="ClassInfo”.

The Tmsreg robust regression function returns a model of class “1ms”.
The following commands will create a ClassInfo object indicating
that the print function should be used as the double-click action, and
define a context menu for 1ms objects:

guiCreate(classname="ClassInfo", Name="Ims",
ContextMenu="1ms",

DialogHeader="Least Median Squares Regression",
DoubTeClickAction="print")

guiCreate(classname="Menultem", Name="Ims", Type="Menu",
DocumentType="1ms")

guiCreate(classname="Menultem", Name="Tms$summary",
Type="Menultem", DocumentType="1Ims", Action="Function",
Command="summary", MenultemText="Summary",
ShowDialogOnRun=F)

329

Chapter 8 Extending the User Interface

Using the Object
Explorer

guiCreate(classname="Menultem", Name="Ims$plot",
Type="Menultem", DocumentType="1Tms", Action="Function",
Command="plot"™, MenultemText="Plot",
ShowDialogOnRun=F)

Open the Object Explorer and create a folder with filtering set to
“ClassInfo”. Right-click on a Classinfo object in the right pane, and
choose Create ClassInfo from the context menu. The property
dialog shown in Figure 8.17 appears.

Clazs Information [39] M= E

Mame: ICIaSsInfo‘I — Double Click Action————————
tenultem/Func: I

Context Menu: I
" Show Dialag On Run

Dialog Header: I

Prampt List: I — I Show Data Members

Save InFile: I

Image FileM ame: I

Browse... |

Eancell |<| >l cLment Help |

Figure 8.17: The property dialog for a ClassInfo object.

ClassInfo
Object
Properties

330

The properties of a ClassInfo object determine characteristics such as
the double-click action and context menu for the class of interest.
These properties may be specified and modified using the property
dialog for the Menultem object, or programmatically via the
commands guiCreate and guiModify. See the
guiCreate(“ClassInfo”) help file in the Language Reference help
for syntax details.

The following properties are specified in the ClassInfo property
dialog, shown in Figure 8.17:

The subcommand names of the properties are:

Name The name of the associated class. For instance, to specify
information for the “1m” class, use this as the name. This also becomes
the name of this instance of the ClassInfo object.

ContextMenu The name of the Menultem object that defines the
context menu (right-click menu) for this object in the browser. This is

Class Information

the name of a Menultem of type “Menu”, which must have been
defined in the standard way for menus.

DoubleClickAction The name of a MenuItem of type “Menultem”
(that is, it is a single item instead of an entire menu) or a function. This
specifies the action that will happen when the user double-clicks on
the object in the browser. It allows a function to be called when the
user double-clicks.

Show Dialog On Run Logical value indicating whether the dialog
for the MenuItem or function will be displayed before execution.
DialogHeader Text specifying the dialog header for the associated
object. This is only useful for interface objects.

PromptList Allows dialog prompts to be specified (and overridden).
The syntax is the same as it is for the corresponding property of
FunctionInfo objects: #0="&My Prompt:”, #2="Another &Prompt:”,
PropertySubcommandName="L&ast Prompt:”. That is, it is a list of
assignments, in which the left-hand side denotes the property whose
prompt is going to be overridden, and the right-hand side denotes the
new prompt. There are two ways of denoting the property: by
position, starting with 0, with the number preceded by a #; and by
property subcommand name. (In the example above, “#0” denotes

the 0 property of the object; “PropertySubcommandName“ is the
subcommand name of the property to change.)

To find out the names of the properties of an object, you can use the
following script:

guiGetPropertyNames(“classname”)

Note that all objects have two properties that may or may not be
displayed on the dialog: TXPROP_ObjectName (subcommand name:
NewName, always in position #0, but usually not displayed in a
dialog) TXPROP_ObjectPosIndex (subcommand name: NewlIndex,
always in position #1, but usually not displayed in a dialog). To find
out the argument names of the properties of an object, you can use
the following script:

guiGetArgumentNames(“classname”)

The argument names are usually very similar to the corresponding
prompts, so that figuring out which dialog field corresponds to which
property should not be a problem.

331

Chapter 8 Extending the User Interface

Modifying
ClassInfo
Objects

Using Commands

Using the
Property Dialog

Using the
Context Menu

Example:
Customizing
the Context
Menu

332

ClassInfo objects can be modified using either programming
commands, their property dialogs, or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUI If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing ClassInfo
object. Specify the Name of the ClassInfo object to modify, and the
properties to modify with their new values.

guiModify(classname="ClassInfo", Name="1Tms",
DoubleClickAction="plot")

ClassInfo objects may be modified through the ClassInfo object
property dialog.

To modify a ClassInfo object, open the Object Explorer to a page
with filtering set to ClassInfo. Right-click on the ClassInfo object’s
icon in the right pane and choose Properties from the context menu.
Refer to the previous sections for details on using the property dialog.

ClassInfo objects can be modified with their context menus. The
context menu for an object is launched by right-clicking on the object
in the Object Explorer. The context menu provides options such as
creating, copying, and pasting the object, as well as a way to launch
the property dialog.

This example shows how to add to the context menu for objects of
class data.frame displayed in the Object Explorer. The new item
automatically computes summary statistics for the selected data
frame. To begin, open an Object Explorer page and filter by
ClassInfo and MenulItem.

I. Creating a ClassInfo object for the Class data.frame

1. Right-click on a ClassInfo object and select Create
ClassInfo in its context menu.

2. Enter data.frame in the Name field. This represents the name
of the object class in which objects will have the context menu
item specified below.

3. Enter dfMenu in the Context Menu field. This will be the
name of the context menu.

4.

Class Information

Click OK.

2. Creating the Context Menu

L.

10.

11.

Right-click on any Menultem object and select Insert
Menultem from its context menu.

Enter dfMenu in the Name field. This corresponds to the
Context Menu name given in to the ClassInfo object above.

Enter Menu in the Type field.
Click OK.

Right-click on dfMenu in the left pane and select Insert
Menultem from the context menu.

Enter desc in the Name field. This name is not important, as
long as it does not conflict with that of an existing object.

Select Menultem from the Type field.

Enter data.frame in the Document Type field; do not choose
from the dropdown box selections. This corresponds to the
object class which will have this context menu.

Select Function from the Action field.

Enter the text Summary.... in the Menultem Text field. This
text will appear in the context menu.

Move to the Command page of the dialog.

Tip...

A FunctionInfo object must exist for the function which is called by the context menu item. Otherwise,
the default dialog for that function will not appear.

12.

13.
14.

Enter menuDescribe in the Command field. This is the
function which is executed by the dialog which appears with
Statistics » Data Summaries » Summary Statistics. There
is a built-in FunctionInfo object by the same name.

Show Dialog On Run. This should be checked.

The MenuItem object desc is now found alongside dfMenu in
the Menultem tree. To move it underneath dfMenu, hold
down the ALT key and drag the desc icon onto the dfMenu

333

Chapter 8 Extending the User Interface

icon. To see the MenuItem object desc in its new position, click
on the dfMenu icon in the left pane and look in the right
pane.

3. Displaying and Testing the Context Menu

1. Click the Object Explorer button in the main toolbar to open
a default Object Explorer window.

2. When data frame objects are visible in the right pane, right-
click on any data frame. Choose Properties, which should
appear in the context menu, as shown in Figure 8.18.

=" Object Explorer O] =
Contents of: [Data
ED Data | | Object I Fos I Data Clags I Dimengior &
G- i it 2Bl "2det 1 integer 10
----- I capacitor2 Bl 1 integer 1|
----- I os1 £l 1 integer 1
----- I o510 | "sitherfar 1 integer 10
----- I o511 | Messages 1 character 1
----- 7 os12 A 1 integer 10
----- B os1a 28 i it 1 list 3
----- ﬂ D514 ﬂi airtemp.jit 1 nLIMENc m —_—
..... D = . - =
..... % i SObiect [0] s =

""" Ho Mame: D51 Dimenzion: |23:-:2
o

..... ﬂ O Path 051 Storage Mode: Istructure

..... ﬂ D Database: |C:\F'rc-gram Filez\nzightfulsspluzBhuzersilenk j
""" Iﬂ D Class: Idata. frame D ate: |1 0:17-26 AM 2427
..... ﬂ D

..... o Extends: Idata.hame
Eancell |<| >l cLmeht Help |

HOUS TG T TS ITamE !
----- I excel I os17 1 data frame I
----- I excel data I os1a 1 data.frame 0=0
----- I excel data.a. Fdos1a 1 data frame 1
----- IO excel datakt.... 6 Fosz 1 data. frame 343
----- I Exenvim Fosa 1 data.frame =2
----- ﬂ expotest - ﬂDSd 1 data frame 01 -

El

Figure 8.18: A context menu with the item Summary added.

By default, Data Frame is set to air in that dialog. Click OK
and the statistics are sent to a Report window, unless the
Command window is open to receive them.

334

Class Information

Instead of the built-in FunctionInfo object menuDescribe and its
associated built-in Spotfire S+ function, user-defined objects can also
be used. The procedure for adding a context menu option is identical.

4. Applying the Context Menu to a Class which Inherits from
data.frame

L.

Use the Select Data dialog in the Data menu to select the
catalyst data set. When it opens in the Data window, change
the upper left cell to read "180", then change it back to 160.
(This won’t change the data, but it will write it to your
working data, so it will appear in your Object Explorer.)

Right-click on the object catalyst. The context option
Summary does not appear, because the object catalyst has
class design, which inherits from data.frame. To confirm this,
you can check Data Class and Inheritance in the Right Pane
page of the Object Explorer property dialog, if this is not
already done, and view the information in the right pane of
the Object Explorer, as in Figure 8.19. Make sure that Include
Derived Classes is checked in the Object Explorer property
dialog.

= Object Explorer

I =]

Contents of: |Data

|E| Data | Object | Pos | Data Class
- 54| Graphs) 1 integer
= [E2 Reports B it 1 list | |
b Scoripts TR airtemp.jit 1 nUMEric
-3 SearchPath s 1 named
[Hﬂ bark. 1 AILIMMERS
EJ bob 1 rnatrix
ﬂ capacitar? 1 data.frame
m 4 design
EJ DataSet 1 rnatrix
ﬂ 051 1 data.frame
o510 1 data.frame
™4 1 [N T A,

Figure 8.19: The Object Explorer showing the class of the data.

3. To enable the context menu for objects in the class design,
open the property dialog for the Menultem desc.

4. Enter data.frame, design in the Document Type field.

335

Chapter 8 Extending the User Interface

5. Click OK.

6. Return to the page showing data frames and right-click on the
object catalyst. The context menu now contains Summary.

336

Style Guidelines

STYLE GUIDELINES

Basic Issues

Typically Spotfire S+ programmers will begin by writing functions for
use in scripts and at the command line. These functions will generally
fall into one of the following classes:

* Functions which compute some quantities and return a vector,
matrix, data.frame, or list. If the result is assigned these values
are stored, and if not they are printed using the standard
mechanism. Functions such as mean and cor are of this type.

* Functions which take data and produce plots. The returned
value is typically not of interest. Functions such as xypTot and
pairs are of this type.

* A set of functions including a modeling function which
produces a classed object, and method functions such as
print, summary, plot, and predict. Functions such as 1m and
tree are of this type.

The custom menu and dialog tools allow the creation of a dialog for
any function. Hence the programmer may create a dialog which
directly accesses a function developed for use at the command line.
While this may be acceptable in some cases, experience has shown
that it is generally preferable to write a wrapper function which
interfaces between the dialog and the command line function.

This section discusses the issues that arise when creating a function
for use with a dialog, and describes how these issues are handled by
the built-in statistical dialog functions. In addition, we discuss basic
design guidelines for statistical dialogs.

Most functions will perform these steps:
* Accept input regarding the data to use.

* Accept input regarding computational parameters and
options.

* Perform computations.

* Optionally print the results.
* Optionally store the results.
* Optionally produce plots.

337

Chapter 8 Extending the User Interface

Modeling functions have additional follow-on actions which are
supported at the command line by separate methods:

* Providing additional summaries.

* Producing plots.

* Returning values such as fitted values and residuals.
* Calculating predicted values.

We will first discuss the basic steps performed by any function such as
accepting input, performing calculations, printing results, saving
results, and making plots. Then we will discuss the issues which arise
for modeling functions with methods.

Basic Dialogs We will begin by discussing the Correlations and Covariances
dialog. Exploring this dialog and the related analysis and callback
functions will display the key issues encountered when constructing
functions for dialogs.

The Dialog The Correlations and Covariances dialog is available from the
Statistics » Data Summaries » Correlations menu item.

Comelations and Covariances M= E3
—Data — Statiztic

Data Set; I vl Tupe: i Conelations

ariables: n " Covarances

Fraction to Trim: ID
1| ~PResults
Method to Handle Mizsing Yalues: Save Az I
I Fail jv v Brint Results

[l 4 I Eancell .t’-‘«pplyl I<| >| curent Help |

Figure 8.20: The Correlations and Covariances dialog.

This dialog provides access to the cor and var functions. It allows the
user to specify the data to use, computation options, a name under
which to save the results, and whether to print the results.

338

The Function

Style Guidelines

Note that the data to use is specified in the upper left corner of the
dialog. The user first specifies which Data Frame to use, and then the
variables of interest. (Some dialogs will accept matrices or vectors in
the Data Frame field, but for simplicity users are encouraged to work
with data frames.)

The Results group in the lower right corner of the dialog lets the user
specify an object name under which to store the results, and provides
a check box indicating whether the results should be printed.

Other options are placed between the Data group and the Results
group.

When OK or Apply is pressed in the dialog, the menuCor function is
called. The naming convention for functions called by dialogs is to
append menu to the command line function name, such as menulLm,
menuTree, and menuCensorReg.

The menuCor function is:

> menuCor

function(data, variables = names(data), cor.p
cov.p = F, na.method = "fail", print.it =T,
statistic = "Correlations™)

Note cor.p and cov.p have been replaced with statistic.
They are left in solely for backwards compatibility.
data <- as.data.frame(data)
data.name <- deparse(substitute(data))
if(Imissing(variables))
variables <- sapply(unpaste(variables, sep = ","),
strip.blanks)
if(lis.element(variables[[1]], c("<ALL>", "(AT1
Variables)™))) {
if(!Tength(variables))
stop("You must select at Teast one variable\n™)
data <- data[, variables, drop = F]
}
dropped.cols <- !sapply(data, is.numeric) | sapply(data,
is.dates)
if(all(dropped.cols))
stop("No numeric columns specified.")
if(any(dropped.cols)) {

339

Chapter 8 Extending the User Interface

warning(paste("Dropping non-numeric column(s) ",
paste(names(data)[

dropped.cols], collapse =", "), ".", sep =""))
data <- data[, !dropped.cols, drop = F]

}
na.method <- casefold(na.method)
if(statistic == "Correlations™ || (cor.p && !cov.p)) {
coeff <- cor(data, trim = trim, na.method = na.method)
header.txt <- paste("\n\t*** Correlations for data
in: ", data.name,
"xx*\n\n")
}
else {
coeff <- var(data, na.method = na.method)
header.txt <- paste("\n\t*** Covariances for data in:
", data.name,
"xx*\n\n")
}

if(print.it) {
cat(header.txt)
print(coeff)
}
invisible(coeff)
}

Input Values The function arguments are:

function(data, variables = names(data), cor.p
cov.p = F, na.method = "fail"™, print.it =T
statistic = "Correlations™)

s

The function has one argument for each control in the dialog, with
the exception of the Save As field specifying the name to which to
assign the value returned by the function. Default values are present
for all arguments except data. A default argument value will be used
if the corresponding field in the dialog is left empty.

The first few lines in the function transform these inputs from a form
preferable for a dialog field to the format expected by cor and var.

First the data is transformed to a data frame, to allow the handling of
vectors and matrices. The name of the data is stored for use in
printing the results:

340

Style Guidelines

data <- as.data.frame(data)
data.name <- deparse(substitute(data))

Next the function constructs the names of the variables of interest.
The variables argument passed by the dialog is a single string
containing a comma delimited list of column names, and perhaps the
string “(A11 Variables)”. This string is broken into a character
vector of variable names. If it does not include “(A11 Variables)”
and is not empty, the specified columns of the data are extracted.

if(Imissing(variables))
variables <- sapply(unpaste(variables, sep = ","),
strip.blanks)
if(lis.element(variables[[1]], c("<ALL>", "(AT1
Variables)"))) {
if(!Tength(variables))
stop("You must select at Teast one variable\n™)
data <- data[, variables, drop = F]

}
Computations After the desired set of data is constructed, the statistics are
calculated:
if(statistic == "Correlations™ || (cor.p && !cov.p)) {
coeff <- cor(data, trim = trim, na.method = na.method)
header.txt <- paste("\n\t*** Correlations for data
in: ", data.name,
"HFEX\n\n")
}
else {
coeff <- var(data, na.method = na.method)
header.txt <- paste("\n\t*** Covariances for data in:
", data.name,
"HEEX\n\n")
}

The statistic argument takes a string, either "Correlations” or
"Covariances™; cor.p and cov.p arguments are logical values
indicating whether to form the correlations or covariances which are
supported for backward compatibility. = The callback function
(discussed later) enforces the constraint that only one of these is

341

Chapter 8 Extending the User Interface

Printing Results

342

TRUE. Note that this could also have been implemented using
Radio Buttons passing a character string rather than as separate

Check Boxes.

The trim and na.method arguments are passed directly to the
computational functions.

A character string is also constructed for use as a header when
printing the results.

The standard behavior in Spotfire S+ is to either print the results from
a function or store them under a specified name using assignment.
That is, a user may either see the results printed using

> cor(swiss.x)

save the results using

> swiss.cor <- cor(swiss.x)

or do both by saving the results and then printing the object

> swiss.cor <- cor(swiss.x)
> swiss.cor

Explicitly printing the results in a function is frowned upon unless the
function is a print method for a classed object. The evaluation
mechanism determines whether to print the result.

This convention is waived for the dialog functions, as it is necessary to
provide a mechanism for both saving and printing the output within
the function.

Another difference between using a function from the command line
and from a dialog is that the command line alternates between an
expression and the output related to that expression. Hence it is clear
which expression and output go together. The output from a dialog is
not preceded by an expression (the expression evaluated will be
stored in the history log but is not printed to the output stream).
Hence it is necessary to provide a header preceding the output which
indicates the source of the output. The header lines also serve to
separate subsequent sets of output.

If the user requests printed output, the header is printed with cat, and
the result object with print:

Saving Results

Style Guidelines

header.txt <- paste("\n\t*** Covariance for data in:
", data.name, "***\n\n")

if(print.it) {
cat(header.txt)
print(coeff)

}

Generally cat is used to print character strings describing the output,
and print is used for other objects.

Note that that convention for header lines is to use a character string
of the form:

"\n\t*** Qutput Description ***\n\n"

In this dialog, the results need not be explicitly saved within the
function. The command is written such that the result is assigned to
the name specified in Save As if a name is specified.

Note that the value is returned invisibly:

invisible(coeff)

As we have already printed the result if printing is desired, it is
necessary to suppress the autoprinting which would normally occur if
the result were returned without assignment.

In some cases it is necessary to assign the result within the function. In
particular, this is required if the function is creating the data and them
displaying it in a Data window. For example, this is done in the
menuFacDesign function, which creates a data frame new.design
containing a factorial design, and displays this in a Data window.

if(missing(save.name))
return(new.design)
else {
assign(save.name, new.design, where =1,
immediate = T)
if(is.sgui.app() && show.p)
guiOpenView(classname = "data.frame",
Name = save.name)
invisible(new.design)

343

Chapter 8 Extending the User Interface

Saving Additional
Quantities

Plots

344

If save.name is not specified, the result is simply returned. Otherwise,
the result is immediately assigned to the working directory. Then the
data frame is displayed in a Data window if the Windows Spotfire S+
GUI is being run and the user specifies show.p=T by checking the
Show in Data Window box in the Factorial Design dialog.

The explicit assignment is necessary because the data frame must
exist as a persistent object on disk before it can be displayed in a Data
window.

In some cases the user may want access to other quantities which are
not part of the standard object returned by the function, such as
residuals or predicted values. At the command line these functions
can be accessed using extractor functions such as resid and predict.
In dialogs it may be preferable to save these objects into specified
data frames using the save mechanism as described above. The
section Modeling Dialog Saved Results discusses this situation.

The Windows Spotfire S+ GUI supports multiple coexisting Graph
sheets, each of which may have multiple tabbed pages. When a new
graph is created it may do one of three things:

* Replace the current graph (typically the graph most recently
created).

* Create a new tab on the current Graph sheet.
* Create a new Graph sheet.

The default behaviour is for a statistical dialog function to open a new
Graph sheet before creating graphs. If the function produces multiple
graphs, these appear on multiple tabs in the new Graph sheet.

This autocreation of new Graph sheets may annoy some users due to
the proliferation of windows. The Graphs Options dialog has a
Statistics Dialogs Graphics: Create New Graph Sheet check box
which indicates whether or not to create a new Graph sheet for each
new set of plots.

It is good form for any plots created from dialogs to follow the
dictates of this option. This is done by calling new.graphsheet before
plots are produced. This function will create a new Graph sheet if the
abovementioned option specifies to do so. The new.graphsheet

The Callback
Function

Style Guidelines

function should only be called if plots are to be produced, and should
only be called once within the function as calling it multiple times
would open multiple new Graph sheets.

The menuAcf function provides an example of the use of
new.graphsheet:

if(as.logical(plot.it)) {
new.graphsheet()
acf.plot(acf.obj)

}

Most dialogs of any real complexity will have some interactions
between the allowable argument values. In the Correlations and
Covariances dialog the Fraction to Trim is only relevant for
correlations. Hence this field should be disabled if Variance/
Covariance is checked. The callback function backCor updates the
values and enable status of controls based on actions in the dialog.

When the dialog is launched, OK or Apply is pressed, or a control is
changed, the callback function is executed. The function is passed a
data frame containing character strings reflecting dialog prompts,
values, option lists, and enable status. These strings may be accessed
and modified to make changes to the dialog.

This function starts by getting the name of the active property. This is
the property which was last modified.

backCor <- function(data)
{
activeprop <- cbGetActiveProp(data)

If the dialog has just been launched then Fraction to Trim should
only be enabled if Correlation is checked. If Correlation is checked
then Variance/Covariance should be unchecked, and vice versa. If
which check box is checked changes, the enable status of Fraction to
Trim must change. The next set of lines enforces these constraints.

if(cbIsInitDialogMessage(data) || activeprop ==

"SPropCorrP" || activeprop == "SPropCovP") {
if(activeprop == "SPropCorrP") {
if(cbGetCurrValue(data, "SPropCorrpP™) ==
IIFII) {

data <- cbSetEnableFlag(data,

345

Chapter 8 Extending the User Interface

346

"SPropTrim™, F)
data <- cbSetCurrValue(data,
"SPropCovP"™, "T")

If the dialog has just been launched or the Data Frame has changed,
the list of variables must be created. This is done by checking that an
object of the specified name exists, and if so getting the object’s
column names and pasting them together with the (A11 Variables)
string. Note that the list of variable names is passed as a single
comma delimited string rather than as a vector of strings.

if(activeprop == "SPropDataX2" || cbIsInitDialogMessage(
data)) {
if(exists(cbGetCurrValue(data, "SPropDataX2")))
{

x.names <- names(get(cbGetCurrValue(data,
"SPropDataX2")))

x.names <- paste(c("(AT1 Variables)",
x.names), collapse = ",")

data <- cbSetOptionlList(data,
"SPropVariableX2", x.names)

Lastly, the data frame containing the dialog status information is
returned.

invisible(data)

The most common uses of callback functions are to fill variable lists
and to enable/disable properties as is done by backAcf. For further
examples, search for functions whose names start with back, or look
at the FunctionInfo for a dialog with callback behaviour of interest to
determine the name of the relevant callback function.

Modeling
Dialogs

Style Guidelines

A powerful feature of Spotfire S+ is the object-oriented nature of the
statistical modeling functions. Statistical modeling is an iterative
procedure in which the data analyst examines the data, fits a model,
examines diagnostic plots and summaries for the model, and refines
the model based on the diagnostics. Modeling is best performed
interactively, alternating between fitting a model and examining the
model.

This interactive modeling is supported in Spotfire S+ by its class and
method architecture. Generally there will be a modeling function
(such as 1m for linear regression) which fits a model, and then a set of
methods (such as print, plot, summary, and anova) which are used to
examine the model. The modeling function creates a model object
whose class indicates how it is handled by the various methods.

This differs from other statistical packages, in which all desired plots
and summaries are typically specified at the time the model is fit. If
additional diagnostic plots are desired the model must be completely
refit with options indicating that the new plots are desired. In Spotfire
S+ additional plots may be accessed by simply applying the plot
method to the model object.

In moving from a set of command line functions to dialogs for
statistical modeling, the desired level of granularity for action
specification changes. At the command line the basic strategy would
be to issue a command to fit the model, followed by separate
commands to get the desired plots and summaries. The ability to use
such follow-on methods is still desirable from a graphical user
interface, but it should be a capability rather than a requirement. The
user will generally want to specify options for fitting the model plus
desired plots and summaries in a single dialog, with all results
generated when the model is fit.

The design of the statistical modeling dialogs is such that the user may
specify the desired summaries and plots at the time the model is fit,
but it is also possible to right-click on a model object in the Object
Explorer and access summary and plot methods as a follow-on action.
Generally the Results, Plot, and Predict tabs on the modeling dialog
are also available as separate dialogs from the model object context
menu.

This section describes the general design of statistical modeling
dialogs by examining the Linear Regression dialog. The following
section describes the structure of the functions connected to the

347

Chapter 8 Extending the User Interface

Model Tab

348

modeling and follow-on method dialogs. The statistical modeling
dialogs follow the same design principles as are described here, but
details will vary.

The Model tab describes the data to use, the model to fit, the name
under which to save the model object, and various fitting options. It
is typical to have Data, Formula, and Save Model Object groups
which are similar to those in the Linear Regression dialog.

Linear Regression [_ =]
todel | Resuits I Plat | Predict I

—Data

Data Set:

Wwieights:

St e wll I Save Model Object

¥ Omit Rows with Missing Values ’755\.-.3 As: I
—Wariables
Dependent: I - I
Independent: LALL: |~
Temp
Conc
Cat Lo
"rield -
Formula: |
Create Formula |

[u]4 I Can-:ell .t’-‘«pplyl |<| >| curment Help |

Figure 8.21: The Model tab of the Linear Regression dialog.

Data Group

The Data Set property is a drop-down list of available data sets. This
list is filled with the data sets which are in the working database, or
have been displayed by filtering on other databases in the Object
Explorer. This specifies the data argument to the modeling function.

The Weights property is a list of columns in the selected data set.
The selected column will be used as weights in the model. This
specifies the weights argument to the modeling function.

The Subset Rows with property takes an expression which is used as
the subset expression in the model. This specifies the subset
argument to the modeling function.

Options Tab

Style Guidelines

The Omit Rows with Missing Values check box specifies how
missing values are handled. Checking this box is equivalent to
specifying na.action=na.omit, while leaving it unchecked is
equivalent to na.action=na.fail. Some dialogs (such as
Correlations and Covariances) instead have a Method to Handle
Missing Values list box, which provides additional missing value
actions.

Variables Group

The Variables group includes controls for specifying the Dependent
and Independent variables. As you select or enter variables in these
controls, they are echoed in the Formula control. The Formula
specifies the form of the model, that is what variables to use as the
predictors (independent variables) and the response (dependent
variables). This specifies the formula argument to the modeling
function.

Most modeling dialogs have a Create Formula button, which
launches the Formula Builder dialog when pressed. This dialog
allows point-and-click formula specification.

Dialogs in which the formula specifies a set of covariates rather than
predictors and a response (such as Factor Analysis) have a
Variables list rather than a Create Formula button.

Save Model Object Group

The Save As edit field specifies the name under which to save the
model object. The returned value from the function called by the
dialog is assigned to this name. Typically the default value is prefaced
by 1ast and is model specific, as in Tast.1m.

In the Linear Regression dialog, all of the necessary fitting options
are available on the Model tab. Some other modeling dialogs, such
as the Logistic Regression dialog, have more options which are
placed on a separate tab. An Options tab may be useful either due to
the availability of a large number of options, or to shelter the casual
user from more advanced options.

349

Chapter 8 Extending the User Interface

Results Tab

350

The Results tab generally has groups for specifying the printed and
saved results.

Linear Regression = E
b odel I Results | Plot | Fredict I
Frinted Results ———————————— ~Saved Results ——————
™ Shart Output Save I Iﬁ
[+ Long Output ™ Fitted Values
[ANOVE Table ™ Residuals
[Conelation Matriz of E stimates

Can-:ell Apply | |<| >| curment Help |

Figure 8.22: The Results page of the Linear Regression dialog.

Printed Results Group

The Printed Results specify the types of summaries to print. These
summaries will be displayed in a Report window, or in another
location as specified in the Text Output Routing dialog.

Checking the Short Output check box generally indicates that the
print method for the model object will be called.

Checking the Long Output check box generally indicates that the
summary method for the model object will be called.

Other options will vary based on the statistical model.

Saved Results Group

The Saved Results specify results to be saved separate from the
model object, such as fitted values and residuals. These saved
components are usually of the same length as the data used in the

Plot Tab

Style Guidelines

model. It is often of interest to plot these quantities against the data
used to construct the model, and hence it is convenient to save these
values in a data frame for later use in plotting or analysis.

The Save In edit field takes the name of a data frame in which to save
the results. This may be a new data frame or the data frame used to
construct the model. If the data frame named exists and has a
different number of rows than are in the results, then a new name will
be constructed and the results saved in the new data frame.

Check boxes specify what results to save. Common choices include
Fitted Values and Residuals.

The Plot tab specifies which plots to produce and plotting options.
Typically a Plots group provides check boxes to select plot types to
produce. Other groups provide options for the various plots.

Linear Regression [_ =]
I odel I Rezults I Plot | Predict I
— Plotz — Dptionz
™ Residuals vs Fit v Include Smoath
[T St Abs Residuals vs Fit ™ Include Rugplat
[™ Pesponse vs Fit MNumber of Extreme Paints To [dentify:

™ Residuals Normal G0 |3

— Partial Residual Plot Dptions
17| [elide Fartial it

™ ResidualFit Spread

[Cook's Distance
™ [Felide Fuaslot
[™ Partial Residuals

[¥| Commar 1aqis Seale

Can-:ell Apply | I<| >| curment Help |

Figure 8.23: The Plot page of the Linear Regression dialog.

351

Chapter 8 Extending the User Interface

Predict Tab

352

The Predict tab specifies whether predicted values will be saved,
using similar conventions as the Saved Results group on the Results
tab.

Linear Regression HE
todel | Fesults | Flot | Predict |
Mew Data: I - I Opticns
5 Confidence Level: ID. 95
ave
Save |n: I - I
" Predictions

™ Confidence Intervals

[Standard Emors

Cancell Apply | I<| >| current Help |

Figure 8.24: The Predict page of the Linear Regression dialog.

The New Data edit field accepts the name of a data frame containing
observations for which predictions are desired. This specifies the
newdata argument to predict. If this is left empty the data used to fit
the model will be used.

The Save In edit field takes the name of a data frame in which to save
the results. This may be a new data frame or the data frame used to
construct the model. If the data frame named exists and has a
different number of rows than are in the results, then a new name will
be constructed and the results saved in the new data frame.

Check boxes specify what results to save. Common choices include
Predictions, Confidence Intervals, and Standard Errors.

Other options related to prediction may also be present.

Other Tabs

Modeling
Dialog
Functions

Style Guidelines

A statistical model may have additional methods specific to that type
of model. The dialog for this model may have additional tabs, such as
the Prune/Shrink tab on the Tree Regression dialog. The only
limitation on additional tabs is that each dialog is limited to at most
five tabs.

Command line functions for statistical models generally consist of a
fitting function (such as 1m) and method functions for that model (such
as print.1m, summary.lm, plot.1m, and predict.1m). Similarly, the
wrapper functions called by the dialogs consist of a main dialog
function (such as menulm) and method functions (tabSummary.lm,
tabPlot.Im, and tabPredict.Im). The method functions are called
by the main function, and also from separate dialogs available by
right-clicking on the model object in the Object Explorer. This
structure allows the methods to be called either at the time of fitting
the model, or later for use with a fitted model object.

The convention is to name the main dialog function with the preface
menu, and the method functions with the preface tab. The suffix of
the function reflects the name of the related command line function.

353

Chapter 8 Extending the User Interface

Main Function The main dialog function has two primary purposes: fitting the model
and calling the method functions. The main dialog function for linear
regression is menulm:

menulLm <-

function(formula, data, weights, subset, na.omit.p =T,
print.short.p = F, print.long.p = T, print.anova.p =T,
print.correlation.p = F, save.name = NULL, save.fit.p =
F, save.resid.p = F, plotResidVsFit.p = F,
plotSqrtAbsResid.p = F, plotResponseVsFit.p = F,
plotQQ.p = F, plotRFSpread.p = F, plotCooks.p = F,
smooths.p = F, rugplot.p = F, id.n = 3,
plotPartialResid.p = F, plotPartialFit.p = F,
rugplotPartialResid.p = F, scalePartialResid.p T,
newdata = NULL, predobj.name = NULL, predict.p = F, ci.p
= F, se.p = F, conf.level = 0.95)

fun.call <- match.call()
fun.call[[1]] <- as.name("Im"™)
if(na.omit.p)
fun.call$na.action <- as.name("na.omit")
else fun.call$na.action <- as.name("na.fail™)
fun.args <- is.element(arg.names(fun.call), arg.names(
"Tm"))
fun.call <- fun.call[c(T, fun.args)]
Tmobj <- eval(fun.call)#
Call summary function:
tabSummary.Im(1mobj, print.short.p, print.long.p,
print.correlation.p, print.anova.p, save.name,
save.fit.p, save.resid.p)#
Call plot function:
if(any(c(plotResidVsFit.p, plotSqrtAbsResid.p,
plotResponseVsFit.p, plotQQ.p, plotRFSpread.p,
plotCooks.p, plotPartialResid.p))) tabPlot.Tm(
Tmobj, plotResidVsFit.p,
plotSqrtAbsResid.p, plotResponseVsFit.p,
plotQQ.p, plotRFSpread.p, plotCooks.p,
smooths.p, rugplot.p, id.n,
plotPartialResid.p, plotPartialFit.p,
rugplotPartialResid.p,
scalePartialResid.p)#

354

Summary Method

Style Guidelines

Call predict:
if(any(c(predict.p, ci.p, se.p)))
tabPredict.Im(1mobj, newdata, predobj.name,
predict.p, ci.p, se.p, conf.level)
invisible(Tmobj)
}

This function has one argument corresponding to each property in
the dialog, with the exception of the Save As field and invisible fields
used for formatting.

The first eight lines of the function are used to fit the model. The
approach is to construct an expression which specifies the appropriate
call to the model function, and them to evaluate this expression. The
somewhat sophisticated syntax is used so that the call component in
the model object has the appropriate names as specified in the dialog.
This general recipe may be used for any function, with “1m” replaced
by the name of the modeling function.

Note that na.action is specified as a check box in the dialog, but as a
function name in 1m. This necessitates modification of this argument
before evaluating the call to 1m.

After the model has been fit, the methods tabSummary.lm,
tabPlot.1m, and tabPredict.Im are called. For efficiency, calls are
only made to tabPlot.Im and tabPredict.im if the options are
specified such that calling these functions will produce some action.

Finally, the model object is returned. It is returned invisibly since any
printing of the object has been handled by tabSummary. 1m.

The summary method produces printed summaries and saves
specified results in a data frame separate from the model object. The
summary method for the Linear Regression dialog is
tabSummary.1m:

tabSummary.Im <-
function(Imobj, print.short.p = F, print.long.p = T,
print.correlation.p = F, print.anova.p = F, save.name =
NULL, save.fit.p = F, save.resid.p = F)
{
if(print.short.p || print.long.p || print.anova.p) {
cat("\n\t*** Linear Model ***\n")
if(print.short.p) {

355

Chapter 8 Extending the User Interface

print(Imobj)
}
if(print.long.p) {
print(summary(Ilmobj, correlation =
print.correlation.p))
}
if(print.anova.p) {
cat("\n")
print(anova(Imobj))
}
cat("\n")
}
Save results if requested:
if(any(c(save.fit.p, save.resid.p)) && !is.null(
save.name)) {
saveobj <- Tist()
if(save.fit.p)
saveobj[["fit"]1] <- fitted(Imobj)
if(save.resid.p)
saveobj[["residuals"]] <- residuals(
Tmobj)
saveobj <- data.frame(saveobj)
n.save <- nrow(saveobj)
if(exists(save.name, where = 1)) {
if(inherits(get(save.name, where =1),
"data.frame") && nrow(get(
save.name, where = 1)) == n.save
)
assign(save.name, chind(get(
save.name, where = 1), saveobj
), where = 1)
else {
newsave.name <- unique.name(
save.name, where = 1)
assign(newsave.name, saveobj,
where = 1)
warning(paste(
"Fit and/or residuals saved in"

newsave.name))

356

Plot Method

Style Guidelines

}
else assign(save.name, saveobj, where = 1)
invisible(NULL)

}

invisible(Tmobj)

}

The first part of this function is responsible for printing the specified
summaries. If any printed output is specified, a header will be printed
demarcating the start of the output. Based on option values, the
print, summary, and other methods for the model will be called.

The second part of the function concerns itself with saving the
requested values. Extractor functions such as fitted and residuals
are used to get the desired values. The remainder of the code
specifies whether to add columns to an existing data frame, create a
new data frame with the specified name, or create a new data frame
with a new name to avoid overwriting an existing object.

The model object passed to this function is returned invisibly.

The plot function opens a new Graph sheet if necessary, and
produces the desired plots. The plot method for the Linear
Regression dialog is tabPTot.1m:

tabPlot.1m <-

function(1mobj, plotResidVsFit.p = F, plotSqrtAbsResid.p =
F, plotResponseVsFit.p = F, plotQQ.p = F,
plotRFSpread.p = F, plotCooks.p = F, smooths.p = F,
rugplot.p = F, id.n = 3, plotPartialResid.p F,
plotPartialFit.p = F, rugplotPartialResid.p F,
scalePartialResid.p =T, ...)

if(any(c(plotResidVsFit.p, plotSqrtAbsResid.p,
plotResponseVsFit.p, plotQQ.p, plotRFSpread.p,
plotCooks.p, plotPartialResid.p)))
new.graphsheet()
if(any(c(plotResidVsFit.p, plotSqrtAbsResid.p,
plotResponseVsFit.p, plotQQ.p, plotRFSpread.p,
plotCooks.p))) {
whichPlots <- seq(l, 6)[c(plotResidVsFit.p,
plotSqrtAbsResid.p, plotResponseVsFit.p,
plotQQ.p, plotRFSpread.p, plotCooks.p)]

357

Chapter 8 Extending the User Interface

Predict Method

358

plot.Im(1mobj, smooths = smooths.p, rugplot =
rugplot.p, id.n = id.n, which.plots =
whichPlots, ...)
}
if(plotPartialResid.p) {
partial.plot(Imobj, residual =T, fit =
plotPartialFit.p, scale =
scalePartialResid.p, rugplot =
rugplotPartialResid.p, ...)
}
invisible(Tmobj)

If any plots are desired, the function first calls new.graphsheet to
open a new Graph sheet if necessary. The plot method for 1m is then
called. Some additional plots useful in linear regression are produced
by the partial.plots function, which is called if partial residual plots
are desired.

The model object passed to this function is returned invisibly.

The predict function obtain predicted values for new data or the data
used to fit the model. The predict method for the Linear Regression
dialog is tabPredict.1m:

tabPredict.Im <-
function(object, newdata = NULL, save.name, predict.p = F,

ci.p=F, se.p =F, conf.level = 0.95)
{

if(is.null(newdata))

predobj <- predict(object, se.fit = se.p || ci.p
)
else predobj <- predict(object, newdata, se.fit = se.p ||

ci.p)
if(ci.p) {

if(conf.level > 1 && conf.level < 100)
conf.level <- conf.level/100

t.value <- qt(conf.level, object$df.residual)

lower.name <- paste(conf.level * 100, "% L.C.L.",
sep ="")

upper.name <- paste(conf.level * 100, "% U.C.L.",

Style Guidelines

sep = "")
predobj[[lower.name]] <- predobj$fit - t.value *
predobj$se.fit
predobj[[upper.name]] <- predobj$fit + t.value *
predobj$se.fit
}
remove prediction column and se column if not requested:
if(!predict.p)
predobj$fit <- NULL
if(lse.p)
predobj$se.fit <- NULL
predobj$residual.scale <- NULL
predobj$df <- NULL
predobj <- as.data.frame(predobj)
n.predict <- nrow(predobj)
if(exists(save.name, where = 1)) {
if(inherits(get(save.name, where = 1),
"data.frame") && nrow(get(save.name,
where = 1)) == n.predict)
assign(save.name, cbhind(get(save.name,
where = 1), predobj), where = 1)
else {
newsave.name <- unique.name(save.name,
where = 1)
assign(newsave.name, predobj, where = 1)
warning(paste("Predictions saved in",
newsave.name))

}
else assign(save.name, predobj, where = 1)
invisible(NULL)

}

The function calls predict.im to obtain predicted values and
standard errors. It then calculates confidence intervals, and removes
any undesired components from the output. The predictions are then

stored in a data frame using the same type of algorithm as in
tabSummary.1m.

No value is returned.

359

Chapter 8 Extending the User Interface

Other Methods

Callback
Functions

Class
Information

Double-Click
Action

360

If the dialog has additional tabs, other dialog methods will be
available. For example, the Tree Regression dialog has a Prune/
Shrink tab with a corresponding function tabPrune.tree.

Modeling dialogs will have callbacks similar to those for a simple
dialog. The callback function for Linear Regression is backLm.

Method dialogs may also need callback functions for use when the
related dialog is launched from the model object’s context-menu. An
example is the tabPlot.princomp callback function used by the
Principal Components plot dialog. Method dialogs need callback
functions less frequently than do the main modeling dialogs.

Every model object has a class indicating what type of model the
object is. For example, linear regression model objects are of class 1m.
At the command line, functions such as print look to see if there is a
special function print.Im to use when they are given an 1m object,
and if not they use the default plot method for the object.

Similarly, the Object Explorer has a limited set of actions it can
perform on any object. In addition, it can allow class-specific actions.
The ClassInfo object tells the Object Explorer what to do with objects
of the specified class. In particular, the double-click action and the
context menu may be specified.

The double-click action is the action to perform when the model
object is double-clicked in the Object Explorer. The convention for
statistical models is to produce printed summaries. In linear
regression the tabSummary.1m function is called.

Style Guidelines

Context Menu The context menu is the menu launched when the user right-clicks on
a model object in the Object Explorer. Figure 8.25 displays the
context menu for linear regression (1m) objects:

I[AII] vl Conterts of: [Data Page: j|_1 of 17
Object | Pos I Data Class I |nheritarce
I air E data. frame data.frame
ﬂ catalyst E dezign design,data frane
E exbarley 1 data sheet data.sheet dataf..
E excapac 1 data. sheat data. sheet.datalf...
A extuel 1 data.sheet data.sheet.data f...
B esvector 1 data.sheet data.sheet.data f...
2 I Irn

E Delete Shart Cut data sheet data.sheet dataf..
IR Corw double
= fFaste tiee tree
£ Delete tree tree
EM E— character

Plat...

Summary...

Predict...

Coefficients

Help
‘| | bl

Figure 8.25: The context menu for linear regression objects.

This menu includes the methods made available through the dialog
method functions such as Summary, Plot, and Predict. Each of
these menu items launches a dialog which calls the respective
function. For example, selecting Summary launches the Linear
Regression Results dialog shown in Figure 8.26.

361

Chapter 8 Extending the User Interface

Method Dialogs

Dialog Help

362

Some additional methods may be present, such as the Coefficients
menu item which calls the coef function. This allows the user to
quickly print the coefficients in the current Report window.

Linear Regression Results M= E
Results |

Saved Results

Save In: I "I

¥ Long Dutput [Fitted Yalues

¥ £MOVEA Table [" Besiduals

[™ Corelation Matriz of Estimates

0K I Eancell Applyl |<| >l curmert Help |

Figure 8.26: The Linear Regression Results dialog.

The dialog functions are designed to make it easy to have dialogs for
the various method functions.

A FunctionInfo object for each of the method dialogs defines the
relevant dialog and its relationship to the method function. Most of
the properties will be exactly the same as the properties in the
modeling dialog. The SPropCurrentObject property is used as the
first argument to indicate that the currently selected object is the
model object of interest, and SPropInvisibleReturnObject is used for
the return value.

Look at the properties of the FunctionInfo object for tabSummary.1m
for details on the FunctionInfo object properties for the dialog given
above.

The built-in statistical dialogs in Spotfire S+ have help entries in the
main Spotfire S+ help file. As this is a compiled HTML help file, it
may not be extended by the user. However, the user may still make
help information available for their dialogs.

The HelpCommand property of a FunctionInfo object specifies a
Spotfire S+ expression to evaluate when the dialog’s Help button is

pushed.

Style Guidelines

If the user has created a help file for the command line function, the
help for this function may be launched using an expression such as
help(menuLm). The help for the dialog might also be placed in a
separate text file and displayed using an expression such as
system("notepad C:/myhelp.txt™"). With creative use of system, the
user is able to display help files in another format such as HTML or
Word.

363

Chapter 8 Extending the User Interface

364

LIBRARIES

Introduction 366
Creating a Library 368
Chapters vs. Libraries 369
Steps in Creating a Library 369
Creating Directories 370
Storing Functions 370
Storing Interface Objects 371
Copying Help Files 372
Storing Other Files 373
Start-up and Exit Actions 373
Distributing the Library 375

365

Chapter 9 Libraries

INTRODUCTION

Example
Functions

366

Preceding chapters described how to create functions, dialog boxes,
and other tools. Spotfire S+ libraries are a convenient way to package
such user-created functionality to share it with other users.

A library can contain the following types of objects:
* Functions.
+ Example data sets.

* Graphical user interface objects such as menus and dialog
boxes.

* Help files.

* Compiled C and Fortran objects ready for dynamic or DLL
loading.

This chapter describes how to create and use libraries.

The example in Chapter 8, Extending the User Interface,
demonstrated creating a function, my.sqrt, to calculate and print the
square root of a number. The example also demonstrated creating a
dialog box for this function and a menu item on the Data menu to
launch the dialog box. In this chapter, create a library for these
objects.

The following commands create the function and the interface
objects:

my.sqrt <- function(x){
y <- sqrt(x)
cat("\nThe square root of ",x," is ",y, ".\n",sep="")
invisible(y)

guiCreate(classname="Property", Name="MySqrtInput",
DialogControl="String", UseQuotes=F,
DialogPrompt="Input Value")

guiCreate(classname="FunctionInfo", Name="my.sqrt",
DialogHeader="Calculate Square Root",
PropertyList="SPropInvisibleReturnObject,

Introduction

MySqrtInput™,
ArgumentList="#0=SPropInvisibleReturnObject,
#1=MySqrtInput")

guiCreate(classname="Menultem",
Name="$$SPlusMenuBar$Data$MySqrt",
Type="Menultem",
MenultemText="Square Root...",
Action="Function"”, Command="my.sqrt")

367

Chapter 9 Libraries

CREATING A LIBRARY

368

If you want to distribute functions and related files in an organized
manner, create a library and give it to your users to attach in Spotfire
S+. Attaching a library makes the objects in that library available to
the Spotfire S+ user by adding the relevant .Data directory to the
search list.

The library can contain a.First.1ib function, specifying actions that
Spotfire S+ performs when the user attaches the library. Typically,
this function might include dynamically-loading C or Fortran code
and code that creates GUI objects such as menus, toolbars, and dialog
boxes. The library can also contain a .Last.11ib function, which
specifies actions to perform when the user either unloads the library
or exits the application.

The user can use any directory containing a .Data directory as a
library. If the .Data directory is a subdirectory of the library
directory, which is located in the Spotfire S+ program directory, then
the user can attach the library by using the following function call:

library(Tlibraryname)

where Tibraryname is the name of the library to attach. For example,
Tibrary(cluster) attaches the built-in cTuster library. The specified
library does not need to reside in the library directory under the
Spotfire S+ program directory. If it resides elsewhere, just use the
Tib.loc argument to Tibrary to specify the path to the directory
containing the library directory. For example, if the library is called
my1ib, and it exists as a directory in /homes/rich, then attach the
library using the following function call:

> library(mylib, 1lib.loc = "/homes/rich")

To share a library with users who share a file system, and who can
receive distributed routines, create the library anywhere on the file
system, and then tell users to use the 1ibrary function with the
specified 1ib.1oc argument.

Creating a Library

The easiest way to distribute the library to users who do not share a

file system is to create a .zip archive (on Windows®) or a .tar archive

(on UNIX® or Linux®) containing the library folder and its contents,
and then to distribute the archive to the users.

Chapters vs. When we speak of “chapters” and “libraries” in Spotfire S+, in both

Libraries cases, we are speaking essentially of directories containing objects,
functions, image files, and related files (such as compiled C or Fortran
code). The difference between chapters and libraries lies in how they
are used:

Chapters are directories containing objects, functions, and
related files used for data analysis in particular projects. When
you use a chapter, attach it to a project as writable, using the
attach function.

Libraries are directories containing objects, functions, and
related files intended for ongoing use across different projects.
When you use a library, attach it as read-only using the
1ibrary function.

Steps in Create the directory structure for the library in Windows Explorer, or
Creating a by using system calls. The high-level steps, which are outlined in

. more detail below, are:
Library

1. Create a main directory for the library in the library
subdirectory of the program directory and initialize it for
Spotfire S+ by using the function createChapter.

2. Source the objects into the .Data directory in the new
directory.

Place any additional help files in the _ Hhelp directory.

4. Optionally, write.First.1ib and.Last.11b functions to
specify actions to perform upon loading and unloading the
library. For example, specify displaying GUI objects such as
toolbars and menu options when the library loads.

5. Optionally, add a .Prefs directory parallel to the .Data

directory that createChapter creates, and then copy GUTI files
such as toolbar bitmaps (*.bmp) into the .Prefs directory.

369

Chapter 9 Libraries

Creating
Directories

Storing
Functions

370

6. Store menu and dialog box objects in *.DFT files placed in
the .Prefs directory.

In Windows, the easiest way to create directories is using Windows
Explorer. If you prefer a programmatic approach, use the mkdir
command.

First, create directories using the function mkdir. Use
getenv(“SHOME”) to find the location of the Spotfire S+ program
directory.

> mkdir(paste(getenv("SHOME"),

+ "\\Tibrary\\mylib", sep=""))

> mkdir(paste(getenv("SHOME"),

+ "\\1ibrary\\mylib\\.Data", sep=""))

> mkdir(paste(getenv("SHOME"),

+ "\\Tibrary\\mylib\\.Prefs", sep=""))

> mkdir(paste(getenv("SHOME"),

+ "\\T1ibrary\\myTib\\.Data_Help", sep=""))

Next, use Tibrary to attach the new mylib library. Use pos=2 to
specify that it should be attached as the second directory in the search
list.

> library(mylib,pos=2)

Use assign to copy mylib-related objects into this directory. Make a
vector of names of the functions to copy, and then loop over this
vector.

> mylib.funcs<-c("my.sqrt")

> for (i in 1l:length(mylib.funcs)){
+ assign(mylib.funcs[i],

+ get(mylib.funcs[i]),where=2)

+ }

(In this example, the loop is unnecessary, because the library consists
of only a single function. The above syntax is provided to use with
multiple objects.)

Note that running this function produces warnings indicating that you
are creating objects in the second directory on the search list with the
same names as objects in other directories on the search list. These

Storing
Interface
Objects

Save Path Name

Creating a Library

warning are expected, and, in this case, indicate that you should
remove the objects from the first directory after making the copies to
avoid duplicate names.

An alternative approach is to keep a text file, my1ib.ssc, containing
the functions, and then attach the library directory as the working
directory and use source to create the functions in this directory.

> attach(paste(getenv("SHOME™),
+ "\\Tibrary\\myTib\\.Data",sep=""),pos=1)
> source("mylib.ssc")

User-created interface objects can include Menultem, Toolbar,
ToolbarButton, Property, FunctionInfo, and ClassInfo objects. In
contrast to function and data objects, these objects are not stored in
separate files contained in a .Data directory. Instead, they are
serialized to class-specific files in the user’s .Prefs directory.

ClassInfo, FunctionInfo, and Property objects are stored in
axclass.dft, axfunc.dft, and axprop.dft. Toolbar and ToolbarButton
objects are stored in *.STB files, with one file per toolbar. MenuItem
objects are stored in smenu. smn.

When you create a library, package the ClassInfo, FunctionInfo,
and Property objects in files separate from the built-in objects
shipped with Spotfire S+ by specifying where to save each interface
object that you create. This procedure is used only for ClassInfo,
FunctionInfo, and Property objects. Toolbar and ToolbarButton
objects are already in separate files, and MenuItems are best created
on the fly when loading the module.

Each interface object has a SavePathName property that can specify
the name of the file in which to save the object. We recommend
defining variables for the desired file names at the top of the script
that you use to generate the interface objects, and then referring to
this variable when you create the objects.

For example, add a SavePathName argument when you create the
Property object MySqrtInput and the FunctionInfo object my.sqrt:

prop.file <- "props.dft"

funcinfo.file <- "funcinfo.dft"

guiCreate(classname="Property™, Name="MySqrtInput",
DialogControl="String", UseQuotes=F,

371

Chapter 9 Libraries

DialogPrompt="Input Value",
SavePathName= prop.file)

guiCreate(classname="FunctionInfo", Name="my.sqrt",
DialogHeader="Calculate Square Root",
PropertyList="SPropInvisibleReturnObject,
MySqgrtInput",
ArgumentList="#0=SPropInvisibleReturnObject,
#1=MySqrtInput",
SavePathName= funcinfo.file)

Store Default The guiStoreDefaultObjects function stores all interface objects of a

Objects specific class in the files specified by the object’s SavePathName
property. If the object has no SavePathName property, then the
interface objects are stored in the default file for objects of its class.

Store the Property and FunctionInfo objects, as follows:

> guiStoreDefaultObjects("Property")
> guiStoreDefaultObjects("FunctionInfo™)

The guiLoadDefaultObjects function loads all objects of a specified
class from a specified file. It updates the SavePathName property for
the objects read from the file to reflect the current path to the file.
This can differ from the path to the file when the objects were stored.

Copying Help If you have help files to include in the library, copy the text files into
Files library\mylib\.Data_Help.

It is important to give each help file the same name as the object to
which it is related. The name is the mechanism that the help function
uses to determine the help file to display. The true.file.name
function returns the name under which each function is stored on
disk. This name is the name to use for the help file.

1. Specify the name of the function and the location in the
search list of the library to get the file name under which to

save the help file.
true.file.name("my.sqrt" ,where=2)
(1] "_3"
2. Save the help file for my.sqrt as _3 in

library\mylib\.Data_Help.

372

Storing Other
Files

Start-up and
Exit Actions

Creating a Library

Other files can also belong in the library; therefore, you should copy
them to library\mylib. Other files can include:

* C and Fortran object files.
* Documentation for the library.

Copy files related to interface objects to library\mylib\.Prefs. These
file types include:

« Toolbar files (*.STB).

+ Bitmap files containing toolbar button images.

Attaching a library makes the functions and data sets in the library
available. Additional steps are needed to create menus and dialog
boxes, or to load object code.

The .First.11ib function runs when a library is attached. You can use
this function to perform actions such as loading interface objects and
creating menu items when a library is attached:

.First.lib<-function(Tibrary, section){
prefs.loc <- paste(getenv("SHOME"),
"\\Tibrary\\mylib\\.Prefs", sep="")
guilLoadDefaultObjects("Property",
paste(prefs.loc,"\\prop.dft", sep=""))
guilLoadDefaultObjects("FunctionInfo",
paste(prefs.loc,"\\funcinfo.dft", sep=""))
guiCreate(classname="Menultem",
Name="$$SPlusMenuBar$Data$MySqrt",
Type="Menultem", MenultemText="Square Root...",
Action="Function"”, Command="my.sqrt")
invisible()
}

The.Last.1ib function runs when a library is detached or the
program exits normally. You can use this function to perform cleanup
actions upon exit.

373

Chapter 9 Libraries

Note

If the .Last function contains errors, when you quit the Spotfire S+ GUI, these errors are
reported in a dialog box. Click OK to close the GUI, and then restart to correct the errors in
.Last.

374

Distributing the Library

DISTRIBUTING THE LIBRARY

After you create the library, you can package it as a compressed
archive or a self-extracting executable. One approach is to use a

utility such as WinZip® or PKZip® to compress the library directory,
and include a readme.txt file indicating how to unzip the package as
a subdirectory of the library directory. A more sophisticated
approach is to use these tools to produce a self-extracting archive that
unpacks to the proper location. Creating these archives is beyond the
scope of this manual.

375

Chapter 9 Libraries

376

SPOTFIRE S+ DIALOGS IN
JAVA

Overview
Background Reading
Motivation
Contrast with Spotfire S+ 4 Dialogs
Topics Covered
A Simple Example

Classes
Standard Spotfire S+ Dialog
Group Panels
Control Types

Layout
Standard Spotfire S+ Layout
Pages
Columns
Groups
Sizing
Actions
Using Listeners
Getting Information From Spotfire S+
Special Controls
Overriding Button Actions
Checking Completeness

Calling The Function
The Function Info Object
Formatting Information
Sending the Command

Modifying Menus
Style Guidelines

Basic Issues
Basic Dialogs

379
379
380
380
381
381

383
383
384
384

387
387
387
387
388
388

390
390
390
390
391
391

393
393
393
394

395

398
398
399

377

Chapter 10 Spotfire S+ Dialogs in Java

Modeling Dialogs
Modeling Dialog Functions

Example: Correlations Dialog

Example: Linear Regression Dialog

378

405
413

419
423

OVERVIEW

Background
Reading

Overview

As dialog construction technology has evolved, so has the Spotfire S+
functionality for constructing custom dialogs. Previous systems for
constructing dialogs in Spotfire S+ have been based on sets of
Spotfire S+ commands which create, modify, and display dialog
elements. These systems are platform-dependent, with different tools
in Windows and UNIX.

The introduction of the Swing classes for interface development in
Java 2 is a major step forward for graphical user interface
development. The Swing classes provide a powerful set of cross-
platform tools which are flexible and easy to use. Spotfire S+ 6
introduced a set of Swing classes and conventions for constructing
dialogs using Java which communicate with Spotfire S+.

Spotfire S+ 6 introduced Java connectivity on Linux® and Solaris®
platforms.

This chapter is written for programmers with an understanding of
dialog construction in Java using Swing. Most general books on Java
will have some discussion of Swing.

Two good introductions to Java are the following:

Horton, Ivor. (1999). Beginning Java 2. Wrox Press. Birmingham,
UK.

van der Linden, Peter. (1999) Just Java 2. Sun Microsystems Press.
Palo Alto, CA.

More detail on the specifics of Swing is available in:

Pantham, Stayaraj. (1999) Pure JFC Swing. Sams. Indianapolis,
IN.

These are the books used by the developer of the tools discussed
here. Numerous other books on Java and Swing are available.

On the Web, the primary site for information on Java is:
http://www.javasoft.com

This site contains a variety of useful documentation and tutorials. An
indispensable resource is the Java 2 Platform API Specification at:

379

Chapter 10 Spotfire S+ Dialogs in Java

Motivation

Contrast with
Spotfire S+ 4
Dialogs

380

http://www.javasoft.com/products/jdk/1.2/docs/api/index.htm]l

The emphasis of this chapter is on creating dialogs using Java that
construct calls to Spotfire S+ functions. The design goal for the
system described here was to provide a system which would allow
both TIBCO Software Inc. developers and users to create full-

featured dialogs which could be used on either Windows® or

UNIX®. The look of the controls and layout of the dialogs was

designed for consistency with the dialogs in Spotfire S+ 4 for
Windows.

The Java dialog system provides a number of benefits not present in
the Spotfire S+ 4 dialog system. Benefits include:

* Layout controls as desired in a dialog rather than being
restricted to a two-column layout with automatic positioning.

+ Specify callback information (information on how to modify
the dialog when a control is changed) at the control level
instead of in a single dialog-level callback function.

+ Fully specify the action to perform when OK, Apply, or
Cancel is pressed.

* Use the wealth of documentation on Java dialog
programming.

The Spotfire S+ 4 dialog system does have some features which are
useful at times and which are absent from the Java system:

* The Spotfire S+ 4 system automatically lays out the controls
on the dialog. The Java system requires more layout
specification.

* The Spotfire S+ 4 system uses Spotfire S+ commands, while
the Java system requires the programmer to learn some Java.

* The Spotfire S+ 4 system has a dialog-rollback system which
allows the user to roll the values of controls in a dialog back to
a previous state. The caveat is that the dialog callback
function must include code to update option lists and enabled
status on rollback. The Java dialogs do not currently support
rollback.

Overview

TOpiCS Covered This chapter covers:

A Simple
Example

* A simple example of a custom dialog.

* The new Java classes for constructing Spotfire S+ dialogs.
* Layout of the dialog.

* Performing actions when control values are modified.

+ Calling the Spotfire S+ function.

+ Single-page dialog example.

* Multiple-page dialog example.

* Dynamically modifying the Spotfire S+ menu.

Below is Java code to create a dialog that queries the user for the
name of a data.frame, and then runs the summary () function on the
specified data.frame. Comments indicate the basic purpose of each
expression.

An extended version of this example which includes code for creating
a menu item that launches the dialog is provided on page 395.

// Import the necessary swing and Spotfire S+ classes
import com.insightful.splus.*;

import com.insightful.controls.*;

import javax.swing.*;

public class SummaryDialogExample extends SplusDialog {
public SummaryDialogExample(){
// Specify the title in the SplusDialog constructor
super("Summary Dialog");
// Specify the function to call on OK or Apply
SplusFunctionInfo funcInfo = new
SplusFunctionInfo("summary™);

setFunctionInfo(funcInfo);

// Create a panel to contain the dialog controls
JPanel dataPage = new JPanel();

// Create a combo box control

381

Chapter 10 Spotfire S+ Dialogs in Java

382

SplusDataSetComboBox dataSet = new
SplusDataSetComboBox() ;

// Add the combo box to the dialog panel
dataPage.add(dataSet);

// Add the combo box to the 1ist of function arguments
funcInfo.add(dataSet, "object™);

// Add the panel to the dialog and perform dialog sizing
setCenterPanel(dataPage);

CLASSES

Standard
Spotfire S+
Dialog

Classes

The com.insightful.controls package contains the basic set of
controls used to construct standard Spotfire S+ dialogs. Some
additional controls which communicate with the Spotfire S+ engine
to autoconstruct their option lists or values are available in the
com.insightful.splus package.

This section provides details on the architecture and behavior of the
custom dialog system.

All of the dialogs available from the Statistics and Graph menus are
examples of a standard Spotfire S+ dialog. For each dialog there is a
Java class representing the dialog which extends SplusDialog.
SplusDialogis a JDialog with a standard set of buttons (OK, Cancel,
Apply, and Help) and standard sizing. The SplusDialog class takes
care of sizing the dialog and reacting to button presses.

If OK or Apply is pressed, a function call is constructed (based upon
the values of the controls) and is sent to the Spotfire S+ engine for
evaluation. If OK or Cancel is pressed, the dialog is dismissed. If
Help is pressed, the help information for the dialog is displayed.
Dialogs which extend SplusDialog may change the behavior of the
buttons, as is discussed in the section Overriding Button Actions
(page 391).

To create a standard Spotfire S+ dialog, create a class which extends
SplusDialog. The class constructor should:

* Create an SplusFunctionInfo object giving the name of the
function to use when OK or Apply is pressed. In addition to
adding controls to panels in the dialog for display, each
control will be added to the SplusFunctionInfo object to
indicate that it is to be used when constructing the function
call.

* Create a panel which will contain the controls. For a single-
page dialog use a JPanel. For a multi-page dialog use a
JTabbedPane containing one JPanel for each page.

* Add additional panels to each page to organize the layout.
This is discussed in the section Standard Spotfire S+ Layout
(page 387).

383

Chapter 10 Spotfire S+ Dialogs in Java

Group Panels

Control Types

384

* Add SplusGroupPanel objects to the panels used for layout.
These are JPanel objects with a border and label specified.

* Add controls implementing SplusControlMethods such as
SplusListBox and SplusComboBox to the group panels. Also
add each control to the SplusFunctionInfo for the dialog.
When defining a control you specify information related to
the content of the control. When adding the control to the
SplusFunctionInfo object you specify information on how
the control is used when constructing the function call.

+ After all groups and controls have been added to this panel,
use setCenterPanel() to add the panel to the center of the
dialog. This method will also size the dialog and set the
dialog’s location so that it is centered in the application
window.

This chapter discusses the Java classes for standard Spotfire S+
controls and their use in constructing dialogs with a consistent look
and feel. You are not limited to using these controls or this layout.
Ways to use alternate layouts and controls are discussed in the
relevant sections.

Typically multiple controls will be grouped together in a bordered
panel with a label describing the purpose of the set of controls. The
SplusGroupPanel control provides a JPanel with a text label and a
border. It uses a Box layout in which controls are stacked vertically.
Controls are added to the panel with the add() method.

The SplusGroupPanel is sized based on the size of the controls it
contains. If the panel contains an SplusWideTextField, it will be sized
as a wide group.

Table 10.1 lists the Java classes for controls used in standard Spotfire
S+ dialogs. Each control is a Swing JPanel containing other Swing
components, with a uniform sizing specified by SplusControlMetrics

Classes

and a set of methods for getting and setting various control
information. (An additional class SplusButton provides a button
which is a JButton sized to match these controls.)

Table 10.1: Standard Spotfire S+ Controls

Control Name Swing Components
SplusCheckBox JCheckBox
SplusComboBox JLabel, JComboBox
SplusDoubleSpinner, JLabel, JTextField,
SplusIntegerSpinner JScrollBar
SplusInvisibleControl None
SplusListBox JLabel, JList, JScrollPane
SplusRadioButtonGroup JLabel, JButtonGroup,
multiple JRadioButtons
SplusTextField JLabel, JTextField
SplusWideTextField JLabel, JTextField

In Swing, a JLabel and a corresponding JTextField are two separate
controls. The SpTusTextField control incorporates the two elements
into a single control. All of the controls presented in the table above
implement the SplusControlMethods interface. This common
interface to disparate control types simplifies dialog programming.

To implement the SplusControlMethods interface, a class must have
methods to:

* Get and set the text and mnemonic for the control using
getText(), setText(), getMnemonic(), and setMnemonic().
This is typically the text for a label, although in the
SplusCheckBox it is the text for the check box.

385

Chapter 10 Spotfire S+ Dialogs in Java

386

* Get and set the option list for the control using
getOptionList() and setOptionList(). SplusComboBox,
SplusListBox, and SplusRadioButtonGroup all have
meaningful option lists. For other controls the
getOptionList() and setOptionList() methods have no
effect.

* Get and set whether the control is enabled using
getEnabled() and setEnabled(). If the control contains
multiple Swing controls (such as a label and a text field) all of
the elements are enabled or disabled together.

Typically each control will also support a set of listener methods
which will pass registration of a listener down to the related Swing
control. The listener methods available vary by control type, and
match to listeners available for the underlying Swing control. Most
controls support addActionListener() and perhaps
addChangelistener() or addItemListener(). The exception is
SplusListBox, which supports addListSelectionListener().

Some controls will have additional methods suited to the underlying
Swing control. For example, SplusListBox supports
clearSelection() and isSelectionEmpty().

If a programmer wants to use a control other than one of the standard
controls provided, one way to do so is by defining a new control class
which implements SplusControlMethods.

Another way to pass a value from any Java control to a Spotfire S+
function call is to instantiate an SplusInvisibleControl which listens
for changes in the control of interest and updates its value based on
the status of the control. Add the SplusInvisibleControl to the
SplusFunctionInfo object to pass the value in the function call.

LAYOUT

Standard
Spotfire S+
Layout

Pages

Columns

Layout

In contrast to the dialog system introduced in Spotfire S+ 4.0 for
Windows, the Java dialog system does not attempt to automatically
lay out controls on the dialog. It is the programmer’s responsibility to
specify the layout of the controls. Although any Java layout may be
used, we encourage use of the Box layout with nested panels to
organize the elements on the dialog.

The one restriction is that if an SpTusDialog is used, the programmer
should only add a panel to the center of the dialog using
setCenterPanel (). The bottom panel is used by the OK, Apply,
Cancel, and Help buttons, and the other panels are left empty.

To see the actual commands needed to perform layout, look at the
Java code used to create particular dialogs in Spotfire S+. The
CorrelationsDialog class contains an example of a single-page
dialog. The LinearRegressionDialog class contains an example of a
multiple-page dialog. The Java code for these classes is included at
the end of this chapter.

If the dialog is a single-page dialog, then a single JPanel should be
added to the SplusDialog using setCenterPanel(). Panels for
columns are then added to this panel.

If the dialog is a multiple-page dialog, then a JTabbedPane should be
added to the SplusDialog using setCenterPanel(). Each page is then
specified by a JPanel which is placed in the JTabbedPane using the
addTab() method. Panels for columns are then added to each page
panel.

The standard layout for Spotfire S+ dialogs contains two columns of
controls. This layout is created by specifying that the JPanel for the
page contain two other JPanels. The page panel will have a
BoxLayout with a horizontal orientation, while each column will have
a BoxLayout with a vertical orientation.

Some more sophisticated dialogs will have a wide group along the
bottom of a page. This layout is achieved by giving the page panel a
vertical orientation and placing two JPanels in the panel to represent
the top and bottom sections of the dialog. The top panel is then given

387

Chapter 10 Spotfire S+ Dialogs in Java

Groups

Sizing

388

a horizontal orientation and two JPanels are added for the columns.
The bottom panel fills both columns. An example of this layout is in
the LinearRegressionDialog class.

Note that in a Box layout the groups will expand to fill all of the space
available unless Box.Filler components are added. SplusBoxFiller
and SplusWideBoxFiller are Box.Filler components sized to fill a
single column or the full center panel width of an SpTlusDialog. These
components are added after the last group in each column to tell the
layout to leave as much space as possible at the end of the columns.

For proper layout and margins, all controls must be placed within
SplusGroupPanel objects, which are then added to the columns in the
dialog. If a control is added directly to the column, the margin
spacing is likely to be off.

To add a control to a dialog with no visible group, create an
SplusGroupPanel for the control with an empty border. The panel
will have an empty border if no title is specified in the
SplusGroupPanel constructor.

The SplusControlMetrics class provides standard control sizing
information. This class has static methods which are used by the
controls to obtain uniform sizing. The method
getControlDimension() returns the dimension of a standard list field
or combo box. The function getFullDimension() returns a value
which is twice this size plus a margin of 10 in width, which represents
the size of a text field with a label. Each control sets its minimum size
and preferred size such that all controls have a common width. The
height of each control depends wupon its contents, with
SplusRadioButtonGroup and SpluslListBox taller than the other
controls.

Controls such as SplusTextField and SplusComboBox that consist of a
text label on the left and an active control on the right typically
extend SplusLabelBox. This class handles sizing for this kind of
control. Other controls such as SplusCheckBox have their own code
for sizing.

Layout

One wider control is available. The SplusWideTextField control is an
SplusTextField which spans both columns. This control is used to
display a value which is too long to fit in a standard text box, such as
a statistical modeling formula.

389

Chapter 10 Spotfire S+ Dialogs in Java

ACTIONS

Using Listeners In dialogs it is often necessary to change the value or state of one

Getting
Information
From Spotfire
S+

Special
Controls

390

control based upon the state of another control. Swing supports this
through the use of listeners and events.

For example, we might want to disable a text field when a check box
is changed. To do so, we add an action listener to the check box which
specifies code to run whenever the check box is acted upon. This
code would then check the value of the check box, and disable or
enable the text field according to its value.

Most interactions needed in a dialog may be accomplished with
listeners and the SplusControl methods such as getValue(),
setValue(), setOptionList(), and setEnabled().

Some dialog actions require information that is not available to the
dialog, such as the names of the columns in a data set. In these cases
the Spotfire S+ engine may be called to get the information. This is
done by constructing a Spotfire S+ expression which is sent to the
Spotfire S+ engine and evaluated to get the desired information. The
SplusDataSetComboBox class contains example code for this purpose.

For a few cases the special action desired for a control is common
enough that it is useful to have a special class for the control which
takes care of performing the action. Special cases of SpTlusComboBox,
SplusListBox, and SplusTextField with particular uses are:

* SplusDataSetComboBox: This is a combo box with an option
list providing the names of all data.frames in the user’s
working database. It also keeps track of the column names for
the data.frame which is selected.

* SplusDataColumnComboBox: This is a combo box with an
option list providing the column names of a particular data
set. When the control is created the SplusDataSetComboBox
containing the name of the corresponding data.frame must
be specified. This combo box listens to the data set control
and updates the column list if the selected data set changes.

* SplusDataColumnListBox: This is a list box with the same
behavior as an SplusDataColumnComboBox.

Overriding
Button Actions

Checking
Completeness

Actions

* SplusSubsetField: This is a text field representing a subset of
rows in a data set. If rows are currently selected as the rows of
interest, the row numbers will be filled into this field when the
dialog is displayed. The intent is that row selection in a Data
Window will be used to specify the rows to use. As this has
not been implemented, the field is currently a standard
SplusTextField.

* SplusWideFormula: This is a wide text field representing a
model formula. The intent is that column selection in a Data
Window will be used to specify the columns to use, and a
formula will be constructed based on the selected columns. As
this has not been implemented, the field is currently a
standard SplusWideTextField.

These classes are in the com.insightful.splus package.

While SplusDataColumnComboBox and SplusDataColumnListBox are
typically used with an SpTusDataSetComboBox, they can be used with
some other control implementing the SplusDataColumnListProvider
interface. This capability is used in the time series graph dialogs to
create column lists for a timeSeries object named in an
SplusTimeSeriesComboBox.

At times it is useful to perform extra actions when OK or Apply is
pressed. In particular, it may be necessary to check the values of fields
for consistency to determine whether to proceed with the function
call or display a warning dialog requesting more information.

The SpTusDialog takes care of performing actions when OK, Cancel,
Apply, or Help is pressed. It does so by calling performOk(),
performCancel(), performApply(), or performHelp(). To specify an
alternate action, override the relevant function in the class for your
dialog (which extends SplusDialog). After performing whatever extra
actions are desired, use sendCommand() to create and evaluate the
function call, and if necessary dispose() to dismiss the dialog.

When OK or Apply is pressed, it is often useful to check whether
required arguments are present before formulating the function call
and dismissing the dialog. The performOk() and performApply()
methods will call the function isComplete(), which returns a boolean

391

Chapter 10 Spotfire S+ Dialogs in Java

indicating whether to continue with the button’s action. Override
isComplete() to check a condition such as whether all required fields
have values.

The warnIfEmpty() method will check whether a control’s value is an
empty string, and if so throw up a warning dialog and return false.
This method can be used in isComplete() to check whether a
required field is empty.

392

Calling The Function

CALLING THE FUNCTION

The Function
Info Object

Formatting
Information

The way dialogs extending SpTlusDialog perform actions is by using
the values of controls to build up a function call which is then sent to
the Spotfire S+ engine for evaluation. Each SplusDialog will have an
SplusFunctionInfo object which contains the information on how to
construct the function call. An SplusFunctionInfo object contains the
name of the function to call and the name of the control containing a
name under which to save the result of the function call (if any). It
also contains a list of the controls containing the values to use in the
function call, the corresponding argument names, and details on how
to format each value.

SplusDialog has classes getFunctionInfo() and setFunctionInfo()
to access the corresponding function information. An
SplusFunctionInfo object must be set for the dialog in order for it to
have any action on OK or Apply.

The SpTlusFunctionInfo object has methods getFunctionName() and
setFunctionName() to get and set a String giving the name of the
function to «call. The methods getResultControl() and
setResultControl() will get and set the reference to the control
containing the name under which to save the returned value.

Objects implementing SpTusControlMethods are added to the list of
controls using the add() methods.

The method getFunctionCall() looks at the current values of the
controls in the SpTusFunctionInfo object and uses them to construct
a function call, which is returned as a string.

When a control is added to the SplusFunctionInfo object,
information is specified which is used in formatting the argument in
the function call:

* The argument name specifies the name of the argument
corresponding to the control. If the control has an empty
argument name (e.g., ""), it will not be used in the function
call.

* The quote format specifies whether quotes should be placed
around the value.

393

Chapter 10 Spotfire S+ Dialogs in Java

Sending the
Command

394

* The list format specifies whether to add 1ist() around the
value, asin 1ist("Height", "Weight"). Typically this is used
with a quote format of "true" to produce a list of strings.

The add() method of SplusFunctionInfo requires the name of the
control and a String giving the argument name. Booleans specifying
whether quote format and list format are to be used may also be
provided. The default is to not add any extra formatting.

Controls without argument names are typically present because they
are used in the dialog to build a string in a text field. They are added
to the control list so that we may keep track of them, with the intent
being to add rollback to the dialogs at some point and use the control
list to save the current values of all controls when OK is pressed.

Only non-empty arguments will be added to the function call. If
getValue() for a control returns an empty string, the argument will
not be specified in the function call.

Once the dialog has obtained the function call by using
getFunctionCall() on its SplusFunctionInfo object, it typically
passes this String on to SplusGui for evaluation.

If the dialog is in a user-constructed application which is using
SplusUserApp to communicate with the Spotfire S+ engine, then the
string may instead be passed to the engine using SplusUserApp’s
eval() method. This will return an SplusDataResult object which
has methods to obtain the output, warnings, and errors produced by
evaluating the function call.

Modifying Menus

MODIFYING MENUS

The standard Spotfire S+ graphical user interface has a predefined
menu defined in the class SpTlusMainMenuBar. This default menu can
be dynamically modified using a static Java method called from
Spotfire S+ with the .JavaMethod function.

Most of the built-in menu items generate an ActionEvent that is
caught and acted upon by the SplusMainActionListener. A new
menu item may use either this action listener or some other action
listener.

To create a new dialog with its own menu item and display the menu
item, we will need to do the following:

1. Create a Java class for the dialog by extending SpTusDialog.

2. Add a static method to this class which adds a menu item to
launch the dialog.

3. Write a Spotfire S+ function which calls this static method.

We will of course need to compile the Java code, possibly package it
for distribution, and assure that it is included in the Java classpath.
These steps are discussed elsewhere.

As there are standard Java methods for creating and modifying menu
items, we do not need to use any methods specific to Spotfire S+ for
this purpose. We use SplusDialog.getMainMenuBar() to obtain a
reference to the menu bar. We then use JMenu, JMenuBar, and
JMenuItem methods to create and modify menu items.

For example, suppose we want to add a new menu item after the
Statistics menu for a simple dialog that calls summary() on a
data.frame.

The Spotfire S+ expression to call the Java method is:

.JavaMethod("SummaryDialogWithMenu", "addMenultem", "()V")
The Java code defining the dialog and the addMenuItem() method is:

import com.insightful.splus.*;
import com.insightful.controls.*;
import javax.swing.*;

395

Chapter 10 Spotfire S+ Dialogs in Java
public class SummaryDialogWithMenu extends SplusDialog {
// Constructor for dialog

public SummaryDialogWithMenu(){
super("Summary Dialog");

SplusFunctionInfo funcInfo = new
SplusFunctionInfo("summary™);

setFunctionInfo(funcInfo);

JPanel dataPage = new JPanel();

SplusDataSetComboBox dataSet = new
SplusDataSetComboBox();

dataPage.add(dataSet);
funcInfo.add(dataSet, "object");

setCenterPanel(dataPage);

// Method to modify menu

// Have a flag indicating whether menu already added.
// Another approach is to check the menu item text.

static boolean menuHasBeenAdded = false;
public static void addMenultem() {

if (!menuHasBeenAdded){
menuHasBeenAdded = true;

JMenu myMenu = new JMenu("Other");
myMenu.setMnemonic('0"');

JMenultem menultem = new
JMenultem("Simple Summary...");

menultem.setMnemonic('S"');

// The menu action listener Taunches a dialog if it

396

Modifying Menus
// gets an action command starting with "D:".
menultem.setActionCommand("D:SummaryDialogWithMenu");
menultem.addActionListener(getMainActionListener());
myMenu.add(menultem);
// Add myMenu after the Statistics menu.
JMenuBar menuBar = getMainMenuBar();
int numItems = menuBar.getMenuCount();
// Find Statistics menu item
int index = -1;
for (int i = 0; index < 0 && i < numlItems; i++){
JMenultem item = (JMenultem)
menuBar.GetComponent(i);
if (item.getText().equals("Statistics"))
index = i + 1;

menuBar.add(myMenu, index);

// revalidate to get menu to redisplay
menuBar.revalidate();

397

Chapter 10 Spotfire S+ Dialogs in Java

STYLE GUIDELINES

Basic Issues

398

Typically Spotfire S+ programmers will begin by writing functions for
use in scripts and at the command line. These functions will generally
fall into one of the following classes:

* Functions which compute some quantities and return a vector,
matrix, data.frame, or list. If the result is assigned these
values are stored, and if not they are printed using the
standard mechanism. Functions such as mean and cor are of
this type.

* Functions which take data and produce plots. The returned
value is typically not of interest. Functions such as xypTot and
pairs are of this type.

* A set of functions including a modeling function which
produces a classed object, and method functions such as
print, summary, plot, and predict. Functions such as 1m and
tree are of this type.

The custom dialog tools allow the creation of a dialog for any
function. Hence the programmer may create a dialog which directly
accesses a function developed for use at the command line. While this
may be acceptable in some cases, experience has shown that it is
generally preferable to write a wrapper function which interfaces
between the dialog and the command line function.

This section discusses the issues that arise when creating a function
for use with a dialog, and describes how these issues are handled by
the built-in statistical dialog functions. In addition, we discuss basic
design guidelines for statistical dialogs.

Most functions will perform these steps:
* Accept input regarding the data to use.

* Accept input regarding computational parameters and
options.

* Perform computations.
* Optionally print the results.
* Optionally store the results.

Basic Dialogs

The Dialog

Style Guidelines

* Optionally produce plots.

Modeling functions have additional follow-on actions which are
supported at the command line by separate methods:

* Providing additional summaries.

* Producing plots.

* Returning values such as fitted values and residuals.
+ Calculating predicted values.

We will first discuss the basic steps performed by any function such as
accepting input, performing calculations, printing results, saving
results, and making plots. Then we will discuss the issues which arise
for modeling functions with methods.

We will begin by discussing the Correlations and Covariances
dialog. Exploring this dialog and the related analysis functions will
display the key issues encountered when constructing functions for
dialogs.

The Correlations and Covariances dialog is available from the
Statistics | Data Summaries:Correlations menu item.

Comrelations and Covariances & B3

—Data — Statistic

Data Set: I VI Tupe: * Comrelations

" Covariances

FEraction ta Trim: ID
— Result

Method to Handle Missing Yalues: Save Az I
IFaiI jv V| Brint Fesults

QK I Eancell Applyl I<| >| curent Help |

Wariables: -

Figure 10.1: The Correlations and Covariances dialog.

This dialog provides access to the cor and var functions. It allows the
user to specify the data to use, computation options, a name under
which to save the results, and whether to print the results.

Note that the data to use is specified in the upper left corner of the
dialog. The user first specifies which data set to use, and then the
variables of interest.

399

Chapter 10 Spotfire S+ Dialogs in Java

The Function

400

The Results group in the lower right corner of the dialog lets the user
specify an object name under which to store the results, and provides
a check box indicating whether the results should be printed.

Other options are placed between the Data group and the Results
group.

When OK or Apply is pressed in the dialog, the menuCor function is
called. The naming convention for functions called by dialogs is to
append menu to the command line function name, such as menulLm,
menuTree, and menuCensorReg.

The menuCor function is:

> menuCor
function(data, variables = names(data), cor.p
cov.p = F, na.method = "fail", print.it =T,
statistic = "Correlations™)
{
Note cor.p and cov.p have been replaced with statistic.
They are left in solely for backwards compatibility.
data <- as.data.frame(data)
data.name <- deparse(substitute(data))
if(Imissing(variables))
variables <- sapply(unpaste(variables, sep = ","),
strip.blanks)
if(lis.element(variables[[1]1], c("<ALL>", " (A1l
Variables)"))) {
if(!Tength(variables))
stop("You must select at Teast one variable\n™)
data <- data[, variables, drop = F]
}
dropped.cols <- !sapply(data, is.numeric) | sapply(data,
is.dates)
if(all(dropped.cols))
stop("No numeric columns specified.")
if(any(dropped.cols)) {

warning(paste("Dropping non-numeric column(s) ",
paste(names(data)[

dropped.cols], collapse =", ™), ".", sep =""))
data <- data[, !dropped.cols, drop = F]
}
na.method <- casefold(na.method)

Input Values

Style Guidelines

if(statistic == "Correlations™ || (cor.p && !cov.p)) {
coeff <- cor(data, trim = trim, na.method = na.method)
header.txt <- paste("\n\t*** Correlations for data

in: ", data.name,

"x*EF\n\n")
}
else {
coeff <- var(data, na.method = na.method)
header.txt <- paste("\n\t*** Covariances for data in:
", data.name,
"x*EF\n\n")
}

if(print.it) {
cat(header.txt)
print(coeff)
}
invisible(coeff)
}

The function arguments are:

function(data, variables = names(data), cor.p = F, trim =0,
cov.p = F, na.method = "fail"™, print.it =T,

statistic = "Correlations™)

The function has one argument for each control in the dialog, with
the exception of the Save As field specifying the name to which to
assign the value returned by the function. Default values are present
for all arguments except data. A default argument value will be used
if the corresponding field in the dialog is left empty.

The first few lines in the function transform these inputs from a form
preferable for a dialog field to the format expected by cor and var.

First the data is transformed to a data frame, to allow the handling of
vectors and matrices. The name of the data is stored for use in
printing the results:

data <- as.data.frame(data)
data.name <- deparse(substitute(data))

Next the function constructs the names of the variables of interest.
The variables argument passed by the dialog is a single string
containing a comma delimited list of column names, and perhaps the

401

Chapter 10 Spotfire S+ Dialogs in Java

string “(A11 Variables)”. This string is broken into a character
vector of variable names. If it does not include “(A11 Variables)”
and is not empty, the specified columns of the data are extracted.

if(!missing(variables))
variables <- sapply(unpaste(variables, sep = ","),
strip.blanks)
if(lis.element(variables[[1]], c("<ALL>", "(AT1
Variables)™))) {
if(!length(variables))
stop("You must select at Teast one variable\n")
data <- data[, variables, drop = F]

}
Computations After the desired set of data is constructed, the statistics are
calculated:
if(statistic == "Correlations™ || (cor.p && !cov.p)) {
coeff <- cor(data, trim = trim, na.method = na.method)
header.txt <- paste("\n\t*** Correlations for data
in: ", data.name,
"EEX\n\n")
}
else {
coeff <- var(data, na.method = na.method)
header.txt <- paste("\n\t*** Covariances for data in:
", data.name,
"EE*X\n\n")
}

The statistic argument takes a string, either "Correlations” or
"Covariances"; cor.p and cov.p arguments are logical values
indicating whether to form the correlations or covariances which are
supported for backward compatibility.

The trim and na.method arguments are passed directly to the
computational functions.

A character string is also constructed for use as a header when
printing the results.

Printing Results The standard behavior in Spotfire S+ is to either print the results from
a function or store them under a specified name using assignment.
That is, a user may either see the results printed using

402

Style Guidelines

> cor(swiss.x)

save the results using

> swiss.cor <- cor(swiss.x)

or do both by saving the results and then printing the object

> swiss.cor <- cor(swiss.x)
> swiss.cor

Explicitly printing the results in a function is frowned upon unless the
function is a print method for a classed object. The evaluation
mechanism determines whether to print the result.

This convention is waived for the dialog functions, as it is necessary to
provide a mechanism for both saving and printing the output within
the function.

Another difference between using a function from the Command line
and from a dialog is that the Command line alternates between an
expression and the output related to that expression. Hence it is clear
which expression and output go together. The output from a dialog is
not preceded by an expression (the expression evaluated will be
stored in the history log but is not printed to the output stream).
Hence it is necessary to provide a header preceding the output which
indicates the source of the output. The header lines also serve to
separate subsequent sets of output.

If the user requests printed output, the header is printed with cat, and
the result object with print:

header.txt <- paste("\n\t*** Covariance for data in:
, data.name, "***\p\n")

if(print.it) {
cat(header.txt)
print(coeff)

}

Generally cat is used to print character strings describing the output,
and print is used for other objects.

Note that the convention for header lines is to use a character string of
the form:

"\n\t*** Qutput Description ***\n\n"

403

Chapter 10 Spotfire S+ Dialogs in Java

Saving Results

Saving Additional
Quantities

404

In this dialog, the results need not be explicitly saved within the
function. The command is written such that the result is assigned to
the name specified in Save As if a name is specified.

Note that the value is returned invisibly:

invisible(coeff)

As we have already printed the result if printing is desired, it is
necessary to suppress the autoprinting which would normally occur if
the result were returned without assignment.

In some cases it is necessary to assign the result within the function. In
particular, this is required for the Windows GUTI if the function is
creating the data and then displaying it in a Data window. This is
handled by the function spropSaveResultData. For example,
menuFacDesign creates an object new.design and then calls:

spropSaveResultData(new.design, save.name, show.p)

If save.name is not specified, a name is constructed. The result is
immediately assigned to the working directory. Then the data frame is
displayed in a Data window if the Windows Spotfire S+ GUI is being
run and the user specifies show.p=T by checking the Show in Data
Window box in the Factorial Design dialog. In the Java GUI, the
printed output includes a comment indicating the name under which
the data is saved.

The explicit assignment is necessary because the data frame must
exist as a persistent object on disk before it can be displayed in a Data
window.

If an object named save.name already exists, it will be replaced by the
new object by the call to spropSaveResultData. To add columns to an
existing data set use spropSaveResultColumns. If the object save.name
exists and has the same number of rows as the new columns, then the
columns will be appended to the data. Otherwise the columns will be
saved under a new name. See tabSummary.lm for an example of a
call to this function.

In some cases the user may want access to other quantities which are
not part of the standard object returned by the function, such as
residuals or predicted values. At the command line these functions
can be accessed using extractor functions such as resid and predict.

Plots

Modeling
Dialogs

Style Guidelines

In dialogs, it may be preferable to save these objects into specified
data frames using the save mechanism as described above. The
section Summary Method (page 415) discusses this situation.

The Spotfire S+ GUI supports multiple coexisting Graph sheets, each
of which may have multiple tabbed pages. When a new graph is
created it may do one of three things:

* Replace the current graph (typically the graph most recently
created).

* Create a new tab on the current Graph sheet.
* Create a new Graph sheet.

The default behaviour is for a statistical dialog function to open a new
Graph sheet before creating graphs. If the function produces multiple
graphs, these appear on multiple tabs in the new Graph sheet.

This autocreation of new Graph sheets may annoy some users due to
the proliferation of windows. In the Windows GUI, the Graphs
Options dialog has a Statistics Dialogs Graphics: Create New
Graph Sheet check box which indicates whether or not to create a
new Graph sheet for each new set of plots. In the Java GUI, this
option is in the Dialog Options dialog.

It is good form for any plots created from dialogs to follow the
dictates of this option. This is done by calling new.graphsheet before
plots are produced. This function will create a new Graph sheet if the
aforementioned option specifies to do so. The new.graphsheet
function should only be called if plots are to be produced, and should
only be called once within the function as calling it multiple times
would open multiple new Graph sheets.

The menuAcf function provides an example of the use of
new.graphsheet:

if(as.logical(plot.it)) {
new.graphsheet()
acf.plot(acf.obj)

A powerful feature of Spotfire S+ is the object-oriented nature of the
statistical modeling functions. Statistical modeling is an iterative
procedure in which the data analyst examines the data, fits a model,

405

Chapter 10 Spotfire S+ Dialogs in Java

406

examines diagnostic plots and summaries for the model, and refines
the model based on the diagnostics. Modeling is best performed
interactively, alternating between fitting a model and examining the
model.

This interactive modeling is supported in Spotfire S+ by its class and
method architecture. Generally there will be a modeling function
(such as 1m for linear regression) which fits a model, and then a set of
methods (such as print, plot, summary, and anova) which are used to
examine the model. The modeling function creates a model object
whose class indicates how it is handled by the various methods.

This differs from other statistical packages, in which all desired plots
and summaries are typically specified at the time the model is fit. If
additional diagnostic plots are desired the model must be completely
refit with options indicating that the new plots are desired. In Spotfire
S+, additional plots may be accessed by simply applying the plot
method to the model object.

In moving from a set of command line functions to dialogs for
statistical modeling, the desired level of granularity for action
specification changes. At the command line the basic strategy would
be to issue a command to fit the model, followed by separate
commands to get the desired plots and summaries. The ability to use
such follow-on methods is still desirable from a graphical user
interface, but it should be a capability rather than a requirement. The
user will generally want to specify options for fitting the model plus
desired plots and summaries in a single dialog, with all results
generated when the model is fit.

In Windows, the design of the statistical modeling dialogs is such that
the user can specify the desired summaries and plots at the time the
model is fit, but it is also possible to right-click on a model object in
the Object Explorer and access summary and plot methods as a
follow-on action. Generally the Results, Plot, and Predict tabs on the
modeling dialog are also available as separate dialogs from the model
object context menu.

This section describes the general design of statistical modeling
dialogs by examining the Linear Regression dialog. The following
section describes the structure of the functions connected to the
modeling and follow-on method dialogs. The statistical modeling
dialogs follow the same design principles as are described here, but
details will vary.

Model Tab

Style Guidelines

The Model tab describes the data to use, the model to fit, the name
under which to save the model object, and various fitting options. It is
typical to have Data, Formula, and Save Model Object groups
which are similar to those in the Linear Regression dialog.

Linear Regression E
(Model rResuIts Plot Predict|

Data

Cata Set: j

Weights: j

Subsae EOWS: Save Model Object
[W Omit Rows with Missing Values Save As:

Variables

Dependent: —

Independent: <ALL>

Formula: |

Create Formula
| (o] H Cancel H Apply ‘ Help

Figure 10.2: The Model tab of the Linear Regression dialog.

Data Group

The Data Set property is a drop-down list of available data sets. This
list is filled with the data sets which are in the working database. This
specifies the data argument to the modeling function.

The Weights property is a list of columns in the selected data set. The
selected column will be used as weights in the model. This specifies
the weights argument to the modeling function.

The Subset Rows with property takes an expression which is used as
the subset expression in the model. This specifies the subset
argument to the modeling function.

407

Chapter 10 Spotfire S+ Dialogs in Java

Options Tab

408

The Omit Rows with Missing Values check box specifies how missing
values are handled. Checking this box is equivalent to specifying
na.action=na.exclude, while leaving it unchecked is equivalent to
na.action=na.fail. Some dialogs (such as Correlations and
Covariances) instead have a Method to Handle Missing Values list box,
which provides additional missing value actions.

Variables Group

The Variables group includes controls for specifying the Dependent
and Independent variables. As you select or enter variables in these
controls, they are echoed in the Formula control. The Formula
specifies the form of the model, that is what variables to use as the
predictors (independent variables) and the response (dependent
variables). This specifies the formula argument to the modeling
function.

Most modeling dialogs have a Create Formula button, which launches
the Formula Builder dialog when pressed. This dialog allows point-
and-click formula specification.

Dialogs in which the formula specifies a set of covariates rather than
predictors and a response (such as Factor Analysis) have a Variables list
rather than a Create Formula button.

Save Model Object Group

The Save As edit field specifies the name under which to save the
model object. The returned value from the function called by the
dialog is assigned to this name.

In the Linear Regression dialog, all of the necessary fitting options are
available on the Model tab. Some other modeling dialogs, such as the
Logistic Regression dialog, have more options which are placed on a
separate tab. An Options tab may be useful either due to the
availability of a large number of options, or to shelter the casual user
from more advanced options.

Results Tab

Style Guidelines

The Results tab generally has groups for specifying the printed and

saved results.

Linear Regression E

(Modeeresults Plot Predict|

Printed Results
[Cshort Cutput
Wi Long Qutput
[JANOVA Table

[C] Correlation Matrix of Estimates

Saved Results

Save In:

[C]Fitted Values

[[JResiduals

=

(o] H Cancel H Apply ‘

Figure 10.3: The Results tab of the Linear Regression dialog.

Printed Results Group

The Printed Results specify the types of summaries to print. These
summaries will be displayed in a Report window, or in another
location as specified in the Text Output Routing dialog.

Checking the Short Output check box generally indicates that the

print method for the model object will be called.

Checking the Long Output check box generally indicates that the
summary method for the model object will be called.

Other options will vary based on the statistical model.

409

Chapter 10 Spotfire S+ Dialogs in Java

410

Saved Results Group

The Saved Results specify results to be saved separate from the model
object, such as fitted values and residuals. These saved components
are usually of the same length as the data used in the model. It is often
of interest to plot these quantities against the data used to construct
the model, and hence it is convenient to save these values in a data
frame for later use in plotting or analysis.

The Save In edit field takes the name of a data frame in which to save
the results. This may be a new data frame or the data frame used to
construct the model. If the data frame named exists and has a
different number of rows than are in the results, then a new name will
be constructed and the results saved in the new data frame.

Check boxes specify what results to save. Common choices include
Fitted Values and Residuals.

Style Guidelines

Plot Tab The Plot tab specifies which plots to produce and plotting options.
Typically a Plots group provides check boxes to select plot types to
produce. Other groups provide options for the various plots.

(Model rResuIts Plot Predict|
Flots Options
[CJResiduals vs Fit [WiInclude Smoaoth
[Csart Abs Residuals vs Fit [JJinclude Rugplot
DRESEOHSE ws Fit Mumber of Extreme Foints to ldentify:

[[JResiduals Normal QQ

ﬂ

[[JResidual-Fit Spread Fartial Residual Flot Options
[Cook's Distance

[C] Partial Residuals

(o] H Cancel H Apply ‘ Help

Figure 10.4: The Plot tab of the Linear Regression dialog.

411

Chapter 10 Spotfire S+ Dialogs in Java

Predict Tab The Predict tab specifies whether predicted values will be saved, using
similar conventions as the Saved Results group on the Results tab.

Linear Regression E
(Model rResuIts Plot Predict|
opt
Mew Data: = PEIEhE

Confidence Lewvel: |ggsg

Save

Save In: j
[Predictions

[[] Confidence Intervals

[l &tandard Errors

(o] H Cancel H Apply ‘ Help

Figure 10.5: The Predict tab of the Linear Regression dialog.

The New Data edit field accepts the name of a data frame containing
observations for which predictions are desired. This specifies the
newdata argument to predict. If this is left empty the data used to fit
the model will be used.

The Save In edit field takes the name of a data frame in which to save
the results. This may be a new data frame or the data frame used to
construct the model. If the data frame named exists and has a
different number of rows than are in the results, then a new name will
be constructed and the results saved in the new data frame.

Check boxes specify what results to save. Common choices include
Predictions, Confidence Intervals, and Standard Errors.

Other options related to prediction may also be present.

412

Other Tabs

Modeling
Dialog
Functions

Main Function

Style Guidelines

A statistical model may have additional methods specific to that type
of model. The dialog for this model may have additional tabs, such as
the Prune/Shrink tab on the Tree Regression dialog. In the Windows
GUI, each dialog is limited to at most five tabs.

Command line functions for statistical models generally consist of a
fitting function (such as 1m) and method functions for that model (such
as print.1m, summary.1m, plot.1m, and predict.1m). Similarly, the
wrapper functions called by the dialogs consist of a main dialog
function (such as menulm) and method functions (tabSummary.Tm,
tabPlot.1m, and tabPredict.1m). The method functions are called by
the main function.

In the Windows GUI, the method functions are also called from
separate dialogs available by right-clicking on the model object in the
Object Explorer. This structure allows the methods to be called either
at the time of fitting the model, or later for use with a fitted model
object.

The convention is to name the main dialog function with the preface
menu, and the method functions with the preface tab. The suffix of the
function reflects the name of the related command line function.

The main dialog function has two primary purposes: fitting the model
and calling the method functions. The main dialog function for linear
regression is menulm:

menulLm <-

function(formula, data, weights, subset, na.omit.p =T,
print.short.p = F, print.long.p = T, print.anova.p =T,
print.correlation.p = F, save.name = NULL, save.fit.p =
F, save.resid.p = F, plotResidVsFit.p = F,
plotSqrtAbsResid.p = F, plotResponseVsFit.p = F,
plotQQ.p = F, plotRFSpread.p = F, plotCooks.p = F,
smooths.p = F, rugplot.p = F, id.n = 3,
plotPartialResid.p = F, plotPartialFit.p = F,
rugplotPartialResid.p = F, scalePartialResid.p =T,
newdata = NULL, predobj.name = NULL, predict.p =
= F, se.p = F, conf.level = 0.95)

-n

ci.p

fun.call <- match.call()
fun.call[[1]] <- as.name("Im")

413

Chapter 10 Spotfire S+ Dialogs in Java

414

if(na.omit.p)
fun.call$na.action <- as.name("na.exclude")
else fun.call$na.action <- as.name("na.fail"™)
fun.args <- is.element(arg.names(fun.call), arg.names(
"Tm™))
fun.call <- fun.call[c(T, fun.args)]
Tmobj <- eval(fun.call)#
Call summary function:
tabSummary.Im(1mobj, print.short.p, print.long.p,
print.correlation.p, print.anova.p, save.name,
save.fit.p, save.resid.p)#
Call plot function:
if(any(c(plotResidVsFit.p, plotSqrtAbsResid.p,
plotResponseVsFit.p, plotQQ.p, plotRFSpread.p,
plotCooks.p, plotPartialResid.p))) tabPlot.Tm(
Tmobj, plotResidVsFit.p,
plotSqrtAbsResid.p, plotResponseVsFit.p,
plotQQ.p, plotRFSpread.p, plotCooks.p,
smooths.p, rugplot.p, id.n,
plotPartialResid.p, plotPartialFit.p,
rugplotPartialResid.p,
scalePartialResid.p)#
Call predict:
if(any(c(predict.p, ci.p, se.p)))
tabPredict.Im(1mobj, newdata, predobj.name,
predict.p, ci.p, se.p, conf.level)
invisible(Imobj)
}

This function has one argument corresponding to each property in
the dialog, with the exception of the Save As field and invisible fields
used for formatting.

The first eight lines of the function are used to fit the model. The
approach is to construct an expression which specifies the appropriate
call to the model function, and them to evaluate this expression. The
somewhat sophisticated syntax is used so that the call component in
the model object has the appropriate names as specified in the dialog.
This general recipe may be used for any function, with 1m replaced by
the name of the modeling function.

Summary Method

Style Guidelines

Note that na.action is specified as a check box in the dialog, but as a
function name in 1m. This necessitates modification of this argument
before evaluating the call to 1m.

After the model has been fit, the methods tabSummary.lm,
tabPlot.1m, and tabPredict.Im are called. For efficiency, calls are
only made to tabPlot.Im and tabPredict.im if the options are
specified such that calling these functions will produce some action.

Finally, the model object is returned. It is returned invisibly since any
printing of the object has been handled by tabSummary. 1m.

The summary method produces printed summaries and saves
specified results in a data frame separate from the model object. The
summary method for the Linear Regression dialog is tabSummary . Tm:

tabSummary.Im <-
function(Imobj, print.short.p = F, print.lTong.p = T,
print.correlation.p = F, print.anova.p = F, save.name =
NULL, save.fit.p = F, save.resid.p = F)
{
if(print.short.p || print.long.p || print.anova.p) {
cat("\n\t*** Linear Model ***\n")
if(print.short.p) {
print(Tmobj)
}
if(print.long.p) {
print(summary(1lmobj, correlation =
print.correlation.p))
}
if(print.anova.p) {
cat("\n")
print(anova(Imobj))
}
cat("\n")
}
Save results if requested:
if(any(c(save.fit.p, save.resid.p)))
saveobj <- Tist()
if(save.fit.p)
saveobj[["fit"]] <- fitted(Imobj)
if(save.resid.p)
saveobj[["residuals"]] <- residuals(Imobj)

415

Chapter 10 Spotfire S+ Dialogs in Java

Plot Method

416

saveobj <- guiDefaultDataObject(saveobj)
spropSaveResultColumns(saveobj, save.name, show.p)
}
invisible(Imobj)
}

The first part of this function is responsible for printing the specified
summaries. If any printed output is specified, a header will be printed
demarcating the start of the output. Based on option values, the
print, summary, and other methods for the model will be called.

The second part of the function concerns itself with saving the
requested values. Extractor functions such as fitted and residuals
are used to get the desired values. The remainder of the code calls
function to save the columns and possibly display them in a Data
window.

The model object passed to this function is returned invisibly.

The plot function opens a new Graph sheet if necessary, and
produces the desired plots. The plot method for the Linear Regression
dialog is tabPlot.1m:

tabPlot.Im <-

function(Imobj, plotResidVsFit.p = F, plotSqrtAbsResid.p =
F, plotResponseVsFit.p = F, plotQQ.p = F,
plotRFSpread.p = F, plotCooks.p = F, smooths.p = F,
rugplot.p = F, id.n = 3, plotPartialResid.p F,
plotPartialFit.p = F, rugplotPartialResid.p F,
scalePartialResid.p = T, ...)

if(any(c(plotResidVsFit.p, plotSqrtAbsResid.p,
plotResponseVsFit.p, plotQQ.p, plotRFSpread.p,
plotCooks.p, plotPartialResid.p)))
new.graphsheet()
if(any(c(plotResidVsFit.p, plotSqrtAbsResid.p,
plotResponseVsFit.p, plotQQ.p, plotRFSpread.p,
plotCooks.p))) {
whichPlots <- seq(l, 6)[c(plotResidVsFit.p,
plotSqrtAbsResid.p, plotResponseVsFit.p,
plotQQ.p, plotRFSpread.p, plotCooks.p)]
plot.Im(Tmobj, smooths = smooths.p, rugplot =
rugplot.p, id.n = id.n, which.plots =

Style Guidelines

whichPlots, ...)

}

if(plotPartialResid.p) {

partial.plot(Imobj, residual =T, fit =

plotPartialFit.p, scale =
scalePartialResid.p, rugplot =
rugplotPartialResid.p, ...)

}

invisible(Imobj)

If any plots are desired, the function first calls new.graphsheet to
open a new Graph Window if necessary. The plot method for 1m is
then called. Some additional plots useful in linear regression are
produced by the partial.plots function, which is called if partial
residual plots are desired.

The model object passed to this function is returned invisibly.

Predict Method The predict function obtain predicted values for new data or the data
used to fit the model. The predict method for the Linear Regression
dialog is tabPredict.Im:

tabPredict.Im <-
function(object, newdata = NULL, save.name, predict.p = F,

ci.p =F, se.p = F, conf.level = 0.95)
{

if(is.null(newdata))

predobj <- predict(object, se.fit = se.p || ci.p
)
else predobj <- predict(object, newdata, se.fit = se.p |

ci.p)
if(ci.p) {
if(conf.level > 1 && conf.level < 100)
conf.level <- conf.level/100
t.value <- gt(conf.level, object$df.residual)
lower.name <- paste(conf.level * 100, "% L.C.L.",

sep ja— "ll)
upper.name <- paste(conf.level * 100, "% U.C.L.",
sep j— llll)

predobj[[Tower.name]] <- predobj$fit - t.value *

417

Chapter 10 Spotfire S+ Dialogs in Java

predobj$se.fit
predobj[[upper.name]] <- predobj$fit + t.value *
predobj$se.fit
}
remove prediction column and se column if not requested:
if(lpredict.p)
predobj$fit <- NULL
if(lse.p)
predobj$se.fit <- NULL
predobj$residual.scale <- NULL
predobj$df <- NULL
predobj <- as.data.frame(predobj)
n.predict <- nrow(predobj)
if(exists(save.name, where = 1)) {
if(inherits(get(save.name, where =1),
"data.frame") && nrow(get(save.name,
where = 1)) == n.predict)
assign(save.name, cbind(get(save.name,
where = 1), predobj), where = 1)
else {
newsave.name <- unique.name(save.name,
where = 1)
assign(newsave.name, predobj, where = 1)
warning(paste("Predictions saved in",
newsave.name))

}
else assign(save.name, predobj, where = 1)
invisible(NULL)

}

The function calls predict.im to obtain predicted values and
standard errors. It then calculates confidence intervals, and removes
any undesired components from the output. The predictions are then
stored in a data frame using the same type of algorithm as in
tabSummary.1m.

No value is returned.
Other Methods If the dialog has additional tabs, other dialog methods will be

available. For example, the Tree Regression dialog has a Prune/Shrink
tab with a corresponding function tabPrune.tree.

418

Example: Correlations Dialog

EXAMPLE: CORRELATIONS DIALOG

Below is the Java code used to create the Correlations dialog. This is a
single-page dialog with the standard two-column layout. It is part of
the com.insightful.splus.statdlg package.

package com.insightful.splus.statdlg;

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.text.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import com.insightful.controls.*;

import com.insightful.splus.SplusDataSetComboBox;
import com.insightful.splus.SplusDataColumnComboBox;
import com.insightful.splus.SplusSubsetField;
import com.insightful.splus.SplusDataColumnListBox;

public class CorrelationsDialog extends SplusDialog {
// Define any controls with Tisteners

SplusDataSetComboBox dataSet;
SplusDataColumnListBox dataColumnList;

SplusRadioButtonGroup typeButtons;
SplusTextField trimField;

public CorrelationsDialog(){
super("Correlations and Covariances");

// A one page dialog with two columns
// Controls and groups dget added to the columns

JPanel mainPanel = new JPanel();
Box columnOne = new Box(BoxLayout.Y_AXIS);

Box columnTwo = new Box(BoxLayout.Y_AXIS);
mainPanel.setlLayout(new BoxLayout(mainPanel,

419

Chapter 10 Spotfire S+ Dialogs in Java

BoxLayout.X_AXIS));
mainPanel.add(columnOne);
mainPanel.add(columnTwo);

/* Information needed to construct function call */

SplusFunctionInfo funcInfo = new
SplusFunctionInfo("menuCor™);

setFunctionInfo(funcInfo);

// Data group

SplusGroupPanel dataGroup = new SplusGroupPanel("Data");
columnOne.add(dataGroup);

dataSet = new SplusDataSetComboBox();
dataGroup.add(dataSet);
funcInfo.add(dataSet, "data");

dataColumnList = new SplusDataColumnlListBox(dataSet);
dataColumnList.setPrepend(new String []1 {"<ALL>"});
dataColumnList.setValue("<ALL>");
dataGroup.add(dataColumnList);
funcInfo.add(dataColumnList, "variables", true, true);

SplusComboBox naMethod = new
SplusComboBox("Method to Handle Missing Values™, ’'M’,
new String[] {"Fail", "Omit", "Include",

"Available"});

naMethod.setValue("Fail");

naMethod.setEditable(false);

dataGroup.add(naMethod);

funcInfo.add(naMethod, "na.method", true);

// Spacer for column one
columnOne.add(new SplusBoxFiller());
// Statistic group

SplusGroupPanel statGroup = new

SplusGroupPanel ("Statistic");

420

Example: Correlations Dialog
columnTwo.add(statGroup);

typeButtons = new
SplusRadioButtonGroup("Type", °T’,
new String [] {"Correlations™, "Covariances™});
typeButtons.setValue("Correlations");
statGroup.add(typeButtons);
funcInfo.add(typeButtons, "statistic"™, true);

// Listen to disable trimming for Covariances

typeButtons.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae){
trimField.setEnabled(

typeButtons.getValue().equals("Correlations™));
}
IO

trimField = new SplusTextField("Fraction to Trim",
F)s

trimField.setValue("0");

statGroup.add(trimField);

funcInfo.add(trimField, "trim");

// Results group

SplusGroupPanel resultsGroup =
new SplusGroupPanel("Results");
columnTwo.add(resultsGroup);

SplusTextField saveAs =

new SplusTextField("Save As", ’S’);
resultsGroup.add(saveAs);
funcInfo.setResultControl(saveAs);

SplusCheckBox printResults =

new SplusCheckBox("Print Results", °P’);
printResults.setValue("T");
resultsGroup.add(printResults);
funcInfo.add(printResults, "print.it");

421

Chapter 10 Spotfire S+ Dialogs in Java

// Spacer for column two
columnTwo.add(new SplusBoxFiller());
// Add mainPanel to CENTER panel of dialog

setCenterPanel (mainPanel);

// Redefine isComplete() to check for required arguments.

public boolean isComplete() {
return (warnIfEmpty(dataSet));

422

Example: Linear Regression Dialog

EXAMPLE: LINEAR REGRESSION DIALOG

Below is the Java code used to create the Linear Regression dialog.
This is a multiple-page dialog with a wide-group on the first page, and
standard two-column layout on the other pages. It is part of the
com.insightful.splus.statdlg package.

package com.insightful.splus.statdlg;

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.text.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

import
import
import
import
import
import

com
com
com
com
com
com

.insightful
.insightful
.insightful
.insightful
.insightful
.insightful

.controls.*;
.splus.SplusDataSetComboBox;
.splus.SplusDataColumnComboBox;
.splus.SplusSubsetField;
.splus.SplusDataColumnlListBox;
.splus.SplusWideFormulaField;

public class LinearRegressionDialog extends SplusDialog {

1/
/17

Any controls referenced by listeners must be defined
here.
// Be sure not to declare their class in the
// constructor.

SpTusDataSetComboBox dataSet;

SplusDataColumnComboBox dependentColumn, weightsColumn;
SplusDataColumnListBox independentColumnlList;
SplusWideFormulaField formulaField;

SplusButton formulaButton;

SpTusCheckBox longQutput, correlationMatrix,
plotPartialResid, includeFitPartialResid,
rugplotPartialResid, scalePartialResid;

public LinearRegressionDialog() {
super("Linear Regression™);

423

Chapter 10 Spotfire S+ Dialogs in Java

// A multiple page dialog with two columns.
// The first page has a wide group along the bottom which
// spans both columns.

// Controls and groups get added to the columns
JTabbedPane tabbedPane = new JTabbedPane();

/* Information needed to construct function call */

SplusFunctionInfo funcInfo = new
SplusFunctionInfo("menulm");

setFunctionInfo(funcInfo);

/* Model Page */

JPanel modelPage = new JPanel();
tabbedPane.addTab("Model", modelPage);

Box modelTopPanel = new Box(BoxLayout.X_AXIS);

Box modelBottomPanel = new Box(BoxLayout.X_AXIS);
Box modelTopLeftColumn = new Box(BoxLayout.Y_AXIS);
Box modelTopRightColumn = new Box(BoxLayout.Y_AXIS);
modelTopPanel.add(modelTopLeftColumn);
modelTopPanel.add(modelTopRightColumn);

modelPage.setlLayout(new BoxLayout(modelPage,
BoxLayout.Y_AXIS));

modeTPage.add(modelTopPanel);

modelPage.add(modelBottomPanel);

// Data group

SplusGroupPanel dataGroup = new SplusGroupPanel("Data");
modelTopLeftColumn.add(dataGroup);

dataSet = new SplusDataSetComboBox();
dataGroup.add(dataSet);
funcInfo.add(dataSet, "data");

weightsColumn = new

424

Example: Linear Regression Dialog

SplusDataColumnComboBox("Weights™, *W’, dataSet);
weightsColumn.setValue("");
dataGroup.add(weightsColumn);
funcInfo.add(weightsColumn, "weights"™, true);

SplusSubsetField subsetRows = new SplusSubsetField();
dataGroup.add(subsetRows);
funcInfo.add(subsetRows, "subset™);

SplusCheckBox omitMissing = new
SplusCheckBox("Omit Rows with Missing Values"™, *M’);
omitMissing.setValue("T");
dataGroup.add(omitMissing);
funcInfo.add(omitMissing, "na.omit.p");

// Right column
// Spacer for right column
modelTopRightColumn.add(new SplusBoxFiller(8));
// Save Model Object group
SplusGroupPanel saveModelGroup = new
SplusGroupPanel("Save Model Object");
modelTopRightColumn.add(saveModelGroup);
SplusTextField saveAsField = new
SplusTextField("Save As", ’S’);
saveModelGroup.add(saveAsField);
funcInfo.setResultControl(saveAsField);

// Variables group

// Dependent and Independent columns are used to build
// formula

SplusGroupPanel variablesGroup = new

SplusGroupPanel("Variables™);
modelBottomPanel.add(variablesGroup);

425

Chapter 10 Spotfire S+ Dialogs in Java

426

dependentColumn = new
SplusDataColumnComboBox("Dependent™, ’E’, dataSet);
dependentColumn.setValue("");
variablesGroup.add(dependentColumn);
funcInfo.add(dependentColumn, "");

independentColumnlList = new
SplusDataColumnListBox("Independent™, ’*I’, dataSet);
independentColumnlList.setPrepend(new String [J{"<ALL>"});
variablesGroup.add(independentColumnlList);
funcInfo.add(independentColumnList, "");

formulaField = new SplusWideFormulaField();
variablesGroup.add(formulaField);
funcInfo.add(formulaField, "formula");

// Add listeners to Dependent and Independent to build
// formula

dependentColumn.addActionListener(new ActionlListener(){
public void actionPerformed(ActionEvent ae){
formulaField.setDependentValue(
dependentColumn.getValue());
}
1)

independentColumnList.addListSelectionlListener(new
ListSelectionListener() {
public void valueChanged(ListSelectionEvent e){
formulaField.setIndependentValue(
independentColumnlList.getValue());
}
1)

// Have button disable relevant fields and Taunch formula
// builder.

formulaButton = new SplusButton("Create Formula™, °'C’);

formulaButton.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){

Example: Linear Regression Dialog

(new RegressionFormulaDialog(formulaField,
dataSet,
RegressionFormulaDialog.TYPE_LM)).show();

}
1)

// Put button in a box for Tayout

Box formulaButtonBox = new Box(BoxLayout.X_AXIS);
formulaButtonBox.add(Box.createHorizontalStrut(5));
formulaButtonBox.add(formulaButton);
formulaButtonBox.add(Box.createHorizontalGlue());

variablesGroup.add(Box.createVerticalStrut(5));
variablesGroup.add(formulaButtonBox);
variablesGroup.add(Box.createVerticalStrut(5));

// bottom spacer
modeTPage.add(new SplusWideBoxFiller(10));

/* Results page */

JPanel resultsPage = new JPanel();
tabbedPane.addTab("Results", resultsPage);

Box resultsColumnOne = new Box(BoxLayout.Y_AXIS);
Box resultsColumnTwo new Box(BoxLayout.Y_AXIS);

resultsPage.setlLayout(new BoxLayout(resultsPage,
BoxLayout.X_AXIS));

resultsPage.add(resultsColumnOne);

resultsPage.add(resultsColumnTwo);

// Printed Results group
SplusGroupPanel printedResultsGroup =
new SplusGroupPanel("Printed Results™);
resultsColumnOne.add(printedResultsGroup);
SplusCheckBox shortOutput = new
SplusCheckBox("Short OQutput™, ’S’);

427

Chapter 10 Spotfire S+ Dialogs in Java

printedResultsGroup.add(shortQutput);
funcInfo.add(shortOutput, "print.short.p™);

longOutput = new SplusCheckBox("Long Output"”, ’"L’);
TongOutput.setValue("T");
printedResultsGroup.add(longOutput);
funcInfo.add(longOutput, "print.long.p");

SplusCheckBox anovaTable = new
SplusCheckBox("ANOVA Table"™, *A’);

printedResultsGroup.add(anovaTable);

funcInfo.add(anovaTable, "print.anova.p™);

correlationMatrix = new
SplusCheckBox("Correlation Matrix of Estimates”,
'C’);
printedResultsGroup.add(correlationMatrix);
funcInfo.add(correlationMatrix, "print.correlation.p™);

// Disable correlationMatrix if no Long Qutput

longOutput.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){
correlationMatrix.setEnabled(
longOutput.getValue().equals("T"));
}
s

// spacer

resultsColumnOne.add(new SpTlusBoxFiller());

// Saved Results group

SplusGroupPanel savedResultsGroup = new
SpTusGroupPanel("Saved Results");

resultsColumnTwo.add(savedResultsGroup);

SplusDataSetComboBox saveResultsIn = new

SplusDataSetComboBox("Save In"™, "I”);
saveResultsIn.setValue("");

428

Example: Linear Regression Dialog

savedResultsGroup.add(saveResultsIn);
funcInfo.add(saveResultsIn, "save.name", true);

SplusCheckBox saveFittedValues = new
SplusCheckBox("Fitted Values™, 'F’);

savedResultsGroup.add(saveFittedValues);

funcInfo.add(saveFittedValues, "save.fit.p");

SplusCheckBox saveResiduals = new
SplusCheckBox("Residuals", 'R’);

savedResultsGroup.add(saveResiduals);

funcInfo.add(saveResiduals, "save.resid.p");

// spacer

resultsColumnTwo.add(new SplusBoxFiller());

/* Plot page */

JPanel plotPage = new JPanel();
tabbedPane.addTab("Plot", plotPage);

Box plotColumnOne = new Box(BoxLayout.Y_AXIS);
Box plotColumnTwo = new Box(BoxLayout.Y_AXIS);

plotPage.setlLayout(new BoxLayout(plotPage,
BoxLayout.X_AXIS));

plotPage.add(plotColumnOne);

plotPage.add(plotColumnTwo);

// Which Plots group

SplusGroupPanel whichPlotsGroup =
new SplusGroupPanel("Plots");
plotColumnOne.add(whichPlotsGroup);

SplusCheckBox plotResidVsFit = new
SplusCheckBox("Residuals vs Fit"™, °*R’);

whichPlotsGroup.add(pTotResidVsFit);

funcInfo.add(plotResidVsFit, "plotResidVsFit.p");

429

Chapter 10 Spotfire S+ Dialogs in Java

SplusCheckBox plotSqrtAbsResid = new
SplusCheckBox("Sqrt Abs Residuals vs Fit", ’Q’);

whichPTotsGroup.add(plotSqrtAbsResid);

funcInfo.add(plotSqrtAbsResid, "plotSqrtAbsResid.p");

SplusCheckBox plotResponseVsFit = new
SplusCheckBox("Response vs Fit"™, "P’);

whichPlotsGroup.add(plotResponseVsFit);

funcInfo.add(plotResponseVsFit, "plotResponseVsFit.p");

SplusCheckBox plotQQ = new
SplusCheckBox("Residuals Normal QQ", ’Q’);

whichPlotsGroup.add(plotQQ);

funcInfo.add(plotQQ, "plotQQ.p");

SplusCheckBox plotRFSpread = new
SplusCheckBox("Residual-Fit Spread", ’S’);

whichPlotsGroup.add(plotRFSpread);

funcInfo.add(plotRFSpread, "plotRFSpread.p");

SplusCheckBox plotCooks = new
SpTusCheckBox("Cook’s Distance™, °C’);

whichPlotsGroup.add(plotCooks);

funcInfo.add(plotCooks, "plotCooks.p");

plotPartialResid = new SplusCheckBox("Partial Residuals",
P

whichPTotsGroup.add(plotPartialResid);

funcInfo.add(plotPartialResid, "plotPartialResid.p");

// spacer

plotColumnOne.add(new SplusBoxFiller());

// Options group
SplusGroupPanel plotOptionsGroup = new

SplusGroupPanel("Options™);
plotColumnTwo.add(plotOptionsGroup);

430

Example: Linear Regression Dialog

SplusCheckBox optionIncludeSmooth = new
SplusCheckBox("Include Smooth™, ’*M’);
optionIncludeSmooth.setValue("T");
plotOptionsGroup.add(optionIncludeSmooth);
funcInfo.add(optionIncludeSmooth, "smooths.p");

SplusCheckBox optionIncludeRugplot = new
SplusCheckBox("Include Rugplot™, ’G’);

plotOptionsGroup.add(optionIncludeRugplot);

funcInfo.add(optionIncludeRugplot, "rugplot.p");

SplusTextField optionNumberId = new
SplusTextField(

"Number of Extreme Points to Identify:", ’X’);
optionNumberId.setValue("3");
plotOptionsGroup.add(optionNumberlId);
funcInfo.add(optionNumberId, "id.n");

// Partial Residual Plot Options group

SplusGroupPanel partialResidualOptionsGroup = new
SplusGroupPanel("Partial Residual Plot Options™);
plotColumnTwo.add(partialResidualOptionsGroup);

includeFitPartialResid = new SplusCheckBox(

"Include Partial Fit", °F’);
includeFitPartialResid.setEnabled(false);
partialResidualOptionsGroup.add(includeFitPartialResid);
funcInfo.add(includeFitPartialResid, "plotPartialFit.p");

rugplotPartialResid = new SplusCheckBox(

"Include Rugplot"™, ’T’);
rugplotPartialResid.setEnabled(false);
partialResidualOptionsGroup.add(rugplotPartialResid);
funcInfo.add(rugplotPartialResid,

"rugplotPartialResid.p");

scalePartialResid = new
SplusCheckBox("Common Y-axis Scale");

scalePartialResid.setValue("T");

scalePartialResid.setEnabled(false);

431

Chapter 10 Spotfire S+ Dialogs in Java

432

partialResidualOptionsGroup.add(scalePartialResid);
funcInfo.add(scalePartialResid, "scalePartialResid.p");

// Enable options only when plotPartialResid

plotPartialResid.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){
boolean enableState =
plotPartialResid.getValue().equals("T");
includeFitPartialResid.setEnabled(enableState);
rugplotPartialResid.setEnabled(enableState);
scalePartialResid.setEnabled(enableState);

1)

// spacer

plotColumnTwo.add(new SplusBoxFiller());

/* Predict page */

JPanel predictPage = new JPanel();
tabbedPane.addTab("Predict", predictPage);

Box predictColumnOne = new Box(BoxLayout.Y_AXIS);
Box predictColumnTwo new Box(BoxLayout.Y_AXIS);

predictPage.setlLayout(new BoxLayout(predictPage,
BoxLayout.X_AXIS));

predictPage.add(predictColumnOne);

predictPage.add(predictColumnTwo);

// New data field has no group
SplusGroupPanel predictNewDataGroup = new
SplusGroupPanel("");

predictColumnOne.add(predictNewDataGroup);

SplusDataSetComboBox predictNewData = new
SplusDataSetComboBox("New Data™, 'N’);

Example: Linear Regression Dialog

predictNewData.setValue("");
predictNewDataGroup.add(predictNewData);
funcInfo.add(predictNewData, "newdata");

// Save group

SplusGroupPanel predictSaveGroup = new
SplusGroupPanel("Save");
predictColumnOne.add(predictSaveGroup);

SplusDataSetComboBox predictSaveln = new
SplusDataSetComboBox("Save In"™, "I”);
predictSavelIn.setValue("");
predictSaveGroup.add(predictSaveln);
funcInfo.add(predictSaveln, "predobj.name", true);

SplusCheckBox predictSavePredictions = new
SplusCheckBox("Predictions™, 'P’);

predictSaveGroup.add(predictSavePredictions);

funcInfo.add(predictSavePredictions, "predict.p");

SplusCheckBox predictSaveConfInt = new
SplusCheckBox("Confidence Intervals™, 'C’);

predictSaveGroup.add(predictSaveConfInt);

funcInfo.add(predictSaveConfInt, "ci.p");

SplusCheckBox predictSaveStdError = new
SplusCheckBox("Standard Errors™, °S’);

predictSaveGroup.add(predictSaveStdError);

funcInfo.add(predictSaveStdError, "se.p");

// spacer

predictColumnOne.add(new SplusBoxFiller());

// Options group
SplusGroupPanel predictOptionsGroup = new

SplusGroupPanel ("Options™);
predictColumnTwo.add(predictOptionsGroup);

433

Chapter 10 Spotfire S+ Dialogs in Java

SplusTextField predictConflLevel = new
SplusTextField("Confidence Level", ’L’);

predictConflLevel.setValue("0.95");

predictOptionsGroup.add(predictConflLevel);

funcInfo.add(predictConfLevel, "conf.level™);

// spacer

predictColumnTwo.add(new SplusBoxFiller());

// add center panel

setCenterPanel (tabbedPane);

// Redefine isComplete() to check for required arguments.
public boolean isComplete() {

return (warnIfEmpty(dataSet) &&
warnIfEmpty(formulaField));

434

USER-DEFINED HELP

Introduction to Creating Help Files in Windows 436
Required Software and Scripts 438
Downloading and Running Cygwin 438

Downloading and Running HTML Help Workshop 439
Creating, Editing, and Distributing a Help File in

Windows 440
Step 1: Creating the Help File 440
Step 2: Editing the Help File 441
Step 3: Editing and Running the Script 442
Step 4: Checking the .chm File 445
Step 5: Distributing the .chm File 445
Errors 445

Introduction to Creating Help Files in UNIX 447
Creating, Editing, and Distributing a Help File

in UNIX 449
Step 1: Creating the Help File 449
Step 2: Copying the Help File to a “Clean” Directory 450
Step 3: Running the CHAPTER Utility 450
Step 4: Editing the Help File 450
Step 5: Running Splus make install.help 451
Step 6: Viewing the Help File 453
Step 7: Distributing the Help File 453

Common Text Formats 454
Contents of Help Files 456
Descriptions of Fields 456
Special Help Files 470

435

Chapter 11 User-Defined Help

INTRODUCTION TO CREATING HELP FILES IN WINDOWS

When a Spotfire S+ function is made available system-wide, a help

file should always accompany it. Without a help file, use of the
function is likely to be limited to those in close contact with the
person who wrote it.

Note

(Solaris/Linux

)

Creating Help using this system is deprecated as of Spotfire S+ 8.1.

Rather than using the prompt command and SGML to create Help, We recommend using the

Spotfire S+ Packages system, because it bundles your functions, data sets, C code, and help files in
a more systematic way.

For details, refer to the Guide to Packagesin your SHOME/help (Windows®) or SHOME/doc

directory.

E? 5-PLUS Language Reference

10 x|

e = & o

Hide Back Fonward Refresh Frint Options
Contents Index | Search | importData 3-PLUIS Language Feference
Type in the kewword to find:

I\mpnrlDald |mp0l1: Data

o DESCRIPTION:

includetlewClass
include0rnelClass
index. ravweal
inferClassRep
infertethodsSource
info

inherits

initialize

initialize. corStruct
initialize. glgStruct
initialize. Ime S truct
initialize. reStruct
initialize. warFunc
initialized —
initS emantic
inputiaiting
ingert.col

insert. row

inspect

integer

integrate
interaction
interaction.plot
interactive
interfacetdetaM ame
Interp

Intersect

intervals
intervals. gls
intervals.Ime
intervals. ImList 4|

Dizplay

Import data from a file or database into a data frame.
USAGE:

importData(file, type="", keep=character (0), drop=character (0},
colMNames=character (0) , rowNamesCol=-1,
filter=character (0), format=character (0],
delimiter=<<see below:>», startCol=1, endCol=-1,
startRow=1, endRow=-1, pageMNumber=-1, collNameRow=-1
server="", user="", password="", database="",
tabhle="", ztringsisFactors=<<see helow>>, sortFactorlLewvel=s=T,
wvaluelLsbelisNurbher=F, centuryCutoff=1930,
separatelelimiters=logical(0) ,
odbcConnection=character (0) ,
odbo3glouery=character (0] , readlisTable=F,
colNamesUppercase=F, time.in.format=character (0],
decimal.point = ".", thousands.separator = ")

OPTIONAL ARGUMENTS:

file

a character string specifying the name of the file to import. If the file has a known suffix
[see the type argument below), S-PLUS assumes the file is of that type. This can be

overridden by providing cype explicitly. The £ile argument is not required if importing frum_lll
o ST o

Figure 11.1: An example of a compiled HTML Help project, splus.chm.

436

Introduction to Creating Help Files in Windows

Starting with Spotfire S+ 6, the S Language version 4 provided tools
for creating and processing SGML (Standard Generalized Markup
Language) help files to document your user-defined Spotfire S+
functions. Using the built-in functions available in your Spotfire S+
installation plus two other downloaded programs, you can create and
distribute user-defined help files in .chm format, a compiled form of
HTML. The HTML Help (.chm) format is the online help standard
from Microsoft used in Spotfire S+. Figure 11.1 shows an example of
the HTML Help viewer displaying splus.chm, the Spotfire S+
Language Reference.

The Spotfire S+ prompt function generates a help file outline for any
Spotfire S+ function or data object you specify. The outline includes
the correct syntax for the function, as well as the current definition of
the function, and headings under which you can supply the following
information:

* What the function does

* A brief description of the function

* A description of each required and optional argument
* A description of the value returned by the function

* Side effects, which are any effects of the function besides the
return of a value

* The method behind the function; that is, how the function
works

* References to any relevant external literature
* Cross-references to related online help files

* One or more Keywords (used by the Spotfire S+ help system
in assembling its Category and Function menus)

The following sections guide you through the process of generating
an HTML Help help .chm file and distributing it with your Spotfire
S+ functions. We include descriptions and locations of the software
you need to download, the elements of the build script, and the
components used to create, edit, view, and distribute your customized
help files on a Windows platform.

437

Chapter 11 User-Defined Help

Required Before you can create HTML Help for your Spotfire S+ functions,
Software and you need to have the following software installed:

Scripts 1. Cygwin The Cygwin tools are ports of the popular GNU
development tools for Microsoft Windows. It is a UNIX
environment for Windows that consists of two parts:

+ cygwinl.dll, which acts as a UNIX emulation layer
providing substantial UNIX API functionality.

* A collection of tools ported from UNIX which provide
UNIX/ Linux® look and feel.

2. HTML Help Workshop This is a help authoring tool that
provides an easy-to-use system for creating and managing

help projects.

3. The BuildHelpFiles directory This contains the build
scripts used for converting the SGML files to HTML, creating
the index and TOC, and compiling the HTML to produce a
.chm file and generating the .chm. It is included in your
Spotfire S+ installation and is located in:

SHOME\help\BuildHelpFiles

Downloading After you create and edit your Spotfire S+ SGML help files, use
and Running Cygwin to run the scripts that convert your SGML files into HTML
format, create an index and table of contents (TOC), and fix broken

Cygwin links before you create the .chm file. A free download of Cygwin is
available from:
www.cygwin.com
Notes

In the Select Install Root Directory dialog, the Cygwin default setting for Default Text File
Type is UNIX. Be sure to set the Default Text File Type to DOS when installing to a Windows
system.

Because the full Cygwin installation requires a large amount of disk space, by default the
Cygwin Setup program instals only the minimal base packages. In the Select Packages dialog,
be sure to select the GNU Bourne Again Shell (bash) for installation.

Refer to the Cygwin web site and installation instructions for more information.

438

Downloading
and Running
HTML Help
Workshop

Introduction to Creating Help Files in Windows

To use Cygwin from within a bash shell, double-click the Cygwin
icon on your desktop.

To use Cygwin from a Windows Command Prompt, you must first
add the cygwin\bin directory to your path:

1. Right-click the My Computer icon on your desktop and
select Properties.

2. Select the Advanced tab.
Click the Environment Variables button.

4. In the System variables group, select the Path variable and
click Edit. If there is no Path variable, click New and enter
Path for the new variable name.

5. Edit the value of the Path environment variable so that the
full path to cygwin\bin is included, for example:

c:\cygwin\bin;%system%j;c:\foobar

If there are other directories you want to search first, make sure they
are positioned ahead of cygwin\bin in the path variable.

After your SGML files have been converted to HTML and an index
and TOC have been generated, these files are compiled into a single
.chm file, which can be distributed. The required HTML compiler is
component of the Microsoft HTML Help Workshop, available from:

www.msdn.microsoft.com/library/en-us/htmlhelp/html/
hwMicrosoftiTMLHelpDownloads.asp

Choose the defaults for the installation.

439

Chapter 11 User-Defined Help

CREATING, EDITING, AND DISTRIBUTING A HELP FILE IN
WINDOWS

The following is an overview of the process for creating and
distributing user-defined help for Windows:

1. In Spotfire S+, use the prompt function to generate a template
SGML help file. If you need multiple help files, run prompt
once for each file you need.

2. Edit your SGML files with your Windows text editor of
choice.

3. Customize and then run the build_helpchm.cyg script
(either from Cygwin or from a Windows Command Prompt)
to create a .chm file.

4. Double-click the .chm file to view and verify the content.

Distribute the .chm file by copying it to the appropriate
directory.

Repeat steps 2-4 until you are satisfied with the results.

The following sections describe the detailed steps of the entire

process.
Step I: Let’s suppose you create a new Spotfire S+ function named myfunc:
Creatlr.lg the > myfunc <- function(x) return(x * 2)

Help File

Use the prompt function to create a template help file named

myfunc.sgml:

> prompt(myfunc)
created file named myfunc.sgml in the current directory
edit the file according to the directions in the file.

By default, this file is placed in your Spotfire S+ working directory.

To create multiple help files, run prompt for each function or data
object you want to document.

440

Creating, Editing, and Distributing a Help File in Windows

Step 2: Editing Once you have created one or more SGML files, you can edit them

the Help File

in your text editor of choice, such as Notepad or Wordpad. The
following are the first few lines from the template SGML help file for
myfunc:

<ldoctype s-function-doc system "s-function-doc.dtd" [
<lentity % S-OLD "INCLUDE">

1

>

<s-function-doc>

<s-topics>

<s-topic> myfunc </s-topic>

</s-topics>

<s-title>

The first four lines of myfunc.sgml are required in all Spotfire S+
SGML help files. For this reason, we recommend that you always use
prompt to create a template file rather than write your SGML code
from scratch.

The <s-function-doc> tag begins the contents of the help file. The
end tag </s-function-doc> should appear at the end of the file. The
start and end tags for most fields in a Spotfire S+ help file are included
in the template files that prompt creates. If you do not want to include
a particular field in your help file, you can delete the start and end
tags for that field.

The meaning and use of each SGML tag in Spotfire S+ help files is
described in the section Common Text Formats and the section
Contents of Help Files later in this chapter.

Notes

In order to properly deploy your online help such that it can be found via help(myfunc)
within Spotfire S+, you must include at least one keyword in the SGML file. For
example: <s-keyword>dplot</s-keyword>. For details about Spotfire S+ keywords, see
section Keywords on page 466.

The SGML parser cannot handle extremely long lines of text. If the text for a given
section is especially long, be sure to break it into shorter lines. If the parser encounters a
line that is too long, it truncates the help file and inserts the following error message:

Input string too long

441

Chapter 11 User-Defined Help

Step 3: Editing The Spotfire S+ Windows installation places the build_helpchm.cyg

and Running
the Script

script in your SHOME\help\BuildHelpFiles directory. This serves
as a template that you will need to customize for your particular
environment.

To customize the script, we recommend that you leave the original
read-only template file intact and create a writable copy in your
SHOME\help\BuildHelpFiles directory, named for the help
system you are creating (e.g., build_helpchm_myfunc.cyg).

Continuing with the myfunc example from the previous steps, the
following procedure describes the essential script edits required to
build a myfunc.chm file. For more detailed information about each
script setting, refer to the comments in the script template.

Note

As a Cygwin script, build_helpchm.cyg requires that all paths be specified using DOS
short path names with forward slash (/) separators instead of the normal DOS back slash
(\) separators. See examples below.

442

1. Set the path to your Cygwin bin directory. Specify the same
location you added to your path in section Downloading and
Running Cygwin earlier in this chapter, but be sure to use
forward slashes. For example:

CYGWIN_BIN=C:/cygwin/bin

2. Using DOS short name syntax, set the path to the directory
that contains hhc.exe, the Microsoft HTML Help compiler.
For example:

HELPWORKSHOP_DIR="C:/PROGRA~1/HTMLHE~1"

To see the short names, at the Windows Command Prompt
run dir with the /x option. For example:

C:\>dir /x
<DIR> PROGRA~1 Program Files

3. Set the path to the directory where you want the script to
place your output .chm and help.log files. For example:

CHM_DIR=C:/PROGRA~1/INSIGH~2/splus80/users/myname

10.

Creating, Editing, and Distributing a Help File in Windows

Specify a base filename for the .chm file you are building.
The script will automatically add the .chm filename
extension. For example:

CHM_NAME=myhelp

Specify a header to appear in the upper-right corner of each
help topic in the .chm file. For example:

HEADER="myfunc Language Reference"

Specify the complete filename for the help topic you want
displayed by default when your .chm file is first opened in the
HTML Help viewer. For example:

DEFAULTFILE=myfunc.html

Note that the base filename of an .sgm file can change when

converted to an HTML file. If you get a compilation error
from HTML Help Workshop, make sure the default file you
specify is in your __ HTML directory.

The build_helpchm.cyg script template includes the
following Cygwin command to set the current directory as a
short DOS path with forward slashes:

CURRENT_DIR="pwd | cygpath -ms -f -°

Set the path to the directory that contains the .chm build
tools. For example:

CHM_TOOLS=$CURRENT_DIR

If the .chm file you are building contains links to the Spotfire
S+ Language Reference (splus.chm), set
SEARCH_STOPIC_LIST=T. Otherwise, set it to F as follows:

SEARCH_STOPIC_LIST=F
STOPIC_LIST_SPLUS=$CHM_TOOLS/stopicList.out

Do not remove or comment out these two lines.

If you want your .chm file to include .html files that are not
being converted from SGML during this build, set
GUI_HELP_DIR to the directory where the .html files are
located. If your external .html (help topic) files call any .htm
(popup) files, set HAVE_HTM_FILES=T. For example:

443

Chapter 11 User-Defined Help

444

11.

12.

13.

14.

GUI_HELP_DIR=$CHM_DIR/htm1_include
HAVE_HTM_FILES=T

If you do not want to include external .html or .htm files,
comment out these two lines.

Set the path to the directory that contains the Spotfire S+
SGML help files you have prepared for this build. Also,
ensure that HTML_DIR_ROOT is set to $SGML_DIR. For example:

SGML_DIR=$CHM_DIR/sgml
HTML_DIR_ROOT=$SGML_DIR

Do not set SGML_DIR to a path that include directory names
that begin with a period (e.g., a path under your .Data
directory). Doing so produces HTML Help Workshop errors.

The last executable line of the script builds the .chm file. In
most cases you do not need to edit this line.

Save your build_helpchm_myfunc.cyg script in your
SHOME\help\BuildHelpFiles directory.

To execute your script, either from Cygwin or a Windows
Command Prompt, cd to the SHOME\help\BuildHelpFiles
directory and enter:

bash build_helpchm_myfunc.cyg
If the build is successful, a success message appears in your

command window and the .chm and help.log files are
written to your CHM_DIR.

After a successful build, the SGML_DIR specified in your
build_helpchm.cyg script will contain the following subdirectories:

__Shelp contains temporary working versions of your .sgml
help files renamed with an .sgm file extension.

__Hhelp contains the converted .html files that are input to
the HTML Help Workshop, as well as the other files used in
the compilation: .hhc (contents), .hhk (index), and .hhp
(project).

Note that __Shelp and _ Hhelp are temporary working directories
that are removed and recreated each time you run your

build_helpchm.cyg script.

Step 4:
Checking the
.chm File

Step 5:
Distributing
the .chm File

Errors

Creating, Editing, and Distributing a Help File in Windows

Go to the target directory for your .chm file (in the example above,
C:\Documents and Settings\myname\My Documents\
Spotfire S+ Projects). Double-click the .chm file. You should see a
help topic similar to the one in Figure 11.1.

Check the various components of your output .chm:
+ Title of the HTML Help Viewer
+ TOC
* Index
* Default help file

* Header string, located in the upper-right and the title bar of
the HTML Help Viewer window

* Any other components specified in the build_helpchm.cyg
script (e.g., included .html and .htm files)

If you want to make any changes to the .chm file, edit your original
SGML files and rebuild the .chm until you are satisfied with the
results.

When the .chm file is ready for deployment, copy it to the directory
that contains the function or functions you are deploying, for
example, SHOME\library\myfunc.

Alternatively, you can you can copy it to your SHOME\cmd
directory, the same location as the Spotfire S+ Language Reference
(splus.chm) and the Spotfire S+ Graphical User Interface (gui.chm)
help files.

To access your help file, enter the following the Spotfire S+
command:

> help(myfunc)

Spotfire S+ searches through all attached libraries to find the help file
for myfunc, then displays it in your HTML Help viewer.

The help.log file (written to the same directory as the output .chm
file) logs each step executed by the build_helpchm.cyg script. Refer
to this file if you encounter errors.

445

Chapter 11 User-Defined Help

For more detailed information on the structure of the Spotfire S+
SGML help files, refer to section Common Text Formats on page
454.

446

Introduction to Creating Help Files in UNIX

INTRODUCTION TO CREATING HELP FILES IN UNIX

When a Spotfire S+ function is made available system-wide, a help
file should always accompany it. Without a help file, use of the
function is likely to be limited to those in close contact with the
person who wrote it.

Starting with Spotfire S+ 5.1, the S Language version 4 provides the
flexibility of creating and editing your own SGML (Standard
Generalized Markup Language) help files to document your user-
defined functions in Spotfire S+. Using the built-in functions
distributed in your Spotfire S+ installation, you can use and distribute

help ViajavaHelpTM, the help system from Sun Microsystems
included with Spotfire S+ 8. JavaHelp is used to display the
importData help file, as shown in Figure 11.2.

=] 3
RIRIEIEY
T N =
Dxmlwv = |Import Data 2
Rz doune | DESCRIPTION:
D call_s Import data from a file or database into a data frame.
Dydoube |USAGE:
D executesql
[jexpoana ;;importData(fi1e, type="", keep=character(0), d

colMNames=character(0), rowNamesCol=

[} importbata filter=character(0), format=charact

Dis.double delimiter=«<<see helows>, startlol=1
[is.loaded startRow=1l, endRow=-1, pageMumber=-

o server="", user="", password="", da
[his.single : table="", stringsAsFactors=<<sae he
Djava.xml.string : valuelabelAsNumber=F, centurylutoff
[library separateDe'I'!m'iters='Iog'ica'l(0),

i odbcConnection=character(0l),

[module 5 odbcSqlQuery=character(0), readAsTa

D sd5.CONtents

colMNamesUpperCase=F, time.din.format
", thousands.seps
]

4]
[4]

I ey

Figure 11.2: JavaHelp is used to invoke the importData help file in Spotfire S+.

447

Chapter 11 User-Defined Help

448

The Spotfire S+ function prompt generates a help file outline for any
Spotfire S+ function or data object you specify. The outline includes
the correct syntax for the function, as well as the current definition of
the function, and headings under which you can supply the following
information:

What the function does.
A brief description of the function.

A description of each argument, with the option of specifying
both required and optional arguments.

A description of the value returned by the function.

Side effects, which are any effects of the function besides the
return of a value.

The method behind the function; that is, how the function
works.

Any references to the literature.
Cross-references to other help files.

Keywords. Keywords are used by the Spotfire S+ help system
in assembling its Category and Function menus.

The following sections describe the steps involved in creating, editing,
viewing, and distributing your customized help files.

Creating, Editing, and Distributing a Help File in UNIX

CREATING, EDITING, AND DISTRIBUTING A HELP FILE IN

UNIX

Step I:
Creating the
Help File

Creating a help file for distribution in Spotfire S+ 6 for UNIX
involves the use of Spotfire S+ commands and commands from a
UNIX prompt. In general, the steps are as follows:

1. Use the prompt function to generate a SGML file in your
working directory.

2. Copy the SGML file to a new directory.

3. Run Splus CHAPTER on this directory to create a Spotfire S+
chapter.

4. Edit the SGML file with your editor of choice.

5. Run Splus make install.help to install the file so it can be
accessed by JavaHelp.

6. Launch Spotfire S+, attach the Spotfire S+ chapter, and test
the help file by typing

> help(myfunc)

Repeat steps 4-6 until you are satisfied with the results. If you have a
number of files you want to add to your distribution, you can also run
this process on a number of help files at once.

Your working directory may change, but as long as you attach the
chapter that contains your help files, you can always access them.

To illustrate this process, we create a sample help file, and detail each
of the steps involved in distributing it in the following sections.

Let’s suppose you create a new Spotfire S+ function named myfunc:

> myfunc <- function(x) return(x * 2)
Use the prompt function to create a template help file named
myfunc.sgml:

> prompt(myfunc)
created file named myfunc.sgml in the current directory
edit the file according to the directions in the file.

449

Chapter 11 User-Defined Help

Step 2:
Copying the
Help File to a
“Clean”
Directory

Step 3:
Running the
CHAPTER Utility

Step 4: Editing
the Help File

450

By default, this file is placed in your Spotfire S+ working directory. If
you have a number of help files to create, use prompt for each
function.

The next step is to copy the SGML file(s) to a directory that will
become a Spotfire S+ chapter. This chapter becomes the chapter you
attach in your Spotfire S+ session to access your user-defined help
files.

From a UNIX prompt, create a new directory and copy the SGML
files from the working directory:

mkdir myfuncdir
cp myfunc.sgml myfuncdir

If you have a number of help files, type
cp *.sgml myfuncdir

to copy all the SGML files to the directory. Change directories to
myfuncdir and proceed to the next step.

As mentioned in the previous step, the CHAPTER utility must be run on
the directory so myfuncdir can be recognized as a Spotfire S+
chapter:

Splus CHAPTER

This process creates the chapter’s .Data directory, which includes the
__Shelp and __Hhelp directories that are required in step 5 to install
the files so they can be accessed by JavaHelp.

You can view and edit the file in your text editor of choice, such as
emacs or vi. For example, if you want to invoke the emacs editor to
edit your file, type the following command:

emacs myfunc.sgml

Your skeleton help file should contain text similar to the following:

<ldoctype s-function-doc system "s-function-doc.dtd" [
<lentity % S-OLD "INCLUDE">

]

>

<s-function-doc>

Step 5:
Running

Splus make
install.help

Creating, Editing, and Distributing a Help File in UNIX

{s-topics>

<s-topic> myfunc </s-topic>
</s-topics>

<s-title>

The first four lines of myfunc.sgml are required in all SGML help
files for Spotfire S+. For this reason, we recommend that you use
prompt to create a template file rather than write SGML code from
scratch.

The <s-function-doc> tag begins the contents of the help file; you
should see the end tag </s-function-doc> at the end of the file. The
start and end tags for most fields in a Spotfire S+ help file are
included in the skeleton files that prompt creates. If your function does
not require a certain field in its help file, you can delete the
corresponding tags.

If the text for a given section is particularly long, be sure to start
sentences or major phrases on new lines. The SGML parser tends to
break when a single line contains too much text. When this occurs,
the help file is truncated at the point where the parser breaks and an
error message is inserted:

Input string too long

There is a great deal of information on the meaning and use of the
SGML tags in Spotfire S+ help files, and this is described at length in
the section Common Text Formats and the section Contents of Help
Files that follow. These sections have been omitted here for brevity.

Now that the SGML files have been edited, view them in Spotfire S+
to verify they have the proper content and formatting. This requires
another Spotfire S+ utility to be run, so at a UNIX prompt, type

Splus make install.help

Running the SpTus make install.help utility invokes two other
processes:

* HINSTALL: This copies myfunc.sgml to .Data/__Shelp/
myfunc.sgm and translates this .sgm file to HTML and stores
it as .Data/__Hhelp/myfunc.html. Note the suffix is .sgm
and not .sgml, which preserves the original file.

451

Chapter 11 User-Defined Help

452

* BUILD_JHELP: This creates the _ Jhelp directory and
populates the directory with the XML files required to catalog
and dispatch JavaHelp. These XML files are described in

Table 11.1.

Table 11.1: Files within the __Jhelp directory.

File

Description

*hs

The help set file, which acts as an
identifier to JavaHelp.

*Index.xml

The index file, which lists all the
topics in the help set and is used as
the text for the Index tab.

*TOC.xml

The Table-of-Contents file, which
lists the topics in the help set by
category and is used as the text for
the Contents tab.

*Map.jhm

The mapping file, which maps
topic names to specific URLs. This
is the most important file in the
help set; both the Index file and the
TOC file rely on it.

mapsHelpSearch

A directory containing the files
used by JavaHelp’s full text search
facility on the Search tab.

This process also reveals any errors in SGML and warns you if there
are any deficiencies. If the SpTus make install.help should fail in
this event, edit your SGML file before proceeding.

Now that the help files can be accessed by JavaHelp, you can view
your files in Spotfire S+ and determine if any changes need to be

made.

Step 6:
Viewing the
Help File

Step 7:
Distributing
the Help File

Creating, Editing, and Distributing a Help File in UNIX

To view the edits in your help file, first launch Spotfire S+. Then,
attach the chapter and invoke your help file from the Commands
window:

> attach("myfuncdir")
> help(myfunc)

You should see the help file for myfunc displayed in the help viewer,
and you can check for any formatting or content errors. If you need to
correct anything, repeat steps 4 through 6 by editing the file, running
Splus make install.help, and viewing the file.

You can modify your S.init file to attach the chapter where you
created your help files each time you start Spotfire S+. You can now
distribute the files as necessary, which you could package as a
compressed archive or self-extracting executable. A utility such as
compress or gzip could be used for this purpose.

The remaining sections in this chapter are devoted to the use and

format of SGML tags in Spotfire S+ help files, which are necessary to
understand the editing phase of step 4. The same tags apply to SGML
help files whether they are destined for Windows or UNIX platforms.

453

Chapter 11 User-Defined Help

COMMON TEXT FORMATS

Table 11.2 lists the most common text formats for Spotfire S+ SGML
files. Note that this list is not exhaustive; in general, there might be
many tags to format text in a particular way. We suggest using tags
with names that describe the formats themselves. Thus, instead of
using <tt> and </tt> for code, we encourage you to use
<s-expression> and </s-expression> (or <code> and </code> to

save typing).
Table 11.2: Common text formats in Spotfire S+ SGML files.

Format SGML Tags Notes

Fixed-width code font | <s-expression>, </s-expression> | Although <tt> and </tt> still
<code>, </code> exist in some older help files,
<tt>, </t please use the other tags instead.

Preformatted text <pre>, </pre> This is usually for code samples

that extend over multiple lines.
With <pre>, you are responsible
for line breaks and blank space,
as SGML does no formatting for

you.
Ttalics <GGt>, /it
Emphasis ,
Bold <bf>, </bf>
Lists <descrip>, </descrip> The <descrip> and <enum> tags
Enumerated lists <enum>, </enum> create the lists. Use <item> and
Gitem>, </item> </item>, or <tag> and </tag>, to
<tag>, </tag> format the individual list

elements. See the n1minb help
file for an example.

454

Common Text Formats

Table 11.2: Common text formats in Spoifire S+ SGML files. (Continued)

Format

SGML Tags

Notes

Line breaks

To include a blank line in a help
file,
 must be used twice:
once for the text line and once
for the blank line. The
 tag is
not needed in preformatted
sections.

Paragraph breaks

<p>

This is the recommended tag for

including blank lines in a help
file.

455

Chapter 11 User-Defined Help

CONTENTS OF HELP FILES

Descriptions of FEach Spotfire S+ help file is composed of titled sections that appear in
Fields the order listed in Table 11.3. We discuss each of these sections
below.

Table 11.3: Titled sections in Spotfire S+ engine help files. Titles in all capitals appear in a formatted help

file. Titles in lowercase letters do not appear in a help file, but the information in those sections do.

Section Title Quick Description SGML Tags

Topic The name of the function. <s-topics>
</s-topics>

Title The title that appears at the top of a formatted <s-titled>

help file. </s-title>

DESCRIPTION A short description of the function. <s-description>
</s-description>

USAGE The function call with all of its arguments. {s-usage>
</s-usage>

REQUIRED Descriptions of arguments that are required by | <s-args-required>

ARGUMENTS the function. {/s-args-required>

OPTIONAL Descriptions of arguments that are optional. <s-args-optional>

ARGUMENTS </s-args-optional>

VALUE The return value from the function. <s-value>
</s-value>

SIDE EFFECTS Side effects from the function. {s-side-effects>
</s-side-effects>

GRAPHICAL A description of graphical interactions expected | See below.

INTERACTION of the user.

CLASSES A description of the classes the function is See below.

applicable to, if it is a default method.

456

Contents of Help Files

Table 11.3: Titled sections in Spotfire S+ engine help files. Titles in all capitals appear in a formatted help
file. Titles in lowercase letters do not appear in a help file, but the information in those sections do. (Continued)

Section Title Quick Description SGML Tags
WARNING Anything the user should be warned about See below.
when using the function.
DETAILS Descriptions of algorithmic details and <s-details>
implementation issues. {/s-details>
BACKGROUND Background information on the function or See below.
method.
NOTE Any information that does not fit into the above | See below.
categories.
REFERENCES Available texts and papers the user can refer to | See below.
for additional information.
BUGS Descriptions of known bugs in the function. See below.
SEE ALSO Links to related Spotfire S+ functions. {s-see>
<{/s-see>
EXAMPLES Coded Spotfire S+ examples. <s-examples>
</s-examples>
Keywords A list of keywords that place the help file in the | <s-keywords>
Contents topics of the help system. </s-keywords>
Topic The topic section contains the function name wrapped in the tags

<s-topic> and </s-topic>. In the myfunc.sgml example, the topic

looks like:

<s-topics>
<s-topic> myfunc </s-topic>
</s-topics>

457

Chapter 11 User-Defined Help

Title

DESCRIPTION

USAGE

458

In help files containing multiple functions, each function name should
be wrapped in the <s-topic> tags. For example, the following is an
excerpt from the common SGML file for cor and var:

<s-topics>
<{s-topic>cor</s-topic>
{s-topic>var</s-topic>
</s-topics>

The topic section is not visible in a formatted help file, but is used to
index the file in the help system.

The title section contains the title that appears at the top of a
formatted help file. For example, the title from the coxph SGML file
is:

<s-title>
Fit Proportional Hazards Regression Model
</s-title>

All words in a title should begin in uppercase letters. For clarity,
avoid Spotfire S+ jargon such as function names and class names in
the title section. A title should be short enough to fit on one line in the

help file.

This section contains a short description of the function. The
description in the coxph SGML file is:

<s-description>

Fits a Cox proportional hazards regression model.

Time dependent variables, time dependent strata, multiple
events per subject, and other extensions are incorporated
using the counting process formulation of Andersen and
Gil1.

</s-description>

This section includes the function call with all of its arguments. You
should list optional arguments with the form name=defauit.If a
default argument is complicated, use the form name=<<see below>>
instead and describe the default in the argument’s section of the
SGML file. Because the angle brackets < and > signify tags in SGML,

REQUIRED
ARGUMENTS

Contents of Help Files

however, it is safest to type them as &1t; and > when tags are not
intended. Thus, the form for a complicated default is
name=&1t;&1t;see belowdgt;>.

If the help file describes more than one function, the usage for each
function should be listed on separate lines. If the argument list for a
function is more than one line long, subsequent lines should be
indented to one space past the opening parentheses. Use spaces to
indent each line instead of tabs. For example, the following is the
usage section from the SGML file for 1m:

<s-usage>

<s-old-style-usage>

Im(formula, data=&1t;&1t;see belowdgt;>,
weights=&1t;&1t;see belowdgt;>,
subset=&1t;&1t;see below>>, na.action=na.fail,

method="qr", model=F, x=F, y=F, contrasts=NULL, ...)
</s-old-style-usage>
</s-usage>

The tag <s-ol1d-style-usage> preformats the section so that it prints
in a fixed-width font. This also causes newlines and blank lines to be
recognized in the text. Because of the preformatting, no space is
needed around the equals signs for each of the arguments. In
addition, please ensure that the width of each line is no more than 60
characters so that the usage section displays nicely in conveniently-
sized help windows.

This section lists each required argument wrapped in the tags

<s-arg name="name"> and </s-arg>. The first word in the description
of each argument should not be capitalized. For example, the
following excerpt lists the three required arguments from the SGML
file for ifelse:

<{s-args-required>

<s-arg name="test">

logical object. Missing values <s-object>(NA)</s-object>
are allowed.

</s-arg>

<s-arg name="yes">

vector containing values to be returned for elements with
<{s-expression>test</s-expression> equal to
<s-expression>TRUE</s-expression>.

459

Chapter 11 User-Defined Help

OPTIONAL
ARGUMENTS

VALUE

460

</s-arg>

<s-arg name="no">

vector containing values to be returned for elements with
<{s-expression>test</s-expression> equal to
<s-expression>FALSE</s-expression>.

</s-arg>

</s-args-required>

In descriptions of arguments, you should always state whether
exceptional values (NA, NaN, Inf, etc.) are treated specially.

This section lists each optional argument wrapped in the tags

<s-arg name="name"> and </s-arg>. As in the section for required
arguments, the first word in each argument’s description should not
be capitalized, and you should document whether exceptional values
are accepted.

This section describes the return value of the function. The first word
in the description should not be capitalized. Often, the description of
a function’s return value begins with a phrase similar to:

a list containing the following components:

In this case, you can use the tags <s-return-component name="name">
and </s-return-component> to format the individual components of
the return list. The first word in the description for each return
component should not be capitalized. As an illustration, the value
section of the density SGML file is provided below.

<s-value>

a list with two components, <s-expression>x</s-expression>
and <s-expression>y</s-expression>, suitable for giving as
an argument to one of the plotting functions.
{s-return-component name="x">

a vector of <s-expression>n</s-expression> points at which
the density is estimated.

</s-return-component>

{s-return-component name="y">

the density estimate at each <s-expression>x</s-expression>
point.

</s-return-component>

</s-value>

SIDE EFFECTS

GRAPHICAL
INTERACTION

Contents of Help Files

You should include articles in the uncapitalized sentences of the value
section. That is, you should write

a list with two components
instead of simply

list with two components

Side effects of the function (plotting, changing graphics devices,
changing session options, etc.) are described in this section. This is
also the appropriate place to describe the lack of side effects if a user
might expect one. For instance, the fact that many Spotfire S+ editing
functions do not actually change an object can be documented in the
side effects sections of their SGML files.

Any function that updates the object .Random.seed must include the
following message in its side effects section:

The function name causes the creation of the data set
.Random. seed if it does not already exist. Otherwise, the value
of .Random. seed is updated.

If the user is expected to interact with a graphical display, the
interaction is described in this section. Help files that currently
contain this section include burl.tree, hist.tree, and snip.tree.
The graphical interaction section in Spotfire S+ SGML files does not
have a specific tag. Instead, the tags <s-section name="name"> and
</s-section> are used. For example, the following excerpt is from
the hist.tree SGML file.

<s-section name="GRAPHICAL INTERACTION">

This function checks that the user is in split-screen mode.
A dendrogram of <s-expression>tree</s-expression> is
expected to be visible on the current active screen, and a
graphics input device (for example, a mouse) is required.
Clicking the selection button on a node results in the
additional screens being filled with the information
described above. This process may be repeated any number of
times. Warnings result from selecting Teaf nodes. Clicking
the exit button will stop the display process and return the
list described above for the Tast node selected. See
<{s-expression>split.screen</s-expression> for specific
details on graphic input and split-screen mode.
</s-section>

461

Chapter 11 User-Defined Help

CLASSES

WARNING

DETAILS

462

This section lists the classes the function is applicable to, if it is a
default method. Like the graphical interaction section, the classes
section in Spotfire S+ SGML files does not have a specific tag.
Instead, the tags <s-section name="name"> and </s-section> are
used. For example, the classes section in the gamma help file is:

<s-section name="CLASSES">

This function will be used as the default method for classes
that do not inherit a specific method for the function or
for the <tt>Math</tt> group of functions. The result will
retain the class and the attributes. If this behavior is
not appropriate, the designer of the class should
provide a method for the function or for the <tt>Math</tt>
group

</s-section>

Anything the user should be warned about when using the function
should be described here. The warning section in Spotfire S+ SGML
files does not have a specific tag, but uses <s-section name="name">
and </s-section> instead. The following is the warning section from
the gamma help file:

<s-section name="WARNING">
<{s-expression>gamma(x)</s-expression> increases very
rapidly with <s-expression>x</s-expression>. Use
<{s-expression>lgamma</s-expression> to avoid overflow.
</s-section>

Algorithmic details and implementation issues are described in this
section. For example, the details section of the density help file
explains the smoothing algorithm implemented in the function:

<s-details>

These are kernel estimates. For each
<s-expression>x</s-expression> value in the output, the
window is centered on that <s-expression>x</s-expression>
and the heights of the window at each datapoint are summed.
This sum, after a normalization, is the corresponding
{s-expression>y</s-expression> value in the output. Results
are currently computed to single-precision accuracy only.
</s-details>

BACKGROUND

NOTE

Contents of Help Files

Details that apply to only one argument should be part of the affected
argument’s description, and not part of the details section.

Background information on the function or method is described in
this section. The text here should be aimed at those with complete
ignorance on the subject. The background section in Spotfire S+
SGML files does not have a specific tag, but uses

<s-section name="name"> and </s-section> instead. For example,
the background section in the hclust help file provides general
information on clustering algorithms:

<s-section name="BACKGROUND">

Cluster analysis divides datapoints into groups of points
that are "close" to each other. The
<s-expression>hclust</s-expression> function continues to
aggregate groups together until there is just one big
group. If it is necessary to choose the number of groups,
this can be decided subsequently. Other methods (see
{s-expression>kmeans</s-expression>) require that the
number of groups be decided from the start.

<p>

By changing the distance metric and the clustering method,
several different cluster trees can be created from a
single dataset. No one method seems to be useful in all
situations. Single linkage
(<s-expression>"connected"</s-expression>) can work poorly
if two distinct groups have a few "stragglers" between
them.

</s-section>

Anything that does not fit into one of the above categories can be
described in this section. The note section in Spotfire S+ SGML files
does not have a specific tag, but uses <s-section name="name"> and

</s-section> instead. The following is a note from the gamma help
file:

<s-section name="NOTE">

See <s-expression>family</s-expression> for the family
generating function <s-expression>Gamma</s-expression> used
with the <s-expression>glm</s-expression> and
<{s-expression>gam</s-expression> functions. See
<s-expression>GAMMA</s-expression> for the functions

463

Chapter 11 User-Defined Help

REFERENCES

464

related to the gamma distribution:
<{s-expression>dgamma</s-expression> (density),
{s-expression>pgamma</s-expression> (probability),
<{s-expression>qgamma</s-expression> (quantile),
{s-expression>rgamma</s-expression> (sample).
</s-section>

References for functions are listed alphabetically and should follow
The Chicago Manual of Style. The format for a book reference is similar
to:

Venables, W.N. and Ripley, B.D. (1999). Modern Applied
Statistics with S-PLUS (3rd ed.). New York: Springer-Verlag,
Inc.

The format for a journal article is similar to:

Andersen, P. and Gill, R. (1982). Cox’s regression model for
counting processes, a large sample study. Annals of Statistics
10: 1100-1120.

The references section in Spotfire S+ SGML files does not have a
specific tag, but uses <s-section name="name"> and </s-section>
instead. The following is an excerpt from the references in the SGML
help file for density, which cites a number of different works:

<s-section name="REFERENCES">

Silverman, B.W. (1986).

<it>Density Estimation for Statistics and Data
Analysis.</it> London: Chapman and Hall.

<p>

Wegman, E.J. (1972).

Nonparametric probability density estimation.
<it>Technometrics</it> <bf>14</bf>: 533-546.
<p>

Venables, W.N. and Ripley, B.D. (1997)
<it>Modern Applied Statistics with S-PLUS</it> (2nd ed.).
New York: Springer-Verlag.

</s-section>

The tag for paragraph breaks <p> should be used to separate multiple
references. Please try to cite works that are widely available to users.

BUGS

SEE ALSO

EXAMPLES

Contents of Help Files

In this section, you should document any known bugs a user might
encounter while using the function. The bugs section in Spotfire S+
SGML files does not have a specific tag, but uses <s-section
name="name"> and </s-section> instead. For example, the following
is a bug from the SGML help file for subplot:

<s-section name="BUGS">

If you request it to draw outside the figure region,
<s-expression>subplot</s-expression> gets very confused
and typically puts the subplot across the whole region.
</s-section>

This section provides links to related functions. In general, any
function you reference in the text of a help file should be linked in
this section. The name of each function is wrapped in the tags
<s-function name="f7Tlename"> and </s-function>; this provides
the hyperlinks in the formatted help file. The fi7ename is the name of
the installed help file, which is the linked function followed by . sgm.
For example, the links in the SGML file for subplot are:

{s-see>

<s-function name="symbols.sgm">symbols</s-function>,
<s-function name="locator.sgm">locator</s-function>,
<s-function name="par.sgm">par</s-function>.
</s-see>

Functions that rely on the self-doc mechanism for their help files
cannot be linked in this section.

Although newlines are not recognized in the see also section of
Spotfire S+ SGML files, spaces are. Thus, be sure to include spaces
between each link, even if you type them on separate lines. In the
SGML file for subpTlot, two spaces are included at the end of each
line, immediately after the </s-function> tags.

The examples in this section should help the user understand the
function better. The goal is to provide the user with clear examples
that are easily copied and run, either from the commands window or
from a script window. Therefore, do not include the Spotfire S+
prompt character > in your examples and comment any output you
include. So that the examples are self-contained, use built-in data sets

465

Chapter 11 User-Defined Help

Keywords

466

or create simple data sets in the code. For clarity, do not abbreviate
argument names in your code, and be sure to test your examples
before including them in a help file.

The following is an excerpt from the examples section of the coxph
help file:

<{s-examples>

<{s-example type=text>

Create the simplest test data set

testl &1t;- Tist(time=c(4,3,1,1,2,2,3),
status=c(1,1,1,0,1,1,0),
x=c(0,2,1,1,1,0,0),
sex=c(0,0,0,0,1,1,1))

Fit a stratified model

coxph(Surv(time, status) ~ x + strata(sex), testl)

</s-example>
</s-examples>

The tag <s-example type=text> preformats the examples section so
that it prints in a fixed-width font. This also causes newlines and blank
lines to be recognized in the text. Thus, you can include spaces
between different examples to enhance readability. So that the
examples display nicely in conveniently-sized help windows, please
ensure that the width of each line is no more than 60 characters.

In your examples, always use the left assignment operator <- instead
of the underscore _ for assignments. Because the angle bracket <
signifies a tag in SGML, it is safest to type the left assignment operator
using &1t; instead. Thus, the operator is &1t ; - in SGML.

All help files should have keywords listed at the bottom, immediately
before the closing tag </s-function-doc>. The help system uses
keywords to organize the engine functions in the Contents tab of the
help window; open the Language Reference from the Spotfire S+
menu and click on the Contents tab to see this.

Contents of Help Files

Each keyword should be wrapped in the tags <s-keyword> and
</s-keyword>. For example, the keywords section in the SGML file
for coxph is:

<s-keywords>
<s-keyword>models</s-keyword>

<s-keyword>regression</s-keyword>
<s-keyword>survival4</s-keyword>

</s-keywords>

This places the coxph function in the following Contents topics:
Statistical Models, Regression, and Survival Analysis. Table 11.4 lists

the current keywords and the help topics they map to.

Table 11.4: Current keywords and the Contents topics they map to.

Keyword Topic Keyword Topic Keyword Topic

aplot Add to design ANOVA bootstrap Bootstrap
Existing Plot Models Methods

category Categorical character Character Data cluster Clustering
Data Operations

complex Complex dplot Computations menudata Data Menu
Numbers Related to Functions

Plotting

wdialogs Customizable | wmenus Customizable attribute Data Attributes
Dialogs (pre- Menus (pre-
Spotfire S+ Spotfire S+ 4.0)
4.0)

data Data manip Data sysdata Data Sets
Directories Manipulation

classes Data Types chron Dates Objects debugging Debugging

Tools

defunct Defunct deprecated Deprecated documentation | Documentation
Functions Functions

dynamic Dynamic error Error Handling | device Graphical
Graphics Devices

467

Chapter 11 User-Defined Help

Table 11.4: Current keywords and the Contents topics they map to. (Continued)

Keyword Topic Keyword Topic Keyword Topic

hplot High-Level file Input/Output iplot Interacting
Plots Files With Plots

interface Interfaces to jackknife Jackknife lTibchron Library of
Other Methods Chronological
Languages Functions

lTibcluster Library of 1ibmaps Library of algebra Linear Algebra
Clustering Maps
Methods

list Lists loess Loess Objects logic Logical

Operators

iteration Looping and math Mathematical array Matrices and
Iteration Operations Arrays

methods Methods and | misc Miscellaneous missing Missing Values
Generic
Functions

mixed Mixed nime3 Mixed Effects multivariate Multivariate
Effects Models (version Techniques
Models 3)
(version 2)

nonlinear Nonlinear nonparametric | Nonparametric optimize Optimization
Regression Statistics

ode Ordinary print Printing distribution Probability
Differential Distributions
Equations and Random

Numbers

programming Programming | qc Quality Control | regression Regression

tree Classification | release Release Notes resample Resampling
and (Bootstrap,
Regression Jackknife, and
Trees Permutations)

468

Table 11.4: Current keywords and the Contents topics they map to. (Continued)

Contents of Help Files

Keyword Topic Keyword Topic Keyword Topic
robust Robust/ environment Spotfire S+ smooth Smoothing
Resistant Session Operations
Techniques Environment
htest Statistical menustat Statistics Menu models Statistical
Inference Functions Models
survival4d Survival ts Time Series trellis Trellis Displays
Analysis Library
guifun User utilities Utilities DOX Design of
Interface Experiments,
Programming Response
Surfaces, and
Robust Design
fracfac Fractional rsm Response taguchi Robust
Factorial Surfaces Experimental
Experiments Design
modgarch GARCH geostat Geostatistical hexbin Hexagonal
Module for Data Analysis Binning
Modeling
Time Series
Volatility
lattice Lattice Data pointpattern Point Pattern spatialreg Spatial
Analysis Analysis Regression
spatialstats | Spatial WAVELETS Wavelet swt Discrete
Statistics Analysis of Wavelet
Module Data, Signals, Transform
and Images Analysis
transformld 1-D Wavelet transform2d 2-D Wavelet conv Wavelet
and Cosine and Cosine Convolutions
Transforms Transforms and Filters
cpt Cosine wpt Wavelet Packet crystal Wavelet
Packet Analysis Crystals
Analysis

469

Chapter 11 User-Defined Help

Table 11.4: Current keywords and the Contents topics they map to. (Continued)

Keyword Topic Keyword Topic Keyword Topic

molecule Wavelet wavemake Creating wavelets Wavelets
Molecules Wavelets, Module
and Atoms Wavelet Functions

Packets, and
Cosine Packets

wavedata Wavelets
Module
Signals,
Images, and
Datasets

Special Help
Files

$V4 Class Objects

Some Spotfire S+ help files do not fit into the general format
described above, and instead require special fields. The two most
common types of special help files are those for class objects and data
sets. In this section, we briefly list the fields in these types of help files.
We do not discuss each field in detail, but refer you to specific help
files for more information and example SGML code. As with help
files for functions, you can use prompt to create template SGML files
and delete the tags that are not applicable to your objects.

The SGML sections in an SV4 class. type help file are listed in Table
11.5. For more details, see the SGML files for class.timeSeries,
class.vector, and class.matrix.

Table 11.5: Titled sections in Spotfire S+ help files for SV4 class objects.

Section Title Quick Description SGML Tags
Topic The name of the object. <s-topics>
</s-topics>
Title The title that appears at the top of a formatted help | <s-title>
file. </s-title>
DESCRIPTION | A short description of the object. <s-description>
</s-description>

470

Contents of Help Files

Table 11.5: Titled sections in Spotfire S+ help files for SV4 class objects. (Continued)

Section Title Quick Description SGML Tags

CLASS SLOTS A list of descriptions for the slots in the object. Each | <s-slots>
slot can be formatted with the list tags <s-class- </s-slots>
slot name=> and </s-class-slot>.

EXTENDS A list of classes the object extends. Each class is <{s-contains>
formatted with <s-contains-class name=> and </s-contains>
</s-contains-class>.

DETAILS Descriptions of implementation issues. <s-details>

</s-details>

NOTE Any information that does not fit into the above <s-section name=>
categories. </s-section>

REFERENCES Available texts and papers the user can refer to for <{s-section name=>
additional information. </s-section>

SEE ALSO Links to related Spotfire S+ functions. The function {s-see>
that creates the object should be included in the <{/s-see>
links.

Keywords A list of keywords that place the help file in the <{s-keywords>
Contents topics of the help system. </s-keywords>

Data Sets The SGML sections in help files for data sets are listed in Table 11.6.

For more details, see the SGML files for solder and kyphosis.
Table 11.6: Titled sections in Spotfire S+ help files for data sets.

Section Title Quick Description SGML Tags
Topic The name of the data object. <s-topics>
</s-topics>
Title The title that appears at the top of a formatted help <s-title>
file. This should not be the name of the object itself. | </s-title>

471

Chapter 11 User-Defined Help

Table 11.6: Titled sections in Spotfire S+ help files for data sets. (Continued)

Section Title

Quick Description

SGML Tags

Contents topics of the help system.

SUMMARY A brief description of the experiment that produced | <s-section name=>
the data. The name of the object should be included | </s-section>
in this section.
DATA A short description of each of the variables in the <s-description>
DESCRIPTION | object. </s-description>
SOURCE The original references for the data. <s-section name=>
</s-section>
WARNING Anything the user should be warned about when {s-section name=>
using the data. <{/s-section>
NOTE Any information that does not fit into the above <{s-section name=>
categories. </s-section>
SEE ALSO Links to related Spotfire S+ functions and data sets. {s-see>
</s-see>
EXAMPLES Coded Spotfire S+ examples using the data. <s-examples>
</s-examples>
Keywords A list of keywords that place the help file in the {s-keywords>

</s-keywords>

472

GLOBALIZATION

Introduction

Working With Locales
Setting a Locale
Changing a Locale
Changing the Collation Sequence

Using Extended Characters
In Variable Names
In PostScript Output

Importing, Exporting, and Displaying Numeric Data
Importing and Exporting Data
Displaying Data

474

475
476
478
479

480
480
481

482
482
485

473

Chapter 12 Globalization

INTRODUCTION

474

Spotfire S+ includes enhancements designed to improve global
installation and use:

New functions have been added that allow you to specify a
locale to be used by Spotfire S+. Specifically, Spotfire S+ now
supports French and German locales.

Sorting and collating functions have been modified to support
different locales.

The use of 8-bit characters (Latinl/Western European
character set) has been enabled. The 8-bit characters can now
be used in variable names and will properly display in data.

Functions that import, export, and display numeric data have
been modified to support different locales.

Spotfire S+ Setup has been improved to test for local settings
and install localized DLLs as necessary.

In the sections that follow, we describe these enhancements in greater

detail.

Working With Locales

WORKING WITH LOCALES

The concept of a “locale” in Spotfire S+ is akin to that of Regional

Options (or Regional Settings) in Windows™. A locale determines
which characters are considered printable or alphabetic, the format
for numerals, and the collating sequence of characters.

Note

The implementation of locales in Spotfire S+ does not cover date formats (date formats are
handled through a separate mechanism) and messaging (all messages in Spotfire S+ are in the
English language).

The default locale is C, the locale used by the C language (7-bit ASCII
characters and U.S.-style numbers). The C locale conforms to the
behavior of earlier versions of Spotfire S+, that is:

* No accented characters are displayed (backslash octal
instead).

* The decimal marker is a period.
* The sort order is all uppercase followed by all lowercase.

In European-based locales, however, Spotfire S+ prints accented
characters and uses a more natural sort order (“a”, then “A”, then “a”
("\340"), then “A” ("\300")). In continental-based locales, the decimal
marker is a comma. In English-based (and French Canadian) locales,
the decimal marker is a period.

Not every locale is supported on every computer. To see which
locales are supported on a computer running a version of Windows,
look in Control Panel » Regional and Language Options. On
UNIX, run Tocale -a.

Hint

Choose a locale with “8859-1” in the name if there is a choice between this and “Roman8,” as
Spotfire S+ assumes you are using the ISO 8859-1 character set. Your terminal emulator should
be using an 8859-1 font. (This is an issue on HPUX where the default seems to be “Roman8.”)

475

Chapter 12 Globalization

Setting a Setting a locale gives you a way to tell Spotfire S+ which character

Locale sets, number formats, and collation sequences to use. The primary
function for setting a locale is the Sys.setlocale() function. This
function allows you to set LC_ALL, LC_COLLATE, LC_CTYPE,
LC_MONETARY, LC_NUMERIC, or LC_TIME.

In the Commands To use the default regional settings for locale, open the Commands
Window window and type the following:

> Sys.setlocale(locale="")

This command tells Spotfire S+ to follow your Windows Regional
Options (or Regional Settings).

Hint

If you put the desired Sys.setlocale() command into the \local\S.init file under your Spotfire
S+ home directory, the command will be run automatically each time you launch Spotfire S+.

476

Working With Locales

In the General In Windows, on the Startup page of the Options » General

Settings Dialog Settings dialog, the fields for controlling regional settings have been
replaced with a single check box called Set Region-specific
defaults, as shown in Figure 12.1. (This option is not selected by

default.)
General Settings Q|§|@
General] [rata] Startup l Computations]
Open at Startup I~ Prarnpt for project folder

™ Select Data Dialog
¥ Show splash screen
[~ Command Line
™ Update project prefs
™ Object Explorer
Iv Prompt to update project prefs

™ SetS_PROJ toWorking Directory W St Feimamesiis s
™ Reqister all OLE objects

Cancel Help

Figure 12.1: The Startup page of the General Settings dialog.

Selecting this check box sets Spotfire S+’s default locale according to
your Windows Regional Options (or Regional Settings) in effect at
the time of startup.

+ If this check box is selected, the next time you start Spotfire
S+ it sets the time.in.format, time.out.format, and
time.zone options (shown in .Options) according to your
Windows Regional Options (or Regional Settings). It also
gets the currently selected Windows regional language setting
and calls Sys.setlocale(locale=7anguage) where Tanguage
is the setting from Windows.

Note

When you select this option, you must restart Spotfire S+ for the change to take effect.

477

Chapter 12 Globalization

+ If this check box is not selected, the time.zone option is set to
the default of GMT, and Sys.setlocale() is set to the C
locale.

Note

Selecting the Set Region-specific defaults check box also includes setting LC_NUMERIC, which
causes numbers to print with a comma as the decimal marker in regions where that is the
convention. This may break existing code that relies on the format of printed numbers.

If you select the Set Region-specific defaults option but want to use the period as the decimal
marker instead, add the command Sys.setlocale("LC_NUMERIC","C") to the \local\S.init file
under your Spotfire S+ home directory.

In UNIX, To use the default regional settings for locale, type the
following:

> Sys.setlocale(locale="")

This command tells Spotfire S+ to follow the UNIX environment
variables (LANG, LC_{CTYPE,COLLATE,NUMERIC}).

Hint

If you put the desired Sys.setlocale() command into your S.init file, the command will be run
automatically each time you launch Spotfire S+.

Changing a Use the Sys.setlocale() and Sys.getlocale() functions to set and
Locale get locales, respectively. Use the Sys.withlocale() function if you
want to evaluate an expression within a specified locale.

For example:

> Sys.getlocale() # Default
[1] "C"

> Sys.setlocale(locale="en_US")

[1]1 "en_US"

> Sys.getlocale()

[1] "en_uUS"

478

Changing the
Collation
Sequence

Working With Locales

“Collation sequence” refers to the ordering of characters by the
sort() and order() functions. For example, in the C locale,
uppercase (capital) letters collate before lowercase letters. In almost
all other locales, however, collation sequence ignores case.

For example:

> Sys.setlocale(locale="C")

[1] "C"

> sort(c("as", "Axe"))

[1] "Axe" "as"

> Sys.setlocale(locale="English (United States)")
[1] "English_United States.1252"

> sort(c("as", "Axe"))

[1] "as" "Axe"

Changing LC_COLLATE affects the way Spotfire S+ interprets the

ordering of character data and thus can be used to change the
behavior of functions like sort() and order().

479

Chapter 12 Globalization

USING EXTENDED CHARACTERS

In Variable
Names

480

Spotfire S+ accepts more “alphabetic” characters than in previous
versions. This set of “alphabetic” characters is fixed and is the set of

characters considered alphabetic in ISO 8859-1 (Latin1/Western
European character set).

The set of characters that are displayed as octal codes changes
depending on the current locale (specifically, LC_CTYPE). For example,
in all locales that use Latin characters, "\341" is displayed as “4”. This
affects how functions such as format (), print(), and cat() display
character data.

Because Spotfire S+ now supports Western European character sets
(ISO 8859-1), you can include 8-bit ASCII characters (ASCII codes
128-255) within character data and within the names of Spotfire S+
objects. For example, you can include names such as Furtwingler and
Garcia [higuez in your character data and they will properly display.
Spotfire S+ uses your locale settings to determine the appropriate
character set to use in printing output.

The characters allowed in Spotfire S+ object names are:

alphanumerics <- c(".™, "0", "1™, "2", "3", "4", "5", "6",
"7, o"8mr, "or, "A“, "", "C", "D", M"E", "F", "G", "H",
"I, otgr, vk, o Lv, "M, "N", "O0", "P", "Q", "R", "S",
"TU,otgT, otV W, otXT, oy, o tzv, o Ma', "b™, e, "d",
e, "f™, "g", "h", "i™, "j", "k", "1", "m", "n", "0",
"p", "qg", "r", M"s", "t"™, "u", "v", "w", "x", "y", "z",
"\212", "\214", "\21e"™, "\232", "\234", "\236", "\237",
"\300", "\301", "\302"™, "\303™, "\304", "\305", "\306",
"\307", "\310", "\311", "\312", "\313", "\314", "\315",
"\316", "\317", "\320™, "\321", "\322", "\323", "\324",
"\325", "\326", "\330", "\331", "\332", "\333", "\334",
"\335", "\336", "\337", "\340", "\341", "\342", "\343",
"\344", "\345", "\346", "\347", "\350", "\351", "\352",
"\353", "\354", "\355™, "\356", "\357", "\360", "\361",
"\362", "\363", "\364™, "\365", "\366", "\370", "\371",
"\372", "\373", "\374™, "\375", "\376", "\377")

Using Extended Characters

The characters not allowed in names are:

non.alphanumerics <- c("\001™, "\002™, "\003™, "\004",

"\005", "\006", "\007", "\b", "\t", "\n", "\013", "\014",
"\r", "\016", "\017", "\020", "\021", "\022", "\023",
"\024", "\025", "\026", "\027", "\030", "\031", "\032",
"\033", "\034", "\035", "\036", "\037", " ", "i", m\"",
ML MY, M, TR, ML M, Y, A mpn e
A T L L L N L
MAT M 1777 M 200",
"\201", "\202", "\203", "\204", "\205", "\206", "\207",
"\210", "\211", "\213", "\215", "\217", "\220", "\221",
"\222", "\223", "\224", "\225", "\226", "\227", "\230",
"\231", "\233", "\235", "\240", "\241", "\242", "\243",
"\244", "\245", "\246", "\247", "\250", "\251", "\252",
"\253", "\254", "\255", "\256", "\257", "\260", "\261",
"\262", "\263", "\264", "\265", "\266", "\267", "\270",
"\271", "\272", "\273", "\274", "\275", "\276", "\277",
"\327", "\367")

Note

The set of characters allowed or disallowed in object names is not affected by the current locale.
The functions deparse(), parse(), dump(), dput(), source(), data.dump(), and data.restore()

are also unaffected by the choice of locale.

In PostScript
Output

The postscript() function now uses the Latinl encoding of its
standard fonts by default. This means you can more easily use non-
English, Western European characters. If you previously used octal
escapes like "\267" to get characters in the upper half of the standard
PostScript encoding ("\267" was the bullet character), you must either
change such code ("\200" is now the bullet) or use the arguments
setfont=ps.setfont.std and bullet=ps.bullet.std in calls to
postscript(). The Symbol and Zapf family of fonts are not changed.
The Latinl encoding is not quite the ISO 8859-1 standard, in that the
bullet character was added at position "\200".

481

Chapter 12 Globalization

IMPORTING,
DATA

EXPORTING, AND DISPLAYING NUMERIC

Spotfire S+ supports importing, exporting, and displaying numeric
data written in regional notation. This means you can import, export,
and display numbers written using decimal markers and thousands
separators other than the period and comma, respectively. For
example, you can specify a comma as your decimal marker and a
period as your digit-grouping symbol, or you can use a period as the
decimal marker and an apostrophe as your digit-grouping symbol.

This feature is supported for the functions scan(), print(),
read.table(), and write.table(). It is also supported for tick labels
in graphics and for display in the Data window (in Windows). Note,
however, that it is not supported for use within Spotfire S+
expressions, within x1ab and y1ab in graphics, or by default within
the importData() and exportData() functions.

Hint

The default values for x1ab and y1ab do not use the numeric locale information because the
default values are made with deparse(). However, if you make up your labels with
as.character() or paste(), the locale information is used.

Importing and
Exporting Data

In the Commands
Window

482

When importing and exporting data, you can either use the
command-line functions or, in Windows or using the Java GUI in

Linux® or Solaris®, the import/export dialogs.

The functions importData() and exportData() now have two
additional arguments for use in reading and writing ASCII numbers:

* The decimal.point argument controls the single character
used to mark the decimal place in ASCII numbers. The
default is the period (.).

* The thousands.separator argument controls the single
character used as the digit-grouping symbol in ASCII
numbers. The default is the comma (,).

In the Import/
Export Dialogs

Importing, Exporting, and Displaying Numeric Data

You can also specify which locale

to use within importData() and

exportData() by setting the argument use.locale to T (the default is

use.locale=F.)

In Windows, both the Import From File dialog and the Export To
File dialog provide two new fields for specifying the decimal
character and the digit-grouping symbol. (See Figure 12.2 and Figure

12.3.)
[rata Specs] Options l Filker]
General Additional
Cal names raw Auto - Wworksheet number
Row name col Auto - At >
Start col ’17 Iv Stings as factors
End ool ’m W Sart factor levels
Start row ’17 [Labels as numbers
End row ’m Century cutoff ’19307
ASCI
Farmat string: |
Delimiter | j
Drecimal Point ’m
1000z Separator ~ [Mone -
™ Separate Delimiters
[rate format: b A d Ay -
Time format: hernm:ss b -
ak. | Cancel | Apply | L cLment Help

Figure 12.2: The Options page of the Import From File dialog.

483

Chapter 12 Globalization

Export To File E|§|@

[rata Specs] Options l Filker]
General
¥ Calumn names

™ Row Names
W Quates

Farmatting

|
Delimiter ’7
Decimal Paint ’m
1000z Separator ’m
[rate format: ’W‘

Time format: hernm:ss b -
QK | Eancel| Apply | L current Help

Figure 12.3: The Options page of the Export To File dialog.

On the Options page, make your selections as follows:

+ Decimal Point Select Comma (,) or Period (.) from the
drop-down list. The default is Comma ().

+ 1000s Separator Select Comma (;), None, or Period (.)
from the drop-down list. The default is None.

Note

These two fields are grayed out if the selected file format is not an ASCII file type. Note also that
neither option is affected by the selection of delimiter or by any locale or regional settings.

Two additional changes have been made to the import/export

dialogs:

* A Semicolon (;) selection has been added to the Delimiter
field drop-down list.

* On the Data Specs page, the list of ASCII file formats has
been updated to the following:

* ASCII file - whitespace delim (asc; dat; txt; prn)

+ ASCII file - whitespace delim (comma-decimal) (asc;
dat; txt; prn)

« ASCII file - comma delimited (csv)

484

Importing, Exporting, and Displaying Numeric Data

« ASCII file - semicolon delimited (comma-decimal)
(csv)

* ASCII file - user-defined delimiter (asc; dat; txt; prn)

Note

ASCII file - delimited, ASCII file - space delimited, and ASCII file - tab delimited have
been removed from the list. However, the function guiImportData() will still accept these strings
as valid values for its FileTypes argument.

The ASCII file - semicolon delimited (comma-decimal)
(csv) option sets Delimiter to Semicolon (;), selects the
Separate Delimiters check box, and sets Decimal Point to
Comma ().

The ASCII file - whitespace delim (comma-decimal) (asc;
dat; txt; prn) option behaves like the ASCII file -
whitespace delim (asc; dat; txt; prn) option but also sets
Decimal Point to Comma (,).

Displaying The decimal marker used when displaying or reading numbers

Data changes depending on LC_NUMERIC. For example, in many European
locales, the number pi is written 3,14159 (approximately). This affects
how functions such as format(), print(), cat(),write.table(), and
html.table() display numeric data. It also affects how as.numeric()
and as.character() convert between strings and numbers. Other
functions like cut() and factor() (in the labeling of levels) are also
affected.

485

Chapter 12 Globalization

486

VERBOSE LOGGING

Overview
Logged Information

Verbose Batch Execution
Windows
UNIX
Details

Example
Input File
Output File
Log File

488
488

490
490
494
496

497
497
497
499

487

Chapter 13 Verbose Logging

OVERVIEW

Logged
Information

488

Batch processing support to run Spotfire S+ scripts non-interactively
has been a key feature of Spotfire S+, and this feature has been
available for a number of releases. Often this is performed to execute
Spotfire S+ scripts as part of a production process.

For example, in the medical and pharmaceutical industries, it is vital
that data management and statistical tasks be validated and
documented. Allstepsinvolvedinexperimentationand validation
must be documented and preserved in order to demonstrate to
oversight bodies that the results are complete, accurate, valid, and
reproducible. In addition to source files and generated output, log
files are typically retained for these purposes.

The standard batch processing can record standard input, output, and
errors to one or more files. This is the same output that the user would
see executing the commands in the script at the command line.

In production use, it is valuable to include detailed information on
specific tasks, such as when the commands were executed, what files
were created, and the circumstances under which errors occurred.
The information should be available in a text file that is readily
understood and has tags to indicate the type of information in each
line. This allows tools such as Perl to automatically extract
information from the file.

The verbose logging function in Spotfire S+ provides this type of
information regarding the execution of a Spotfire S+ script.

There are many features of the verbose log file:

* The log file has a structured format with the first seven
columns reserved for line numbers and a line description tag.
A colon in the eighth column separates these tags from the
rest of the text; lines without colons in the eighth column are
continuation of the previous tagged line. This makes parsing
of the log file by Perl or other languages easy.

* There is a header with information about the user, the
machine, the input and output files.

+ Ifafile gets sourced in by the input file, it is logged (e.g., S.init
is sourced in at the start of every Spotfire S+ session).

Overview

Each database that gets attached is logged.

Each line from the input file appears in the log file, identified
by its line number.

Each complete input expression is timed.

A summary is logged when data is read in. The summary
includes the disk location of the file, the resulting data frame
size, the types of columns in the data frame, and missing value
counts. Data frame reading and writing are also logged.

Errors are logged but (by default) processing of the script
continues.

On completion of the script, a summary of the entire
processing is written.

489

Chapter 13 Verbose Logging

VERBOSE BATCH EXECUTION

Windows

GUI

490

Verbose batch execution can be invoked in a number of different
ways, depending upon the platform you’re using. We discuss the
different methods by platform below.

. ® . . .
In Windows , you can do batch execution using three unique
sources:

+ GUI, via the BATCH dialog

* Command Prompt, entering commands

* Spotfire S+ command line, with the Target field of a Spotfire
S+ shortcut.

On Windows, the Spotfire S+ program group menu (from Start »
Programs P Spotfire S+ 8.0) includes a menu item for the BATCH
executable. This menu item launches the BATCH processing dialog,

Verbose Baich Execution

which is used to specify the Spotfire S+ script to execute, and has
options specific to batch operation. This dialog is shown in Figure

i BATCH =100
Specify how to start S-PLUS using the options below.
‘working Directory: Id:\splusSDwork Browse... |
Input File: Iscript.ssc Browse... |
Olutput File: Ioutput.txt Browse... |
Log File: Iscript.log Browse... |
¥ Ovenarite log file

™ Use a new waorking database

¥ | Remave after execution

E:{:Q;SD; ?;\é\le\;?lorking d:aplusBwork Browsze... |
™ Echo input commands to output file
™ Include verbose lag information in output file
[~ Stop on first emor
™ Load Bigdata Library

S-PLUS Command Line:

[:heplusB0hSplus. bat START -cwd d:\eplusBOwork -input script. zzc -output output. kst -logfile ;I
zonipt.log -nobigdata

Kl

Start I Cancel |

Figure 13.1: The BATCH dialog, which executes the batch script in Windows.

13.1.

Working Directory The directory where Spotfire S+ reads and
writes files. This directory typically contains a .Data directory with
Spotfire S+ objects; see the description for Use a new working
database for details.

Input File Contains the Spotfire S+ script commands to be run. If
you enter just a relative file name, the BATCH utility looks for that
file relative to the Working Directory.

Output File The name of the file that contains the output generated
by the Spotfire S+ script. If you enter just a relative file name, the
BATCH utility creates the file relative to the Working Directory.

Log File The name of the file that contains the log information
generated by the Spotfire S+ script. If you enter just a relative file
name, the BATCH utility creates the file relative to the Working
Directory.

491

Chapter 13 Verbose Logging

492

Overwrite log file Select this if you want to overwrite the contents
of an existing log file.

Use a new working database Enables you to run the script under a
newly created .Data directory. This directory is created under the
directory specified in the Parent of new working database folder
specified in the field below (typically the Working Directory), and is
empty except a new.Random. seed.

Remove after execution Removes the new working database after
the Spotfire S+ script is finished. This option is only available if you
have checked the Use a new working database checkbox, and it
does not remove any files if you are using the working database
specified in the Working Directory.

Echo input commands to output file Combines the input
commands with the output lines in the output file.

Include verbose logging information in output file Allows you
to have the verbose log information mixed in with the script output.
This is very useful for debugging and support.

Stop on first error Stop execution when the first error is found.

Load Big Data Library Load the bigdata library before executing
the script.

Spotfire S+ Command Line Contains a copy of the command that
executes the batch process when the Start button is pressed. The user
can copy this command and paste it into a *.bat file or create a
shortcut for use later.

Command
Prompt

Spotfire S+
Command Line

Verbose Baich Execution

The Spotfire S+ Command Line is the executable that runs the
batch script and contains options, as in this example:

C:\Program Files\TIBCO\splus81\Splus.bat START
--work D:\spluswork
--input D:\SplusDaily\users\lenk\Scriptl.ssc
--output D:\SplusDaily\users\lenk\Scriptl.txt
--logfile D:\SplusDaily\users\lenk\Scriptl.log --echo --verbose

Note that when you enter filenames in the Working Directory,
Input File, Output File, or Log File fields in the GUI, the content
of the Spotfire S+ Command Line is updated with this information.

To run a Windows batch file from a Command Prompt, the syntax is

> Splus SBATCH [args] inputfile

where [args] are those described in the section Command Line in
UNIX (below), except that the -j and -headless options are not
enabled on Windows.

You can also run the batch file using the Target field in a Spotfire S+
command line, as shown in Figure 13.2.

S-PLUS Properties 2=l

General Shortcut | Dptionsl Font I Layoutl Eolorsl Securityl

S-FLUS

Target type: MS-D0S Batch File

Target location: splus?0

Target: "Spluz.bat" SBATCH -echo

¥ | Rurin separate memony space. T Fun as different user

Start in: I"D:\Program Filez4nzightfulspluza0"

Shortcut key: INone

Rur: I Mormal window j
Comment: IS-PLUS program
Find Target... | Change lcon... |

Cancel | Apply |

Figure 13.2: Running a batch script in a Spotfire S+ command line.

493

Chapter 13 Verbose Logging

You must supply a complete path to the Splus.bat script, including
the .bat file extension. For example:

"C:\Program Files\TIBCO\splus81\Splus.bat" SBATCH
--echo

Note that you can use the Start in field to include the path to the file
name, so the Target field only has to include Splus.bat and any flags.

UNIX

Command Line In UNIX, use Splus SBATCH to execute a script under verbose
logging. This command has a number of optional arguments:

% Splus SBATCH --help
Syntax : SBATCH [args] inputfile
Optional flags are:

--help Print this message and quit
-J Enable java (not supported on Win32)
--cwd directory Change directory to this directory

before anything else

--input inputfile Read input from inputfile (or specify
inputfile as last argument)

--output file Send output to file (default
<basename inputfile>.txt)

--Togfile file Write session log to file (default
<basename inputfile>.slg)

By <basename inputfile> we mean
inputfile stripped of possible period
and extension

--appendlog Append to log file (default is to
overwrite)

--nologfile Do not make a session log

--work directory Use directory for working

database (where=1), making it if
needed. If work is not specified we
will make new randomly named
directory for the working database.

494

--noclean

--newworkparent

--echo

--noecho

--verbose

--quitonerror

--background

--vanilla

--console

--nobigdata

--bigdata

--headless

name=value

Verbose Batch Execution

Do not remove the new randomly
named directory used for a working
database

Directory in which to make the new
randomly named working database

(value of project directory, whose
default =.)

Echo command lines to output
(sets options(echo=T))

Do not set options(echo=T)

Echo verbose logging information to
output (sets options(verbose=T))

Terminate immediately on engine
error. (Default continues processing)

Run Spotfire S+ in the background

Do not run user-defined startup script
or functions (-work dir is ignored)

Run only the console version, not the

GUI (Windows only).

Do not load the bigdata library when
starting

Load the bigdata library when starting
(the default action)

Do not use X Windows connection if
running java (i.e., DISPLAY need not be
set - Unix only)

Will be added to environment so
getenv("name"™) returns value. Note
that cannot have any spaces between
name and value.

495

Chapter 13 Verbose Logging

Details

496

On Windows and UNIX, setting
> options(verbose=T)

after starting Spotfire S+ or setting the environment variable
S_VERBOSE = yes causes most of this information to be printed to the
standard output, either the commands on a script window or the
output file.

You may use the Togcat () function to write more logging
information. It does nothing if logging is not turned on, but prints one
tagged line if it is turned on.

Note that SBATCH is designed for production use of verbose logging.
To run batch files interactively on Windows or UNIX, use

Splus START
More details are available by typing Splus START --help.

EXAMPLE

Input File

Output File

Example

The following is a short sample batch script, along with the output
generated and the log file:

Import bad file, has blank Tine at top:

ffDF <- importData("ffBad.txt"™, separateDelim=T)

Import correct file

ffDF <- importData("ffGood.txt™, separateDelim=T)

summary (ffDF)

Incorrect model formula:

attach(fuel.frame)

regl <- Tm(Fuel ~ Wt + Disp., data=ffDF, na.action=na.omit)

Correct model formula:

regl <- Tm(Fuel ~ Weight + Disp., data=ffDF,

na.action=na.omit)

regl

Write out a data set of results:

exportData(data.frame(fit=fitted(regl), resid=resid(regl)),
file="regl.sas7bdat")

S-PLUS : Copyright (c) 1988, 2008 TIBCO Software Inc.
Version 8.1.1 for Microsoft Windows : 2008

Log file will be \\PUSHPULL\d\username\SP6\1og.txt
Working data will be in d:\name\sp8/Sc000534.tmp

> # Import bad file, has blank line at top:
> ffDF <- importData("ffBad.txt", separateDelim=T)
> # Import correct file
> ffDF <- importData("ffGood.txt", separateDelim=T)
> summary (ffDF)

Weight Disp. Mileage Fuel

Min.:1845 Min.: 73.0 Min.:18.0
Min.:2.702703

1st Qu.:2624 1st Qu.:114.5 1st Qu.:21.0 1st
Qu.:3.703704

Median:2903 Median:146.0 Median:23.0
Median:4.347826

Mean:2927 Mean:152.4 Mean:24.4
Mean:4.226319

497

Chapter 13 Verbose Logging

498

3rd Qu.:3310 3rd Qu.:180.0 3rd Qu.:27.0 3rd

Qu.:4.761905

Max.:3855 Max.:305.0 Max.:37.0

Max.:5.555556

NA's: 2.0 NA's: 2.0

NA's:2.000000

Type
Compact:15
Large: 3
Medium:14
Small:13
Sporty:11
Van: 8

> # Incorrect model formula:

> regl <- Tm(Fuel ~ Wt + Disp., data=ffDF,
na.action=na.omit)

ProbTem: Object "Wt"™ not found
Use traceback() to see the call stack
> # Correct model formula:

> regl <- Tm(Fuel ~ Weight + Disp., data=ffDF,

na.action=na.omit)

Call:

Im(formula = Fuel ~ Weight + Disp., data =
na.omit)

Coefficients:
(Intercept) Weight Disp.
0.484787 0.001239589 0.0008637803

Degrees of freedom: 61 total; 58 residual
Dropped 3 cases due to missing values
Residual standard error: 0.3870086

> 4 Write out a data set of results:

> exportData(data.frame(fit=fitted(regl),
resid=resid(regl)),

+ file="regl.sas7bdat")

[1] 60

ffDF, na.action

Log File

Example

START: Spotfire S+ Version 8.1 for WIN386 started at Fri
Oct 17 15:14:09
2008

NOTE: User=name Machine=PUSHPULL
Directory=\\PUSHPULL\d\name\SP8

NOTE: Spotfire S+ is installed in directory
\\PUSHPULL\d\splus81

NOTE: Input file is \\HOMER\name\ff.ssc
NOTE: Qutput file is \\PUSHPULL\d\name\SP8\out.txt

PARSING: \\PUSHPULL\d\splus81\S.init

DATA: Attaching directory
\\PUSHPULL\d\name\sp8\Sc000534.tmp\.Data in

position 1 with name d:\name\sp8/Sc000534.tmp

DATA: Attaching directory
\\PUSHPULL\d\splus81\1ibrary\nime3\.Data in

position 6 with name nime3

DATA: Attaching directory
\\PUSHPULL\d\splus81\library\menu\.Data in

position 7 with name menu

DATA: Attaching directory
\\PUSHPULL\d\splus81\library\sgui\.Data in

position 8 with name sgui

TIME: Task #1 succeeded (Seconds = 1.531 CPU, 13.781
elapsed)

PARSING: \\HOMER\name\FF.SSC
1 : ## Import bad file, has blank 1ine at top:
TIME: Task done (Seconds = 0 CPU, 0 elapsed)

2 : ffDF <- importData("ffBad.txt"™, separateDelim=T)

NOTE: Imported 62 by 5 data.frame with column names Coll,
Col2, Col3,

Col4, Colb
NOTE: Counts of column types: factor:5
NOTE: There are 5 missing values
NOTE: 1 rows have some missing values

DATA: Storing 62x5 data.frame 'ffDF' on database
d:\name\sp8/Sc000534.tmp

TIME: Task done (Seconds = 0.484 CPU, 0.734 elapsed)

3 : ## Import correct file
TIME: Task done (Seconds = 0 CPU, 0 elapsed)

499

Chapter 13 Verbose Logging

4 : ffDF <- importData("ffGood.txt"™, separateDelim=T)
NOTE: Imported 64 by 5 data.frame with column names
Weight, Disp.,
Mileage,
Fuel, Type
NOTE: Counts of column types: factor:1, numeric:4
NOTE: There are 6 missing values
NOTE: 4 rows have some missing values

DATA: Storing 64x5 data.frame 'ffDF' on database
d:\name\sp8/Sc000534.tmp

TIME: Task done (Seconds = 0.391 CPU, 0.625 elapsed)

5 . summary (ffDF)

DATA: Reading 64x5 data.frame 'ffDF' on database
d:\name\sp8/Sc000534.tmp

TIME: Task done (Seconds = 0.593 CPU, 0.656 elapsed)

6 : #f Incorrect model formula:
TIME: Task done (Seconds = 0 CPU, 0 elapsed)

7 : regl <- Tm(Fuel ~ Wt + Disp., data=ffDF,
na.action=na.omit)

DATA: Reading 64x5 data.frame 'ffDF' on database
d:\name\sp8/Sc000534.tmp

ERROR: Problem: Object "Wt" not found
TIME: Task done (Seconds = 0.157 CPU, 0.281 elapsed)

8 : ## Correct model formula:
TIME: Task done (Seconds = 0 CPU, 0 elapsed)

9 : regl <- Tm(Fuel ~ Weight + Disp., data=ffDF,
na.action=na.omit)
DATA: Reading 64x5 data.frame 'ffDF' on database
d:\name\sp8/Sc000534.tmp
TIME: Task done (Seconds

0.203 CPU, 0.265 elapsed)

10 . regl
TIME: Task done (Seconds

0.078 CPU, 0.078 elapsed)

11 : # Write out a data set of results:
TIME: Task done (Seconds = 0 CPU, 0 elapsed)

500

12

Example

: exportData(data.frame(fit=fitted(regl),

resid=resid(regl)),

13

NOTE:
TIME:

QUIT:

: file="regl.sas7bdat")
TIME:

Task done (Seconds = 0.141 CPU, 0.203 elapsed)

There were 1 errors and 0 warnings in this session
Session done (Seconds = 7.483 CPU, 36.109 elapsed)

End session at Fri Aug 29 15:14:45 2003

501

Chapter 13 Verbose Logging

502

XML GENERATION

XML Overview 504
XML and SPXML Library Overview 505
The SPXML Library 507
Reading and Writing XML Using the SPXML Library 509
Examples of XSL Transformations 510
Example 1: Creating a Vector 510
Example 2: Creating a Named Vector 512
Example 3: A List of Data Frames 514
Example 4: Import SAS XML as a Data Frame 517

503

Chapter 14 XML Generation

XML OVERVIEW

504

Extensible Markup Language (XML) provides a mechanism for storing
information and exchanging information between applications.
Spotfire S+ includes two libraries of functions for working with XML:
the SPXML library from TIBCO Software Inc., and the XML library
from Bell Laboratories.

Using XML effectively involves more than just the XML code. An
application using XML requires definitions for writing and reading
XML. XML uses a Document Type Definition (DTD) file to define the
elements and attributes allowed in an XML document. DTD files
create specific markup languages that can be used for specific tasks.
For example, Predictive Modeling Markup Language(PMML) has
become an industry-standard for describing statistical models and
serves as a way to exchange model information between applications.
After the language is defined, an XML parser can read the XML text
file and interpret the tags to determine its type of data. The user can
then put the data into an internal data structure.

One of the largest benefits of XML is that it provides ways to
exchange data between applications whose internal data
representations are different.

* The Extensible Stylesheet Language (XSL) provides standards

and tools describing how to create other documents from an
XML file.

* XSL transforms (XSLT) can be used to create an HTML
document, or to transform XML to another style of XML that
uses different tags and organizes the data differently.

« XSL formatting objects (XSL-FO) describe how to create
formatted documents such as PostScript, PDF, and RTF
documents based on formatting specified in the XSL file and
information specified in the XML file.

The next section describes the differences between the XML and
SPXML libraries. The remainder of the document provides more
details about the SPXML library and shows examples of using its
functions for data exchange.

XML and SPXML Library Overview

XML AND SPXML LIBRARY OVERVIEW

As a convenience for Spotfire S+ users, the Spotfire S+ installation
includes a copy of the XML library. This library is written and
maintained by Duncan Temple Lang of Bell Laboratories.

The SPXML library supports reading and writing XML by specifying
a set of XML tags describing XML objects, and using C code that
writes and parses these tags. There is no such thing as an XML object
within Spotfire S+, and Spotfire S+ does not manipulate XML. In this
library, XSL manipulates XML.

The XML library takes a different approach: It introduces a set of
Spotfire S+ classes representing XML objects such as XMLNode and
XMLComment. A Document Object Model (DOM) parser is used to create a
Spotfire S+ object from the information in an XML file. This object
can be traversed using Spotfire S+ subscripting, manipulated using
Spotfire S+ functions, and written back to a file if desired.

For more information about the XML library, see the description of
its functions in the CRAN package, located at

cran.r-project.org/doc/packages/XML.pdf

Determining which library is most appropriate to use depends on the
purpose and user preferences:

* The SPXML library is more efficient for serialization, because
it uses a SAX parser and does computations almost
exclusively in C code.

* When translating between Spotfire S+ objects and XML from
other applications, the SPXML library does the
transformations using XSL. This is preferable for users
familiar with XSL.

* When translating between Spotfire S+ objects and XML from
other applications, the XML library builds a Spotfire S+
object representing the XML document. Spotfire S+ functions
are used to create a standard Spotfire S+ object such as a data
frame from the XML document object. Spotfire S+
programmers might prefer to use Spotfire S+ functions rather
than XSL.

505

Chapter 14 XML Generation

The rest of this chapter focuses on the SPXML library. Consult the
URL above for more information about the XML library.

506

The SPXML Library

THE SPXML LIBRARY

The SPXML library contains a small number of powerful functions:

+ To write Spotfire S+ objects to a file as XML, use
createXMLFile.

+ To read Spotfire S+ objects from a file, use parseXMLFile.

* To transform XML files with XSLT or XSL-FO, use
javaXMLTransform.

These functions are all you need to create a file with an XML
description of a Spotfire S+ object and generate a report from the

information in this XML file. The formatting information is specified
in an XSL file.

The SPXML library keeps the Spotfire S+ functions simple and
focused on XSL as a transformation mechanism because XSL is an
industry standard with a wealth of documentation on its usage. The
existing documentation provides extensive reference materials that
are not included as part of the Spotfire S+ documentation set.

In addition to the functions listed above, the SPXML library provides
some useful utility functions:

* The functions xm12htm1, xm12pdf, xm12ps, xm12rtf, and
xm12xm1 are wrappers for javaXMLTransform that specify the
corresponding output file type.

* The createXMLString function returns the generated XML as
a string rather than writing it to a file.

e The functions parseXMLPathFile and parseXMLPathString
parse the entire contents of an XML file or the specified
contents of a file (respectively) and return them as character
vectors. For example, using these functions, you can read

<a b c>as"a", "b", "c", ratherthan "a b c".

* The summaryReport function implements a particular kind of
summary report. This function, along with the corresponding
XSL files, are good examples of how to combine Spotfire S+
and XSL to create a sophisticated report.

507

Chapter 14 XML Generation

This document focuses on using XML as a tool for data exchange.
The summaryReport function and report generation in general are
discussed in the separate technical paper titled XML Reporting.

508

Reading and Writing XML Using the SPXML Library

READING AND WRITING XML USING THE SPXML
LIBRARY

The createXMLFile and parseXMLFile functions provide a simple
mechanism for Spotfire S+ objects to be saved and restored using
XML.

In the simplest case, you can save any Spotfire S+ object to a readable
file and access it at a future time.

The following shows a simple example:

> Tibrary(SPXML)

> xmlFile <- "output.xml"

> orig.list <- list(fuel.frame, c(1:50), hist)
> createXMLFile(orig.list, xmlFile)

> new.list <- parseXMLFile(xmlFile)

> all.equal(orig.Tist, new.list)
[11 T

The XML tags for Spotfire S+ objects are described in the
SPLUS_1_0.dtd file in the library/SPXML/xml directory of your
Spotfire S+ installation.

The objective in defining these tags is to provide a means to read and
write all Spotfire S+ objects (data frames, matrices, vectors, and
multidimensional arrays). The XML descriptions of these objects are
rectangular and hyper-rectangular data structures, which can be easily
interpreted.

509

Chapter 14 XML Generation

EXAMPLES OF XSL TRANSFORMATIONS

Example I:
Creating a
Vector

PMML

XSL

510

To import XML from another application into Spotfire S+, you must
transform the application’s XML into XML describing Spotfire S+
objects. You can do this by using an XSL file. This section describes
four examples to illustrate using XSL.

These examples start with PMML files generated by TIBCO Spotfire
Miner, a data mining and statistical data analysis product designed to
handle large amounts of data. Spotfire Miner stores information on
fitted models in its own XML format and generates industry-standard
PMML, describing the models as a way to exchange model
information with other applications. Spotfire Miner also uses the
Extension mechanism to include additional information about the
models.

One type of output that Spotfire Miner computes for models is a
column importance measure for each independent column used in
the model. By reading this information into Spotfire S+, you can use
Spotfire S+ functions to create plots and reports that are not available
in Spotfire Miner.

In this example, the PMML file describes a logistic regression model.
The file is located in the library/SPXML/examples/
xml_generation directory and is named logRegPMMUL.xml. The
column importance measure used for logistic regression is the Wald
statistic.

In the XML for the logistic regression model, the column importance
information is stored in one place:

<Extension extender="Insightful"
name="X-IMML-GeneralRegressionModel-Importance">
<X-IMML-GeneralRegressionModel-Importance count="29"
targetCategory="credit.card.owner">

<X-IMML-GeneralRegressionModel-Effect name="mean.check.cash.withdr"
value="169.99539009465" df="1" Pr="0"/>

<X-IMML-GeneralRegressionModel-Effect name="mean.check.debits"
value="165.004662158705" df="1" Pr="0"/>

To create a vector of column importances in Spotfire S+, first design
an XSL transformation file that extracts the desired information from
the PMML file and writes it to a new XML file using Spotfire S+
XML tags.

Spotfire S+
Functions

Examples of XSL Transformations

The file library/SPXML/examples/xml_generation/
logReg Collmp_Vec.xsl contains the following XSL to create a
Spotfire S+ vector of column importance values:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlIns:xsl|="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" standalone="yes" indent="yes"/>
<xsl:template match="PMML">
<xsl:apply-templates select="GeneralRegressionModel/Extension/
X-IMML-GeneralRegressionModel-Importance"/>
</xsl:template>

<xsl:template match="X-IMML-GeneralRegressionModel-Importance">
<xsl:element name="S-PLUS">
<xsl:element name="Vector">
<xsl:attribute name="length"><xsl:value-of select="@count"/><
Ixsl:attribute>
<xsl:attribute name="type">numeric</xsl:attribute>
<xsl:element name="Items">
<xsl:for-each select="X-IMML-GeneralRegressionModel-Effect">
<xsl:element name="Item">
<xsl:value-of select="@value"/>
</xsl:element>
</xsl:for-each>
</xsl:element>
</xsl:element>
</xsl:element>
</xsl:template>
</xsl:stylesheet>

To create the Spotfire S+ vector, use xm12xm1 to transform the file,
and then use parseXMLFile to create a Spotfire S+ object:

library(SPXML)
lTogRegPMMLFile <- paste(getenv("SHOME"),

"/library/SPXML/examples/xml_generation
/10gRegPMML.xm1", sep="")

TogRegXSLFile <- paste(getenv("SHOME"),

"/1ibrary/SPXML/examples/xml_generation
/1TogReg_ColImp_Vec.xs1", sep="")

splusVecXMLFile <- "Splus_ColImp_Vec.xml"
xml2xml(1ogRegPMMLFile, splusVecXMLFile, TogRegXSLFile)
colImpVec <- parseXMLFile(splusVecXMLFile)

colImpVec

vV V VYV 4+ 4+ VvV ++ VvV

[1] 169.995390095 165.004662159 109.405532767 97.18724276
[5] 67.254514683 31.503267187 20.055698417 14.51615874
[9] 9.359599672 8.369635041 7.632052511 4.176602535

511

Chapter 14 XML Generation

Example 2: While it is useful to have the column importance values in Spotfire
Creating a S+, it would be even more practical to include the column names.
Using a more detailed XSL, create a named vector with the column

Named veCtor names and importance values.

XSL The library/SPXML/examples/xml_generation/
logReg_Collmp_NamedVec.xsl file contains XSL to create a
named vector from the logistic regression PMMUL. The resulting
Spotfire S+ object is represented in the XML as a Generic object with
class named.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlIns:xs|="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" standalone="yes" indent="yes"/>
<xsl:template match="PMML">
<xsl:apply-templates select="GeneralRegressionModel/Extension/
X-IMML-GeneralRegressionModel-Importance"/>
</xsl:template>

<xsl:template match="X-IMML-GeneralRegressionModel-Importance">
<xsl:element name="S-PLUS">
<xsl:element name="Generic">
<xsl:attribute name="class">named</xsl:attribute>
<xsl:element name="Attrs">
<xsl:attribute name="length">1</xsl:attribute>
<xsl:element name="Attr">
<xsl:attribute name="name">.Names</xsl:attribute>
<xsl:element name="Vector">
<xsl:attribute name="length">
<xsl:value-of select="@count"/></xsl:attribute>
<xsl:attribute name="type">character</xsl:attribute>
<xsl:attribute name="name">.Names</xsl:attribute>
<xsl:element name="Items">
<xsl:for-each select=
"X-IMML-GeneralRegressionModel-Effect">
<xsl:element name="ltem">
<xsl:value-of select="@name"/>
</xsl:element>
</xsl:for-each>
</xsl:element>
</xsl:element>
</xsl:element>
</xsl:element>
<xsl:element name="Vector">
<xsl:attribute name="length">
<xsl:value-of select="@count"/></xsl:attribute>
<xsl:attribute name="type">numeric</xsl:attribute>
<xsl:element name="ltems">
<xsl:for-each select=
"X-IMML-GeneralRegressionModel-Effect">
<xsl:element name="ltem">
<xsl:value-of select="@value"/>
</xsl:element>
</xsl:for-each>
</xsl:element>
</xsl:element>
</xsl:element>

512

Spotfire S+
Functions

Examples of XSL Transformations

</xsl:element>
</xsl:template>
Use xm12xm1 to translate the XSL and parseXMLFile to create the
object:

lTogRegXSLFile2 <- paste(getenv("SHOME"),
"/1ibrary/SPXML/examples/xml_generation
/1ogReg_ColImp_NamedVec.xs1", sep="")

splusNamedVecXMLFile <- "Splus_ColImp_NamedVec.xml"

xm12xml(TogRegPMMLFile, splusNamedVecXMLFile,
TogRegXSLFile2)

colImpNamedVec <- parseXMLFile(splusNamedVecXMLFile)
colImpNamedVec

vV VvV 4+ VvV VvV 4+ + Vv

mean.check.cash.withdr mean.check.debits cust.age
169.9954 165.0047 109.4055

mean.saving.balance mean.amnt.atm.withdr
97.18724 67.25451

513

Chapter 14 XML Generation

Example 3: A In the logistic regression PMML, the column importance is already
List of Data computed for each column and is stored in a single place in the XML.

This makes it easy to access and transform.
Frames

Spotfire Miner also has an ensemble tree model. In this model, multiple
classification (or regression) trees are fit, and the results averaged
together for prediction. This is similar to using multiple models in
bagging or boosting.

With the ensemble tree, determine the column importance measure
by taking the change in goodness-of-fit at each split, and attributing
that change as being due to the independent column used for the
split. These changes in goodness-of-fit are summed over all splits and
all trees to get a single change in goodness-of-fit attributed to each
independent column. This is used as the importance measure.

Unlike logistic regression, this column importance is not a quantity
that is stored in the PMML. Instead, it is computed by Spotfire Miner
from information stored at the split level of the XML tree description.
For example, the library/SPXML/examples/xml_generation/
ensembleTreePMML.xml file has the following:

<Node score="0" recordCount="6806">
<Extension extender="Insightful" name="X-IMML-XTProps">
<X-IMML-XTProps>
<X-IMML-Property name="id" value="1"/>
<X-IMML-Property name="group" value="0"/>
<X-IMML-Property name="deviance"
value="5750.79288765702"/>
<X-IMML-Property name="risk" value="1020"/>
<X-IMML-Property name="yprob"
value="0.850132236262122 0.149867763737878"/>
<X-IMML-Property name="improvement"
value="435.586807320647"/>
</X-IMML-XTProps>
</Extension>

<SimplePredicate field="mean.salary.deposits"
operator="lessThan" value="4426.431109375"/>

In this example, create a Spotfire S+ list of data frame objects, with
one data frame for each tree in the ensemble. The data frame has two
columns:

* The name of the independent column used to split.

* The change in goodness-of-fit.

514

Examples of XSL Transformations

After you have this information in Spotfire S+, you could use other
Spotfire S+ functions to create separate column importance vectors
for each tree, a single column importance vector over all trees, or
some other quantity.

XSL The file library/SPXML/examples/xml_generation/
tree_ColIlmp_DFList.xsl contains the following XSL transform:

<xsl:stylesheet version="1.0" xmlIns:xsl|="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" standalone="yes" indent="yes"/>
<xsl:template match="PMML">
<xsl:element name="S-PLUS">
<xsl:element name="List">
<xsl:attribute name="length"><xsl:value-of select=
"count(.//TreeModel)"/></xsl:attribute>
<xsl:attribute name="named">F</xsl:attribute>
<xsl:element name="Components">
<xsl:apply-templates select=".//TreeModel"/>
</xsl:element>
</xsl:element>
</xsl:element>
</xsl:template>
<xsl:template match="TreeModel">
<xsl:param name="numSplits" select="count(.//Node[count(./True)=0])"/>
<xsl:element name="Component">
<xsl:element name="DataFrame">
<xsl:attribute name="numRows"><xsl:value-of select="$numSplits"/>
</xsl:attribute>
<xsl:attribute name="numCols">2</xsl:attribute>
<xsl:element name="RowNames">
<xsl:attribute name="length"><xsl:value-of select="$numSplits"/>
</xsl:attribute>
<xsl:element name="ltems">
<xsl:for-each select=".//Node[count(./True)=0]">
<xsl:element name="Item">
<xsl:value-of select="position()"/>
</xsl:element>
</xsl:for-each>
</xsl:element>
</xsl:element>
<xsl:element name="Columns">
<xsl:element name="Column">
<xsl:attribute name="length"><xsl:value-of
select="$numSplits"/></xsl:attribute>
<xsl:attribute name="type">character</xsl:attribute>
<xsl:attribute name="name">Split. Column</xsl:attribute>
<xsl:element name="ltems">
<xsl:for-each select=".//Node[count(./True)=0]">
<xsl:element name="ltem">
<xsl:if test="count(SimplePredicate) > 0">
<xsl:value-of select="SimplePredicate[1]
/@field"/>
</xsl:if>
<xsl:if test="count(CompoundPredicate) > 0">
<xsl:value-of select="CompoundPredicate
/SimplePredicate[1]/@field"/>
</xsl:if>
</xsl:element>
</xsl:for-each>
</xsl:element>

515

Chapter 14 XML Generation

Spotfire S+
Functions

516

</xsl:element>

<xsl:element name="Column">
<xsl:attribute name="length"><xsl:value-of

select="$numSplits"/></xsl:attribute>
<xsl:attribute name="type">numeric</xsl:attribute>
<xsl:attribute name="name">Change.in.Fit</xsl:attribute>
<xsl:element name="Items">
<xsl:for-each select=".//Node[count(./True)=0]">
<xsl:element name="Item">
<xsl:for-each select="Extension/X-IMML-XTProps
/X-IMML-Property[@name="improvement']">
<xsl:value-of select="@value"/>
</xsl:for-each>
</xsl:element>
</xsl:for-each>

</xsl:element>

</xsl:element>

</xsl:element>
</xsl:element>
</xsl:element>

</xsl:template>

</xsl:stylesheet>

Note that you can create a complex Spotfire S+ object from a
complex XML document in a little over a single page of XSL.

Once the XSL file has been created, the following code can be run
from Spotfire S+:

>
+
+
>
+
+
>
>
+
>
>

ensembleTreePMMLFile <- paste(getenv("SHOME"),
"/library/SPXML/examples/xml_generation
/ensembleTreePMML.xm1", sep="")
treeXSLFile <- paste(getenv("SHOME™),
"/library/SPXML/examples/xml_generation
/tree_ColImp_DFList.xs1"™, sep="")
splusDFListXMLFile <- "Splus_ColImp_DFList.xml"
xm12xml(ensembleTreePMMLFile, splusDFListXMLFile,
treeXSLFile)
colImpDFList <- parseXMLFile(splusDFListXMLFile)
length(colImpDFList)

[1]1 2

>

2

(G2 B OV

colImpDFList[[1]1][1:5,]

Split.Column Change.in.Fit

mean.salary.deposits 435.58681
mean.num.check.cash.withdr 90.42567
gender 110.75756

mean.saving.balance 46.77268
mean.amnt.transfers 16.38389

Example 4:
Import SAS

XML as a Data
Frame

<?xml version="1.0" encoding="UTF-8"?>
<LIBRARY>

<STUDENTS>
<ID> 0755 </ID>
<NAME> Brad Martin </NAME>
<CITY> Huntsville </CITY>
<STATE> Texas </STATE>
</STUDENTS>
<STUDENTS>
<ID> 1522 </ID>
<NAME> Michelle Harvell </NAME>
<CITY> Houston </CITY>
<STATE> Texas </STATE>
</STUDENTS>
<STUDENTS>
<ID> 1523 </ID>
<NAME> Terry Glynn </NAME>
<CITY> Chicago </CITY>
<STATE> lllinois </STATE>
</STUDENTS>
<PROFESSORS>
<ID> 9122 </ID>
<NAME> Sue Clayton </NAME>
<TENURE> YES </TENURE>
<CITY> Huntsville </CITY>
<STATE> Texas </STATE>
</PROFESSORS>
<PROFESSORS>
<ID> 9453 </ID>
<NAME> Todd Cantrell </NAME>
<TENURE> NO </TENURE>
<CITY> Houston </CITY>
<STATE> Texas </STATE>
</PROFESSORS>
<PROFESSORS>
<ID> 9562 </ID>
<NAME> Larry Anders </NAME>
<TENURE> YES </TENURE>
<CITY> Chicago </CITY>
<STATE> lllinois </STATE>
</PROFESSORS>

</LIBRARY>

In this example, SAS uses the second-level tags (STUDENTS and
PROFESSORS) to denote individual data sets. Repeated second-level
tags (note that STUDENTS is repeated three times) represent separate
rows in the resulting data set. Among the repeated second-level tags,
common children represent data set columns (ID, NAME, CITY and
STATE in STUDENTS).

Examples of XSL Transformations

SAS can create data sets from XML. Here is an example of SAS-
friendly XML code:

When this XML file is imported into SAS, it creates two data sets,
STUDENTS and PROFESSORS, with several columns 1D, NAME, TENURE (for
PROFESSORS), CITY, and STATE.

517

Chapter 14 XML Generation

XSL

518

To import this file into Spotfire S+, create an XSL file that creates
XML versions of data frames (analogous to the SAS data sets). Here is
an example of such an XSL file:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmins:xsl|="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" standalone="yes" indent="yes"/>

<xsl:template match=".">
<xsl:variable name="root" select="." />
<xsl:variable name="level1Children" select="./*" />
<xsl:variable name="level1Child1" select="$level1Children[1]" />

<xsl:variable name="children" select="$level1Child1/*"/>
<xsl:variable name="nUniqueNames">
<xsl:call-template name="CountLevel2Nodes">
<xsl:with-param name="level2" select="$children" />
</xsl:call-template>
</xsl:variable>

<SPLUS>
<xsl:choose>
<xsl:when test="$nUniqueNames > 1">
<xsl:element name="List">
<xsl:attribute name="length">
<xsl:value-of select="$nUniqueNames"/>

</xsl:attribute>

<xsl:attribute name="named">F</xsl:attribute>

<Components>
<xsl:call-template name="Level2Nodes">
<xsl:with-param name="level2" select="$children"/>
<xsl:with-param name="needList" select="1" />
</xsl:call-template>
</Components>
</xsl:element>
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="Level2Nodes">
<xsl:with-param name="level2" select="$children"/>
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>
</SPLUS>
</xsl:template>

<xsl:template name="CountLevel2Nodes">
<xsl:param name="level2" select="""/>
<xsl:param name="rCount" select="1"/>

<xsl:variable name="firstChild" select="$level2[1]"/>

<xsl:variable name="child1Name" select="name($firstChild)" />
<xsl:variable name="same" select="$level2[name(.) = $child1Name]" />
<xsl:variable name="other" select="$level2[name(.) != $child1Name]" />

<xsl:choose>
<xsl:when test="boolean($other)">
<xsl:call-template name="CountLevel2Nodes">
<xsl:with-param name="level2" select="$other"/>
<xsl:with-param name="rCount" select="$rCount + 1" />
</xsl:call-template>
</xsl:when>

Examples of XSL Transformations

<xsl:otherwise>
<xsl:value-of select="$rCount"/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

<xsl:template name="Level2Nodes">
<xsl:param name="level2" select="""/>
<xsl:param name="needList" select="" />

<xsl:variable name="firstChild" select="$level2[1]"/>

<xsl:variable name="child1Name" select="name($firstChild)" />
<xsl:variable name="same" select="$level2[name(.) = $child1Name]" />
<xsl:variable name="other" select="$level2[name(.) != $child1Name]" />

<xsl:if test="boolean($same)">
<xsl:choose>
<xsl:when test="boolean($needList)">
<Component>
<xsl:call-template name="NodesOfOneName">
<xsl:with-param name="nodes" select="$same"/>
</xsl:call-template>
</Component>
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="NodesOfOneName">
<xsl:with-param name="nodes" select="$same"/>
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>
</xsl:if>

<xsl:if test="boolean($other)">
<xsl:call-template name="Level2Nodes">
<xsl:with-param name="level2" select="$other"/>
<xsl:with-param name="needList" select="$needList"/>
</xsl:call-template>
</xsl:if>
</xsl:template>

<xsl:template name="NodesOfOneName">
<xsl:param name="nodes" select="""/>

<xsl:variable name="firstChild" select="$nodes[1]"/>
<xsl:variable name="child1Name" select="name($firstChild)" />
<xsl:variable name="firstChildChildren" select="$firstChild/*" />

<xsl:variable name="nRows" select="count($nodes)"/>
<xsl:variable name="nCols" select="count($firstChildChildren)" />

<xsl:element name="DataFrame">
<xsl:attribute name="numRows">
<xsl:value-of select="$nRows"/>
</xsl:attribute>
<xsl:attribute name="numCols">
<xsl:value-of select="$nCols"/>
</xsl:attribute>

<xsl:element name="RowNames">
<xsl:attribute name="length">
<xsl:value-of select="$nRows"/>
</xsl:attribute>
<ltems>

519

Chapter 14 XML Generation

<xsl:for-each select="$nodes">
<ltem><xsl:value-of select="position()"/></ltem>
</xsl:for-each>
</ltems>
</xsl:element>

<Columns>
<xsl:for-each select="$firstChildChildren">
<xsl:variable name="cName" select="name(.)" />
<xsl:element name="Column">
<xsl:attribute name="length">
<xsl:value-of select="$nRows"/>
</xsl:attribute>
<xsl:attribute name="type">character</xsl:attribute>
<xsl:attribute name="name">
<xsl:value-of select="$cName"/>
</xsl:attribute>

<Items>
<xsl:for-each select="$nodes">
<xsl:variable name="allColumns" select="./*"/>
<xsl:variable name="thisColumn" select="$allColumns[name(.) = $cName]" />
<ltem>
<xsl:choose>
<xsl:when test="not(boolean($thisColumn))">
<xsl:text></xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$thisColumn/text()"/>
</xsl:otherwise>
</xsl:choose>
</ltem>
</xsl:for-each>
</ltems>
</xsl:element>
</xsl:for-each>
</Columns>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

Spotfire S+ After you create this XSL file, run the following Spotfire S+
Functions commands to import the SAS XML into Spotfire S+:

v

sasFile <- paste(getenv("SHOME"),
"/1ibrary/SPXML/examples/xml_generation/ImportSAS.xml1",
sep="")

xs1File <- paste(getenv("SHOME"),
"/1ibrary/SPXML/examples/xml_generation/ImportSAS.xs1",
sep="")

xmlFile <- "ImportSPLUS.xm1"

xml2xml(sasFile, xmlFile, xslFile)

parseXMLFile(xmlFile)

[11]:

VvV VvV VvV + + Vv + 4+

ID NAME CITY STATE
1 0755 Brad Martin Huntsville Texas

520

Examples of XSL Transformations

2 1522 Michelle Harvell Houston Texas
3 1523 Terry Glynn Chicago ITTinois
[[21]:

ID NAME TENURE CITY STATE
1 9122 Sue Clayton YES Huntsville Texas
2 9453 Todd Cantrell NO Houston Texas
3 9562 Larry Anders YES Chicago IT1inois

521

Chapter 14 XML Generation

522

XML REPORTING

Overview 524
What is XSL? 525
Custom Reports 527
Summary Reports 531
Modifying Colors 536
Changing the Fonts 538
Outputting Positive Values in Red 539
Example of Modified XSL 542
Character Substitutions 543

523

Chapter 15 XML Reporting

OVERVIEW

524

The SPXML library introduces a rich report generation system for
creating custom reports in a wide array of document formats. In this
chapter, use the Spotfire S+ data frame fuel.frame to create report
examples that are output in Portable Document Format (PDF),
HTML, PostScript, and Rich Text Format (RTF).

This reporting system uses the Extensible Stylesheet Language (XSL)
to create PDF, HTML, PostScript, and RTF reports from an XML
description of a Spotfire S+ object. This system provides a maximum
degree of freedom for specifying what is included or excluded, and
the manner of presentation. It also removes nearly all dependencies
of a specific report format, so you can create a PDF report from a
report created in RTF.

The SPXML library contains functions used to generate these reports.
Two functions provide the XML reporting infrastructure:

* createXMLFile Writes Spotfire S+ objects to a file in XML.

* JjavaXMLTransform Transforms XML files with XSLT or
XSL-FO.

These functions are all you need to create a file with an XML
description of a Spotfire S+ object, and to generate a report from the

information in this XML file. The formatting information is specified
in an XSL file.

The Spotfire S+ functions are simple, focusing on XSL as a
transformation mechanism. Because XSL is an industry standard with
a wealth of documentation on its usage, its extensive reference
materials are not included as part of the Spotfire S+ documentation
set.

This chapter focuses on using XML as a reporting tool. For more
information on XML for data exchange, see Chapter 14, XML
Generation.

While the report generation tools described in Chapter 14 are useful
for creating custom reports, the SPXML library also includes a
summaryReport function that provides a specific set of summary
statistics by groups. This function, combined with the corresponding
XSL files, provides examples of how you can create sophisticated
reports.

What is XSL?

WHAT IS XSL?

XSL is a specification for transforming XML to other types of XML
or to other markup formats. You can divide XSL into two
components:

Table 15.1: XSL Components

XSL Component | Description

XSLT Used for transforms. Converts an XML document
from one series of element types to another. The
resulting document is usually XML or HTML.

XSL-FO XSL formatting objects. Describes how to use a set
of XML elements to create a formatted document
with elements such as titles, sections, tables, and
page breaks. You can use this XSL description to
create PDF, PostScript, or RTT files.

The translation from a conceptual tag, such as
<fo:table-header>, to the appropriate PDF
description is generated automatically, so you do
not need to know about the markup characters that
a specific file format uses.

The tags used for XSL-FO are a superset of those used for XSLT.
Typically, you have

* An XSL file describing the HTML generation.

* An XSL file containing additional formatting objects tags for
the other report formats (PDF, PostScript, or RTF).

525

Chapter 15 XML Reporting

The Spotfire S+ directory [SHOME]/library/ SPXML/xml includes
the following XSL files:

Table 15.2: library/SPXML/xml files

File name Description

SplusObjects.xsl A simple transformation file that
creates a formatted HTML version
of the following Spotfire S+
objects: data frames, lists, arrays,
vectors, matrices, functions, call
objects, and named objects.

SplusObjects_FO.xsl A simple transformation file that
creates a formatted PDF, PostScript
or RTF version of the following
Spotfire S+ objects: data frames,
lists, arrays, vectors, matrices,
functions, call objects, and named
objects.

ColumnReport.xsl A detailed transformation file that
creates an HTML report in
conjunction with the Spotfire S+
function summaryReport.

ColumnReport_FO.xsl A detailed transformation file that
creates a PDF, PostScript or RTF
report in conjunction with the
Spotfire S+ function
summaryReport.

526

Custom Reports

CUSTOM REPORTS

To create a report from a Spotfire S+ object, first save the object as
XML, and then transform the XML with XSL. For example, create
simple reports of the data frame fuel.frame:

library(SPXML)

xsT1tFile <- paste(getenv("SHOME™),
"/1ibrary/SPXML/xm1/SplusObjects.xs1", sep="")

xm1File <- "temp.xml"

splusObject <- fuel.frame

createXMLFile(splusObject, xmlFile)

JavaXMLTransform(xmlFile, "fuelReport.htm”™, xs1tFile)

Note

The following command yields the same results, because the default XSL file is library/
SPXML/xml/SplusObjects.xsl.

> javaXMLTransform(xmlFile, "fuelReport.htm™)

By default, the report is created in your working directory.

In this example, you use SplusObjects.xsl as the XSL transform.
This is a generic transformation that you can use for data frames, lists,
arrays, vectors, matrices, functions, call objects, and named objects.
In the example above, you could substitute a list, array, vector,
matrix, function, call object, or name for the data frame. For example,
any of the following work:

splusObject <- hist
splusObject <- 1ist(c(1:100), fuel.frame, hist)
splusObject <- c("A", "AA", "AAA", "AAAA")

To create a report in PDF, PostScript, and RTF, use
SplusObjects_FO.xsl, as follows, respectively:

foFile <- paste(getenv("SHOME"),
"/library/SPXML/xm1/SplusObjects_F0.xs1", sep="")
javaXMLTransform(xmlFile, "fuelReport.pdf", foFile)
javaXMLTransform(xmlFile, "fuelReport.ps™, foFile)
JavaXMLTransform(xmlFile, "fuelReport.rtf"™, foFile)

527

Chapter 15 XML Reporting

Note

If you specify no XSL file, Spotfire S+ uses the file library/ SPXML/xml/SplusObjects_FO.xsl
by default for output file names with extensions .pdf, .rtf and .ps.

528

To customize the formatting of the report, copy the XSL files, and
then modify them appropriately. Examples of modifying XSL are
presented in the section Summary Reports.

While you specify the XSL file explicitly in these examples, you do
not need to specify the XSL file if you want to use one of the standard
XSL files. If you specify no XSL file, then Spotfire S+ uses
SplusObjects.xsl for HTML or XML transforms, and
SplusObjects_FO.xsl for other types of transforms (PDF, PostScript,
or RTF).

Creating your own Reporting XSL File

You can create your own XSL file for reporting purposes. As a simple
example, suppose you want to create an HTML table from a Spotfire
S+ matrix.

1. Output the specified matrix to an XML file:

splusObject <- format(cor(state.x77))
xmlFile <- "corXMLFile.xml"
createXMLFile(splusObject, xmlFile)

2. Create an XSL file capable of transforming the XML into an
HTML table. The following code is an example of such an
XSL file. (You can find the entire file in [SHOME]library/
SPXML/examples/xml_reporting/
CorrelationMatrix.xsl):

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlIns:xs|="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="S-PLUS">
<htmlI>
<!-- create title for html page -->
<title>Correlation Matrix for state.x77</title>

<body>
<l-- create a title for the top of the page -->
<h2>Correlation Matrix for:</h2>
<l-- create html table version of matrix -->
<xsl:call-template name="Matrix">

Custom Reports

<xsl:with-param name="element" select="./Matrix"/>
</xsl:call-template>
</body>
</html>
</xsl:template>

<xsl:template name="Matrix">
<xsl:param name="element" select="""/>

<div>
<!-- create table for display of data frame or of matrix -->
<table cellspacing="1" cellpadding="5" border="1">
<!-- create a row of column headers -->
<tr>
<th></th>
<xsl:for-each select="$element/Columns/Column">
<th><xsl:value-of select="@name"/></th>
</xsl:for-each>
</tr>

<!-- create an html row for each row of data in the matrix -->
<xsl:for-each select="$element/RowNames/Items/ltem">
<xsl:variable name="rowNumber" select="position()"/>
<tr>
<I-- first item is row header that contains row name -->
<th><xsl:value-of select="./text()"/></th>

<l-- add actual data...watch for factors and missing values -->
<xsl:for-each select="../../../Columns/Column">
<xsl:variable name="colType" select="./@type"/>
<xsl:variable name="value" select="./ltems/Item[$rowNumber]/text()"/>
<xsl:variable name="levels" select="./Attrs/Attrj@name = '.Label']" />

<td align="right">
<xsl:choose>
<!-- character value -->
<xsl:when test="$colType= 'character">
<xsl:value-of select="$value"/>
</xsl:when>
<!-- factor value -->
<xsl:when test="$colType= ‘factor">
<xsl:value-of select="$levels/Vector/Items/Item[position() = $valuel/text()"/>
</xsl:when>
<!-- non-factor value -->
<xsl:when test="count($levels) = 0">
<xsl:value-of select="$value"/>
</xsl:when>
<!I-- missing factor -->
<xsl:when test="$value = 'NA">
<xsl:text/>
</xsl:when>
</xsl:choose>
</td>
</xsl:for-each>
</tr>
</xsl:for-each>
</table>
</div>
</xsl:template>

</xsl:stylesheet>

529

Chapter 15 XML Reporting

3. Convert the XML file into an HTML table using these
commands:

xs1File <- paste(getenv("SHOME"),
"/1ibrary/SPXML/examples/xml_reporting”,
“/CorrelationMatrix.xs1™, sep="")

htmlFile <-

xml2html (xmlFile,

Correlation Matrix for:

"CorrelationTable.html"

htm1File, xs1File)
The HTML output file should look like Figure 15.1:

createXMLFile (format (cor (state.x77)), "corXMLFile.xml")
Population | Income Illiteracy Life Exp Murder HS Grad Frost Area

Population | 1.00000000 | 0.20822756 | 0.10762237 [-0.06805195 | 0.34304275 |-0.09848975 | -0.33215245 | 0.02254384
Income 0.20822756 | 1.00000000 | -0.43707519 | 0.34025534 | -0.23007761 | 0.61993232 | 0.22628218 | 0.36331544
Illiteracy | 0.10762237 |-0.43707519 | 1.00000000 |-0.58847793 | 0.70297520 |-065718861 |-0.67194697 | 0.07726113
Life Exp |-0.06805195 | 0.34025534 | -0.58847793 | 1.00000000 -0.78084575 | 058221620 | 0.26206801 |(-0.10733194
Murder 0.34364275 |-0.23007761 | 0.70297520 |-0.78084575 | 1.00000000 |-0.48797102 |-0.53883344 | 0.22839021
HS Grad |-0.09348975 | 061993232 | -0.65718861 | 0.58221620 -0.48797102 | 1.00000000 | 0.36677970 | 0.33354187
Frost -0.33215245 | 0.22628218 | -0.67194697 | 026206801 | -0.538838344 | 036677970 | 1.00000000 | 005922910
Area 0.02254384 | 0.36331544 | 0.07726113 |-0.10733194 | 0.22839021 | 0.33354187 | 0.05922910 | 1.00000000

Figure 15.1: CorrelationTable.html, the generated HIML table.

530

SUMMARY REPORTS

Summary Reports

The summaryReport function provides summary statistics by groups
for data frame objects. Use the args function to list the arguments:

> args(summaryReport)

function(data,

file,

c(), mean = T, median =T,

T, st.error =

minLevels = 5,

type = NULL,

variables

= ¢(), grouping.variables =

stdev = T, range = T, quartile =
T, missing = T, precision = 2, nbins = 5,
xs1File= NULL, title = "",

maxColumnsPerTable = 0, logginglLevel = 4)

These arguments are described in Table 15.3.

Table 15.3: Arguments for summaryReport.

Required/

Argument Optional Description

data Required Specifies data frame object or set of
columns.

file Required Specifies generated report’s output
location.

variables Optional Specifies report columns. Use this
option to target specific columns
for report. If unspecified, the
default is to include all non-
grouping columns in data.

grouping.variables Optional Specifies grouping. Use to group or
sort the report’s statistics by certain
variable values.

mean Optional Specifies numeric mean.

median Optional Specifies numeric median.

stdev Optional Specifies numeric standard

deviation.

531

Chapter 15 XML Reporting

Table 15.3: Arguments for summaryReport. (Continued)

Required/

Argument Optional Description

range Optional Specifies numeric range.

quartile Optional Specifies numeric quartile.

st.error Optional Specifies numeric standard error.

missing Optional Specifies numeric missing count.

precision Optional Specifies output precision.

nbins Optional Specifies bin count for numeric
columns in groups argument.

minLevels Optional Specifies minimum number of
unique values in numeric grouping
column.

type Optional Specifies format: “xml”, “pdf”,
“rtf”, “ps”, or “html”. If not
specified, the extension of the
filename is used to determine the
output format, if possible.

xs1File Optional Specifies user XSL file for report
generation. The default XSL used
is ColumnReport.xsl (for HTML)
and ColumnReport_FO.xsl (for
PDF, PostScript, and RTF).

532

Table 15.3: Arguments for summaryReport. (Continued)

Summary Reports

Required/

Argument Optional Description

title Optional Specifies a title to appear at the top
of the report.

maxColumnsPerTable Optional Specifies the maximum number of
data columns per table. Controls
the overall width of the report by
breaking wide tables into several
smaller tables.

logginglLevel Optional Specifies the desired level of

logging during XSL transform.

533

Chapter 15 XML Reporting

To create a very simple report of a data. frame object:

reportFilename <- "fuel.report.html"
summaryReport(fuel.frame, reportFilename)

This creates a report that looks like Figure 15.2:

Column Summary

Statistic
mean 2,500.83
median 2,885.00
stdev 49587

Weight range | (1,345.00, 3,355.00)
quartile | (2,571.25, 3,231.25)

st.error 64.02
missing 0 (0.00 %)
mean 152.05
median 144.50
stdev 54.16
Disp. range (7300, 30500 =l

Figure 15.2: The output of fuel.report.html

You can create a more complicated report. For example, run the
following code to create a PDF report of the fuel. frame variable
Weight grouped by Type:

summaryReport(data=fuel.frame,
file="fuel.report.pdf",
variables=c("Weight"),
grouping.variables=c("Type"))

534

Summary Reports
This code creates a report that looks like Figure 15.3:

Grouping Description
Number of Categories:
Type : 6 categories

Value

Type Compact 15
Large 3

Medium 13

Small 13

Sporty 9

Van T

Column Summary

Type
Compacl Large Medium S
Weight mean 2,821.00 3,676.67 3,195.77 2,257,
median 2,780.00 3,850.00 3,200.00 2,295,
stdev 168.92 304.58 264.01 203,
range {2.575.00 {3.,325.00 | {2.765.00 | {1.845.(
3,110.00) 3,855.00) 3.610.00) 2,560.0
quartile {2,662.50 | (3,587.50 | {2.975.00 | {2.260.0
2,927.50 | 3,852.50) 3,450.00) 2,350.(
st.error 43,61 175.84 73.22 56.
missing 0 (0.00 %) 0 (0.00 %) 0 {0.00 %) 0 (0.00°

Figure 15.3: The PDF output in fuel.report.pdf.

The summaryReport function generates a summary of each column in

the input. For greater detail, you can segment the output by grouping
information supplied as an argument. The column summary depends

on column type:

+ Categorical columns Outputs a count and percentage for
each category.

* Numeric columns Outputs mean, range, median, quartile,
standard deviation, error, and missing (as appropriate).

The default behavior outputs all information possible, but you can
eliminate each of the numeric items from the output by setting the
appropriate argument to F (for example, eliminate range by setting
the argument range=F).

summaryReport uses ColumnReport.xsl (for HTML reports) and
ColumnReport FO.xsl (for PDF, PostScript, and RTF reports) using
XSL transforms. These files are located in the Spotfire S+ installation
directory [SHOME]/ library/ SPXML/xml.

To modify the report, you can either modify these files or make
copies of the files, and then specify the XSL file name when using

summaryReport.

535

Chapter 15 XML Reporting

The following examples demonstrate modifying the XSL to
customize reports, as follows:

+ Change the table colors.
+ Change the font used in the table cells.

* Use a different color for positive numbers in the table.

Modifying To modify the XSL that summaryReport uses
Colors 1. Copy the ColumnReport.xsl and ColumnReport_FO.xsl
files in the Spotfire S+ installation directory [SHOME]/
library/SPXML/xml.
Note

To follow this example in an already-modified XSL file, use EditedColumnReport.xsl (for
HTML and XML files) and EditedColumnReport_FO.xsl (for PDF, PostScript, and RTF files),
which are located in the directory [SHOME]/library/SPXML/examples/xml_reporting.

536

The beginning of the XSL file defines table color and font
attribute sets. To change colors and fonts, just change the
values in these definitions.

There are four (4) colors used to create the tables:
+ g tableBG The background color of the table.

* g headerBG The background color of the table headers
(row and column).

+ g rowBG_1, g rowBG_2 The alternating background
colors (each row).

These colors are located beginning on line 5 of the XSL
transform files. Their default values are listed as follows:

<xsl:variable name="g_tableBG" select="#82COFF" />
<xsl:variable name="g_headerBG" select="#CCE6FF" />
<xsl:variable name="g_rowBG_1" select="#EEEEEE" />
<xsl:variable name="g_rowBG_2" select="#FFFFFF" />

Summary Reports

2. Run the summaryReport command. The default report
resembles the output in Figure 15.4:

Column Summary

V1 V2
VI | 12 (100.00 %) 0 (0.00 %)

V2 0(0.00%) 12 (100.00 %)
V3 0 (0.00 %) 0 (0.00 %)

_ V4 0 (0.00 %) 0 (0.00 %)
v s 0 (0.00 %) 0 (0.00 %)
V6 0 (0.00 %) 0 (0.00 %)

v7 0 (0.00 %) 0 (0.00 %)

V8 0 (0.00 %) 0 (0.00 %)

Figure 15.4: The default report HTML file.

In this example, the table has a background color of blue,
each header is a lighter variation of blue, and the rows
alternate between white and light grey.

The values stored are standard hexcode versions of RGB.

+ The first two characters represent the red component (for
example, in g_tableBG: 82).

* The second two characters represent the green
component (for example, in g_tableBG: CO).

+ The last two characters represent the blue component (for
example, in g_tableBG: FF).

3. Create a simple Spotfire S+ function to convert RGB values
into hexcode:

char2hex <- function(x) {
if (x <0 || x > 255) stop
("x must be between 0 and 255")
a <- floor(x/16)
b <- x-16*a
if (a>9) a <- LETTERS[a-9]
if (b>9) b <- LETTERS[b-9]
paste(as.character(a), as.character(b), sep="")

537

Chapter 15 XML Reporting

4. To change these colors, adjust the RGB hex code to the
desired color, or use the specified HTML color tags (such as
RED, BLUE, YELLOW, GREEN, and so on). For example,
change the lines in ColumnReport.xsl to the following:

<xsl:variable name="g_tableBG" select=""yellow"/>
<xsl:variable name="g_headerBG" select=""silver"/>
<xsl:variable name="g_rowBG_1" select="#0099cc"/>

<xsl:variable name="g_rowBG_2" select="#00cccc"/>

The summaryReport command produces a report (Figure
15.5).

Column Summary

treatiment

reps

plants

Figure 15.5: Customizing the table colors of the output HTML file.

Changing the In the XSL, you can modify the font for several regions (lines 13-32 in
Fonts ColumnReport.xsl and lines 12-43 in ColumnReport_FO.xsl):

+ title Controls the major section title font.

* subtitle Controls the minor section title font.

* bold-emph Controls the minor section title font.

* small-cap Controls the minor section title font.

* table-content Controls all the table data font.

* row-header Controls the table row header font.

538

Summary Reports

e column-header Controls the table column header font.

For example, to set the table data font to Courier in an HTML report,
you need to add the line

<xsl:attribute name="face">Courier</xsl:attribute>

to ColumnReport.xsl within the table-content attribute-set that
starts on line 21. Running the summaryReport command creates a
report like Figure 15.6:

2 4 (33.33 %) 4 (33.33 %)
3 4 (33.33 %) 4 (33.33 %)
mean 24.67 26.83
median 12.50 16.50
stdev 25.27 23.95

Figure 15.6: Changing the fonts in the HTML output table.

To make a similar change to the PDF, PostScript, and RTF reports,
add the line

<xsl:attribute name="font-family">Courier</xsl:attribute>

to ColumnReport FO.xlIs within the table-content attribute-set
that starts on line 37.

Note

To commit a format change to a PDF, PostScript, or RTT file that you specified in the XSL-FO
file, you must restart your Spotfire S+ session.

Outputting
Positive Values
in Red

You can change the fonts and colors for the whole table by changing
the definitions at the top of the XSL file. For example, you might be
interested in more specific formatting, such as using a different color
for the positive numeric values. You can specify this change by

editing the XSL in the places where you format the table cell values.

Because the summary report is a sophisticated report, it has a
complex XSL file. The numbers in the table cells are formatted in two
ways:

* Numeric data, such as mean, median, or range.

+ Categorical data, such as counts and percentages.

539

Chapter 15 XML Reporting

The two templates that output table data are
OutputCountAndPercent (line 692) and OutputNumericltem
(line 573). Modify them in both places:

1. Modify OutputNumericltem by replacing the following
code:

<xsl:call-template name="roundNumber">
<xsl:with-param name="string" select="./text()"/>
<xsl:with-param name="decimalPattern" select="$decimalPattern"/>
<xsl:with-param name="scientificPattern" select="$scientificPattern"/>
</xsl:call-template>

with this code:

<xsl:element name="font">
<xsl:if test="./text() > 0">
<xsl:attribute name="color">RED</xsl:attribute>
</xsl:if>

<xsl:call-template name="roundNumber">
<xsl:with-param name="string" select="./text()"/>
<xsl:with-param name="decimalPattern" select="$decimalPattern"/>
<xsl:with-param name="scientificPattern" select="$scientificPattern"/>
</xsl:call-template>

</xsl:element>
2. Modify OutputCountAndPercent, as follows:

<xsl:template name="OutputCountAndPercent">
<xsl:param name="count" select=""" />
<xsl:param name="percent" select=""" />
<xsl:param name="decimalPattern" select=""" />
<xsl:param name="scientificPattern" select=""" />

<xsl:element name="font">
<xsl:if test="$count > 0">
<xsl:attribute name="color">RED</xsl:attribute>
</xsl:if>

<xsl:value-of select="$count"/>
<xsl:if test="boolean($percent)">
(<xsl:call-template name="roundNumber">
<xsl:with-param name="string" select="$percent"/>
<xsl:with-param name="decimalPattern" select="$decimalPattern"/>
<xsl:with-param name="scientificPattern" select="$scientificPattern"/>
</xsl:call-template>%)
</xsl:if>
</xsl:element>

</xsl:template>

540

Summary Reports

3. Using these modifications and running the summaryReport
command produces a report resembling Figure 15.7:

Column Summary

V1 V2
V1 12 (100.00%) 0 (0.00%)
V2 0(0.00%) | 12 (100.00%4)
V3 0 (0.00%) 0 (0.00%)
. V4 0(0.00%%) 0(0.00%%)
variety
V5 0 (0.00%) 0 (0.00%)
V6 0(0.00%%) 0(0.00%%)
V7 0 (0.00%) 0 (0.00%)
V8 0(0.00%%) 0(0.00%%)
T1 3 (25.00%%) 3 (25.00%%)
T2 3(25.00%%) 3(25.00%%)
treatment
T3 3 (25.00%%) 3 (25.00%%)
T4 3(25.00%%) 3(25.00%%)
1 4 (33.33%) 4 (33.33%)
reps 2 4 (33.33%) 4 (33.33%)
3 4 (33.33%) 4 (33.33%)
mean 24.67 26,83
median 12.50 16.50
stdev 25.27 23.96

Figure 15.7: Outputting positive values in red.

To modify the PDF, PostScript, or RTF reports, in the XSL-FO file,
you must similarly modify the same templates,
OutputCountAndPercent (line 789) and OutputNumericltem (line
678). In this case, there are two differences between the changes
described above and changes to be made to ColumnReport_FO.xsl:

* Instead of creating a font element, create an fo:inline
element.

* XSL-FO does not recognize color names. Instead of RED, you
must use the hexadecimal RGB code #FF0000.

541

Chapter 15 XML Reporting

Thus, the modified template OutputCountAndPercent looks like
this:

<xsl:template name="OutputCountAndPercent">
<xsl:param name="count" select="" />
<xsl:param name="percent" select=""" />
<xsl:param name="decimalPattern" select=""" />
<xsl:param name="scientificPattern" select=""" />

<xsl:element name="fo:inline">
<xsl:if test="$count > 0">
<xsl:attribute name="color">#FF0000</xsl:attribute>
</xsl:if>

<xsl:value-of select="$count"/>
<xsl:if test="boolean($percent)">
(<xsl:call-template name="roundNumber">
<xsl:with-param name="string" select="$percent"/>
<xsl:with-param name="decimalPattern" select="$decimalPattern"/>
<xsl:with-param name="scientificPattern"
select="$scientificPattern"/>
</xsl:call-template>%)
</xsl:if>
</xsl:element>
</xsl:template>

Exam ple of Spotfire S+ includes example files that demonstrate all the changes

Modified XSL described above:
* Modified Table Colors

e Use of Courier Font
* Using Red for Positive Numbers

For HTML reports, Spotfire S+ includes Edited ColumnReport.xsl
in the library/SPXML/examples/xml_reporting directory. For
PDF, PostScript, and RTF reports, Spotfire S+ includes
EditedColumnReport FO.xsl.

542

Character Substitutions

CHARACTER SUBSTITUTIONS

Notice that in the XSL code, “greater than” is represented by > ;
rather than the standard >, because certain characters are reserved by
XSL and must be substituted. Table 15.4 lists reserved characters and
their corresponding substitutions

Table 15.4: Substitutions in XML for reserved characters.

Character XSL Substitution
Less than (<) &1t;

Greater than (>) > ;

Equals (=) -

Less than or equal &1t;=

Greater than or equal > ;=

543

Chapter 15 XML Reporting

544

INDEX

Symbols

.Call interface 34, 37, 38, 40, 43, 48,
54

.chm file 437, 438, 439, 440, 445

First.lib fz 373

JavaField 66, 86

.JavaMethod 66, 67, 71, 86

Last.lib fz 373

Numerics
1000s Separator field 484

A

Adding an ActiveX control to a
dialog 304
addMenultem method 395
application object
methods for 210
properties of 215
arithmetic operators 50
ASCII file formats 484
Assign 35
assignment operators 45, 46, 47
attach function 22
automation
client examples 235
creating unexposed objects 205
definition of 194
embedding Graph Sheets 219
exposing functions 202
exposing objects 201, 202, 205

high-level functions for 226
HTML-based object help
system 195, 203, 204, 206
refreshing 204
methods
common 207
for application object 210
for function objects 213
for graph objects 212
passing data to functions 216
properties 215
reference counting 228
server examples 231
type library 195, 203
refreshing 204
removing 204
automation objects
common methods for 207
registering 201
unregistering 201
automation server objects
passing null parameters 223,

228

B

batch mode 4

batch processing 16, 17

BoxLayout 387

build_helpchm.cyg 440, 442, 444,
445

BUILD_JHELP 452

BuildHelpFiles 438

545

Index

546

buttons
modifying 264

C

C++
See CONNECT/C++
call.ole.method 228
specifying null parameters 223
callback function 323
catch block 43
cat function 26
CF_TEXT format 240
channel numbers 240
CHAPTER utility 18
characters
allowed in variable names 480
not allowed in variable names
481
character sets 474, 476, 480
ISO 8859-1 475, 480, 481
classes
CONNECT/C++ 32, 35, 38,
42,45, 46, 49, 50, 52, 54, 55
connection 43, 44
data object 42
evaluator 43, 44
function evaluation 42
class library 32, 33, 42, 45
CLASSPATH 68, 69
Clocale 475, 478, 479
collating 474
collation sequences 475, 476, 479
com. TIBCO.controls 383
com. TIBCO.splus 391
command line 5
script files 5
switches 5, 16
tokens 7
variables 5
Commit 53
Common error conditions when
using ActiveX controls in Spotfire
S+ 307
CONNECT/C++ 32

.Call interface 34, 37, 38, 40, 43,
48, 54
Assign 35
catch block 43
classes 32, 35, 38, 42, 45, 46, 49,
50, 52, 54, 55
connection 43, 44
data object 42
evaluator 43, 44
function evaluation 42
class library 32, 33, 42, 45
Commit 53
constructors 42, 45, 46, 53, 54
converting objects 48
Create 35, 42, 52, 53, 54
CSParray 49
CSPengineConnect 34, 43, 53,
54, 59
CSPevaluator 43, 44, 54
CSPnumeric 34, 48, 49, 52, 53,
55
CSPobject 42, 45, 46,47, 48, 50,
52, 53, 54, 55
CSPproxy 50
CSPvector 49
destructors 45
generating functions 45
IsValid 45, 52
make utility 40
methods 38, 42, 43, 45, 53
objects
named 52, 53, 54
unnamed 54
OnModify 52, 53, 54
OnRemove 52, 53, 54
operators
arithmetic 50
assignment 45, 46, 47
conversion 48
overloading 47, 49, 50
subscripting 49, 50
printing 52
reference counts 45, 46, 47, 48
Remove 52, 53
S.so 40

S_EVALUATOR 39
s_object 38, 42, 48, 52, 53, 54
sconnect.h 34, 38, 57
-sconnectlib 40
SyncParseEval 35
try block 39, 43
try-catch block 39
CONNECT/]Java 62
connection classes 43, 44
constructors 42, 45, 46, 53, 54
conversion operators 48
converting objects 48
Copy/Paste Link 239
copying external GUI files 371
copying help files 372
CorrelationsDialog class 387
Create 35, 42, 52, 53, 54
creating and modifying buttons 264
creating and modify toolbars 260,
274
creating directories 370
CSParray 49
CSPengineConnect 34, 43, 53, 54,
59
CSPevaluator 43, 44, 54
CSPnumeric 34, 48, 49, 52, 53, 55
CSPobject 42, 45, 46, 47, 48, 50, 52,
53, 54, 55
CSPproxy 50
CSPvector 49
Cygwin 438, 439, 440

D

data directory 22
data object classes 42
DDE
CF_TEXT format 240
channel numbers 240
clients 239
definition of 238
functions
Advise 239
Connect 239
Execute 239

Index

Poke 239
Request 239
Terminate 239
Unadvise 239
server names 240
servers 239
topics 240
using Copy/Paste Link 239
DDE requests
enabling and disabling response
to 246
decimal.point argument 482
decimal markers 475, 478, 482, 483,
485
Decimal Point field 484, 485
delimiter, semicolon 484
Designing ActiveX controls that
support Spotfire S+ 308
destination programs 239
destructors 45
dialog callback 323
example 325
Dialog Controls 329
digit-grouping symbols 482, 483
displaying numerics 474, 475, 482,
485
distributing the library 375
dos function 29
DOS interface 29
Dynamic Data Exchange 238

E

ed function 26

edit function 26

environment variables 5, 8, 13
S_CMDFILE 11
S_CMDSAVE 12
S_CWD 12
S_DATA 13
S_NOAUDIT 13
S_PATH 14
S_PREFS 14
S_PROJ 14
S_SCRSAVE 15

547

Index

548

S_SILENT_STARTUP 15
S_TMP 16
SHOME 13
eval 92
evalDataQuery 80
evaluator classes 43, 44
exportData function 482, 483
exporting numerics 474, 482
Export To File dialog 483, 484

F

file expansion 7
file formats, ASCII 484
FileUtilities 92
First.lib fz 368
fix function 26
function evaluation classes 42
function objects
methods for 213
passing data to 216

G

Gauss-Seidel method 37, 38, 39
General Settings dialog 477
generating functions 45
getControlDimension method 388
getData 82
getFileInputStream 92
getFileOutputStream 92
getFullDimension function 388
graph objects

methods for 212
Graph Sheets

embedding in automation

clients 219

guilmportData function 485

H

help 447

Language Reference 466
help.log 445
help files, user-defined 437, 447, 450

.chm file 437, 438, 439, 440, 445
build_helpchm.cyg 440, 442,
444, 445
BUILD_JHELP 452
BuildHelpFiles 438
Cygwin 438, 439, 440
help.log 445
HINSTALL 451
HTML Help Workshop 438,
439, 443
keywords 437, 448, 457, 466,
467, 471, 472
prompt function 437, 440, 441,
448, 449, 450, 451, 470
Splus6 make install.help 451
Splus8 make install.help 451,
452, 453
Splus make install.help 449
text formats for 454
titled sections in 456, 470, 471
help fz 372
HINSTALL 451
HTML-based object help system
195, 203, 204, 206
refreshing 204
HTML Help Workshop 438, 439,
443

I

ImageCalculatorExample 92

importData function 482, 483

Import From File dialog 483

importing numerics 474, 482

install.help, Splus6 make 451

install.help, Splus8 make 451, 452,
453

install.help, Splus make 449

ISO 8859-1 character set 475, 480,
481

IsValid 45, 52

J

jar 68

java.graph 78, 83

java.util. Random 69

javac 69, 84
javaGetResultSet 90

Java Native Interface 63, 67
javap 65, 67

Java Virtual Machine 62, 65
JComponent 83

JDBC 90

JFileChooser 70

JLabel object 385

JNI 64, 67

JRE 62

JTabbedPane object 387
JTextField object 385

JVM 65

K

keywords 437, 448, 457, 466, 467,
471, 472

L

Language Reference 466
last.lib fz 368
Latinl 474, 480, 481
lib.loc 368
libraries 368
library fz 368
Linear Regression dialog 423
LinearRegressionDialog class 387,
388
locales 474, 475, 480, 481
C 475, 478, 479
changing 478
setting 476
in the Commands window
476
in the General Settings
dialog 477
Sys.getlocale function 478
Sys.setlocale function 476, 477,
478
Sys.withlocale function 478

Index

M

make 40
makefile 40
make install.help, Splus 449
make install.help, Splus6 451
make install.help, Splus8 451, 452,
453
markers, decimal 475, 478, 482, 483,
485
menuCor function 400
menulLm function 413
methods
common, for automation
objects 207
for application object 210
for function objects 213
for graph objects 212
methods, CONNECT/C++ 38, 42,
43, 45,53

N

named objects 52, 53, 54
names, variables
characters allowed in 480
characters not allowed in 481
New Toolbar dialog 260
numerics
displaying 474, 475, 482, 485
exporting 474, 482
importing 474, 482

o

object help system 195, 203, 204,
206
refreshing 204
object hierarchy 195, 203, 206
objects
named 52, 53, 54
unnamed 54
OnModify 52, 53, 54
OnRemove 52, 53, 54
operators
arithmetic 50

549

Index

550

assignment 45, 46, 47
conversion 48
overloading 47, 49, 50
subscripting 49, 50

order, sort 475

order function 479

overloading operators 47, 49, 50

P

paste function 26

postscript function 481

predict.Im 418

preferences 21

projects 21

prompt function 437, 440, 441, 448,
449, 450, 451, 470

putting functions in the library 370

R

RandomNormalExample 85

reference counts 45, 46, 47, 48

referencing counting 228

Regional Options, Windows 475,
476, 477

regional settings 478

Regional Settings, Windows 475,
476, 477

Registering an ActiveX control 306

Remove 52, 53

ResultSet 90

ResultSetUtilities 90

S

S.init file 453, 476, 478
S.so 40

S_CMDFILE variable 11
S_CMDSAVE variable 12
S_CWD variable 12
S_DATA variable 13
S_EVALUATOR 39
S_FIRST 13

S_FIRST variable 13

S_NOAUDIT variable 13

s_object 38, 42, 48, 52, 53, 54

S_PATH variable 14

S_PREFS variable 14

S_PRQOJ variable 14

S_SCRSAVE variable 15

S_SILENT_STARTUP variable 15

S_TMP variable 16

sconnect.h 34, 38, 57

search command 23

semicolon delimiter 484

sequences, collation 475, 476, 479

server names 240

setCenterPanel object 384, 387

Set Region-specific defaults check
box 477, 478

settings, regional 478

Setup, Spotfire S+ 474

SHOME variable 13

sort function 479

sorting 474

sort order 475

source programs 239

splus.exe executable 4

splus.shome 79

SplusBadDataException 82

SplusControlMethods 393

SplusControlMethods interface 385

SplusControlMethods object 384,
386

SplusControlMetrics class 388

SplusDataResult 79, 80, 81, 82, 83,
86, 92

SplusDataResult object 394

SplusDataSetComboBox class 390

SplusDialog 383

SplusDialog.getMainMenuBar
object 395

SplusDialog object 387, 391, 393,
395

SplusFunctionInfo object 383, 384,
393

SplusGroupPanel object 384, 388

SplusGroupPanel objects 384

SplusIncompleteExpressionExcepti
on 79
SplusInvisibleControl object 386
SplusMainMenuBar class 395
SplusSession 80, 92
SplusTextField object 385
SplusUserApp 78, 83
SplusUserApp.eval 79, 86
SplusWideTextField object 384
Spotfire S+
Setup 474
Standard Generalized Markup
Language (SGML) 437, 447
statistic argument 402
steps in creating a library 369
subscripting operators 49, 50
summary method 415
Swing 384, 386
Swing classes 379
switch
HKEY_CURRENT_USER 20
MULTIPLEINSTANCES 20
Q20
REGISTEROLEOBJECTS 20
REGKEY 20
TRUNC_AUDIT 19
UNREGISTEROLEOBJECTS
20
switches 16
symbols, digit-grouping 482, 483
SyncParseEval 35
Sys.getlocale function 478
Sys.setlocale function 476, 477, 478
Sys.withlocale function 478
system 25

T

tabPlot.Im method 416
tabSummary.lm 418

Index

tabSummary.Im method 415
TextOutputExample 84
thousands.separator argument 482
ToolbarButton property dialog 265
toolbars and palettes

customizing 260
topics, DDE 240
transferBytes 92
true.file.name fz 372
try block 39, 43
try-catch block 39
type library 195, 203

refreshing 204

removing 204

U

unnamed objects 54
user preferences 21

\'%

variable names
characters allowed in 480
characters not allowed in 481
variables argument 401

W

Where can the PROGID for the
control be found? 305

Why only “OCX String”? 307

Windows applications, Calculator
25

Windows applications, Notepad 26

Windows interface 25

Windows Regional Options 475,
476, 477

Windows Regional Settings 475,
476, 477

551

Index

552

	Important Information
	TIBCO Spotfire S+ Books
	Introduction to the Application Developer’s Guide
	Developing Applications

	The Spotfire S+ Command Line and the System Interface
	Using the Command Line
	Command Line Parsing
	Variables
	Switches

	Working With Projects
	The Preferences Directory
	The Data Directory

	Enhancing Spotfire S+
	Adding Functions and Data Sets to Your System

	The System Interface
	Using the Windows Interface
	Using the DOS Interface

	CONNECT/C++
	Introduction
	Resources

	Examples: An Application and a Called Routine
	Creating a Simple Application
	Example of Calling a C Function Via .Call
	Compiling and Executing C++ on UNIX

	CONNECT/C++ Class Overview
	Data Object Classes
	Function Evaluation Classes
	Client-to- Engine Connection Classes
	Evaluator Classes

	CONNECT/C++ Architectural Features
	CSPobject
	Constructors and Generating Functions
	Constructing From an Existing Object
	Assignment Operators
	Overloading Operators
	Converting C++ Objects to Spotfire S+ Objects
	Subscripting Operators
	Subscript and Replacement Operations
	Subscript and Arithmetic Operations
	Matrix Computations
	Printing to Standard Output
	Named Persistent Objects
	Storage Frames For Unnamed Objects

	A Simple Spotfire S+ Interface in Windows
	Creating a Dialog-Based Application
	Connecting to Spotfire S+
	Evaluating Expressions

	CONNECT/Java
	Introduction
	Java Tools
	Example Files

	Calling Java from Spotfire S+
	Static Fields
	Static Methods
	Class Files
	Instance Methods
	Managing Java Object Instances

	Calling Spotfire S+ from Java Applications
	Running the Java Program
	Evaluating Spotfire S+ Commands
	Using SplusDataResult Objects
	Example Applications

	Interfacing with C and FORTRAN Code
	Overview
	When to Use the C and Fortran Interfaces
	When Should You Consider the C or Fortran Interface?
	Reasons for Avoiding C or Fortran

	Using C and Fortran Code with Spotfire S+ for Windows
	Calling Simple C Code from Spotfire S+
	Calling Simple Fortran Code from Spotfire S+

	Calling C Routines from Spotfire S+ for Windows
	Calling Fortran Routines from Spotfire S+

	Writing C and Fortran Routines Suitable for Use with Spotfire S+ for Windows
	Exporting Symbols
	Modifying Header Files
	Building a Chapter with WatcomC/ Fortran
	Dynamically Linking Your Code

	Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows
	Changes in S.h
	Handling IEEE Special Values
	I/O in C Functions
	I/O in Fortran Subroutines
	Reporting Errors and Warnings
	Calling Fortran From C
	Calling C From Fortran
	Calling Functions in the Spotfire S+ Engine DLL

	Using C Functions Built into Spotfire S+ for Windows
	Allocating Memory
	Generating Random Numbers

	Calling Spotfire S+ Functions from C Code (Windows)
	The .Call Interface (Windows)
	Requirements
	Returning Variable- Length Output Vectors
	S Object Macros

	Debugging Loaded Code (Windows)
	Debugging C Code

	A Simple Example: Filtering Data (Unix)
	Calling C or Fortran Routines From Spotfire S+ for Unix
	Writing C and Fortran Routines Suitable for Use in Spotfire S+ for Unix
	Compiling and Dynamically Linking your Code (Unix)
	Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix
	Using C Functions Built into Spotfire S+ for Unix
	Calling Spotfire S+ Functions From C Code (Unix)
	The .Call Interface (Unix)
	Debugging Loaded Code (Unix)
	A Note on StatLib (Windows and Unix)

	Automation
	Introduction
	Using Spotfire S+ as an Automation Server
	A Simple Example
	Exposing Objects to Client Applications
	Exploring Properties and Methods
	Programming With Object Methods
	Programming With Object Properties
	Passing Data to Functions
	Automating Embedded Spotfire S+ Graph Sheets

	Using Spotfire S+ as an Automation Client
	A Simple Example
	High-Level Automation Functions
	Reference Counting Issues

	Automation Examples
	Server Examples
	Client Examples

	Calling Spotfire S+ Using DDE
	Introduction
	Working With DDE
	Starting a DDE Conversation
	Executing Spotfire S+ Commands
	Sending Data to Spotfire S+
	Getting Data From Spotfire S+
	Enabling and Disabling Response to DDE Requests

	Extending the User Interface
	Overview
	Motivation
	Approaches
	Architecture

	Menus
	Creating Menu Items
	Menu Item Properties
	Modifying Menu Items
	Displaying Menus
	Saving and Opening Menus

	Toolbars and Palettes
	Creating Toolbars
	Toolbar Object Properties
	Modifying Toolbars
	Creating Toolbar Buttons
	ToolbarButton Object Properties
	Modifying Toolbar Buttons
	Displaying Toolbars
	Saving and Opening Toolbars

	Dialogs
	Creating Dialogs
	Creating Property Objects
	Property Object Properties
	Modifying Property Objects
	Creating FunctionInfo Objects
	FunctionInfo Object Properties
	Modifying FunctionInfo Objects
	Displaying Dialogs
	Example: The Contingency Table Dialog

	Dialog Controls
	Control Types
	Copying Properties
	ActiveX Controls in Spotfire S+ dialogs

	Callback Functions
	Interdialog Communication
	Example: Callback Functions

	Class Information
	Creating ClassInfo Objects
	ClassInfo Object Properties
	Modifying ClassInfo Objects
	Example: Customizing the Context Menu

	Style Guidelines
	Basic Issues
	Basic Dialogs
	Modeling Dialogs
	Modeling Dialog Functions
	Class Information
	Dialog Help

	Libraries
	Introduction
	Creating a Library
	Chapters vs. Libraries
	Steps in Creating a Library
	Creating Directories
	Storing Functions
	Storing Interface Objects
	Copying Help Files
	Storing Other Files
	Start-up and Exit Actions

	Distributing the Library

	Spotfire S+ Dialogs in Java
	Overview
	Background Reading
	Motivation
	Contrast with Spotfire S+ 4 Dialogs
	Topics Covered
	A Simple Example

	Classes
	Standard Spotfire S+ Dialog
	Group Panels
	Control Types

	Layout
	Standard Spotfire S+ Layout
	Pages
	Columns
	Groups
	Sizing

	Actions
	Using Listeners
	Getting Information From Spotfire S+
	Special Controls
	Overriding Button Actions
	Checking Completeness

	Calling The Function
	The Function Info Object
	Formatting Information
	Sending the Command

	Modifying Menus
	Style Guidelines
	Basic Issues
	Basic Dialogs
	Modeling Dialogs
	Modeling Dialog Functions

	Example: Correlations Dialog
	Example: Linear Regression Dialog

	User-Defined Help
	Introduction to Creating Help Files in Windows
	Required Software and Scripts
	Downloading and Running Cygwin
	Downloading and Running HTML Help Workshop

	Creating, Editing, and Distributing a Help File in Windows
	Step 1: Creating the Help File
	Step 2: Editing the Help File
	Step 3: Editing and Running the Script
	Step 4: Checking the .chm File
	Step 5: Distributing the .chm File
	Errors

	Introduction to Creating Help Files in UNIX
	Creating, Editing, and Distributing a Help File in UNIX
	Step 1: Creating the Help File
	Step 2: Copying the Help File to a “Clean” Directory
	Step 3: Running the CHAPTER Utility
	Step 4: Editing the Help File
	Step 5: Running Splus make install.help
	Step 6: Viewing the Help File
	Step 7: Distributing the Help File

	Common Text Formats
	Contents of Help Files
	Descriptions of Fields
	Special Help Files

	Globalization
	Introduction
	Working With Locales
	Setting a Locale
	Changing a Locale
	Changing the Collation Sequence

	Using Extended Characters
	In Variable Names
	In PostScript Output

	Importing, Exporting, and Displaying Numeric Data
	Importing and Exporting Data
	Displaying Data

	Verbose Logging
	Overview
	Logged Information

	Verbose Batch Execution
	Windows
	UNIX
	Details

	Example
	Input File
	Output File
	Log File

	XML Generation
	XML Overview
	XML and SPXML Library Overview
	The SPXML Library
	Reading and Writing XML Using the SPXML Library
	Examples of XSL Transformations
	Example 1: Creating a Vector
	Example 2: Creating a Named Vector
	Example 3: A List of Data Frames
	Example 4: Import SAS XML as a Data Frame

	XML Reporting
	Overview
	What is XSL?
	Custom Reports
	Summary Reports
	Modifying Colors
	Changing the Fonts
	Outputting Positive Values in Red
	Example of Modified XSL

	Character Substitutions

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /Americana
 /Americana-ExtraBold
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /Bauhaus-Light
 /Bauhaus-Medium
 /Benguiat-Bold
 /Benguiat-Book
 /BenguiatGothic-Bold
 /BenguiatGothic-BoldOblique
 /BenguiatGothic-Book
 /BenguiatGothic-BookOblique
 /BenguiatGothic-Heavy
 /BenguiatGothic-HeavyOblique
 /BenguiatGothic-Medium
 /BenguiatGothic-MediumOblique
 /Blackoak
 /Bookman-Bold
 /Bookman-BoldItalic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Bookman-Medium
 /Bookman-MediumItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BrushScript
 /Carta
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /Century-BoldCondensed
 /Century-BookCondensed
 /Century-BookCondensedItalic
 /Cheltenham-Bold
 /Cheltenham-BoldItalic
 /Cheltenham-Book
 /Cheltenham-BookItalic
 /Cheltenham-Light
 /Cheltenham-LightItalic
 /Cheltenham-Ultra
 /Cheltenham-UltraItalic
 /CooperBlack
 /CooperBlack-Italic
 /Cottonwood
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Cushing-Bold
 /Cushing-BoldItalic
 /Cushing-Book
 /Cushing-BookItalic
 /Cushing-Heavy
 /Cushing-HeavyItalic
 /Cushing-Medium
 /Cushing-MediumItalic
 /Esprit-Black
 /Esprit-BlackItalic
 /Esprit-Bold
 /Esprit-BoldItalic
 /Esprit-Book
 /Esprit-BookItalic
 /Esprit-Medium
 /Esprit-MediumItalic
 /Fences
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /FrizQuadrata
 /FrizQuadrata-Bold
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /Giddyup
 /Giddyup-Thangs
 /GillSans-BoldCondensed
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Giovanni-Black
 /Giovanni-BlackItalic
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Goudy-ExtraBold
 /Goudy-Heavyface
 /Goudy-HeavyfaceItalic
 /GoudyModernMT
 /GoudyModernMT-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Ironwood
 /ItcEras-Bold
 /ItcEras-Book
 /ItcEras-Demi
 /ItcEras-Light
 /ItcEras-Medium
 /ItcEras-Ultra
 /Juniper
 /Kaufmann
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Lithos-Black
 /Lithos-Regular
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /Mesquite
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /ParkAvenue
 /Poetica-SuppOrnaments
 /Ponderosa
 /RussellSquare
 /RussellSquare-Oblique
 /ScotchRomanMT
 /ScotchRomanMT-Italic
 /Symbol
 /Tekton
 /Tekton-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /Trajan-Bold
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedLight
 /Univers-CondensedLightOblique
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

