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PREFACE

Introduction

Online Version

Preface

Welcome to the Spotfire S+ 8 Guide to Statistics, Volume 2.

This book is designed as a reference tool for Spotfire S+ users who
want to use the powerful statistical techniques in Spotfire S+. The
Guide to Statistics, Volume 2 covers a wide range of statistical and
mathematical modeling. No single user is likely to tap all of these
resources, since advanced topics such as survival analysis and time
series are complete fields of study in themselves.

All examples in this guide are run using input through the
Commands window, which is the traditional method of accessing the
power of Spotfire S+. Many of the functions can also be run through
the Statistics dialogs available in the graphical user interface. We
hope that you find this book a valuable aid for exploring both the
theory and practice of statistical modeling.

The Guide to Statistics, Volume 2 is also available online.

On Microsoft Windows®, from the Help » Online Manuals menu,
and in the /help/statman2.pdf file of your Spotfire S+ home
directory.

On Solaris/Linux, in the /doc/statman2.pdf file of your Spotfire S+
home directory.

You can open and view this file using Adobe Acrobat Reader, which
is required for reading all online manuals shipped with Spotfire S+.

The online version of the Guide to Statistics, Volume 2 has particular
advantages over print. For example, you can copy and paste example
Spotfire S+ code into the Commands window and run it without
having to type the function calls explicitly. (When doing this, be
careful not to paste the greater-than “>” prompt character, and note
that distinct colors differentiate between input and output in the
online manual.)

A second advantage to the online guide is that you can perform full-
text searches. To find information on a certain function, first search,
and then browse through all occurrences of the function’s name in the
guide. A third advantage is in the contents and index entries: all
entries are links; click an entry to go to the selected page.

Xvii
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XVviii

Spotfire S+ has evolved considerably from its beginnings as a
research tool. The contents of this guide have grown steadily, and will
continue to grow, as the Spotfire S+ language is improved and
expanded. As a result of these changes, some examples in the text
might not match exactly the formatting of the output you obtain.
However, the underlying theory and computations are as described
here.

In addition to the range of functionality covered in this guide, there
are additional modules, libraries, and user-written functions available
from several sources. Refer to the User’s Guide for more details.

The Guide to Statistics, Volume 2, together with Guide to Statistics,
Volume 1, is a companion volume to the User’s Guide , the Programmer’s
Guide, and the Application Developer’s Guide. These manuals, as well as
the rest of the manual set, are available in electronic form. For a
complete list of manuals, see the section TIBCO Spotfire S+ Books
on page V.

This volume covers the following topics:
+ Tree models

*  Multivariate analysis, including factor analysis, principal
components analysis, and discriminant analysis

*  Cluster analysis

*  Survival analysis

*  Quality control charts

*  Resampling methods (bootstrap and jackknife)
*  Mathematical computing

The Guide to Statistics, Volume 1 covers basic probability, descriptive
statistics, statistical inference, regression techniques, and analysis of
variance.
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Chapter 19 Classification and Regression Trees

INTRODUCTION

Tree-based modeling is an exploratory technique for uncovering
structure in data, increasingly used for:

* devising prediction rules that can be rapidly and repeatedly
evaluated

* screening variables
*+ assessing the adequacy of linear models
* summarizing large multivariate data sets

Tree-based models are useful for both classification and regression
problems. In these problems, there is a set of classification or
predictor variables (x), and a single-response variable (y).

If y is a factor, classification rules are of the form:
if X; <23 and X5€ {A, B}

then y is most likely to be in level 5.

If y is numeric, regression rules for description or prediction are of the
form:

if Xy <2.3 andXqe {C, D, F}and x5;<3.5

then the predicted value of yis 4.75.

A classification or regression tree is the collection of many such rules
displayed in the form of a binary tree, hence the name. The rules are
determined by a procedure known as recursive partitioning. Tree-based
models provide an alternative to linear and additive models for
regression problems, and to linear and additive logistic models for
classification problems.

Compared to linear and additive models, tree-based models have the
following advantages:

* Easier to interpret when the predictors are a mix of numeric
variables and factors.

+ Invariant to monotone re-expressions of predictor variables.

*  More satisfactorily treat missing values.
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More adept at capturing nonadditive behavior.

Allow more general (that is, other than of a particular
multiplicative form) interactions between predictor variables.

Can model factor response variables with more than two
levels.
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GROWING TREES

Numeric
Response and
Predictor

We describe the tree-growing function tree by presenting several
examples. The tree function generates objects of class "tree". This
function automatically decides whether to fit a regression or
classification tree, according to whether the response variable is
numeric or a factor. We also show two types of displays generated by
generic functions: a tree display produced by plot and a table
produced by print.

In general, the response y and predictors x may be any combination
of numeric or factor types. In fact, the predictors can be a mix of
numeric and factor. However, no factor predictor can have more than
32 levels, and no factor response can have more than 128 levels. In
both of the examples below, the predictors are all numeric. The
numeric response example illustrates a regression tree. The factor
response example illustrates a classification tree.

In the first example, we grow a regression tree relating the numeric
response Mileage to the predictor variable Weight from the data
frame car.test.frame. The resulting tree is given the name
auto.tree, which is then plotted by the generic plot function and
labeled by the generic text function (see Figure 19.1).

attach(car.test.frame)

auto.tree <- tree(Mileage ~ Weight, car.test.frame)
plot(auto.tree,type = "u")

text(auto.tree)

title("A Tree-Based Model\nfor Mileage versus Weight")

VvV VvV V VvV

In describing tree-based models, the terminology mimics real trees.
*  Root: the top node of the tree
*  Leaf: A terminal node of the tree
»  Split: A rule for creating new branches

In growing a tree, the binary partitioning algorithm recursively splits
the data in each node until either the node is homogeneous or the
node contains too few observations (= 5, by default).
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A Tree-Based Model
for Mileage versus Weight

Weiqhtf2567.5
Weight<2280 Weight«<3087.5
Weight«2747.5 Weight«3637.5

34.00 28.89

Weight<2882.5 Weight«3322.5

25.62 18.67
Weight«3197.5
23.33 24.11

20.60 20.40
Figure 19.1: Display of a tree-based model with a numeric response, Mi1eage, and

one numeric predictor, Weight.

In order to predict mileage from weight, one follows the path from the
root, to a leaf, according to the splits at the interior nodes. The tree in
Figure 19.1 is interpreted in the following way:

* Automobiles are first split according to whether they weigh

less than 2567.5 pounds.

+ If so, they are again split according to weight being less than
2280 pounds.

+ Lighter cars (< 2280 pounds) have a predicted mileage of 34
mpg.

* Heavier cars (2280 <= Weight <= 2567.5) have a mileage of
28.9 mpg.
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Factor
Response and
Numeric
Predictor

In this classification example, we model the probability of developing
Kyphosis, using the kyphosis data frame with predictors Age, Start,

For those automobiles weighing more than 2567.5 pounds,
seven weight classes are formed.

The predicted mileage ranges from a high of 25.6 mpgto a
low of 18.7 mpg.

Overall, heavier cars get poorer mileage than lighter cars.

It appears that doubling the weight of an automobile
approximately halves its mileage.

and Number.

First, use boxplots to plot the distributions of the predictor variables
as a function of Kyphosis in Figure 19.2. Start appears to be the
single best predictor of Kyphosis since Kyphosis is more likely to be

present among individuals with Start = 12.

> kyph.tree <- tree(Kyphosis ~ Age + Number + Start,
+ data = kyphosis)

150 200

Age
100

50

o | =

absent present

Kyphosis

Number

o
—

15

10

[
Start
5

—

—

absent present absent present

Kyphosis Kyphosis

Figure 19.2: Boxplots of the predictors of Kyphosis.

Since Kyphosis is a factor response, the result kyph.tree is
classification tree.
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Either the formula or data arguments to the tree function may be
missing. Without the formula argument, a tree is constructed from the
data frame using the first variable as the response. Hence, the
Kyphosis example could have been constructed as follows:

> kyph.tree <- tree(kyphosis)

Without the data argument, the variables named in formula are
expected to be in the search list. The Kyphosis tree could also have
been grown with

> attach(kyphosis)
> kyph.tree <- tree(Kyphosis ~ Age + Number + Start)

The only meaningful operator on the right side of a formula is "+".
Since tree-based models are invariant to monotone re-expressions of
individual predictor variables, functions like Tog, I, and * have little
use. Also, tree-based models capture interactions without explicit
specification.

This time, we display the fitted tree using the generic function, print,
which is called automatically simply by typing the name of the tree
object. This tabular representation is most useful when the details of
the fitting procedure are of interest. Indentation is added as a key to
the underlying structure.

> kyph.tree

node), split, n, deviance, yval, (yprob)
* denotes terminal node
1) root 81 83.230 absent ( 0.7901 0.20990 )
2) Start<12.5 35 47.800 absent ( 0.5714 0.42860 )
4) Age<34.5 10 6.502 absent ( 0.9000 0.10000 )
8) Age<l6 5 5.004 absent ( 0.8000 0.20000 ) *
9) Age>16 5 0.000 absent ( 1.0000 0.00000 ) *
5) Age>34.5 25 34.300 present ( 0.4400 0.56000 )
10) Number<4.5 12 16.300 absent ( 0.5833 0.41670 )
20) Age<127.5 7 8.376 absent ( 0.7143 0.28570 ) *
21) Age>127.5 5 6.730 present ( 0.4000 0.60000 ) *
11) Number>4.5 13 16.050 present ( 0.3077 0.69230 )
22) Start<8.5 8 6.028 present ( 0.1250 0.87500 ) *
23) Start>8.5 5 6.730 absent ( 0.6000 0.40000 ) *
3) Start>12.5 46 16.450 absent ( 0.9565 0.04348 )
6) Start<14.5 17 12.320 absent ( 0.8824 0.11760 )
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12) Age<59 5 0.000 absent ( 1.0000 0.00000 ) *
13) Age>59 12 10.810 absent ( 0.8333 0.16670 )
26) Age<157.5 7 8.376 absent ( 0.7143 0.28570 ) *
27) Age>157.5 5 0.000 absent ( 1.0000 0.00000 ) *
7) Start>14.5 29 0.000 absent ( 1.0000 0.00000 ) *

The first number in each row of the output is a node number. The
nodes are numbered to index the tree for quick identification. For a

full binary tree, the nodes at depth d are integers n, 20<n < 2d+1

Usually, a tree is not full, but the numbers of the nodes that are
present are the same as they would be in a full tree.

In the print output, the nodes are ordered according to a depth-first
traversal of the tree. Let us first examine one row of the output:

2) Start<12.5 35 47.800 absent ( 0.5714 0.42860 )

This row is for node 2. Following the node number is the split,
Start < 12.5. This states the the observations in the parent (root)
node with Start < 12.5 were put into node 2.

The next number after the split is the number of observations, 35.
The number 47.8 is the deviance, the measure of node heterogeneity
used in the tree-growing algorithm. A perfectly homogeneous node
has deviance zero. The fitted value, yval, of the node is absent.
Finally, the numbers in parentheses (0.5714 0.42860), yprob, are the
estimated probabilities of the observations in that node not having,
and having, kyphosis. Therefore, the observations with Start < 12.5
have a 0.5714 chance of not having kyphosis under this tree model.

An interpretation of the table follows:

* The split on Start partitions the 81 observations into groups
of 35 and 46 individuals (nodes 2 and 3) with probability of
Kyphosis 0.429 and 0.043, respectively.

* The group at node 2 is then partitioned into groups of 10 and
25 individuals (nodes 4 and 5) depending on whether Age is
less than 34.5 months or not.

* The group at node 4 is divided in half depending on whether
Age is less than 16 or not. If Age > 16 none of the individuals
have Kyphosis (probability of Kyphosis is 0). These subgoups
are divided no further.
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The group at node 5 is subdivided into groups of size 12 and
13 depending on whether or not Number is less than 4.5. The
respective probabilities of Kyphosis for these groups is 0.417
and 0.692.

The procedure continues, yielding 10 distinct groups with
probabilities of Kyphosis ranging from 0.0 to 0.875.

Asterisks signify terminal nodes; that is, those that are not split.
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DISPLAYING TREES

10

The generic functions print, plot, and summary work as expected for
tree objects. We have already encountered the first two functions in
the examples above. A further interesting feature of plot is that an
optional type argument controls node placement. The type argument
can have either of the two values:

+ """ produces nonuniform spacing as the default. The more
important the parent split, the further the children node pairs
are spaced from their parents.

* "u" produces uniform spacing.

In the car mileage example, we used uniform spacing in order to label
the tree. However, if the goal is tree simplification, we gain insight
into the relative importance of the splits by using the default type,
that is, nonuniform spacing. This is shown in Figure 19.3.

When you first plot the tree using plot, the nodes and splits will be
displayed without any text labels. The generic text function,
described in the Programmer’s Guide, uses the same arguments to
rotate and adjust text in tree plots that it uses with most other types of
plots.

The summary function has a tree-specific method which indicates the
tree type (regression/classification), a record of how the tree was
created, the residual mean deviance, and other information. The
residual deviance is the sum, over all the observations, of terms which
vary according to type (regression/classification) of tree. The residual
mean deviance is then obtained after dividing by the degrees of
freedom (number of observations minus the number of terminal
nodes).
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N

14?:

Figure 19.3: Plot of the car mileage tree with non-uniform node placement.
The following summary is typical for regression trees:

> summary(auto.tree)

Regression tree:

tree(formula = Mileage ~ Weight, data = car.test.frame)
Number of terminal nodes: 9

Residual mean deviance: 4.289 = 218.7 / 51
Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.889 -1.111 0 0 1.083 4.375

11
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The regression tree has nine terminal nodes. Under a normal
(Gaussian) assumption, the terms in the residual mean deviance are
the squared differences between the observations and the predicted
values. See the section Prediction and Residuals for a discussion of
prediction and residuals. The summary function also summarizes the
distribution of residuals.

The following summary is typical for classification trees:
> summary(kyph.tree)

Classification tree:

tree(formula = Kyphosis ~ Age + Number + Start)
Number of terminal nodes: 10

Residual mean deviance: 0.5809 = 41.24 / 71
Misclassification error rate: 0.1235 = 10 / 81

Note that, for classification trees, the summary function gives the
misclassification error rate instead of distribution of residuals. First,
predicted classifications are obtained as described in the section
Prediction and Residuals. The error rate is then obtained by counting
the number of misclassified observations, and dividing by the number
of observations. The terms in the residual mean deviance are based
on the multinomial distribution (see Chambers and Hastie (1992)).



Prediction and Residuals

PREDICTION AND RESIDUALS

Once a tree is grown, an important use of the fitted tree is to predict
the value of the response variable for a set of predictor variables.

For concreteness, consider just one observation x on the predictor
variables. In prediction, the splits direct x through the tree. The
prediction is taken to be the yval at the deepest node reached. Usually
this corresponds to a leaf node. However, in certain situations, a
prediction may reside in a nonterminal node (Chambers and Hastie
(1992)). In particular this may happen if missing values occur in x,
and the tree was grown with only complete observations.

The generic function predict has a tree-specific method. It takes a
tree object and, optionally, a data frame as arguments. If the data
frame is not supplied, predict returns the fitted values for the data
originally used to construct the tree. The function returns predicted
values either as a vector (the default) or a tree object (type = "tree").

The residuals can then be obtained either by subtracting the fitted
values from the response variable, or directly using the function
residuals. Figure 19.4 presents a plot of the residuals versus the
predicted values and a normal probability of the residuals for the
auto.tree model.

<t . ® [ ] <t . LN ] ®
8 o® ¢ ° /(]? .oo"
(9] [0}
= N . I o
o « % . i<} e
[ ° ° o
3 A 3 &
E o A . ° L4 ° E o A &
g * L4 ° ¢ d ° g J-
S o~ ° . g o~ S
[%2] N . ° ° Noq o
o . o L . o . et
<||' 4 o <Ir Je
20 25 30 -2 -1 0 1 2
predict(auto.tree) Quantiles of Standard Normal

Figure 19.4: Residuals versus predicted values and a normal probability plot of the residuals for a tree
object.
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Missing values, NAs, can occur either in data used to build trees, or in
a set of predictors for which the value of the response variable is to be
predicted. For data used to build trees, the tree function permits NAs
only in predictor variables, but only if the argument na.action =
na.tree.replace or na.action = na.tree.replace.all. For any
predictor with missing values, the na.tree.replace function creates a
new factor variable with an added level named "NA" for the NAs; it
leaves numeric predictors alone, even if they have NAs. The
na.tree.replace.all function behaves like na.tree.replace for
factor predictors, and converts numeric predictors with NAs to factors
(based on quantiles), adding a separate level for NAs.

In prediction, suppose an observation is missing a value for the
variable V. Further, suppose there were no missing values for V'in the
training data. The observation follows its path down the tree until it
encounters a node whose split is based on V. The prediction is then
taken to be the yval at that node. If values of several variables are
missing, the observation stops at the first such variable split
encountered.

To clarify this, let us return to the automobile example, where some
of the data are missing values on the variable ReT1iabi11ty. We first fit
a tree on the data with no missing values. The resulting tree is
displayed in Figure 19.5. Notice the split on the variable ReliabiT1ty.



Missing Data

Weight<2600
T
Weight<2280 Weight«3087.5
Reliability:b Weight<3637.5
34.00 29.00
Weight<2777.5 Weight«3322.5
22.60 18.60
26.40  24.11 20.86  22.40

Figure 19.5: Display of tree relating Mileage to Weight and Reliability.

Missing values have been removed from the

analysis.
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To create the tree shown in Figure 19.5, first create a new data set
from car.test.frame, omitting those observations which are missing
data for Reliability:

> car.test.no.miss <-
+ car.test.frame[!is.na(car.test.frame[,31]1),]

Now grow the tree using the cleansed data:

> car.tree <- tree(Mileage ~ Weight + Reliability,
+ car.test.no.miss)

Next, we predict the data with values missing on Reliability, by
extracting  those observations that were omitted from
car.test.no.miss, and then calling predict on the resulting data set:

> car.test.miss <-
+ car.test.frame[is.na(car.test.frame[,3]),]

> pred.miss <-
predict(car.tree, car.test.miss, type = "tree")
> pred.miss

+

node), split, n, deviance, yval
* denotes terminal node
1) root 11 245.300 24.80
2) Weight<2600 3 65.940 30.92
4) Weight<2280 1 0.000 34.00 *
5) Weight>2280 2 26.000 29.00 *
3) Weight>2600 8 81.060 22.58
6) Weight<3087.5 3 11.770 24.32
12) Reliability:2 0 0.000 22.60 *
13) Reliability:1,3,4,5 0 0.000 24.93
26) Weight<2777.5 0 0.000 26.40 *
27) Weight>2777.5 0 0.000 24.11 *
7) Weight>3087.5 5 10.680 20.65
14) Weight<3637.5 4 17.000 21.50
28) Weight<3322.5 3 8.918 20.86 *
29) Weight>3322.5 1 5.760 22.40 *
15) Weight>3637.5 1 0.160 18.60 *

Notice that there are no observations in the nodes (12, 13, 26, 27) at
or below the split on ReTiability.

16
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PRUNING AND SHRINKING

Pruning

Since tree size is not limited in the growing process, a tree may be
more complex than necessary to describe the data. Two functions
assess the degree a tree can be simplified without sacrificing goodness
of fit. The prune.tree function achieves parsimonious description by
reducing the nodes on a tree, whereas the shrink.tree function
shrinks each node towards its parent.

Both functions take the arguments listed below.
* tree: Fitted model object of class "tree".

*  k: Cost complexity parameter for prune.tree and shrinkage
parameter for shrink.tree.

* newdata: A data frame containing the values at which
predictions are required. If missing, the data used to grow the
tree are used.

Pruning successively snips off the least important splits. Importance of
a subtree is measured by the cost-complexity measure:

D(T) = D(T") +k- size(T")

where
D (T') = the deviance of the subtree T',
size(T') = the number of terminal nodes of T',
k = the cost-complexity parameter.

Cost-complexity pruning determines the subtree T that minimizes
D, (T") over all subtrees. The larger the k, the fewer nodes there will
be.

The prune.tree function takes a cost-complexity parameter
argument k, which can be either a scalar or a vector. A scalar k
defines one subtree of tree whereas a vector k defines a sequence of
subtrees minimizing the cost-complexity measure. If the k argument
is not supplied, a nested sequence of subtrees is created by recursively
snipping off the least important splits.

17
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Figure 19.6 shows the deviance decreasing as a function of the
number of nodes and the cost-complexity parameter k.

# Establish the margin sizes.

> par(mai = c(1.25, 1.0, 1.25, 1.0))

> plot(prune.tree(kyph.tree))

> mtext("Reduction in Deviance

Continue string: With the Addition of Nodes",
+ 1ine=5, cex=1.5)

Reduction in Deviance
With the Addition of Nodes

19.0 7.0 4.1 2.6 2.0 1.5 1.2 -Inf
o
©
o
) N~
[&]
C
g o
g ©
©
o
T
o
<
2 4 6 8 10
size
k=5 k=2
Startg12.5 Startg12.5
T T
Age<34.5 Startx14.5
Age<34.5
absent Number<4.5 absergbsent
absent Stari<8.5
absent
absent present preseabsent

Figure 19.6: A sequence of plots generated by the prune. tree function.
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Pruning and Shrinking

Since over one half of the reduction in deviance is explained by the
first three nodes, we limit the tree to three nodes.

> plot(prune.tree(kyph.tree, k = 5))
> text(prune.tree(kyph.tree, k = 5))
> title("k=5")

> summary(prune.tree(kyph.tree, k

5))

Classification tree:

snip.tree(tree = kyph.tree, nodes = c(4, 5, 3))
Variables actually used in tree construction:
[1] "Start" "Age"

Number of terminal nodes: 3

Residual mean deviance: 0.734 = 57.25 / 78
Misclassification error rate: 0.1728 = 14 / 81

By comparing this to the summary of the full tree in the section
Displaying Trees, we see that reducing the number of nodes from 10
to 3 simplifies the model, but at the cost of increased misclassification.

Increasing the complexity of the tree to 6 nodes drops the
misclassification to a rate comparable to that of the full tree with 10
nodes:

> summary(prune.tree(kyph.tree, k = 2))

Classification tree:

snip.tree(tree = kyph.tree, nodes = c(10, 4, 6))
Number of terminal nodes: 6

Residual mean deviance: 0.6383 = 47.88 / 75
Misclassification error rate: 0.1358 = 11 / 81

Figure 19.6 shows kyph.tree pruned to 3 and 6 nodes.

Shrinking reduces the number of ¢ffective nodes by shrinking the fitted
value of each node towards its parent node. Shrunken fitted values,

for a shrinking parameter k, are computed according to the
recursion:

(node) = k- y(node) + (1 -k) - )A/(parent.

19
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Here,

y(node)

the usual fitted value for a node,

Q(parent) = the shrunken fitted value for the node’ s parent.

The shrink.tree function optimally shrinks children nodes to their

parent, based on the magnitude of the difference between y(node)

and Y(parent). The shrinkage parameter argument 0 <k <1 may be

a scalar or a vector. A scalar k defines one shrunken version of tree,
whereas a vector k defines a sequence of shrunken trees obtained by
optimal shrinking for each value of k. If the k argument is not
supplied, a nested sequence of subtrees is created by recursively
shrinking the tree for a default sequence of values (roughly .05 to .91)
of k.

Figure 19.7 shows the deviance decreasing as a function of the
number of effective nodes and the shrinkage parameter, k. In the
figure, note that there is no change other than a decrease in the
residual mean deviance and an increase in the number of effective
nodes.

# Establish the margin sizes.

> par(mai = c(1.25, 1.0, 1.25, 1.0))

> plot(shrink.tree(kyph.tree))

> mtext("Reduction in Deviance

Continue string: With Sequential Shrinking of Nodes",
+ Tine=5, cex=1.5)

Limit the tree to three effective nodes as done with pruning as
follows:

> kyph.tree.sh.25 <- shrink.tree(kyph.tree, k = 0.25)
plot(kyph.tree.sh.25)

text(kyph.tree.sh.25)

title("k = 0.25")

summary (kyph.tree.sh.25)

VvV VvV VvV

Classification tree:

shrink.tree(tree = kyph.tree, k = 0.25)

Number of terminal nodes: 10

Effective number of terminal nodes: 2.8
Residual mean deviance: 0.7385 = 57.75 / 78.2
Misclassification error rate: 0.1358 = 11 / 81



Pruning and Shrinking

The lower misclassification rate is maintained even with only three
effective nodes.

Expand the tree to three effective nodes as follows:

kyph.tree.sh.47 <- shrink.tree(kyph.tree, k = 0.47)
plot(kyph.tree.sh.47)

text(kyph.tree.sh.47)

title("k = 0.47")

summary(kyph.tree.sh.47)

VvV VvV VvV VvV

Classification tree:

shrink.tree(tree = kyph.tree, k = 0.47)

Number of terminal nodes: 10

Effective number of terminal nodes: 6

Residual mean deviance: 0.6281 = 47.11 / 75
Misclassification error rate: 0.1358 = 11 / 81
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Reduction in Deviance
With Sequential Shrinking of Nodes

0.16 0.34 0.47 0.62 0.91
I I I I I
o
5]
o
R
Q
3
=
s
>
g 3
2
3
=3
¥ T T T T T
2.0000 4.0000 6.0000 8.0000 9.7057
size
k=0.25
Slartf12v5
Age434.5 Startx14.5
Agd<59  Age<157.5 |
absent absent absent absent
Age<16 Age<127.5 Number<4.5 ; Start<8.5 .
absent absent absent absent present absent
k=0.47
Slartf12v5
Age434.5 Startx14.5
Agei<59 157.5
absent - absent
Age<16 Number<4.5 absent absent
absent absent Age<fl275 Starl<8.5
absent absent
present absent

Figure 19.7: A sequence of plots generated by the shrink. tree function.
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GRAPHICALLY INTERACTING WITH TREES

Subtrees

A number of Spotfire S+ functions use the tree metaphor to diagnose
tree-based model fits. The functions are naturally grouped by
components of trees: subtrees, nodes, splits, and leaves. Except for
those that are specific to leaves, the functions allow you to interact
graphically with trees, to perform a what-if analysis. You can also use
these functions noninteractively by including a list of nodes as an
argument. The goal is to better understand the fitted model, examine
alternatives, and interpret the data in light of the model.

You can select subtrees from a large tree, and apply a common
function (such as a plot) to the stand of resulting trees. Similarly, you
can snip subtrees from the large tree, in order to gain resolution and
label the top of the tree.

You can browse nodes to obtain important information too bulky to
be usefully placed on a tree plot. You can obtain the names of
observations that occur in a node. By examining the path (that is, the
sequence of splits) that lead to a node, you can characterize the
observations in that node.

You can compare optimal splits (generated by the tree-growing
algorithm) to other potential splits. This helps to discover splits on
variables that may shed light on the nature of the data. Any split
divides the observations in a node into two groups. Therefore, you
can compare the distribution of observations of a chosen variable in
each of the two groups. This helps characterize the two groups, and
also find variables with good discriminating abilities. You may regrow
the tree, after designating a different split at a node.

The leaves of the trees represent the most homogeneous partitions of
the data. You can investigate the differences across leaves by studying
the distribution and summary statistics of chosen variables.

You can select or delete subtrees by subscripting the original tree, or
by using snip.tree or select.tree, described below.

The function snip.tree function deletes subtrees; that is, it snips
branches off a specified tree. One goal may be to gain resolution at
the top of the tree so that it can be labeled.

23



Chapter 19 Classification and Regression Trees

24

The graphical interface for snip.tree proceeds as follows:

*  The first left-click informs you of the change in tree deviance
if that branch is snipped off.

e The second left-click removes the branch from the tree.

* To end the interactive process, click on either the middle or
right mouse button.

Figure 19.8 shows the result of snipping three branches off kyph.tree.

> par(mfrow = c(3,1))

> plot(kyph.tree)

> plot(kyph.tree)

> kyph.tree.sn <- snip.tree(kyph.tree)

node number: 4
tree deviance = 41.24
subtree deviance = 42.74
node number: 10
tree deviance = 42.74
subtree deviance = 43.94
node number: 6
tree deviance = 43.94
subtree deviance = 47.88

> plot(kyph.tree.sn)
> text(kyph.tree.sn,cex = 1)

For noninteractive use, we can equivalently supply the node numbers
in snip.tree(kyph.tree,c(4,10,6)). Negative subscripting is a
convenient shorthand: kyph.tree[-c(4,10,6)].

Similarly, the function select.tree function selects subtrees of a
specified tree. For each node specified in the argument list or selected
interactively, the function returns a tree object rooted at that node.
These can in turn be plotted.



Graphically Interacting with Trees

]

Start<12.5

N“mhL ic absent absent
absent [ Stard<8.5
absent |
present absent
Figure 19.8: A sequence of plots created by snipping branches from the top tree.
Nodes Several Spotfire S+ functions encourage the user to obtain more

detailed information about nodes. Each function takes a tree object as
a required argument, and accepts a list of nodes as an optional
argument. If the node list is omitted, graphical interaction is expected.
The functions return a list, with one component for each node.
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The graphical interface for the node functions proceeds as follows:

+ Left-click to receive information about a particular node in a
tree.

+ To end the interactive process, click on either the middle or
right mouse button.

The browser function returns a summary of the information
contained in a node. Interactively, you can obtain information on the
second and fifth nodes of kyph.tree by first plotting the tree, and
then calling browser as follows:

> plot(kyph.tree)
> browser(kyph.tree)

node number: 2
split: Start<12.5
n: 35
dev: 47.800
yval: absent
absent present

[1,] 0.5714286 0.4285714
node number: 5
split: Age>34.5
n: 25
dev: 34.300
yval: present

absent present
[1,] 0.44 0.56

You can also provide a list of nodes to browser and obtain the node
information noninteractively:

> browser(kyph.tree, c(2,5))

var n dev yval splits.cutleft splits.cutright

2 Age 35 47.80357 absent <34.5 >34.5

5 Number 25 34.29649 present <4.5 >4.5
yprob.absen yprob.present
2 0.5714286 0.4285714
5 0.4400000 0.5600000



Splits

Graphically Interacting with Trees

The identify function is another generic function with a tree-specific
method. The following noninteractive call lists the observations in the
eighth and ninth nodes of kyph.tree:

> identify(kyph.tree, nodes = c(8,9))

$"8":

[1] ™4™ ™14™ ™26"™ "29" "39"

$"9":

[1] "™13™ ™21™ "41" "68" "71"
The function path.tree returns the path (sequence of splits) from the
root to any node of a tree. This is useful in cases where overplotting
results if the tree is labeled indiscriminately. As an example, we
interactively look at the path to the rightmost terminal node of the
kyphosis tree:

> path.tree(kyph.tree)

node number: 27
root
Start>12.5
Start<14.5
Age>59
Age>157.5

By examining the path, we can determine that the children in this
node are more than 157.5 months old, and the beginnings of the
range of vertebrae involved are between 12.5 and 14.5.

The recursive partitioning algorithm underlying the tree function
chooses a “best” set of splits that partition the predictor variable space
into increasingly homogeneous regions. However, it is important to
remember that it is only an algorithm. There may be other splits that
also help you understand the data. The functions in this section help
to examine alternative splits.

As in previous sections, the graphical interface for functions that
examine splits proceed as follows:

+ Left-click to receive information about the split at a particular
node.

* To end the interactive process, click on either the middle or
right mouse button.
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With the burl.tree function, you can select a node and observe the
goodness of split for each predictor in the model formula. The
goodness-of-split criterion is the difference in deviance between the
node and its children (defined by the tentative split). Large differences
correspond to important splits.

The burl.tree function returns a list with one component for each
variable. Each component contains the necessary information for
generating the plots. The reduction in deviance is plotted against a
quantity that depends upon the form of the predictor:

+  If the predictor is numeric, each possible cut-point split is
plotted.

+ Ifthe predictor is a factor variable, a decimal equivalent of the
binary representation of each possible subset split is plotted.
The plotting character is a string labeling the left split.

In the following example, competing splits are plotted for each of the
four predictor variables in the cu.summary data frame. The resulting
graph is displayed in Figure 19.9.

> reliab.tree <- tree(Reliability ~
+ Price + Country + Mileage + Type,
+ na.action = na.tree.replace.all, data = cu.summary)

> tree.screens() # Establish plotting regions
[1] 12

> plot(reliab.tree, type = "u")
> text(reliab.tree)
> burl.tree(reliab.tree) # Now click at the root node

The burl plot shows that the most important splits involve the
variable Country. In the burl plot window for Country, the candidate
splits are divided into two groups; there is a cluster of splits in the top
of the window, and another in the bottom. The top cluster
discriminates better than the bottom cluster, and the very best split is
the one labeled ef. Moreover, the split ef occurs in all candidates that
are in the top cluster. Therefore, we conclude that this is a meaningful
split.
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Country-ef
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Figure 19.9:

Atree for Reliability inthe cu.summary data frame with a burl plot of the four predictors

for the root node.

The function hist.tree requires a list of variable names in addition
to the tree object (and, optionally, a list of nodes). Unlike burl.tree,
the variables need not be predictors in the tree model. For a given
node, a side-by-side histogram is plotted for each variable. The
histogram on the left displays the distribution of the observations
following the left split. Similarly, the histogram on the right displays
the distribution of the observations following the right split.

Figure 19.10 is produced by the expressions below. The figure shows
that Japanese cars manufactured in the U.S. or abroad (i.e., the
Country:ef split) tend to be less expensive and more fuel efficient
than other cars. The lower portion of the plot displays side-by-side
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histograms for the Price and Mileage variables. Note that it is
possible to obtain a histogram of Price, even though the formula for
reliab.tree.2 does not include it as a predictor.

> reliab.tree.2 <- tree(Reliability ~

+ Country + Mileage + Type,

+ na.action = na.tree.replace.all, data = cu.summary)
> tree.screens() # Establish plotting regions

[1]112

> plot(reliab.tree.2, type = "u")
> text(reliab.tree.2, cex=0.7)
> hist.tree(reliab.tree.2, Price, Mileage, nodes = 1)

, Country:ef
1
Typg:ce Typg:ad
Mileagp:bed Type:a Countty:dh Type:e
Mileage:cd
Much better Much better Much better Much better — average Much worse
Counjry:gi Mileage:ab Mileage:ab
better
worse  Much worse worse average average average

||

[ ]
I

[ |

[ ]
I
I
Figure 19.10: A tree for Reliability in the cu.summary data frame.
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Regrowing

Graphically Interacting with Trees

After examining competitor splits at a node, you may wonder what
the tree would look like if the node were split differently. You can
achieve this by using the edit.tree function.

The arguments to edit.tree are listed below.

object: Fitted model object of class "tree".
node: Number of the node to edit.
var: Character string naming variable to split on.

split1: Left split. Numeric for continuous variables;
character string of levels that go left for a factor.

splitr: Right split. Character string of levels that go right for
a factor.

As an example, look at a burl of kyph.tree at the root node for the
variable Start.

> kyph.burl <- burl.tree(kyph.tree, node = 1, plot=F)
> kyph.burls$Start

O NOoO O B W N

e el e
B LNk O w0

Start dev numl
1.5 1.001008 5
2.5 1.887080 7
4.0 2.173771 10
5.5 5.098140 13
7.0 11.499747 17
8.5 17.946393 19
9.5 12.812267 23

10.5 12.821041 27
11.5 10.136948 30
12.5 18.977175 35
13.5 13.927629 47
14.5 17.508746 52
15.5 12.378558 59
16.5 2.441679 76
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Use edit.tree to regrow the tree with a designated split at
Start = 8.5. The result is shown in Figure 19.11.

> kyph.tree.edited <- edit.tree(kyph.tree, node =1,
+ var = "Start", splitl = 8.5)

> plot(kyph.tree.edited)

> text(kyph.tree.edited)

Star{<8.5
T
Age<93 Start<14.5
Age<47
absent absent present
Age<55
absent
Age<98
absent
Number<3.5
present

absent absent

Figure 19.11: kyph. tree regrown at the root node with a split at Start = 8.5.
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Graphically Interacting with Trees

Two noninteractive functions, tile.tree and rug.tree, show the
distribution of a variable over all terminal nodes of a tree.

The function tile.tree plots histograms of a specified variable for
observations in each leaf. This function can be used, for example, to
display class probabilities across the leaves of a tree. Figure 19.12
shows the distribution across leaves for the Kyphosis variable, as
generated by the following commands:

> tree.screens() # split plotting screen
[11 12

> plot(kyph.tree)
> text(kyph.tree)
> tile.tree(kyph.tree, Kyphosis)

A related function, rug.tree, shows the average value of a variable
over the leaves of a tree. The optional argument FUN allows you to
summarize the variable with a measure other than the mean (for
example, the trimmed mean or median). Figure 19.13 shows the rug
plot of medians for the Start variable, as generated by the following
commands:

> tree.screens() # split plotting screen
[1] 3 4

> plot(kyph.tree)
> text(kyph.tree)
> rug.tree(kyph.tree, Start, FUN = median)
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Stal‘tlﬁ12.5
Age<34.5 Startx14.5
Age<59
1
Age<iszs  205e"
Age<16 Number<4.5 absent
Age<i127.5 Stag<8.5 absent absent

absent absent

absent present

present absent

Figure 19.12: A tree of the kyphosis data with a tile plot of Kyphosis.
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Startlg12.5
Age<34.5 Startx14.5
Age<59
absent
Age<57.5
<16 Number<4.5 absent
absent Age<127.5 Start<8.5 absent absent

absent present

present absent

Figure 19.13: A tree of the kyphosis data with a rug plot of Start.
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Chapter 20 Principal Components Analysis

INTRODUCTION

38

For investigations involving a large number of observed variables, it
is often useful to simplify the analysis by considering a smaller
number of linear combinations of the original variables. For example,
scholastic achievement tests typically consist of a number of
examinations in different subject areas. In attempting to rate students
applying for admission, college administrators frequently attempt to
reduce the scores from all subject areas to a single, overall score. If
the reduction can be done with minimal information loss, all the
better.

One obvious choice for the overall score is the mean over all subject
areas. For three subject areas s;, Sy, and S, the mean corresponds to
the linear combination / 3+5S,/ 3+5S3/ , or equivalently I's,

where I' is the vector of coefficients / 3, 1/ 3, 1/ . A linear

combination with Ei = 1 is called a standardized linear combination,

or SLC. By restricting attention to SLCs, you can make meaningful
comparisons between various choices of linear combinations. For
example, with the test scores, you can seek the combination with the
greatest variance as a way of ranking the students and separating
them.

Principal components analysis finds a set of SLCs, called the principal
components, which are orthogonal and taken together explain all the
variance of the original data. The principal components are defined

as follows (from Mardia, Kent, and Bibby (1979)):

If x is a random vector with mean | and covariance matrix

%, then the principal component transformation is the
transformation

x—y = T'(x-p),

where T is orthogonal, ['2I"'= A is diagonal, and
M 2hg2..2h,20.... The ith principal component of x

may be defined as the ith element of the vector y, namely, as

yi = vi(x=w).



Introduction

Here v, is the ith column of I' and may be called the ith
vector of principal component loadings.

Note

Some authors define the loadings somewhat differently, as the covariances of the principal
components with the original variables. Spotfire S+ follows Mardia, Kent, and Bibby (1979).

The first principal component has the largest variance among all SLCs of x. Similarly, the second
principal component has the largest variance among all SLCs of x uncorrelated with the first
principal component, and so on.

In general, there are as many principal components as variables. However, because of the way
they are calculated, it is usually possible to consider only a few of the principal components,
which together explain most of the original variation.
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CALCULATING PRINCIPAL COMPONENTS

40

To calculate principal components, use the princomp function. In
general, the first argument to princomp is a numeric matrix or a data
frame consisting solely of numeric variables. For example, Table 20.1
shows the results of qualifying examinations for 25 graduate students
in mathematics at a fictional university. The students sat for
examinations in each of five subject areas—differential geometry,
complex analysis, algebra, real analysis, and statistics. The differential
geometry and complex analysis examinations were closed book,

while the remaining three exams were open book.

Table 20.1: Examination scores for graduate students in mathematics.

diffgeom | complex | algebra | reals statistics
1 36 58 43 36 37
2 62 54 50 46 52
3 31 42 41 40 29
4 76 78 69 66 81
5 46 56 52 56 40
6 12 42 38 38 28
7 39 46 51 54 41
8 30 51 54 52 32
9 22 32 43 28 22
10 9 40 47 30 24
11 32 49 54 37 52
12 40 62 51 40 49
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Table 20.1: Examination scores for graduate students in mathematics. (Continued)

diffgeom | complex | algebra | reals statistics
13 64 75 70 66 63
14 36 38 58 62 62
15 24 46 44 55 49
16 50 50 54 52 51
17 42 42 52 38 50
18 2 35 32 22 16
19 56 53 42 40 32
20 59 72 70 66 62
21 28 50 50 42 63
22 19 46 49 40 30
23 36 56 56 54 52
24 54 57 59 62 58
25 14 35 38 29 20

The data in Table 20.1 is stored in a data set called testscores. To
perform principal components analysis on these data, use the
princomp function as follows:

> testscores.prc <- princomp(testscores)
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> testscores.prc

Standard deviations:
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
28.48968 9.035471 6.600955 6.133582 3.723358

The number of variables is 5
and the number of observations is 25

Component names:
"sdev" "Tloadings
"scale" "n.obs

correlations center"”

call™ "factor.sdev

scores
" " "w llcoefll
Call:

princomp(x = testscores)

The princomp function returns an object of mode "princomp”. The
printing method for objects of this class shows the standard deviations
of the resulting principal components, together with information on
the size of the original data set, the names of the components making
up the object, and the original call. Use summary to produce a
summary showing the importance of the calculated principal
components:

> summary(testscores.prc)

Importance of components:
Comp. 1 Comp. 2
Standard deviation 28.4896795 9.03547104
Proportion of Variance 0.8212222 0.08260135
Cumulative Proportion 0.8212222 0.90382353
Comp. 3 Comp. 4
Standard deviation 6.60095491 6.13358179
Proportion of Variance 0.04408584 0.03806395
Cumulative Proportion 0.94790936 0.98597332
Comp. 5
Standard deviation 3.72335754
Proportion of Variance 0.01402668
Cumulative Proportion 1.00000000

In our example, the first principal component explains 82% of the
variance, and the first two principal components together explain
90% of the variance.
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By default, princomp uses a weighted covariance estimation function,
cov.wt, to perform the principal components analysis. If you want to
use a minimum volume ellipsoid covariance estimate, use the cov.mve
function, which is described in the section Estimating the Model
Using a Covariance or Correlation Matrix.
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PRINCIPAL COMPONENT LOADINGS
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The principal component loadings are the coefficients of the principal
components transformation. They provide a convenient summary of
the influence of the original variables on the principal components,
and thus a useful basis for interpretation. A large coefficient (in
absolute value) corresponds to a Aigh loading, while a coefficient near

zero has a low loading.

You can view the loadings for a principal components object in either
of two ways. First, you can print them as part of the object summary

by using the Toadings=T argument to summary:

> summary(testscores.prc, loadings

Importance of componen

ts:

Comp. 1

Standard deviation 28.4896795

Proportion of Variance
Cumulative Proportion

Standard deviation
Proportion of Variance
Cumulative Proportion

Standard deviation
Proportion of Variance

0
0

.8212222
.8212222
Comp. 3

.60095491
.04408584
.94790936

Comp. b5

.72335754
.01402668
.00000000

Comp. 1 Comp. 2 Comp. 3

Cumulative Proportion
Loadings:
diffgeom 0.598 -0.
complex 0.361 -0.
algebra 0.302 0.
reals 0.389 0.
statistics 0.519 0.

675
245
214
338
570

-0.185
0.249
0.211
0.700

-0.607

-1

Comp. 2
9.03547104
0.08260135
0.90382353

Comp. 4
6.13358179
0.03806395
0.98597332

Comp. 4 Comp. 5

-0.386
0.829 -0.247
0.135 0.894
-0.375 -0.321
-0.179

To see the loadings alone, use the Toadings function:

> Toadings(testscores.prc)



Comp.

diffgeom O.
complex 0
algebra 0
reals 0
statistics 0

1 Comp.
598 -0.
.361 -0.
.302 0.
.389 0.
.519 0.

675
245
214
338
570

-0.
0.
0.
0.

-0.

The 1oadings function returns an
class has methods for printing and plotting; a plot of the loadings lets
you see at a glance which variables are best explained by each
component. For example, consider the loadings plot created by the

following call:

185
249
211
700
607

Principal Component Loadings

2 Comp. 3 Comp. 4 Comp. 5

-0.386

0.829 -0.247

0.135 0.894

-0.375 -0.321
-0.179

object of class "loadings". This

> plot(loadings(testscores.prc))

The plot is shown in Figure 20.1. The loadings for the first principal
component are all of the same sign, and of moderate size. A
reasonable interpretation is that this component represents an
“average” score for the five qualifying examinations. The second
component contrasts the two closed book exams with the three open
book exams, with the first and last exams weighted most heavily.
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Comp. 1
©
o
<
o
diffgeom statistics reals
Comp. 2
N
o
©
Q
diffgeom statistics reals
Comp. 3
Y}
o
]
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reals statistics complex
Comp. 4
<
o
<
?
complex diffgeom reals
Comp. 5
©
o
N
<
algebra reals complex

Figure 20.1: Loadings plot for the test scores data.
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PRINCIPAL COMPONENTS ANALYSIS USING CORRELATION

The principal components decomposition is not scale-invariant. This
means that you obtain different decompositions depending on
whether you calculate them for the (unscaled) covariance matrix or
the (scaled) correlation matrix. In general, you use the covariance
matrix when the original observations are on a common scale (as, for
example, in the testscores data set). You use the correlation matrix
when you have observations of different types, such as those in the
state.x77 data set. To calculate principal components for scaled
data, use the cor=T argument to princomp:

> state.prc <- princomp(state.x77, cor = T)
> state.prc

Standard deviations:

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

1.897076 1.277466 1.054486 0.8411327 0.6201949 0.5544923
Comp. 7 Comp. 8

0.3800642 0.3364338

The number of variables is 8 and the number of observations
is 50

Component names:

"sdev" "loadings" "correlations™ "scores" "center" "scale"
"n.obs™ "call"
Call:

princomp(x = state.x77, cor = T)
> summary(state.prc, loadings = T)

Importance of components:
Comp. 1 Comp. 2 Comp. 3
Standard deviation 1.8970755 1.2774659 1.0544862
Proportion of Variance 0.4498619 0.2039899 0.1389926
Cumulative Proportion 0.4498619 0.6538519 0.7928445
Comp. 4 Comp. 5
Standard deviation 0.84113269 0.62019488
Proportion of Variance 0.08843803 0.04808021
Cumulative Proportion 0.88128252 0.92936273
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Comp. 6 Comp. 7
Standard deviation 0.55449226 0.3800642
Proportion of Variance 0.03843271 0.0180561
Cumulative Proportion 0.96779544 0.9858515
Comp. 8
Standard deviation 0.33643379
Proportion of Variance 0.01414846
Cumulative Proportion 1.00000000

Loadings:
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
Population -0.126 0.411 0.656 0.409 0.406

Income 0.299 0.519 0.100 -0.638
I1Titeracy -0.468 -0.353
Life Exp 0.412 0.360 -0.443 0.327
Murder -0.444 0.307 -0.108 0.166 -0.128
HS Grad 0.425 0.299 -0.232
Frost 0.357 -0.154 -0.387 0.619 0.217
Area 0.588 -0.510 -0.201 0.499
Comp. 6 Comp. 7 Comp. 8
Population 0.219

Income -0.462
IT1iteracy -0.387 -0.620 0.339
Life Exp -0.219 -0.256 -0.527
Murder 0.325 -0.295 -0.678
HS Grad 0.645 -0.393 0.307
Frost -0.213 -0.472
Area -0.148 0.286

From the loadings for this decomposition, we see that the first
principal component contrasts “good” variables such as income and
life expectancy with “bad” variables such as murder and illiteracy. It
is tempting to interpret this component as a real measure of some
nebulous quantity labeled, for example, “Quality of Life.” From the
importance-of-components summary, however, we see that this
component explains only about 45% of the total variance. If we give
this “obvious” interpretation to the first principal component, what
natural interpretation can we give to the second principal component,
which seems to contrast the proportion of frosty days with virtually all
of the other variables, and explains another 20% of the variance? This
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example shows that, while calculating principal components is
straightforward, interpreting the resulting components in physical or
social terms is not always so.
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ESTIMATING THE MODEL USING A COVARIANCE OR
CORRELATION MATRIX

50

If you do not have raw data, but either a covariance or correlation
matrix derived from the original data, you can use the covlist
argument of the princomp function to perform a principal
components analysis. The data object that is passed to princomp must
be a list object with two components, cov and center.

For example, suppose you have a data object covmatrix containing
the following covariance matrix:

diffgeom complex algebra reals statistics

diffgeom 334.8224 174.424 132.0432 169.8096 224.312
complex 174.4240 139.920 87.6320 104.1360 136.800
algebra 132.0432 87.632 91.5776 101.8928 129.776
reals 169.8096 104.136 101.8928 160.2784 160.848
statistics 224.3120 136.800 129.7760 160.8480 261.760

This matrix is created in Spotfire S+ with the following two
commands:

> covmatrix <- matrix(scan(), ncol=5, byrow=T)

1: 334.8224 174.424 132.0432 169.8096 224.312
6: 174.4240 139.920 87.6320 104.1360 136.800
11: 132.0432 87.632 91.5776 101.8928 129.776
16: 169.8096 104.136 101.8928 160.2784 160.848
21: 224.3120 136.800 129.7760 160.8480 261.760
26:

> dimnames(covmatrix) <- list(c("diffgeom","complex",

+ "algebra","reals","statistics™), c("diffgeom","complex",

+ "algebra","reals","statistics"))

Convert covmatrix into a list object containing the cov and center
components as follows:

> cov.obj <- list(cov = covmatrix, center = ¢(0,0,0,0,0))
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> cov.obj

$cov:
diffgeom complex algebra reals statistics
diffgeom 334.8224 174.424 132.0432 169.8096 224.312
complex 174.4240 139.920 87.6320 104.1360 136.800
algebra 132.0432 87.632 91.5776 101.8928 129.776
reals 169.8096 104.136 101.8928 160.2784 160.848
statistics 224.3120 136.800 129.7760 160.8480 261.760
$center:
[11]000O00O0

To perform the principal components analysis, pass cov.obj to the
princomp function by using the covlist argument:

> princov <- princomp(covlist = cov.obj)
> princov

Standard deviations:
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
28.48968 9.035471 6.600955 6.133582 3.723358

The number of variables is 5 and the number of
observations is unknown.

Component names:

"sdev" "loadings correlations center scale call"

Call:
princomp(covlist = cov.obj)

If you have a correlation matrix, you can use the cov1ist argument in
the same way. For example, suppose you have a data object
cormatrix containing the following correlation matrix:

diffgeom complex algebra reals statistics

diffgeom 1.0000000 0.8058590 0.7540744 0.7330229 0.7576935
complex 0.8058590 0.9999999 0.7741556 0.6953821 0.7148164
algebra 0.7540744 0.7741556 1.0000000 0.8410298 0.8382009
reals 0.7330229 0.6953821 0.8410298 1.0000000 0.7852836
statistics 0.7576935 0.7148164 0.8382009 0.7852836 0.9999999
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As before, the cormatrix object is created in Spotfire S+ with the
following two commands:

> cormatrix <- matrix(scan(), ncol=5, byrow=T)

1: 1.0000000 0.8058590 0.7540744 0.7330229 0.7576935

6: 0.8058590 0.9999999 0.7741556 0.6953821 0.7148164

11: 0.7540744 0.7741556 1.0000000 0.8410298 0.8382009
16: 0.7330229 0.6953821 0.8410298 1.0000000 0.7852836
21: 0.7576935 0.7148164 0.8382009 0.7852836 0.9999999
26:

> dimnames(cormatrix) <- list(c("diffgeom","complex",

+ "algebra”,"reals","statistics"), c("diffgeom","complex",
+ "algebra”,"reals","statistics"))

Convert cormatrix into a list object containing the cov and center

components as follows:

> cor.obj <- list(cov = cormatrix, center = ¢(0,0,0,0,0))
> cor.obj

$cov:
diffgeom complex algebra reals statistics
diffgeom 1.0000000 0.8058590 0.7540744 0.7330229 0.7576935
complex 0.8058590 0.9999999 0.7741556 0.6953821 0.7148164
algebra 0.7540744 0.7741556 1.0000000 0.8410298 0.8382009
reals 0.7330229 0.6953821 0.8410298 1.0000000 0.7852836
statistics 0.7576935 0.7148164 0.8382009 0.7852836 0.9999999
$center:
[1100000

To perform the principal components analysis, pass cor.obj to the
princomp function by using the covlist argument:

> princor <- princomp(covlist = cor.obj)
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> princor

Standard deviations:
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
2.020188 0.6114408 0.4653519 0.4525298 0.3516317

The number of variables is 5 and the number of observations
is unknown.

Component names:
"sdev" "Toadings" "correlations”™ "center" "scale" "call"

Call:
princomp(covlist = cor.obj)

By default, princomp uses a weighted covariance estimation function,
cov.wt, to perform the principal components analysis. If you want to
use a minimum volume ellipsoid covariance estimate, use the cov.mve
function by performing the following steps:

1. Use the cov.mve function with the raw data (the rawdataobj
object below), as follows:

> mve.object <- cov.mve(rawdataobj)

The returned object is a list containing the cov and center
components.

2. Pass the raw data and mve.object to princomp by using the
covlist argument as follows:

> prin.obj <- princomp(rawdataobj, covlist=mve.object)
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EXCLUDING PRINCIPAL COMPONENTS

Creating a
Screeplot

54

The purpose of principal components analysis is to reduce the
complexity of multivariate data by transforming the data into the
principal components space, and then choosing the first # principal
components that explain “most” of the variation in the original
variables. Many criteria have been suggested for deciding how many
principal components to retain, including the following:

*  (Cattell) Plot the eigenvalues A; against j. The resulting plot,

called a screeplot because it resembles a mountainside with a
jumble of boulders at its base, often provides a convenient
visual method of separating the important components from
the less-important components.

+ Include just enough components to explain some arbitrary
amount (typically, 90%) of the variance.

+  (Kaiser) Exclude those principal components with eigenvalues
below the average. For principal components calculated from
a correlation matrix, this criterion excludes components with
eigenvalues less than 1.

Mardia, et al. point out that using Cattell’s criterion typically results in
too many included components, while Kaiser’s criterion typically
includes too few. The 90% criterion is often a useful compromise.

A screeplot plots the eigenvalues against their indices, and breaks
visually into a steady downward slope (the mountainside) and a
gradual tailing away (the scree). The break from the steady downward
slope indicates the break between the “important” principal
components and the remaining components which make up the
scree. The screeplot is the default plot for objects of class "princomp".
Thus, to create a screeplot for a principal components object, simply
use the plot function:

> plot(state.prc)

[1] 0.700000 1.900000 3.100000 4.300000 5.500000
[6] 6.700000 7.900000 9.099999
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By default, the screeplot takes the form of a barplot, and the call to
plot returns the x-coordinates of the centers of the bars. The resulting
plot is shown in Figure 20.2. Looking for an obvious break between
mountainside and scree, you would probably conclude that four or
six components should be retained. The 90% criterion retains five
components.
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Figure 20.2: Screeplot for the state.x77 data.

You can also create a screeplot as a line graph, using the argument
style="Tines":

> plot(testscores.prc, style = "Tines")

[1112345

The screeplot for the testscores data is shown in Figure 20.3. Only
the first and second components appear important here, in agreement
with the 90% criterion.
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Evaluating
Eigenvalues
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Figure 20.3: Screeplot for the testscores data, using style="1ines".

The plot method objects of class "princomp" simply calls the
screeplot function. You can call screeplot directly to create the
plots in Figure 20.2 and Figure 20.3. Using screeplot is particularly
useful when writing functions or Spotfire S+ scripts; it clearly
indicates what type of plot is being created.

To apply Kaiser’s criterion for excluding eigenvalues:

1. Square the sdev component of the principal components
object to obtain the vector of eigenvalues.

2. Take the mean of the vector of eigenvalues.

3. Exclude those components with eigenvalues less than the
mean.

For the testscores data, these steps are:

> testscores.eigen <- testscores.prc$sdev”2
> testscores.eigen

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
811.662 81.6397 43.5726 37.6208 13.8634

> mean(testscores.eigen)
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[1] 197.672

Using Kaiser’s criterion, we exclude all components except the first.
The 90% criterion suggests keeping the first two.

For principal components objects created from correlation matrices,
such as our state.prc example, the mean of the eigenvalues is 1. We
can therefore look at the eigenvalues to determine which components
to exclude:

> state.prc$sdev”r?

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6
3.5989 1.63192 1.11194 0.707504 0.384642 0.307462

Comp. 7 Comp. 8
0.144449 0.113188

Kaiser’s criterion suggests including only the first three principal
components. The 90% criterion suggests including the first five.
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PREDICTION: PRINCIPAL COMPONENT SCORES

58

One important use of principal components is interpreting the
original data in terms of the principal components. For example, the
first principal component of the test scores data seems to reflect a
weighted average of the test scores. Evaluating this average for each
student provides a simple criterion for ranking the students. The
images of the original data under the principal components
transformation are referred to as principal component scores. By default,
princomp calculates the scores and stores them in the scores
component of the returned object:

> testscores.prc$scores

Comp. 1 Comp. 2 Comp. 3 Comp. 4
1 -7.540322 -10.216765 -2.537471 8.670900
2 20.361037

You can force princomp to omit the scores by giving the argument
scores=F.

Alternatively, if you view the principal components as estimates of
interpretable quantities (for example, interpreting the first principal
component of the test scores as an estimate of overall ability), it is
perhaps more natural to view the principal component scores as
predictions from the principal components model. In this case, it is
most natural to obtain the scores using the generic predict function:

> predict(testscores.prc)

Comp. 1 Comp. 2 Comp. 3 Comp. 4
1 -7.540322 -10.216765 -2.537471 8.670900
2 20.361037

You can use predict to obtain estimated scores for new data as well.
The new data must be in the same form as the original data. For
example, suppose you obtained test scores for five additional students
and stored them in the matrix newscores.

> newscores
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diffgeom complex algebra reals statistics

1 22 50 70 54 30
2 22 46 38 52 62
3 22 42 50 40 62
4 42 49 70 42 50
5 32 35 44 66 32

You can obtain the predicted scores for this new data using predict
as follows:

> predict(testscores.prc, newdata = newscores)

Comp. 1 Comp. 2 Comp. 3 Comp. 4
1 -7.273022 9.070945 20.624141 3.8263656
2 -2.559011 20.754755 -7.975341 -0.7556388
3 -5.044379 20.243279 -14.834342 2.0521791
4 10.041295 3.158848 -3.878835 1.2183456
5 -8.851869 5.635621 16.724818 -20.3311596
Comp. 5
1 16.4349148
2 -16.2811592
3 -0.7045226
4 18.1853226
5 -6.7149242
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ANALYZING PRINCIPAL COMPONENTS GRAPHICALLY

We have already seen several graphical views of some portions of the
principal components analysis, namely the screeplot and the loadings
plot. However, neither of these plots gives a comprehensive view of
both the principal components and the original data. The b&iplot
(Gabriel (1971)) allows you to represent both the original variables
and the transformed observations on the principal components axes.
By showing the transformed observations, you can easily interpret the
original data in terms of the principal components. By showing the
original variables, you can view graphically the relationships between
those variables and the principal components.

To create a biplot in Spotfire S+, use the biplot function, giving an
object of class "princomp" as its first argument. For example, to create
a biplot for the test scores data, use bipTot as follows:

> biplot(testscores.prc)
The resulting plot is shown in Figure 20.4.
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Figure 20.4: Biplot of test scores data.
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Interpreting the biplot is straightforward: the x-axis represents the
scores for the first principal component, the y-axis the scores for the
second principal component. The original variables are represented
by arrows which graphically indicate the proportion of the original
variance explained by the first two principal components. The
direction of the arrows indicates the relative loadings on the first and
second principal components. For example, the variable diffgeom
has the largest loadings in absolute value for both the first and second
components, and the loading on the second component has negative
sign. Thus diffgeom is represented by a longish, downward sloping
arrow. The variable algebra has the smallest loadings on the first two
components, and both loadings have the same sign. Thus, algebra is
represented by a short, slightly upward-pointing arrow.

While the points plotted on the lower axes in a biplot represent the
scores for two principal components, they are not equal to the values
returned in the scores attribute of a princomp object. Likewise, the
upper axes do not equal the values returned by the loadings
function. We devote the remainder of this section to explaining the
exact values that are plotted by the Spotfire S+ biplot.princomp
function. For simplicity, we focus our explanation on the first two
principal components only; the derivation is analogous for any two
components displayed in a biplot. For additional details, see Gabriel
(1971).

An nx m data matrix X has a singular value decomposition

X = UDV', where D isa diagonal matrix of singular values. For the
first two principal components, we calculate the following two
matrices:

G

U, U, Dy~

H = [v, v,] D5,

where U, is the ith column of U, V; is the ith column of V, D, is the
upper 2 X 2 submatrix of D,and 0 <5<l is a scaling factor. A biplot

displays the rows of G on the lower and left axes, and the rows of H
on the upper and right axes.
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The princomp function uses the eigenvalues of covariance or
correlation matrices instead of the singular value decomposition, as
explained in the section Principal Components Analysis Using

Correlation. In this formulation, the loadings matrix L of a principal

components analysis is equal to V, the scores matrix S is XV = UD,
and the standard deviations of the principal components are equal to

D/ A/n—1. For the first two principal components, we calculate:
s 5]07

L, Ly|D3,

where S; is the ith column of S and L; is the ith column of L. The

G

H

biplot.princomp function displays the rows of G on the lower and
left axes, and the rows of H on the upper and right axes. The scaling
factor S corresponds to the scale argument in biplot.princomp; by
default, s = 1.
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Chapter 21 Factor Analysis

INTRODUCTION

In many scientific fields, notably psychology and other social
sciences, you are often interested in quantities, such as intelligence or
social status, that are not directly measurable. However, it is often
possible to measure other quantities which reflect the underlying
variable of interest. Factor analysis is an attempt to explain the
correlations between observable variables in terms of underlying
Jactors, which are themselves not directly observable. For example,
measurable quantities such as performance on a series of tests can be
explained in terms of an underlying factor such as intelligence.

Note

The use of the word “factor” in factor analysis has nothing to do with the usual Spotfire S+ sense
of a factor as a categorical data object. In this chapter, we reserve the phrase “Spotfire S+ factor”
for this usual sense. The word “factor” alone refers to the traditional meaning in factor analysis:
an underlying variable that is not directly observable.

66

At first glance, factor analysis closely resembles principal components
analysis. Both use linear combinations of variables to explain sets of
observations of many variables. In principal components analysis, the
observed variables are themselves the quantities of interest. The
combination of these variables in the principal components is
primarily a tool for simplifying the interpretation of the observed
variables. In factor analysis, by contrast, the observed variables are of
relatively little intrinsic interest; the underlying factors are the
quantity of interest.

Formally, if X is a px 1 random vector with mean p and covariance

matrix X, then the Afactor model holds for x if X can be written in
the form

X=u+Af+u (21.1)

where A = {};;} is a px k matrix of constants called the matrix of

factor loadings. In this equation, f and u are random vectors

representing, respectively, the k underlying common factors and p



Introduction

unique factors associated with the original observed variables.
Equivalently, the covariance matrix £ can be decomposed into a
Jactor covariance matrix and an error covariance matrix:

T =AA+Y (21.2)

where ¥ = VAR(u) . The diagonal of the factor covariance matrix is

called the vector of communalities h;z , where

k
2 2
j=1
The communalities represent the common variation in the factors,
while the ; , called the uniguenesses, represent the variation in the x;

not shared with the other variables.

The kfactor model makes sense only if the degrees of freedom s>0,

where s is given by the equation
_1 2 1
For example, if p = 5, s>0 for Kk = 1 and k = 2, but s<0 for

k =3,k =4,and k = 5. Thus, if a factor model is appropriate for a
set of five variables, it will have no more than two factors.
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ESTIMATING THE MODEL
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To perform factor analysis in Spotfire S+, use the factanal function.
There are two main techniques for estimating the factors in factor
analysis: the principal factor estimate and the maximum likelihood
estimate. For a description of these techniques, see Harman (1976) or
Mardia, Kent, and Bibby (1979). The principal factor estimate
(method="principal")is the default.

For example, consider again the test scores data of Table 20.1. We
suppose a two-factor model, one factor representing the overall ability
of each student and the second factor representing the relative effects
of open vs. closed book exams. We perform the factor analysis as
follows, giving factanal the raw data testscores and specifying the
number of factors with the factors argument:

> testscores.fa <- factanal(testscores, factors = 2)

The factanal function returns an object of class "factanal". As
always, you can look at the object by typing its name. The print
method for objects of class "factanal" shows the sum of squares of
the factor loadings, the size of the data, the names of the components
in the returned object, and the call that created the object:

> testscores.fa

Sums of squares of Toadings:
Factorl Factor?2
2.219645 1.866672

The number of variables is 5 and the number of observations
is 25

Component names:

"loadings" "uniquenesses" "correlation" "criteria"
"factors" "dof" "method" "center" "scale" "n.obs"
"scores"™ "call"

Call:

factanal(x = testscores, factors = 2)



Estimating the Model

By default, factanal uses a weighted covariance estimation function,
cov.wt, to perform the factor analysis. If you want to use a minimum
volume ellipsoid covariance estimate, use the cov.mve function,
which is described in the section Estimating the Model Using a
Covariance or Correlation Matrix.

To see a numeric summary of the factor solution, use the summary
function:

> summary(testscores.fa)

Importance of factors:
Factorl Factor?
SS loadings 2.219645 1.8666722
Proportion Var 0.443929 0.3733344
Cumulative Var 0.443929 0.8172634

The degrees of freedom for the model is 1.

Uniquenesses:
diffgeom complex algebra reals statistics
0.1970121 0.1879035 0.1201226 0.1984058 0.2102388

Loadings:
Factorl Factor2
diffgeom 0.506 0.739
complex 0.457 0.777
algebra 0.787 0.510
reals 0.775 0.448
statistics 0.730 0.507

The table at the top of the summary, labeled Importance of Factors,
shows the sum of squares of the loadings on each factor, along with
the proportion of the total variance explained by each factor, and the
cumulative proportion explained after each factor is included. Thus,
the two-factor model for the test scores data explains about 80% of the
variation in the original data, with the first factor accounting for about
45%.
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The summary also shows the number of degrees of freedom in the
model, the uniquenesses, and the factor loadings. The factor loadings
can also be seen by themselves, using the Toadings function:

> loadings(testscores.fa)

Factorl Factor?
diffgeom 0.506 0.739
complex 0.457 0.777
algebra 0.787 0.510
reals 0.775 0.448
statistics 0.730 0.507

Since the uniquenesses and communalities sum to 1 for each variable,

. .
you can calculate the communalities h; from the uniquenesses as

follows:
> 1 - testscores.fa$uniquenesses

diffgeom complex algebra reals statistics
0.8029879 0.8120965 0.8798774 0.8015942 0.7897612
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ESTIMATING THE MODEL USING MAXIMUM LIKELIHOOD

To use the maximum likelihood factor estimate, specify method="m1e"
in the call to factanal:

> testscores.fa2 <- factanal(testscores, factors = 2,
+ method = "mle"™)
> testscores.fa?

Sums of squares of loadings:
Factorl Factor?2
2.48222 1.726735

The number of variables is 5 and the number of observations
is 25

Test of the hypothesis that 2 factors are sufficient versus
the alternative that more are required:

The chi square statistic is 0.78 on 1 degree of freedom.
The p-value is 0.378

Component names:

"lToadings" "uniquenesses" "correlation" "criteria"
"factors" "dof" "method"™ "center"™ "scale"™ "n.obs" "scores"
" w

call

Call:
factanal(x = testscores, factors = 2, method = "mle")

With the maximum likelihood method, it is possible to perform a test
of the hypothesis that the specified number of factors is adequate to
explain the model, and the print method for objects of class
"factanal" gives the results of this test. In this case, there is no
evidence that more factors should be added.
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ESTIMATING THE MODEL USING A COVARIANCE OR
CORRELATION MATRIX

72

If you do not have raw data, but either a covariance or correlation
matrix derived from the original data, you can use the covlist
argument of the factanal function to estimate the factors. The data
object that is passed to factanal must be a list object with two
components, cov and center.

For example, suppose you have a data object covmatrix containing
the following covariance matrix:

diffgeom complex algebra reals statistics

diffgeom 334.8224 174.424 132.0432 169.8096 224.312
complex 174.4240 139.920 87.6320 104.1360 136.800
algebra 132.0432 87.632 91.5776 101.8928 129.776
reals 169.8096 104.136 101.8928 160.2784 160.848
statistics 224.3120 136.800 129.7760 160.8480 261.760

Convert covmatrix into a list object containing the cov and center
components as follows:

> cov.obj <- list(cov = covmatrix, center = ¢c(0,0,0,0,0))
> cov.obj

$cov:
diffgeom complex algebra reals statistics
diffgeom 334.8224 174.424 132.0432 169.8096 224.312
complex 174.4240 139.920 87.6320 104.1360 136.800
algebra 132.0432 87.632 91.5776 101.8928 129.776
reals 169.8096 104.136 101.8928 160.2784 160.848
statistics 224.3120 136.800 129.7760 160.8480 261.760

$center:
[I]0O00O0O0

To perform the factor analysis, pass the cov.obj object to the
factanal function by using the covlist argument, as follows:

> factcov <- factanal(covlist = cov.obj)
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> factcov

Sums of squares of Toadings:
Factorl
3.854577

The number of variables is 5 and the number of observations
is unknown.

Component names:

correlation”™ "criteria"
" llsca]ell llca‘l'lll

"Toadings uniquenesses
"factors" "dof" "method™ "center

Call:
factanal(covlist = cov.obj)

If you have a correlation matrix, you can use the cov1ist argument in
the same way. For example, suppose you have a data object
cormatrix containing the following correlation matrix:

diffgeom complex algebra reals statistics

diffgeom 1.0000000 0.8058590 0.7540744 0.7330229 0.7576935
complex 0.8058590 0.9999999 0.7741556 0.6953821 0.7148164
algebra 0.7540744 0.7741556 1.0000000 0.8410298 0.8382009
real 0.7330229 0.6953821 0.8410298 1.0000000 0.7852836
statistics 0.7576935 0.7148164 0.8382009 0.7852836 0.9999999

Convert cormatrix into a list object containing the cov and center
components as follows:

> cor.obj <- list(cov = cormatrix, center = ¢(0,0,0,0,0))
> cor.obj

$cov:
diffgeom complex algebra reals statistics
diffgeom 1.0000000 0.8058590 0.7540744 0.7330229 0.7576935
complex 0.8058590 0.9999999 0.7741556 0.6953821 0.7148164
algebra 0.7540744 0.7741556 1.0000000 0.8410298 0.8382009
reals 0.7330229 0.6953821 0.8410298 1.0000000 0.7852836
statistics 0.7576935 0.7148164 0.8382009 0.7852836 0.9999999
$center:
[1100000

To perform the factor analysis, pass the cor.obj object to the
factanal function by using the cov1ist argument, as follows:
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> factcor <- factanal(covlist = cor.obj)
> factcor

Sums of squares of loadings:
Factorl
3.854577

The number of variables is 5 and the number of observations
is unknown.

Component names:

"loadings uniquenesses correlation criteria”
"factors™ "dof"™ "method"™ "center" "scale" "call"

Call:
factanal(covlist = cor.obj)

By default, factanal uses a weighted covariance estimation function,
cov.wt, to estimate the factors. If you want to use a minimum volume
ellipsoid covariance estimate, use the cov.mve function by performing
the following steps:

1. Use the cov.mve function with the raw data, in this example,
the rawdataobj object, as follows:

> mve.object <- cov.mve(rawdataobj)

The returned object is a list containing the cov and center
components.

2. Pass the raw data and mve.object to factanal by using the
covlist argument as follows:

> fact.obj <- factanal(rawdataobj, covlist=mve.object)



Rotating Factors

ROTATING FACTORS

The solution to Equation (21.2) is not unique unless the number of
factors k is 1. If G is a k X k orthogonal matrix, then

T = (AG)GA")+V¥ (21.3)

which has the form of Equation (21.2) with A = A G being the matrix
of rotated factor loadings. Thus, the factor loadings are inherently
indeterminate. Any solution can be rotated arbitrarily to arrive at a
new solution. In practice, this indeterminancy is used to arrive at a
factor solution that has what Thurstone (1935) named simple structure.
Loosely, the factor solution has simple structure if each variable is
loaded highly on one factor, and all factor loadings are either large (in
absolute value) or near zero.

Factor analysts have developed many different criteria for choosing
the appropriate rotation. By default, Spotfire S+ uses the “varimax”
method. You can specify a different rotation with the rotation
argument to factanal. For example, to compute the factor solution to
the test scores data using the "oblimin" rotation, call factanal as
follows:

> testscores.fao <- factanal(testscores, factors = 2,
+ rotation = "oblimin")
> summary(testscores.fao)

Importance of factors:
Factorl Factor?
SS loadings 3.8946361 0.18800271
Variable Index 0.7789272 0.03760054
Cumulative Index 0.7789272 0.81652776

The degrees of freedom for the model is 1.
Uniquenesses:

diffgeom complex algebra reals statistics
0.1970121 0.1879035 0.1201226 0.1984058 0.2102388
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Loadings:
Factorl Factor?2
diffgeom 0.855 0.216

complex 0.839 0.277
algebra 0.937 -0.143
reals 0.889 -0.181
statistics 0.889 -0.107

Component/Factor Correlations:
Factorl Factor?

Factorl 1.000 -0.067

Factor2 -0.067 1.000

You can rotate any object of class "factanal" using the rotate
function:

> rotate(testscores.fa, rotation="biquartimin™)

Sums of squares of Toadings:
Factorl Factor?
3.884609 0.1903185

The number of variables is 5 and the number of observations
is 25

Component names:

"loadings™ "uniquenesses™ "correlation”™ "criteria"
"factors" "dof" "method" "center" "scale" "n.obs" "call"
Call:
rotate.factanal(x = factanal(x = testscores, factors = 2),
rotation = "biquartimin™)

> Toadings(.Last.value)

Factorl Factor?
diffgeom 0.844 0.225

complex 0.825 0.286

algebra 0.943 -0.135

reals 0.897 -0.173
statistics 0.894
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Component/Factor Correlations:
Factorl Factor?2

Factorl 1.000 0.106

Factor2 0.106 1.000

Spotfire S+ recognizes the following character strings as valid
rotation arguments:

"varimax" "quartimax" "equamax"
imax X varimi
"parsimax" "orthomax" "covarimin"
iqu imi u imi imi
"b artimin™ "quartimin” "oblimin"
"procrustes™ "promax" "none"

"crawford.ferguson”

See Harman (1976) for descriptions of the various rotations. See the
rotate help file for additional information on using the various
rotations in Spotfire S+.
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VISUALIZING THE FACTOR SOLUTION

The loadings matrix provides a precise, numeric answer to the
question of which variables are loaded most strongly on each factor.
However, you can get a much more intuitive feel for the answer if you
look at the loadings visually. You obtain a loadings plot by calling
plot on the factor loadings:

> plot(loadings(testscores.fa))
The resulting plot is shown in Figure 21.1.
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Figure 21.1: Loadings for the test scores principal factor solution.
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Visualizing the Factor Solution

To see the relation of the factors to both the original variables and the
original data, use biplot:

> biplot(testscores.fa)
The resulting plot is shown in Figure 21.2.
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Figure 21.2: Biplot for the test scores principal factor solution.
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PREDICTION: FACTOR ANALYSIS SCORES
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An important use of factor analysis is to translate the original data into
the planes of the factors. You view the factors as estimates of
interpretable quantities (for example, interpreting the first factor of
the test scores as an estimate of overall ability). The images of the
original data under the factor analysis transformation are referred to
as factor analysis scores. By default, factanal calculates the scores and
stores them in the scores component of the returned object:

> testscores.fa$scores

Factorl Factor?
1 -1.1778029 0.7612478
2 -0.2755734

You can force factanal to omit the scores by giving the argument
scores=F.

It is perhaps more natural to view the factor scores as predictions
from the factor analysis model. In this case, you can use the generic
predict function to obtain the scores:

> predict(testscores.fa)

Factorl Factor?
1 -1.1778029 0.7612478
2 -0.2755734

You can use predict to obtain estimated scores for new data, as well.
The new data must be in the same form as the original data. For
example, suppose you obtained test scores for five additional students
and stored them in the matrix newscores:

> newscores

diffgeom complex algebra reals statistics

1 22 50 70 54 30
2 22 46 38 52 62
3 22 42 50 40 62
4 42 49 70 42 50
5 32 35 44 66 32



Prediction: Factor Analysis Scores

You can obtain the predicted scores for this new data using predict
as follows:

> predict(testscores.fa, newdata = newscores)

Factorl Factor?2
[1,] 1.454873272 -0.9626068
[2,] -0.001166622 -0.5764937
[3,] 0.493414880 -0.8808624
[4,] 1.216808651 -0.3201456
[5,] 0.570954434 -1.1814138
attr(, "type"):
[11 "regression"
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INTRODUCTION

84

Suppose you have a set of quantitative observations about individuals
belonging to two or more groups, such as the three species in Fisher’s
iris data, or patients infected with or free of some disease.
Membership in a given group can be represented by a categorical
variable. You can use the quantitative observations to create a model
that explains the grouping of the given individuals, and can further be
used to assign additional observations to the correct group. Such
models can be fit in a variety of ways, all of which are encompassed
by the general term discriminant analysis.

In the simplest case, assume that all the groups have equal covariance
matrices. In this case, called the homoscedastic model, you can derive a
linear discriminant function of the form:

I(x) = Bip+Biyx

In the most general case, the various groups have independent
covariance matrices, leading to the heteroscedastic model, which leads to
a quadratic discriminant function of the form:

d(x) = Bjp+Bi;x +xTPjox

Relationships among feature variables with respect to the grouping
variable can be expressed by their mean values and their variance-
covariance matrices. You can quantify these relationships and take
advantage of group variance-covariance similarities to reduce the
number of parameters estimated.



A Simple Example

A SIMPLE EXAMPLE

As a simple example of using the discrim function, consider Fisher’s
iris data in the Spotfire S+ data set iris. This data set is an array
containing 50 observations of each of three species of iris. We first
need to convert it to a data frame:

> Species <- factor(c(rep("Setosa", 50),

+ rep("Versicolor"™, 50), rep("Virginica"”, 50)))
> exiris <- rbind(iris[,,1], iris[,,2], iris[,,3])
> exiris <- data.frame(Species, exiris)

Next we fit a default (homoscedastic) model:

> exiris.discrim <- discrim(Species ~ ., data = exiris)
> exiris.discrim

Call:
discrim(Species ~ Sepal.L. + Sepal.W. + Petal.L. +
Petal.W., data = exiris)

Group means:
Sepal.L. Sepal.W. Petal.L. Petal.W. N
Setosa 5.006 3.428 1.462 0.246 50
Versicolor 5.936 2.770 4.260 1.326 50
Virginica 6.588 2.974 5.552 2.026 50
Priors
Setosa 0.3333333
Versicolor 0.3333333
Virginica 0.3333333

Covariance Structure: homoscedastic
Sepal.L. Sepal.W. Petal.L. Petal.W.

Sepal.L. 0.2650082 0.0927211 0.1675143 0.03840136
Sepal.W. 0.1153878 0.0552435 0.03271020
Petal.L 0.1851878 0.04266531
Petal.W 0.04188163
Constants:

Setosa Versicolor Virginica
-86.30847 -72.85261 -104.3683
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Linear Coefficients:
Setosa Versicolor Virginica

Sepal.L. 23.54417 15.69821 12.44585
Sepal.W. 23.58787 7.07251 3.68528
Petal.L. -16.43064 5.21145 12.76654
Petal.W. -17.39841 6.43423 21.07911

The “.” on the right-hand side of the formula tells Spotfire S+ to fit a
model using all the remaining variables in exiris as predictor
variables. We next obtain predictions for our training data:

> exiris.predict <- predict(exiris.discrim)

How well did our model do? There were 150 observations in the
original data; as the following expression shows, only 3 are
misclassified by our simple model:

> sum(exiris.predict$groups != Species)

[113
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Models

The various models for discriminating between the groups specify
some relationships among the groups’ covariance matrices; the two
extremes that are typically considered are the heteroscedastic model,
in which there is no posited relationship among the covariance
matrices, and the homoscedastic model, in which the covariance
matrices are assumed to be all alike. For the discrim function a model
is specified by the family argument. Currently, there are three family
constructors for the discrim function: Classical, CPC, and Canonical.
Each family defines a possible hierarchy of models that makes use of
the posited similarity among the group covariances.

The Classical family includes the following covariance structures,
from most general to specific:

* Heteroscedastic

* Equal correlation
*  Proportional

*  Group spherical
*  Homoscedastic

*  Spherical

As you move from the heteroscedastic to the spherical model, there is
in general a reduction in the number of parameters which have to be
estimated. There is some overlap in the number of parameters
estimated for the proportional and group spherical models, however,
depending on the number of groups and number of feature variables.
Models with fewer estimated parameters tend to be more stable in
terms of standard errors than models with more parameters. You fit
the classical hierarchy of models in Spotfire S+ using the discrim
function with the argument
family=Classical(cov.structure=structure). For example, an
equal correlation model is fit by specifying cov.structure="equal
correlation™.

The family CPC is the common principal component family (Flury,
1984). The two covariance structures currently available for this
family are the proportional and common principal component. These
do not exhaust the possibilities discussed by Flury (1988), but together
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Heteroscedastic
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with the homoscedastic and heteroscedastic models of the classical
family, they complete another logical hierarchy of models. The
argument family=CPC(cov.structure = structure) to discrim
provides the two principal component models.

The Canonical family consists of just one model, using the
homoscedastic covariance structure.

We assume that the feature vectors are p-variate normal random
variables N(y;, X;), fori = 1, .., g. The normality assumption is not

required for the canonical discriminant function, however.

The heteroscedastic model is the most general model and requires
estimating the maximum number of parameters: J- p(p+1)/ 2

variance-covariance estimates. Here, we have X; # X; fori#j.

To fit a heteroscedastic model, use discrim with the argument
family=Classical(cov="heteroscedastic"):

> exiris.het <- discrim(Species ~ ., data = exiris,
+ family = Classical(cov = "heteroscedastic"))
> exiris.het

Call:

discrim(Species ~ Sepal.L. + Sepal.W. + Petal.L. +
Petal.W., data = exiris, family = Classical(cov =
"heteroscedastic"))

Group means:
Sepal.L. Sepal.W. Petal.L. Petal.W. N
Setosa 5.006 3.428 1.462 0.246 50
Versicolor 5.936 2.770 4.260 1.326 50
Virginica 6.588 2.974 5.552 2.026 50
Priors
Setosa 0.3333333
Versicolor 0.3333333
Virginica 0.3333333

Covariance Structure: heteroscedastic



Equal
Correlation
Matrix

Common
Principal
Component

Proportional
Covariances

Models

Group: Setosa
Sepal.L. Sepal.W. Petal.L. Petal.W.

Sepal.L. 0.1242490 0.0992163 0.01635510 0.01033061
Sepal.W. 0.1436898 0.01169796 0.00929796
Petal.L 0.03015918 0.00606939
Petal.W 0.01110612

The equal correlation matrix model assumes that the groups have a
common correlation structure, but different variances. The

covariance matrix of each group is then X; = K;¥K;, where
K; = diag(c;y, .., G,) and ¥ is the common correlation matrix.

Here, we estimate - p+p- (p—1)/ ! correlation and variance
parameters, a reduction of jJ-1)- p- (p-1)/ from the
heteroscedastic model.

To fit an equal-correlation model, use discrim with the argument
family=Classical(cov="equal correlation"):

> exiris.eqcor <- discrim(Species ~ ., data = exiris,
+ family = Classical(cov = "equal™))

The group covariance matrices for the common principal component
model can be written as £; = AA A, where A; = diag(A;, .- Aip)
and A is the matrix of common principal components. The number
of parameters estimated hereis|- p+p- |

To fit a common principal component model, use discrim with the

argument family=CPC() (the common principal component is the

default for the CPC family):

> exiris.cpc <- discrim(Species ~ ., data = exiris,
+ family = CPC())

The proportional covariances model further reduces the number of
parameters to estimate to g—1)+p- (p+ 1)/ 2 by assuming each
group’s covariance is proportional to a common covariance:

PIES K?Z. Note that one proportionality constant, ¥;, is redundant so
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we set k;=1. In the common principal component family, the

proportional model assumes A; = K?klk, for i =2, .,09 and
k=1, ..,p.

To fit a classical proportional covariances model, use discrim with
the argument family=Classical(cov="proportional™):

> exiris.propcov <- discrim(Species ~ ., data = exiris,
+ family = Classical(cov = "proportional™))

Here we assume that the feature vectors are independent. Two
spherical models can be fit. The more general is the group spherical
model, in which the variances for the feature vectors for each group
are different %; = diag(G,Ql, - G?p) . To fit a group spherical model,

use the argument family=Classical(cov="group”) in the call to
discrim:

> exiris.gs <- discrim(Species ~ ., data = exiris,
+ family = Classical(cov = "group™))

The spherical model, on the other hand, assumes the feature vector
variances are the same for each group Z; = X = diag(G?, .o Gﬁ) , for

all i = 1, .., g. Thus, the spherical model is the most restrictive
model, but also the simplest to compute, with only p variances to be
estimated.

To fit a spherical model, use discrim with the argument
family=Classical(cov="spherical™):

> exiris.sph <- discrim(Species ~ ., data = exiris,
+ family = Classical("spherical™))

The homoscedastic model assumes that the group covariance
matrices are equal X; = X, foralli = 1, .., g. Here, - (p+1)/ :
variance-covariances are estimated. You can fit a homoscedastic

model using either the Classical or Canonical families; it is the only
covariance structure permissible for the Canonical family.



Models

To fit a classical homoscedastic model, use discrim with the
argument family=Classical(cov="homoscedastic"):

> exiris.homcl <- discrim(Species ~ ., data = exiris,

+ family = Classical(cov = "homoscedastic"))
To fit a canonical homoscedastic model, use discrim with the
argument family=Canonical():

> exiris.homcan <- discrim(Species ~ ., data = exiris,
+ family = Canonical())
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A likelihood ratio test can be performed between two or more fitted
models to test for a plausible covariance structure for the groups.
One hierarchy of models that can be constructed is the
heteroscedastic, call it hypothesis Hj;, equal correlation, H,,
proportional, Hj, group spherical, Hy, homoscedastic, H;, and
spherical, H,, covariance structures. A sequence of tests proceeds
from the most general, H, versus Hj, to the most restrictive, H,,
versus H;, until a significant likelihood ratio statistic is observed

(McLachlan, 1992, pp. 175-178). You perform these tests using the
anova method for the discrim class.

For example, to compare our heteroscedastic model discrim.het to
our equal-correlation model discrim.eqcor, we call anova as follows:

> anova(exiris.het, exiris.eqcor)

Group Variable: Species
Cov.Structure Df AIC BIC
exiris.het heteroscedastic 46 -838.57 -792.08
exiris.eqcor equal correlation 34 -823.08 -788.72
Loglik Test Lik.Ratio P.value
exiris.het 511.28
exiris.eqcor 479.54 1 vs. 2 63.489 5.1801e-009

The models differ significantly, so in this case we believe the full
heteroscedastic model is required.

Within the CPC family, there is just a two level hierarchy. This
permits a two level hierarchy for the principal component models:
Hproportional versus Hipe. For a full hierarchy, you should include the

classical heteroscedastic and homoscedastic models.



ESTIMATION

Classical
Homoscedastic
and
Heteroscedastic

Estimation

How parameters are estimated depends on the model fitted. The
classical homoscedastic and heteroscedastic covariance structures of
the Classical family require only simple manipulation of the
estimated means and covariances. The equal correlation and
proportional covariance structures of the Classical family require
numerical optimization with respect to the Wishart distribution. The
canonical discriminant function requires eigenvalue estimation, while
the common principal component family requires both optimization
and eigenvalue estimation.

The classical homoscedastic and heteroscedastic discriminant
functions are derived from the log of the normal distribution

p

1 _
(x|, Zi)‘x_Q' log|Zj _Q(X—Hi)Tzi 1(X—Mi)T

1 To-1 Te-1 1 7-1
= —g - log|Z —5% i X+ XM Zi L
For the heteroscedastic model, the quadratic discriminant function is

then

1 -1 -1 1 -1
di(x) = - (plog|Z| STHD DT TS o x+§xTZi x
= Bip+ Bi1X+XTBi2X
1 -1 -1
where Bio = _§(p10g|2i| +l~liTEi W), Biy = MiTEi ) and

Big = —%Z;I. Substituting the unbiased estimates for X; and y;

results in the estimated quadratic discriminant function.

A linear discriminant function is obtained if we can assume the group
covariance matrices are equal, the homoscedastic model. In this case

we replace the common covariance matrix X with the group
covariance matrices X; above. Once done, the quadratic term

%XTZ;IX is constant for all groups and may be discarded from the
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discriminant function leaving only the constant terms B;, and the

linear terms fB;; .

For the proportional covariance matrices model we assume that
%, =«X for i =1, ., 0. Under the assumption of p-variate
normality of the feature variables, the maximum likelihood estimates
~A =172
1

(denoted by a ‘hat’ *) of K; and ¥ satisfy &; = (t_r_(_Z_F;_g._)} and

g -
i =y n'—?' , where K, =1, #r() is the trace function, n; is the number
ok

of observations in the training data from group 7 and n =
(McLachlan, 1992, p. 139). These equations are solved iteratively

until convergence.

McLachlan (1992, p. 139) also provides an iterative solution for the
equal correlation problem. Instead of working with the common
correlation matrix, however, we work with the group covariance

matrices such that X%; = K;ZK;, where the diagonal matrices

K; = diag(x;;, .., Kip) and for the first group Kijzl, for

=1, ..p. The estimating equations are then

. g oA Y ~ 1 ~ R

L= Y/ n)(Ki‘IEiKi_l) and iij = 2((2 )kj(zi)kj)/ ki, for
i=1 k=1

Flury (1984) developed the common principal component model,
which is also discussed in McLachlan (1992, p. 140). Here, the group
covariance matrices share the same principal axes, A, which is

expressed as X; = ATA ;A where A; = diag(A;, .., Ajp).

A special case is the proportional covariance model where

7\’ij = K??\‘“ forj = 1, . P



Canonical
Variates

Estimation

The canonical discriminant function is a dimension reduction
technique that can be applied only to the homoscedastic model.
Define B as the between-groups sum of squares product matrix

divided by g1,
1. .
= —1 2 i~ -w'

where | = Y1 . The canonical variates are then the eigenvectors

associated with the eigenvalues of >'B. There are at most
d = min(g-1, p) nonzero eigenvalues. Denote the canonical

variates by the p x d matrix I'.

We can then write the constants and linear coefficients of the
discriminant function as

d
1 T
Bio = —Q[pEOngJ*'HiTFF )

f

T
Biy = MiTrr :

95



Chapter 22 Discriminant Analysis

PREDICTION

96

We assume that an observation with feature vector X = x is drawn

randomly from a mixture of g groups with probability density
fx(x) = 2: T fi(x) , where m; are the mixing proportions and
fi(x) is the probability density function for the observation for each
group i = 1, .., g. Using the notation of McLachlan (1992), denote
the probability of group membership given an observation with
feature vector x as T;(x) = (m; f;(x))/ [}i: 1Tckfk(x)]. The optimal

rule, or Bayes Rule, is to assign observation x to group k if

T, (X) = max?_ | T;(X).

The discrim function assumes the group density function for x is
multivariate normal. Estimates for the mean, ;, and covariance, Z;,

for the p-variate normal density for group i are estimated from

training data, x;;,1 = 1, .., 9,] = 1, .., n;. Treatment of the mixing

jo
proportions, T;, is dependent on the sampling scheme used to obtain

the training data.

There are two sampling schemes in which the training data can be
obtained: mixture sampling and group conditional sampling. The
mixture sampling design is where a random sample of n observations
are obtained and each observation’s group membership and feature
vector is recorded, thereby making the number of observations from

each group, n;, multinomial random variables so the maximum

likelihood estimate for m; is1,/ n.

In group conditional sampling, the number of individuals sampled
from each group is fixed. If the m; are not known in advance,
McLachlan (1992, pp. 31-33) discusses a technique to use an
additional unclassified mixture sample to estimate the group

proportions using the group conditional error rates obtained from the
training data (the confusion matrix).



Plug-In

Unbiased
Estimates

Prediction

Plug-in estimates of the population densities are computed by
substituting the unbiased estimates of the group means, X;, and

covariances, S,, for the parameters of the densities y; and X;, without

regard to their being random variables.

To obtain the plug-in estimates, use predict on a discrim object with
the argument method="plug-in":

> predict(exiris.het, method = "plug-in")

groups Setosa Versicolor Virginica

69 Versicolor

0 0.8130906 0.1869094
70 Versicolor 0 0.9999643 0.0000357
71 Virginica 0 0.3359442 0.6640558
72 Versicolor 0 0.9999898 0.0000102
73 Versicolor 0 0.6993187 0.3006813
74 Versicolor 0 0.9721091 0.0278909
75 Versicolor 0 0.9999794 0.0000206

An unbiased estimate of the log of the p-variate normal densities is
obtained as follows. Denote the estimated squared Mahalanobis
distance between an observed feature set x and the mean of group ito
be §,(x|X;, S;) = (x—ii)TS;l(x—ii), where S, is the unbiased
estimate of the group covariance, X, Based on the Wishart
distribution, its expected value is

n-—

_r 2(8(x|u,,2)+n) i=1, .,0

where §,(x|W;, %) = (x—ui)TEi_l(x—ui). Moreover, the expected

value of log|S;| is

) 2\4(2(” ) i=1 ..g.

k=1

log|Zi| - plog(
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In the above equation, W is the digamma function (McLachlan, 1992,
p. 57). The results are used to compute unbiased log density
estimates for the heteroscedastic model. Ripley (1996, p. 56) gives the
unbiased estimator of the log of the p-variate normal density
explicitly.

McLachlan (1992, p. 57) gives similar results for the homoscedastic

model. Let S be the unbiased estimate of the common covariance X,
then

E[8,(x|%, S)] = HTSE%TI(Si(X|”i’ 2)+h|9_)

To obtain unbiased estimates, use predict with method="unbiased":
> predict(exiris.het, method = "unbiased™)

groups Setosa Versicolor Virginica

69 Versicolor

0 0.8052674 0.1947326
70 Versicolor 0 0.9999080 0.0000920
71 Virginica 0 0.3745987 0.6254013
72 Versicolor 0 0.9999702 0.0000298
73 Versicolor 0 0.7020916 0.2979084
74 Versicolor 0 0.9640201 0.0359799
75 Versicolor 0 0.9999439 0.0000561

Predictive estimation of group membership is a Bayesian method.
Here, we estimate the posterior density function for each group given
the training data by taking the product of the p-variate normal

probability density f;(x|;, Z;) and the posterior probability density
function of the unknown parameters, © = {;, Eile ,

fo(O1x;j) <lo(O%;;))P(O) , and integrating out the @ A non-
informative prior for the unknown mean and covariance is derived
using Jeffery’s rule, and is taken to be p(©) ocl_L E{®+D7 2 and

the likelihood of the unknown parameters given the training data is

l(@fxy) <TF_  TJ_, [Zi 1" exp(-8(xij)



Prediction

The resulting densities are multivariate t. For the heteroscedastic
model we have
r(2
2)

( +niéi(x)]_§i
)

_ n, p/2 )
fi(x|x;, §)) ‘x(nig ~ 1)

whereas for the homoscedastic model we have
n-g+1

B N \P/2 ndi e 2
fexixe 8)=(77) (1 +MJ

Further details and original authors can be found in Krzanowski and
Marriot (1995, §9.20 and §9.21), McLachlan (1992, p. 68), and Geisser
(1982, pp. 106-108).

If the group proportions are also unknown, estimation of the m; can

be done within the Bayesian framework using a Dirichlet prior
ol

proportional to I_L | ' (Krzanowski and Marriot, 1995, p.20). The

posterior density is then proportional to

o5+,

Krzanowski and Marriot (1995) then remove m; from the posterior
probability that x belongs to group i by multiplying m;(f;(x|X;, S;))
by ) (m;, .., Ty[Ny, .. Ng X) and integrating out the m;, j = 1, .., |.
The result is

(n; + 05 + Dfi(x|x;, S;)
}i:l(nj+06j+ Dfi(x|x; S))

Ti* (X) =

In the case of group condition sampling Krzanowski and Marriot
(1995) set n; = 0. A non-informative prior sets % = -1/ 2 (Box and
Tiao, 1973). As pointed out by Ripley (1996, p. 53), we are left with a
Bayes rule that is essentially the same as 7;(x).
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To

obtain

method="predictive™:

> predict(exiris.het, method = "predictive")

69

70
71
72
73
74
75

groups

Versicolor
Versicolor

Virginica
Versicolor
Versicolor
Versicolor
Versicolor

Setosa Versicolor Virginica

O O O O o o o

predictive

O O O O O o o

estimates, use

.7970519
.9998288
.3816198
.9999235
.7021942
.9582749
.9998786

.2029481
.0001712
.6183802
.0000765
.2978058
.0417251
.0001214

predict

with
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ERROR ANALYSIS

Apparent Error An estimate of the misclassification rate provides a quantitative

Rate

Cross-
Validation

assessment of the discriminating power of an estimated discriminant
function. One such estimate is the apparent error rate where each
observation in the training data is classified and the number of
misclassifications for each group is divided by the group sample size.
This estimate provides an overly optimistic assessment of the true
error rate (conditioned on the training data). The overall conditional
error rate is weighted means of the group error rates where the
weights are the mixture proportions.

> exiris.plug <- predict(exiris.het)

> tb1l <- table(exiris$Species, exiris.plug$groups)

> tb1l <- cbind(tbl, error = (apply(tbl,1,sum)-diag(tbl))/
+ exiris.het$counts)

> tbl

Setosa Versicolor Virginica error

Setosa 50 0 0 0.00
Versicolor 0 48 2 0.04
Virginica 0 1 49 0.02

> sum(exiris.het$prior*tbl[, "error'])

[1] 0.02

Cross-validation is a leave-one-out technique for estimating the error
rate conditioned on the training data. Conceptually, each observation
is systematically dropped, the discriminant function reestimated, and
the excluded observation classified. Fortunately, for the
homoscedastic, heteroscedastic, and spherical models, the
discriminant function does not need to be reestimated. The leave-one-
out formulas for Mahalanobis distance and the determinant of the
estimated covariances matrices for the homoscedastic and
heteroscedastic models can be found in McLachlan (1992, pp. 342-
343) and Ripley (1996, p. 100).
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For example, the commands below estimate the error rate of the
exiris.het object:

> exiris.cross <- crossvalidate(exiris.het)
> tb1l <- table(exiris$Species, exiris.cross$groups)
> thlx <- table(exiris$Species, exiris.cross$groups)
> thlx <- cbind(tblx, error = (apply(tblx,1,sum)-
+ diag(tb1x))/exiris.het$counts)
> thlx
Setosa Versicolor Virginica error
Setosa 50 0 0 0.00
Versicolor 0 47 3 0.06
Virginica 0 1 49 0.02

> sum(exiris.het$prior*tbl1x[, 'error'])

[1] 0.02666667

One can use the posterior probabilities for error rate estimation.
Borrowing the discussion from McLachlan (1992, p. 365) or Ripley

(1996, pp. 75-76), let r(x) be the discriminant rule for the
observation X = x randomly chosen from a mixed population that
has the mixture distribution fyg(x) = zzlnifi(x) , r(x) =1 if
max;(T;(x)) = Ti(x), where 71{(x) =m;fi(x)/ fx(x) is the
posterior probability of an observation belonging to group i. Also let
I(i, j) be the indicator function that evaluates to 1 if i = j and 0
otherwise. Then

Pr(Xe G;, r(X)=j)

Prir(X) =j|Xe G} = 2

| —

a

9
LEL®I0X), D = 2 3 nEITEIX), )]
! =1

i
k
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Substituting the expectation with the averages over the training data
gives the posterior-based error rate estimator

n
T

g ~
l” = Al ZH—E zti(x|)1(f—(xl)7 J) ’ Z||

Tt M2
where z,, = 1 if observation | from the training data came from

group G, . The following example exploits ;ti =n/ n

Z <- diag(3)[exiris.cross$groups,]

P <- NULL

for (i in 1:3)

P <- rbind(P, apply(exiris.cross[,i+11*Z, 2, sum)/
exiris.het$counts[i])

P

vV o+ + VvV

[.1] [.2] [.3]
[1,] 1 0.00000000 0.00000000
[2,1] 0 0.93595428 0.02613819
[3.] 0 0.02404572 1.01386181

Note that Zéi j does not necessarily equal 1 so the estimate can be

normalized.
> P/apply(P, 1, sum)

[,1] [.2] [,3]
[1,] 1 0.0000000 0.00000000
[2.] 0 0.9728319 0.02716806
[3.] 0 0.0231675 0.97683250

The SAS® system takes a different approach to the formulation of the
posterior probability error rate estimates. Here, they define the
classification error rate for group i as

2 l—f fi(x)dx

1- ?rl'if T:(x)fx(x)dx
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In the above equation, the interval of integration is over the set of
observations such that 7, is maximum, that is all x such that r(x) = i
(SAS, 1988). This leads to the unstratified and stratified estimates

= 1-

1

T -

n
Y TixI(F(x), |
j=1
and
1 m .
. n ~ A -
i= X S ueIEeg), - g
T _y kj:l
respectively. Huberty (1994, p. 90) also discusses these estimates. If
ti = N,/ n, the stratified estimate reduces to the unstratified. Note

also that negative estimates can occur.

> l-apply(Z*as.matrix(exiris.cross[,-11), 2, sum)/
+ exiris.het$counts

Setosa Versicolor Virginica
0 0.06404572 -0.01386181

> summary(exiris.het)

Call:

discrim(Species ~ Sepal.L. + Sepal.W. + Petal.L. +
Petal.W., data = exiris, family =
Classical(cov.structure = "heteroscedastic™))

Plug-in classification table:
Setosa Versicolor Virginica Error

Setosa 50 0 0 0.00
Versicolor 0 48 2 0.04
Virginica 0 1 49 0.02
Overall 0.02



Error Analysis

Posterior.Error

Setosa 0.0000000
Versicolor 0.0443544
Virginica 0.0021883
Overall 0.0155142

(from=rows,to=columns)

Rule Mean Square Error: 0.02304681
(conditioned on the training data)

Cross-validation table:

Setosa Versicolor Virginica Error
Setosa 50 0 0 0.0000000
Versicolor 0 47 3 0.0600000
Virginica 0 1 49 0.0200000
Overall 0.0266667
Posterior.Error
Setosa 0.0000000
Versicolor 0.0640457
Virginica -0.0138618
Overall 0.0167280

(from=rows,to=columns)

The error estimates labeled Posterior.Error are the same estimates
as those computed by SAS.

The rule mean squared error reported above is computed as
e S
2 . o .
MSE = ; > >.(tj(%j) —z;;)” where z;; is an indicator variable that
j=tli=1
is equal to one if observation i is from group j and zero otherwise
(McLachlan, 1992, p. 20).
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Cluster analysis is the searching for groups (clusters) in the data, in
such a way that objects belonging to the same cluster resemble each
other, whereas objects in different clusters are dissimilar.

In two or three dimensions, clusters can be visualized. With more
than three dimensions, or in the case of dissimilarity data (see below),
we need some kind of analytical assistance.

Generally speaking, clustering algorithms fall into two categories:

1. Partitioning Algorithms. A partitioning algorithm describes a
method that divides the data set into £ clusters, where the
integer £ needs to specified. Typically, you run the algorithm
for a range of kvalues. For each £ the algorithm carries out
the clustering and also yields a “quality index,” which allows
you to select the “best” value of £ afterwards. Algorithms of
this type described in this chapter are used by the functions
kmeans, pam, clara, and fanny.

2. Hierarchical Algorithms. A hierarchical algorithm describes a
method yielding an entire hierarchy of clusterings for the
given data set. Agglomerative methods start with the situation
where each object in the data set forms its own little cluster,
and then successively merges clusters until only one large
cluster remains which is the whole data set. The functions
agnes, mclust, and hclust use agglomerative methods.
Divisive methods start by considering the whole data set as one
cluster, and then splits up clusters until each object is separate.
Algorithms of this type are used in the functions diana and
mona.

The clustering functions daisy, pam, clara, fanny, agnes, diana, and
mona make up the cluster library, which implements the algorithms
described in Kaufman & Rousseeuw (1990). The functions kmeans,
mclust, and hclust are not part of the cluster library. They have a
slightly different syntax than the cluster library functions.



Data and Dissimilarities

DATA AND DISSIMILARITIES

Dissimilarity
Matrices

Data sets for clustering can have either of the following structures:

1. nx p data matrix:

where rows stand for objects and columns stand for variables.

2. nx n dissimilarity matrix:

0
di2, 1) 0
d(3, 1)d(3, 2) 0
A A A
d(n, 1) d(n, 2) ...... 0]

where 1(i, j) = d(j, i) measures the “difference” or

dissimilarity between the objects i and j. This kind of data
occurs frequently in the social sciences and in marketing.

Many of the clustering algorithms considered here operate on a
dissimilarity matrix. If the data consist of an nx p data matrix, the
algorithm first constructs the corresponding dissimilarity matrix.

The functions kmeans, clara, mona, and mclust operate on a data
matrix. The hclust function operates on a dissimilarity matrix. The
functions pam, fanny, diana, and agnes will take either a data or
dissimilarity matrix.

The function daisy constructs a dissimilarity matrix. The algorithm
used by daisy is described in full in Kaufman and Rousseeuw (1990,
Chapter 1). Compared to the older function dist for which input
must be numeric variables, daisy accepts other variable types (for
example, nominal, ordinal, and asymmetric binary) even when the
different types occur in the same data set.
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Although we refer to the object produced by daisy or dist as a
dissimilarity matrix, it is actually a vector representing the below-
diagonal elements of such a matrix, with additional attributes giving
information such as the number of observations.

The dissimilarity between two objects measures how different they
are. Sometimes we can use an actual metric (distance function)
between objects, but a dissimilarity function is not necessarily a
metric. Often only the following three axioms of a metric are
satisfied:

7. ddi, i) = 0
2. d(, j)=0
3. 43, J) = d(, 1)

How we compute the dissimilarity between two objects depends on

the type of the original variables.

By default, numeric columns are treated as interval-scaled variables,
factors are treated as nominal variables, and ordered factors are
treated as ordinal variables. The type argument to daisy may be used
to specify that a column should be treated in a manner other than the
default.

I. Interval-scaled variables

Interval-scaled variables are continuous measurements on a (roughly)
linear scale. Typical examples are temperature, height, weight, and
energy.

If all variables are interval-scaled, we can use an actual metric such as:

p
9
dd, j) = Z(Xif_ Xjt)  (Euclidean distance) (23.1)
f=1
or
p
dd, j) = Z|Xif_xjf‘ (Manhattan distance) (23.2)
f=1
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Note that the choice of measurement units strongly affects the
resulting clustering. The variable with the largest dispersion will have
the largest impact on the clustering. If all variables are considered
equally important, the data need to be standardized first.

n n
Put m; = % inf and S; = % 2|xif—mf\ ; then the standardized

i=1 i=1
measurements are defined as follows:

Xie— M
if f
Zif = e (23.3)
f

Here we have used s;, the mean absolute deviation instead of the usual

standard deviation, because the former is more robust: since the
deviations are not squared, the effect of outliers is somewhat reduced.
Of course, there are more robust measures of dispersion, such as the
median absolute deviation (the function mad). The advantage of using
a robust measure of dispersion is that the zscores of outliers do not
become too small, hence the outliers remain detectable and visible in
the clustering.

2. Continuous ordinal variables

Continuous ordinal variables are continuous measurements on an
unknown scale, or where only the ordering is known but not the
actual magnitude. Then the dissimilarities are computed as follows:

1. Replace the X;; by their rank ri;e {l, .., M;}.
ris—1
M1

2. Transform the scale to [0,1] as follows: z;; =

3. Compute the dissimilarities as for interval-scaled variables.
3. Ratio-scaled variables

Ratio-scaled variables are positive continuous measurements on a
nonlinear scale, such as an exponential scale. One example would be
the growth of a bacterial population (say, with a growth function

AeBt). With this model, equal time intervals multiply the population
by the same ratio.
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There are different ways to compute dissimilarities for ratio-scaled
variables:

1. Simply as interval-scaled variables, though this is not
recommended as it can distort the measurement scale.

2. As continuous ordinal data.

3. By first transforming the data, perhaps by taking logarithms,
and then treating the results as interval-scaled variables.

4. Discrete ordinal variables

A discrete ordinal variable has M possible values (scores) which are

ordered. The dissimilarities are computed in the same way as for
continuous ordinal variables.

5. Nominal variables

Nominal variables have M possible values, which are not ordered.

The dissimilarity between objects i and j is usually defined as:

# variables taking different values for i and j
total number of variables

dd, j) =

This is called the simple matching coefficient.
6. Symmetric binary variables

Symmetric binary variables have two possible values, coded 0 and 1,
which are equally important. Examples include male and female, or
vertebrate and invertebrate.

Symmetric binary variables are nominal variables, hence we again
use the simple matching coefficient given above for nominal variables.

Let us also consider the contingency table of the objects i and j:

i\j 1 0
1 a b
0 c d
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We can then rewrite the simple matching coefficient as

b+c

dd, j) = ———
(1)) a+b+c+d

(23.4)

7. Asymmetric binary variables

Asymmetric binary variables have two possible values, one of which
carries more importance than the other. The most meaningful
outcome is coded as 1, and the less meaningful outcome as 0.
Typically, 1 stands for the presence of a certain attribute (for
example, a particular disease), and 0 for its absence.

The dissimilarity between i and j is then defined as:

dd, j) = # variables taking different values for i and j
’ total number of meaningful comparisons

b+c

Using the contingency table again, this becomes d(i, j) = ,
a+b+c

which is called the Jaccard coefficient.
8. Variables of mixed types

The above formulas hold when all variables in the data set are of the
same type. However, many data sets contain variables of different
types. Therefore, we want a method to compute dissimilarities

between objects when the data set contains p variables that may be of
different types. For this the function daisy uses the formula

25(.f.) d_(_f)
1) 1)
f=1

P
()
zﬁu

f_ 1

(4, j) = e [0, 1] . (23.5)

113



Chapter 23 Cluster Analysis

Example:
Calculating
Dissimilarities

114

f
In Equation (23.5), 551-) = 0 if Xj; or Xj¢ is missing, or if X;; = Xt = 0

and f is an asymmetric binary variable. Otherwise, Si(;) = 1. The

f
term di(j) is the contribution of variable f, which depends on its type:

1. If f is binary or nominal, di(jf) = 0 if X = Xj;, and di(jf) =1

otherwise.
[Xi — X

2. If f is interval-scaled, di(jf) = ) TN
h(Xng) = MINK Xy

3. For ordinal and ratio-scaled variables, Spotfire S+ computes

Fif

ranks r; and Z;; = v , and treats the z;; as interval-
(-

scaled.

As a simple example of using daisy, we will calculate dissimilarities
for a data frame where the rows are the first five integers:

> my.df <- data.frame(inds = 1:5)
> daisy(my.df)

Dissimilarities

[1T1 234123121

Metric : euclidean
Number of objects : 5
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PARTITIONING METHODS

K-Means

Example:
K-Means

Partitioning methods are based on specifying an initial number of
groups, and iteratively reallocating observations between groups until
some equilibrium is attained.

One of the most well-known partitioning methods is &means. In the
k-means algorithm the observations are classified as belonging to one
of k groups. Group membership is determined by calculating the
centroid for each group (the multidimensional version of the mean)
and assigning each observation to the group with the closest centroid.

The k-means algorithm alternates between calculating the centroids
based on the current group memberships, and reassigning
observations to groups based on the new centroids. Centroids are
calculated using least-squares, and observations are assigned to the
closest centroid based on least-squares. This use of a least-squares
criterion makes k-means less resistant to outliers than the medoid-
based methods which will be discussed in later sections.

The kmeans function performs k-means clustering. It is an older
function that does not have special plot or summary methods. The
main arguments to kmeans are dissimilarities as produced by daisy or
dist and the number of clusters. Alternatively, a matrix of starting
centroids may be specified in place of the number of centroids. If
starting values are not specified the initial centroids are obtained
using the hierarchical clustering algorithm in hclust.

The ruspini data were originally used by Ruspini (1970) in order to
illustrate fuzzy clustering techniques. The data set consists of 75
points; see Figure 23.1, which was created using the function
plot.default(ruspini). We will use k-means to cluster the
observations into four groups:

> kmeans(ruspini, 4)

Centers:

X y
[1,] 98.17647 114.8824
[2,]1 20.15000 64.9500
[3,] 43.91304 146.0435
[4,] 68.93333 19.4000
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Clustering vector:
[11222222222
[28] 333333333
[651 1111114144

Within cluster sum of squares:
[1] 4558.235 3689.500 3176.783 1456.533

Cluster sizes:
[11 17 20 23 15

Available arguments:

[1] "cluster™ "centers"
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Figure 23.1: The Ruspini data.

120

Partitioning The partitioning around medoids algorithm is similar to k-means but

Around uses medoids rather than centroids.

Medoids The method pam is fully described in Chapter 2 of Kaufman and
Rousseeuw (1990). Compared to the function kmeans, the function
pam has the following features: (a) it accepts a dissimilarity matrix; (b)
it is more robust because it minimizes a sum of dissimilarities instead
of a sum of squared euclidean distances; (c) it provides novel

graphical displays such as silhouette plots and clusplots.
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Displays:
Silhouette Plots

Partitioning Methods

The function pam operates on the dissimilarity matrix of the given
data set. When it is presented with an nx p data matrix, pam first
computes a dissimilarity matrix.

The algorithm computes k representative objects, called medoids, which
together determine a clustering. The number £ of clusters is an
argument of the function.

Each object is then assigned to the cluster corresponding to the
nearest medoid. That is, object i is put into cluster v; when medoid

m

v is nearer than any other medoid m,,:
I

di, m,) @, m,) forallw=1, .., k
[}

The Kk representative objects should minimize the sum of the
dissimilarities of all objects to their nearest medoid:

n
objective function = Y d(i, m,)
I
i=1
The algorithm proceeds in two steps:

1. Build-step

This step sequentially selects k centrally located objects to be
used as initial medoids.

2. Swap-step

If the objective function can be reduced by interchanging
(swapping) a selected object with an unselected object, then
the swap is carried out. This is continued until the objective
function no longer decreases.

A partition of the data, such as the clustering found by pam, can be
displayed by means of the silhouette plot (Rousseeuw 1987).

For each object i, the silhouette value s(i) is computed and then
represented in the plot as a bar of length s(i). In order to define s(i),

A denotes the cluster to which object i belongs, and the calculation
proceeds as

a(i) = average dissimilarity of i to all other objects of A
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Now consider any cluster C different from 4 and define
d(i, C) = average dissimilarity of i to all objects of C

After computing d(i, C) for all clusters C not equal to A, we take the
smallest of those:

b(i) = ming ,,d(i, C)

The cluster B which attains this minimum, namely d(i, B) = b(i), is
called the neighbor of object i. This is the second-best cluster for object
i

The value s(i) can now be defined:

. b(i)-a(i
s(l) = (1) - ( )_ (23.6)
max{a(i), b(i)}
We see that s(i) always lies between -1 and 1. The value s(i) may be
interpreted as follows:

s(i) = 1 =object iis well classified
s(7) = 0 =object i lies between two clusters

s(i)) = -1 =object iis badly classified

The silhouette of a cluster is a plot of the s(i), ranked in decreasing

order, of all its objects i. The entire silhouette plot shows the
silhouettes of all clusters next to each other, so the guality of the
clusters can be compared. The overall average silhouette width of the
silhouette plot is the average of the s(i) over all objects i in the data
set (Figure 23.2).

It is possible to run pam several times, each time for a different £ and
to compare the resulting silhouette plots (as in Figure 23.3). You can
then select that value of £ yielding the highest average silhouette
width. If even that highest width is below (say) 0.25, one may
conclude that no substantial structure has been found.



Graphical
Displays:
Clusplots

Example:
European
Countries

Partitioning Methods

A clusplot is a bivariate plot displaying a partition (clustering) of the
data (Figure 23.2). All observations are represented by points in the
plot, using principal components or multidimensional scaling.
Around each cluster an ellipse is drawn. The clusplot provides a
convenient projection of the points into a two dimensional space with
an indication of cluster membership.

The euro data set is an extract from the brochure “Cijfers en feiten:
Een statistisch portret van de Europese Unie” (1994) published by
Eurostat, the European agency for statistics. For each country
belonging to the European Union during 1994, it gives the gross
national product (bbp) in 1992 and the percentage of the gross
national product due to agriculture (1andbouw).

Here, both partitioning and hierarchical methods yield the same
division of the European countries into two clusters; with one cluster
consisting of four countries that are more oriented towards agriculture
and whose gross national product is low relative to the other
countries.

Table 23.1: Countries of the European Union

Code Country Code Country

B Belgium I Italy

D Germany IRL Ireland

DK Denmark L Luxembourg

E Spain NL Netherlands

F France P Portugal

GR Greece UK United Kingdom
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To view the euro data and cluster it with the pam function, type:
> euro

landbouw bbp

B 2.7 16.8
DK 5.7 21.3
D 3.5 18.7
GR 22.2 5.9
E 10.9 11.4
F 6.0 17.8
IRL 14.0 10.9
I 8.5 16.6
L 3.5 21.0
NL 4.3 16.4
P 17.4 7.8
UK 2.3 14.0

> pam(euro, 2)

Call:
pam(x = euro, k = 2)
Medoids:
lTandbouw bbp
D 3.5 18.7
P 17.4 7.8
Clustering vector:
B DKDGREFIRLILNLPUK
1 11 221 211 12 1
Objective function:
build swap
3.429317 3.36061

Available arguments:

[1] "medoids" "clustering” "objective" "isolation"
[5]1 "clusinfo" "silinfo" "diss" "data"
[91 "call"

We can visualize the cluster with the command below. The plot is
displayed in Figure 23.2.

> plot(pam(euro, 2))
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Silhouette width
Average silhouette width : 0.63

Figure 23.2: Clusplot and silhouette plot of pam(euro, 2).

We will compare the silhouette plots for two different partitions of the
Ruspini data. We first use pam to partition the data into four clusters.
After that, a partition into five clusters is constructed. The four
medoids resulting from the first call are points in the centers of the
four clusters. The second call to pam produces the same four medoids,
and takes an intermediate object as the fifth medoid. The minimal
value reached for the objective function is a little smaller when five
clusters are formed. However, that does not necessarily imply that the
second clustering is better. From the clustering vector, and the
numerical output per cluster, it can be seen that both clusterings are
similar. The second partition places the three most outlying points of
the third cluster in a separate cluster. This new cluster is an isolated
one.
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On the other hand, the clusters resulting from the second call are not
as well-separated as those from the first call. Looking at the silhouette
plots in Figure 23.3, the conclusion is similar. With the first clustering,
all s(i) are above 0.4. The second clustering yields very large
silhouette widths for the new cluster with three objects. But some of
the silhouette widths of the second and third cluster have decreased.
That is, those objects lie somewhere between two clusters. According
to the overall average silhouette width both clustering structures are
approximately of the same quality, kK = 4 slightly preferable over

k=5.

2)
2)

> plot(pam(ruspini, 4), which
> plot(pam(ruspini, 5), which

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width
Average silhouette width : 0.74

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width
Average silhouette width : 0.71

Figure 23.3: Silhouette plots generated by pam(ruspini, 4) and
pam(ruspini,5).
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Partitioning Methods

As the k-means and partitioning around medoids techniques
construct dissimilarities between all pairs of observations, their
memory requirements are quadratic in the number of observations.
This can be prohibitive when the number of observations is large.
The Clustering Large Applications technique uses a less memory-
intensive algorithm.

The method clara is fully described in Chapter 3 of Kaufman and
Rousseeuw (1990). Compared to other partitioning methods such as
pam, the clara function can deal with much larger data sets.
Internally, this is achieved by considering data subsets of fixed size, so
that the overall time and storage requirements become linear in the
total number of objects, rather than quadratic.

The function pam needs to store the dissimilarity matrix of the entire

data set (which has O(n2) entries) in central memory, while its
computation time goes up accordingly. For larger data sets (say, with
more than 250 objects) this becomes less convenient. To avoid this
problem, the function clara does not compute the entire dissimilarity
matrix at once. Therefore, this function only accepts input of an n x p
data matrix.

The algorithm takes a data subset, and then applies the pam algorithm
to it. This divides the data subset into £ clusters. The remaining
objects of the original data set are then assigned to the nearest
medoid. In this way, all z objects are assigned. The objective function
is then computed for the entire data set, namely by summing all n

terms d(i, mvi).

This procedure is repeated for several data subsets, and the clustering
with the lowest overall objective function is retained. In this way, we
only need to compute and store the dissimilarity matrix of one data
subset at any one time, which makes the overall order of complexity
linear in 7.

The first data subset is drawn randomly. Each of the following data
subsets is forced to contain the currently best medoids, supplanted
with randomly drawn objects.
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Graphical Display The clustering obtained by clara can also be represented by means

Example: A Large
Data Set

124

of clusplots and silhouette plot, described in the previous section on
pam. Due to the potential sizes of the data sets, the silhouette plot is
given only for the best data subset.

This data set, consisting of 500 two-dimensional points, is generated
in Spotfire S+ using the following command:

> x <- rbind(cbind(rnorm(200, 0, 8),rnorm(200, 0, 8)),
+ cbind(rnorm(300, 50, 8), rnorm(300, 50, 8)))
> plot(x[,1]1, x[,2])

A plot of the points is shown in Figure 23.4.

-20 0 20 40 60
X[, 1]

Figure 23.4: A large data set of 500 points.

The objects in the data set are clearly divided into two clusters. If pam
had been used with this data set, 124750=500%499/2 dissimilarities
would have been considered. The function clara uses only
946=44*43/2 dissimilarities, since the default sample size is
40+2*k = 40+2*2 = 44. The clara function still finds the correct
clustering. The average silhouette width, 0.82, indicates a good
clustering structure.

> a<- clara(x, 2)

> names(a)

[1] "sample" "medoids" "clustering”™ "objective”
[5] "clusinfo" "silinfo" "diss" "data"

[9] "call"
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> a$medoids

[.1] [.2]
[1,] 2.374335 -0.05215445
[2,] 49.636427 48.02134564

> plot(a)

o
«

Component 2
0
I

Component 1
These two components explain 100 % of the point variability.

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width
Average silhouette width : 0.82

Figure 23.5: Clusplot and silhouette plot of cT1ara(x, 2), where x is the large data
set.

Fuzzy Analysis The functions kmeans, pam, and clara are crisp clustering methods.
This means that each object of the data set is assigned to exactly one
cluster. For instance, an object lying between two clusters must be

assigned to one of them. In fuzzy clustering, each observation is given
fractional membership in multiple clusters.
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The method fanny is fully described in Chapter 4 of Kaufman and
Rousseeuw (1990). Compared to other fuzzy clustering methods,
fanny has the following features: (a) it accepts a dissimilarity matrix;
(b) it is more robust to the “spherical cluster” assumption (see
Kaufman and Rousseeuw); (c) its graphical display is in the form of a
clusplot or silhouette plot.

For each object i and each cluster v there will be a membership u;,
which indicates how strongly object i belongs to cluster v.
Memberships have to satisfy the following conditions:
. u,20foralli=1, .,nandallv=1, .,k
K
2. ) Uy =1=100% foralli = 1, .., n.

v=1

The memberships are defined through minimization of:

‘ 2 u uJ dd, j)
objective function = 2' =1 - (23.7)

9
2 u
R

v=1

In this expression, the dissimilarities d(i, j) are known and the
memberships U;, are unknown. The minimization is carried out

numerically by means of an iterative algorithm, taking into account
the above conditions that memberships need to obey. To have an
idea of “how fuzzy” the resulting clustering is, Dunn’s partition
coefficient is computed:

U

iv
— 23.
N (23.8)

IIM??

| Z

F\ always lies in the range [&, 1}
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Example: Ruspini
Data

Partitioning Methods

Dunn’s partition coefficient attains its extreme values in the following
situations:

1. entirely fuzzy clustering; all u;, =

Pl
>
=
)
Pl

2. crisp clustering; all u;, = 0 or 1 =F, = E =1

The normalized version of this coefficient is

1
C L1 k-1 23.)
k

which always lies in the range [0, 1].

For any fuzzy clustering, such as the one produced by fanny, the
nearest crisp clustering method should be considered for graphical

output. It assigns each object i to the cluster » in which it has the
highest membership u;,. This crisp clustering is then represented
graphically by means of a clusplot or silhouette plot.

When we call fanny with the ruspini data and k = 4, nearly all
objects have a large membership to one of the clusters. The three
objects that were placed in a separate cluster when calling pam for
k =5 now are classified in a fuzzy way, since none of their
memberships is much higher than the other memberships. We
conclude that the majority of the data can be divided into four
clusters, but some objects are situated between the clusters. The
nearest crisp clustering is the same as that from pam with k = 4.
Hence, the silhouette plots are identical. But this is not always the
case. When we call fanny for k = 5, the nearest crisp clustering is
different from that produced by pam. The second cluster has been split
instead of the third one. Because the average silhouette width is
smaller than before, the clustering structure is less clear (Figure 23.6).

> plot(fanny(ruspini, 4), which = 2)
> plot(fanny(ruspini, 5), which 2)

127



Chapter 23 Cluster Analysis

128

> fanny(ruspini, 4)

Call:
fanny(x = ruspini, k = 4)
iterations objective
12 422.8389
Membership coefficients:
[,1] [.2]
1 0.65700251 0.10241150
2 0.71377401 0.09277800
3 0.76033966 0.07322710

73 0.09673152 0.04828669
74 0.11367653 0.05369059
75 0.11731903 0.04977991
Coefficients:
dunn_coeff normalized
0.6237448 0.4983264
Closest hard clustering:
1234567891011
111111111 1 1
23 24 25 26 27 28 29 30
2 2 2 2 2 2 2 2
42 43 44 45 46 47 48 49
2 2 3 3 3 3 3 3
61 62 63 64 65 66 67 68
4 4 4 4 4 4 4 4

Available arguments:
[1] "membership" "coeff"
[5] "silinfo" "diss"

[.3]
0.09105386
0.07872431
0.06478832

0.06629964
0.07298550
0.06446637

12 13 14 15 16 17

1 1 1

31 32 33 34 35 36

2 2 2

50 51 52 53 54 55
3 3 3 3 3 3

[.4]

.14953212
.11472369
.10164492

.78868216
.75964738
.76843470

1 11

2 2 2

69 70 71 72 73 74 75
4 4 4 4 4 4 4

"clustering”
lldata'l

18 19 20 21 22

37 38 39 40 41

56 57 58 59 60
3 3 3 3 3

"objective"
"call"
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T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width
Average silhouette width : 0.74

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width
Average silhouette width : 0.61

Figure 23.6: Silhouette plots generated by fanny (ruspini, 4) and
fanny(ruspini, 5).
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Agglomerative
Nesting

130

The partitioning algorithms discussed previously are based on
specifying an initial number of groups, and iteratively reallocating
observations between groups until some equilibrium is attained. In
contrast, hierarchical algorithms proceed by combining or dividing
existing groups, producing a hierarchical structure displaying the
order in which groups are merged or divided.

Agglomerative methods start with each observation in a separate group,
and proceed until all observations are in a single group. Divisive
methods start with all observations in a single group and proceed
until each observation is in a separate group.

The two most widespread clustering techniques are k-means and
agglomerative hierarchical clustering. Spotfire S+ has three functions
for agglomerative hierarchical clustering: hclust, mclust, and agnes.
The oldest is hcTust, and its capabilities have largely been subsumed
by mclust and agnes. The agnes function provides more
sophisticated plots than mclust, and has an interface consistent with
the other functions in the cluster library. However, mclust does offer
some computational methods not available in agnes, and is thus of
interest in its own right. (The mclust function is discussed in a later
section.)

The method agnes is fully described in Chapter 5 of Kaufman and
Rousseeuw (1990). Compared to other agglomerative clustering
methods such as hclust, agnes has the following features: (a) it yields
the agglomerative coefficient which measures the amount of clustering
structure found; (b) apart from the usual clustering tree, it also utilizes
the banner plot.

As the function agnes is an agglomerative hierarchical clustering
method, it yields a sequence of clusterings. In the first clustering each
of the n objects forms its own separate cluster. In subsequent steps

clusters are merged, until (after n—1 steps) only one large cluster
remains, consisting of all the objects.
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Hierarchical Methods

The algorithm is based on dissimilarities only. If a data matrix is
input, the function starts by computing the dissimilarity matrix.

Initially (at step 0), each object is considered as a separate cluster. The
rest of the computation consists of iteration of the following steps:

1. Merge the two clusters with smallest between-cluster
dissimilarity;
2. Compute the dissimilarity between the new cluster and all

remaining clusters.

The between-cluster dissimilarity can be defined in various ways,
notably:

1. Group average method

1

IR Q=== Ydi
RIIQI. <
ieR, jeQ
2. Nearest neighbor method, or single linkage method
IR, Q) =, ™M 4, j
(R, Q) ieR,jeQ( J

3. TFurthest neighbor method, or complete linkage method

max

(R Q) = ieR, jeQ

ddi,

The group average method is taken as the default, based on arguments of
robustness and consistency.

The function agnes also provides the agglomerative coefficient
(Rousseeuw 1986), which measures the clustering structure of the data
set. For each object i, d(i) denotes its dissimilarity to the first cluster
it is merged with, divided by the dissimilarity of the merger in the last
step of the algorithm. The agglomerative coefficient (AC) is defined as
the average of all 1 -d(i). Because the AC grows with the number of

objects, this measure should not be used to compare data sets of very
different sizes.
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The hierarchy obtained from agnes can be graphically displayed in
two ways, by means of a clustering tree or by a banner.

1. Clustering tree. This is a tree in which the leaves represent
objects. The vertical coordinate of the place where two
branches join equals the dissimilarity between the
corresponding clusters.

2. Banner. The banner shows the successive mergers from left to
right. Imagine the ragged flag parts at the left, and the flagstaff
at the right; the objects are listed from top to bottom. The
mergers, which commence at the between-cluster
dissimilarity, are represented by horizontal bars of the correct
length. The banner thus contains the same information as the
clustering tree.

Note that the agglomerative coefficient defined above can also be
defined as the average width (or the percentage filled) of the banner
plot.

The votes.repub data set is standard in Spotfire S+. This matrix
contains the percentage of people in the 50 states of the USA that
voted Republican in the 31 presidential elections between 1856 and
1956. If a state did not yet belong to the USA in the year in question,
an NA value is given.

When agnes is applied to this data set, the clustering tree indicates a
division of the data into two well-separated clusters. A cluster
containing eight of the Southern states is merged with the other states
in the last step. The dissimilarity between the two clusters is large in
comparison with the dissimilarities of the mergers at the other stages.
When the complete linkage method is used, the same clustering
structure is found. The clustering tree obtained by the single linkage
method looks very different. Upon closer scrutiny, one sees that the
states which are merged in the final steps are exactly those states that
the other methods considered as a separate cluster. The single linkage
method has a tendency towards chains of clusters, which causes the
differences between the trees in this example. The diana function
discussed in the next section finds the same main clustering structure:
the eight Southern states are already split off at the first stage.
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Since all of these hierarchical methods seem to agree on the division
of the data set into two clusters, the conclusion might be that the
voting behavior in the Southern states of the USA is rather different
from that in the other states. The further division of the clusters is not
so clear-cut: different methods yield more or less different structures.

> plot(agnes(votes.repub), which = 2)
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Figure 23.7: Clustering tree of agnes (votes.repub).

Note that Figure 23.7 and Figure 23.8 have been rotated in this
manual. When you run the code above, the resulting plots have trees
with branches downward and labels on the bottom. Spotfire S+ does
not provide an easy method for rotating plots to match what you see
in these figures.
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While agglomerative clustering starts with many groups and
combines them to form one group, divisive analysis starts with one
group and repeatedly divides groups to form many groups.

The method diana is fully described in Chapter 6 of Kaufman and
Rousseeuw (1990). It is probably unique in computing a divisive
hierarchy, because most other software for hierarchical clustering is
agglomerative. Moreover, diana provides (a) the divisive coefficient
which measures the amount of clustering structure found; and (b) the
banner plot.

The function diana is a divisive hierarchical method. The initial
clustering (at step 0) consists of one large cluster containing all =
objects. In each subsequent step, the largest available cluster is split
into two smaller clusters, until finally all clusters contain but a single
object.

In the first step of an agglomerative method, there are

(g) = n(nT_l) possible ways to merge two clusters. But in the first

step of a divisive method, we are faced with 2n -1 -1 possibilities to
split up the data set into two clusters. The latter number is much
larger than the first, and in practice it is not feasible to try all possible
splits.

To avoid considering all possible splits, diana divides the data set in
the following way (based on dissimilarities only):

1. Find the most disparate object, which is the one with the
highest average dissimilarity to the other objects. This object
initiates the splinter group, analogous to a dissenting fraction of
a political party.

2. For each object i outside the splinter group, compute

_ . N
Ji = averagej; gplinter groupd(l’ N- average; ¢ glinter groupd(lﬂ )

to find the object h for which this difference is largest. If
V\,>0, then h is on average closer to the splinter group than
to the remainder, so add object h to the splinter group.

3. Repeat step 2 until all differences V,, are negative. The data
set is then split into two clusters.
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4. Select the cluster with the largest diameter; the diameter of a
cluster is the largest dissimilarity between any two of its
objects. Then divide this cluster as in steps 1 to 3.

5. Repeat step 4 until all clusters contain only a single object.

The function diana also provides the divisive coefficient (Rousseeuw,
1986), which measures the clustering structure of the data set. For
each object i, d(i) denotes the diameter of the last cluster to which it
belongs (before being split off as a single object), divided by the
diameter of the whole data set. The divisive coefficient (DC) is then
defined as the average of all d(i). Like the AC in the previous section
on agnes, the DC also grows with the number of objects. Therefore,
the DC should not be used to compare data sets of very different
sizes.

The hierarchy obtained from diana can again be graphically
displayed either as a clustering tree or as a banner. Note that the
divisive coefficient (DC) defined above can also be defined as the
average width (or the percentage filled) of the banner plot.

We mentioned in the section Agglomerative Nesting that diana gives
a clustering tree quite similar to that from agnes on the Republican
voting data. The following command shows this:

> plot(diana(votes.repub), which = 2)
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Figure 23.8: Clustering tree of diana(votes.repub).

When all of the variables in a data set are binary, a natural way to
divide the observations is by splitting the data into two groups based
on the two values of a particular binary variable. Monothetic analysis
produces a hierarchy of clusters in which at each step a group is split
in two based on the value of one of the binary variables.

The method mona is fully described in Chapter 7 of Kaufman and
Rousseeuw (1990). It is a different type of divisive hierarchical
method. Contrary to diana, which can process a dissimilarity matrix
as well as a data matrix with interval-scaled variables, mona operates
on a data matrix with binary variables. For each split mona uses a
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single (well-chosen) variable, which is why it is called a monothetic
method. Most other hierarchical methods (including agnes and
diana) are polythetic; that is, they use all variables simultaneously.

First all missing values in the binary data matrix (all those values
not=0 or 1) are replaced by estimated values, obtained as follows.

Suppose that x;; is missing. Then we consider any other variable g,
and construct the contingency table

f\g 1 0
1 afg by
0 Crg dgg

The association between f and g is then defined as

Atg = [arglrg — broCrql

The variable t for which A = maXAfg is the most correlated with

variable f. The missing values of f are then estimated by means of

variable t in the following way:
put Xif = Xit when aftdft— bftcft >0
put X;; = 1—Xx;; when agdg —bsCr <0

When all missing values have been replaced, the actual splitting can
begin. If the data matrix cannot be filled in completely, due to too
many missing values in the original data, the method stops with an
error message.

The mona algorithm constructs a hierarchy of clusterings, starting with
one large cluster. In each step, each available cluster is divided
according to one variable. The cluster is divided into two: one cluster
with all objects having value 1 for that variable, and another cluster
with all objects having value O for that variable.
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The variable used for splitting a cluster is the variable with the largest
total association to the other variables. The association between

variables f and g is given by the expression A¢; above, but now the
contingency table uses only the objects of the cluster to be split. The
total association of a variable f is then defined as:

As = ZAfg (23.10)
g=f

The variable t which satisfies A, = MaxA; is selected for splitting
f

the cluster. We continue to divide clusters in this way, until each
cluster consists of objects having identical values for all variables.
Such clusters cannot be split any more. A final cluster is thus a
singleton or an indivisible cluster.

The clustering hierarchy constructed by mona can be represented by
means of a banner. This is again a divisive banner; however, the
length of a bar is now given by the number of divisive steps needed to
make that split. Inside the bar, the variable responsible for the split is
listed.

Six binary attributes are considered for twenty animals.
Table 23.2: Animal attributes.

Abbreviation Attribute

war Warm or cold blooded
fly Flying or nonflying

var Vertebrate or invertebrate
end Endangered or not
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Table 23.2: Animal attributes. (Continued)

Abbreviation Attribute
gro Lives in social groups, or not
hai Hairy or not hairy

This example illustrates the use of mona. The following call produces
the banner plot shown in Figure 23.9:

> plot(mona(animals))

Spi
lob
bee

Figure 23.9: Banner of mona(animals).

Figure 23.9 shows that mona classifies the animals according to the six
attributes. In the first step, cold- and warm-blooded animals are put in
separate clusters. The first cluster is then split into vertebrate and
invertebrate animals, and the second cluster into flying and nonflying
animals. Finally, after the fifth step, animals belonging to the same
group have the same value for all six variables; on the banner, no bar
is drawn between these animals.
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If we wished to apply agnes or diana to this data set, we would have
to compute the dissimilarities with daisy, because the variables are
not numeric. The instruction is: agnes(daisy(animals),diss=T).
When we consider variable two (flying or not flying), and six (hairy or
not hairy) as asymmetric binary, the call becomes:

agnes(daisy(animals,type=Tist(asymm=c(2,6))),diss=T)

The resulting clusterings will differ from the previous clustering. Since
agnes and diana operate on the dissimilarities only, they do not use
the individual variables. The function mona is probably more suitable
for this example, where the animals have been classified nicely
according to their attributes.

Table 23.3: The animals and the three-letter abbreviations used in the data.
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ant caterpillar frog man
bee duck hermit crab rabbit
cat eagle lion salamander
chimpanzee elephant lizard spider
cow fly lobster whale
> animals

war fly ver end gro hai

ant 1 1 1 1 2 1
bee 1 2 1 1 2 2
cat 2 1 2 1 1 2
cpl 1 1 1 1 1 2
chi 2 1 2 2 2 2
cow 2 1 2 1 2 2
duc 2 2 2 1 2 1
eag 2 2 2 2 1 1
ele 2 1 2 2 2 1
fly 1 2 1 1 1 1
fro 1 1 2 2 NA 1
her 1 1 2 1 2 1
lio 2 1 2 NA 2 2
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liz 1 1 2 1 1 1
Tob 1 1 1 1 NA 1
man 2 1 2 2 2 2
rab 2 1 2 1 2 2
sal 1 1 2 1 NA 1
spi 1 1 1 NA 1 2
wha 2 1 2 2 2 1

Another approach to hierarchical clustering is model-based clustering,
which is based on the assumption that the data are generated by a
mixture of underlying probability distributions. The mclust function
fits model-based clustering models. It also fits models based on
heuristic criteria similar to those used by pam. The mclust function is
separate from the cluster library, and has somewhat different
semantics than the methods discussed previously.

The basic hierarchical agglomeration algorithm starts with each
object in a group of its own. At each iteration it merges two groups to
form a new group; the merger chosen is the one that leads to the
smallest increase in the sum of within-group sums of squares. The
number of iterations is equal to the number of objects minus one, and
at the end all the objects are together in a single group. This is known
variously as Ward’s method, the sum of squares method, or the trace
method.

The hierarchical agglomeration algorithm can be used with criteria
other than the sum of squares criterion. For example, in the single
link (or nearest neighbor) method, the distance between two groups is
defined to be the smallest distance between any two members from
different groups, and at each iteration the two closest groups are
merged. The complete link method, also known as the compact or
farthest neighbor method, is similar except that the distance between
any two groups is defined to be the largest distance between any two
members from different groups, while the centroid method defines
the distance between two groups to be the distance between their
centroids. The average weighted link method uses the average of the
distances between the objects in one group and the objects in the
other group. These are all heuristic criteria.

Model-based clustering is based on the assumption that the data are

generated by a mixture of underlying probability distributions.
Specifically, it is assumed that the population of interest consists of G
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different subpopulations, and that the density of an observation x

from the kth subpopulation is fi(x;0) for some unknown vector of

parameters 0. Given data D = (X, .., X,), we let 7 = (Y, ... Yo,

denote the identifying labels, where y; = k if x' comes from the kth
subpopulation. In the classification maximum likelihood procedure,
0 and y are chosen so as to maximize the likelihood.

n
«(D; 6, v) = ]f, (x:8. (23.11)
i=1

We consider mainly the situation where f(x;0) is a multivariate

normal density with mean p, and variance matrix Z,. If X, = o'l

for each k, where | is the identity matrix, then maximizing the
likelihood (Equation (23.11)) is the same as minimizing the sum of
within-group sums of squares that underlies Ward’s method. Thus,
Ward’s method corresponds to the situation where clusters are
hyperspherical with the same variance. If clusters are not of this kind
(for example, if they are thin and elongated), Ward’s method tends to
break them up into hyperspherical blobs.

Other forms of X, yield clustering methods that are appropriate in
different situations; see Banfield and Raftery (1992). The key to
specifying this is the eigenvalue decomposition of X,. The
eigenvectors of X, specify the orientation of the kth cluster, the

biggest eigenvalue specifies its variance or size, and the ratios of the
other eigenvalues to the largest one specify its shape. We can
constrain some but not all of these features (orientation, size, and
shape) to be the same across clusters. For example, if we let

2 . .
X, = o, the criterion corresponds to hyperspherical clusters of
different sizes; this is the Spherical criterion.
A criterion that appears to work well in a variety of situations results

from constraining only the shape to be the same across clusters; this is
denoted by $*. Here you must specify the shape, represented by the

eigenvalue ratios % = A/ Ay (j=2, ..p), where {&,, .., A;} are
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the eigenvalues ordered from largest to smallest. Specifying each
oj = 0.2 leads to elliptical clusters that are moderately concentrated

about a line in p-space, while choosing each o = 0.01 yields very

concentrated and linear clusters. Setting each o = 1 gives the

Spherical criterion as a special case. Your choice will be determined
by the kind of data that you are working with, but we have found

setting each 0j = 0.2 often to be a good first guess.

Table 23.4 shows the different model-based clustering criteria and the
assumptions that they embody.

Table 23.4: Model-based clustering criteria with corresponding assumptions.

Criterion Reference Distribution | Orientation | Size Shape
Sum of Squares | Ward (1963) Spherical None Same Same
Spherical Banfield and Spherical None Different | Same

Raftery (1992)

Determinant Friedman and Ellipsoidal Same Same Same
Rubin (1967)

S Murtagh and Ellipsoidal Different Same Same
Raftery (1984)

S* Banfield and Ellipsoidal Different Different Same
Raftery (1992)

Unconstrained | Scott and Ellipsoidal Different Different | Different
Symons (1971)

Choosing the In model-based clustering, choosing the number of clusters is the
Number of same as choosing a model for the data. A standard approach to this is
Clusters to calculate the Bayes factor, B, for the model defined by k clusters

against the model defined by a single cluster (that is, all the objects
belong to the same group). The Bayes factor is the odds for one
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model against another given the data (provided that one has no initial
preference for either model). Thus the larger B, the more evidence

there is for the existence of k clusters.

The approximate weight of evidence for £ clusters (AWE,) is an
approximation to 2logB;; see Banfield and Raftery (1992). This is
calculated by mclust. The larger AWE,, the more evidence there is
for the existence of £ clusters. By definition, AWE; =0, so if all the

AWE, (k=2, .., n) are negative, there is no evidence for any
clustering.

The value of k which maximizes AWE, is the number of clusters for

which there is the most evidence. However, we do not recommend
using the AWE criterion to choose a single number of clusters unless
the evidence is overwhelming. Rather, we suggest that the plot of
AWE, be inspected with a view to picking several plausible

possibilities to be further investigated. The change in the approximate
weight of evidence, AWE,- AWE, ,, is often large and positive for

the first few values of <, k = 2, .., K, say, and small or negative
thereafter. If that is the case, ideas of parsimony suggest considering
the classification into K groups, as well as the value of k which
maximizes AWE,, and any intervening values.

So far, it has been assumed that each object belongs to a cluster.
However, even when a data set is made up mainly of clusters of the
prescribed type, there may be other data points that do not follow this
pattern. This possibility can be allowed for by extending the model
given by Equation (23.11) to include such isolated observations, or
outliers, assumed to occur according to a Poisson process with an
intensity which is constant over the region from which the data have
been drawn. The likelihood (Equation (23.11)) is modified
accordingly. This yields a class of clustering algorithms designed to be
robust to outliers; see Banfield and Raftery (1992).

The function mclust performs the analyses described in this section.
It carries out hierarchical agglomerative clustering using the six
model-based criteria shown in Table 23.4, and also the five heuristic
criteria discussed at the start of this section. For the model-based
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criteria, it returns the AWE statistic for each number of clusters £; this
is used to determine the number of clusters. Functions related to
model-based clustering are listed in Table 23.5.

If noise=T is specified in mc1ust, it will do robust clustering (available
for the model-based criteria only). If the existence of outliers is
suspected, it may be a good idea to run mclust with noise=F and
noise=T and to compare the results. Important differences between
the resulting classifications would suggest that there are outliers that
are contaminating the results, in which case either these outliers could
be removed from the data sets and studied separately, or the robust
clustering results (with noise=T) could be used. Note that the number
of clusters indicated by the AWE in the nonrobust case (noise=F) will
tend to be larger than in the robust case (noise=T), because in the
nonrobust case some of the outliers may be classified as single-
member groups.

Iterative relocation for any of the eleven criteria listed can be done
using the function mreloc. The function mclass takes the output of
mclust or mreloc and produces a classification of the data objects.

The output of mclust and mreloc can be used to plot and manipulate
classification trees. The function plclust plots the tree, subtree
extracts part of the tree, clorder reorders the leaves of the tree,
Tabclust labels the leaves of the tree, and cutree creates groups
using the tree.

The function hclust also does hierarchical agglomerative clustering,
but only for three of the heuristic criteria included in mcTust. mclust
is much more general and is to be preferred for many purposes.
However, hclust has two features which can be advantages in certain
situations. It takes as argument a distance matrix rather than a data
matrix, and it is applicable even when the data cannot be represented
by points in Euclidean space; it accepts a dissimilarity matrix which
need not be a distance matrix in the strict sense. A distance matrix
can be calculated from a data matrix using the function dist. Also,
unlike mclust, hclust returns the height at which each merger was
made; this can yield more informative plots of the classification tree.
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Table 23.5: Functions for model-based clustering.

Function Use

clorder Re-order leaves of a classification tree

cutree Create groups from hierarchical agglomerative clustering

Tabclust Label the leaves of a classification tree

mclass Classify objects (uses output of mclust)

mclust Model-based and heuristic hierarchical agglomerative
clustering

Determination of the number of clusters
Robust Clustering

mreloc Model-based iterative relocation

plclust Plot a classification tree

subtree Extract part of a classification tree
Example of We can use model-based clustering to explore the percent of votes
Simple Use given to the Republican candidate in presidential elections from 1856

to 1976. In the votes.repub data, rows represent the 50 states and
columns the 31 elections.

elect.years <- c("1960", "1964", "1968", "1972", "1976")
votes.S <- mclust(votes.repub[,elect.years],

method = "S", noise =T)

plclust(votes.S$tree, label = state.abb)

plot( x = 1:Tength(votes.S$awe), y = votes.S$awe)

# 9-cluster classification

votes.9 <- mclass(votes.S, 9)

# 3-cluster classification

votes.3 <- mclass(votes.S, 3, votes.9)

votes.3 <- mreloc(votes.3, votes.repub[,elect.years],
method = "S", noise =T)

+ V V V V V V V 4+ VvV Vv
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The algorithms of Kaufman and Rousseeuw (1990), summarized
above, have been implemented in Spotfire S+ as a library of
functions, which generate objects of seven different classes. For each
class of objects, methods for textual or graphical output are available.
Most of the objects are named after the function that generates them.
In this way, classes "pam”, "clara", "fanny", "agnes"”, "diana", and
"mona" exist. The seventh class, "dissimilarity", is generated by the
function daisy but is also be part of the objects of classes "pam”,
"clara™, and "fanny".

Some of these classes are grouped together and inherit from the same
superclass. The created hierarchy of classes is as follows:

1. Class "dissimilarity"
2. Class "partition"
* Class "pam"
* C(Class "clara"
e Class "fanny"
3. Class "hierarchical™"
e C(Class "agnes"
* Class "diana"
4. Class "mona”
These classes have methods for the following functions:

1. print,forclasses "dissimilarity"”, "pam", "clara"™, "fanny",
"agnes", "diana", and "mona".

2. summary, for classes "pam"”, "clara", "fanny", "agnes",
"diana", and "mona". These summary methods return new
objects of class summary.oldclass. For each of those new

summary classes, a print method is available.
3. plot, for classes "partition”, "agnes", "diana"”, and "mona".
4. clusplot, for class "partition".

5. pltree, for class "hierarchical™.
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The partition class has a method for the generic pTot function that is
common to all its subclasses.

The daisy function, for calculating dissimilarities, is similar to the
older function dist. One advantage of daisy it that it accepts data sets
with different types of variables. The function’s header is

daisy(x, metric = "euclidean”™, stand = F, type = 1list())

When all variables are interval scaled, this specifies the metric to be
used for calculating dissimilarities, and whether or not to standardize
first. When other variable types occur, a list of types can be given.
The output of daisy can be used as input for several of the new
clustering functions.

The input arguments of the six clustering functions are similar. The
calls to the six functions are given in Table 23.6.

Table 23.6: Summary of clustering functions.

Function Description and example function call

daisy Computes a dissimilarity matrix from a data matrix.
daisy(x, metric = "euclidean", stand = F, type = Tist())

pam A crisp partitioning method for smaller data sets.
pam(x, k, diss = F, metric = "euclidean", stand = F, save.x =T,
save.diss = T)

clara A method for larger data sets (more than 250 objects) using the same basic
algorithm as pam.
clara(x, k, metric = "euclidean”, stand = F, samples = 5, sampsize = 40
+ 2 * k, save.x = T, save.diss = T)

fanny A fuzzy partitioning method, employing the concept of memberships.

fanny(x, k, diss = F, metric = "euclidean", stand = F, save.x =T,
save.diss = T)
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Table 23.6: Summary of clustering functions.

Function Description and example function call

agnes An agglomerative hierarchical method, computes a measure of the clustering
found.
agnes(x, diss = F, metric = "euclidean", stand = F, method = "average",
save.x = T, save.diss = T)

diana A divisive hierarchical method, computing a measure of the divisive clustering
found.
diana(x, diss = F, metric = "euclidean", stand = F, save.x =T,
save.diss = T)

mona A divisive hierarchical method that works on binary data.

mona(x)

All functions, except for clara and mona, accept two possible input
structures: a dissimilarity matrix or a data matrix. The logical
argument diss tells the algorithm how x should be interpreted, the
default being a data matrix of observations by variables. When a
dissimilarity matrix is given as input, it is preferably an object of class
"dissimilarity". However, the functions will also accept
dissimilarities produced with dist, or a vector that can be interpreted
as a dissimilarity matrix.

The algorithms of c1ara and mona don’t accept dissimilarities as input,
but only accept the second input form: a matrix of observations by
variables.

If a function has to compute dissimilarities from a given data matrix,
the function needs to know which metric to use and whether or not to
standardize first. These arguments are similar to the corresponding
arguments of daisy. Since mona doesn’t compute dissimilarities, it
does not have the arguments metric and stand.

The function clara has two additional arguments, specifying the
number of samples and the size of each sample. Also agnes has a
special argument defining the method to be used for calculating
dissimilarities between clusters.
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By default, all functions store a copy of the data (if specified) and the
dissimilarities as part of the returned model object. This information
is needed to produce clusplots, but otherwise is provided solely for
reference. The size of the returned model object may be reduced by
setting save.x and/or save.diss to FALSE, in which case the data
and/or dissimilarities are not returned.

Sometimes the output of the functions is rather extensive, especially
when the summary method is invoked for an object of one of the
partition classes. In those cases, the output scrolls off the screen.
Therefore, all available components of the output are listed on the last
output lines. Those components can be extracted from the result like
a component from a list: object$component.

Objects resulting from the clustering functions can be given as input
to high level graphics functions.

« The plot method for partition objects (pam, clara, and fanny)
produces clusplots and silhouette plots.

* The plot methods for agnes and diana produce clustering
trees and banner plots.

* The plot method for mona produces a banner plot.

More information and details about the input arguments and the
structure of the output can be found in the help files.
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Chapter 24 Hexagonal Binning

INTRODUCTION

This chapter describes the use of the hexbin function to graphically
display spatial data. The S+SPATIALSTATS module, available for both
UNIX and Windows, provides a more extensive set of tools for
analyzing spatial data in the form of geostatistical data, lattice data,
and spatial point patterns.
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THE APPEAL OF HEXAGONAL BINNING

Hexagonal binning is a data grouping or reduction method typically
employed on large data sets to clarify spatial structure. It can be
thought of as partitioning a scatter plot into larger units to reduce
dimensionality, while maintaining a measure of data density. The
groups or bins are used to make hexagon mosaic maps colored or
sized according to density. Rectangular or square grids are often used
in this context for image-processing applications, for example, in
grayscale, contour, and perspective maps. However, hexagons are
preferable for visual appeal and representational accuracy (Carr,
Olsen, and White, 1992). Hexagonal binning can also be used to
group geostatistical data into a lattice for use in spatial regression
modeling.

The data frame quakes.bay contains the locations of earthquakes in
the San Francisco Bay Area for 1962-1981. Hexagonal bins are
maintained in an object of class "hexbin". Use the function hexbin to
create the hexbin object for the earthquake data as follows.

> quakes.bin <- hexbin(quakes.bay$longitude,
+ quakes.bay$Tatitude)
> summary(quakes.bin)

Call:
hexbin(x = quakes.bay$longitude, y = quakes.bay$latitude)
Total Grid Extent: 36 by 31

cell count xcenter

Min. : 17.0 Min. 1.000 Min. :-123.3
1st Qu.: 239.0 1st Qu.: 1.000 1st Qu.:-122.0
Median : 419.0 Median : 3.000 Median :-121.6
Mean : 467.9 Mean 7.505 Mean :-121.5
3rd Qu.: 696.0 3rd Qu.: 5.000 3rd Qu.:-121.0
Max. :1091.0 Max. :144.000 Max. :-119.8

ycenter
Min. :36.01

1st Qu.:36.51
Median :36.94
Mean :37.06
3rd Qu.:37.59
Max. :38.50
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The summary function shows the four components of the hexbin
object and their distributions. The hexagon identified by cell
contains count observations, and has center of mass at (xcenter,
ycenter). The default settings for hexbin partition the range of x
values into approximately 30 equal-sided hexagonal bins. The most
useful bin size depends on the number of observations, and is best
chosen iteratively. Plot the hexagonal bins as follows.

> trellis.device(color = F)

> at.quakes <- c¢(0, 10, 20, 30, 40, 50, 150)

> plot(quakes.bin, border = T, col.regions = 80:15,
+ at = at.quakes)
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144
50
o 40
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P 30
| Y 20
= 10
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Figure 24.1: The San Andreas Fault has a clear ridge of frequent earthquakes.

The Trellis graphics device produces the best color and grayscale
images for hexagonal binning. The default settings for plot.hexbin
plot the hexagonal bins as a full tessellation, containing equally sized
hexagons with color corresponding to grouped bin counts. By default,
the groups are equal in range. Since the distribution of
quakes.binscount (shown by the summary output above) is skewed,



Hexagonal Bin
Plot Styles

The Appeal of Hexagonal Binning

we have chosen the groups formed by at.quakes. The plot in Figure
24.1 shows the ridge of frequent earthquakes along the San Andreas
Fault.

Besides the default grayscale style used here, there are four other plot
styles available which plot the hexagons in varying sizes depending
on cell density. Plot the earthquake hexbin object with differing sizes
of hexagons as follows:

> plot(quakes.bin, style = "centroids™, cuts = 6)

N Counts
o "
o Doa
™ 3 a0 ® 144
| S ® 124
S ® 103
o R A e 83
5 SRR « 62
S IR . 42
| . . . ;... . ‘:._. ‘o._ . . 21
S A
(49}
423 -122 121 -120

Figure 24.2: As an alternative to using different grayscales in a hex plot, the
hexagons can be drawn to a range of sizes. The range is determined by the cuts
argument.

The "centroids” style shown in the figure scales the hexagon sizes by
cell count, and plots them at the center of mass determined by
xcenter and ycenter. The cuts=6 argument yields six different
hexagon sizes. There are two nested plot styles (nested.lattice and
nested.centroids, not shown) which provide depth when plotted on
a color screen.
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Examining
Individual Bins

Directional
Rays
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There are several large bins in the plot which we may want to
examine more closely. The generic identify function can be used to
interactively identify points on a hexagonal bin plot. The two largest
bins can be identified as follows.

> quake.par <- plot(quakes.bin, style = "centroids",

+ cuts = 6)

> oldpar <- par(quake.par)

> identify(quakes.bin, use.pars = quake.par, offset = 1)

[1] 114 79

> par(oldpar)

First it is necessary to save the graphical parameters used to plot the
hexagonal bin. After entering the identify command, use the cross-
hairs to locate the point of interest on the graphics screen, and click
the left mouse button. The count in the closest cell will appear on the
graphics screen. We have used the optional argument offset to make
the count easier to read. When you have identified both points, click
the center or right mouse button, while keeping your pointer within
the graphics window. The index of the points you have identified will
appear on your command line, as above. Then use the par function to
reset the graphics parameters.

The rayplot function can be used to display the magnitudes of a
variable of interest at spatial locations using directional rays. For
smaller data sets, these rays or other types of symbols can be plotted
at each data location. However, when the number of sites is large, the
magnitudes and trends are easier to visualize if the locations are first
binned using hexbin. The following example uses the ozone data set:

1. Create a hexbin object for the ozone data, using eight bins in
the x direction.

> ozone.bin <- hexbin(ozone.xy$x, ozone.xy$y,
+ xbins = 8)

2. Map each (X, y) pair in the original data to a hexagonal cell
using the function xy2cel1.

> ozone.cells <- xy2cell(ozone.xy$x, ozone.xy$y,
+ xbins = 8)
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3. Use the function tapply to calculate the median for each cell,
and use these values as angles for the rayplot.

> ozone.angle <- tapply(ozone.median, ozone.cells,
+ median)
> Tibrary(maps)

Warning messages:
The functions and datasets in library section maps
are not supported by TIBCO Software Inc.

> map(region = c("new york", "new jersey", "conn",
+ "mass"), 1ty = 2)

> rayplot(ozone.bin$xcenter, ozone.bin$ycenter,

+ ozone.angle)

Figure 24.3: Rayplots add direction as well as density. This plot shows median
0z0Mme emissions.

The plot shows the median ozone emissions for the group of sites
within each hexagonal bin. The ray is plotted at the center of each

bin, and the medians are scaled so the rays follow an arc from -n/ 2
(lowest median) to t/ 2 (highest median). It appears that the highest
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emissions for the time period covered are in Connecticut. Additional
attributes can be used with rayplot to add confidence intervals and a
second variable to the plot. Also, the lengths and widths of the rays
and the size of the base octagon can be changed. See the online help
file for more information on rayplot.
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Introduction

INTRODUCTION

There are two general approaches to analyzing time series and
signals. One is to use time domain methods in which the values of the
process are used directly; the other is to use frequency domain
methods. Frequency methods investigate the periodic properties of
the process. The books by Chatfield (1984) and Shumway (1988)
provide readable introductions to time series analysis, which covers
both time domain and frequency domain methods.

Fields of study tend to focus on analyzing data in one domain or the
other. For example, economists use the time domain extensively
while electrical engineers often use the frequency domain. To a large
extent, this division arises from the types of questions that are being
asked of the data. However, combining the approaches can at times
give a more thorough understanding of the data.

Robust methods are necessary for both domains because the failure of
model assumptions (such as Gaussian errors) can cause misleading
results when classical techniques are applied.
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AUTOCORRELATION IN SERIES DATA

Basic Time
Series Plots

166

If data are collected over time, there may be correlation between
successive observations; this is known as aufocorrelation or serial
correlation. In this section, we show how to use visual analysis (simple
plots, lagged plots, and autocorrelation plots) and numerical analysis
to look into autocorrelation.

You can visually explore autocorrelation in your data using Spotfire
S+ functions to make three kinds of plots:

»  Simple time series and signal plots, which you can read about in
the chapter Time Series and Signal Basics in the Programmer’s
Guide.

*  Lagged scatter plots, which are scatter plots of pairs of values
(YoYt+m) of a time series separated by a lag of one or more

time units.

*  Autocorrelation function plots, which provide an estimate of the
correlation between observations separated by a lag of zero,
one, or more time units.

To illustrate the use of these functions, we use the function rnorm to
create uncorrelated normal random numbers. From these numbers, we
create a correlated series x.cor:

> r.norm <- rnorm(100)
> x.cor <- signalSeries(data = r.norm[1:98] +
+ r.norm[2:99] + r.norm[3:100])

The series x. cor is serially correlated at lags 1 and 2; that is, x.cor[i]
is correlated with x.cor[i+1] and x.cor[i+2]. But x.cor is serially
uncorrelated at lags greater than 2; that is, x.cor[i] and x.cor[i+k]
are uncorrelated for k > 2.

The basic time series plot shows each observation plotted against its
observation time. For example, our series x.cor can be plotted as
follows, using both lines and plotting symbols:

> plot(x.cor, plot.args = 1ist(type = "b", pch = 16))

This expression yields the plot of Figure 25.1.



Lagged Scatter
Plots

Autocorrelation in Series Data

Figure 25.1: Time series plot for a correlated series.

The values of successive observations tend to be close together, so
you suspect some serial correlation. You can see this more clearly
with Tag.plot and acf, as described in the following sections.

The lagged scatter plots in Figure 25.2 consist of scatter plots of pairs
of values (Yy.Y;,n) of a time series separated by m time units for

mn=1 2, ., M. The figure is generated with the following
expression:

> lag.plot(x.cor, lags = 4,layout = c(2,2))

The maximum lag M is specified by the 1ags argument to Tag.plot.
For the above example, the choice Tags=4 results in M = 4, and so
there are four plots. The Tayout argument specifies the way the M

scatter plots are arranged in a single figure, just as you use the
function par to specify multiple figure layout.

A circular shape for a lagged scatter plot at a specific lag m indicates
that there is little correlation at that lag. On the other hand, an
elliptical shape for a lag m scatter plot in the 45 degree direction

indicates positive correlation at lag m. An elliptical shape in the 135
degree direction indicates negative correlation. In the above example
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using x.cor, the lag 1 plot shows clear evidence of positive
correlation, and the lag 2 plot shows some indication of positive

correlation.
Lagged Scatterplots : x.cor
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Figure 25.2: Lagged scatter plots for a correlated series.
Autocorrela- The autocovariance and autocorrelation functions are important tools
tion Function for describing the serial (or temporal) dependence structure of a
. . . univariate time series. Let X, be a stationary time series with mean
in Univariate t Y K

Series
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and variance o, and assume for ease of notation that t takes on
integer valuest = 0, +1, ¥2, ... The autocovariance function of x; at

lag k is defined as
Y(K) = EX = W)Xy — 1) (25.1)

Since X, is stationary, this does not depend on t. The autocorrelation

function at lag k is defined as

O (25.2)

and is simply a standardized version of the autocovariance function.
Both the autocovariance function and the autocorrelation function are

even functions; that is, y(k) = y(-k) and p(k) = p(-k). In addition,
the autocorrelation function satisfies

p(k) <l forallk = 0, £1, £2, ... (25.3)

Example: white noise.

A stationary time series for which x; and X, are uncorrelated is
called white noise, and satisfies y(k) = E(X,— ) (X, — 1) = 0 for all
integers k# 0. Such a process is sometimes loosely termed a “purely

random process.” Since Y(0) = o7, a white noise process has the

autocovariance function

Y (k) = (25.4)
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The autocorrelation function is
1 k=0
p(k) = { (25.5)

Example: moving average process.

A moving average process of order ¢, denoted MA(g), is defined by
the equation

Xp = W+ Boge+ B+ -+ By _q> (25.6)

where €, is a white noise process. It is easy to show that the

autocovariance function for this process is given by
q-Ik
y(k) = 2’:0 BBev k= (25.7)
0 [kl >q
The autocorrelation function is given by
q-ltl

p(t) = Z‘:o BBere Il (25.8)
0 Tl >q
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Autocorrelation in Series Data
The autocovariance function estimate at lag Kk is:

n-kK

YK = 2 S XKk~ R), 259
t=1

where

. n
X =z D X
t=1
is the mean of the series and n is the length of the observed series.
Notice that the divisor n is used, even though there are only n-k

terms. As a result, 7 (K) is a biased estimate, even if X is replaced by

the true mean p. However, &(k) has a few properties that make up for

a small amount of bias. In particular, use of the divisor n ensures
positive semi-definiteness of the function v (k), and the mean squared
error of this estimate is often smaller than that obtained when n ™' is

replaced by (n- k)™ See Priestley (1981) for details.

The autocorrelation function estimate at lag K is

l;(k) = % (25.10)

The autocovariance and autocorrelation functions for multivariate
series are defined analogously to those of univariate series. In
addition, one is interested in crosscovariance and crosscorrelation

functions. Suppose that X, is an m-variate stationary time series and
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Xit = (Xp); is the ith time series, for i = 1, .., m. In addition, suppose
that the ith series has a mean value of y; = EX;;. The covariance

function matrix for X, = (X, .., Xp) atlag Kk is defined as
C(k) = E— WX — W7, (25.11)

where T denotes the transpose and W = (U;, Wy, ... Wy). The

covariance matrix I'(k) is mx m and has the property that

I'T(k) = T'(-k). The ith main diagonal element of T'(k) is the
autocovariance function

Yii(k) = E(Xit = M) Kt 410 — W) (25.12)

for the ith time series X;;. The ijth off-diagonal element of T" (k) is the
crosscovariance function

Vii(K) = EGe—= 1) Kje ) — 1) (25.13)
for the ith and jth series X;; and Xjt wherei, j =1, .., mand i#j.
Note that a crosscovariance function y;j(k), i#]j is not generally

symmetric in K that is, y(k) # v;;(-k) in general. The estimate of

either an autocovariance or crosscovariance at lag K is given by

n—kK

’ 1 o .

Yij(k) = n Z(Xit_xi)(xj(wk)_xj)’ (25.14)
t=1
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Autocorrelation in Series Data

where
n
g = 1
X = - ZX“.
t=1
Note that for i = j, the autocovariance estimate vij(k) in Equation

(25.14) has the same form as Equation (25.9). The autocorrelation and
crosscorrelation estimates at lag k are

&ij(k)

e (25.15)
AYii(0)7jj(0)

Pij(k) =

Another useful diagnostic tool for the analysis of the serial
dependence is the partial autocorrelation function. Background on
this function is deferred to the next section, after introducing
autoregressive processes.

The function acf can be used to compute the sample autocovariance,
autocorrelation, or partial correlation functions for a specified

number K of lags.

To compute an estimate of the autocorrelation function y (k) for lags

<=0, 1, .., Mofthe x.cor series, we can use the command:

> x.acr <- acf(x.cor, plot=F)

To generate a plot of v (k) along with a plot of the time series, we can
use the following commands:

> par(mfrow=c(2,1))
> plot(x.cor)
> acf.plot(x.acr)

The result is shown in Figure 25.3. The autocorrelation estimate at
each lag is given by the height of the vertical lines in the acf plot. You
can specify the number of lags M for which you want
autocorrelations by using the optional argument 1ag.max to acf.

173



Chapter 25 Analyzing Time Series and Signals

174

Series : x.cor
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Figure 25.3: Time series plot and ACF plot for a correlated series.

The value of the autocorrelation function at lag 0 is always 1. The
horizontal band about zero represents the approximate 95%
confidence limits for Hy:p =0. If no autocorrelation estimate falls

outside the strip defined by the two dotted lines, and the data contain
no outliers, you may safely assume that there is no serial correlation.
Otherwise, you should be concerned about the presence of serial
correlation. In our example, the acf plot indicates serial correlation at
lags 1 and 2.

The function acf.plot can be used to plot the results from acf. This
function takes the list returned by acf and uses its components to
calculate approximate limits and decide appropriate labeling for the
plot. For more details, see the help file for acf.plot.
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AUTOREGRESSION METHODS

Univariate Consider a time series X, that satisfies the difference equation
Autoregression (recursion)

Xp = OqXi_ 1+ 00X _o+ -+ 0X_p+ &, (25.16)

where €, is a white noise process with zero mean and finite variance
o7 . The time series X, is called an autoregressive process of order p
and is denoted AR(p). The x, in Equation (25.16) has zero mean, a

fact which can be easily verified. An AR(p) process with nonzero

mean [l is generated by the equation
Xp— W = ocl(xt_l—u)+--4—ocp(xt_lo—u)+£t . (25.17)

It is worth noting that an AR(p) process is a pth-order Markov
process.

Not all values of the autoregression coefficients oy, .., o, result in a

stationary process. In particular, in an AR(1) process
Xt = OcXt_l +8t (25.18)

it is fairly easy to show that |of <1 is the condition for stationarity.

For oo = 1, the AR(1) process becomes a discrete time random
walk, which is known to be nonstationary.
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The Yule-
Walker
Equations
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For an AR(p) process, the condition for stationarity is that the
(complex) roots of

®2) = 1-oyz-0y22— -~ 0, 2P (25.19)

lie outside the unit circle. An interpretation of AR(2) models from a
physical point of view is given by Priestley (1981).

Autoregressive models have a wide range of uses in statistics,
including forecasting and autoregression-type spectral density
function estimation.  Autoregressive modeling is also widely
applicable in engineering, where it is referred to as linear prediction
modeling. For example, speech analysis and recognition systems rely
on autoregressive models. For many applications, autoregression
provides good linear approximations, which have the virtue of
extreme simplicity. In particular, the equations used to estimate the
unknown coefficients o, .., o, are linear, as we point out below. Of

course one should be careful not to insist on using an autoregression
model where, for example, a moving average component is needed,
nonstationarity must be dealt with, or a nonlinear model is required.
When in doubt, consult an experienced statistician with a time series

background.

Let v (k) be the autocovariance function for the AR(p) process x;. It
can be shown that the AR(p) coefficients o, .., ol satisfy the Yule-

Walker equations

p
Yvk=iyoy =v(@i) i=12 ., (25.20)

=1



Autoregression Methods

In addition, one can show that

p

o = Yv(kKo+ol. (25.21)
k=1

Given that the AR(p) coefficients satisfy the Yule-Walker equations
in (25.20), there is a very natural way to obtain estimates
o4, O, .., Op based on a finite sample k|, Xy, ... X, of the time series.

Namely, replace the y (k) in Equation (25.20) by the estimates

n— K|
A 1 B
vk = = D= X)Xy g = %), (25.29)
t=1
where
n
X=X (25.23)

t=1

and solve the resulting equations for &1, .o (;cp. Since &(—k) = &(k),

we can write the equations as

Y(1) = 047(0) + 05y (1) + 0457 (2) + -+ oy (p— 1)
Y(2) = oy (1) + 07 (0) + 0y (1) + -+ 0y (p—2)
Y(3) = 047(2)+ 04y (1) + 057 (0) + -+ 0y (p - 3) (25.24)

Y(P) = 0y (p— 1)+ 0y (p—2) + 05y (p—3) + -+ 0,77 (0)
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The Levinson-
Durbin
Recursion
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We call these equations the sample-based Yule-Walker equations.
Once the OCJ ’s are obtained by solving Equation (25.24), we can use

them along with the vy (k) in Equation (25.21),
7(0) = 04y (1) + 0,y (2) + -+ 0,y (P) + & (25.25)

to solve for 7.

In practice, the order of the autoregression is not known, and it is
often desirable to compare solutions of various orders. Hence, we

wish to solve Equation (25.24) for a variety of values of p from 1

through p,,.,, where p,,, is sometimes 10, 15, or even larger.

The matrix of coefficients in Equation (25.24) is a Toeplitz matrix;
that is, the elements on each diagonal are all the same. Because of this
property, there is a recursive method that allows you to obtain

estimates for a kth-order model from the estimates of the k — 1 model
in a fast and accurate manner. The method is referred to as the
Levinson or Levinson-Durbin algorithm. Let a;  denote the estimate

of the ith autoregression coefficient o; in an AR(k) model. If we
have the estimates 3; |, .., &,_; y_p and the estimated error variance

o;_, assuming an AR(k—1) model, then estimates for an AR(K)

model are
A -1 A
CED ML TIE
A = = 12" , (25.26)
-1
where
& = 8j k_1—a kd-_j k-1 for 1g<k-1 (25.27)
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and
o = o ((1-a¢ ) (25.28)

From Equation (25.28), we see that the squares of the a, , can be
interpreted as a measure of the usefulness of increasing the order of
the AR process from k-1 to k. The a, , sequence is called the

partial autocorrelation function or “reflection coefficients,” depending
on the field of study. This sequence is useful in diagnosing whether

the series is in fact an AR process. If the process is an AR(p), then all

3y ¢ should be close to zero for k>p. A common approximation for

the standard error of the a, | for k>p is 1/ n)'" . See Box and
Jenkins (1976).

A way of selecting the order of the AR process is to find an order that
balances the reduction of estimated error variance with the number of
parameters being fit. One such measure is Akaike’s Information

Criterion (AIC). For an order k model, this criterion can be written as
AIC(k) = nlog(ct, k) + 2k (25.29)

If the series is an AR process, then the value of k that minimizes

AIC(K) is an estimate of the order of the autoregression.

If the scalar quantities X, €;, and W in Equation (25.17) are replaced
by m-dimensional vectors X;, €,, and p, and the scalars o, are

replaced by m x m matrices A;, we obtain the multivariate pth-order

autoregression

Xp— 1= Ap(X_ - W)+ "+Ap(xt—p_u)+8t . (25.30)
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Here, ¢, is an m-dimensional white noise series with a mean of zero

and a covariance matrix Q. This covariance matrix is sometimes
loosely referred to as the “prediction variance.”

The vector autoregression X; satisfies a vector analogue of the Yule-

Walker equations in (25.20). Namely, with T'(i) = cov{x,X%,i} we

have

p
YT(k-DA=T(), =12 .. (25.31)
=1

We also have the vector autoregression analogue of Equation (25.21):

p
ro)= YT&A+Q (25.32)
k=1

Sample Yule-Walker equations for this vector case are obtained by
replacing v (k) in Equation (25.22) by

n— K|

) 1 -
L) = 2 > X=Xy jg=X)7T, (25.33)
t=1
where

_ 1
X =2 ¥X. (25.34)
t=1



Autoregression
Estimation via

Yule-Walker
Equations

Autoregression Methods

The equations

[N N
YT(k-DAc=T(@), i=12 .,¢ (25.35)
=1

are then solved for the estimates Ak, for k=1, .., p. The
multivariate version of Equation (25.25) is therefore

P

ro) = YTrkA-+Q 25.36)
k=1

which may be solved for (AQ .

There is also an analogue of the Levinson-Durbin algorithm
(Equations (25.26) to (25.28)), which may be used to obtain estimates

A

A, i =1, .,k and Q¢ for a kth-order vector autoregression,

given estimates Aj k, i = 1, .., K—1, and Qx_; for an order k-1
vector autoregression. This method is referred to as Whittle’s recursion.

The Spotfire S+ function ar.yw fits autoregressive models to
multivariate time series using Whittle’s extension to the Levinson-
Durbin recursion. We can use it to fit an autoregression model to a
short piece of the say.wavelet speech data set as follows:

> sp <- say.wavelet[2501:2600,]
> sp.ar <- ar.yw(sp)
> sp.ar$order.max

[11 20
> sp.ar$order
[1] 6

> acf.plot(sp.ar)
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> plot(sp.ar$aic, type = "1",
+ main = "Akaike Information Criteria for sp")

The result of the acf.plot command is shown in Figure 25.4; the
output from the plot command is shown in Figure 25.5.

Series : sp
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Figure 25.4: Autocorrelation plot for speech data.

The maximum order fit defaults to 20 in this case, and the AIC picks
a model of order 6. Figure 25.4 shows the minimum AIC at 7; this
plot starts indexing at 1, but the first element of the sp.arsaic
component is for order 0.

We can plot the residuals of the sp.ar model with the following
command:

> plot(sp.ar$resid,
+ main = "Residuals after fitting an AR(6) to sp")

The result is shown in Figure 25.6.
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Akaike Information Criteria for sp
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Figure 25.5: AIC for the speech data.

Residuals after fitting an AR(6) to sp
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Figure 25.6: Residuals for the speech data.
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Autoregression This section presents Burg’s algorithm, an alternative to using Yule-

Estimation
with Burg’s
Algorithm

184

Walker equations for fitting autoregressive models. Burg’s approach is
based on estimating the kth partial correlation coefficient by
minimizing the sum of forward and backward prediction errors:

— 2
SS(ay ) = Jo_ o, IXe—an kX1 — =y kX il

(25.37)
+ X k= Xk 1 & kXl

Given all of the coefficients for the order k—1 model, Equation
(25.37) is a function only of a, . The function essentially measures
how well the order k model predicts forwards and backwards. The
algorithm is optimal in the sense of maximizing a measure of entropy.

See Burg (1967). The following Spotfire S+ commands fit an AR(2)

model using Burg’s algorithm on the same piece of the say.wavelet
data set that we used in the previous section.

> sp.arb <- ar.burg(sp, F, 2)
> sp.ar <- ar(sp, aic = F, order.max = 2)
> sp.arbsar
, 1
[,1]

[1,] 1.3642945
[2,] -0.4733473

> sp.ar$ar

. 1
[,1]
[1,] 1.3430803
[2,] -0.4559053



Finding the
Roots of a

Polynomial
Equation

Autoregression Methods

The function polyroot finds the zeroes of the complex-valued
polynomial equation:

k _
azf+.-+a;z+a; = 0

Use this function to find the roots of an autoregression or moving
average operator with user-specified coefficients. For example, if you

have estimated pth-order autoregressive coefficients 01, ¢, .., Op,

then the autoregression polynomial is 1—¢1Z—d§g 22— ...—&bpzp . In
this case, you would choosea = (a,, a;, .., a)withk =p,a, =1,

and a; = —¢i fori =1, .., p.
To solve the equation 2 +52+6= 0 in Spotfire S+, we use the
following command:

> polyroot(c(6,5,1))

[1] -2+01 -3+0i
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UNIVARIATE ARIMA MODELING

ARMA Models
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Spotfire S+ provides several functions for fitting autoregressive
integrated moving-average (ARIMA) models to univariate time series
data. ARIMA models are useful for a wide variety of problems
including forecasting, quality control, seasonal adjustment, spectral
estimation, and general summarization of data. Box and Jenkins
(1976) give a comprehensive account of ARIMA modeling, and
discussions of ARIMA models can be found in many recent standard
textbooks for time series.

A stationary autoregressive moving-average process is obtained by
combining Equation (25.6) for an MA process and Equation (25.16)

for an AR process. A zero mean ARMA(p, () process X; can be

written in the form
Xe= O X1 =~ QpX_p = &—018 1 ——0g8_q . (25.38)

Here, €, is a white noise process; that is, the €, are uncorrelated with

. 2 . .
zero mean and variance ¢ . The process €, is sometimes called the
innovations process. The parameters ¢1, vy ¢p are the autoregressive
coefficients, and the parameters 6,, .., Gq are the moving-average
coefficients.
If the innovations €, are Gaussian and uncorrelated, then they are
also independent. This is a frequently used assumption.

The ARMA model of Equation (25.38) is often written in the form
®(B)x; = 6(B)e;, where B is a backshift operator. That is,

B(x) = X,_; and

o(B) = 1-¢;B~ .~ ¢,B°

q (25.39)
0(B) = 1-6,B—-.—0.B".



ARIMA Models

Seasonal
Models

Univariate ARIMA Modeling

Many time series encountered in practice are nonstationary. For these
series, simple ARMA models are typically inadequate. However, the
differenced series may be stationary. Box and Jenkins (1976) developed
a methodology for fitting ARMA models to differenced data. These
are known as autoregressive integrated moving-average (ARIMA)

models. An ARIMAp, d, q) process X, is
®(B)VIx, = 6(B)e, (25.40)

where &;, ¢®(B), and 6(B) are as defined in Equation (25.38),

V = 1-B is the first-difference operator and V9 = (1-B)? is the
d-fold differencing operator. When d = 1, the differenced series
W, = VX = X=X follows an  ARMA(p, q)  process:
®(B)w; = 6(B)e;. When d = 2, the twice differenced series w, is an

ARMA(p, q) process:

_ U2y _ _
W, = VX = V(X =X _1) = X;—2X;_ | +X_9

Time series data frequently exhibit seasonal cycles or periodicities.
For example, data collected on a monthly basis may have a period of

length s = 12 months, reflecting the seasonal behavior of the process.
The framework for ARIMA models can be extended to handle
periodicities as well (see Box and Jenkins (1976), Chapter 9). Seasonal
behavior is modeled by using seasonal autoregressive moving-
average processes and differencing operators. For a period of length

s, these operators are of the form

®BS) = 1-®B°—..— BB
AB®) = 1-©B°—..—Q,BR (25.41)
VD = (1-Bs)D
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ARIMA Models
with
Regression
Variables
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The parameters @, .., @, are the seasonal autogressive coefficients
and the parameters ©, .., @, are the seasonal moving average

coefficients. The operator VP is the seasonal d-fold differencing

operator.

Typically, &B®%), O(B®), and VD are combined with the ordinary

operators ®(B), 6(B), and V% in a multiplicative fashion. The
multiplicative seasonal ARIMA), d, q) x (P, D, Q, process can be
represented by

D(BS)G(B)VL Vix, = &(B%)B(B)e, . (25.42)

In general, Spotfire S+ allows for any number of multiplicative
operators with arbitrary periods. However, Equation (25.42) should
be sufficiently general for most problems.

In addition to using past values to model a series, it is often desirable
to use explanatory or regression variables. The regression variables
may simply be a constant (intercept) term, a deterministic function of
time, dummy variables to model outliers, or lagged values of another
time series.

Let z, be a vector of m elements. An ARIMA process y; with known
regression variables is defined by

Vi = /B +X, (25.43)

where B is an unknown parameter vector and X, is an ARIMA
process. For example, setting z;' = (1,t) results in a straight line
regression model component z/B = B, + Byt with slope B, and

intercept f3; .



Univariate ARIMA Modeling

Identifyingand Box and Jenkins (1976) give the following paradigm for fitting
Fitting ARIMA ARIMA models.

Models

Model
Identification

Estimation of
Model
Parameters

1. Model identification: Determination of the ARIMA model
orders p, d, q)and P, D, Q).

2. Estimation of model parameters: The unknown parameters in
Equations (25.42) and (25.43) are estimated.

3. Diagnostics and model criticism: The residuals are used to
validate the model and suggest potential alternative models
which may be better.

These steps are repeated until a satisfactory model is found.
Initial model identification is done using the autocorrelation and
partial autocorrelation functions. These can be computed using the

Spotfire S+ function acf. See Chapter 6 of Box and Jenkins (1976) for
a complete discussion on the identification of ARIMA models.

An alternative procedure for selecting the model order is use of a
penalized log-likelihood measure. One such measure is Akaike’s
Information Criterion (AIC). For autoregressive models, AIC is given

by Equation (25.29). For general ARIMA models, AIC is defined
below in Equation (25.46).

ARMA models

The log-likelihood for an ARMA model, Equation (25.40), can be
computed using the prediction error decomposition (see Harvey (1981)).

Consider an ARMA process X; as in Equation (25.38), and assume

the innovations €, are independent Gaussian random variables. Let

1
== E(xt‘xl, v Xe_pp Oy e O 0, L 6

denote the conditional mean one-step-ahead prediction of x;, based

on the datax;, Xy, .., X;_, and let

$2ft = VaI'(Xl, sy Xt_la (I)]’ s q)pa e]a (4 eq (2544)
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. . At-1 2 .
denote the conditional variance of X; . The parameter ¢ is the
variance of the innovations process €. Defining the prediction errors by

€ = X,—X, and letting L = L(X;, .., X,) denote the likelihood, one

can show that

" n
“9logL(X;, ... X;)=nlog(2nc®) + th+(%2+ Yer/ f, (2545
t=1 t=1

Fitting an ARMA(p, q) model by Gaussian maximum likelihood
involves finding the estimates ¢1, - ¢p and él, - élq that yield a
minimum in Equation (25.45). The parameters ¢;, .., ¢, and

0, ... 0, enter into Equation (25.45) through Equation (25.44). The
estimate of o is ES: 8¢/ f, which can be concentrated out of the

likelihood. The likelihood is, in general, nonlinear in ¢, .., ¢, and

0y, ... 04 and so a nonlinear optimizer must be used.

The likelihood for an ARMA model (Equation (25.43)) with

regression variables can be computed in a similar fashion. In this
case, replace x;’s by y’s in Equation (25.45). The regression
coefficients can be concentrated out of the likelihood (see Kohn and
Ansley, (1985)).

A so-called conditional log-likelihood approximation to Equation
(25.45) can be obtained by conditioning on the first p values of the

series, where p is the order of the autoregressive operator. This
conditional log-likelihood function is given by

—2log L(x v Xn[Xps e Xp) = (n-p)log(2nc?®)

p+1
(25.46)

n n
b Ylogh+s 3 e/ f,

t=p+1 t=p+1
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Bell and Hillmer (1987) give several arguments in favor of Equation
(25.46). The main advantage of using the conditional log-likelihood

approximation is that the AR parameters ¢;, .., ¢, can be
concentrated out of the likelihood, reducing the computational

complexity of the nonlinear optimization. Usually, little information
is lost in using Equation (25.46) instead of Equation (25.45).

The prediction errors e; and their variances f, can be computed in a
number of ways. Ansley (1979) gives an efficient algorithm based on
the Choleski decomposition of the covariance of the process X;.
However, if missing values are present, this algorithm no longer
applies. Alternative algorithms are based on applying the Kalman
filter to a state space representation of an ARMA process. See Jones
(1980), Harvey (1981), and Kohn and Ansley (1986) for various
methods based on the Kalman filter approach. All of these methods
handle missing values, although the Kohn and Ansley approach is the
most general.

Multiplicative ARIMA models

Estimating multiplicative ARIMA models by Gaussian maximum
likelihood is a straightforward extension to estimating ARMA
models. With no missing values present, the likelihood for a
nonstationary series is obtained by differencing the data and
computing the likelihood for the differenced process.

With missing values present, the likelihood can be computed using
the Kalman filter: see Kohn and Ansley (1986) and Bell and Hillmer

(1987). The simplest approach is to condition on the first p* + d*

observations, where p* and d* are the orders of the expanded
autoregressive and differencing operators obtained by multiplying the
regular and seasonal AR and the regular and seasonal difference

operators in Equation (25.42). Specifically, p* = p +sP is the order
of the polynomials CD(BS)(I)(B) , and d* = d+sD is the order of

VDVd. This gives the general ARIMA analog to the ARMA log-

likelihood in Equation (25.46), and is equivalent to the differencing
approach in the case of no missing values.
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Missing values in the beginning of the series

If a missing value occurs in the first p* + d* observations, then

conditioning on the first p* + d* observations is not possible. In this
case, the series can be reversed and the likelihood function is
computed for the reversed series. The likelihood is invariant to
reversing the order of the data. If there are missing values at both the
beginning and the end of the series, then the exact likelihood must be
computed using a modification of the Kalman filter, derived by Kohn
and Ansley (1986). However, an approximate likelihood can be
obtained by including a dummy regression variable for each missing
value, and then replacing the missing value by an arbitrary number
(see Bruce and Martin (1989)). The dummy regression variable is zero
at all time points except for the time of the missing value.

Starting values for the optimizer

The likelihood is maximized using a general quasi-Newton optimizer
(see the nimin help file for a discussion of the optimizer). It is
necessary to provide starting values for the ARIMA parameters. Poor
starting values can lead to slow convergence to the maximum, or
even worse, convergence to a local maximum. To avoid this, it is
advisable to use a stepwise fitting procedure, starting with relatively
simple ARIMA models and adding one coefficient at a time. Several
tuning constants can be adjusted to provide better performance, but
the default values in n1min are usually sufficient.

Transformation to ensure stationarity and invertibility

The ARIMA coefficients can be transformed to ensure stationarity
and invertibility of the model (see Jones, (1980)). If the solution lies
on the boundary of stationarity or invertibility, then the optimizer
may take many steps to converge. For this reason it may be desirable
not to constrain the model to be invertible.

Warning

If printed output from the optimizer is requested, the printed coefficients are the transformed
coefficients and not the original ARIMA coefficients.
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AIC and model selection

One method of model selection is based on Akaike’s information
criterion (AIC). The best model is given by the model with the lowest
AIC value. AIC is a penalized version of the log-likelihood function
in Equation (25.46), and is defined by

AIC = 2logL(Xp, 1> - xn‘xl, o X)) + 2T, (25.47)

where r is the total number of parameters estimated. Specifically, r is
the number of AR, MA, and regression coefficients. For example,
r = 2 inan ARIMA'1l, 1, 1)model.

When comparing the AIC values for different models, it is important
to condition the likelihood on the same number of observations. In
other words, m should be the same in Equation (25.47) for all models.
This allows one to use AIC to compare models with different
numbers of AR or differencing coefficients.

Computational notes

The Spotfire S+ function arima.mle fits ARIMA models to univariate
time series data through Gaussian maximum likelihood. The
conditional form of the likelihood (Equation (25.46)) is used.

The regression parameters are concentrated out of the likelihood, as
in Kohn and Ansley (1985). With no missing data, an algorithm
similar to that of Ansley (1979) is used to compute the likelihood.
With missing data, the Kalman filter is used with the state space
representation of Kohn and Ansley (1986). However, missing values
are not permitted in the beginning of the series; see the above
discussion on missing values.

By default, the moving average parameters are transformed to ensure
invertibility. However, if the solution lies on the boundary of
invertibility, better performance by the optimizer can be obtained by
not transforming the parameters. In certain circumstances, it might be
useful to fit models in which lower order AR or MA parameters are
constrained to be zero. In this case, the coefficients cannot be
transformed to ensure stationarity or invertibility.
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Diagnostics and
Model Criticism
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Examples of simple use

Simulate an MA(2) series and fit it using a Gaussian maximum

likelihood.

> ma <- arima.sim(100, model = list(ma = c(-0.5,-0.25)))

> ma.fit <- arima.mle(ma, model = Tlist(ma = c(-0.5,-0.25)))
Fit a Box-Jenkins (0,1,1) x (0,1,1) Airline model to the ship data. Use

zeroes as the starting values for the optimizer.

> model <- Tlist(list(order = c(0,1,1)), list(order =
+ ¢(0,1,1), period = 12))
> fit <- arima.mle(ship, model = model)

The third stage in fitting ARIMA models consists of validating the
model through examination of the one-step prediction residuals e;.

See Chapter 8 of Box and Jenkins (1976) for a more complete
discussion of ARIMA model diagnostics. The single most important

diagnostic is a plot of the standardized residuals3, = e,/ ,[f, over time. If

the correct ARIMA model is fit and the data are Gaussian, then &,

should behave approximately like a Gaussian white noise process
with zero mean and a variance of 1. Problems to look for in the plot of

e, include outliers, nonhomogeneity of variance, and obvious
structure in time.

Another basic diagnostic technique is to examine the autocorrelation
function of the residuals e;. Let y k be the autocorrelations of the
residuals e,. If the model is adequate, then the \?k should be
uncorrelated Gaussian random variables with zero mean and a
variance of n'. Hence, the presence of large autocorrelations

indicates that a model may be inadequate, and the nature of the v
may suggest how to improve it. However, some caution should be

exercised in the use of Y to evaluate the model. For example, the

. . -1 . . .
variance times N~ can be a serious overestimate of the true variance
for small lags, which underestimates the significance for lack of fit.



Forecasting
Using ARIMA
Models

Univariate ARIMA Modeling

In addition to examining the &k individually, it is useful to base a
diagnostic on the autocorrelations as a whole. Define the portmanteau
test statistic Q by

K
Q=n Y&,
k=1
where K is a fixed maximum number of lags and n is the number of
observations used to compute the likelihood. Typically, K should be
between 10 and 20. If the correct ARIMA model is fit and the data
are Gaussian, then Q is approximately distributed as a chi-square

random variable on K —r degrees of freedom, where r is the number
of parameters in the model.

The Spotfire S+ function arima.diag computes the three diagnostics
discussed in this section for ARIMA models fit to univariate time
series.

Examples of simple use

Compute diagnostics for simulated AR(1) series.

> x <- arima.sim(model = Tist(ar = 0.9))
> fit <- arima.mle(x, model = Tist(ar = 0.9))
> diag <- arima.diag(fit)

By default, the argument plot =T in arima.diag, and the diagnostics
are plotted using the function arima.diag.plot.

An important application of ARIMA models is to forecast beyond the
end of a series. Assuming that the model order and parameters are
known, the forecast means and confidence intervals are easily
produced using the Kalman filter (see Harvey (1981)). Typically, one
would first fit an ARIMA model using the techniques described in the
section Model Identification. The resulting model can then be used to
produce forecasts for the series.

The Spotfire S+ function arima.forecast produces forecasts given an
ARIMA model for a univariate time series.
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Predicted and
Filtered Values
for ARIMA
Models

Computational
Note

Simulating
ARIMA
Processes
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The Spotfire S+ function arima.filt produces one-step predicted
values and their variances f;, as defined in Equation (25.44). The
primary application of arima.filt is for use in other Spotfire S+
functions; it computes the residuals in arima.diag, and it computes
the forecasts in arima.forecast.

If autoregressive or differencing operators are present in the model,
then predicted values are not produced for the first p* + d* time

points, where p* and d* are the orders of the expanded
autoregressive and differencing polynomials.

The function arima.filt also returns filtered values and their
variances. Let y, be a process which behaves according to a signal

plus noise model:

where X, is the signal and v, is the noise. A common problem is to
extract the signal by filtering the observed process y,. The filtered

values and their variances are EX|Y1 - Y and var(xyy - Y-

For a pure signal, v, is O for all t and the filtered values are simply the

observations themselves. The current version of Spotfire S+ does not
support signal plus noise models. Hence, the filtered values are the
same as the input series. However, the filtered values are returned for
compatibility with future releases.

The Spotfire S+ function arima.sim generates a simulated ARIMA
process of the form in Equations (25.42) or (25.43), given an ARIMA
model structure, regression variables and a vector of innovations or a

random generator. The innovations vector corresponds to €; in
Equation (25.40), and can be input directly. Alternatively, a random

generator may be supplied, and the innovations are generated
accordingly.



Modeling
Effects of
Trading Days

Univariate ARIMA Modeling

For stationary ARMA processes, the series can be initialized by
generating an initial random state vector according to a state space
form of the model. The initial state vector is computed by
transforming a white noise vector using the Choleski decomposition
of the unconditional covariance matrix of the state vector.

For nonstationary ARIMA processes, the unconditional covariance
matrix of the state vector doesn’t exist. Hence, the simulated series is
initialized by assuming that the initial state vector is zero. This is
equivalent to assuming past innovations and simulated values are
zero. To avoid the effects of the initialization, a series longer than the
one needed is generated, and the simulated series is taken from the
end of the generated series.

Examples of simple use

Simulate an ARMA(1,1):

> x <- arima.sim(model = list(ar = 0.5, ma = -0.6), n = 100)

Simulate an ARIMA(0, 1,1) with contaminated innovations:

> rand.gen <- function(n) ifelse(runif(n) > 0.9, rnorm(n),
+ rcauchy(n))

> x.wild <- arima.sim(100, model = Tlist(ndiff =1,

+ ma = 0.6), start.innov = 50, rand.gen = rand.gen)

In many monthly economic time series, the data are affected by the
number of trading days in that month. For example, if a given month
has more weekdays and fewer weekends than other months, then one
might expect a higher level of economic activity during that month.
One approach to handling the trading day effect is to include
regression variables reflecting the number of Mondays, Tuesdays,
etc., in each month or quarter.

The function arima.td returns a multivariate time series that is
suitable for use as a regression variable. The first column gives the
number of days in the month or quarter. The following six columns
give the number of Saturdays, Sundays, Mondays, Tuesdays,
Wednesdays, and Thursdays minus the number of Fridays in the
month or quarter. See Hillmer, Bell, and Tiao (1983) for use of trading
day variables in ARIMA modeling of time series data.
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Using the holiday functions in Spotfire S+, you can modify arima.td
to take into account the number of holidays. See the section
Calculating Holiday Dates in the chapter Dates, Times, Time
Intervals, and Sequences in the Programmer’s Guide.

Examples of simple use

> td.ship <- arima.td(ship)
> mle.td <- arima.mle(ship, model = list(order = c(0,1,1)),
+ xreg = td.ship)



Long Memory Time Series Modeling

LONG MEMORY TIME SERIES MODELING

Long memory is a common feature of time series in a wide variety of
areas. It is hard to detect, but has enormous effects on statistical
quantities such as standard errors and tests, and hence on the
conclusions drawn. One major application has been to time series of
wind speeds (Haslett and Raftery, (1989)), where long memory means
that there is a tendency to observe not just windy weeks and months,
but windy years and decades, and presumably also windy centuries
and millennia; we often say that there is variation at all temporal
scales.

Long memory time series have autocorrelations that decay slowly as
lag increases. Typically, the autocorrelations tend to zero

hyperbolically; that is, p (k) ~k=*, with o.>0 so that the sum of the
autocorrelations is  infinite, z: oP (k) = .  Thus, the

autocorrelations between observations far away from one another in
time are small, but not negligible. The spectrum of a long memory
time series goes to infinity as the frequency goes to zero at the rate

f(@) ~o(1-) .

One important property is that the variance of the sample mean
declines at a slower rate than the usual O(n-1). If p(k)~k=, then

var(X) = O(n=2). (Note that a long memory time series is stationary
only if 0<a<l .) This can have huge consequences. In the wind

speed example, o is estimated to be 0.34. This implies that, for
estimating the mean wind speed at a given location, twenty years of
actual data are worth only about the same as one month of
independent daily observations.

The ARMA models (with no differencing) discussed in the section
Autoregression Methods and the section Univariate ARIMA
Modeling are, by contrast, short memory models. For ARMA
models, the autocorrelations decay exponentially, the sum of the
autocorrelations is finite, the spectrum is finite at zero, and the
variance of the sample mean is the usual O(n-!). Fitting a short
memory ARMA model to data can give very misleading results if the
long memory property holds, even if the fitted model matches the
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lower-lag autocorrelations well. In the wind speed example, a short
memory ARMA model underestimates the variance of the sample
mean by a factor of more than ten in many cases.

The long memory property in time series is discussed by Mandelbrot
(1977), who calls it the Joseph effect because of the sequence of seven
years of plenty followed by seven lean years, as recounted in the
Book of Genesis story of Joseph. Mandelbrot pointed out that long
memory time series tend to be asymptotically approximately self-
similar and hence to be, at least approximately, equivalent to fractals.

Fractionally differenced ARIMA models

The fractionally differenced ARIMA 'p, d, q) model has been found

to represent long memory time series quite well. It is defined by
Equation (25.40), namely

o(B)V X, = 8(B)e,.

However, d may take any value in the interval [0, 1] instead of being
restricted to either 0 or 1, and V9 = (1-B)Y is defined by the

binomial expansion (1-B)% = Y C(d, j)(—l)ij, where C(d, j) are
i=0

the binomial coefficients. When the series has a nonzero mean p, the

model is better written as

X, = W+ V-99(B)-10(B)e, (25.48)

For the model given in Equation (25.48), p(k) = k-(1-29 | 5o that
o = 1-2d, where o is defined in the section Long Memory Time
Series Modeling. This model is stationary only for 0 <d<l/ 2 and
reduces to the usual short memory ARMA(p, ) model whend = 0.

Estimation of model parameters

The log-likelihood for the fractionally differenced ARIMAp, d, q)

model of Equation (25.48) can be computed exactly using the
prediction error decomposition given by Equation (25.45). In this
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calculation, )Ztt_ " and f, are given by Equations 4.3 and 4.4 of Haslett
and Raftery (1989). A major practical problem with maximum
likelihood estimation based on this likelihood is that the required
CPU time is O(nZ) . This can be enormous for the long series that are
typical of application areas in which long memory is known to arise
often. For example, in the wind speed data set, n = 6574.

We therefore use an approximation described in section 4.3 of Haslett
and Raftery (1989) that essentially uses asymptotic values to

approximate the dependence of X; on X;_j for j>M. This reduces

the order of the required CPU time from O(n2) to O(n). In practice,
the approximation is extremely accurate, and for the wind speed data,
it reduces the actual computer time by a factor of 70. We have found

M = 100 to be a good choice; the exact maximum likelihood

estimator can be recovered by setting M = n.

Computational notes

The Spotfire S+ function arima.fracdiff estimates the parameters of
the fractionally differenced ARIMAp, d, q) model. It returns exact

or approximate maximum likelihood values, standard errors,
covariance and correlation matrices of the parameter estimates, and

the log-likelihood. The degree of approximation is determined by M
we recommend M = 100. The exact maximum likelihood estimator

can be found by setting M = n, but if the series is long it can require
significant CPU time. The log-likelihood is useful for comparing
models and choosing the number of AR and MA parameters. An
approximate test of the long memory property can be carried out by

dividing the estimate of d by its standard error and comparing the
result with a standard normal distribution.

The Spotfire S+ function arima.fracdiff.sim generates a simulated
fractionally differenced ARIMA, d, q) series of the form in
Equation (25.48), given the values of d, the AR and MA parameters,
and the mean p. This function uses the prediction error
decomposition to generate X; from its conditional distribution, given

all of the aforementioned values.
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Examples of simple use
Simulate a fractionally differenced ARIMA(2,.33,0).

> x.sim <- arima.fracdiff.sim(model = 1ist(d=0.33,
+ ar=c(0.01, -0.06), mu=3.1))
> arima.fracdiff(x.sim, model = Tist(ar=rep(NA,2)))

$model :
$model$ar:
[1] 0.01145420 -0.06152254

$model $ma:
[11 0

$model$d:
[1] 0.3189504

$var.coef:
d arl ar2
d 1.959256e-04 -1.914622e-04 -9.319428e-05
arl -1.914622e-04 2.867117e-04 8.999233e-05
ar2 -9.319428e-05 8.999233e-05 1.439553e-04

$Toglik:
[1] -14162.39

$h:
[1] 0.0001492355

$d.tol:
[1] 0.0001220703

$M:
[1] 100

$hess:
d arl ar2
d -17064.33 -9863.2099 -4881.2697
arl -9863.21 -10040.2167 -108.7296
ar2 -4881.27 -108.7296 -10038.6852

$call:
arima.fracdiff(x = x.sim, model = Tist(ar = rep(NA, 2)))
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SPECTRAL ANALYSIS

Let X, be a stationary time series with sampling interval At. A major
theorem for time series states that any series with zero mean
uw=Ex, =0 and finite variance o= varx, may be well

approximated by a truncated Fourier series:

J
X, = ZAJ- cos(2xf;t) + B; sin(2nf;t) (25.49)
i=1

where A; and B; are random Fourier (series) coefficients, the f; are

well-chosen frequencies, and J is sufficiently large. This
approximation of X, as a Fourier series may be re-expressed in

complex exponential form
J
i2mfit
= Y Cje™, (25.50)
i=-J

where the C; are complex random Fourier coefficients that have zero

mean, EC; = 0. The C; are also uncorrelated:
cov(Cj, C) = ECJ-C_JK =0 for j#k (25.51)

The notation a denotes the complex conjugate of a.

Sometimes the set of real coefficients, A; and B;, or the set of
complex coefficients C;, are referred to as the (discrete time) Fourier

transform of X; .
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Time series with a nonzero mean may be approximated by adding
the mean [ to the right hand side of Equation (25.50):

J
it
K= W+ Y Celem (25.52)
i=1

The exact version of the approximation in Equation (25.50) is an
integral known as the spectral representation of x,. The spectrum or

spectral density S(f) for the series X; can be described in terms of the

coefficients C; defined in Equation (25.50):
S(f;) = E|C)|? (25.53)

Thus, the value of the spectrum at frequency f; is the second moment
of the random amplitude at frequency f;. The spectrum S(f) at an

arbitrary frequency f can also be expressed exactly in terms of the
autocovariance sequence

R(l) = EX.X

t+ 1

| =0, £, £2, .. (25.54)

Namely, S(f) has the exact Fourier series representation

S(H) = > R(he 2t (25.55)

| = —
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The autocovariances are the Fourier coefficients of S(f):

N | =

(D = _[ S(f)eil2nfd. (25.56)

DO —

Again, we often refer to S(f) as the (discrete time) Fourier transform

of R(l), and refer to R(l) as the inverse Fourier transform of S(f).

Suppose that we have a time series X;, .., X, observed at a sampling

interval A. The spectrum of this series may be estimated from the
periodogram by using the function spec.pgram. The steps involved in
this computation are described below.

I. Detrending and de-meaning

The first step in estimating the spectrum is to ensure that the mean is
zero for the time series. If it is thought that the original series may
contain a linear trend, this is accomplished by subtracting a least

squares regression line from the series; that is, replace x, with

X — & - [%t, where '\; + [3'[ is the least squares linear fit to the data. If it is
thought that there is no trend in the data, subtract the mean from the
series; i.e., replace X, with X;,—X, where X is the sample mean of
Xp» ..» Xy- By default, the spec.pgram function removes the least

squares line.
2. Tapering

A data taper is often applied to a detrended or de-meaned series. A
taper sequence W, multiplies each value in a series by a number
between 0 and 1. Tapering reduces leakage of power. See Bloomfield
(1976) and Priestley (1981) for discussions of tapering. The
spec.pgram function includes a default split cosine taper of ten
percent on each end of the series. See the section Tapering for further
details.
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3. Padding

Padding consists of increasing the length of the series x; from n to n'
by adding n'-n zero values X,,; = ...= X, = 0. Padding may
generally be ignored for the spectrum function. See discussions on the
fast Fourier transform (FFT) in the references for explanation.

4. The periodogram

To avoid extra notation, let n be the length of the series with or
without padding. Let A = 1/ freq be the sampling interval, where

freq is the frequency sampling rate component of the tspar attribute.
Following the above operations, an estimate of the power spectrum at
discrete Fourier frequencies i = k/ An is found by forming the

periodogram

(f)

A ~ o2
ﬁb:: e exp (—2mif,t)
(25.57)

2(A§+Bg), k=0, 1, ., n/ ¢

where X, = W,(X,—Y — [Ait) is the tapered, detrended series. Note that

B =0 and ’y = X if only a mean was removed from the series. The
discrete Fourier transform (DFT) sum in Equation (25.57) is
computed using a mixed radix fast Fourier transform (FFT) algorithm.

5. Smoothing

The periodogram is smoothed to reduce variability in the spectrum
estimate (the estimates in Equation (25.57) do not become less
variable as the length of the series increases). However, smoothing
also introduces bias in the estimates, and there is a trade-off between
the variability of the estimates and the bias. A thorough analysis
might include inspecting the periodogram with several levels of
smoothing. The smoothing that is performed on the periodogram is a
sequence of running averages. The user can specify lengths of
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modified Daniell windows to be run sequentially over the
periodogram in spec.pgram. The spec.pgram function yields the

smoothed estimate é(fk) expressed in decibels (10 x log 10§(fk)).

6. Degrees of freedom and bandwidth

The spec.pgram function also computes the degrees of freedom for a
chi-square approximation of the spectral density estimate at each
Fourier frequency. When there is no smoothing, tapering or padding,

there are n = 2 degrees of freedom. The degrees of freedom n
increases with the amount of smoothing.

Bandwidth is a measure of the amount of smoothing. The formula for
bandwidth used by spec.pgramis

| 2k

by, = Ez,; . [(1—12 +(j - k)Q) a,]m : (25.58)

where a; are the values of the smoothing filter for j = 0, .., 2k, and

1/ An is the interval between discrete Fourier frequencies. The
spec.pgram function returns the smoothing filter in the filter

component, which has an index starting at zero. See Bloomfield
(1976) for details.

Readers with no interest in multivariate time series may skip to the

section Example of simple use.

The cross-spectrum S, (f;) between two time series X, and Yy, at

frequency f; is approximately ECXJ-(_)yj, where the C,; and C; are

given by Equation (25.50) (the extra subscript, X or y, distinguishes
coefficients for the two series). One can think of this quantity as the
complex covariance between C,; and C,;. The phase of X, and Y, at

frequency f; is the angle of the cross-spectrum S, (f;).
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The squared-coherency K(f;) between X; and y, at frequency f; is the
squared modulus of the cross-spectrum at f;, normalized by the

product of the two spectral densities S,(f;) and S(f;):

K(f;) = Lo F

T S(F)S,(F)
In view of Equation (25.53), we have
‘ECXJ'C '|2

«
<

(f)= ==—5=2—5 = |corr(C,;, C,)
7 E[C4*E[C[? v

This provides the most natural interpretation of squared-coherency: it
is the square of the correlation between the random coefficients ij

and Cy; of the series x; and Y, at frequency f;.

Smoothing of the spectral estimates is mandatory for the estimation of
coherency. If no smoothing is performed, the estimate is identically 1.
See Priestley (1981). Similarly, the estimation of phase is basically
meaningless unless smoothing is performed.

The spec.pgram function computes estimates of the squared-
coherency and the phase for multivariate series. The output is in the
form of matrices, where each column is identified with a particular
pair of univariate components. If j is less than k, then the column
J+(k-1)k-2)

5 .

associated with the pair (j, k) is

Example of simple use

A spectral estimate of the square root of the sunspots data may be
obtained with:

> srsun.sp <- spec.pgram(sqrt(sunspots),
+ spans = c(3, 5, 7, 9), detrend = F, demean = T)
> spec.plot(srsun.sp)

The spec.pgram command subtracts the mean from the series, but
assumes that there is no trend. The spectrum is smoothed with a
series of 4 running averages. By default, ten percent on each end of
the series has been tapered with a split cosine bell. The length of the
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series is automatically padded from 2739 to 2744. A plot of the
spectrum is produced by the spec.plot function. The result is shown
in Figure 25.7.

Another simple example of the spec.pgram function is:

> 11ynx <- Tog(lynx)
> 11.sp <- spec.pgram(1lynx, taper = 0)
> spec.plot(11.sp)

The result is shown in Figure 25.8.

The spectral estimate of the 1ynx series uses no tapering, and since it
also uses no smoothing, it is the raw periodogram estimate. The data
are detrended, allowing for the possibility of a linear trend in the data.
Note that this is probably a poor spectral estimate for the dataset.

Below, we analyze monthly CO, concentrations at Mauna Loa,

Hawaii from January 1958 to December 1975. A ts.plot of the data
reveals a strong linear trend and obvious cyclic behavior. Not
surprisingly, the cycles appear to be yearly. The analysis is shown in

Figure 25.9.

par(mfrow = c(3, 1)) # put three plots in the figure
co.spl <- spec.pgram(co2, plot=T)

co.sp2 <- spec.pgram(co2, spans=c(9,9), plot=T)
co.sp3 <- spec.pgram(co2, spans=c(3,3,3), plot=T)

VvV VvV VvV VvV
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Series: sqrt(sunspots)
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Figure 25.7: Smoothed periodogram of the sunspot data.
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Figure 25.8: Periodogram of the lynx data.
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Series: co2
Raw Periodogram

spectrum
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Figure 25.9: Spectral estimates for the CO, data.

Autoregressive An alternative spectral estimate to the smoothing of the periodogram
Spectrum is to compute an autoregressive (or some other) model. The spectrum
of the estimated model can then be used as the spectral estimate of

Estimation the smoothed periodogram.

The spectrum S(f) of an autoregressive process with coefficients

0y, .., O is

(52
S(f) = e ,
(M) |1 — o, exp (-2mif) — .. — %eXp(—Qnipf)|2 (25.59)
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where f is the frequency in cycles per unit time, and o is the

variance of the innovation process €.

Phase and coherency may also be estimated for multivariate series.
The Spotfire S+ function spec.ar computes the autoregressive
spectrum of a time series.

Examples of simple use

> lynx.ar <- ar(log(lynx))
> lynx.spar <- spec.ar(lynx.ar, plot = T)

The resulting plot is displayed in Figure 25.10. The spectrum function
can be used in the same way as spec.pgram to allows for different
types of spectrum estimates. The function spec.plot can be used to
plot the output from any spectrum estimation function.

Series: log(lynx)
AR (11) Spectrum using yule-walker

spectrum
0 10
|

-10

0.0 0.1 0.2 0.3 0.4 0.5

frequency

Figure 25.10: Autoregression spectral estimate for the lynx data.

Tapering is a technique applied to time series to reduce the leakage
phenomenon in spectral estimates. Leakage occurs when there is a

large amplitude peak at a particular frequency f. The spectral

estimates at frequencies near f can be higher than expected, and can
easily obscure nearby lower amplitude peaks.
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A data taper w,, 0<Ww, <l , applied to a time series X, produces a new

tapered series.

Xp = WX t=1, .,n (25.60)

Typically the values of w; are close to zero at the ends, and close to

one in the central part of the data.

The function spec.taper implements a split cosine bell taper. Let p
be the portion to be tapered at each end of the series, and let n be the
length of the series. For m = np the split cosine bell taper is

%[1—cos(n(t—0.5)/ m)] t=1, ... m
Vi=191 t=m+1, ., n-m (25.61)

é[l—cos(n(n—t+0.5)/ m)]t=n-m+1, ., n

Examples of simple use
> lynx.taper <- spec.taper(lynx)
> lynx.taper.5 <- spec.taper(lynx, .05)

All the values in 1ynx.taper are smaller than the corresponding value
in 1ynx. In Tynx.taper.5, five percent of the values on each end are
tapered.
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The most important and widely used type of filter is a linear time-
invariant filter. With this kind of filter, the relationship between the

input series X; and the filtered output series is described by a constant

coefficient linear difference equation. Linear time-invariant filters are
often referred to as a digital filters by engineers. This class of filters has
two primary types: convolution filters and recursive filters.

1. Convolution filters are usually called finite-impulse response (FIR)
filters in the engineering literature, and moving average (MA)
filters in the statistical literature.

2. Recursive filters are usually referred to as infinite-impulse response
(ITR) filters in the engineering literature, and autoregressive
(AR) filters in the statistical literature.

If x, is the original series and 2 = (a,, a,;, .., a,) is the set of filter

coefficients, then the filtered series y, is related to X, by the

convolution equation
a
Yi = Zajxt_j t=20, £, .. (25.62)
i=0

We note that the filter is “causal”, in that each Yy, is formed as a linear

combination of present and past X;, namelyx, X;_, .., X;_ ¢ If one is

dealing with a spatial series rather than a time series, then the
noncausal symmetric form of the convolution filter can be used:

q/ 2

Vo= D X p (25.63)
i=-a/ 2
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In Equation (25.63), the filter coefficients are
e/ 2 8q/ 2+15 - 8p A, -» &g, and  is an even integer. In this

case, the @a; are usually symmetric; that is, a; = a; for

=1, .., g/ 2 The noncausal symmetric form of the convolution
filter can also be used when one is dealing with a time series in an
“off-line” mode, as opposed to a real-time application, as is usually
the case for Spotfire S+ users.

A recursive filter uses an autoregressive-type recursion to transform
the series. If X, is the original series and 2 = (a), a;, .., &) are the

coefficients, then the filtered series Yy, is obtained by the recursion

p
Ve = DAY jo1tX (25.64)
i=0

Examples of simple use

Here are two examples using convolution filters:

flynx <- filter(log(lynx), rep(0.2,5))
ts.plot(log(lynx), flynx)

gaussfilt <- exp(-((-15:15)"2/7))
gaussfilt <- gaussfilt/sum(gaussfilt)
gflynx <- filter(log(lynx), gaussfilt)
> ts.plot(Tog(lynx), gflynx)

vV VvV V VvV

The resulting plots are shown in Figure 25.11 and Figure 25.12.
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Figure 25.11: Moving average of the lynx data.

T T T T T T
1820 1840 1860 1880 1900 1920

Figure 25.12: Gaussian filtering of the lynx data.
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The flynx structure is a simple, equal-weight moving average of the
logarithm of the 1ynx data, while gflynx is filtered with a Gaussian
filter.

Here is an an example using a recursive filter:

> set.seed(14) # set the seed to reproduce this example
> ar.sim <- filter(rnorm(500), c(0.5, -0.3, 0.35), "r",
+ init = rnorm(3))

> ar.sim <- ar.sim[101:500]

ts.plot(ar.sim, main = "AR(3) simulation™)

v

This example is a simulation of an AR(3) process. The first part of
the simulation is removed to more closely approximate a stationary
process. The resulting plot is shown in Figure 25.13.

AR(3) simulation

T
0 100 200 300 400

Figure 25.13: Simulated autoregression.
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Complex demodulation is a technique for analyzing a time series that
does not assume stationarity. Inherent in the technique is the use of a
low-pass filter. Hence, these two topics are presented together. The
function demod can be used not only to perform complex
demodulation of a time series, but also to generate a least squares low-
pass filter with specific qualities.

Suppose that a time series X, satisfies
X; = Ricos(At+ @) + 2, (25.65)

where R; and ¢ are smooth processes that vary slowly over time,
and z, is a process without a component at frequency A. The R,

multiplier is the amplitude at time t of the periodic component with

frequency A, and ¢, is the phase of this periodic component at time

t. Hence the model fits a series with an oscillation at some given

frequency A that changes slowly over time.

Equation (25.65) may be rewritten using complex numbers as:
1 : F
X, = QRt[el(XHq)t) +e |(M+¢t)] +2, (25.66)

The series is then transformed into

Ve = xte—'M = iRte'q’t+§Rte I(27”t+¢‘)+2te_'}Lt (25.67)

A smooth component of y, yields estimates of R, and ¢. The

problem is to extract this component.



Least Squares
Low-Pass
Filtering

Linear Filters

An ideal low-pass filter with cutoff frequency f. has a transfer

function

1 if £,
H(f) =
(f) {0 if 51, (25.68)

That is, all frequencies less than f, are left unchanged, while no

frequencies higher than f; are allowed to pass through. Such an ideal

filter does not exist, but it can be approximated arbitrarily well by
using a sufficiently complex filter. A common approach is to design a
fixed length filter using the least squares approximation method; the
approximation improves as the filter length increases. See Bloomfield
(1976) for details.

Examples of simple use

In the commands below, the 1ynx data are demodulated at the peak
frequency of the raw periodogram. The phase and amplitude of the
demodulation are plotted separately.

lynx.sp <- spectrum(log(lynx))

lynx.pk <- Tynx.sp$freq[lynx.sp$spec ==
max(Tynx.sp$spec)]

lynx.dem <- demod(log(lynx), Tynx.pk, .05, .10)
ts.plot(lynx.dem$phase, xTab = "Time", ylab = "Phase")
ts.plot(lynx.dem$amp, xlab = "Time"™, ylab = "Amplitude")

vV VvV VvV 4+ Vv

Figure 25.14 shows the phase estimate of demodulation of the T1ynx
data, while Figure 25.15 shows the amplitude estimate of
demodulation.
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Figure 25.14: Phase estimate in the demodulation of the lynx data.
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Figure 25.15: Amplitude estimate in the demodulation of the lynx data.
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A method for obtaining a low-pass filter of length 50 with cutoff
frequency 0.08 when the data are sampled at intervals of one time
unit is shown below.

> fi1t50 <- demod(rnorm(200), 0.1, 0.08-1/49,
+ 0.08+1/49)$filter
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Outliers in time series typically cause bias and an increase in the
variability of conventional Gaussian maximum likelihood or least
squares estimates. Unacceptably large biases can occur even in large
sample size situations, when the fraction of outliers is not negligibly
small. In particular, this problem occurs for both the Yule-Walker and
Burg methods of fitting autoregressions.

As a simple example, consider the Yule-Walker estimate of the first-

order autoregression parameter ¢, which is also the lag 1
autocorrelation:

Suppose that Yy, = £ is an outlier for some given time t;, where ||

is large. Then q) is small, and in fact, (I)% as |§] —eo.

The robust procedures described in this section are designed to
minimize the increased bias and variability due to outliers, whether
they appear in isolation or in patches. We describe four functions for
dealing with outliers: ar.gm, acm.fi1t, acm.ave, and acm. smo.

Typically, ar.gm and acm.ave are used in conjunction. The ar.gm
function provides initial robust autoregression parameter estimates,
which are then used by the robust “smoother” algorithm acm.ave.
The function acm.smo is an alternative robust smoother, and both
acm.ave and acm. smo use the robust filter acm.fi1t as a basic building
block.

We elaborate on our setup and terminology. Consider the general
replacement type outliers (or RO) model:

Yo = (L=Z)X +ZW;. (25.69)
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In Equation (25.69), X, is a pth-order autoregression, z; is a 0-1
process with probability 1 -y of being 1, and w, is a contamination

process. Here, v is the fraction of contamination. This general
replacement model contains the so-called additive outliers (AO)
model

Yi = X+ Vy (25.70)

as the special case where w; = X,+V, with v, = 0 when z, = 0, and

V; = V; when z, = 1. Although the methods described in this section

work for the general RO model, it is sometimes convenient for
purposes of discussion to use the AO model. In doing so, we think in

terms of the v, having a contaminated normal distribution

=y = (1-=7)N(0, o) +yH

where H is an arbitrary outlier-generating distribution. The N(0, of)
term is the “nominal” Gaussian distribution of the additive noise v;.

In the context of Equations (25.69) or (25.70), a filter
% = R (Y}, .., Yy) is an estimate of the unobservable “signal” x, that

depends on the present and past observations y;, .., y; at time t. A
smoother & = X (Y1, .., Yp) is an estimate of X, that depends on all the

observations Yy, .., Y, for each time t = 1, .., n . This is common

terminology in the engineering literature. Both filters and smoothers
often perform a smoothing operation, in the sense that they are

weighted linear combinations of y;, .., y; andy,, .., y,, respectively,
and act approximately like local weighted means of the observations.
Robust filters and smoothers are nonlinear functions of the data that
are designed to give good estimates of X, in the presence of outliers

generated by Equation (25.69) or (25.70). Although acm.filt,
acm.ave, and acm.smo are capable of robust filtering and smoothing

when o} is known and positive, none of these functions are capable

of estimating of from the data. Estimation of of along with the
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autoregression parameters for x; is a more difficult problem that we
will hopefully address in future releases of Spotfire S+. Thus, we
assume for the most part that of = 0. This corresponds to the

frequently occurring situation in which the autoregression X, is

observed perfectly a large fraction (1 —7y) of the time, and observed

with additive outliers a small fraction (y) of the time.

When o} = 0, the values of x, are observed perfectly a fraction
1 -y of the time, and this corresponds to z, = 0 in Equation (25.69)
and v, = 0 in Equation (25.70). For the fraction of time Y when the

X; are unobservable, we replace the terms robust filter and robust

smoother by robust filter-cleaner and robust smoother-cleaner,
respectively. We often shorten these terms to simply filter-cleaner and
smoother-cleaner.

A well-designed filter-cleaner has the following intuitively desirable
property: for times at which y, = Xx; by virtue of v = 0 or z, = 0,
we have X, = y,. This occurs a large fraction 1 -7y of the time. For
times at which y, is a gross outlier by virtue of v, having a large
magnitude, X, is a pure prediction based on the previous filter-
cleaned values X, .., X,_;- A well-designed smoother-cleaner
behaves similarly, except at the times when Y, is a gross outlier; at
these times, X, is a pure interpolation based on all the other smoother-

cleaned data (;, .., X;_ 1, Xi115 - Xp

In order to use a robust filter-cleaner or smoother-cleaner for
autoregression models

Xp = 0o+ QX _p+ €, (25.71)

we must specify the unknown parameters ¢;, ¢, .., (I)p and s, , where
S, is the scale parameter for the distribution F, of the innovations €.

In the case where F, = N(0, s2), we have s? = ¢?.
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Since we seldom know the parameters ¢;, ¢y, .., ¢, or S;, we must

estimate them robustly from the data. This may be done using ar.gm,
which computes a so-called generalized M-estimate, or GM estimate.
This kind of robust estimate is also called a bounded influence
autoregression estimate, and is described in the section Generalized
M-Estimates for Autoregression. The GM estimate produces robust
parameter estimates ¢;, ¢, .., ¢p and §£ , which may be used in any

of the robust filter or smoother functions: acm.ave, acm.filt, and
acm. smo.

Typically, one uses least squares autoregression model fitting via
ar.yw or ar.burg to produce improved parameter estimates
01, ¢, .., & and §8 . These can, in turn, be used to run acm.ave again
and obtain improved smoother-cleaned values and least squares
estimates of these autoregression parameters. Although one could
iterate this procedure several times, we recommend using just one
complete iteration of this form, which produces a second set of
improved values 21, )A(Q, - )A(p, o1, G2, .., G, and §£. Because of the
strongly nonlinear nature of acm.ave, further iteration can lead to
poor solutions.

Generalized M-estimates (or GM estimates) q> and S, of

. T . .
autoregression parameters ¢ = (¢;, ¢y, .., ¢,) and the innovations

scale parameter S, are obtained by solving the equations

-1

Y WYY Wi Y1 —Y{9) =0 (25.72)
t=p

n-1 ~

Vs~ Y00

23

t=

=0, (25.73)
€

225



Chapter 25 Analyzing Time Series and Signals

226

where  the  observed  time  series is Y, Y9, -0 Yp
/{ = Yo Yi_1» -» Yi_p+1 X is @ bounded and continuous function,

and both W(y,) and w, are nonnegative, data-dependent weight

functions. As we see below, w; depends on ¢ as well. We focus our

description on Equation (25.72), and refer the reader to Martin (1980)
for details concerning Equation (25.73).

Equation (25.72) provides a linear weighted least squares estimate.
The estimate is linear in the case where the “big” weights W(y,) and

the “little” weights w, are replaced by fixed weights; that is, the
weights are independent of both the data y, and the estimate ¢

Because the w; depend upon d), the equations in (25.72) are

nonlinear. They are solved by an iterative weighted least squares
method:

-1

SWHIYW - (Vs —YTH+H =0 j=0, 1, .. iter, (9574
=p

where iter is the desired number of iterations, and the first iteration
starts with the least squares estimate o = ds. Equation (25.73) is

also iterated, yielding an estimate $ 81 at iteration j .

The big weights W(y,) are constructed so that W(y,)y; is bounded

and continuous, and the little weights w, are constructed so that

Wi (Yee1—Y{ d)) is bounded and continuous. This achieves the basic

requirement for robustness: the summands of the estimating equation
in (25.72) must be bounded and continuous.

Specifically, the weights Wtj are obtained from a psi-function vy :

Iy 1 - y7 0/ 8D
Yee1 - V{0

wl =
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where ¢ is a tuning constant. Two kinds of psi-functions are typically
used. Huber’s favorite psi-function is defined as (Huber (1964)):

Irl<c
c- sgn(r) |r[>c

and Tukey’s bisquare psi-function is (Mosteller and Tukey (1977)):

yy(r) =

r(l-r2)2 |rl<
0 Ir| >c

wo-|

The separate tuning constants ¢ for the psi-functions are adjusted to
obtain a compromise between high efficiency when the data are
actually Gaussian, and robustness towards outliers.

The “big” weights W(y,) are also derived from a psi-function of either
the Huber or Tukey type. As a default, ar.gm uses Tukey’s bisquare
psi-function. Details concerning the formation of the weights W(y,)
may be found in Martin (1980).

The main idea behind the choice of big weights and little weights is as
follows. Basing the big weights W(y,) on the Tukey bisquare function,

the W(y,) are close to one when Yy, is not too large, and y, therefore
has little effect. However, when Y, is “very large” (that is, when it is a
gross outlier in the vector sense), the W(y,) are zero and y, has no
influence on the estimate q> Similar comments apply when w, is
based on the Tukey bisquare function. When the residual
re = Yie: —ytde is not too large, w, is close to one, and when |r| is

“very large” by virtue of y,, ; being a gross outlier, w, is zero.

Despite its attractive properties, a difficulty arises when w, is based

on the Tukey bisquare function yg . The equations in (25.72) have

multiple solutions, and starting the iteration in Equation (25.74) with a
least squares estimate might lead to a poor solution. This difficulty is

avoided when w; is based on the Huber psi-function ,, since

Equation (25.72) has an essentially unique solution. However, basing
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W, on y, does not result in as much robustness toward large outliers
as when w; is based on g . Thus, the strategy adopted is to iterate
Equation (25.74) a number of times using w, based on the Huber psi-

function, followed by a number of iterations using w, based on the
Tukey psi-function.

Example of simple use

> robar <- ar.gm(bicoal.tons, 2)

Consider the special case where X; in Equation (25.70) is an AR(1)

process with known parameter ¢. In this case, the robust filtering
algorithm is given by

~ ~ m y —¢>A<
t t t—1
X — X — —_— ,

where s; is a measure of scale for the observation prediction residuals

ry = Y;— ®X;_; - The quantity s, is computed using an auxiliary data-
dependent recursion. See Martin (1981) for details. The psi-function

we use to compute X, is the Hampel two-part redescending type:

r Ir| <a
Yalr) = sgn(r)b—fé(b—lrl) a<|r b
0 Ir| >b

The robust filter has the property that, if y, is a gross outlier large
enough that the scaled residual (y,— ¢X,_;)/ R, is larger in absolute
value than b, then X, is a pure prediction based on the previous
robust filter value, X, = 0X,_ .

Now consider the case where X; is a pth-order autoregression. In this

case, X; may be represented in state space form
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where :[ =¢, 0, .., C and X[ =X, X_1, ., X_p,; are

p -dimensional vectors, and

is the so-called state transition matrix. In this case, the robust filter
value of time t is

X = (Xp)y-

Namely, X, is the first component of the wvector filtered value X,
obtained from the recursion

R R rﬁ y _9t—l
St St

Here m, is obtained from an auxiliary, data-dependent recursion. See

Martin and Thomson (1982) for details. In the recursion for X,,

9t_1 = ((I))A(t_l)l

is the first component of the vector one-step-ahead prediction ®X, _ .

In the usual case where we can use acm.filt as a filter-cleaner by
setting ¢, = S, equal to zero, it turns out that

nT =
n' =5, 0, .,0
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It is easy to check that when the Hampel two-part psi-function ‘¥, is
used and y, is a “good” data point by virtue of 'y,—y{-1)/ s, being

less than a in magnitude, then X, = Y,. In this case, y, is not altered if

it is “good.” This usually occurs for most of the data points when
acm.filt is used in the filter-cleaner mode.

Examples of simple use

> gm <- ar.gm(bicoal.tons, 3)
> bicoal.filt <- acm.filt(bicoal.tons, gm)

The robust smoother acm.ave is constructed using two acm.filt
robust filters: one “forward” filter X; going forward in time over the

data, and one “backward” filter X; going backward in time over the
data.

Let X, | { denote the backward one-step-ahead predictor of X, given
the datay, |, ... ¥,. Let p;t denote conditional mean squared error,

conditioned on Yy, .., Y, for filtering for the forward filter (this is

computed in acm.filt). Let m; be the conditional mean-squared
error, conditioned on Y, , ;, .., Y,, for predicting X, for the backward
filter (this is also computed in acm.fi1t). Then the robust smoother
X[ is obtained by confining X and X, . in the natural Bayesian
way:

- + + -
W= MXe + P Xpy 1, ¢
§=

+ -
P + My

This smoother has the following characteristics when used as a
smoother-cleaner by setting ¢, = S, = 0: “good” data points Yy, are
left unaltered, while gross outliers are replaced by interpolates based

A

on the cleaner data<;, .., X;_|, X¢yp» - Xp-
Examples of simple use

> gm <- ar.gm(bicoal.tons, 3)
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> bicoal.smo <- acm.ave(bicoal.tons, gm)

Alternative The alternative robust smoother acm.smo is an approximate
Robust conditional mean type robust smoother. For details, see Martin (1979).
Smoother Examples of simple use

> gm <- ar.gm(bicoal.tons, 3)
> bicoal.smo <- acm.smo(bicoal.tons, gm)
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The term survival analysis originated in the study and analysis of times
to death (that is, survival times) for medical patients diagnosed with
some fatal disease. Survival analysis is now a well-developed field of
statistical research and methodology that pertains to modeling and
testing hypotheses of failure time data. These data can be for humans
as well as for animals, machines, electronic equipment, automobile
components, etc. Hence, the methodology is far more general than
the analysis of survival times. In fact, fields of study other than
medicine have given other names to the identical methodology
discussed here. This chapter might just a well have been called any
one of the following:

*  Analysis of Failure Time Data
*  Reliability Analysis
* Event History Analysis

However, because of the focus of most of the examples, and because
of the history of the development of this material, we call it Survival
Analysis. This helps to simplify the presentation. In examples, we will
simply refer to patients (or people or subjects) and their survival times.
You can substitute the appropriate terminology for your field of study
as you read if you wish.

Modeling of survival times is based on two distinct approaches:
parametric and nonparametric. The material in this and the following
chapters covers both approaches. The addition of parametric survival
models extends the functionality of earlier versions of Spotfire S+.
The parametric survival functions include methods that predate the
nonparametric methods but are still widely used in industrial and
manufacturing settings, where estimation of component and system
reliability may require extrapolation from accelerated tests. The
nonparametric methods are widely used in clinical trials, and include
Kaplan-Meier estimates of survival, Cox proportional hazards
regression models and extensions due to Andersen and Gill (1982).
Miller (1981) and Kalbfleisch and Prentice (1980) are excellent
references.
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OVERVIEW OF SPOTFIRE S+ FUNCTIONS

Survival Curve
Estimates

Examples

Nonparametric survival analysis in Spotfire S+ is based on the

surviva.151 StatLib entry produced by Terry Therneau of the Mayo
Clinic. It differs only slightly from the version 5 code found in
StatLib. The expected survival routines have been modified to use
dates objects for dates, and there have been some minor bug fixes
and enhancements. Major enhancements include penalized and
frailty models. Terry Therneau has been an important contributor to
the documentation for survival analysis in Spotfire S+.

Spotfire S+ 4.5 introduced a new set of functions for life testing
analysis based on estimation code originally developed by Meeker
and Duke (1981), and subsequently refined by W.Q. Meeker.
Additional parametric survival analysis code (survReg) was added to
Spotfire S+ 2000; this code was taken from the survival5 library,
with a name change from survreg to survReg for backward
compatibility.

In this section we present a brief overview of the functions used for
doing survival analysis in Spotfire S+. This section provides an
overview of the type of computations, model fitting, and graphical
displays available for doing survival analysis in Spotfire S+. More in
depth information is contained in the chapters that follow.

The function survfit fits a Kaplan-Meier or a Fleming-Harrington
survival curve, or computes the predicted survival curve for a Cox
proportional hazards model.

+ A simple Kaplan-Meier estimate:

> survfit(Surv(time, status), data = Teukemia)

*  Print the survival curve estimate, standard errors, and
confidence intervals:

> summary(survfit(Surv(time, status),
+ data = leukemia))

1. Copyright © 1994, 1999, Mayo Foundation for Medical Education
and Research. All Rights Reserved.
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A Fleming-Harrington estimate:

> survfit(Surv(time, status), data = leukemia,
+ type = "fleming-harrington")

A Kaplan-Meier estimate with two groups:

> survfit(Surv(time, status) ~ group,
+ data = leukemia)

Predict survival at the average predictor for a Cox model:

> survfit(coxph(Surv(futime, fustat) ~ age,
+ data = ovarian))

Predict survival at other than the average predictor for a Cox
model:

> survfit(coxph(Surv(futime, fustat) ~ age, data =
+ ovarian), newdata = data.frame(age = 70))

Kaplan-Meier or Fleming-Harrington estimate of survival.

Greenwood or Tsiatis variance estimate.

The function survdiff computes one- and k-sample versions of the

Fleming-Harrington G family of tests. This includes the log-rank

Survival Curves and Gehan-Wilcoxon tests as special cases.

Examples

238

Test for the presence of a separate baseline survival for each
sex:

> survdiff(Surv(time, status) ~ sex, data = lung)
A one-sample test:
> pred <- survexp(time ~ ratetable(sex = sex,

year = 1970, age = age * 365.25), data = lung,
cohort = F)

+ +

v

survdiff(Surv(time, status) ~ offset(pred),
data = lung)

+
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The function coxph fits a Cox proportional hazards model. Available
options include stratified and penalized models, as well as models
with fixed coefficients. Penalized Cox models include ridge
regression, smoothing splines, and frailty terms (random effects) as
special cases. User-written penalty functions are also supported.

The cox.zph function computes a test of proportional hazards for a
fitted Cox model, and also estimates time-dependent coefficients
suitable for graphing. This function has an option to compute a global
test of the proportional hazards assumption, in addition to tests for
each covariate.

* A standard Cox model:
> coxph(Surv(time, status) ~ group,
+ data = Teukemia)
* A model with time dependent data:
> coxph(Surv(start, stop, event) ~ (age + surgery) *
+ transplant, data = heart)

* A stratified model containing a separate baseline hazard
function for each institution, with patient covariates sex and
Karnofsky score:

> coxph(Surv(time, status) ~ sex + pat.karno
+ strata(inst), data = lung, na.action=na.exclude)

* A simplified ridge regression:
> coxph(Surv(futime, fustat) ~ rx + ridge(age,
+ ecog.ps, theta=1), data = ovarian)

* A model with a penalized p-spline fit for the age variable:

> coxph(Surv(futime, fustat) ~ rx + pspline(age),
+ data = ovarian)

* A model with a Gaussian random effect for Titter:

> coxph(Surv(time, status) ~ rx + frailty(litter,
+ distribution="gaussian"), data = rats)
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* Force in a known term, age, without estimating a coefficient
for it:

> coxph(Surv(time, status) ~ offset(age) + sex,
+ data = Tung)

+  Compute proportional hazards test for fitted model:

> cox.zph(coxph(Surv(time, status) ~ age + sex +
+ ph.ecog, data = lung, na.action = na.exclude))

* Display the estimated coefficients as a function of time:

> plot(cox.zph(coxph(Surv(time, status) ~ age + sex +
+ ph.ecog, data = lung, na.action = na.exclude)))

Breslow, Efron, or exact partial likelihood methods for handling ties.

The functions survReg and censorReg fit parametric survival models.
The survReg function supersedes survreg, and includes options for
frailty models, nonparametric smooth terms, penalized models, and
user-defined distributions; the syntax for penalized models is
analogous to that for penalized Cox models. In contrast to other
survival functions that use Surv to specify the censored response,
censorReg uses censor. The censor function in similar in structure to
Surv, but has flexible options for custom definitions of censor codes.

The function kaplanMeier, which extends survfit to allow for left
and interval censoring, fits Kaplan-Meier models using the same
syntax as censorReg.

+ A stratified model, with separate baseline hazards for males
and females:

> survReg(Surv(time, status) ~ sex + age + ph.karno +
+ strata(sex), data = lung, na.action = na.exclude)
+ Fit a log-gaussian model:

> survReg(Surv(days, event) ~ voltage,
+ data = capacitor, dist = "Toggaussian™)
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Fit a Weibull distribution:

> censorReg(censor(days, event) ~ voltage,

+ data = capacitor2, weights = weights)

Predict life times from a model for default failure rates:

> predict(censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights))

Predict failure rates from a model for given life times:

> predict(censorReg(censor(days, event) ~ voltage,

+ data = capacitor2, weights = weights), g = c(100,
+ 200, 300), type = "prob")

Fit an extreme value distribution:

> censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights,
+ dist = "extreme")

Fit a Weibull distribution stratified by the unique values of
voltage:

> censorReg(censor(days, event) ~ strata(voltage),
+ data = capacitor2, weights = weights)

Fit a Kaplan-Meier model stratified by the unique values of
voltage:

> kaplanMeier(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights)

Distributions include Weibull, smallest extreme value,
logistic, log-logistic, normal, log-normal, exponential, log-
exponential, Rayleigh, and log-Rayleigh.

It is possible to fix the scale parameter, or have it estimated as
part of the regression.

The function survexp predicts survival for an age and sex matched
cohort of subjects given a baseline matrix of known hazard rates for
the population. Most often, the hazard rates are entries in U.S.
mortality tables. Also, a prior Cox model can act as the rate table.
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* Average conditional cohort survival, which defaults to U.S.
white:

> survexp(time ~ ratetable(sex = sex, year = 1970,
+ age = age * 365.25), conditional = T, data = lung)

* Data to enter into a one sample test for comparing the given
group to a known population:

> pred <- survexp(time ~ ratetable(sex = sex,
+ year = 1970, age = age * 365.25), data = lung,
+ cohort = F)

1. Matrix of known hazards include U.S., Arizona, Florida, and
Minnesota.

2. Itis possible to compute estimates of individual or cohort
expected survival.

The Surv and censor commands are packaging functions; like I and C,
they don’t transform their arguments. The Surv function is used for
the left-hand side of all formulas in the nonparametric survival model
fitting functions. The censor function, which supports user-defined
censor codes, is used for the left-hand side of censorReg formulas.
For details on specifying censor codes, see the chapter Life Testing.

A strata term in a model formula marks a variable or group of
variables as strata. If there are multiple variables, each unique
combination forms a stratum.

A frailty term in a model formula marks a variable as a penalized
term or random effect. The distribution of the random effect can be

"gamma", "gaussian"”, or "t".

A pspline term in a model formula fits a smoothing spline to the
variable using the p-spline basis.

A ridge term in a model formula fits a group of variables as a
simplified ridge regression.

A cluster term in a model formula identifies correlated groups of
observations.

An offset term in a model formula includes a variable in the model
with a fixed coefficient of 1.



Examples

Overview of Spotfire S+ Functions

Right censored data with status=1 for death and status=0 for
censored:

Surv(time, status)

Right censored data, where a value of 3 corresponds to a

death:

Surv(time, status = 3)

Counting process data:

Surv(start, stop, event)

Left censored data:

Surv(time, status, type = "left")

Specify a vector of censoring codes explicitly:

censor(failure, upper, censor.codes = cens)

Specify rx as a stratification variable:

strata(rx)

Specify rx and residual.dz as stratification variables:

strata(rx, residual.dz)

Make NA a separate group rather than omitting NA:

strata(rx, na.group = T)
A model with a Gaussian random effect for 1itter:
> coxph(Surv(time, status) ~ rx + frailty(litter,
+ distribution="gaussian"), data = rats)
A model with a penalized p-spline fit for the age variable:
> coxph(Surv(futime, fustat) ~ rx + pspline(age),
+ data = ovarian)
A simplified ridge regression:

> coxph(Surv(futime, fustat) ~ rx + ridge(age,
+ ecog.ps, theta=1), data=ovarian)
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*  Mark the observations in the group variable as correlated:

cluster(group)

* Force in a known term, age, without estimating a coefficient
for it:

> coxph(Surv(time, status) ~ offset(age) + sex,
+ data = Tung)
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MISSING VALUES

Warning

The handling of missing values (NA) for the survival analysis functions
has been enriched in recent releases of Spotfire S+. In particular, the
functions naresid and naprint provide new methods for handling
missing values. The main improvements follow.

1. You can specify a global default function for handling missing
values. This frees you from having to do it in the call to the
model fitting function. For example, to set the global missing
value action to delete missing values row-wise, type:

> options(na.action = "na.exclude™)

2. A brief report of the action taken is included when printing a
fitted model. For example, if na.exclude is the action, a
message similar to the following is included when the fit
object is printed:

"14 observations deleted due to missing values".

3. When residuals and predictions are computed, NAs are
appropriately inserted so that the resulting vectors are the
same length as the original variables. This allows you to, for
example, plot the residuals versus the predictors without
worrying about whether the vectors are different lengths.
Because of this feature, you can do the following:

> fit <- coxph(Surv(time, status) ~ age + sex +
+ ph.ecog + ph.karno, data = lung,

+ na.action = na.exclude)

> plot(lung$age, residuals(fit))

Specifying a global default for handling NAs through the options list
affects all of the model fitting functions that call
model.frame.default. The tree function does not rely on
model.frame.default, so it is immune to the global setting. However,
virtually all of the remaining model fitting functions call
model.frame.default, and the global setting effects them. Because of
this, it is recommended that you provide the NA action function (for
example, na.exclude) as the na.action argument to the fitting
function, rather than rely on the global action.
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Additionally, if you fit a survival model relying on a global NA action,
and you use the fitted model in later computations, errors and/or
incorrect values can result if the global NA action is different than at
the time of fitting the model. If you expect to change the global NA
action, it is safer to provide the NA action function as the na.action
argument to the fitting function, rather than as a global option.
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A survival function defined over time t is, by definition, the probability
that a person survives at least to time t. More formally, let T be a
positive random variable with distribution function F(t) and density
f(t). The survival function S(t) is

S(t) = 1 -F(@) = P{T>t}
and the hazard rate or hazard function \(t) is

_ fo
At = S8

The hazard rate has the interpretation A(t) = P {patient dies in the

next small unit of time, A(t), given they have survived to time t}. A
constant hazard indicates that, over each interval, a constant
proportion of surviving subjects is expected to die. A familiar
example is radioactive decay, where the “death” of an atom
corresponds to its decay. Constant hazard may also be associated with
some fatal diseases, such as metastatic cancer.

The cumulative hazard A (t) is defined as

t
\(® = | Abdt = -logS(t.
0

What distinguishes survival analysis from most other statistical
methods is the presence of censoring. In a study of survival following
two different treatment regimens, for example, analysis of the trial
typically occurs well before all of the patients have died. For those
still alive at the time of analysis, the true survival time is known only
to be greater than the time observed to date. Such an observation is
said to be censored. Survival data are presented to the computer

program as a pair (t;, §;), where t; is the observed survival time and
d; = 0 if the observation is censored, 6; = 1 if a death is observed.

Survival data is often presented using a + for the censored
observation, so that a set of times might be 8, 11+, 14, 22, 36+, etc.



Introduction

Let t <th <--<t} denote the m distinct death times. Let Y,(S)
be an indicator function, which is 1 if person i is still at risk at time s

and 0 otherwise; that is, Y;(s) = 1 if s<t¥ . Then the number at
n

risk at time s is r(S) = ZYi(S) . We can similarly define d(s) as

1
the number of deaths occurring at time s.

In order to discuss some of the more recent methods in survival
analysis, it is helpful to recast the problem as a counting process, a
notation found in Andersen and Gill (1982) and others. A good

reference is Fleming and Harrington (1981). Let N,(t) be a counting
process associated with the ith subject, so N, increases by 1 at each

observed event (for example, heart attack). In this notation a subject
can have multiple events. Y,(t) is an indicator function as before, but

now can have multiple transitions from 0 (zero) to 1 (one), with a
subject entering and leaving the risk set.
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The most common estimate of the survival distribution, the Kaplan-
Meier (KM) estimate, is a product of survival probabilities

: r(t) - d(t)
Skmt) = [[————
t <t r(t)
where r and d are the number at risk and the number of deaths,
respectively, as defined above. Graphically, the Kaplan-Meier
survival curve appears as a step function with a drop at each death.
Censoring times are often marked on the plot as “+” symbols.

The data presented in Table 271 are preliminary results from a
clinical trial to evaluate the efficacy of maintenance chemotherapy for
acute myelogenous leukemia (AML). The study was conducted by
Embury, et al. (1977) at Stanford University. After reaching a status of
remission through treatment by chemotherapy, the patients who
entered the study were assigned randomly to two groups. The first
group received maintenance chemotherapy; the second, or control,
group did not. The objective of the trial was to see if maintenance
chemotherapy prolonged the time until relapse.

Table 27.1: Data for AML maintenance study. A+ indicates a censored value.

Group Length of Complete Remission (in weeks)

Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+

Nonmaintained 5,5,8,8, 12, 16+, 23, 27, 30, 33, 43, 45




Kaplan-Meier Estimator

The Kaplan-Meier estimator of survival for the maintained group is
computed by hand as follows:

S(0) = 1,

S(9) = S(0) x }—‘1) = 091,

S(13) = S(9)x = = 0.82

- 0 - %

S(18) = S(13) x 5—7; = 0.72,
6 .

5(23) = S(18)x 2 = 0.1,
6

5(28) = S(23)x 3 = 0.61,
4

S(31) = S(23)x 3 = 049,
3

S(34) = SB1)x = 037,

S(48) = S(34) x % = 0.18

In Spotfire S+, the survfit function produces Kaplan-Meier survival
curve estimates by default. The data displayed in Table 271 is in a
data frame named Teukemia, with the variables listed below.

+ time: Time to relapse

+ status: Indicator whether the observed time was a relapse (1)
or censored (0).

* group: Treatment group indicator taking values Maintained
and Nonmaintained.

You compute the KM estimate as follows:

> Teukemia.surv <- survfit(Surv(time, status) ~ group,
+ data = leukemia)

> summary(leukemia.surv)
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Call: survfit(formula = Surv(time, status) ~ group, data =
leukemia)

group=Maintained

time n.risk n.event survival std.err lTower 95% CI upper 95%
CI

9 11 1 0.909 0.0867 0.7541 1.000
13 10 1 0.818 0.1163 0.6192 1.000
18 8 1 0.716 0.1397 0.4884 1.000
23 7 1 0.614 0.1526 0.3769 0.999
31 5 1 0.491 0.1642 0.2549 0.946
34 4 1 0.368 0.1627 0.1549 0.875
48 2 1 0.184 0.1535 0.0359 0.944

group=Nonmaintained

time n.risk n.event survival std.err Tower 95% CI upper 95%
CI

5 12 2 0.8333 0.1076 0.6470 1.000
8 10 2 0.6667 0.1361 0.4468 0.995
12 8 1 0.5833 0.1423 0.3616 0.941
23 6 1 0.4861 0.1481 0.2675 0.883
27 5 1 0.3889 0.1470 0.1854 0.816
30 4 1 0.2917 0.1387 0.1148 0.741
33 3 1 0.1944 0.1219 0.0569 0.664
43 2 1 0.0972 0.0919 0.0153 0.620
45 1 1 0.0000 NA NA NA

The survfit function returns an object of class "survfit". The
function produces the tabled output including columns for the
survival estimates, the standard errors of the estimates, and
confidence bounds for the estimates. The NAs on the last line result
from not being able to estimate a standard error and, consequently, a
confidence interval for zero survival on a log survival scale.



Nelson and Fleming-Harrington Estimators

NELSON AND FLEMING-HARRINGTON ESTIMATORS

Another approach is to estimate A, the cumulative hazard, using
Nelson’s estimate,

. d(t;)
AN = ) —,
ti<tr(ti)

or, using counting process notation,

n t
- dN; (s
W = ¥ 5

i=10

The Nelson estimate is also a step function. It starts at zero and has a

d(

step of size m at each death.

One problem with the Nelson estimate is that it is susceptible to ties
in the data. For example, assume that 3 subjects die at 3 nearby times
t,, ty, ty, with 7 other subjects also at risk. Then the total increment
in the Nelson estimate is 1/10 + 1/9 + 1/8. However, if time data
were grouped such that the distinction between t;, ty, and t; was
lost, the increment would be the smaller step 3/10. If there are a large
number of ties this can introduce significant bias. One solution is to
employ a modified Nelson estimate that always uses the larger
increment, as suggested by Nelson (1969) and Fleming and
Harrington (1984). This is not an issue with the Kaplan-Meier

estimate, however; with or without ties, the multiplicative step would
be 7/10.

The relationship A (t) = —logS(t), which holds for any continuous

distribution, leads to the Fleming-Harrington (FH) (Fleming and
Harrington (1984)) estimate of survival:

A —A .
Sen(t) = e (27.1)
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This estimate has natural connections to survival curves for a Cox
model. For sufficiently large sample sizes the FH and KM estimates
are arbitrarily close to one another, but keep in mind that unless there
is heavy censoring, the number at risk r(t) is always small in the
right-hand tail of the estimated curve.

You produce the Fleming-Harrington estimate of survival for the data
in Table 27.1 by specifying the type argument in the call to survfit.

> summary(survfit(Surv(time, status) ~ group,
+ data = leukemia, type = "fleming-harrington"))

Call: survfit(formula = Surv(time, status) ~ group, data =
leukemia, type = "fleming-harrington")

group=Maintained

time n.risk n.event survival std.err Tower 95% CI upper 95%
CI

9 11 1 0.913 0.0871 0.7575 1.000
13 10 1 0.826 0.1174 0.6253 1.000
18 8 1 0.729 0.1422 0.4974 1.000
23 7 1 0.632 0.1572 0.3882 1.000
31 5 1 0.517 0.1731 0.2687 0.997
34 4 1 0.403 0.1781 0.1695 0.958
48 2 1 0.244 0.2038 0.0477 1.000

group=Nonmaintained

time n.risk n.event survival std.err Tower 95% CI upper 95%
CI

5 12 2 0.8465 0.109 0.6572 1.000
8 10 2 0.6930 0.141 0.4645 1.000
12 8 1 0.6116 0.149 0.3791 0.987
23 6 1 0.5177 0.158 0.2849 0.941
27 5 1 0.4239 0.160 0.2021 0.889
30 4 1 0.3301 0.157 0.1300 0.838
33 3 1 0.2365 0.148 0.0692 0.808
43 2 1 0.1435 0.136 0.0225 0.914
45 1 1 0.0528 Inf 0.0000 1.000

You produce the modified Nelson estimate similarly by specifying
type = "fh2". Note that you can abbreviate the character string
passed to the type argument:

# Fleming-Harrington estimate



Nelson and Fleming-Harrington Estimators

> survfit(Surv(time, status) ~ group, data = leukemia,
+ type = "flem™)

# Nelson estimate

> survfit(Surv(time, status) ~ group, data = leukemia,

+ type = "fh")
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~ ~

Several estimates of the varaiance of A N are possible. Since A N can

be treated as a sum of independent increments, the variance is a
cumulative sum with terms of

d(t)

m Greenwood
92—(-& Tsiatis
r-(t)

dOIr®) -d®]
r(t)

See Klein (1991) for details. Using Equation (27.1) and the simple

Taylor series approximation -ar log f~= var f/ f, the variance of the
KM or FH estimators is

var(3(1)) = S%(tyvar(A n(D)) (279)

Klein also considers two other forms for the variance of S, but
concludes

*  For computing the variance of A N the Tsiatis formula is
preferred.

*  For computing the variance of é, the Greenwood formula
along with Equation (27.2) is preferred.

Confidence intervals for S(t) can be computed on the plain (identity)
scale,

S+1.96se(S) (27.3)



Variance Estimation
on the cumulative hazard or log-survival scale,
exp(log S£1.96 se(A)) (27.4)
or on the log-hazard or log-log survival scale,
exp(—exp(log(-log S) £1.96 se(log A ))) (27.5)

where “se” refers to the standard error.

Confidence intervals based on Equation (27.3) may give survival
probabilities that are greater than 1 or less than zero. Those based on
Equation (27.4) may sometimes be greater than 1, but those based on
Equation (27.5) are always between 0 and 1. For this reason many
users prefer the log-hazard formulation. Link (1984), (1986), however,
suggests that confidence intervals based on the cumulative-hazard
scale have the best performance. All three methods have been
implemented in the survfit function and are referred to as the
"plain”, "log", and "log-log" confidence types. By default, the
summary.survfit confidence intervals are based on the log-survival
(or cumulative hazard) scale. Intervals on the two other scales may be
specified through the conf.type argument to survfit. Intervals on
the other scales are computed based on the following relationships:

se(S) = Sse(A)
e(log A) = 1% se(A

A further refinement to the confidence intervals is suggested by
Dorey and Korn (1987). When the tail of the survival curve contains
much censoring and few deaths, there will be one or more long flat
segments. Confidence intervals based strictly on Equation (27.3),
Equation (27.4), or Equation (27.5) are constant across these intervals.
Dorey and Korn point out that, as censored subjects are removed
from the sample, the effective sample size decreases, so the actual
reliability of the curve should also decrease. Their correction retains
the original upper confidence limit and a modified lower limit which
agrees with the standard limits at each death time but is based on the
effective number at risk between death times.
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Three lower confidence limit methods (the conf.lower argument) are
implemented in survfit. The usual method (conf.lower="usual")
uses, optionally, either the Greenwood or the Tsiatis formulation
unaltered.

Peto’s method (conf.lower="peto") assumes that

Var(/; N(D) = &

r(t)’

where r(t) is the number at risk and ¢ =1 — S(t). The Peto limit is
known to be conservative. The modified Peto limit
(conf.lower="modified") chooses ¢ such that the variance at each
death time is equal to the usual estimate but between death times the

usual variance estimate is multiplied by [r;i%), where r(t) is the
number at risk and r*(t) is the number at risk at the last jump in the
curve (last death time). This is almost identical to Dorey and Korn’s
estimator and is the recommended procedure.

Applying the methods of this section to the Teukemia data, you can
compute the conservative lower confidence intervals of Peto for
survival based on the log-hazard scale as follows:

> summary(survfit(Surv(time, status) ~ group,
+ data = leukemia, conf.type = "log-Tog",
+ conf.lower = "peto"))

Call: survfit(formula = Surv(time, status) ~ group, data =
leukemia, conf.type = "log-Tog", conf.lower = "peto")

group=Maintained

time n.risk n.event survival std.err lTower 95% CI upper 95%
CI

9 11 1 0.909 0.0867 0.5390 0.987
13 10 1 0.818 0.1163 0.4729 0.951
18 8 1 0.716 0.1397 0.3645 0.899
23 7 1 0.614 0.1526 0.2854 0.835
31 5 1 0.491 0.1642 0.1802 0.753
34 4 1 0.368 0.1627 0.1132 0.657
48 2 1 0.184 0.1535 0.0288 0.525



CI

12
10
8

—_ N WS oo

group=Nonmaintained
time n.risk n.event survival std.err lower

2
2
1
1
1
1
1
1
1

.8333
.6667
.5833
.4861
.3889
.2917
.1944
.0972
0.0000

O O O O O o o o

O O O O O o o o

.1076
.1361
.1423
.1481
.1470
.1387
.1219
.0919

NA

O O O O O o o o

Variance Estimation

95% CI upper 95%

.5235
.3753
.2906
.2024
.1421
.0901
.0476
.0166

NA

O O O O O O o O

.956
.860
.801
.730
.650
.561
.461
.349

NA
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For the Kaplan-Meier estimate, the estimated mean survival is
undefined if the last observation is censored. The procedure used by
Spotfire S+ is to redefine the estimate to be zero beyond the last
observation. This gives an estimated mean that is biased towards zero,
but there are no compelling alternatives that do better. With this
definition, the mean is estimated as

~ T A
1= j S(tdi,
0

where S is the Kaplan-Meier estimate and T is the maximum
observed follow-up time in the study. The variance of the mean is

ar) = | OTU :§<u>olu)2 o

r(t)(r(t) - N(ty
where N(t) = Eli(t) = d(t) is the total number of deaths up to

time t, and r(t) = Bi(t) is the number at risk at time t.

The sample median is defined as the first time at which é(t) Q.5 .
Upper and lower confidence intervals for the median are defined in
terms of the confidence intervals for S: the upper confidence interval

is the first time at which the upper confidence interval for S is <0.5 .
This corresponds to drawing a horizontal line at 0.5 on the graph of
the survival curve, and using intersections of this line with the curve
and its upper and lower confidence bands. In the event that the
survival curve has a horizontal portion at exactly 0.5 (for example, an
even number of subjects and no censoring before the median) then
the average time of that horizontal segment is used. This agrees with
the usual definition of the median for uncensored data when the

sample size is an even number. If neither confidence band for S(t)

reaches 0.5, as in the example which follows, then the corresponding
confidence limit for the median is unknown and is reported as an NA.



Mean and Median Survival

Example: AML The mean, median, and confidence intervals for the median survival
Study (cont.) time are part of the table produced by printing a "survfit" object.
For the Teukemia data set these statistics are produced as follows:

> leukemia.surv <- survfit(Surv(time, status) ~ group,
+ data = leukemia)
> Teukemia.surv

Call: survfit(formula = Surv(time, status) ~ group, data =

leukemia)
n events mean se(mean) median 0.95LCL
group=Maintained 11 7 52.6 19.83 31 18
group=Nonmaintained 12 11 22.7 4.18 23 8
0.95UCL
group=Maintained NA
group=Nonmaintained NA

Printing the object returned by survfit produces a brief report of the
resulting fits. For each fit, the print method prints the number of
subjects in the cohort (n), the total number of events (events), as well
as the mean, its standard error (se(mean)), the median, and
confidence intervals for the median survival time (the last two
columns).
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Assume that we wish to compare p different groups with respect to

their survival distributions. One method is to form the p x 2 table at
each death time.

Groups 1 2 Y4

Deaths 4, dy dp d
Alive and at risk @ ay a, a
Totals n ) n, N

If there are no tied deaths, then d = 1 for each table. Treating this
table as a simple multinomial experiment with d events in N trials,

the expected number of deaths in each group is jni/ N with a

standard multinomial variance matrix V.

Treating each of the k unique death time tables as independent, we
can sum over the tables to obtain an observed and an expected
number of deaths for each group. This “O-E” vector has variance

matrix Elk . The argument may be generalized by the inclusion of

weights w, for each death time. The overall weighted vector is then

E’,Vk(ok_Ek) , where O, is the top row of table k, E, is the

. . 2 -
expected, and the variance is Elkak . When w, =1 this is the

Mantel-Haenszel or log-rank test, for w, = n, it is the Gehan-
Wilcoxon test, and for w, = Sy, (t,) it is the Peto-Peto modification

of the Wilcoxon test.

The survdiff function implements a family of tests suggested by
Fleming and Harrington (1981) for comparing two or more survival

curves. A single parameter p controls the weights given to different




Example: AML
Study (cont.)

Comparison of Survival Curves

survival times; p = 0 yields the log-rank test and p = 1 the Peto-
Wilcoxon. Other values give a test that is intermediate to these two.
The default valueis p = 0.

The log rank test is most powerful for a proportional hazards
alternative, that is, when \;(t)/ 7\,J—(t) = Cj for any two groups i and
j, and some constant ¢ which is independent of time. This

assumption is found to hold, at least approximately, in many clinical
trials. Other values for p produce tests more sensitive to early

differences inS (p >0) or to later differences (p <0).

Returning to the Teukemia data frame, compare the two treatment
groups using survdiff. The survdiff function takes a formula and a

data frame as its first two arguments. Recalling that p = 0 by default,

the logrank test for difference between the maintained and
nonmaintained groups is produced as follows:

> survdiff(Surv(time, status) ~ group, data = leukemia)

N Observed Expected (0-E)*2/E

group=Maintained 11 7 10.689 1.273

group=Nonmaintained 12 11 7.311 1.862
Chisq= 3.4 on 1 degrees of freedom, p= 0.06534

Thus, there is mild evidence to suggest that the maintained group has
better survival than the nonmaintained group.
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The survfit function fits Kaplan-Meier or, optionally, Fleming-
Harrington survival curves. For example,

> sf <- survfit(Surv(futime, fustat) ~ rx + residual.dz,
+ data = ovarian)
> sf

Call: survfit(formula = Surv(futime, fustat) ~ rx +
residual.dz, data = ovarian)

n events mean se(mean) median 0.95LCL
rx=1, residual.dz=1 5 1 989 101 NA 638
rx=1, residual.dz=2 8 6 430 131 299 156
rx=2, residual.dz=1 6 2 943 161 NA 563
rx=2, residual.dz=2 7 3 833 156 NA 464
0.95UCL
rx=1, residual.dz=1 NA
rx=1, residual.dz=2 NA
rx=2, residual.dz=1 NA
rx=2, residual.dz=2 NA

This command results in four Kaplan-Meier survival curves, indexed
by the two levels of treatment (rx) and the two levels of residual
disease (residual.dz). The right hand side of the formula is
interpreted differently than it would be for an ordinary linear or Cox
model. The survfit function uses the + operator to specify an
interaction.

A summary of important options to survfit are listed below.
* weights: Case weights.

+ type: Type of fit. The choices are "kaplan-meier", "fleming-
harrington" or "fh2".

+ error: Type of variance estimate. The choices are
"greenwood" or "tsiatis".

e conf.int: Level for the two-sided confidence interval of
median survival. The default is 0.95.



More on survfit

* conf.type: One of "none", "plain", "1og", or "Tog-1log". The
default is "10g".

* conf.lower: One of "usual", "peto”, or "modified".

The plot.survfit function plots survival curves returned by survfit.
For the AML data, you can plot survival curves, and add a title and
legend as follows:

> plot(leukemia.surv, xlab = "Survival Time in Weeks",
+ ylab = "Proportion Surviving”, cex = 2, 1ty = 2:3)
> title("AML Maintenance Study")

> legend(c(75, 130), c(0.95, 0.85),

+ c("Maintenance”, "No Maintenance"), 1ty = 2:3)

Figure 27.1 displays the results of plotting the Kaplan-Meier estimates
of survival stratified by the maintenance grouping variable group.
Some important optional arguments to plot.survfit are as follows:

* conf.int: Plot confidence intervals for the curves. The default
is TRUE for a single curve and FALSE for multiple curves.

* mark.time: If logical, indicates whether to mark the curves at
censoring times. If a numeric vector, the curve is marked at
each time indicated.

+ mark: Vector of characters or integers specifying special
symbols used to mark the curve. The default value of 3
produces a + at the censored values.

e cex: Character size of the censor marks.

By default, confidence intervals are suppressed if there are multiple
curves. Marks are normally placed on the curve(s) at each censoring
time. If there are a large number of censored observations, this can
make the plot too “busy.” In this case, the mark.time option can be
used to specify the time values at which curves are labeled.
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Figure 27.1: Kaplan-Meier estimates of survival for the maintained and

nonmaintained groups of the AML study.
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Introduction
INTRODUCTION

The Cox proportional hazards model is the most commonly used
regression model for survival data. If Z;(t) is the vector of covariates

for the ith individual at time t, the model assumes that the hazard for
a subject is of the form

MEZ) = AyOri),
where
rl(t) = eB'Zi(t)

is referred to as the risk score for the ith subject, B is a vector of

regression parameters, and Ay(t) is an arbitrary and unspecified

baseline hazard function. The vector of coefficients B does not

include an intercept term; it is absorbed into A,. The exponential
function guarantees that A is positive for any . Assume that a death

has occurred at time t* . Then conditional on this death occurring, the
likelihood that it would be subject i rather than some other subject is
o) ry(t*) _ ri(t*)

Li(B) = = :
Z?j(t*)ko(t*)rj(t*) zgj(t*)rj(t*)

(28.1)

The product of the terms (Equation (28.1)) over all death times,
L(B) = JEi(B), was termed a partial likelihood by Cox (1972).
Maximization of log(L(f)) gives an estimate for 3 without the need

to estimate the nuisance parameter Ay(t). An estimator of the

covariance matrix is given by the inverse of the second derivative
matrix. The proportional hazards model is nonparametric in the
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sense that it depends only on the ranks of the survival times. It
remains sensitive, however, to skewed covariates. The first derivative

of log(L(P)) is the p by 1 vector

S [ [Zi(t)-Z(B, t)1dN;(t)

i=10

J(B)

o (28.2)
= 3 [ [Z(v)-ZB, H]dM(B, t

i=10

3 [ 1Zi(tH) - Z(B, H]dN;(t)

i=10

J(B)

o (28.3)
= Y [ [Zi(t)-Z(B, t)]dM(B, t

i=10

and the p by p information matrix is

n =Y MOIZi(0) - Z(O1Zi(H) - Z(B, HT
Ig)=3 [ - dNj(t)  (28.4)
i=10 MOLIG)

where Z is the weighted covariate mean for those still at risk at time t
_ (O ) Zi(H)
Z(B, t) = 2iOnOzM ,
i)

Cox proposed, and it was later shown by Efron (1977) and Oakes
(1977), that the partial likelihood contains nearly all of the information

about PB. That is, the calendar times when deaths occur give

information about the overall hazard rate A, but little about the



Introduction

relative rates for different values of Z. The Cox model thus gives very
efficient estimates as compared to a parametric proportional hazards
model, such as the Weibull, even when the data actually come from

the parametric model. The notation for L; in Equation (28.1) is

derived from the counting process representation found in Fleming and
Harrington (1991). It allows for several extensions to the original Cox
model formulation, including:

Multiple events per subject;

Time-dependent covariates including cation variables;
Discontinuous intervals of risk, where Y; may change states
from 1 to 0 and back again multiple times;

Left truncation, where subjects need not enter the risk set at
time O.

This extension is known as the multiplicative hazards model.

Example: This example uses data from a study of ovarian cancer [EF D*79].
Ovarian Cancer The variables are listed below.

futime: The number of days from enrollment until death or
censoring, whichever comes first;

fustat: An indicator of death (1) or censoring (0);

age: The patient age in years (actually, the age in days divided
by 365.25);

residual.dz: An indicator of the extent of residual disease;
rx: An indicator of the treatment given,;

ecog.ps: A measure of performance score or functional status,
using the Eastern Cooperative Oncology Group’s scale. It
ranges from 0 (fully functional) to 4 (completely disabled).
Level 4 subjects are usually considered too ill to enter a
randomized trial such as this.

The data are stored in a data frame named ovarian. A summary
produces the following:

> summary(ovarian)
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futime fustat age
Min. : 59.0 Min. :0.0000 Min. :38.89
1st Qu.: 368.0 1st Qu.:0.0000 1st Qu.:50.17
Median : 476.0 Median :0.0000 Median :56.85
Mean : 599.5 Mean :0.4615 Mean :56.17
3rd Qu.: 794.8 3rd Qu.:1.0000 3rd Qu.:62.38
Max. :1227.0 Max. :1.0000 Max. :74.50

residual.dz rX ecog.ps
Min. :1.000 Min. :1.0 Min. 1.000
1st Qu.:1.000 1st Qu.:1.0 1st Qu.:1.000
Median :2.000 Median :1.5 Median :1.000
Mean 1.577 Mean :1.5 Mean 1.462
3rd Qu.:2.000 3rd Qu.:2.0 3rd Qu.:2.000
Max. :2.000 Max. :2.0 Max. 2.000

Start by modeling survival as a function of age only:

> ov.fitl <- coxph(Surv(futime, fustat) ~ age,
+ data = ovarian)
> ov.fitl

Call: coxph(formula = Surv(futime,fustat) ~ age, data =
ovarian)

coef exp(coef) se(coef) z p
age 0.162 1.18 0.0497 3.25 0.0012
Likelihood ratio test=14.3 on 1 df, p=0.000156 n=26

Printing the resulting fit produces the estimated coefficient (B), the
estimated relative risk for a one unit change in the variable e®, the

standard error of the estimated coefficient, a ztest )/ se(p) along
with its p-value for the significance of the estimated coefficient, and a
likelihood ratio test for goodness of fit. The ztest is sometimes
referred to as Wald’s test. An estimate of the relative risk of dying of
ovarian cancer for two patients in the study differing in age by one
year is 1.18 which is significantly larger than one (p = 0.000156).
The older patient has an estimated 1.18 times higher risk of dying of
ovarian cancer than the younger patient. You produce a summary of
the survival curve with a combination of the summary function and the
survfit function. For example,

> summary(survfit(ov.fitl))



Call:

survfit(formula

= ov.fitl)

time n.risk n.event survival std.err

59
115
156
268
329
353
365
431
464
475
563
638

26
25
24
23
22
21
20
17
15
14
12
11

1

=R = e e R e e e

0.

O O O O O O O o o o o

lTower 95% CI upper 95% CI

0.
.927
.886
.844
.783
.732
.678
.612
.548
.487
.398
.321

O O O O O O O o o o o

961

1.

O O O O O F F 1

000
.000
.000
.000
.000
.000
.000
.982
.958
.931
.892
.845

988

.974
.955
.933
.897
.862
.824
.775
.724
.673
.596
.520

0.
.0244
.0364
.0482
.0621
.0724
.0819
.0934
.1032
L1112
.1226
.1287

O O O O O O O o o o o

0142

Introduction

The Fleming-Harrington estimate of survival for a patient with age
equal to the average is produced in this case because the model was fit
using coxph and survival for a particular age was not specified with

the newdata argument.
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You can produce a plot of the survival curve, shown in Figure 28.1, at
the average age as follows:

> plot(survfit(ov.fitl), xlab = "Survival in Days",
+ ylab = "Proportion Surviving")
> title("Suvival for Ovarian Cancer Study")

The default, when you plot only one curve, is to add confidence
limits.

Suvival for Ovarian Cancer Study

1.0

0.8

0.6

Proportion Surviving
0.4

0.2

0.0

0 100 200 300 400 500 600
Survival in Days

Figure 28.1: Cox regression estimate of survival for a subject of average age (56.17
years), from the ovarian cancer study.



Hypothesis Tests

HYPOTHESIS TESTS

Example:

Once you fit a Cox model, three tests of hypothesis are produced that
are asymptotically equivalent, but are not always equivalent in

practice. Let B, be the initial value of the coefficients and [; the
solution after fitting the model. The likelihood ratio test is defined as

20og(L(B,)) ~log(L(B))},

and is the most reliable. The Wald statistic is defined as
N oA
B -Bo) =, (B -Bo),

-1
where Z[; . It is the estimated variance-covariance matrix, and is

perhaps the most natural because it provides a per-variable test rather
than an overall measure of significance. The score fest is defined as

utlu,

where U is the vector of derivatives given by Equation (28.3) and | is
the information matrix given by Equation (28.4), both evaluated at
By. The score test does not require iteration and, consequently, is

more computationally efficient if a large number of models are to be
tested.

For the ovarian cancer example, you can compute all three tests by

Ovarian Cancer computing a summary of the resulting fit.

(cont.)

> summary(ov.fitl)

Call: coxph(formula = Surv(futime, fustat) ~ age, data =
ovarian)

n= 26
coef exp(coef) se(coef) z p
age 0.162 1.18 0.0497 3.25 0.0012
exp(coef) exp(-coef) lower .95 upper .95
age 1.18 0.851 1.07 1.3

Rsquare= 0.423 (max possible= 0.932 )
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Likelihood ratio test= 14.3 on 1 df, p=0.000156
Wald test = 10.6 on 1 df, p=0.00116
Efficient score test 12.3 on 1 df, p=0.000463

The summary of a fit returns the efficient score test, in addition to the
likelihood ratio test and Wald’s test. Additionally, a confidence

interval is estimated for the relative risk estimated by eP. To produce
confidence limits with a different confidence level use the conf.int
argument in the call to summary. For example, specifying
conf.int=0.99 produces 99% confidence intervals for the relative
risk. It is clear that age is an important predictor of survival. Let’s add
the other predictors to the model:

> ov.fit2 <- coxph(Surv(futime, fustat) ~ age +
+ residual.dz + rx + ecog.ps, ovarian)
> ov.fit2

Call:

coxph(formula = Surv(futime, fustat) ~ age + residual.dz +
rx + ecog.ps, data = ovarian)

coef exp(coef) se(coef) z p
age 0.125 1.133  0.0469 2.662 0.0078
residual.dz 0.826 2.285 0.7896 1.046 0.3000
rx -0.914 0.401 0.6533 -1.400 0.1600
ecog.ps 0.336 1.400 0.6439 0.522 0.6000

Likelihood ratio test=17 on 4 df, p=0.0019 n= 26

To check for an overall improved fit over the age-only model,
compute the likelihood ratio test between the models as follows:

> -2*%(ov.fitl$loglik[2] - ov.fit2$Toglik[2])

[1] 2.749708



Hypothesis Tests

The 1og1ik component of the fit is a vector of the log-likelihoods for
two fits. The null model (intercept only) is the first value, and the
current model is the second value. Noting that there is a difference of
three degrees of freedom between the models, the p-value for the
likelihood ratio test is computed as follows:

> pchisq(2.75, df = 3)

[1] 0.5682029

There is no significant difference between the two models, indicating
that residual.dz, rx, and ecog.ps don’t improve the fit. Note that
this approach will not work if there are missing values in the data.
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Example:
Ovarian Cancer
(cont.)
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A simple extension of the Cox model is to allow multiple strata. The
hazard for a subject contained in stratum j is then

Mt Z) = A1) eP2,

When a variable is entered into the model as a stratification factor
rather than as a covariate, it allows for nonproportional hazards to
exist between levels of the variable. However, the disadvantage is that
no P is available to estimate the effect of that variable. For instance, in
a multi-center drug study the enrolling center is often entered into the
model as a stratum variable. Because of different patient populations
(for example, a higher proportion of acute cases), the centers may
well have different shapes for their baseline survival curves. If
modeled as a covariate, this nonproportionality could bias the
estimate of the treatment effect.

You can stratify the ovarian cancer fit with respect to treatment, rx,
still fitting age as a covariate, as follows:

> ov.fit3 <- coxph(Surv(futime, fustat) ~ age +
+ strata(rx), data = ovarian)
> survfit(ov.fit3)

Call: survfit(formula = ov.fit3)

n events mean se(mean) median 0.95LCL 0.95UCL
rx=1 13 7 512 72.8 638 329 NA
rx=2 13 5 522 22.5 NA 475 NA

Printing the resulting fit displays the usual summary statistics for the
survival curve for each stratum. Applying the summary function to the
fit produces a more detailed table which includes the survival curve,
standard errors and confidence intervals for each stratum.



> summary(survfit(ov.fit3))

Call:

survfit(formula

rx=1

= ov.fit3)

time n.risk n.event survival std.err

59
115
156
268
329
431
638

13
12
11
10
9
8
5

1

T S S Y

0.

O O O O o o

lTower 95% CI upper 95% CI

0.

O O O O o o

9264
.8607
L7725
.6793
.4902
.3671
.0947

rx=2

time n.risk n.event

353
365
464
475
563

13
12
9
8
7

1

1
1
1
1

T T T S

978

.950
.910
.862
.736
.625
.341

survival

0.

0
0.
0
0

lTower 95% CI upper 95% CI

You can produce a plot of the stratified fit as follows:

0.840
0.735
0.599
0.485
0.374

1.

1
1
1.
0

000
.000
.000
000
.968

943

.880

791

.701
.602

0.
.0481
.0758
.1050
.1525
.1698
.2225

O O O O O o

0269

std.err

0.
.0812
.1125
.1318
.1460

o O O o

0558

> plot(survfit(ov.fit3), Tty = 2:3)
> legend(100, 0.6, c("Treatment 1","Treatment 2"), 1ty=2:3)

> title("Ovarian Cancer Stratified by Treatment")

Stratification
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The result is displayed in Figure 28.2. The plot is one method of
viewing a nonparametric estimate of treatment effect, after adjusting
for possible differences in age distributions.

Ovarian Cancer Stratified by Treatment

1.0

0.8
|

0.6
|

0.4

,,,,,,,,,,,, Treatment 1
,,,,, Treatment 2

0.2

0.0

0 100 200 300 400 500 600

Figure 28.2: A plot of the stratified fit of the ovarian cancer data adjusted for
average age.
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RESIDUALS

Residuals

The Breslow (or Tsiatis, Link, or Nelson-Aalen) estimate of the

baseline hazard is
e dNi(s)
O3 i) (B, s

The martingale residual at time t is

Vo, 1) = |

t )
L® = N =] (B, 9)Yi(5)dA o(B, < (28.5

The residual is computed at t = e and } = B If there are no time-
dependent covariates, then r;(t) can be factored out of the integral,
giving !\7Ii = N;- ITIA 0([3, t;). The deviance residual is a normalizing

transform of the martingale residual

i = sign(M) - /M — Nilog ((N;— M)/ N;.

The other two residuals are based on the score process Uj;(b, t) for

the ith subject and the j th variable:
B0 = [ (Zy(9)-Zi(B, $)dMi(B, <

The score residual is defined as Uij([g, o9 for each subject and each

variable (an n by p matrix). It is the sum of the score process over

time. The usual score vector U(B) (Equation (28.2)) is the column
sum of the matrix of score residuals. The martingale and score
residuals are integrals over time for a given subject. Specifically, in
setting up a multiplicative hazards model, a single subject is
represented by multiple lines of the input data, as though the subject
was a set of different individuals observed over disjoint times. The
residual for that person is the sum of the residuals for these “pseudo”
subjects.
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The Schoenfeld residuals (Schoenfeld, 1982) are defined as a matrix
Sij(B) = Zij(ti) —Zj(B, t;) (28.6)

with one row per death and one column per covariate, where i and t;
are the subject and the time that the event occurred. Note that the
Schoenfeld residuals are related to the score process U, j(B, t). To see

this, sum the score process over individuals to get a total score process

ZU”(B, t) = U(PB, t). This is just the score vector at time t, so that at

B we must have U(B, 0) = U(B, o9 = 0. Because A is discrete, our
estimated score process is also discrete, having jumps at each of the
unique death times. There are two simplifying identities for these
residuals:

B 0 = Y[ Zy()dM(B, 5)
L i (28.7)
=Y [ @i§(9)-Zi(B, s)AN(s)

Note that dM(t) is zero when subject i is not in the risk set at time t.

Since the sums are the same for all t, each increment of the processes
must be the same as well. Comparing the second of these to Equation
(28.6), we see that the Schoenfeld residuals are the increments or
jumps in the total score process.

There is a small nuisance with tied death times: under the integral
formulation the O-E process has a single jump at each death time,
leading to one residual for each unique event time, while under the
Schoenfeld representation there is one residual for each event. In
practice, the latter formulation has been found to work better for both
plots and diagnostics, as it leads to residuals that are approximately
equivariant. For the alternative of one residual per unigue death time,
both the size and variance of the residual is proportional to the
number of events.



Uses for the
Residuals

Discovering the
Functional Form
for a Predictor

Residuals

The last and most general residual is the entire score process Rjj,

where i indexes subjects, j indexes the covariates, and k indexes the
event times:

Rijk = [Zij(t) = Zj(t) ITA(N;(t) — ri(t)dA o(t))]

The score and Schoenfeld residuals are the marginal sums of this
array. Lin, Wei and Ying (1992) suggest a global test of the
proportional hazards model based on the maximum of the array.

Four possible uses of residuals are addressed in this section.

1. Discovering the correct functional form for a predictor.

2. Identifying subjects who are poorly predicted by the model.
3. Identifying influential points (points with high leverage).
4

Assessing the proportional hazards assumption.

The martingale residual, M;, is given by Equation (28.5) evaluated at

t = o. Assume that the true functional form for a covariate in the

exponent is h(Z). Then Therneau, Grambsch, and Fleming (1990)
show that the martingale residuals, after regression on the other
variables, satisfy

E(M;) = (h(t) - h)E(N;).

A smoothed plot of the M; versus X gives an approximate image of

the true functional form, with the y-axis scaled by a constant that
depends on the proportion of censoring. If there are several
covariates, the martingale residuals from a model with all covariates

except Z,, for example, can be plotted against the residuals of a
regression of Z; on the others. This is similar to the adjusted variable
plots for the linear model in Chambers, Cleveland, Kleiner, and
Tukey (1983).

Another use is to plot the residuals from a null model, that is, with
iter.max=0, against each predictor. This is roughly equivalent to the
standard scatter plots of y against each Z that is used for uncensored
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Identifying
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Subjects

Identifying
Influential Points

Assessing the
Proportional
Hazards
Assumption

288

data, before a model is fit. Addition of a local regression smooth curve
using loess gives, in both cases, a first approximation to what

transformations, if any, might be appropriate for each Z.

The martingale residuals can be highly skewed. The deviance
residual, d;, is a normalized transform of M,, and can be used to
identify individuals who are poorly predicted by a model. However,
you should exercise extreme caution when using deviance residuals
in analysis. Recent experience has shown that deviance residuals

cannot be recommended in all cases. For more details, see Therneau,
et al. (1990).

In a linear model, the influence of a point on the fit depends on both
its residual and its distance from the center of the predictor space,

roughly resid; - (Z;—Z). In a Cox model, the mean of the covariates
changes over time as subjects leave the risk set, which suggests an
average of some sort. The score residuals are a decomposition of the
first derivative or score vector; large values indicate a point with high

leverage. In particular, —1-1L;, where I-! is the Cox model variance

matrix, is approximately the change that would occur in B if

observation i were dropped from the model. These changes in 3 are

returned when you specify type="dfbeta"” or type="dfbetas"” to the
residuals function.

The Schoenfeld residuals are increments in time for the total score
process; see Equation (28.6). If the proportional hazards assumption
holds, the Schoenfeld residuals should be a random walk. Conversely,
assume that some variable, such as treatment, has a large positive
effect early but that the effect trails off. The treatment might influence
how many patients survive to some point t, but once they are “cured”

it has no influence on survival beyond t. In this case, proportional
hazards does not hold and the fitted models underestimate the true
treatment effect for small t, and overestimate it for large t. If

treatment has a beneficial effect (B < 0), the Schoenfeld residuals have
an early negative trend followed by a late positive trend. Harrell
(1986) suggests using the correlation of rank(time) with this residual
as a test for nonproportional hazards. Therneau, ¢t al. (1990) use the
maximum of the absolute cumulative summed Schoenfeld residual, a



Example: Lung
Cancer

Residuals

Kolmogorov-type test. Grambsch and Therneau (1994) further show
that a rescaled Schoenfeld residual can correct for correlation among
the covariates and be more interpretable. This result is the basis for
the cox.zph function.

This example examines data from a study of lung cancer patients
conducted by the North Central Cancer Treatment Group. The Tung
data frame includes the usual survival times (time) and indicator
variable of death or censoring (status) plus the following additional
variables on each patient.

* inst: A numeric code for the institution at which the patient
was hospitalized.

* age: Patient’s age.

* sex: Sex of the patient. Possible values are 1 for males and 2
for females.

* ph.ecog: Physician’s estimate of the ECOG performance
score (0-4).

* ph.karno: Physician’s estimate of the Karnofsky score, a
competitor to the ECOG performance score.

* pat.karno: Patient’s assessment of his/her Karnofsky score.

+ meal.cal: Calories consumed at meals excluding beverages
and snacks.

* wt.loss: Weight loss in the last 6 months.

A summary of the Tung data frame follows:

> summary(lung)

inst time status
Min.: 1.00 Min.: 5.0 Min.:1.000
1st Qu.: 3.00 1st Qu.: 166.8 1st Qu.:1.000
Median:11.00 Median: 255.5 Median:2.000
Mean:11.09 Mean: 305.2 Mean:1.724
3rd Qu.:16.00 3rd Qu.: 396.5 3rd Qu.:2.000
Max.:33.00 Max.:1022.0 Max.:2.000
NA's: 1.00
age sex ph.ecog
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Min.:39.00 Min.:1.000 Min.:0.0000
1st Qu.:56.00 1st Qu.:1.000 1st Qu.:0.0000
Median:63.00 Median:1.000 Median:1.0000
Mean:62.45 Mean:1.395 Mean:0.9515
3rd Qu.:69.00 3rd Qu.:2.000 3rd Qu.:1.0000
Max.:82.00 Max.:2.000 Max.:3.0000
NA's:1.0000
ph.karno pat.karno meal.cal
Min.: 50.00 Min.: 30.00 Min.: 96.0
1st Qu.: 75.00 1st Qu.: 70.00 1st Qu.: 635.0
Median: 80.00 Median: 80.00 Median: 975.0
Mean: 81.94 Mean: 79.96 Mean: 928.8
3rd Qu.: 90.00 3rd Qu.: 90.00 3rd Qu.:1150.0
Max.:100.00 Max.:100.00 Max.:2600.0
NA's: 1.00 NA's: 3.00 NA's: 47.0
wt.Toss
Min.:-24.000
1st Qu.: 0.000
Median: 7.000
Mean: 9.832
3rd Qu.: 15.750
Max.: 68.000
NA's: 14.000

Note that the status variable takes values 1 (censoring) and 2 (event),
as does the sex variable. The coxph function recognizes either a 0/1 or
a 1/2 binary variable as an indicator of censored/event status, so you
needn’t transform the status variable in this case. Let’s start the
example by fitting a model on all the variables stratified by sex.

> Tung.fitl <- coxph(Surv(time, status) ~ strata(sex) +
+ age + ph.ecog + ph.karno + pat.karno + meal.cal +
+ wt.loss, data = Tung, na.action = na.exclude)
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> lung.fitl

Call: coxph(formula = Surv(time, status) ~ strata(sex) +
age + ph.ecog + ph.karno + pat.karno +
meal.cal + wt.loss, data = Tung,
na.action = na.exclude)

coef exp(coef) se(coef) z p
age 9.05e-03 1.009 0.011601 0.78 0.4400
ph.ecog 7.07e-01 2.029 0.222773 3.17 0.0015
ph.karno 2.07e-02 1.021 0.011282 1.84 0.0660
pat.karno -1.33e-02 0.987 0.008050 -1.65 0.0980
meal.cal -5.27e-06 1.000 0.000263 -0.02 0.9800
wt.loss -1.52e-02 0.985 0.007890 -1.93 0.0540

Likelihood ratio test=21.6 on 6 df, p=0.00145 n=168
(60 observations deleted due to missing values)

The resulting fit indicates that age and meal.cal are not important
predictors of survival, so we drop them from the model:

> lung.fit2 <- coxph(Surv(time, status) ~ strata(sex) +
+ ph.ecog + ph.karno + pat.karno + wt.loss, data = Tung,

+ na.action = na.exclude)
> lung.fit2

Call:

coxph(formula = Surv(time, status) ~ strata(sex) +
ph.ecog + ph.karno + pat.karno + wt.loss,
data = Tung, na.action = na.exclude)

coef exp(coef) se(coef) zZp
ph.ecog 0.6495 1.915 0.20070 3.24 0.0012
ph.karno 0.0173 1.017 0.01031 1.68 0.0930
pat.karno -0.0167 0.983 0.00726 -2.30 0.0220
wt.loss -0.0137 0.986 0.00691 -1.99 0.0470

Likelihood ratio test=25.7 on 4 df, p=3.61e-05 n=210
(18 observations deleted due to missing values)

Because of the different number of missing values for these two
models, you cannot compare them directly using a likelihood ratio, as
we did for the ovarian data.

Assessing We now look at the functional form of the relationship with respect to
Functional Form each of the important predictors in the model. We do this by plotting
the martingale residuals from a model with the variable of interest

291



Chapter 28 The Cox Proportional Hazards Model

removed, versus the variable of interest. We then add a Toess smooth
line to estimate the relationship. You can accomplish both the plot
and the smooth using the scatter.smooth function. To make the
handling of NAs a bit easier, begin by creating a new data frame with
just the variables in the model and with the NAs removed.

> nlung <- na.exclude(lung[, c("time", "status", "sex",
+ "ph.ecog", "ph.karno", "pat.karno", "wt.loss")])

Note that the 18-row difference between the two data frames is
confirmed by the number of NAs that were deleted in fitting
lTung.fit2:

> dim(nlung)
[1] 210 7
> dim(lung)

[1] 228 10

The four plots displayed in Figure 28.3 show the estimated
relationships for each predictor.

> par(mfrow = c(2,2))

> attach(nlung)

> fitl <- coxph(Surv(time, status) ~ strata(sex) +
+ ph.karno + pat.karno + wt.loss, data = nlung)

> scatter.smooth(ph.ecog, resid(fitl))

> fit2 <- coxph(Surv(time, status) ~ strata(sex) +

+ ph.ecog + pat.karno + wt.loss, data = nlung)
> scatter.smooth(ph.karno, resid(fit2))

> fit3 <- coxph(Surv(time, status) ~ strata(sex) +
+ ph.ecog + ph.karno + wt.loss, data = nlung)
> scatter.smooth(pat.karno, resid(fit3))

+

> fit4 <- coxph(Surv(time, status) ~ strata(sex)
+ ph.ecog + ph.karno + pat.karno, data = nlung)
> scatter.smooth(wt.loss, resid(fit4))

All of the relationships look reasonably linear.
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Figure 28.3: Plots of the martingale residuals for four models with each variable in turn left out of the model
for the lung cancer study.

Poorly Predicted Subjects with large deviance residuals are poorly predicted by the
Subjects model. You produce the deviance residual plot for the second lung
cancer model as follows:

> plot(resid(lung.fit2, type = "deviance"))

Figure 28.4 displays the resulting plot. There are no wildly deviant
observations.
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Influence

Deviance Residuals for lung.fit2
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Figure 28.4: Plots of the deviance residuals for model Tung. fitZ2 of the lung cancer
study.

Another set of plots examines the influence of individual observations
on the parameter estimates. Use the changes in the estimated scaled
coefficient due to dropping each observation from the fit
(type="dfbetas") as a measure of influence. The first of the four plots

is created as follows:

> bresid <- resid(lung.fit2, type = "dfbetas")
> plot(1:228, bresid[,1], type = "h",
+ ylab = "Scaled change in coef",

+ xlab = "Observation")
> title("ph.ecog")

The remaining plots are created by selecting the appropriate columns
of bresid and changing labels on the plots. The resulting plots are
displayed in Figure 28.5. Note the use of 1:228 to generate the indices
for the observations even though the fit had only 210 observations
after deleting missing values. The dimension of bresid is 228 x 4.
The number of rows matches that of Tung because the naresid
method for omitting missing values (na.exclude) inserts NAs in the

residual matrix returned.
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Figure 28.5: A plot of influence by observation number for the four important predictors for the lung cancer

study.

Assessing
Proportional

Hazards

The largest change in a regression coefficient is 0.6 standard errors of
the coefficient for ph.karno (upper right corner plot). Since the
coefficient for ph.karno is marginally significant at best, you need not
worry much about this observation. The other plots are reasonable.

Figure 28.6 is produced as follows:

> plot(cox.zph(lung.fit2))

You can examine the assumption of proportional hazards both
graphically and statistically for the Tung.fit2 model. The plot in
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Figure 28.6: A plot of the rescaled Schoenfeld residuals to assess the proportional hazards assumption for four
covariates in lung cancer study.
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All of the smooth curves are flat, indicating proportional hazards is a
reasonable assumption. Statistical tests for significant slope in the
scatter plots of Figure 28.6 support the interpretation of the graphical

displays.

> cox.zph(lung.fit2)

ph.ecog
ph.karno
pat.karno
wt.loss
GLOBAL

rho
0.05189
0.14216
0.04773
0.00857
NA

B~ O O NN O

chisq
.3905
.2081
.3812
.0131
L4476

O O O O o

.532
.137
.537
.909
.349



Plotting the
Resulting Fit

Residuals

Finally, you can plot estimated survival curves for the Tung.fit2

model as follows:

> plot(survfit(lung.fit2), 1ty = 2:3)
> Tegend (500,
> title("Survival for Male and Female Patients
Continue string: \nwith Average Covariates")

The fitted Cox models are presented in Figure 28.7.

Survival for Male and Female Patients
with Average Covariates

.9, c("Male"™, "Female"), 1ty = 2:3)

Male
Female

0.2

0.0

0 200 400 600 800

Figure 28.7: Cox regression estimation of baseline survival curves for a sample of

lung cancer patients.

Recall that the model was stratified on sex. The resulting survival
curves are for two pseudo patients (a male and a female) with average
values for each of ph.ecog, ph.karno, pat.karno, and wt.loss.
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USING THE COUNTING PROCESS NOTATION

Multiple
Events

Time-
Dependent
Covariates
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The Anderson-Gill formulation of the proportional hazards model as
a counting process is useful not only theoretically but also in the
practice of fitting models. From a data analysis point of view, each
subject is treated as an observation of a (very slow) Poisson process. A
censored subject is thought of not as incomplete data, but as one
whose event count is still zero. Time-dependent covariates effect the
rate for upcoming events, and can depend in any way on past
observation of the subject. Furthermore, intervals of observation need
not be contiguous.

Organizing data in this framework has advantages. Each subject is
i tip Op Xip Ko J =1, ., n,

t;;] is an interval of risk, open on the left and closed on the

represented by a set of observations:

where (s;;,
right. The term §;; is equal to 1 if the subject had an event at time t;;,

Xjj is the covariate vector over the interval, and k;; is the stratum the

ij
subject belongs to during the interval. Data sets like this are easy to
construct in Spotfire S+. Following are a few specific examples to aid

in constructing the analysis data frame.

This example comes from a study of myocardial infarction (heart
attack) patients where one of the events of interest is fatal or nonfatal
re-infarction. Several patients had multiple events. The maximum
number of events was three. Analysis was done using the counting
process formulation by breaking any patient with multiple events into
multiple intervals of risk. For example, one patient had infarctions on
days 100 and 185 and was followed until day 250. This patient had
three rows of data with time intervals (0, 100], (100, 185], and
(185, 250] and corresponding event status codes of 1, 1, and 0.

The most common type of time-dependent covariates are repeated
measurements on a subject or a change in the subject’s treatment.
Both of these situations are easily handled by the counting process
formulation. As an example consider the Stanford heart transplant
study, where treatment is a time-dependent covariate. Suppose there
are two patients whose time from enrollment to death is 102 and 343



Discontinuous
Intervals of
Risk

Using the Counting Process Notation

days, respectively, and that the second patient had a heart transplant
21 days after enrollment. The data for these two patients displayed
are in Table 28.1.

Table 28.1: Data for two hypothetical patients in the Stanford heart transplant
study.

Interval Status Transplant Age Prior Surgery
(0, 102] 1 0 41 0

(0, 21] 0 0 48 1
(21, 343] 1 1 48 0

The static covariates such as age and surgery are repeated over the
multiple rows for a given patient. A minor modification is needed
when there is a tie between the event or censoring time and the time
at which a time-dependent covariate changes value. In this case,
decrease the time for the time-dependent covariate slightly so it
precedes the event or censoring time. For a patient who is
transplanted and dies on day 5, the transplant time is set to 4.9 and
the death is recorded at 5. Multiple test results are easily coded as
well. For a patient with tests on days 0, 60, and 120, and follow-up to
day 140, the data are coded as three time intervals, 0-60, 60-120, and
120-140. This implicitly assumes that the time-dependent covariate is
a step function with jumps at the measurement points. Alternatively,
you can break at the midpoints between the measurement times or
interpolate the test measurements over smaller intervals of time. If
test results vary markedly from visit to visit, interpolation of the
measurements or redesign of the study may be required.

In a study of tumor progression and its relationship to a particular
blood marker, the key time-dependent variable is the monthly
measurement of the marker. A few patients, however, had gaps in
their visit record. One choice for analysis is to interpolate these
patients’ values over the missing time periods. An alternate, more
conservative course is to treat the values on the marker as missing.
This strategy effectively removes these subjects from the risk set for
the missing visit times, but they are not removed entirely from the
study.
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Multiple Time
Scales

Time-
Dependent
Strata
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Another application of discontinuous risk intervals results when
multiple events are possible, but the treatment for an event
temporarily protects the patient from another event. In the study of
hip-fracture in the elderly, hospitalization following a fracture protects
the patient from further fractures. For studies with low event rates,
discontinuous risk intervals probably have little impact on the
analysis.

The usual Cox model forms risk groups based on time since entry.
For some studies a more logical grouping might be based on another
alignment, such as age or time since diagnosis. An example is with
Parkinson’s disease patients. Natural history of the disease suggests
that risk groups be based on the time since diagnosis. The Mayo
Clinic is a referral center and frequently receives such patients
sometime after diagnosis. Using the counting process formulation, the
interval for a referred patient who is enrolled one year after diagnosis
and has an event in the second year is (1, 2]. This patient is not in the
risk set for an early enrollee with an event at six months. The risk set
for the event at two years is all subjects. This is known as lef
truncation.

Another case where alignment is a potential issue concerns time-
dependent strata. The example is a study of Dutch patients with
primary biliary cirrhosis of the liver (PBC), which is a rare but fatal
chronic liver disease of unknown cause. The hazard rate for patients
with the disease grows over time, as does the rate of degeneration in
their hepatic function, tracked by various blood tests. A portion of the
patients receive a liver transplant at some point during the follow-up.
One objective of the study was to assess the value of covariates such
as age and bilirubin in predicting patient outcome, both before and
after transplantation. The transplant was treated as a time-dependent
stratification variable. In the post-transplant strata, the most natural
hazard function is based on time since transplant. Surgical death is a
major risk for such an extensive procedure, and this time scale
properly aligns the patient’s clock with the dominating hazard.



Using the Counting Process Notation

Proper alignment for time-dependent strata is not always clear. One
appealing method of analysis for the myocardial infarction study is to
place patients into new strata after each cardiac event. The baseline
hazard for a patient with multiple events may be quite different than
the group as a whole. It is not obvious, however, whether time since
enrollment or time since last event is the better index of an
appropriate risk group.
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MORE DETAILED EXAMPLES

Stanford Heart
Transplant
Study

302

Complex Cox models usually involve time-dependent data, which is
handled by using the counting process notation developed by
Andersen and Gill (1982). For a technical reference see Fleming and
Harrington (1991). The examples in this section involve time-
dependent variables in some way. In the Stanford heart transplant
example, the time dependency is on a binary covariate indicating
whether a patient has had a heart transplant. For patients who
received heart transplants during the study, the transplant variable
changes. The second example involves a bladder cancer study for
patients with multiple occurrences of bladder tumors. The multiple
events are modeled using the counting process notation and an
additional notion of correlated responses.

The example below reproduces an analysis of the Stanford Heart
Transplant Study found in Kalbfleisch and Prentice (1980), section
5.5.3. The data itself are taken from Crowley and Hu (1977), because
the values listed in the appendix of Kalbfleisch and Prentice are
rounded and do not reproduce the results of their section 5.5. The
covariates in the study, contained in the heart data frame, are
described as follows.

* transplant: Binary variable indicating whether the patient
received a heart transplant (1) or not (0)

+ age: (Age at acceptance in days)/365.25 - 48
+ year: (Date of acceptance in days since 1 Oct 1967)/365.25

* surgery: Binary variable indicating whether the patient had
prior surgery (1 = yes, 0 = no)

The transplant variable is the only time-dependent variable. From
the time of admission into the study until the time of death, a patient
was eligible for a heart transplant. The time to transplant depends on
the next available donor heart with an appropriate tissue-type match.

In the heart data frame, a transplanted patient is represented by two
rows of data. The first row is over the time period from enrollment
(time 0) until the transplant, and has transplant=0. The second row is
over the period from transplant to death or last follow-up, and has
transplant=1. All other covariates are the same on the two lines.
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Subjects without a transplant are represented by a single row of data.
Each row of data contains two variables start and stop that mark the
time interval (start, stop] for the data. Each row also has an
indicator variable event that is 1 if there was a death at time stop and
0 otherwise. For example, a subject who was transplanted at day 10
and followed up until day 31 has a first row of data corresponding to
the time interval (0,10] and a second row corresponding to the
interval (10, 31].

Below is the Spotfire S+ code used to fit the six models found in
Kalbfleisch and Prentice. Note the use of the options call, which
forces the factors to be coded as dummy variables; see the help file on
contr.treatment for more details. Since the data set contains tied
death times, you must use the Breslow approximation to match the
coefficients that Kalbfleisch and Prentice produce. See the section
Computations for Tied Deaths for more details on methods for
handling ties.

> options(contrasts = c("contr.treatment”, "contr.poly"))
> heart.fitl <- coxph(Surv(start, stop, event) ~

+ (age + surgery)*transplant,

+ data = heart, method = "breslow")

> heart.fit2 <- coxph(Surv(start, stop, event) ~

+ year * transplant,
+ data = heart, method = "breslow™)

I

> heart.fit3 <- coxph(Surv(start, stop, event)
+ (age + year) * transplant,
+ data = heart, method = "breslow™)

I

> heart.fit4 <- coxph(Surv(start, stop, event)
+ (year + surgery) * transplant,
+ data = heart, method = "breslow")

I

> heart.fitb <- coxph(Surv(start, stop, event)
+ (age + surgery)*transplant + year,
+ data = heart, method = "breslow")

I

> heart.fit6 <- coxph(Surv(start, stop, event)
+ age * transplant + surgery + year,
+ data = heart, method = "breslow")
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A summary of the first fit produces the following:

> summary(heart.fitl)

Call:
coxph(formula = Surv(start, stop, event) ~ (age + surgery)
* transplant, data = heart, method = "breslow")
n= 172
coef exp(coef) se(coef) z
age 0.0138 1.014 0.0181 0.763
surgery -0.5457 0.579 0.6109 -0.893
transplant 0.1181 1.125 0.3277 0.360
age:transplant 0.0348 1.035 0.0273 1.276
surgery:transplant -0.2916 0.747 0.7582 -0.385
p
age 0.45

surgery 0.37

transplant 0.72
age:transplant 0.20
surgery:transplant 0.70

exp(coef) exp(-coef) lower .95

age 1.014 0.986 0.979
surgery 0.579 1.726 0.175
transplant 1.125 0.889 0.592
age:transplant 1.035 0.966 0.982
surgery:transplant 0.747 1.339 0.169
upper .95
age 1.05
surgery 1.92
transplant 2.14
age:transplant 1.09
surgery:transplant 3.30

Rsquare= 0.07 (max possible= 0.969 )
Likelihood ratio test= 12.4 on 5 df, p=0.0291
Wald test = 11.6 on 5 df, p=0.0402
Efficient score test 12 on 5 df, p=0.0345
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The summary indicates that n=172. This is the number of
observations in the study, not the number of subjects. There are
actually 103 patients, of which 69 had a transplant and are thus
represented with 2 rows of data.

You can create a table of coefficients similar to Kalbfleisch and
Prentice’s table 5.2 as follows:

> var.names <- c("age"™, "year"™, "surgery", "transplant",
+ "age:transplant"”, "year:transplant”,
+ "surgery:transplant")
> round(rbind(heart.fitl$coef[var.names],
+ heart.fit2$coef[var.names], heart.fit3$coef[var.names],
+ heart.fit4$coef[var.names], heart.fitb$coef[var.names],
+ heart.fit6$coef[var.names]), digits = 4)
age year surgery transplant age:transplant
[1,] 0.014 NA  -0.546 0.118 0.035
[2,] NA -0.265 NA -0.282 NA
[3,]1 0.016 -0.274 NA -0.588 0.034
[4,] NA -0.254 -0.236 -0.292 NA
[5,1 0.015 -0.136 -0.419 0.077 0.027
[6,]1 0.015 -0.136 -0.621 0.047 0.027
year:transplant surgery:transplant
[1,] NA -0.292
[2,] 0.136 NA
[3,1] 0.201 NA
[4,] 0.164 -0.550
[5,1 NA -0.298
[6,] NA NA

When there are time-dependent covariates, the predicted survival
curve can present something of a dilemma. The usual call to survfit
is for a pseudo cohort whose covariates do not change:

> heart.survl <- survfit(heart.fit2,
+ data.frame(year = 2, transplant = 0) )

> heart.surv2 <- survfit(heart.fit2,
+ data.frame(year = 2, transplant = 1) )
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Bladder Cancer
Study

306

The second curve, heart.surv2, represents a cohort of patients whose
transplant variable is always 1, even on day 0 (that is, patients who
had no waiting time for a transplant). There were none of these in the
study, so just what does it represent? Time-dependent covariates that
represent repeated measurements on a patient, such as a blood
enzyme level, are particularly problematic. With time-dependent
covariates, it is easy to create predicted survival curves for “patients”
that never would or perhaps never could exist.

Because the model depends on the time-dependent covariate,
transplant, a proper predicted survival requires specification of a
future covariate history for the patient in question. See the discussion of
internal and external covariates in section 5.3 of Kalbfleisch and
Prentice for a more complete exposition on these issues.

It is possible to obtain the projected survival for some particular
pattern of change in the covariates by supplying a multiple-line data
frame that reflects that pattern, and then setting individual=T. The
example below produces the survival curve for a cohort aged 50 with
prior surgery and a transplant at 6 months. That is, over the time
interval (0, .5] the covariate set is (50, 1, 0), and over the time interval
(.5, 3] it is (50, 1, 1). Note that start and stop times are in days rather
than years. In order to specify the time points, the failure time
variables start, stop, and event, must be specified in the data frame
as well as the covariates, though the value for event will be ignored.

> newdata <- data.frame(start=c(0,183), stop=c(183,3*365),
+ event=c(1l,1), age=c(50,50), surgery=c(1,1),

+ transplant=c(0,1))

> survfit(heart.fitl, newdata, individual=T)

This example is taken from the paper by Wei, Lin, and Weissfeld
(1989). The study is of time to recurrence of bladder cancer, and the
data are contained in the bladder data frame. The data fram bladder
has either 4 or 5 rows for each subject. Many subjects had
recurrences, sometimes as many as four, and were followed beyond
the fourth recurrence. The variables in bladder are defined as
follows.

* id: Patient ID
* rx: Treatment group (1 = placebo, 2 = thiopeta)

* size: Size of the largest initial tumor
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* number: The number of initial tumors

* start: Entry into the study or the time of last recurrence
+ stop: Time to event (months)

+ event: Indicator of cancer recurrence (1) or censoring (0)
* enum: Number of recurrences of bladder cancer

A summary of bladder follows:

> summary(bladder)

id rx number
Min.: 1.00 Min.:1.000 Min.:1.000
1st Qu.:22.75 1st Qu.:1.000 1st Qu.:1.000
Median:43.00 Median:1.000 Median:1.000
Mean:43.18 Mean:1.443 Mean:2.145
3rd Qu.:64.00 3rd Qu.:2.000 3rd Qu.:3.000
Max.:85.00 Max.:2.000 Max.:8.000
size start stop
Min.:1.000 Min.: 0.00 Min.: 1.00
1st Qu.:1.000 1st Qu.: 1.00 1st Qu.:13.00
Median:1.000 Median:15.00 Median:25.00
Mean:1.997 Mean:18.03 Mean:25.73
3rd Qu.:3.000 3rd Qu.:29.00 3rd Qu.:38.00
Max.:7.000 Max.:59.00 Max.:64.00
event enum
Min.:0.0000 Min.:1.000
1st Qu.:0.0000 1st Qu.:2.000
Median:0.0000 Median:3.000
Mean:0.3182 Mean:2.585
3rd Qu.:1.0000 3rd Qu.:4.000
Max.:1.0000 Max.:5.000

We create two data frames for analysis. The first one has only the first
four rows for each subject and has start removed.

> bladderl <- bladder[bladder$enum < 5, ]
> bladderl$start <- NULL
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The second one has removed all rows for which start and stop are
equal.

> bladder2 <- bladder[bladder$start < bladder$stop, 1

Wei, et al. fit four separate models, one for each recurrence, and then
combined the results. The first of the individual fits is based on time
from the start of the study until the first event for all patients. The
second fit is based on time from the start of the study until the second
event again for all patients, and likewise for the third and fourth fits.
The model estimated by Wei, et al. is fit by the following commands.
The key to the model is the cluster(id) term, which asserts that
subjects with the same value of the variable id may be correlated. To
compare the results directly to Wei, et al, we first set the factor
contrasts to "contr.treatment".

> options(contrasts = c("contr.treatment™,"contr.poly™))

We can now fit the model as follows:

> wfit <- coxph(Surv(stop, event) ~ (rx + size + number) *
+ strata(enum) + cluster(id), data = bladderl,
+ method = "breslow")

## Coefficients for the treatment effect
> rx <- ¢(1,4,5,6)

# Contrast matrix

> cmat <- diag(4); cmat[,1] <- 1

# Coefs in WLW (table 5)

> cmat %*% wfit$coef[rx]

[,1]
[1,] -0.5175702
[2,] -0.6194396
[3,] -0.6998691
[4,] -0.6504161

> wvar <- cmat %*% wfit$var[rx,rx] %*% t(cmat)
# Var matrix from WLW (eqn 3.2)
> sqrt(diag(wvar))

[1] 0.3075006 0.3639071 0.4151602 0.4896743
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The same coefficients can also be obtained, as Wei, ef al. do, by
performing four separate fits, but it takes more work. A major
advantage to fitting the model as above is that it allows us to fit
submodels that are not available using separate fits for each stratum.
In particular, the model

> coxph(Surv(stop, event) ~ rx + (size + number) *
+ strata(enum) + cluster(id), data = bladderl,
+ method = "breslow")

differs only in that there is no treatment by strata interaction. It gives
an average treatment coefficient of -0.60, which is near to the
weighted average of the marginal fits (based on the diagonal of wvar)
suggested by Wei, et al..

Wei, et al. also give the results for two suggestions proposed by
Prentice, Williams, and Peterson (1981). For time to first event, these
are the same as above. For the second event they use only patients
who experienced at least one event, and use either the time from start
of study (method a) or the time since the occurrence of the last event
(method b). The Spotfire S+ commands for these are as follows:

> fit2pa <- coxph(Surv(stop, event) ~ rx + size + number,
+ data = bladder2, subset = (enum == 2))

> fit2pb <- coxph(Surv(stop - start, event) ~ rx + size +
+ number, data = bladder2, subset = (enum == 2))

Lastly, the authors also make use of an Andersen-Gill model for
comparison. This model has the advantage that it uses all of the data
directly, but because of correlation it may underestimate the variance
of the relevant coefficients. A method to address this is given in a
paper by Lee, Wei, and Amato (1992); it is essentially the same
method found in the Wei, et al. paper. This method for variance
estimation is invoked by specifying the cluster(id) term.

> afit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number + cluster(id), data = bladder2)
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> afit

Call:

coxph(formula = Surv(start, stop, event) ~ rx + size +
number + cluster(id), data = bladder2)

coef exp(coef) se(coef) robust se z p

rx -0.4116 0.663 0.1999 0.2415 -1.704 0.088
size -0.0411 0.960 0.0703 0.0723 -0.568 0.570
number 0.1637 1.178 0.0478 0.0569 2.876 0.004

Likelihood ratio test=14.7 on 3 df, p=0.00213 n= 190
> sqrt(diag(afit$var))

[1] 0.24876453 0.07421445 0.05842243

> sqrt(diag(afit$naive.var))

[1] 0.19989234 0.07029462 0.04776578

The naive estimate of standard error is 0.20, the correct estimate of
0.24 is intermediate between the naive estimate and the linear
combination estimate. Further discussion on these estimators can be
found in the section Robust Variance Estimation.
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PENALIZED COX MODELS

Consider a Cox model with both constrained and unconstrained
effects

Zi(n

X:B+
M) = Ag(e ",

where X and Z are the covariates, and B and ® are the
unconstrained and constrained coefficients, respectively. The
problem is solved by maximizing a penalized partial likelihood

PPL = PL(B,  data)-f(ax0)

over both $ and . Here PL is the usual Cox partial likelihood,
treating ® as “just another parameter,” and f is some constraint
function which gives large values to “bad” values of ®. For the
moment assume that 6, a vector of tuning parameters, is known and

constant.

Following Gray (1992), let | be the usual Cox model information

matrix, and let
H=1-| 00
0f"

be the second derivative matrix for the penalized likelihood PPL.
Gray’s suggested estimate of the variance is

V = H-1IH-L, (28.8)

Let ¢ be a column vector of constants and B’, « ' be the combined
vector of p +q parameters. Then for a general test of the hypothesis
' = (B’, o )c = (, Gray recommends the Wald test :" (¢’ H-1c)"!z.
Because of the shrinkage, this is not necessarily a chi-square statistic.
Let e be the eigenvalues of the matrix '¢” H-1c)-!(¢” Vc); under H,

the Wald test is distributed as EiXiQ , where the X; are independent

identically distributed (iid) Gaussian random variables.
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Let k = Y&; . When the €; are all 0 or 1, the case for non-penalized

models, the mean and variance of the test statistic are k and 2k,

respectively, and the distribution is chi-square on k degrees of
freedom. In penalized models, €;<l and the variance is E‘Qe? <2k,

so the distribution of the statistic is more compact than a standard chi-
square based on k degrees of freedom. Therefore, the test is
conservative.

The generalized degrees of freedom for the test statistic can be written
as

If = trace[(¢” H-1c)~!(¢” Vo)l

Thus, the computation of eigenvalues is not strictly necessary. For a
particular term in the model, this becomes race((H-![i, i])-!'V[i, i]),

where [ ] indicates Spotfire S+-style subscripts and i indexes the
columns corresponding to the term.

An alternate variance estimator is to use H-! directly, the inverse of
the second derivative of the full log-likelihood, which is the variance
used in the Wald statistic. It has an interpretation as a posterior
variance in a Bayes setting, and tends to be larger than V and thus

more conservative. Spotfire S+ returns both var2=V and var=H-1.
The chi-square tests are based on var, as simulation experiments
suggest that this is the more reliable choice for tests.

Spotfire S+ provides two functions for including penalized terms in
the Cox model. The ridge function implements a simplified pseudo-
ridge regression, while the pspline function implements a penalized
B-spline fit. Both functions are packaging functions that provide a
convenient interface to the functions that actually do the fitting: a

control function is used to estimate 6 and a penalty function

computes f and its first and second derivatives.
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Fitting a Ridge For ridge, let f(qy ©) = (06/ Q)Ef be a penalty function which
Model

tends to shrink the coefficients Q towards zero. The penalty function

inside ridge is then

function(coef, theta)

{
list(penalty = sum(coef”2) * theta/2,
first = theta * coef,
second = rep(theta, length(coef)),
flag = F)
}

The control function is even simpler:

function(parms, ...) list(theta = parms$theta, done = T)

As an example of using ridge, consider again the ovarian data set.
Recall that these data give the survival time of 26 women with
advanced ovarian carcinoma, with major covariates age and ecog.ps.
The ecog.ps variable is a performance score that measures physical
debilitation, with 0 corresponding to normal and 4 corresponding to
bedridden. In the example below, fit0 is the standard Cox model
and fitl is the penalized model. The shrinkage parameter 6 = 1 is
chosen arbitrarily.

> fit0 <- coxph(Surv(futime,fustat) ~ rx + age + ecog.ps,
+ data = ovarian)
> fito

Call:
coxph(formula = Surv(futime, fustat) ~ rx + age +
ecog.ps, data = ovarian)

coef exp(coef) se(coef) z p

rx -0.815 0.443 0.6342 -1.28 0.2000

age 0.147 1.158 0.0463 3.17 0.0015
ecog.ps 0.103 1.109 0.6064 0.17 0.8600

Likelihood ratio test=15.9 on 3 df, p=0.00118 n= 26

> fitl <- coxph(Surv(futime, fustat) ~ rx + ridge(age,
+ ecog.ps, theta = 1), data = ovarian)
> fitl
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Call:
coxph(formula = Surv(futime, fustat) ~ rx + ridge(age,
ecog.ps, theta = 1), data = ovarian)

coef se(coef) se2 Chisq DF p

rx -0.856 0.6161 0.6156 1.93 1 0.1600

ridge(age) 0.123 0.0385 0.0354 10.21 1 0.0014
ridge(ecog.ps) 0.109 0.5734 0.5484 0.04 1 0.8500

Iterations: 1 outer, 4 Newton-Raphson
Degrees of freedom for terms= 1.0 1.8
Likelihood ratio test=15.6 on 2.76 df, p=0.00104 n= 26

The likelihood ratio test that is printed is twice the difference in the
PL between the null model (B = ®w = 0) and the final fitted model.
The p-value is based on comparison to a chi-square distribution with
2.73 degrees of freedom. As mentioned earlier, this comparison is
somewhat conservative (p is too large). The eigenvalues for the
problem, eigen(solve(fitl$var, fitl$var2)), are 1, 0.9156, and
0.8486. The respective quantiles of the weighted sum of squared
normals and the chi-square distribution qchisq(q, 2.73) are:

80% 90% 95% 99%

Actual sum 4.183 5.580 | 7027 10.248

¥3 4.264 | 5.818 7.337 10.789
2.73

From this table, we see that the actual distribution is somewhat more
compact than the chi-square approximation.

The shrinkage has a smaller effect on age than on the performance
score. Although the unpenalized coefficients for the two covariates
are of about the same magnitude, as shown by fit0, the standard
error for ecog.ps is much larger. The impact on overall fit (Cox PL)
of shrinking the age coefficient is thus larger than that for the
performance score; the age coefficient is “harder to change.”

The pspline function is used to fit a general spline term within the
Cox model. The method used is p-splines, described in Eilers and
Marx, 1996. The p-spline approach has several useful properties:
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*  For moderate degrees of freedom, a smaller number of basis
functions give a fit that is nearly identical to the standard
smoothing spline.

* The p-spline basis has basis functions that are evenly spaced
and identical in shape. Because of the symmetry of the basis
functions, the usual spline penalty _[ [f" 7 (x)]%d is very close
to the sum of second differences of the coefficients,

0 *sum((diff(diff(coef)))2), which is very easy to
program.

* The penalty does not depend on the values of the data, other
than for establishing the range of the spline basis.

» If the coefficients are a linear series, the fitted function is a
line. Thus a linear trend test on the coefficients is a test for the
significance of a linear model. This makes it relatively easy to
test for the significance of nonlinearity.

*+ Since there are a small number of terms, ordinary methods of
estimation can be used. That is, the program can compute and

return the variance matrix of 3. Contrast this to the classical
smoothing spline basis, which has a term (knot) for each
unique data value; for a large sample size, storage of the n by

N matrix H becomes infeasible.

The penalty function for the p-spline is
‘@ 0) = ([6/ (1-6)](«f Pw))/ ;, where P =T’ T, and T is the
matrix of second differences. The case ® = 1 corresponds exactly to
the straight line model (an infinite penalty for curvature).

As an example, consider again the ovarian data and fit three models:

> fitl <- coxph(Surv(futime, fustat) ~ rx + age,
+ data = ovarian)

> fit2 <- coxph(Surv(futime, fustat) ~ rx + pspline(age,
+ df = 2), data = ovarian)

> fitd <- coxph(Surv(futime, fustat) ~ rx + pspline(age,
+ df = 4), data = ovarian)

> fitl
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Call:
coxph(formula = Surv(futime, fustat) ~ rx + age, data
= ovarian)

coef exp(coef) se(coef) z p
rx -0.804 0.448 0.6320 -1.27 0.2000
age 0.147 1.159 0.0461 3.19 0.0014

Likelihood ratio test=15.9 on 2 df, p=0.000355 n= 26
> fit2

Call:
coxph(formula = Surv(futime, fustat) ~ rx + pspline(
age, df = 2), data = ovarian)

coef se(coef) se2

rx -0.589 0.6990 0.6786

2), 1in 0.144 0.0433 0.0433

2), non

Chisq DF p
rx 0.71 1.00 0.40000
2), 1in 11.09 1.00 0.00087
2), non 0.84 0.93 0.33000

pspline(age, df
pspline(age, df

pspline(age, df
pspline(age, df

Iterations: 2 outer, 7 Newton-Raphson
Theta= 0.447
Degrees of freedom for terms= 0.9 1.9
Likelihood ratio test=17 on 2.87 df, p=0.0006 n= 26

> fit4

Call:
coxph(formula = Surv(futime, fustat) ~ rx + pspline(
age, df = 4), data = ovarian)
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coef se(coef) se2 Chisq
rx -0.373 0.761 0.749 0.24
4), Tin 0.139 0.044 0.044 9.98
4), non 2.59
DF p
rx 1.00 0.6200
pspline(age, df = 4), 1in 1.00 0.0016
pspline(age, df = 4), non 2.93 0.4500

pspline(age, df
pspline(age, df

Iterations: 3 outer, 13 Newton-Raphson
Theta= 0.242
Degrees of freedom for terms= 1.0 3.9
Likelihood ratio test=19.4 on 4.9 df, p=0.00149 n= 26

The printout for the simple Cox model fitl shows an increase in the
log-hazard for death of 0.147 per year of age, with an overall chi-
square for the model of 15.9. The p-spline basis functions sum to a
constant, so the first one is deleted to remove the singularity.

There are seven coefficients associated with the fit with two degrees of
freedom, which are summarized in the printout as a linear and
nonlinear effect. Similarly, the thirteen coefficients associated with the
four degrees of freedom fit are summarized as simply a linear and
nonlinear effect. Because of the symmetry of the basis functions, the
chi-square test for linearity is a test for zero slope in a regression of the
spline coefficients on the centers of the basis functions, using var as
the known variance matrix of the coefficients. The linear “coefficient”
that is printed is the slope of this regression. This computation of
coefficient and p-value is equivalent to the approximate backwards
elimination method of Lawless and Singhal (1978), here removing all
the nonlinear terms for age. If the terms being dropped are important
(that is, there is a significant nonlinearity), the approximation for the
linear coefficient is not as accurate.

As a more interesting example, consider the data from the Multi-
center Post-Infarction Project (MPIP) contained in the data set mpip.
This data set contains data on 866 patients, gathered after hospital
admission for myocardial infarction. The main goal of the study was
to determine which factors, if any, were predictive of the future
clinical course of the patients.
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Our model of survival time uses four variables:

* ved, ventricular ectopic polarizations per hour obtained from
analysis of a 24 hour Holter monitor. A large number of these
irregular heartbeats is indicative of a high risk for fatal
arrhythmia.

* nhya, New York Heart Association class. This is a measure of
the amount of activity that a subject is able to undertake
without angina, ranging from 1 to 4.

* rales, presence of pulmonary rales on initial examination.

* ef, ejection fraction. This is the proportion of blood cleared
from the heart on each contraction.

The ved variable is very skewed; it has a mean value of 19.1, a
median of 0.45, a maximum value of 733, and 14% of the subjects
have a value of 0. The minimum nonzero value is 0.042, so we use the
derived covariate 1ved = log(ved+0.02) instead. This is still a
skewed variable, but not unmanageably so. A simple linear fit of the
four variables shows all to be highly significant:

> fitl <- coxph(Surv(futime, status) ~ Tved + nyha + rales +
+ ef, data = mpip, na.action = na.exclude)

> fitl

Call:

coxph(formula = Surv(futime, status) ~ Tved + nyha +
rales + ef, data = mpip, na.action =
na.exclude)

coef exp(coef) se(coef) z p
lved 0.1007 1.106 0.04266 2.36 1.8e-02
nyha 0.3707 1.449 0.09379 3.95 7.7e-05
rales 0.4535 1.574 0.10527 4.31 1.7e-05

ef -0.0265 0.974 0.00833 -3.18 1.5e-03

Likelihood ratio test=79.4 on 4 df, p=2.22e-016 n=764
(102 observations deleted due to missing values)



Penalized Cox Models

Now we explore more complicated forms for the effect of the
covariates. Since rales is a binary covariate, it allows no further
transformation; nyha, with four levels, is entered as a factor variable.
That leaves the two continuous variables, 1ved and ef, to be modeled
as p-splines with the default four degrees of freedom:

> fit2 <- coxph(Surv(futime, status) ~ pspline(lved) +
+ factor(nyha) + rales + pspline(ef), data = mpip,

+ na.action = na.exclude)

> fit2

Call:

coxph(formula = Surv(futime, status) ~ pspline(lved) +
factor(nyha) + rales + pspline(ef), data =
mpip, na.action = na.exclude)

coef se(coef) se2 Chisq
pspline(lved), linear 0.0982 0.04384 0.04359 5.02
pspline(lved), nonlin 2.59
factor(nyha)l -0.0308 0.15917 0.15890 0.04
factor(nyha)2 0.2426 0.10380 0.10337 5.46
factor(nyha)3 0.2008 0.06745 0.06725 8.86
rales 0.4204 0.10816 0.10761 15.11
pspline(ef), linear -0.0256 0.00738 0.00737 12.03
pspline(ef), nonlin 8.06
DF p
pspline(lved), Tinear 1.00 0.02500
pspline(lved), nonlin 3.06 0.47000
factor(nyha)l 1.00 0.85000
factor(nyha)2 1.00 0.01900
factor(nyha)3 1.00 0.00290
rales 1.00 0.00010
pspline(ef), linear 1.00 0.00052
pspline(ef), nonlin 3.01 0.04500

Iterations: 4 outer, 11 Newton-Raphson
Theta= 0.776
Theta= 0.66
Degrees of freedom for terms= 4.1 3.0 1.0 4.0
Likelihood ratio test=92.5 on 12.04 df, p=1.69e-014
n=764 (102 observations deleted due to missing values)
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From this, we conclude that the first two classes of nyha can be
combined, the nonlinear effect for VED is not significant, and the
nonlinear effect from ejection fraction is important.

Plots of the two spline terms can be produced as follows:

temp <- predict(fit2, type = "terms", se.fit =T)
tmat <- cbind(temp$fit[,1],

temp$fit[,1] - 1.96 * temp$se.fit[,1],
temp$fit[,1] + 1.96 * temp$se.fit[,1])

+ + Vv Vv

v

jj <- match(sort(unique(mpip$lved)), mpip$lved)
> matplot(mpip$lved[jj], tmat[jj,], type = "1",
+ Tty = ¢(1,2,2), xaxt = "n")

> xx <- ¢(0, 1, 50, 100, 500)
> axis(l, Tog(xx + .2), as.character(xx))
> title(xlab = "VED", ylab = "log hazard")

> tmat2 <- cbind(temp$fit[,4],
+ temp$fit[,4] - 1.96 * temp$se.fit[,4],
temp$fit[,4] + 1.96 * temp$se.fit[,4])

+

jj2 <- match(sort(unique(mpip$ef)), mpip$ef)
matplot(mpip$ef[jj2], tmat2[jj2,],type = "1",
1ty = c(1, 2, 2), xlab = "Ejection Fraction",
+ ylab = "log hazard")

+ Vv v

The resulting plot is shown in Figure 28.8. Some extra work was
required to label the first graph in the original ved units; this is done
with the axis command. The match function and the jj subscripts
sort the plot from left to right; otherwise, the line becomes a scribble.
The graph shows an increase in risk with ejection fractions below
60%, sharply so below 20%. The rise after 70% is not significant,
given the wide confidence intervals. This agrees with the
conventional wisdom of the physicians that the instrumentation is not
able to reliably distinguish values above this level.
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Figure 28.8: Plots of spline fit terms in mp1ip data model.
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In this section, we consider survival models to which a random effect
is added. The random effect is usually viewed as a categorical
variable that describes excess risk, or frailty for an individual or
family. The idea is that individuals have different frailties, and those
who are most frail die earlier than the others.

Computationally, the frailty is usually viewed as an unobserved
covariate. This has led naturally to the use of the EM algorithm as an
estimation tool. Assume a proportional hazards model with random
effects, or frailties, with the hazard function

M(1) = Ag(e TP T4
Here [ is a vector of p fixed effects and ® is a vector of g random

effects, where the individual elements o are iid realizations from

some distribution W(0). The matrix X normally contains measured
covariate values, and Z is a design matrix that describes how the
random effects apply to individual subjects. Both X and Z might
contain time-dependent effects, but we ignore this complication for
the moment. The baseline hazard may contain other parameters &,
but these are also ignored. If X contains an intercept term (implicit in

the proportional hazards model), we can constrain ® to have mean 0.

We can treat the random effects as unobserved data and apply the
EM algorithm. The x of the formal EM argument is the entire
observed data (time, status, covariates) plus the frailties, and y is the

data without the frailties. The full log-likelihood had we observed
is

v
Li = Y log(W(w6)) +
j=1
n
X:B+Z:
¥ 8[log (ho(t) + XiB + Z; - A o(tp)e iP ¢
Here §; = 0 for censored observations and 1 for events. The X term

isan n by p matrix, and Z isan n by ¢ matrix.
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This model setup is similar in notation to random effects models in
linear regression. Another notation, more common in the survival

literature, is to define ® = exp(Z;w) as the frailty parameter for each

subject. Then
M) = ghyeP

where subject i is a member of the j th family. The imposed constraint
is usually E(®w) = 1 rather than E(w) = 0.

The most popular choice for the random distribution is the gamma
frailty model, where ® is from a gamma distribution with mean 1 and
variance 8 = ¢ . Then the marginal likelihood Ly, after integrating
out the frailty, is

v I'v+D)
Ly = PL+ JZ\/log(v N Ej*) + log(———-———Lr ™) )— Djlog(v + D))

where PL is the numerical value returned as the partial likelihood by
a standard Cox model for the given values of B and ®, ® having
been entered as an offset term. This result applies only to the simple
frailty problem where each subject i is a member of exactly one

family j, with one random effect per family. Then D; gives the

number of events in the family and E* = E;/ (exp(q)), where E; is
the expected number of events for the family, using the final model.
There is an interesting connection between frailty models and

penalized likelihoods. In particular, let the penalty function for a
constrained solution be the log-gamma density

—f(av) = v(o—e® +vlog(v)—logI'(v)

with 3 = 1/ v as the variance of the random effect, and with Z
defined as in the frailty model. The first and second derivatives are
v(l -—exp(w) and -vexp(w), respectively. Surprisingly, for any
fixed value of v, the EM algorithm and this constrained minimization

have the same solution. This connection between the two methods
has several interesting consequences, as listed below.
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* Since penalized likelihood methods are well understood
numerically, this leads to more stable computational methods;
the EM algorithm is slow, and the proper variance estimate is
uncertain. In particular, the penalized likelihood methods fit
nicely into the new coxph function.

* There is a connection to the “degrees of freedom” for a fit.

It suggests a heuristic approach for other frailty distributions
and/or frailty terms such as nested models, for which the EM
algorithm is not tenable.

To add a frailty term to the Cox model, use the frailty function
within the call to coxph. For example, consider the rats data set,
which contains information on the effect of treatment for survival of
150 female rats from 50 different litters. The data set has three rats per
litter, one of which received a potentially tumorigenic treatment.
Forty rats developed a tumor during follow-up. We use the Breslow
approximation for tied times to match other analyses of this same
data in the literature:

> rfit <- coxph(Surv(time, status) ~ rx + frailty(litter),
+ data = rats, method = "breslow")
> rfit

Call:
coxph(formula = Surv(time, status) ~ rx + frailty(
litter), data = rats, method = "breslow™)

coef se(coef) se2 Chisq DF p
rx 0.906 0.323 0.319 7.88 1.0 0.005
frailty(litter) 16.89 13.8 0.250

Iterations: 6 outer, 20 Newton-Raphson
Variance of random effect = 0.474 EM 1ikelihood =
-181.1
Degrees of freedom for terms = 1.0 13.9
LikeTihood ratio test = 36.3 on 14.83 df, p = 0.00145
n = 150

> rfit0 <- coxph(Surv(time, status) ~ rx, data = rats,
+ method = "breslow™)
> rfito
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Call:
coxph(formula = Surv(time, status) ~ rx, data = rats,
method = "breslow™)

coef exp(coef) se(coef) z p
rx 0.898 2.46 0.317 2.83 0.0047

Likelihood ratio test=7.87 on 1 df, p=0.00503 n= 150

> rfitl <- coxph(Surv(time, status) ~ rx + frailty(litter,
+ theta = 1), data = rats, method = "breslow")
> rfitl

Call:
coxph(formula = Surv(time, status) ~ rx + frailty(litter,
theta = 1), data = rats, method = "breslow™)

coef se(coef) se2 Chisq

rx 0.918 0.327 0.321 7.85

frailty(litter, theta =1 27.25
DF p
rx 1.0 0.0051
frailty(litter, theta =1 22.7 0.2300

Iterations: 1 outer, 5 Newton-Raphson

Variance of random effect=1 EM Tikelihood = -181.5
Degrees of freedom for terms= 1.0 22.7
Likelihood ratio test=50.7 on 23.67 df, p=0.001 n= 150

The main thing to notice about these results is how little the treatment
coefficient is changed by the inclusion of a random effect term. This is
likely a consequence of the balanced model; each litter received both
active and control treatments.

For a fixed value of the frailty, the iteration is nearly as efficient as for
a normal Cox model, which usually requires 3—4 iterations. The
generalized fit required six guesses to maximize the profile likelihood,

and about three internal iterations per v value.
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The “likelihood ratio test” is always the difference in partial likelihood
between the initial and final fit, ignoring penalty terms and

corrections. The default for the initial fit is (B, @) = 0, which is a fit
with no covariates or random effect.

The solution using a Gaussian frailty is not much different:

> rfit2 <- coxph(Surv(time, status) ~ rx + frailty(litter,

+ dist = "gauss"), data = rats, method="breslow")

> rfit2

Call:

coxph(formula = Surv(time, status) ~ rx + frailty(litter,
dist = "gauss"), data = rats, method="breslow")

coef se(coef) se2 Chisq

rx 0.905 0.322 0.318 7.89

frailty(litter, dist "g 14 .94
DF p
rx 1.0 0.005
frailty(litter, dist "g 11.5 0.220

Iterations: 5 outer, 14 Newton-Raphson
Variance of random effect= 0.396
Degrees of freedom for terms= 1.0 11.5
Likelihood ratio test=34.2 on 12.51 df, p=0.000846310
n= 150
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ADDITIONAL TECHNICAL DETAILS

Computations
for Tied
Deaths

The remaining subsections provide additional details on
computations and options available for fitting proportional hazards
models, including:

*  The handling of ties

* The effect of ties on the definitions of residuals
+  Tests for proportional hazards

* Robust variance estimation

*  The handling of case weights

*  Details about the computations of coxph

For untied data, the terms in the partial likelihood (Equation (28.1))

look like
sy

where r;, ry, .., I, are the subject risk scores. Assume the real data

are continuous, but the recorded data have tied death times. For
example, several subjects might die on the first day of their hospital
stay but they do not all perish at the same moment. For a simple
example, assume 5 subjects (ordered by time of death or censoring)
are in a study and the first two die at the same recorded time. If the
time data had been more precise, the first two terms in the likelihood
would be either

M +rg+rg+ry+rs/\lrg+rg+r,+r;g

or

M +rg+rg+ry+rg/\r+rg+ry+r;
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Notice that the numerators remain constant, but the denominators do
not. The question is, how do you approximate the correct term for the

likelihood?

The Breslow approximation is the most commonly used because it is
the easiest to program. It uses the complete sum, r; +ro +ry+r, +1r;,

for both denominators. Clearly, if the proportion of ties is large, this
deflates the partial likelihood.

The Efron approximation uses 0.5r; +0.5ry+r3+r,+r; as the

second denominator, based on the idea that r; and r, each have a

50% chance of appearing in the “true” second term. If there were 4
tied deaths, the ratios for r; to r, would be 1, 3/4, 1/2, and 1/4 in

each of the four denominator terms, respectively. Though it is not
widely used, the Efron approximation is only slightly more difficult to
program than the Breslow version. In particular, since the down-
weighting is independent of any case weights, the form of the
derivatives of the likelihood is unchanged.

An alternate approach attempts an “exact” computation. The exact
PP p p
partial likelihood comes from viewing the data as genuinely discrete.

The denominator in this case is X#jrirj if two subjects are tied,

X#j L fifjfi if three subjects are tied, etc.
When using the coxph function to fit proportional hazards models,
you can specify any of the above three methods for handling ties. The
default is the Efron approximation, method="efron". The other two
may be specified by setting method="breslow" or method="exact".
Note that when there are no ties, all three methods produce the same
likelihood function.

The Efron approximation induces changes in the residuals’
definitions. In particular, the Cox score statistic is still

u=Y]J :<zi<s>—2<s>>dNi<s>. (28.9)

i=1
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However, the definition of Z(s) changes if there are tied deaths at

time s. If there are d deaths at s, there are d different values of Z

used at the time point. The Schoenfeld residuals use Z, the average of

these d values, in the computation. The martingale and score

residuals require a new definition of A . If there are d tied deaths at

time t, we again assume that in the exact (but unknown) untied data
there are events and corresponding jumps in the cumulative hazard at
t+e, <..<txey . Then each of the tied subjects will in expectation

experience all of the first hazard increment, but only ‘d— 1)/ d of the
second, [d-2)/ d of the next, and so on. If we equate observed to

expected hazard at each of the d deaths, the total increment in hazard
at the time point is the sum of the denominators of the weighted
means.

Recall our earlier example of 5 subjects of which 1 and 2 have tied
deaths:

A(t) = 1 + 1 .
M +lg+ly+rg+rs 1/ 2405/ 24053+, +71
For the null model where r; = 1 for all i, the new definition above

agrees with the suggestion of Nelson (1969) to use 1/5+1/4 rather than
2/5 as the increment to the cumulative hazard. The formula for the
score residuals is demonstrated using our previous example with five
subjects, the first two being tied. For subject 1, the residual at time 1 is

the sum a + b where

a - (Z rZy+ryZy+ ..+ r5z5)(dN1 r )
=z, - Bt S S—
r+rg+..41; 2 i +rg+ .45

=(Z N2y 2402y 2+ 4 r5Z5)(%_ r/ 2 >
! r/ 2+ry/ 24 . 415 2 1/ 241y 24415,
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The products defining a and b do not neatly collapse into

(Z,- E)dI\A/I , but they are easy to compute. The connection between

residuals and the exact partial likelihood is not as precise and are thus
not implemented. If residuals are requested after a Cox fit with
method="exact" the Breslow formulae are used.

The key ideas of this section are taken from Grambsch and Therneau
(1994). Most of the common alternatives to the hypothesis test of
proportional hazards can be cast in terms of a time-varying coefficient
model. That is, we assume that

MtZ) = xo(t)eBl(t)zl +Bo(Zy+ ...

If Zj is a 0/1 covariate such as treatment, this formulation is

completely general in that it encompasses all alternatives to
proportional hazards. The proportional hazards assumption is then a

test for B(t) = B, which is a test for zero slope in the appropriate plot
of B(t) on t. Let i index subjects, j index variables, and k index the
death times. Then let s, be the Schoenfeld residual and V, be the
contribution to the information matrix (Equation (28.4)) at time t,.

Define the rescaled Schoenfeld residual as
A -1
The main results are:
* E(sf ) = B(ty), so that a smoothed plot of s* versus time

gives a direct estimate of B(t).

* Many of the common tests for proportional hazards are linear
tests for zero slope, applied to the plot of s* versus g(t) for
some function g. In particular, the Z:PH test popularized in

the SAS PHGLM procedure corresponds to g(t) = rank of
the death time. The test of Lin (1991) corresponds to
g(t) = K(t), where K is the Kaplan-Meier.
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*  Confidence bands, tests for individual variables, and a global
test are available, and all have the fairly standard linear models
form.

* The estimates and tests are affected very little if the individual
variance estimates V, are replaced by their global average
/= Elk/ d = 1/ c Calculations then require only the
Schoenfeld residuals and the standard Cox variance estimate

I-1.

For the global test, let g(t) be the desired transformation of time, and
let g, = g(t,) be the value of g at the kth death time. Then

T = (zgksk), D_I(Eksk)

is asymptotically X2 on p degrees of freedom, where

D = Vi~ BV (Vi)

Because the s, sum to zero, a little algebra shows that the above
expression is invariant if g, is replaced by g, — ¢ for any constant c.

Subtraction of a mean will, however, result in less computer round-off

error. A further simplification occurs by using Vv, leading to

o il
T = D9 9)s] {—

[Ma-Dsid - (28.10)
Egkg)Q}

For a given covariate j, the diagnostic plot has S”f(j on the vertical axis

and g, on the horizontal. The variance matrix of SRS

Z; = (A-cJ)+cl, where A is a dx d diagonal matrix whose kth
-1
i
and | is the identity matrix. The constant cl reflects the uncertainty

diagonal element is V!;;. Here ¢ = I;;', J is a d X d matrix of ones

in s* due to the B term. If only the shape of B(t) is of interest (for
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example, is it linear or sigmoid) the ¢ can be dropped. If absolute

values are important (for example, B(t)= 0 for t>2 years), it should
be retained.

For smooths that are linear operators, such as splines or the loess

function, the final smooth is §* = Hs* for some matrix H. Then s*

is asymptotically normal with mean 0 and variance HEJ-H’ . Standard

errors are computed using ordinary linear model methods. If V, is

replaced with V, then S} simplifies to Ij—jl((d + 1)1 —J). With the same

substitution, the component-wise test for linear association is

Mg~ 9
E'ﬂl(gk—g)z

(28.11)

The cox.zph function uses Equation (28.10) as a global test of
proportional hazards, and Equation (28.11) to test individual
covariates. The plot method for cox.zph uses a natural spline
smoother. Confidence bands for the smooth are based on the full

covariance matrix, with V replacing V,.

Though the simulations in Grambsch and Therneau (1994) did not

uncover any situations where the simpler formulae based on V are
less reliable, such cases could arise. The substitution trades a possible
increase in bias for a substantial reduction in the variance of the
individual V. It is likely to be unwise in those cases where the

variance of the covariates within the risk sets differs substantially from
the variance between different risk sets. Two examples come to mind.
The first is a stratified Cox model, where the strata represent different
populations. In a multi-center clinical trial (for instance, inner city,
Veterans Administration, and suburban hospitals), disparate

populations are often serviced. In this case, a separate average Y
should be formed for each strata. A second example is where the
covariate mix changes markedly over time, perhaps because of
aggressive censoring of certain patient types. These cases have not
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been addressed directly in the software. However, coxph.detail
returns all of the V, matrices, which can then be used to construct

specialized tests for such situations.

Clearly, no one scaling function g(t) is optimal for all situations. The
cox.zph function directly supports four common choices: identity,
log, rank, and 1 - Kaplan-Meier. By default, it uses the last of these,
based on the following rationale. Since the test for proportional
hazards is essentially a test for significant regression of the scaled

residual modeled linearly in the g,, we expect this test to be

adversely effected if there are outliers in the g,. We would also like

the test to be at most mildly affected by the censoring pattern of the
data. The Kaplan-Meier transform appears to satisfy both of these
criteria.

The following technical discussion of robust variance estimation for
Cox models leads to a rather simple implementation conceptually.
The basic idea is to compute an approximate matrix of changes in

estimated coefficients, L, resulting from leaving out each observation

one at a time. The robust estimate of variance is then L’ L, which
relates to other variance estimators as follows:

* L’ L is equivalent to the working independence estimate in
generalized estimating equations models.

* L’ L is an approximate jackknife estimate of variance.

* L’ Lisequivalent to the Wei, Lin, and Weissfeld (1989)
variance estimate for a Cox model.

» L’ L is arobust sandwich estimate as discussed in Huber (1967).

If the observations are grouped and correlated within groups, this
idea works if entire groups (rather than individual observations) are
left out for computing the approximate jackknife variance estimate.
This case corresponds to Cox models with a counting process
formulation and multiple observations per subject. The resulting
estimator of variance is called the grouped jackknife estimator.
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The following discussion describes the general sandwich estimator, a
modification of the sandwich estimator for grouped data, and its
implementation for Cox models. Robust variance calculations are
based on the sandwich estimate

V = ABA’,

where A-! = | is the usual information matrix and B is a correction
term. The genesis of this formula can be found in Huber (1967), who
discusses the behavior of any solution to an estimating equation

I
> 0%, B) = 0.
i=1
Of particular interest is the case of a maximum likelihood estimate
based on distribution f, so that$ = dlog(f)/ df, when in fact the data
are observations from distribution g. Then under appropriate

conditions, B is asymptotically normal with mean B and covariance

V = ABA’, where

- (52

and B is the covariance matrix for ® = 30(x;, f) . Under most

situations the derivative can be moved inside the expectation, and A
is the inverse of the usual information matrix. This formula was
rediscovered by White (1980, 1982) and is also known in the
econometric literature as White’s method. Under the common case of
maximum likelihood estimation we have

. - dlogf(x;
D 0x;, B) = Zigap@

i=1 |=1

Zui(B)
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By interchanging the order of the expectation and the derivative, A-!
is the expected value of the information matrix, which is estimated by
the observed information |. Since E[u;(B)] = 0,

X
Il

var (®) = E(9*)

(28.12)

S E[W(B)u(B)]+ SE[U(B)u(B)]

i=1 i#]

where U;(B) is assumed to be a row vector. If the observations are
independent, the u; are also independent and the cross terms in

Equation (28.12) are zero. A natural estimator of B is

S uiBu(p)
i=1
=U" U,

where U is the matrix of score residuals (the ith row of U equals

B

ui(B) ). The column sums of U are the efficient score vector @.

As a simple example, consider generalized linear models. McCullagh
and Nelder (1989) maintain that overdispersion “is the norm in
practice and nominal dispersion the exception.” To account for
overdispersion they recommend inflating the nominal covariance

matrix of the regression coefficients A = (X’ WX)™! by a factor

n |)2
- 3 0-p

i=1
where V; is the nominal variance. Smith and Heitjan (1993) show that

AB may be regarded as a multivariate version of this variance
adjustment factor, and that ¢ and AB may be interpreted as the

average ratio of actual variance (y;—;)? to nominal variance V;. By
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premultiplying by AB, each element of the nominal variance-

covariance matrix A is adjusted differentially for departures from
nominal dispersion.

When the observations are not independent, the estimator B must be

adjusted accordingly. The natural choice (Eji)2 is not available of

course, since dD(B) = 0 by definition. However, a reasonable
estimate is available when the correlation is confined to subgroups. In
particular, assume that the data come from clustered sampling with
| =1, 2, .., k clusters, where there may be correlation within
clusters but observations from different clusters are independent.
Using Equation (28.12), the cross-product terms between clusters can
be eliminated and the resulting equation rearranged as

K
var(® = Yy u(B) up),
i=1
where U; is the sum of u; over all subjects in the jth cluster. This

leads to the modified sandwich estimator
V = AU 0)A,

where the collapsed score matrix U is obtained by replacement of

each cluster of rows in U by the sum of those rows. If the total
number of clusters is small, this estimate is sharply biased towards
zero and some other estimate must be considered. In fact,
rank(V) <k, where k is the number of clusters. Asymptotic results
for the modified sandwich estimator require that the number of
clusters tend to infinity.

Application of these results to the Cox model proceeds by defining a
weighted Cox partial likelihood and letting

ui(B) = (gwui)wzl,
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where w is the vector of weights. This approach is used by Cain and
Lange to define a leverage or influence measure for Cox regression.
In particular, they derive the leverage matrix

L = Ul

where Lj; is the approximate change in Bj when observation i is

removed from the data set. Their estimate can be recognized as a
form of the infinitesimal jackknife; see, for example, the discussion in
Efron (1982) for the linear models case.

The connection to the jackknife is quite general. For any model stated
as an estimating equation, the Newton-Raphson iteration has step

AB = 1'(UITY),

where the column sums of the matrix L = Ul ~'. At the solution B
the iteration’s step size is zero by definition. Consider the following
approximation to the jackknife:

1. Treat the information matrix | as fixed.

2. Remove observation i.

3. Beginning at the full data solution [AS and do one Newton-
Raphson iteration.

This is equivalent to removing one row from L and using the new

column sum as the increment. Since the column sums of L(B) =0
are zero, the increment must be AR = —L; . That is, the rows of L are
an approximation to the jackknife and the sandwich estimate of
variance L’ L is an approximation to the jackknife estimate of
variance.

Lin and Wei (1989) show the applicability of Huber’s work to the
partial likelihood, and derive the ordinary Huber sandwich estimate

/= 177U Ul = L7 L the approximate jackknife. When the data
are correlated, the appropriate form of the jackknife is to leave out an
entire subject at a time, rather than just one observation; this is the
grouped jackknife. To approximate this, we leave out groups of rows

from L, leading to L’ L as the approximation to the jackknife.
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Lee, Wei, and Amato (1992) consider highly stratified data sets which
arise from inter-observation correlation. As an example, they use
paired eye data on visual loss due to diabetic retinopathy, where
photocoagulation was randomly assigned to one eye of each patient.
There are 1/ 2 = 1742 clusters (patients) with 2 observations per
cluster. Treating each pair of eyes as a cluster, they derive the

modified sandwich estimate V = L’ I:, where L is derived from L in

the following way. The L term has one row, or observation, per eye.
Because of possible correlation, we want to reduce this to a leverage

matrix L with one row per individual. The leverage (or row) for an
individual is simply the sum of the rows for each of their eyes. A
subject, if any, with only one eye retains the single row of unchanged
leverage data. The resulting estimator is shown to be much more
efficient than analysis stratified by cluster. A second example given in
Lee, Wei, and Amato concerns a litter-matched experiment; in this
case, the number of rats per litter may vary.

Wei, Lin, and Weissfeld (1989) consider multivariate survival times.
An example is the measurement of both time to progression of
disease and time to death for a group of cancer patients. The data set
again contains 2n observations with time and status variables, subject
id, and covariates. It also contains an indicator variable etype to
distinguish the event type, progression vs. survival. The suggested
model is stratified on event type, and includes all strata x covariate
interaction terms. One way to do this with coxph is

fit2 <- coxph(Surv(time,status) ~ (rx + size + number)*
strata(etype))

Ltilde <- residuals(fit2, type = "dfbeta",

collapse = subject.id)

newvar <- t(Ltilde)

v o+ v + Vv

The per-subject leverage matrix L'L is newvar. An alternate way to do
this is
> fit2a <- coxph(Surv(time,status) ~ (rx + size + number)*
+ strata(etype) + cluster(id))

The cluster argument asserts that subjects with the same value of id
may be correlated.
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The data for fitting the above two models is not built into Spotfire S+.
However, similar computations can be performed using the bladder
data frame for comparison. Two ways of producing the robust
variance estimate follow.

> bladder2 <- bladder[bladder$start< bladder$stop, 1

> afit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number + cluster(id), data = bladder2)

> sqrt(diag(afit$var))

[1] 0.24876453 0.07421445 0.05842243

Performing the computation in an alternate way, we get:

bfit <- coxph(Surv(start, stop, event) ~ rx + size +
number, data = bladder2)

db <- resid(bfit, type = "dfbeta™, collapse =
bladder2$id)

sqrt(diag(t(db) %*% db))

v o+ v + Vv

[1] 0.24876453 0.07421445 0.05842243

Using the grouped jackknife approach as suggested here, rather than
separate fits for each event type, has some practical advantages:

+ Itis easier to program, particularly when the number of
events per subject is large.

*  Other models can be encompassed. In particular, one need
not include all of the strata x covariate interaction terms.

* There need not be the same number of events for each
subject. The method for building up a joint variance matrix
requires that all of the score residual matrices be of the same
dimension, which is not the case if information on one of the
failure types was not collected for some subjects.
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A Cox model that includes case weights has been suggested by
Binder (1992) in the context of survey data. If w; are the weights, the

modified score statistic is

UB) = D wuiB). (28.13)

i=1

The individual terms u; are still Z;(t) — Z(t) but the weighted mean Z

is changed in the obvious way to include both the risk weights r and

the external weights w. The information matrix can be written as
I = Y§w;v; , where §; is the censoring variable and v; is a weighted

covariance matrix. The definition of v; changes in the obvious way

from Equation (28.4). If all of the weights are integers, then for the
Breslow approximation this reduces to ordinary case weights; that is,
the solution is identical to what you obtain by replicating each

observation W; times. With the Efron approximation or the exact
partial likelihood approximation, replication of a subject results in a
correction for ties.

The coxph function allows general case weights. Residuals from the fit
are such that the sum of weighted residuals is zero, and the returned
values from the coxph.detail function are the individual terms u;

and Vv;, so that U and | are weighted sums. The sandwich estimator
of variance has L” WL as its central term, where W is the diagonal
matrix of weights. The estimate of B and the sandwich estimate of its
variance are unchanged if each w; is replace by cw; for any ¢>0.

Multiplying weights by ¢ does not change the robust se reported by
printing a coxph fit, but it does decrease the se(coef) reported by a
factor of sqrt(c).

For either of the Breslow or the Efron approximations, the extra
programming to handle weights is modest. For the Breslow method,
the logic behind the addition is straightforward and corresponds to
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the derivation given above. For tied data and the Efron
approximation, the formula is based on extending the basic idea of
the approximation

2(f(ry, ry, .))= f(E(r)), E(ry), ..

to include the weights as necessary. Returning to the simple example
of the section Computations for Tied Deaths, the second term of the
partial likelihood is either

Wil +Wglg +Wyr, +Wsl's

or

(o, v wwn)

Wolg + Wglg +WyIy + Wsl5

To compute the Efron approximation, separately replace the
numerator with 0.5(W;r; + Wyry) and the denominator with 0.5w,r,
+ 0.5Wolg + Wal'y + W, I, + W5l .

An exciting use of weights is presented in Pugh, Robins, Lipsitz, and
Harrington (1993), for inference with missing covariate data. Let m;
be the probability that none of the covariates for subject i is missing,
and let p; be an indicator function which is 0 if any of the covariates
actually is NA, so that E(p;) = m;. The usual strategy is to compute the
Cox model fit over only the complete cases (those with p; = 1). If
information is not missing at random, this can lead to serious bias in

the estimate of [AS . A weighted analysis with weights of 3;/ m; corrects

for this imbalance. There is an obvious connection between this idea
and survey sampling; both reweight cases from underrepresented

groups.
In practice, m; is unknown and the authors suggest estimating it using

a logistic regression with p; as the dependent variable. The covariates

for the logistic regression may be some subset of the Cox model
covariates (those without missing information), as well as others. In an
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example, the authors use a logistic model with follow-up time and
status as the predictors. Let T be the matrix of score residuals from
the logistic model, that is,
0
Tij = —[p;logm;(a) + (1 —pj)log(1 —m;(e))] ,

aocj

where o are the coefficients of the fitted logistic regression. Then the

estimated variance matrix for B is the sandwich estimator 17'BI~!,
where

C= U U-[UTIT T[T U

This is equivalent to first replacing each row of U with the residuals

from a regression of U on T, and then forming the product U” U.
Note that if the logistic regression is completely uninformative
(m; = constant), this reduces to the ordinary sandwich estimate.

The coxph function is used to fit Cox proportional hazards models.
The input data are assumed to consist of observations or rows of data,
each of which contains the covariate values Z, a status indicator
variable (l=event, O=censored), an optional stratum indicator
variable (referenced by the strata function), along with the time
interval (start, stop] over which this information applies. This means

that each row is treated as a separate subject whose Y; variable is 1 on

the interval (start, stop] and 0 otherwise. The risk set at time t only
uses the applicable rows of the data.

The code for coxph does not specifically accommodate time-
dependent covariates, time-dependent strata, multiple events, or any
of the other special features mentioned. Consequently, it is your
responsibility to construct an appropriate data set. This strategy leads to a
fitting program that is simpler, shorter, easier to debug, and more
computationally efficient than one with multiple specific options. A
significantly more important benefit is that the flexibility inherent in
building the proper data set allows analyses not originally considered;
left truncation is a case in point.



Additional Technical Details

The more common way to deal with time-dependent Cox models is
to do a computation for each death time. For example, BMDP and
SAS PHREG do this. One advantage of this over the algorithm
implemented in coxph is the ability to code continuously varying
time-dependent covariates. The coxph function only accommodates
step functions. However, this does not appear to be a deficiency in
practice. For the common case of repeated measurements on each
subject, the data for coxph are quite easy to set up since they
correspond to the original measurements of one line of data per visit.

The coxph function typically runs much faster when there are
stratification variables in the model. When strata are introduced,
coxph spends less time locating the current risk set because it only
looks within the stratum it is estimating. If the start time is omitted, it
is assumed to be zero for all cases. In this case the algorithm is
equivalent to the standard Cox model.
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INTRODUCTION

348

In contrast to the non-parametric (and semi-parametric) survival
curve estimates of Kaplan-Meier, Fleming-Harrington, and Cox,
among others, this chapter presents a parametric formulation to the

estimation problem.  Assume the survival time Yy satisfies
t(y) = XB + oW, where W follows some given distribution and t is a
given transformation. For example, if t is the identity function and W
is Gaussian, this corresponds to ordinary linear regression. The usual
choice for t is log(y), which corresponds to an accelerated failure time
(AFT) model. Using the log transform, if A ,(t) is the cumulative

hazard function for W, the cumulative hazard function for subject i is
Aylexp(-n/ (XB))tl. That is, the time scale for the subject is

accelerated by a constant factor.

The development and use of parametric survival models actually
predates that of the non-parametric methods. Although non-
parametric methods now dominate in fields of study where the
primary concern is to assess the risk of failure and its relation to
covariates (for example, the effect of treatment arm on breast cancer
recurrence), parametric methods are still vitally important in
situations where extrapolation of results is necessary to predict failure
rates under different conditions than those in the original study. A
typical question addressed by non-parametric methodology is “How
much does the risk of dying decrease if a new treatment is given to a
lung cancer patient?” A typical question addressed by the parametric
methodology in an accelerated testing setting is “What proportion of
heaters will fail when run at 1100° F for 2 years, even though the
original study ran heaters at temperatures ranging from 1520° to
1710° for only four months?”

In a manufacturing setting, studies of failure rates for new products
cannot typically be done under normal operating conditions because
they take too long to complete. Consequently, accelerated tests are
conducted, exposing the product to more severe stresses than normal
so that failures occur. Extrapolation is then used to estimate failure
rates under normal operating conditions. In contrast, the Kaplan-
Meier and Cox models do not extrapolate past the last observation. If
the data are reasonably well modeled by one of the parametric



Introduction

distributions, parametric models provide information for assessing
properties of the baseline hazard function which the non-parametric
models don’t.

To perform parametric regression in Spotfire S+, you use the survReg
function. The survReg function is similar to the survreg function
available in earlier versions of SPOTFIRE S+, but has some new and
modified arguments. The survreg function is still available, but is
now deprecated.

As a simple example, consider the lung cancer data set included in
Spotfire S+. We can fit a Weibull model to this data using survReg as
follows:

> options(na.action = na.exclude)

> lung.survReg <- survReg(Surv(time, status) ~ age + sex +
+ ph.karno, data = Tung, dist = "weibull™)

> lung.survReg

Call:
survReg(formula = Surv(time, status) ~ age + sex +
ph.karno, data = lung, dist = "weibull™)

Coefficients:

(Intercept) age sex ph.karno
5.326344 -0.008910282 0.3701786 0.009263843

Scale= 0.7551354

Loglik(model)= -1138.7 Loglik(intercept only)= -1147.5

Chisgq= 17.59 on 3 degrees of freedom, p= 0.00053
n=227 (1 observations deleted due to missing values)
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STRATA

In a Cox model, the strata statement is used to allow separate
baseline hazards for subgroups of the data, while retaining common
coefficients for the other covariates across groups. For parametric
models, the statement allows for a separate scale parameter for each
subgroup, but again keeping the other coefficients common across
groups. For instance, assume that separate baseline hazards are
desired for males and females in the lung cancer data set. If we think
of the intercept and scale as the baseline shape, an appropriate model
can be fit as follows:

> Tung.sfit <- survReg(Surv(time, status) ~ sex + age +
+ ph.karno + strata(sex), data = lung,

+ na.action = na.exclude)

> lTung.sfit

Call:

survReg(formula = Surv(time, status) ~ sex + age + ph.karno
+ strata(sex), data = Tung,

na.action = na.exclude)

Coefficients:
(Intercept) sex age ph.karno
5.059089 0.3566277 -0.006808082 0.01094966

Scale:
sex=1 sex=2
0.8165161 0.6222807

Loglik(model)= -1136.7 Loglik(intercept only)= -1146.2
Chisq= 18.95 on 3 degrees of freedom, p= 0.00028
n=227 (1 observations deleted due to missing values)

The intercept-only model used for the likelihood ratio test has 3
degrees of freedom, corresponding to the intercept and two scales, as
compared to the 6 degrees of freedom for the full model.

350



Strata

This is quite different from the effect of strata in censorReg, where it
acts as a “by” statement and causes a completely separate model to be
fit to each gender. The same fit (but not as nice a printout) can be
obtained from survReg by adding an explicit interaction to the
formula:

> survReg(Surv(time, status) ~ sex + (age +
+ ph.karno) * strata(sex), data = Tung)
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SPECIFYING A DISTRIBUTION

352

The survReg fitting routine is quite general, and can accept any
distribution that spans the real line for W and any monotone

transformation of y. The following distributions are included by
default:

* exponential
¢ extreme

e Gaussian

* logistic

* Rayleigh
L

*  Weibull

* log Gaussian

* log logistic



RESIDUALS

Response

Deviance

Residuals

The residuals method for parametric survival objects can return any
of several types of residuals. This section describes the available types
along with their strengths and weaknesses.

Response residuals for other models such as 1m or g1m are defined as
y—V, where y is the observed data value. For censored data, some
modifications must be made. If the observation is exact, y is the
observed value; if the observation is left- or right-censored, the
censoring value is used for y. One could argue that the returned
residuals in this case should be marked as left- or right-censored, but
this has not been done. For an interval-censored observation, y is
chosen as the MLE from a fit with n = 1. That is, it is chosen so that
the observed interval has the largest possible probability. For a
symmetric distribution such as Gaussian or logistic, this is the center
of the interval. However, it is somewhat more complicated for non-
symmetric distributions such as the extreme value.

Response residuals are the default type:

> resid(Tung.survReg)

1 2 3 4 5
-48.57054 80.95766 593.7474 -202.5602 442.3329

6 7 8 9 10
777.2215 -140.0104 -38.37526 -137.2232 -164.7835

11 12 13 14 15
-206.0581 203.9896 186.3892 -233.2154 190.9419

16 17 18 19 20

-199.9997 245.5643 437.0149 -395.4849 -324.5602

Deviance residuals are response residuals transformed to the log-

likelihood scale:

di = sign(r;) JLL(Y;, ¥950) —LL(y;, m;0) -
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Dfbeta

354

Here Yy, is the unconstrained MLE for a fit with n = 1 (only the
observation in question), but with ¢ fixed at its value from the overall

fit. This leads to y, = — and +eoo for right- and left-censored

observations, respectively. The first term under the square root is
zZero.

The advantages of the deviance residuals for plotting and outlier
detection are nicely detailed in McCullagh and Nelder (1990).
However, unlike GLMs, deviance residuals for interval-censored data
are not free of the scale parameter. This means that if there are
interval-censored data values and you fit two models A and B, the
sum of the squared deviance residuals for model A minus the sum for
model B does not equal the difference in log-likelihoods. This is one
reason that the current survReg function does not inherit from class
"gim": the models created by gim use the deviance as the main
summary statistic.

Deviance residuals are obtained by specifying type="deviance" in
the call to resid:

> resid(lung.survReg, type = "deviance")
1 2 3 4 5
-0.1889512 0.2711838 2.543388 -0.7786656 1.086197
6 7 8 9 10
3.643226 -0.4560836 -0.1308644 -0.5838006 -0.7929039
11 12 13 14 15
-0.895371 0.5395109 0.4189815 -1.46457 0.5978532
16 17 18 19 20

-0.9683285 0.7638346 1.614463 -1.862741 -1.533163

The dfbeta residuals are a matrix with one row per subject and one
column per parameter. The ith row gives the approximate change in
the parameter vector resulting from observation i#; that is, it is the

change in B when observation 7 is added to a fit based on all
observations but the ith. The dfbetas residuals scale each column of
the dfbeta matrix by the standard error of the respective parameter.



Residuals

To obtain the dfbeta residuals, use type="dfbeta" in the call to

resid. To obtain the dfbetas residuals, use type="dfbetas":

> resid(Tung.survReg, type =

S OB W N

S OB W N

(Intercept)

.01511630872
.00696784585
.06865167740
.01038268752
.03436155488
.24197961727

ph.karno

.065334e-004
.546980e-005
.566163e-004
.338031e-004
.467109e-004
.089797e-003

> resid(lung.survReg,

gl w N =

gl B~ w

[,1]

.02280083554
.01051002003
.10355144468
.01566083063
.05182959519

[.4]

.0238667512
.0101866266
.1695052040
.0299759836
.1672860906

"dfbeta™)
age sex
-1.133792e-004 0.00002623577
1.451185e-004 -0.00325004547
-1.420568e-003 -0.01938509704
2.135163e-004 0.00380158171
-7.371198e-005 -0.01080367964
2.394794e-003 -0.02658673104
Log(scale)
-0.00355606713
-0.00364612597
0.01453486059
-0.00178635419
0.00219801001
0.02732249126
type = "dfbetas")
[.2] [,31]
-0.0159498488 0.0002050366
0.0204148405 -0.0253996072
-0.1998413454 -0.1514975268
0.0300368545 0.0297099481
-0.0103695863 -0.0844324247
[.5]
-0.0576293685
-0.0590888556
0.2355509068
-0.0289495277
0.0356207923
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Working The Newton-Raphson iteration used to solve the model can be
viewed as an iteratively reweighted least-squares problem with a
dependent variable of current prediction-correction. The working
residual is the correction term. You can obtain the working residuals
by specifying type="working" in the call to resid.

Likelihood Escobar and Meeker (1982) define a matrix of likelihood
Displacement displacement residuals for the accelerated failure time model. The full

residual information is a square matrix A with dimension equal to the
number of perturbations considered. Three examples are developed
in detail, all with dimension n, the number of observations: the
likelihood displacement residuals for a perturbation in the case
weight for observation i (1dcase), a perturbation in the response
value (1dresp), or a perturbation in the shape (1dshape).

Case weight perturbations measure the overall effect on the
parameter vector of dropping a case. Let V be the variance matrix of
the model, and let L the n by p matrix with elements (dL;)/ (dp;),

where L; is the likelihood contribution of the ith observation. Then

A = LVL'. The residuals function with type="1dcase" returns the

diagonal values of the matrix and LV equals the dfbeta residuals.

Response perturbations correspond to a change of one ¢ unit in one
of the response values. For a Gaussian linear model, the equivalent
computation yields the diagonal elements of the hat matrix. Shape
perturbations measure the effect of a change in the log of the scale
parameter by 1 unit. The matrix residual returns the raw values that
can be used to compute these and other LD influence measures. The
result is an N X 6 matrix, containing columns for the following
quantities:

QU

oL, L, aL, oL oL

: an 2 dlog(o) alog(6)2 orplog (o)
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PREDICTED VALUES

Linear
Predictor and
Predicted
Response

The predict method for survReg objects allows several types of
predictions. They fall into three groups: the linear predictor and
predicted response, terms, and predicted quantiles.

The linear predictor is = X', , where X; is the covariate vector for

subject i and B is the final parameter estimate. The standard error of

the linear predictor is X';VX;, where V is the variance matrix for 3.

You obtain the linear predictions by using predict with the argument
type="1p":

> predict(lung.survReg, type = "1p")

[1] 5.870907 5.924369 6.031292 6.022382 6.088290
[6] 5.500354 6.109271 5.989901 5.872746 5.801464
[11] 5.929744 6.109271 6.294548 5.717736 5.929744
[16] 5.840641 5.906548 5.598367 6.123556 6.022382

The predicted response is identical to the linear predictor for fits to
the untransformed distributions (the extreme-value, logistic, and
Gaussian). For transformed distributions such as the Weibull, in

which log(y) is from the extreme-value distribution, the linear
predictor is on the transformed scale and the response is on the
original scale of the data; this is exp(n) for the Weibull. The

standard error of the transformed response is the standard error of n
times the first derivative of the inverse transform.
The predicted response is the default prediction. You can ask for it
explicitly by specifying type="response".

> predict(Tung.survReg)

[1] 354.5705 374.0423 416.2526 412.5602 440.6671
[6] 244.7785 450.0104 399.3753 355.2232 330.7835
[11] 376.0581 450.0104 541.6108 304.2154 376.0581
[16] 343.9997 367.4357 269.9851 456.4849 412.5602
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Terms

358

Predictions of type terms are useful for examination of terms in the
model that expand into multiple dummy variables, such as factors
and p-splines. The result is a matrix with one column for each of the
terms in the model, along with an optional matrix of standard errors.
Here is an example using p-splines on the stanford2 data set:

>
+
+

+ 4+ Vv Vv

A S VAR V4

+

fit <- survReg(Surv(time,status) ~ pspline(age, df=3) +
t5, data = stanford2, dist = "lognormal",
na.action = na.exclude)

tt <- predict(fit, type = "terms", se.fit =T)
yy <- cbind(tt$fit[,1],

tt$fit[,1] - 1.96*tt$se.fit[,11,

tt$fit[,1] + 1.96*tt$se.fit[,1])

matplot(stanford2$age, yy, type = "1", 1ty = c(1, 2, 2))
plot(stanford2$age, stanford2$time, log = "y",

xlab = "Age", ylab = "Days", ylim = ¢(0.1,10000))
matlines(stanford2$age, exp(yy+tattr(tt$fit, "constant™)),

Tty = c(1, 2, 2))

The second plot, shown in Figure 29.2, puts the fit onto the scale of
the data and thus is similar to Figure 1 in Escobar and Meeker (1982).
Their plot is for a quadratic fit to age, without the T5 mismatch score
in the model. For more details on p-splines, see the section Fitting
Spline Models on page 314.
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Figure 29.1: Plot of p-spline fit with error bands.
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Figure 29.2: Plot of p-spline fit with scale of the data.
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Quantiles

360

If predicted quantiles are desired, the set of probability of values p
must also be given to the predict function. A matrix of n rows by p

columns is returned, whose ijth element is the p;th quantile of the

predicted survival distribution, based on the covariates of subject i.
This can be written as Xp +z,6 where z, is the qth quantile of the
parent distribution. The variance of the quantile estimate is then
cVc', where V is the variance matrix of (B, ) andc = (X, Zg)-

In computing confidence bands for the quantiles, it may be preferable
to add standard errors on the untransformed scale. You can do this
using the "uquantile” prediction type. For example, consider the
motor reliability data of Nelson and Hahn (1972, as cited in
Kalbfleisch and Prentice, 1980). We first fit the standard quantile

confidence intervals:

> fit <- survReg(Surv(time, status) ~ temp, data = motor)
> ql <- predict(fit, data.frame(temp = 130),
+ type = "quantile”, p = c(0.1, 0.5, 0.9), se.fit =T)

> cil <- cbind(qls$fit,
+ ql$fit - 1.96*qlsse.fit,
+ ql$fit + 1.96*qlsse.fit)

> dimnames(cil) <- Tist(c(0.1, 0.5, 0.9), c("Estimate",
+ "Lower ci"™, "Upper ci"))

> round(cil)

Estimate Lower ci Upper ci

0.1 15935 9057 22812
0.5 29914 17395 42433
0.9 44687 22731 66643

Next we fit the standard errors on the untransformed scale:

> g2 <- predict(fit,data.frame(temp = 130),
+ type = "uquantile", p = c(0.1, 0.5, 0.9), se.fit =T)

v

ci2 <- chind(g2$fit,
ge$fit - 1.96 * g2¢se.fit,
ge$fit + 1.96 * g2¥se.fit)

+ +

> ci2 <- exp(ci?2)
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v

dimnames(ci2) <- 1ist(c(0.1, 0.5, 0.9), c("Estimate”,
+ "Lower ci", "Upper ci™))

> round(ci?2)

Estimate Lower ci Upper ci
0.1 15935 10349 24535
0.5 29914 19684 45459
0.9 44687 27340 73041

Using the default Weibull method, the data are fit on the log(y) scale.
The confidence bands obtained by the second method are
asymmetric and may be more reasonable. They are also guaranteed
to be positive.

The following example reproduces Figure 1 of Escobar and Meeker:

> plot(stanford2%$age, stanford2$time, log = "y",
+ xlab = "Age", ylab = "Days", ylim = c(0.01, 1076),
+ x1im = c(1, 65))

> fit <- survReg(Surv(time, status) ~ age + age”2,
+ data = stanford2, dist = "lognormal")

> qq <- predict(fit, newdata = list(age = 1:65),
+ type = "quantile", p = c(0.1, 0.5, 0.9))

> matlines(1:65, qq, Tty = c(1, 2, 2))

The plot is shown in Figure 29.3. Note that the percentile bands on
this figure are really quite a different object than the confidence bands
on the spline fit. The latter reflect the uncertainty of the fitted estimate
and are related to the standard error. The quantile bands reflect the
predicted distribution of a subject at each given age, assuming no
error in the quadratic estimate of the mean, and are related to the
standard deviation of the population.
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Figure 29.3: Predicted 10th, 50th, and 90th survival quantiles for subjects at given
age.
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FITTING THE MODEL

With some care, parametric survival can be formulated as an
iteratively reweighted least squares (IRLS) problem used in
Generalized Linear Models (GLM) of McCullagh and Nelder (1990).
A detailed description of this setup for general maximum likelihood
computation is found in Green (1984).

Let y be the response vector and X; be the vector of covariates for the

i th observation. Assume that

t(y;) —XiP
i5%~f (29.1)
for some distribution f, where y may be censored and t is a

differentiable transformation function. The likelihood for t(y) is

(H”(Z)))(m f(U)dU)(Hj if(u)du][ mj, f<U>d“J

exact right i left interval i

where exact, right, left, and interval refer to uncensored, right-censored,
left-censored, and interval-censored observations, respectively. The

z;* term is the lower endpoint of a censoring interval. The log-
likelihood is defined as

log(l)= Y 09:(z)) —log(0) + Y 09(z) + D93(zi) + >.94(Z)) (29.9)

exact right left interval
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Derivatives of the log-likelihood with respect to the regression
parameters are

dlog(l) _
aBJ 2 |jan (29.3)

i=1

"log (1) 9
—gl(ig[i— z ij |k£ (29.4)

where n= X' is the vector of linear predictors.

Thus, if we treat ¢ as fixed, iteration is equivalent to IRLS with
weights of —g" and adjusted dependent variable of n—g'/ g¢". The
Newton-Raphson step defines an update & by

(X'DX)8 = X'U (29.5)

where D is the diagonal matrix formed from —g" and U is the vector

g'. The current estimate [ satisfies XpB = m, so that the new estimate
B+ & will have

(XTDX)(B +8) = X'Dn+ XTU = (XTD)(n+ D-1U) (29.6)

At the solution to the iteration, we might expect that ;]z y. In fact,
weighted regression with y replacing m gives, in general, good
starting estimates for the iteration; for an interval-censored
observation, we use the center of the interval as y. If all the
observations are uncensored, this reduces to using the linear
regression of y on X as a starting estimate: y = 1 so z = 0, thus
g = 0 and g" = aconstant (all of the supported densities have a
mode at 0).



Derivatives of
the Log-
Likelihood

Fitting the Model

This clever starting estimate is introduced in McCullagh and Nelder,
and works extremely well in that context: convergence often occurs
in 3—4 iterations. It does not work quite so well here, since a “good” fit

to a right-censored observation might have 1»y . Secondly, the other

coefficients are not independent of ¢, and ¢ often appears to be the
most touchy variable in the iteration.

Most often, the parametric survival functions are used with log(y),
which corresponds to the set of accelerated failure time models. The
transform can be applied implicitly or explicitly. For example, the
following two fits give identical coefficients:

> fitl <- survReg(Surv(futime, fustat) ~ age + rx,
+ data = ovarian, dist = "weibull"™)

> fit2 <- survReg(Surv(log(futime), fustat) ~ age + rx,

+ data = ovarian, dist = "extreme")
The log-likelihoods for the two fits differ by a constant,the sum of
‘dlog(y))/ (dy) for the uncensored observations. In addition, certain

predicted values and residuals will be on the y versus log(y) scale.

This section is very similar to the appendix of Escobar and Meeker,
differing only in the use of log(c) rather than ¢ as the natural

parameter. Let f and F denote the density and cumulative
distribution functions, respectively, of one of the parametric survival
distributions. Using Equation (29.2) for defining g,, .., g, we have

the equations listed below.
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To obtain the derivatives for g,, set the upper endpoint zY to oo in
the equations for g,. To obtain the equations for g;, left-censored

data, set the lower endpoint to —co. The internal iteration is done in

terms of log(o), which avoids the boundary condition at zero and

helps the iteration speed considerably for some test cases.




Fitting the Model

By the chain rule:

oL _ dLL

dlogo - Y

UL _ pILL, oLl
d(logo)? = o %o

FLL _ LL
E}Tﬁlogc_ oo

At the solution, dLL/ do = 0 so the variance matrix for ¢ is a simple

scale change of the returned matrix for log(oc) .
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DISTRIBUTIONS

Gaussian
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The presentation of the distributions contained in this section is
similar to that in Nelson (1982). Derivatives of the terms in the log-
likelihood, Equation (29.2), are presented following the details for
each distribution.

For each distribution, the standardized variable z is defined by
Equation (29.1), where m = X';p is the linear predictor and ¢ is the
scale parameter. The details for each distribution are written in terms
of the standardized variable, z.

This is perhaps the most frequently used distribution in applied
statistics. It is more commonly known as the normal distribution. The

continual calls to ® may make it slow on censored data, however.

The standardized variable z has mean 0 and variance 1. The standard
normal distribution is then defined by

=(z) = ¥(z2)
f(z) = exp(-z2/ 2)/ ({2m
"(2) = -zf(2)

"(2) = (22- Df(2)
The derivatives of the terms in the log-likelihood are given by

9, = -2/ 2-log(/2m)
Y=~

)" = -1

g, = log(1 - a(2))

)9 = -(f(2))/ (1-¥2))

)7y = (-F(2))/ (1-D(2))-(g'9)?)

For uncensored data, the “standard” GLM results are obtained by
substituting g, into Equations (29.2) through (29.6). The first

derivative vector is equal to X'r wherer = -z/ cis a scaled residual,



Least Extreme
Value

Distributions

the update step D-'U is independent of the estimate of o, and the

maximum likelihood estimate of nc is the sum of squared residuals.
None of these hold so neatly for right-censored data.

If y has a Weibull distribution, log(y) is distributed according to the
least extreme value distribution. Fits on the latter scale are
numerically preferable because they remove the range restriction on

y. A Weibull distribution with the scale constrained to be 1 gives an
exponential model.

The standardized variable z defined by Equation (29.1) has mean
0.5722 and variance 2/ 6. Let w = e?. Then the standard least
extreme value distribution is defined as

F(z) = 1-eV

f(z) = weW

f'(z2) = (1 -w)f(2)

f'(z) = (W2 -3w+ 1)f(2)

The derivatives for the terms in the log-likelihood, Equation (29.2),
are given by:

g, =2-Ww gy = —W g; = log(1-e™)

g, =w-1 gy =w 9’3 = —(we")/ (1-e™W)

97, = -w 97y = -w noo_ _(We(l-W)) _yy2
0 3 —(I—E‘W) (9'3)

The mode of the distribution is at z = 0 with '(0) = 1/ e. For an
exact observation, the deviance term has y = y. For interval-

censored data where the interval is of length b = z¥—z!, most mass is
covered if the interval has a lower endpoint of

1 = log(b/ (eb-1)),
so that the resulting log-likelihood is

log(e*ea —ee?t b) .
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Logistic

370

This distribution is very close to the Gaussian except in the extreme
tails, but it is far easier to work with. All the computations are closed
form. However, some data sets may contain survival times close to
zero, leading to differences in fit between the lognormal and log-
logistic choices. In such cases, the rationality of a Gaussian fit may
also be in question.
The standardized variable z defined by Equation (29.1), has mean 0
(zero) and variance 12/ 3. Again, let w = e?. The standard logistic
distribution is defined by

F(z) = w/ (1+w)

f(z) = w/ (1+w)?

F(2) = f@)((1-w)/ (1+w))

(2) = f(Z)(W2—4w+ 1)/ (1 +w)2)

The derivatives for the terms in the log-likelihood, Equation (29.2),
are given by:

g, = z-2log(1+w) g, = —log(1+w) g3 = z—log(1+w)
ro= W=D P W S
I (w+1) 92_(1+W) 9= Thw
no_ 2w no_ W no_ W
LT T W YT TThwe YT TTrwy

The distribution is symmetric about 0, so for an exact observation the
contribution to the deviance term is -log(4). For an interval-

censored observation with span 2b the contribution is

b _
log(F(b) - F(~b)) = 1og(§b n D
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Other Some other population hazards can be fit into this location-scale
Distributions framework, while others cannot.

Distribution Hazard
Weibull pA(Lt)P-1
Extreme value (1/ o)et-1/ ¢
Rayleigh a+ bt
Gompertz bct

Makeham a+ bet

We can see that an extreme value distribution on t' = log(t)) is
equivalent to a Weibull hazard on t, withp = 1/ ¢

The Makeham hazard a+bc' seems to fit human mortality
experience beyond infancy quite well. Here a is a constant mortality
that is independent of the health of the subject (accidents, homicide,
etc.), and the second term models the Gompertz assumption that “the
average exhaustion of a man’s power to avoid death is such that, at
the end of equal infinitely small intervals of time, he has lost equal
portions of his remaining power to oppose destruction which he had
at the commencement of these intervals.” For older ages, a is a
negligible portion of the death rate and the Gompertz model holds.

The next two statements follow from the form of the hazards in the
table:

«  The Weibull distribution with p = 2 (¢ = 0.5) is the same as

a Rayleigh distribution with a = 0. It is not, however, the
most general form of a Rayleigh.

* The extreme value and Gompertz distributions have the same
hazard function, witho = 1/ (log(c)) and exp(-1v¥ o) = b.
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On first glance, it appears that the Gompertz can be fit with an
identity link function combined with the extreme value distribution,

but this ignores a boundary restriction. If f(x;n o) is the extreme

value distribution with parameters M and o, the definition of the
Gompertz density is

0 x<0
cf(x;n o) x>0

g(x;n o)
g(x;n o)

where ¢ = exp(exp(-1Y ©)) is the constant necessary so that g

integrates to 1. If v o is far from 1, the correction term is minimal
and survReg should give a reasonable fit to Gompertz data. If not, the
distribution cannot be made to easily conform to the general fitting
scheme of the function. The censorReg function, however, can fit the
data using the truncation argument to specify that each observation

is restricted to (0, 9.

The Makeham distribution falls into the gamma family (equation 2.3
of Kalbfleisch and Prentice) but with the same range restriction
problem.
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A FINAL EXAMPLE

The capacitor data frame contains data from a simulated life testing
of capacitors from Meeker and Duke (1982). The capacitor data
frame is close enough to the data modeled in Nelson (1990), page
302, that it works as a verification data set. The variables in capacitor
are:

* days, time to failure
* event, indicator of failure (1) or censoring (0)
* voltage, voltage at which the test was run

A summary of this data frame follows:
> summary(capacitor)

days event voltage
Min. : 0.68 Min. :0.000 Min. :20.00
1st Qu.: 73.87 1st Qu.:0.000 1st Qu.:26.00
Median :300.00 Median :0.000 Median :26.00
Mean :205.20 Mean :0.432 Mean :26.72
3rd Qu.:300.00 3rd Qu.:1.000 3rd Qu.:29.00
Max. :300.00 Max. 1.000 Max. :32.00

You fit a Weibull model to the capacitor data as follows:

> capac.fitl <- survReg(Surv(days, event) ~ voltage,
+ data = capacitor)

You don’t have to specify the distribution in this case because
survReg defaults to dist="weibull".

Printing the resulting fit produces the following display:
> capac.fitl

Call:
survReg(formula = Surv(days, event) ~ voltage,
data = capacitor)

Coefficients:

(Intercept) voltage
24.13993 -0.6403297
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Scale= 1.203916

Loglik(model)= -316.5 Loglik(intercept only)= -372.8
Chisgq= 112.61 on 1 degrees of freedom, p= 0
n= 125

The summary of the fit object is shown below:
> summary(capac.fitl)

Call:

survReg(formula = Surv(days, event) ~ voltage, data =
capacitor)

Value Std. Error z p

(Intercept) 24.140 2.4493 9.86 6.48e-023
voltage -0.640 0.0811 -7.89 2.93e-015
Log(scale) 0.186 0.1113 1.67 9.54e-002

Scale= 1.2

Weibull distribution

Loglik(model)= -316.5 Loglik(intercept only)= -372.8
Chisgq= 112.61 on 1 degrees of freedom, p= 0

Number of Newton-Raphson Iterations: 5

n= 125

Correlation of Coefficients:
(Intercept) voltage
voltage -0.998
Log(scale) 0.560 -0.559

Voltage is clearly quite significant in the model. McCullagh and
Nelder discuss the utility of deviance residual plots in assessing the fit
of a model. The following code constructs the plot of deviance
residuals versus the logged fitted values displayed in Figure 29.4.

> plot(log(fitted(capac.fitl)), resid(capac.fitl,

+ type = "deviance"))
The example in Nelson (1990), page 302, displays a Weibull model
with the logged scale parameter, log.(o), modeled as a linear
function of log,(voltage). We fit and display a partial summary of

this second model as follows.
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> capac.fit2 <- survReg(Surv(days, event) ~ log(voltage),
+ data = capacitor)

> summary(capac.fit2)

Call:

survReg(formula = Surv(days, event) ~ log(voltage), data =
capacitor)

Value Std. Error z p

(Intercept) 67.945 8.151 8.34 7.71e-017
log(voltage) -18.546 2.396 -7.74 9.81e-015
Log(scale) 0.191 0.111 1.71 8.67e-002

Scale= 1.21

Weibull distribution

Loglik(model)= -316.4 LogTlik(intercept only)= -372.8
Chisgq= 112.71 on 1 degrees of freedom, p= 0

Number of Newton-Raphson Iterations: 6

n= 125

Correlation of Coefficients:
(Intercept) Tog(voltage)
log(voltage) -1.000
Log(scale) 0.543 -0.542

O 00 00O

= "deviance")

o 00w O 00

resid(capac.fit1, type
-1
1
©O COmW G COW

o
0 O O o@mo

T T T T
4 6 8 10

log(fitted(capac.fit1))

Figure 29.4: Deviance residuals versus fitted values for a model of capacitor failure
times versus voltage.
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Parametric regression models for censored data are used in a variety
of contexts, ranging from manufacturing to studies of environmental
contaminants. Because of their frequent use for modeling failure time
or survival data, they are often referred to as parametric survival
models. In this context, they are used throughout engineering to
discover reasons why engineered products fail. They are called
accelerated failure time models or accelerated testing models when the
product is tested under more extreme conditions than normal to
accelerate its failure time.

Most product engineering can’t wait long enough to observe ample
failures for fitting models under normal operating conditions. The
results obtained under extreme conditions are related to the results
that would be obtained when the product is subject to normal wear.
Thus, for example, capacitors may be operated under higher
temperatures and voltages than normal to increase their likelihood of
failure. The resulting fitted model is used to extrapolate failure rates
back to normal operating conditions. Similar use is made of these
failure time distributions in the context of survival analysis, where
living organisms rather than engineered products are the primary
interest.

In the context of environmental studies, the measures of interest may
be chemical contaminant levels rather than failure times, but these
data are frequently censored or obtained from truncated distributions.
Censored and/or truncated data regression methodology applies
equally well in these cases but, of course, the values of interest have
nothing to do with survival.

Model selection is a major concern when using censored regression
models. As in other model fitting activities, the distributional
assumptions that are made must be appropriate for the data collected,
and the model must also reasonably account for variation in the
independent variables. Consequently, visual comparisons of the
predicted distribution of the response with nonparametric estimates
of the distribution is an important activity when fitting models. To
obtain the most appropriate model, usually a number of models with
different failure distributions and/or dependence relationships with
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the independent variables are fitted and compared. Visual
comparison and statistical tests are then used to determine the most
appropriate model.

Given that a model has been obtained, the results may be
extrapolated to new values for the independent variables, and
inference procedures may be used to obtain interval estimates for
failure probabilities or quantiles of the response. In doing this, the
usual precautions apply: one should not try to extrapolate model
information too far beyond the values collected in the data.
Moreover, because the interval estimate procedures are asymptotic,
the confidence levels should be treated as approximate, especially in
small samples.

In this chapter we discuss a set of functions for the analysis of
censored and/or truncated data or, more specifically, for the analysis
of accelerated failure time and survival data. These functions are
based upon estimation code originally developed by Meeker and
Duke (1981) and refined subsequently by W.Q. Meeker (personal
communication). This estimation code has been modified slightly for
inclusion in the Spotfire S+ product. The Spotfire S+ code that calls
the underlying estimation routines borrows from work done by both
W.Q. Meeker and Terry Therneau. For further reading on analyzing
accelerated test data see Nelson (1990) or Meeker and Escobar
(1998).

Taken as a whole, the Spotfire S+ functions we discuss in this chapter
allow you to easily specify and fit censored data models. They allow
you to graph and compare the fitted models with appropriate
nonparametric estimates of these models. You can also make
inferences regarding the model parameters, predicted failure
probabilities, and quantiles. We begin by briefly discussing the
nonparametric estimates and how they may be computed. This brief
introduction is followed by a complete discussion of the model fitting
software for censored data with emphasis on accelerated failure time
models. We then discuss the ANOVA function, which can be used to
compare one or more fitted models, and we describe the various
visualizations that can be performed once a model has been fit. In the
final sections of this chapter, we discuss the estimation of quantiles
and failure probabilities at various points for selected values of the
independent variables.
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The censorReg function discussed in this chapter supersedes the
survreg function available in previous versions of Spotfire S+, as it
provides more extensive parametric survival capabilities. The censor
function is a new function for use in formulas, and specifies censoring
codes in a more general way than does the Surv function. The
kaplanMeier function is a companion function to survfit, providing
Kaplan-Meier estimates for survival models specified by the censor
function in censorReg.



The Generalized Kaplan-Meier Estimate

THE GENERALIZED KAPLAN-MEIER ESTIMATE

The Kaplan-Meier estimator produces nonparametric estimates of
failure probability distributions for a single sample of data that either
contains the exact time of failure, or is right-censored. A right-censored
observation is one in which the failure time is only known to be
greater than the time it was removed, or censored, from the study.
Because we consider data that may be left-censored, observed in an
interval, and/or grouped as well, we use a generalization of the
Kaplan-Meier estimate originally developed by Turnbull (1974,

1976).

Specifying Consider the following (artificial) table of failure times:

Interval Table 30.1: Failure time format.

Censored Data Unit Failure Upper Censor Censor Codes
1 7 NA right 0
2 4 NA exact 1
3 5 NA exact 1
4 9 NA right 0
5 3 NA left 2
6 2 9 interval 3
7 7 12 interval 3
8 4 NA exact 1
9 11 NA right 0

381



Chapter 30 Life Testing

382

First we define what we mean by the censoring types. Let C = (L,U)
be a random censoring interval, let T be the failure time, and suppose
that C and T are independent. Note that less strict assumptions are
possible; see, for example, Andersen, et al., 1993. An observation is
an exact failure if the failure time T is observed so that T<L. The
observation is right-censored if the censoring time L is observed so that
T>L. The observation is interval-censored if all that is known is that
L <T < U . Finally, the observation is lefi-censored if all that is known is

that 0 <T <U ; that is, the observation is interval-censored with a
lower censoring time of zero.

In Spotfire S+, a censoring code indicates the type of censoring.
Censoring codes are handled quite generally, allowing you to specify
a set of values for each type of censoring. The default codes are 0 for
right-censored observations, 1 for exact failures, 2 for left-censored
observations, and 3 for interval-censored observations. To specify a
censored distribution dependent variable, you must give both the
time of failure or censoring, and except in exact failure (or complete)
data, the censoring code. The Spotfire S+ function censor is used to
specify the dependent variable. For the data in Table 30.1, the correct
specification is:

> unit <- c(1:9)

> failure <- c(7, 4, 5, 9, 3, 2, 7, 4, 11)

> upper <- c(rep(NA,5), 9, 12, NA, NA)

> Censor <- c("right", "exact", "exact", "right",

+ "left", "interval™, "interval", "exact", "right")
> censor.codes <- ¢(0, 1, 1, 0, 2, 3, 3, 1, 0)

> censor(failure, upper, censor.codes)

[1] 7+ 4 5 9+ 3- L2, 9107, 12]
[8] 4 11+

When three arguments are specified to censor, the default censoring
type is “interval.” To show the generality of the censor function, an
alternate way of specifying the censor codes is by using the Censor
column and stating explicitly what the codes are:

> cens <- censor(failure, upper, Censor, event = "exact",
+ right = "right", left = "left", interval = "interval")
> cens
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[11 7+ 4 5 9+ 3- L2, 917, 12]
[8] 4 11+

While this is lengthier command, it is far more general and allows you
to specify a vector of codes for each of the four censoring types.

It is always a good idea to display the output from the censor function
to verify that you have correctly specified the censoring information.
This is especially important because it is common practice to reverse
the censoring codes for exact failures and right-censored
observations; these values must be correctly specified if the analysis is
to be meaningful. An additional check you can do is to examine the
censor codes map as follows:

> censorCodesMap(cens)

event: exact ==> 1

right: right ==> 2

left: left ==> 3
interval: interval ==> 4

The internal codes 1, 2, 3, and 4 are used by the estimation routine.

The outCodes argument to censor allows you to use it with the coxph,
survreg, and survfit routines, which require internal codes of 1
(event), O (right), 2 (left), and 3 (interval). Setting the outCodes
argument to "0-3" results in the internal codes that the three survival
functions require:

> cens <- censor(failure, upper, Censor, right = "right",
+ left = "left", event = "exact", interval = "interval",
+ outCodes = "0-3")

> censorCodesMap(cens)

event: exact ==> 1

right: right ==> 0

left: Teft ==> 2
interval: interval ==> 3
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Computing
Kaplan-Meier
Estimates
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The outCodes argument allows you to generate output that is
equivalent to the output from Surv. This allows you to pass a censor
object to those functions that require an object of class "Surv". A
simple example shows the idea. You can fit a model using coxph with
the following call to censor:

> coxph(censor(time, status, outCodes = "0-3") ~ age + sex,
+ data = lung)

When you specify outCodes="0-3", not only are the output codes set
accordingly, but the return value of censor inherits from Surv, which
is required by coxph. You can also go the other way, from Surv to
censor, by selecting each column of a Surv object to pass to censor.

The kaplanMeier function is used to compute Kaplan-Meier estimates
and Turnbull’s generalization of the Kaplan-Meier estimates. It
generalizes survfit by allowing left- and interval-censored data, and
it uses the same formula specification as the censorReg function
discussed later in this chapter. For the data in Table 30.1, use the
following Spotfire S+ statements to create a data frame called
int.data and compute Kaplan-Meier estimates with standard
confidence intervals:

> int.data <- data.frame(unit, failure, upper, Censor,
+ censor.codes)

> int.data

unit failure upper Censor censor.codes

1 1 7 NA right 0
2 2 4 NA exact 1
3 3 5 NA exact 1
4 4 9 NA right 0
5 5 3 NA left 2
6 6 2 9 interval 3
7 7 7 12 interval 3
8 8 4 NA exact 1
9 9 11 NA right 0

> kaplanMeier(censor(failure, upper, censor.codes) ~ 1,
+ data = int.data, conf.interval="identity")

Number Observed: 9
Number Censored: 6
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Confidence Type: identity
Survival Std.Err 95% LCL 95% UCL

(-Inf, 2] 1.000 0.000 1.000 1.000
( 3, 4] 0.861 0.127 0.612 1.000
( 4, 5] 0.583 0.173 0.244 0.922
( 5, 7] 0.444 0.166 0.120 0.769
( 9, 111] 0.444 0.166 0.120 0.769
( 12, Inf) 0.000 0.000 NA NA

In the output, each row begins with a label indicating the observation
interval. The time interval is followed by the survival estimate, the
standard error for the estimate, and approximate confidence intervals
for the estimate.

The kaplanMeier model computed above estimates the survival curve
for a single sample. If independent variables were available in the
sample, the values of all the independent variables would have to be
identical to obtain meaningful results from kaplanMeier. If an
independent variable is used on the right side of a formula, it is
treated as a stratification variable and separate survival curves are
estimated for each value.

Consider the capacitor2 data set distributed with Spotfire S+. This
data set contains four variables:

* days, the time of failure or censoring.

+ event, the censoring code. A value of 1 is a failure at time
days while O is right-censoring at time days.

* weights, the number of observations represented by that row.

* voltage, the voltage at which the capacitor was tested. There
are four distinct voltages in the data set.

To analyze the failure date without regard to the test voltage, the
following statement is used:

> kaplanMeier(censor(days, event) ~ 1, weights = weights,
+ data = capacitor?2)

However, this model ignores the different test voltages. An alternate
analysis computes a nonparametric estimate of the failure time for
each voltage. This is done with the statements:

> km.cap <- kaplanMeier(censor(days, event) ~ voltage,
+ weights = weights, data = capacitor2,
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+ conf.interval="identity")
> km.cap

voltage=20

Number Observed: 25

Number Censored: 25

[1] Not enough failures available to fit a nonparametric
censored data model

voltage=26
Number Observed: 50
Number Censored: 39
Confidence Type: identity
Survival Std.Err 95% LCL 95% UCL

( -Inf, 12.95] 1.00 0.000 1.000 1.000
(12.95, 28.41] 0.98 0.020 0.941 1.000
( 28.41, 63.10] 0.96 0.028 0.906 1.000
( 63.10, 136.33] 0.94 0.034 0.874 1.000
(136.33, 139.37] 0.92 0.038 0.845 0.995
(139.37, 179.02] 0.90 0.042 0.817 0.983
(179.02, 187.80] 0.88 0.046 0.790 0.970
(187.80, 201.28] 0.86 0.049 0.764 0.956
(201.28, 214.28] 0.84 0.052 0.738 0.942
(214.28, 271.73] 0.82 0.054 0.714 0.926
(271.73, 277.33] 0.80 0.057 0.689 0.911
(277.33, 300.00] 0.78 0.059 0.665 0.895

voltage=29
Number Observed: 20
Number Censored: 7
Confidence Type: identity
Survival Std.Err 95% LCL 95% UCL

( -Inf, 10.21] 1.00 0.000 1.000 1.000
(10.21, 40.69] 0.95 0.049 0.854 1.000
( 40.69, 45.85] 0.90 0.067 0.769 1.000

For voltage=20, there are not enough observations in the sample to
compute estimates. For voltage=26, voltage=29, and voltage=32,
estimates are computed and displayed in separate tables.
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The Kaplan-Meier estimates of failure probabilities can also be used

to compute nonparametric estimates of the quantiles. For example,
the statement

> gkaplanMeier(km.cap, p = seq(from=0.1, to=0.9, by=0.1))

produces the result below.
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$"voltage=20":
[1]1 NA

$"voltage=26":
0.1 0.2 0.3 0.4 0.50.6 0.7 0.80.9
139.37 271.73 Inf Inf Inf Inf Inf Inf Inf

$"voltage=29":
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
45.85 55.73 91.81 108.62 164.2 257.88 Inf Inf Inf

$"voltage=32":
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.81 5.45 6.26 11.51 15.16 20.86 65.9 94.08 149.2

Notice that because no failures were observed beyond 300 days,
survival drops to 0.0 in the final intervals for 26 and 29 volts, resulting
in quantile estimates that are infinite. The true value is, of course,
finite, but is not estimable from these data.

The plot method for the kapTanMeier function produces a plot of the
estimated survival curves with optional confidence bands. For
example, you can plot the fit km.cap from the previous section with
the command:

> plot(km.cap)

To add confidence intervals to the curves, specify a logical vector to
the conf.int argument as follows:

> plot(km.cap, conf.int = c(T, T, T))

Figure 30.1 displays the resulting plot.
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Figure 30.1: Plot of km. cap.
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The conf.int argument allows you to specify confidence intervals for
each curve independently, so you can turn some intervals on and
leave others off. Confidence intervals are automatically added when
only one survival curve is plotted, as for a nonstratified fit. When
more than one curve is plotted with confidence intervals, the line type
for the confidence interval automatically matches that of the survival

curve.

Additional arguments to plot.kaplanMeier allow you to specify the
color of the survival curves with color-matching confidence intervals.
In addition, the line type and line width of the curves and confidence
intervals can be specified along with x- and y-axis labels. In general,
any argument to the generic plot function can be given to
plot.kaplanMeier, including x1im for specifying x-axis limits and
main for specifying a main title for the plot.
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You can also use plot.kaplanMeier as a low-level graphics function
for adding survival curves to an existing plot. This requires, of course,
that the axis limits be set appropriately so that warning messages are
not generated when the survival curves or their confidence intervals
extend beyond the range of the plot region. An example uses the
built-in data set Tung. To do a stratified fit the inst column, plot two
curves from the fit and then overlay a third plot using the following
commands:

> kap.lung <- kaplanMeier(censor(time, status) ~ inst,

+ data = lung, na.action = na.exclude)

> plot.kaplanMeier(kap.lung$fits[c(l, 5)1)

> plot.kaplanMeier(kap.lung$fits[9], conf.int =T, 1ty = 4,
+ add = T)

Note that the plot.kaplanMeier function is called explicitly here,
because fits that are subscripted out of a kaplanMeier object lose their
class designation. Also note that the above example is for pedagogy
only. It could more easily be accomplished by doing the plots in a
single call to plot.kaplanMeier, as follows:

> plot.kaplanMeier(kap.lung$fits[c(1l, 5, 9)1,
+ conf.int = c(F, F, T))

Figure 30.2 shows the result of this latter call.
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Figure 30.2: Plot of kap. Tung.
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Parametric (rather than nonparametric) estimates of failure
distributions can be easily computed with the censorReg function.
Like kaplanMeier, the censorReg function can handle interval-, right-,
and left-censoring. In addition, censorReg handles three general
families of failure distributions with logged and unlogged versions,
truncated data, offsets, a threshold parameter, fixed coefficients, and
much more.

As the simplest possible example, use the defaults for most arguments
in a censorReg model with no covariates. For the capacitor?2 data set,
a possible Spotfire S+ statement is:

> para.fit <- censorReg(censor(days,event) ~ 1,
+ weights = weights, data = capacitor?2)

> para.fit

Call:
censorReg(formula = censor(days, event) ~ 1, data =
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
(Intercept)
6.704817

Dispersion (scale) = 1.821207
Log-1ikelihood: -372.7664

Observations: 125 Total; 71 Censored
Parameters Estimated: 2

As with the kaplanMeier function, the response is specified by the
censor function. Because the model formula contains no covariates, a
parametric model is fit for a single sample of observations. In this
case, the parametric family defaults to the Weibull distribution. In the
output, the location parameter for the Weibull distribution is
estimated as 6.704 and the scale parameter is estimated as 1.82.
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As with other Spotfire S+ fitting functions, summary can be used to
obtain a more detailed summary of the fit. Following is the result of
calling summary on the fit object:

> summary(para.fit)

Call:
censorReg(formula = censor(days, event) ~ 1, data =
capacitor2, weights = weights)

Distribution: Weibull

Standardized Residuals:
Min Max

Uncensored 0.020 0.553
Censored 0.577 0.577

Coefficients:

Est. Std.Err. 95% LCL 95% UCL z-value p-value
(Intercept) 6.7 0.296 6.12 7.29 22.6 3.01le-113
Extreme value distribution: Dispersion (scale) = 1.821207
Observations: 125 Total; 71 Censored
-2*Log-Likelihood: 746

Specifying the The censorreg function supports 10 parametric distribution families.

Parametric A particular family can be specified by setting the distribution
Famil argument in censorReg equal to the quoted string in the first column
amily of Table 30.2.

The discussion following the table describes the internal specification
of the parametric distribution families as they are viewed by the
estimation routines. The general user need not be concerned with this
aspect of the family specification, and can safely skip the rest of this
section. The discussion is included here for the user who wants or
needs access to the internal routines.
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Table 30.2: Distributions supported by censorReg.

Argument Distribution

"weibull" Weibull

"extreme"” Smallest extreme value
"lognormal" Log-normal or log-Gaussian
"normal" Normal or Gaussian
"lToglogistic" Log-logistic

"logistic"” Logistic

"logexponential™ Log-exponential
"exponential" Exponential

"lograyleigh" Log-Rayleigh

Internally, the distributions are defined by two quantities, following
the development of standard textbooks on parametric survival
analysis: the distribution of the random variable, and the link

function. Let g (*) denote the link function, and let

, = I -xB
(0

be the random variable for failure time y. Here G is the scale factor,
X is a vector of covariates, and B is a vector of coefficients. In the
simplest model, x = 1 for the intercept term. The term X specifies

the location of the estimates. Two link functions g (*) are possible: the
identity link

gx) = X,
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and the loglink
g(x) = logx.
Three distributions for z are available. These are the logistic
I et
(1 + exp(~2))?

the normal or Gaussian distribution

f(z) = —I——exp - %ZQ ,
T

J2m

and the smallest extreme value distribution
f(z) = exp(z - exp(2)).

When the log link is used with a fixed value of ¢ = 1, the smallest
extreme value distribution becomes an exponential distribution; if
6 = 0.5, this becomes the Rayleigh distribution. When the smallest

extreme value distribution is used with the log link, the distribution
can be made equivalent to the two-parameter Weibull distribution:

1_
@ = GeX;(XB)(eXpZ(XB))G lexp(—(mﬁ'

Here, 6 = (15 is the shape parameter.

Typically, failure times are positive since failure at a negative time is
not usually meaningful. However, it is possible to give censorReg
negative values for survival times when the identity link function is
used. This might be useful with a Gaussian distribution, for example,
which takes values over the entire real line.

To fit a Gaussian model to the capacitor2 data, type:

> censorReg(censor(days, event) ~ 1, data = capacitor2,
+ distribution = "gaussian")

The hazard rate is the instantaneous rate of failure. This is computed
as the first derivative of the failure density with respect to time.
Different distributions result in different hazard rates, and thus in

395



Chapter 30 Life Testing

Accounting for
Covariates

396

different models. Much time in model building can be spent in
deciding upon the correct model to use. The plotting functions
discussed below can help in making this decision.

In the censorReg models above, we consider only a single sample of
observations from the same distribution. Typically, a survival model
also includes covariates to describe the distribution. For example,
accelerated failure time models describe designed experiments in
which a covariate is held fixed at a specified value for some
observations, and the time to failure for the observations is recorded.
The capacitor2 data set is an example of such an experiment. Four
values of the covariate voltage were observed: voltage=20,
voltage=26, voltage=29, and voltage=32. Suppose we assume that
the location parameter varies linearly with the voltage covariate:

. g(y) — 0 — 0 X
= =,

for intercept o, . This model can be specified with the Spotfire S+

statement:

> censorReg(censor(days, event) ~ voltage,
+ weights = weights, data = capacitor?)

Call:
censorReg(formula = censor(days, event) ~ voltage, data =
capacitor2, weights = weights)

Distribution: Weibull
Coefficients:
(Intercept) voltage

24.14083 -0.6403586

Dispersion (scale) = 1.203945
Log-Tikelihood: -316.4589

Observations: 125 Total; 71 Censored
Parameters Estimated: 3
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In this model, the location parameter is obtained by regression on
voltage. This requires a /linear relationship of the hazard rate on
voltage. Assuming that the relationship is not linear, a more general
model fits

L9 oo
- :

In this model, i indexes the different voltages, and the location
parameter is allowed to vary in an arbitrary manner with voltage.
This model is accomplished with the following command:

> censorReg(censor(days, event) ~ factor(voltage),
+ weights = weights, data = capacitor2)

Alternatively, suppose that the scale parameters are different for
different values of the covariate. Then the model

L oI

G

can be specified using the Spotfire S+ statement:

> censorReg(censor(days, event) ~ strata(voltage),
+ weights = weights, data = capacitor2)

In all but the last case, an object of class "censorReg” is produced.
When the strata function is used to create a stratified fit (as in the last
example), an object of class "censorRegList" is produced. This object
contains a list of censorReg objects.

The anova function is used to compare the models described above.
This is discussed in more detail in the section Comparing Parametric
Survival Models.

Aside from the distributions above, it is also possible to specify a
different truncation distribution for each observation. In truncated
data, the item being tested is not observed over the entire positive
axis. Instead, observation of the item is made over a known interval
that is a subset of the time period in which the observation could fail.
Thus, if there is left truncation, the items under test may be
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manufactured, used for a time, and then placed on test. Although the
time to failure is scored as the time since manufacture, items that fail
prior to being placed on test are not scored.

Let t = 0 be the time of manufacture, and suppose that testing begins

at t = 0. If F(0) is the cumulative distribution of the failure time
when observation starts at time zero, the distribution of the left-
truncated failure times is given by

F(t)0) = —O_
1-F(0)
Similarly, in right truncation, observation of failure or censoring is
only made until t = 6. Observations that either fail or are censored
after time 0 cannot be observed or are thrown out. Finally, in interval
truncation, observation is made over a fixed interval (6,, 0,), and
observations that fail or are censored outside of the interval are not
considered.

Truncation distributions can be fit easily with the censorReg function.
For example, to obtain a Gaussian fit to the data in Table 30.3, use the
following set of commands to first build the data set:

unit <- c(1:9)

failure <- ¢(7, 4, 5, 9, 4, 5, 7, 4, 11)

upper <- c(rep(NA,5), 9, 12, NA, NA)

Censor <- c("right", "exact", "exact", "right",
"Teft", "interval", "interval", "exact"™, "right")

censor.codes <- c¢(0, 1, 1, 0, 2, 3, 3, 1, 0)
tlower <- ¢(3, 0, 0, 3, 9, 3, 3, 0, 3)

tupper <- c(rep(NA,5), 20, 20, NA, NA)

trunc.codes <- ¢c(2, 1, 1, 2, 0, 3, 3, 1, 2)

table4 <- data.frame(unit, failure, upper,

Censor, censor.codes, tlower, tupper, trunc.codes)

+ VvV V V VvV V 4+ V V VYV
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Table 30.3: Truncated data.

Lower Upper Truncatio
Failur Censor | Truncatio | Truncatio n
Unit e Upper | Censor | Codes n n Codes

1 7 NA right 0 3 NA 2
2 4 NA exact 1 0 NA 1
3 5 NA exact 1 0 NA 1
4 9 NA right 0 3 NA 2
5 4 NA left 2 9 NA 0
6 5 9 interval 3 3 20 3
7 7 12 interval 3 3 20 3
8 4 NA exact 1 0 NA 1
9 11 NA right 0 3 NA 2

The following call to censorReg computes the Gaussian fit:

> trunc.fit <- censorReg(

+ censor(failure, upper, censor.codes) ~ 1, data = table4,
+ truncation = censor(tlower, tupper, trunc.codes),

+ distribution = "lognormal")

> trunc.fit

Call:

censorReg(censor(failure, upper, cens) ~ 1, data = table4,
truncation = censor(tlower, tupper, trunc.codes),
distribution = "lognormal™)

Distribution: Lognormal

Coefficients:
(Intercept)

399



Chapter 30 Life Testing

Threshold
Parameter

400

1.920974

Dispersion (scale) = 0.9211897
Log-Tikelihood: -12.49965

Observations: 9 Total; 6 Censored
Parameters Estimated: 2

Because the log-likelihood is numerically complex when truncation
distributions are used, it is important to verify convergence. Here,
convergence is verified by the near-zero values of the first derivatives
of the log-likelihood. We can extract the derivatives from the
trunc. fit model as follows:

> trunc.fit$first.deriv

(Intercept) scale
-6.594777e-010 -4.993228e-009

Truncation distributions modify the fitted distribution by considering
failure in a subset of the positive real line. A distribution with a
threshold parameter also modifies the failure distribution, but in a
slightly different way. The idea of the threshold parameter is that test
items cannot fail for a period of time after testing begins. Although
testing begins at time zero, no tested item fails for some fixed period
y after time zero. Thus, the failure distribution is given by
F(t|y) = F(t—7). The net effect of the threshold parameter is to shift
the failure distribution to the right by a fixed amount.

Maximum likelihood estimation of y is not easily accomplished,
though there is some discussion of this in Meeker and Escobar (1998,
pp- 224-231). You can either compute the value of y yourself and
enter it as input to the censorReg function, or censorReg can estimate
v in two different ways. The first is to simply decrease the smallest
failure time by 10%. The second works only for log distributions, and
computes a value for y which optimally linearizes a qqplot of the
Kaplan-Meier survival estimate. By default, y = 0. Once computed,
Y is carried along with the censorReg object for further computations
and information.
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For the example in Table 30.3, we can set the threshold parameter
equal to two as follows:

> censorReg(censor(failure, upper, censor.codes) ~ 1,
+ data = table4, truncation = censor(tlower, tupper,
+ trunc.codes), distribution = "lognormal™, threshold = 2)

Call:

censorReg(formula = censor(failure, upper, censor.codes) ~
1, data = table4, truncation = censor(tlower, tupper,
trunc.codes), distribution = "Tognormal™, threshold = 2)

Distribution: Lognormal

Coefficients:
(Intercept)
1.664897

Dispersion (scale) = 1.38711
Log-likelihood: -12.23809

Observations: 9 Total; 6 Censored
Parameters Estimated: 2
Threshold Parameter: 2

Notice that the coefficient estimates have dramatically changed.

Like threshold parameters, offsets are also used to change the
distribution of the failure time variable. Let ® denote a known, fixed

offset, and let y denote the failure time. When offsets are used, the
transformed failure time becomes

; = I -—o-xB

()

A typical use of offsets is in likelihood ratio tests. Suppose that

X;B1 + XoB2 optimizes the likelihood when covariates x; and X, are

included in the model. Then a likelihood ratio test of Hy:B1 = ¥ is
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obtained by setting ® = X;k, and then comparing the optimized
value of the likelihood of a model w+ XQBQ with the optimized

likelihood for model XIBI + XQBQ .

We illustrate this idea using the built-in capacitor2 failure data.
When the voltage covariate is included in the model, the output is:

> censorReg(censor(days,event) ~ voltage,
+ weights = weights, data = capacitor2)

Call:
censorReg(formula = censor(days, event) ~ voltage, data =
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
(Intercept) voltage
24.14083 -0.6403586

Dispersion (scale) = 1.203945
Log-likelihood: -316.4589

Observations: 125 Total; 71 Censored
Parameters Estimated: 3

A likelihood ratio test that the voltage coefficient is fixed at -0.5 is
obtained by fitting a second model that fixes the parameter estimate
of voltage. This is accomplished with an offset term:

> censorReg(censor(days, event) ~ offset(-0.5 * voltage),
+ weights = weights, data = capacitor2)

Call:
censorReg(formula = censor(days, event) ~ offset(-0.5 *
voltage), data = capacitor2, weights = weights)

Distribution: Weibull
Coefficients:

(Intercept)
19.94567
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Dispersion (scale) = 1.090527
Log-Tikelihood: -1129.826

Observations: 125 Total; 71 Censored
Parameters Estimated: 2
Offset has been specified

Computing the likelihood ratio test from the above two fits by hand

we get:

LRT =-2*%(-1129.8 + 316.5) = 1626.6

which is compared with a chi-squared distribution with one degree of

freedom. Clearly, this is a significant result.

It is also possible to simply fix parameters in the model. Most often
the scale parameter is fixed, but it is possible to fix any parameter. For
example, in the capacitor2 example we may fix the voltage

coefficient to be -0.5 using the command:

> censorReg(censor(days, event) ~ voltage, data

+ capacitor2, weights = weights, fixed = 1list(
+ voltage = -0.5))

Distribution: Weibull

Coefficients:
(Intercept)
19.94567

Dispersion (scale) = 1.090527
Log-likelihood: -1129.826

Observations: 125 Total; 71 Censored
Parameters Estimated: 2

Comparing this with the results in which offset is used, we see that
the effect of fixing voltage to be -0.5 is the same as specifying the

offset to be -0.5*voltage.
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The anova function is used to compare models. If a single object is
input to anova, then one term at a time is added to the model. The
anova comparisons start from the smallest possible model (usually the
intercept-only model) and continue until the model object is
obtained. As an example, consider the following model:

> fit <- censorReg(censor(days, event) ~ voltage +
+ voltage”2, weights = weights, data = capacitor?2)

Apply the anova function to the fit as follows:
> anova(fit, test = "Chisq")

Likelihood Ratio Test Table
Weibull model
Response: censor(days, event)

Terms added sequentially (first to last)

N.Params -2*LoglLik Df LRT Pr(Chi)

NULL 2 745.5327
voltage 3 632.9178 1 112.6149 0.0000000
I(voltage”2) 4 632.8494 1 0.0684 0.7937407

The results suggest that the location parameter of the distribution
depends on voltage linearly, and that the quadratic term is
unimportant. We verify this hypothesis below.

When two or more censorReg or censorReglist objects are input to
the anova function, the models are compared with likelihood ratio
tests. Suppose we are interested in testing whether the model for the
capacitor2 data should be

7 = W-xB
O

where X is voltage.
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More general models (in the sense of having more parameters) are

;= g(y)—OCi’
(¢)
and
;= g(y)—(xi’
O

where i indexes the different voltages. These three models plus an
intercept-only model can be generated in Spotfire S+ using the
following statements:

> fit0 <- censorReg(censor(days,event) ~ 1,
+ weights weights, data = capacitor?2)

> fitl <- censorReg(censor(days,event) ~ voltage,
+ weights = weights, data = capacitor2)

> fit2 <- censorReg(censor(days, event) ~ factor(voltage),
+ weights = weights, data = capacitor2)

> fit3 <- censorReg(censor(days, event) ~ strata(voltage),
+ weights = weights, data = capacitor?)

The models are then compared using the anova function as follows:
> anova(fit0, fitl, fit2, fit3, test = "Chisq")

Likelihood Ratio Test(s)

Response: censor(days, event)

Terms N.Params -2*LogLik Test Df LRT Pr(Chi)
1 1 2 745.53
2 voltage 3 632.92 + voltage 1 112.615 0.0000

3 factor(voltage) 5 632.37 2 vs. 3 2 0.547 0.7605
4 strata(voltage) 6 630.40 3vs. 4 1 1.973 0.1601

The evidence is now quite strong that we can’t do any better than the
model that linearly relates the location parameter of the distribution
and voltage. We can verify this by looking at graphics.
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The plot method for objects of class "censorReg" generates four to six
plots depending on the type of fit. You can generate all possible plots
for a censorReg fit object by simply using the pTot function as follows:

> plot(fitl)

The first three graphs that result from plot are equivalent to those
produced for fits of class "1m" or "gim", so they are not discussed
further here. The last four graphs are presented in Figure 30.3
through Figure 30.6.

Figure 30.3 displays a probability plot of the standardized residuals.
Standardized residuals are described in Meeker and Escobar (1998),
where they are referred to as “censored Cox-Snell” residuals. For
diagnostic purposes, a maximum likelihood estimate of a null model
(intercept only) is displayed in Figure 30.3, along with the residuals.

“with MLE

Weibull Probabilities
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Residuals
Point plotting method = km

Figure 30.3: Probability plot of standardized residuals with maximum likelihood
estimate.
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Figure 30.4 displays a probability plot of the fitted model along with
the noncensored observations. Each line corresponds to the fit for a
different value of the covariate, and each set of points corresponds to
the noncensored observations. Although the censorReg function is
not constrained to single covariates, probability plots are currently
available for single covariate models only. For more details, see the
help file for probplot.censorReg, which is the function that produces
these kinds of plots.
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Figure 30.4: Probability plot of the fit with maximum likelihood estimates.

Figure 30.5 displays what engineers refer to as a stress plot. It plots the
noncensored observations and equi-probability lines for the predictor
variable (the stressor) versus failure times. It is quite clear from the
graph that as voltage (or stress) decreases, failure times increase. Like
probability plots, stress plots are constrained to single covariate
regression models. For more details, see the help file for
stressplot.censorReg.
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Figure 30.5: Stress plot of the fit.

The final diagnostic plot for a censorReg object is displayed in Figure
30.6. This is the same plot as Figure 30.4, but repeated for six
distributions. The distributions are the Weibull, the lognormal, and
the loglogistic, coupled with their nonlogged counterparts. This plot is
provided primarily for distribution assessment. It’s quite clear from
Figure 30.6 that a nonlogged distribution does not fit the data well.
Exactly which logged distribution fits the data best is not so clear. For
more information on this kind of plot, see the help file for

probplot6.censorReg.
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Figure 30.6: Six-distribution plot of the fit.

Although the three plotting functions probplot.censorReg,
stressplot.censorReg, and probplot6.censorReg are called by the
plot method for a censorReg object, they were designed to be called
directly. This provides more capabilities than those available through
the general pTot command alone. For example, the method argument
in each of the plotting functions allows the plotted points to be
computed based upon some alternative model. This argument
defaults to the "KM", or Kaplan-Meier estimates, but four other
methods are possible. They are:

1. The "one" or null (intercept only) model, where

;- AW -p
o

for location parameter .

2. The "regression" model, in which

7 = W-xB
O

for covariate X.
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3. The "factor" model, which uses

_ gy) — o;
- (0}

z

to compute separate locations for each value of the covariate.

4. The "separate” model,

gly) — o4
I = —mm .

G

This is the most general single-variable parametric model,
and allows separate location and scale parameter estimates for
each value of the covariate.

To compare the regression fit stored in fitl with the more general
"separate" fit, use the statement:

> probplot(fitl, method = "separate™, add.legend = T,
+ Tegend.loc = "auto")

This results in the plot shown in Figure 30.7. The plotted points in
Figure 30.7 are obtained from the "separate” model and show some
deviation from the "regression" model. However, the deviation is
not statistically significant, as we saw when we compared the models
with a likelihood ratio test.

It is also possible to add confidence intervals for each maximum
likelihood estimate to get a feel for the variability of the estimated
distribution(s). To do this, set the argument mle.interval=T in the
probplot.censorReg and probplot6.censorReg functions.
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The predict method for censorReg objects computes predictions for
specified covariate values in a fitted model on either probability or
response scales, at designated quantiles or probabilities, respectively.
For example, suppose you want to estimate the time to 10%, 50%, and
90% failure from our fitl regression model for voltages of 16, 20,
and 24. The call to the predict function is:

> predict(fitl, newdata = data.frame(voltage =
+ c(16, 20, 24)))

$"voltage=16":

Estimate Std.Err 95% LCL 95% UCL
0.1 72097.22 1.028782 9598.82 541525.8
0.5 696503.03 1.133190 75570.05 6419427.9
0.9 2955616.38 1.217862 271644.96 32158403.5

$"voltage=20":

Estimate Std.Err 95% LCL 95% UCL
0.1 5565.468 0.7211182 1354.206 22872.76
0.5 53765.809 0.8136006 10913.602 264877.00
0.9 228155.656 0.8986737 39199.343 1327956.02

$"voltage=24":

Estimate Std.Err 95% LCL 95% UCL
0.1 429.6203 0.4384364 181.9228 1014.571
0.5 4150.3943 0.5003670 1556.5971 11066.302
0.9 17612.2327 0.5853507 5591.9462 55470.980

Operating the capacitor at 16 volts increases its life span by about 170
times compared to operating at 24 volts. The probability values
(proportion failed) are 0.1, 0.5, and 0.9 by default when calling the
predict function. These values can be modified with the p argument
in predict. For example, to compute the 10%, 20%, and 30% failure
times, enter:

> predict(fitl, p = c(0.1, 0.2, 0.3),
+ newdata = data.frame(voltage = c(16, 20, 24)))



Computing Probabilities and Quantiles

Alternatively, to predict the failure rates for given quantiles of the
failure time distribution (i.e., the proportion failed), specify the

type="probability" argument to predict. For example, to compute
the failure rates for 16, 20 and 24 volts at 1000, 2000, and 3000 days,

type:

> predict(fitl, q = c(1000, 2000, 3000),
+ type = "probability",
+ newdata = data.frame(voltage = c(16, 20, 24)))

$"voltage=16":

Estimate Std.Err 95% LCL 95% UCL
1000 0.003011831 0.7981976 0.0006315958 0.01423447
2000 0.005350046 0.7977207 0.0011250641 0.02504342
3000 0.007484339 0.7997419 0.0015703341 0.03489259

$"voltage=20":

Estimate Std.Err 95% LCL 95% UCL
1000 0.02500204 0.5845648 0.008088394 0.07462304
2000 0.04403085 0.5949867 0.014147239 0.12879193
3000 0.06111373 0.6058481 0.019466567 0.17587955

$"voltage=24":

Estimate Std.Err 95% LCL 95% UCL
1000 0.1914712 0.4138868 0.09520448 0.3476748
2000 0.3147595 0.4679518 0.15510243 0.5347458
3000 0.4110080 0.5191918 0.20142736 0.6587655

The difference is again dramatic when comparing 16 and 24 volts.
After 1000 days, you expect only about 3 of 1000 capacitors to fail
when operated at 16 volts, compared to 19 out of 1000 that are
operated at 24 volts.

Additional arguments to predict allow you to specify the level of the
confidence intervals, and whether you want to print the standard
errors and confidence intervals. For more details, see the descriptions
of the coverage, se.fit, and conf.interval arguments in the
predict.censorReg help file.
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This chapter describes several methods for estimating expected
survival curves. Typically expected curves are used for comparison
with another study. Sometimes the results of an earlier study are
compared with a later one to assess, for example, improvement in
treatment. Expected survival curves can be computed from tables of
hazards rates or from a previously computed Cox model.

The methodology described in this chapter includes the computation
of individual and cohort expected survival curves. Individual expected
curves are typically used to compute tests that compare the observed
survival with that expected (for example, the one-sample log-rank
test) for a matched (for example, on age, sex, and year of entry)
control population. Cohort expected curves are useful for graphical
comparisons, sample size computations, and forecasting.

Three methods are available for computing cohort expected survival
curves: the Ederer or exact method, Hakulinen’s method, and the
conditional estimate. In the Cox model literature, these have been
called the direct-adjusted, Bonsel, and expected survival curves. Each
method generates a matched control for each subject in the study and
then computes the expected survival for the matched controls. The
difference between the methods lies in the assumptions made when
computing the expected survival. The basic assumptions of each and
a brief description of its utility follows.

*  Ederer: Assumes complete follow-up (that is, no censoring).
Each control is followed until death. This is most appropriate
when doing forecasting, sample size calculations, or other
predictions of the “future” where censoring is not an issue.

*  Hakulinen: Assumes maximal potential follow-up. Each
control is followed until death or censoring of its matched
case. This is useful for graphical comparison with the study
population.

*  Conditional: Has the same assumptions and is asymptotically
equivalent to Hakulinen’s method.



Introduction

The implementation of expected survival curve estimation allows you
to add your own table of hazard rates or compute expected survival
based on a previous Cox model. Additionally, the notion of person
years of follow-up time is discussed as an example.
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Let A;(t) and A (t) be the derived hazard and cumulative hazard

functions, respectively, for subject i, starting at their time of entry to

the study. Then S;(t) = exp(—A ;(t)) is the subject’s expected survival
function. Some authors use the product form S = 1-TI(1-q,),

where the q are yearly probabilities of death; yet others use an
equation similar to actuarial survival estimates. Numerically, it makes
little difference which form is chosen. The Spotfire S+ functions use
the hazard based formulation for its convenience.

The survival tables published by the Department of the Census
contain one year survival probabilities by age and sex, optionally
subgrouped by race and geographic region. The entry for age 21 in
1950 is the probability that a subject who turns 21 during 1950 will
live to his or her 22nd birthday. For convenience, the tables stored in
Spotfire S+ contain the daily hazard rate A rather than the probability

of survival p
p = exp(-365.25 x A).

If a, s, and y are subscripts into the age by sex by calendar year
table of rates, then the cumulative hazard for a given subject is simply
the sequential sum of ,,, X number of days in state(a, s, y. That is,
the patient progresses through the rate table on a diagonal line whose

starting point is (date of entry, age at entry, sex). See Berry (1983) for
a nice graphical illustration.



Cohort Expected Survival

COHORT EXPECTED SURVIVAL

The Exact
Method

The expected survival curve for a cohort of n subjects is an average
of the n individual survival curves for the subjects. There are 3 main
methods for combining these; for some data sets they can give
substantially different results. Let S, be the expected survival for the

cohort as a whole, and let S; and A; be the individual survival and

hazard functions, respectively. All three methods can be written as

¢ Dhi(s)wi(s)
ds |.

S(t) = exp| - _—
X Swi(s)

(3L.1)

The methods differ only in the weight function w;.

The cohort curve should be distinguished from the individual curve
for an average subject. For example, assume we had a cohort of
grandfathers and their grandsons, the grandfathers average 70 years
of age and the grandsons average 10 years. The cohort curve, which is
an estimate of the curve we would expect from long term follow-up of
these subjects, is considerably different than the curve for the average
subject with mean age of 40 years.

A weight function of w;(t) = S;(t) corresponds to the exact method.

This is the oldest and most commonly used technique, and is
described in Ederer, Axtel and Cutler (1961). An equivalent
expression for the estimate is

Se(t) = (1/ n)Ei(t). (31.2)

The exact method corresponds to selecting a population-matched
control for each subject in the study, and then computing the
expected survival of this cohort assuming complete follow-up. The
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exact method is most appropriate when doing forecasting, sample size
calculations, or other predictions of the future where censoring is not
an issue.

A common use of the expected survival curve is to plot it along with
the Kaplan-Meier estimate of the sample in order to assess the relative
survival of the study group. When used in this way, several authors
have shown that the exact method can be misleading if censoring is
not independent of age and sex (or whatever the matching factors are
for the referent population). Indeed, independence is often not the
case. For example, in a long study it is not uncommon to allow older
patients to enroll only after the initial phase. A severe example of this
is demonstrated in Verheul, ¢t al. (1993), concerning aortic valve
replacement over a 20 year period. The proportion of patients over
70 years of age was 1% in the first ten years, and 27% in the second
ten years. Assume that analysis of the data took place immediately at
the end of the study period. The Kaplan-Meier curve for the later
years of follow-up time will be too flat, since it is computed only over
the early enrollees, who are younger on the average. The Ederer or
exact curve does not reflect this bias, and makes the treatment look
better than it is. The exact expected survival curve forms a reference
line, in reality, for what the Kaplan-Meier will be when follow-up is
complete, rather than for what the Kaplan-Meier is now.

In Hakulinen’s method (Hakulinen (1982), Hakulinen and
Abeywickrama (1985)), each study subject is again paired with a
fictional referent from the cohort population, but the referents are
now treated as though they were followed in the same way as the
study patients. The referents thus have a maximum potential follow-

up; that is, they will become censored at the analysis date. Let c;(t)

be a censoring indicator which is 1 during the period of potential
follow-up and 0 thereafter. The weight function for the Hakulinen or

cohort method is w;(t) = S;(t)c;(t).

If the study subject is censored, the referent is presumably censored at
the same time. However, if the study subject dies, the censoring time
for the matched referent is the time at which the study subject would
have been censored. For observational studies or clinical trials where
censoring is induced by the analysis date, this should be
straightforward, but determination of the potential follow-up could be
a problem if there are large numbers lost to follow-up. As pointed out



The
Conditional
Method

Cohort Expected Survival

long ago by Berkeson (1950), if a large number of subjects are lost to
follow-up then any conclusion is subject to doubt. Did patients stop
responding to follow-up letters at random because they were cured or
because they were at death’s door?

In practice, the program is invoked using the actual follow-up time for
those patients who are censored, and the maximum potential follow-up
for those who have died. By the maximum potential follow-up, we
mean the difference between enrollment date and the average last
contact date. For example, if patients are contacted every 3 months
on average and the study was closed six months ago, the maximum
potential follow-up date would be 7.5 months ago. It may be true that
the (hypothetical) matched control for a case who died 30 years ago
has little actual chance of such long follow-up, but this is not really
important. Almost all of the numerical differences between the
Ederer and Hakulinen estimates result from censoring those patients
who most recently entered the study. For these recent patients,
presumably enough is known about the operation of the study to give
a rational estimate of potential follow-up.

The Hakulinen formula can be expressed in a product form

E’i(ta $)S;(t)c;(t)
Se(t+58) = S(t)x (31.3)
Ei(t)ci(t)

where p;(t, s) is the conditional probability exp(A ;(t) - A ;(t+5s)) of
surviving from time t to time t +s. The formula is technically correct
only over time intervals (t, t+5) for which c; is constant for all i

(censoring only at the ends of the interval).

The conditional estimate is advocated by Verheul, et al. (1993), and
was also suggested as a computation simplification of the exact
method by Ederer and Heise (1977). For this estimate, the weight

function w;(t) is defined to be 1 while the subject is alive and at risk,
and O otherwise. It is clearly related to Hakulinen’s method, since
E(w;(t)) = Si(t)c;(t). Most authors present the estimator in the

product-limit form [I[1-d(t)/ n(t)], where d and n are the
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numerator and denominator terms within the integral of Equation
(31.1). One disadvantage of the product-limit form is that the value of

the estimate at time t depends on the number of intervals into which

the time axis has been divided. For this reason we use the integral
form (Equation (31.1)) directly.

One advantage of the conditional estimate, shared with Hakulinen’s
method, is that it remains consistent when the censoring pattern
differs between age-sex strata. A problem with the conditional
estimator is that it has a much larger variance than either the exact or
Hakulinen estimate. In fact, the variance of these latter two can
usually be assumed to be zero, at least in comparison to the variance
of the Kaplan-Meier of the sample. Rate tables are normally based on

a very large sample size, so the individual A; are very precise and the
censoring indicators ¢; are based on the study design rather than on
patient outcomes. The conditional estimate S (t), however, depends

on the actual death times and w; is a random variable.

The main use of the conditional estimate is when making conditional
statements about survival. For example, in studies of surgical
intervention such as hip replacement, the observed and expected
survival curves often diverge initially due to surgical mortality, and
then appear to become parallel. It is tempting to say that survival
beyond hospital discharge is equivalent to expected. This is a
conditional probability statement, and it should not be made unless a
conditional estimate is used.

A hypothetical example may make this clearer. For simplicity,
assume no censoring. Suppose we have studies of two diseases which
have identical age distributions at entry. Disease A kills 10% of the
subjects in the first month, independent of age or sex, and thereafter
has no effect. Disease B also kills 10% of its subjects in the first month,
but predominately affects the old. After the first month it exerts a
continuing though much smaller force of mortality, still biased toward
the older ages. With proper choice of the age effect, studies A and B
will have almost identical survival curves, as the patients in B are
always younger, on average, than those in A.



Cohort Expected Survival

In our hypothetical example, two different questions can be asked
under the guise of expected survival:

1. What is the overall effect of the disease? In this sense both A
and B have the same effect, in that the 5 year survival
probability for a diseased group is x% below that of a matched
population cohort. The Hakulinen estimate is preferred
because of its lower variance. It estimates the curve we would
have gotten if the study had included a control group.

2. What is the ongoing effect of the disease? Detection of the
differential effects of A and B after the first month requires the
conditional estimator. We can look at the slopes of the curves
to judge if they have become parallel.

The actual curve generated by the conditional estimator remains
difficult to interpret, however. The difficulty lies in the fact that the
control subject is removed from the calculation whenever the
matching case dies. In general, Hakulinen’s cohort estimate is
probably best. If there is a question about delayed effects, as in the
above example, there would be an apparent flattening of the Kaplan-
Meier curves after the first month. Then one can plot a new curve
using only those patients who survived at least one month.
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The Hakulinen cohort estimate (Equation (31.3)) is “Kaplan-Meier
like,” in that it is a product of conditional probabilities and the time
axis is partitioned according to the observed death and censoring
times. Both the exact and conditional estimators can be written in this
way as well. They are unlike a Kaplan-Meier calculation, however, in

that the ingredients of each conditional estimate are the n distinct

individual survival probabilities at that time point, rather than just a
count of the number at risk.

For a large data set, this requirement for O(n) temporary variables
can be a problem. An approximation is to use longer intervals and
allow subjects to contribute partial information to each interval. For

instance, in Equation (31.3) replace the 0/1 weight c;(t) by
:”ci(u)du/ , which is the proportion of time that subject i was

uncensored during the interval (t, t+5). If those with fractional
weights form a minority of those at risk during the interval, the
approximation should be reliable. More formally, if the sum of their
weights is a minority of the total sum of weights, the approximation is
reliable. By Jensen’s inequality, the approximation is always biased
upwards, but it is very small. For the Stanford heart transplant data
used in the examples, an exact 5 year estimate using the cohort
method is 0.94728, an approximate cohort computation using only
the half year intervals yields 0.94841. The exact estimate is
unchanged under repartitioning of the time axis.



TESTING

Testing

All of the above discussion has been geared towards a plot of
Sc(t) = exp(—A (1)) which attempts to capture the proportion of

patients who will have died by t. When comparing observed to
expected survival, an appropriate test is the one-sample log-rank test

Harrington and Fleming (1982)). This is defined as ‘O —E)*/ E,
( g g \ )

where O is the observed number of deaths and

Il
bﬁ:

i=1

) (31.4)
3| Me)Yi(s

Here E is the expected number of deaths, given the observation time
of each subject. This follows Mantel’s concept of exposure to death
(Mantel (1966)), and is the expected number of deaths during this
exposure. Notice how this differs from the expected number of deaths

nS,(t) in the matched cohort at time t. In particular, E can be

greater than n. Equation (31.4) is referred to as the person-years estimate
of the expected number of deaths. The log-rank test is usually more
powerful than one based on comparing the observed survival at time
t to S¢(t); the former is a comparison of the entire observed curve to

the expected, and the latter is a test for difference at one point in time.

Tests at a particular time point, though less powerful, are appropriate
if some fixed time is of particular interest, such as 5 year survival. In
this case, the test should be based on the cohort estimate. The H, of

the test is, “Is survival different than what a control-group’s survival
would have been?” A pointwise test based on the exact estimate may
well be invalid if there is censoring. A pointwise test based on the
conditional estimate has two problems: the first is that an appropriate
variance is difficult to construct and the second, more serious one, is
that it is unclear exactly what alternative is being tested against.
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Hartz, Giefer, and Hoffman (1983) argue strongly for the pointwise
tests based on an expected survival estimate equivalent to Equation
(31.3), and claim that such a test is both more powerful and more
logical than the person-years approach. Subsequent letters to the
editor (Hartz, Giefer, and Hoffmann (1984, 1985)) challenged these
views, and it appears that the person-years method is preferred.

Berry (1983) provides an excellent overview of the person-years
method. Let the e; be the expected number of events for each

subject, treating them as an n = 1 Poisson process. We have

3 f in(s)ki(s)ds
0

where t; is the observed survival or censoring time for a subject. This

quantity e; is the total amount of hazard that would have been
experienced by the population-matched referent subject, over the
time interval that subject i was actually under observation. If we treat
e; as though it were the follow-up time, this corrects for the

background mortality by mapping each subject onto a time scale
where the baseline hazard is 1.

Tests can now be based on a Poisson model, using §; as the response
variable (1 = dead, 0 = censored) and e; as the time of observation (an

offset of log e ). The intercept term of the model estimates the overall

difference in hazard between the study subjects and the expected
population. An intercept-only model is equivalent to the one sample
log-rank test. Covariates in the model estimate the effect of a
predictor on excess mortality, whereas an ordinary Poisson or Cox
model] estimates its effect on total mortality.



Testing

Andersen and Veeth (1989) consider both multiplicative and additive
models for excess risk. Let A% be the actual hazard function for the
individual at risk and let A; be that for the matched control from the
population. The multiplicative hazard model is

A () = BOA (D).
If B(t) is constant, then

. ON
Bo=—

i

is an estimate of the standard mortality ratio or SMR, which is identical
to exp(intercept) in the Poisson model used by Berry (assuming a
log link). Their estimate over time is based on a modified Nelson
hazard estimate

t ENi(S)

0 ds,
Bi(S)Ki(S)

3 (1) = |
which estimates the integral of B(t). If the SMR is constant, a plot of
B’ (t) versus t should be a straight line through the origin.

For the additive hazard model
A (1) = oft) + Ai(1),
the integral A(t) of o is estimated as
0g[Skm(®/ SO

This is the difference between the Kaplan-Meier and the conditional
estimator when plotted on log scale. Under the hypothesis of a

constant additive risk, a plot of A(t) versus t should approximate a
line through the origin.
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COMPUTING EXPECTED SURVIVAL CURVES

The Spotfire S+ function that computes expected survival curves is
survexp. Besides taking the typical arguments of a model fitting
function, survexp also takes the arguments listed below.

* times: Vector of follow-up times at which the resulting
survival curve is evaluated. If absent, the result is reported for
each unique value of the vector of follow-up times supplied in
the formula.

* cohort: Logical value. If cohort=FALSE, each subject is treated
as a subgroup of size 1. The default value is TRUE.

* conditional: Logical value. If conditional=TRUE, the follow-
up times supplied in the formula are death times and
conditional expected survival is computed. If
conditional=FALSE, the follow-up times are potential
censoring times. If follow-up times are missing in the formula,
this argument is ignored.

* ratetable: Table of event rates, such as survexp.uswhite ora
fitted Cox model.

Table 31.1 summarizes the argument settings used to compute
expected survival curves by the various methods. The real-life
examples of the following section show the use of the various
argument settings to obtain the different estimates of expected
survival.

Table 31.1: Summary of arguments settings for invoking the various methods of estimating expected survival.

Conditional
Method Argument Cohort Argument | Follow-up Times
Individual survival Not used cohort=F Yes
Cohort survival:
Ederer conditional=F cohort=T No
Hakulinen conditional=F cohort=T Yes
Conditional conditional=T cohort=T Yes
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Computing
Expected
Survival from
National
Hazard Rate
Tables

Examples

The examples in this section show how the methods discussed earlier
in this chapter are implemented in Spotfire S+. In addition to
computing various expected survival curves, an example of a closely
related topic, person years of follow-up, is provided. The person-years
example uses a function called pyears, and the expected survival
examples use the survexp function.

All of the examples use a data frame, hearta, computed from heart
as follows:

> hearta <- by(heart, heart$id,
+ function(x) x[x$stop == max(x$stop), 1)
> hearta <- do.call("rbind", hearta)

Because the transplanted patients are represented by two rows in the
heart data frame, you first need to extract only those rows that
correspond to death or censoring. Do this by selecting all rows for
which stop is a maximum for each patient, and then use rbind to put
them back together into the data frame called hearta. Once this is
done, stop contains only the total follow-up times for each patient.
Note that this depends on each patient having a start time of zero.

The computation of expected survival curves requires either a table of
hazard rates or a fitted Cox model to act as a hazard rate table.
Several rate tables are built into Spotfire S+, including tables for the
U.S. population, Minnesota, Florida, and Arizona. The U.S. and state
rate tables contain the expected hazard rate for a subject, stratified by
age, sex, calendar year, and optionally by race.

You can add new rate tables for other areas if you wish. Created rate
tables have no restrictions on the number or names of the
stratification variables. See the help file for survexp.us for details.

Warning

When using a rate table, it is important that all time variables be in the same units as were used
for the table. For the U.S. tables, this is hazard/day, so time must be in days. All time variables
must also have the same start date. Year is an exception; see the examples below.
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The following example computes the conditional expected survival
curves for the two surgery groups in the heart transplant study. No
ratetable argument is supplied, so the default table survexp.us is
used.

> expsurv <- survexp(stop ~ surgery + ratetable(
+ age = (age + 48) * 365.25, sex = "male",
+ year = year + 1967.75), data = hearta, conditional = T)

In addition to follow-up times, the formula contains stop, a grouping
variable, surgery, which causes the output to contain two curves, and
a special function, ratetable. The ratetable function matches the
data frame’s variables to the corresponding dimensions of the rate
table. The order of the arguments to the ratetable function is not
important. The necessary key words age, sex, and year are contained
in the "dimid" attribute of the rate table providing the hazard rates.
The hearta data frame does not contain a sex variable so sex is set
conservatively to "male". Setting values such as this must be done by
providing an integer subscript or a match to one of the "dimnames”.

This example produces a cohort survival curve which is almost
always plotted along with the observed (Kaplan-Meier) survival of the
data for visual comparison. For this example, you can plot the
survival curves together as follows:

plot(survfit(Surv(stop, event) ~ surgery, data = hearta),
Tty = 2:3)

lines(expsurv, 1ty = 2:3)

legend(750, 0.9, c("No Prior Surgery", "Prior Surgery"),
Tty = 2:3)

+ Vv Vv + Vv

Figure 31.1 displays the resulting plot. In general, there are three
different methods for calculating the cohort curve, which are
discussed in detail in the section Cohort Expected Survival. They are:

1. The conditional method illustrated in the above example,
which uses the actual death or censoring time;

2. The method of Hakulinen, which uses the potential follow-up
time of each subject;

3. The uncensored population method of Ederer, Axtel, and
Cutler, which requires no response variable.
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Figure 31.1: Comparison of the heart transplant study population stratified
according to prior surgery to a matched cohort from a national survival rate table.

Formal tests of observed versus expected survival are not usually
based on the cohort curve directly; instead, they are based on the
individual expected survival probabilities for each subject. These
probabilities are always based on the actual death/censoring time:

> surv.prob <- survexp(stop ~ ratetable(
+ age = (age + 48) * 365.25, sex = "male",
+ year = year * 365.25), data = hearta, cohort = F)

> ## convert from survival to hazard
> newtime <- -Tlog(surv.prob)

> summary(gim(stop ~ offset(log(newtime)),
+ family = poisson, data = hearta))

Call: gim(formula = stop ~ offset(log(newtime)), family =
poisson, data = hearta)
Deviance Residuals:

Min 1Q Median 3Q Max
-34.04402 -3.601203 -0.5733439 4.343454 39.95069
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Coefficients:
Value Std. Error t value
(Intercept) 10.77882 0.005593555 1927.006

(Dispersion Parameter for Poisson family taken to be 1 )
Null Deviance: 13699.27 on 102 degrees of freedom
Residual Deviance: 13699.27 on 102 degrees of freedom

Number of Fisher Scoring Iterations: 4

When cohort=F, the survexp function returns a vector of survival
probabilities, one per subject. For the purposes of modeling, the
negative log of the survival probability can be treated as an “adjusted
time” for the subject. The one-sample log-rank test for equivalence of
the observed survival to the expected survival is the test for intercept
equal to zero in the Poisson regression model shown. A test for
treatment difference, adjusted for any age-sex differences between the
two arms, is obtained by adding a treatment variable to the model.

Expected survival is closely related to a standard method in
epidemiology called person years, which consists of counting the total
amount of follow-up time contributed by the subjects within any of
several strata. Person-years analysis is accomplished in Spotfire S+
with the pyears function. The main complication in computing
person years is that a subject may contribute to several different cells
of the output array during his/her follow-up. For example, if the
desired output table is treatment group by age in years, subjects with
4 years of observation each contribute to five different cells of the
table (four cells if they entered the study exactly on their birthdates).

This example counts up years of observation for the Stanford heart
patients by age group and surgical status. Using the hearta data frame
computed above, the person-years table is produced as follows:

> pyears(stop/365.25 ~ tcut(age + 48, c(0, 50, 60,
+ 70, 100)) + surgery, data = hearta, scale = 1)

$call:
pyears(formula = stop/365.25 ~ tcut(age + 48,
c(0,50,60,70,100)) + surgery, data = hearta, scale = 1)
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$pyears:

0 1
0+ thru 50 44.9253936 18.960986
50+ thru 60 16.7501711 6.093087
60+ thru 70 0.7556468 0.000000
70+ thru 100 0.0000000 0.000000

$n:

0+ thru 50 56 13
50+ thru 60 33 6
60+ thru 70 3 0
70+ thru 100 0 O

$offtable:
[110

The scale argument is provided because pyears defaults to input
times in days and output times in years (scale=365.25). A 48 is added
to age to relocate it back to its original scale. For surgery, a 0
corresponds to no prior surgery and a 1 corresponds to prior surgery.
See the help file for heart for more detail.

The tcut function has the same arguments as cut, but also indicates
that the category is time based. If you use cut in the formula above,
the final table is based only on each subject’s age at entry. With tcut,
a subject who entered at age 58.5 and had 4 years of follow-up
contributed 1.5 years to the 50-60 category and 2.5 years to the 60-70
category. A consequence of this is that the age and stop variables
must be in the same units for the calculation to proceed correctly. In
this case both should be in years, given the cutpoints that were
chosen. The surgery variable is treated as a factor, exactly as it is
treated by survfit.

The output of pyears is a list of arrays containing the total amount of
time contributed to each cell, and the number of subjects who
contributed some fraction of time to each cell. The offtable
component that is returned is the number of person years of exposure
in the cohort that is not part of any cell in the pyears component.
This is often useful as an error check. If there is a mismatch of units
between two variables, nearly all the person years may be in
offtable.
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If the response variable is a Surv object, the output also contains an
array with the observed number of events for each cell. If a rate table
is supplied, the output contains an array with the expected number of
events in each cell. These can be used to compute observed and
expected rates, along with confidence intervals.

Many times, a study group is compared to a historical control. If the
comparison is to be adjusted for differences in certain covariates, it is
usually based on a Cox model fit to the historical data. The methods
used in this example are parallel to the previous examples using
national rate tables (for example, survexp.us). However, in this
example, a prior Cox model acts as the “rate table” for survexp.

Individual survival curves can be obtained using survfit, as
described in Chapter 28, The Cox Proportional Hazards Model. For
convenience, we reproduce an example from that chapter here:

> ov.fitl <- coxph(Surv(futime, fustat) ~ age,
+ data = ovarian)

Extending the example, the command

> sl <- survfit(ov.fitl, newdata = data.frame(age = 35))

gives the expected curve for a 35 year old subject. In addition,

> s2 <- survfit(ov.fitl, newdat = ovarian)

gives a matrix of 26 survival curves, one for each subject in the
ovarian data set.

The Ederer estimate is the average of the 26 survival curves in s2 and
can be obtained as follows:

> s3 <- survexp(~ ratetable(age = age), data = ovarian,
+ ratetable = ov.fitl)

In the Cox model literature, the Ederer estimate has been called the
direct adjusted survival curve. Thomsen, Keiding, and Altman (1991)
point out the importance of the Ederer estimate and the difference
between the Ederer estimate, average survival, and the individual
survival of a subject with the average age.
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The equivalent of Hakulinen’s estimate has been labeled the Bonsel
estimator. For studies with a short accrual, it does usually not differ
from the Ederer method. Thomsen, et al. (1991) also discuss the
conditional estimator, but conclude that the final curve is “hard to
interpret.”
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CREATING RATE TABLES

You can create your own rate tables to use in place of those provided
in Spotfire S+. Table 31.2 through Table 31.5 show yearly death rates
per 100,000 subjects based on their smoking status.

Table 31.2: Death rates for former male light smokers (1-20 cigarettes per day).

Duration of Abstinence (years)
Never Current

Age Smoked | Smokers <1 1-2 3-5 6-10 11-15 =16

45-49 186.0 439.2 234.4 365.8 159.6 216.9 167.4 159.5
50-54 255.6 702.7 544.7 431.0 454.8 349.7 214.0 250.4
55-59 448.9 1132.4 945.2 728.8 729.4 590.2 447.3 436.6
60-64 733.7 1981.1 1177.7 1589.2 1316.5 1266.9 875.6 703.0
65-69 1119.4 3003.0 | 22449 | 3380.3 | 23749 | 1820.2 | 1669.1 | 1159.2
70-74 2070.5 46975 | 42553 | 5083.0 | 4485.0 | 3888.7 | 3184.3 2194.9
75-79 3675.3 7340.6 | 5882.4 6597.2 7707.5 | 4945.1 5618.0 | 4128.9

Assume the eight data columns are stored in a file named
data.smoke. A rate table is created using the following Spotfire S+
code:

> temp <- matrix(scan("data.smoke"), ncol = 8,
+ byrow = T)/100000

v

smoke.rate <- c(rep(temp[,1], 6), rep(temp[,2], 6),
temp[,3:8])

+

attributes(smoke.rate) <- Tist(

dim = c(7, 2, 2, 6, 3),

dimnames = list(c("45-49", "50-54", "55-59", "60-64",
"65-69", "70-74", "75-79"),

+ + + v
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>
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c("1-20", "21+"), c("Male"™, "Female"),

c("<1", "1-2", "3-5", "6-10", "11-15", ">=16"),
c("Never", "Current", "Former™)),

dimid = c("age", "amount", "
factor = ¢(0,1,1,0,1),
cutpoints = Tist(c(45, 50, 55, 60, 65, 70, 75),
NULL, NULL, c(O, 1, 3, 6, 11, 16), NULL),
class = "ratetable")

sex", "duration", "status"),

is.ratetable(smoke.rate)

The smoking data cross-classifies subjects by five characteristics: age
group, sex, status (Never, Current, or Former smoker), the number of
cigarettes consumed per day, and for the prior smokers, the duration
of abstinence.

Table 31.3: Death rates for former male heavy smokers (more than 21 cigarettes per day).

Duration of Abstinence (years)

Never Current
Age Smoked | Smokers <1 1-2 3-5 6-10 11-15 >16
45-49 186.0 610.0 497.5 251.7 417.5 122.6 198.3 193.4
50-54 255.6 915.6 482.8 500.7 488.9 402.9 393.9 354.3
55-59 448.9 1391.0 1757.1 953.5 | 1025.8 744.0 668.5 537.8
60-64 733.7 23934 | 15784 | 18472 | 1790.1 | 1220.7 | 1100.0 993.3
65-69 1119.4 34979 | 2301.8 3776.6 | 2081.0 | 2766.4 | 2268.1 1230.7
70-74 2070.5 5861.3 | 3174.6 | 2974.0 | 37129 | 3988.8 | 3268.6 | 2468.9
75-79 3675.3 6250.0 | 4000.0 | 4424.8 | 7329.8 | 6383.0 | 7666.1 | 5048.1

437



Chapter 31 Expected Survival

Table 31.4: Death rates for former female light smokers (1-20 cigarettes per day).

Duration of Abstinence (years)
Never Current
Age Smoked | Smokers <1 1-2 3-5 6-10 11-15 =16
45-49 125.7 225.6 433.9 212.0 107.2 135.9 91.0
50-54 177.3 353.8 116.8 92.1 289.5 200.9 121.3 172.1
55-59 244.8 542.8 2874 259.5 375.9 165.8 202.2 2472
60-64 397.7 858.0 1016.3 365.0 650.9 470.8 570.6 319.7
65-69 692.1 1496.2 | 1108.0 | 1348.5 | 1263.2 864.8 586.6 618.0
70-74 1160.0 2084.8 645.2 1483.1 1250.0 1126.3 1070.5 1272.1
75-79 2070.8 3319.5 2580.6 | 2590.7 | 3960.4 | 1666.7 1861.5
Table 31.5: Death rates for former female heavy smokers (more than 21 cigarettes per day).
Duration of Abstinence (years)
Never Current
Age Smoked | Smokers <1 1-2 3-5 6-10 11-15 > 16
45-49 125.7 277.9 266.7 102.7 178.6 224.7 142.1 138.8
50-54 177.3 517.9 138.7 466.8 270.1 190.2 116.8 83.0
55-59 244.8 823.5 473.6 602.0 361.0 454.5 412.2 182.1
60-64 397.7 1302.9 | 1114.8 862.1 699.6 541.7 373.1 356.4
65-69 692.1 1934.9 | 2319.6 | 1250.0 | 1688.0 828.7 797.9 581.5
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Table 31.5: Death rates for former female heavy smokers (more than 21 cigarettes per day). (Continued)

Duration of Abstinence (years)

Never Current
Age Smoked | Smokers <1 1-2 3-5 6-10 11-15 =16
70-74 1160.0 28270 | 4635.8 | 25172 | 16873 | 2848.7 | 1621.2 | 1363.4
75-79 2070.8 4273.1 | 2409.6 | 5769.2 | 3125.0 | 29877 | 2803.7 | 21954

In the Spotfire S+ implementation, a rate table is an array with added
attributes, and thus must be rectangular. In order to cast the above
data into a single array, the rates for the Never and Current smokers
need to be replicated across all six levels of the duration. We do this
by first creating the smoke.rate vector. The array of rates is then
saddled with a list of descriptive attributes. The dim and dimnames
attributes are as they would be for an array, and give its shape and
printing labels, respectively. The dimid attribute is the list of
keywords to be is recognized by the ratetable function when the
table is used with the survexp or pyears function. For the U.S. total
table, for instance, the keywords are "age", "sex", and "year". These
keywords must be in the same order as the array dimensions (as
found in the dimid attribute).

The factor attribute of a rate table identifies each dimension as fixed
or varying with time. For a subject with fifteen years of follow-up, for
example, the sex category remains fixed but the age and duration of
abstinence continue to change; more than one of the age groups must
be referenced to compute the subject’s total hazard. For each
dimension that is not a factor, the starting value for each of the rows
of the array must be specified so that the routine can change rows at
the appropriate time. This information is specified in the cutpoints
attribute. The cutpoints are null for a factor dimension. Because the
cutpoints must be self-consistent, you should check them for any rate
tables you create. The function is.ratetable does this for you
automatically.
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As an example, we apply our smoke.rate rate table to the hearta
data, assuming that all of the subjects were current heavy smokers:

> ptime <- hearta$stop/365.24

> exp4 <- survexp(ptime ~ ratetable(age = (age/365.24),
+ status = "Current", amount = "21+", duration = "<1",
+ sex = "Male"), data = hearta, ratetable = smoke.rate,

+ conditional = F, scale = 1)

This example illustrates some important points. First, since we are
using the current smoker category, duration is unimportant, so any
value can be specified. Second, note that we must rescale age. The
smoke.rate table contains rates per year, while the U.S. tables contain
rates per day. It is crucial that all of the time variables (age, duration,
etc.) be scaled to the same units, or the results may not be correct.
The U.S. rate tables were created using days as the basic unit, since
year of entry is normally a Julian date; for the smoking data, years
seems more natural.

An optional portion of a rate table, not illustrated in the example
above, is a summary attribute. This is a user-written function which is
given a matrix and returns a character string. The matrix must have
one column per dimension of the rate table, in the order of the dimid
attribute, and must be preprocessed to remove illegal values. To see
an example of a summary function, use the following command:

> attr(survexp.us, "summary™)

In this summary function, the returned character string lists the range
of ages and calendar years in the output of survexp. This printout is
the only good way to catch errors in the time units. For example, if
the string contained “age ranges from 0.13 to 0.26 years,” it is a
reasonable guess that age was given in years when it should have
been stated in days.
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Spotfire S+ provides several functions for doing quality control
charts. Table 32.1 lists the type of basic charts available. Both
Shewhart and cusum charts are available for each basic chart type
except the R chart, for which a cusum chart has not been
implemented. Ryan (1989) provides a good discussion of the use and
utility of both Shewhart and cusum charts

Table 32.1: Types of basic quality control charts available in Spotfire S+.

TZP Statistic Charted | Chart Description
xbar | Mean Means of a continuous process variable
s Standard Standard deviations of a continuous process
Deviation variable
R Range Ranges of a continuous process variable
np Count Number of nonconforming units
p Proportion Proportion of nonconforming units
c Count Number of nonconforming units
u Count Number of nonconforming units for

variable unit sizes

In addition to the basic chart types listed in Table 32.1, several
extensions to Shewhart charts allow charting non-grouped, one-at-a-
time data. These extensions typically use standard deviation estimates
based on moving or sliding intervals of data values to improve the
power of the resulting chart. The extensions are listed in Table 32.2.




Table 32.2: Tjpes of extended Shewhart control charts available in Spotfire S+.

Introduction

Type | Statistic Charted | Chart Description
ma Moving Average | Moving means of a continuous process
variable
ms Moving Standard | Moving standard deviations of a
Deviation continuous process variable
mR Moving Range Moving ranges of a continuous process
variable
ewma | Moving Average | Exponentially weighted moving average
of a continuous process variable
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Spotfire S+ quality control charts are produced in two steps:

1. Create a qcc object from process data known to be gathered
when the process was in a state of control.

2. Create a chart of new data using the qcc object as the
reference data.

You can think of the qcc object as containing the data necessary to
calibrate the control chart. It contains information on the type of
chart being plotted as well as the process center and variability, which
are necessary to compute the control limits.

The qcc function produces an object of class "qcc™. Its only required
arguments are data and type, which specify the process data
(grouped appropriately) and the chart type, respectively. A simple
example is given below.

# Set the seed for reproducibility.

> set.seed(15)

> gcdata <- matrix(10 + rnorm(100), ncol = 5)
> qccobj <- qcc(gqcdata, type = "xbar")

A print method summarizes the gcc object:
> qccobj

xbar based on qgcdata

Summary of Group Statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.
9.163 9.655 10.14 10.09 10.51 11.31

Group Sample Size: 5

Number of Groups: 20

Center of Group Statistics: 10.09016
Standard Deviation: 1.022341
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In this example, the data argument is given as a matrix. In general, if
data is a matrix or data frame, each row represents a group and the
number of columns corresponds to the group size. If you have
unequal group sizes, your process data must be a list that has one
component for each group.

The arguments to qcc are:

* data, the control data in the form of a vector, matrix, data
frame, or list.

*  type, a character string or function specifying the group
statistics to compute.

* std.dev, a numeric vector or function for specifying the
within-group standard deviation(s).

* sizes,anumeric vector specifying the sample sizes associated
with each group.

* Tlabels, a character vector of labels for each group.

You can pass functions to the type and std.dev arguments to extend
the built-in capabilities of qcc. The function that is used by default to
compute the group summary statistics and the center of the group
summary statistics is named stats. type, where type corresponds to
the value of the type argument. For example, the default summary
statistics and center for an xbar chart are computed by stats.xbar.
Similarly, the default function that computes the standard deviation
for an xbar chart is sd.xbar. When type is given as a function,
std.dev must also be given (usually as a function as well, though not
necessarily).

You can use the stats.xbar and sd.xbar functions as templates for
additional functions accepted by the type and std.dev arguments.
For example, the function below is similar to stats.xbar but
computes the summary statistics and the center as medians instead of
means.

447



Chapter 32 Quality Control Charts

> stats.med

function(data, sizes)

{

}

if(is.list(data)) {
statistics <- sapply(data, median)
center <- median(unlist(data))

}

else {
statistics <- apply(data, 1, median)
center <- median(data)

}

list(statistics = statistics, center = center)

The stats.med function depends on data being given as a matrix or
list. The gcc function insures this by coercing vectors to matrices.

The following function is derived from sd.xbar, and computes a
standard deviation based on the median absolute deviation:

> sd.med

function(data, sizes)

{

}

if(is.Tist(data))
std.dev.within <- sapply(data, mad)

std.dev.within <- apply(data, 1, mad)
if(dim(data)[2] == 1)
warning("MAD computation based on group sizes of 1")

if(length(sizes) == 1)
sizes <- rep(sizes, Tlength = Tength(std.dev.within))
sum(sizes * std.dev.within)/sum(sizes)

You can now compute a qgcc object with the stats.med and sd.med
functions as follows:

> qccobj.med <- gcc(qcdata, type = "med")
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> qccobj.med

med based on qcdata

Summary of Group Statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.
8.782 9.599 10.060 9.989 10.520 11.160

Group Size: 5

Number of Groups: 20

Center of Group Statistics: 10.14026
Standard Deviation: 0.8418576

If the functions are not named with the proper prefixes (stats and sd,
respectively), you must pass the function names to the type and
std.dev arguments explicitly. For example, if your functions are
named st.med and sd.mad, you would need to type:

> qccobj.med <- qcc(gqcdata, type = st.med,
+ std.dev = sd.mad)

To chart the control data and any ongoing process data, you can
produce Shewhart or cusum charts with the Spotfire S+ functions
shewhart and cusum. Typically, Shewhart charts are used for detecting
large shifts in a process (two to three sigma shifts), whereas cusum
charts are used to detect smaller shifts in a process (one-half to one

sigma shifts).
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SHEWHART CHARTS

Overview

shewhart function. For example:

> shewhart(qccobj)

Note that qcdata is preserved in gccobj as a qcc object, which is the
type of object that shewhart requires. Figure 32.1 displays the

resulting chart.

Group Summary Statistics

Figure 32.1:

450

You can produce a Shewhart chart of the data in qcdata by using the

xbar Chart
for gcdata
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Shewhart chart of the data in qccobj.




Shewhart Charts

The text at the bottom of the chart displays pertinent statistics. The
target value is the center of the group summary statistics unless it is
given as a separate argument to shewhart. The Number beyond
Timits indicates the number of points beyond the control limits. The
Number violating runs indicates how many points violate the runs
criterion; by default, this criterion is five or more consecutive points
on one side of the center. You can change the run length by
specifying the run.length argument to shewhart:

> shewhart(qccobj, run.length = 8)

By default, the shewhart function computes control limits based on
the center and std.dev components of the gcc object. As with the
runs criterion, however, both of these can be overridden by providing
additional arguments in the call to shewhart.

The default control limits produced by shewhart are probability limits
for all charts except the u chart. Probability limits are centered in
probability about the estimate of the center of the summary statistics’
distribution; if the target argument to shewhart is specified,
probability limits are centered about the target value instead. In
contrast, you can specify sigma limits through the nsigmas argument to
shewhart. In this case, the control limits are placed at the center, plus
or minus nsigmas times the standard errors of the group summary
statistics. For u charts, only sigma limits are implemented. If the
sample sizes vary, the standard errors also vary and a step function is
plotted for each control limit.

Arguments and The arguments to shewhart are as follows.

Return Values

* object: An object of class "qcc", which provides information
on the type of group summary statistics to plot and the within-
group standard deviation necessary for computing the control
limits.

* newdata: A vector, matrix, data frame, or list to be charted. By
default, Spotfire S+ charts the data used to create object.

* type: A character string or function specifying the group
summary statistics to compute.

* Timits: A numeric vector or matrix, or a function specifying
the control limits.
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target: A numeric value specifying the center of the process.
By default, this is the center component of object.

std.dev: A numeric value specifying the overall within-group
standard deviation.

sizes: A vector of the number of observations (or the number
of units examined) in each group of newdata. By specifying
sample sizes, you can supply a vector of group summary
statistics to newdata instead of the entire data matrix. In this
case however, you must also specify the within-group
standard deviations.

Tabels: A character vector of labels for each group in
newdata.

Tabel.limits: A character vector of length two with labels for
the control limits.

confidence.level: A numeric value between 0 and 1
specifying the confidence level of the computed probability
limits. By default, a confidence level of 0.999 is used. If
confidence.level is given, nsigmas is ignored.

nsigmas: A numeric value specifying one-half the width of the
control limits in the number of standard errors of the group
summary statistics. If nsigmas is given, confidence.level is

ignored.

add.stats: Alogical value indicating whether statistics should
be listed at the bottom of the chart.

chart.al1: Alogical value indicating whether the statistics
component of object should be plotted along with the
new.statistics component and the summary statistics of
newdata (if given).

ylim.min: A numeric vector of values to be included in the
computation of the approximate y-axis limits for the control
chart.

rules: A function of rules to apply to the chart. By default,
this is the shewhart.rules function.

highlight: A list of plotting parameters to be used for
highlighting the points violating rules.

...: Additional arguments to the rules function.



Specifying New
Data

Shewhart Charts

See the shewhart help file for more detailed descriptions of the
arguments listed above.

The shewhart function returns an object that contains all the
components of the reference object, plus the following additional
components.

* new.statistics: A vector of group summary statistics for
newdata.

* new.sizes: A vector of group sample sizes for newdata.
* target: The target argument if specified.
e cntrl.limits: The control limits.

* newdata.name: A character string containing the name of the
input data passed to the newdata argument.

The newdata argument to shewhart allows you to chart new data with
a reference qcc object provided as the object argument. As an
illustration, we add 1/ 2 to the last six rows of qcdata and call it
newdata:

> newdata <- qcdata
> newdatal[15:20,] <- newdatal[15:20,] + 1/2

The Shewhart chart of newdata is as follows:

> qccobj.shew <- shewhart(qgccobj, newdata = newdata,
+ labels = paste("Lot", 1:20, sep = ""))

We use the optional Tabels argument to print descriptive labels on
the chart, which provide clarity in later examples of this section.
Figure 32.2 displays the resulting chart. In addition to viewing the
chart, we can also print the invisible return value of shewhart to see a
summary of both gccobj and newdata. The command below displays
the gccobj.shew object.

> qccobj.shew

xbar based on qcdata
Summary of Statistics in gcdata.

Min. 1Ist Qu. Median Mean 3rd Qu. Max.
9.163 9.655 10.14 10.09 10.51 11.31

453



Chapter 32 Quality Control Charts

Group Sample Size: 5

Number of Groups: 20

Center of Statistics: 10.09016
Standard Deviation: 1.022341

Summary of New Data Statistics in newdata.
Min. 1st Qu. Median Mean 3rd Qu. Max.
9.163 9.762 10.14 10.24 10.84 11.49

Group Sample Size: 5
Number of Groups: 20

Target Value: 10.09016
Control Limits:

LCL UCL
8.585714 11.5946

Xbar Chart
for newdata
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Figure 32.2: Shewhart chart of newdata using gccobj as the reference data.

454



Shewhart Charts

If you want to see newdata displayed alongside the original
calibration data, use the chart.all argument to shewhart:

> shewhart(qccobj.shew, chart.all = T)

Figure 32.3 shows the Shewhart chart that displays both the old and
new data. The vertical dashed line separates the in-control calibration
data from the ongoing process data.

xbar Chart
for gcdata
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Figure 32.3: Shewhart chart of newdata using gccobJ as the reference data. Both
the new and the old data are displayed in the plot.

To create an s chart of newdata using qcdata for calibration, type:

> shewhart(qcc(qcdata, type = "s"), newdata = newdata)
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The type argument to shewhart allows you to specify a summary
statistic for newdata that is different than the one used to compute the
reference object. For example, the object qccobj.med from the
section Control Chart Objects on page 446 contains robust estimates
of location and scale for the reference data qcdata. Typically, you do
not want to estimate the location of the ongoing process robustly,
since extreme values are of key interest. In this case, you can compute
control limits based on the robust estimates, and then compute the
group summary statistics of the ongoing process by specifying the
usual type for your data. For example:

> shewhart(qccobj.med, newdata = newdata, type = "xbar")

If you want to compute the summary statistics for newdata in the same
way you did for the reference data, the type argument is not needed.
Thus, the following command estimates the group summary statistics
of the ongoing process robustly with the stats.med function:

> shewhart(qccobj.med, newdata = newdata,
+ limits = 1imits.xbar)

The 1imits argument is required when using a summary statistics
function that is not built into Spotfire S+, such as stats.med.
Otherwise, a function with the name 1imits. type must exist. In the
above example, the 1imits argument is required unless a function
named Timits.med exists, since we use type="med" to create the
qccobj.med object. The Timits.xbar function uses the center and
std.dev components of object to compute control limits based on
normally distributed data, so it is reasonable (though not exactly
correct) to use in this example. Ideally, you would write a custom
Timits.med function. For more information on the way the control
limits are computed by shewhart, see the help file for 1imits.xbar.
Any of the functions in the help file can be used as a template when
writing a custom limits function.

When tracking a process, it is possible to repeatedly capture the
return value from shewhart and pass it as the new object argument in
a subsequent shewhart call. In addition, you can provide even newer
data as the newdata argument, which allows you to continually track a
process without recomputing the reference qcc object. The shewhart
function incorporates the newest data into the new.statistics
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component of object, and then charts all the new data accordingly.
In this situation, the function calls might look something like the
following:

> qccobj.shew.1l <- shewhart(qccobj, newdata = newdata.l)
> qccobj.shew.2 <- shewhart(qccobj.shew.1,
+ newdata = newdata.?2)

A rules function for shewhart refers to a method of examining the
plotted summary statistics for patterns that suggest a shift in the
process. For example, five or more successive points on one side of
the center may indicate a shift in the process. The function
runs.target checks for runs in a process, and the function
beyond.limits locates points beyond the control limits. For details
about either of these functions, see their help files.

By default, shewhart applies both runs.target and beyond.limits
through the wrapper function shewhart.rules, which highlights
points in the same way regardless of which rule is violated. If you
want to display the points violating the two rules differently, provide
the appropriate graphical parameters to the highlight argument of
shewhart. For example:

> shewhart(qccobj.shew, highlight = Tist(
+ list(pch=1, col=2), Tist(pch=2, col1=3)))

In addition to graphical displays, you can view a list of violating
points by calling runs.target, beyond.Timits, or shewhart.rules
directly. Each of these functions accept objects returned by shewhart.
For example:

> shewhart.rules(qccobj.shew)

[[11]:

numeric(0)
attr([[1]1], "names™):
character(0)
attr(LL11], "label™):
[11 "beyond Timits"
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[[2]1]:
Lotl9
19
attr([[2]], "Tabel™):
[1] "violating runs"

To add labeling information to a Shewhart chart, you can use the
identify function. To do this, chart a shewhart object with no
statistics and then apply identify:

> shewhart(qccobj.shew, add.stats = F)
> identify(qccobj.shew)

[1] 19

Left-click on the highlighted point in the chart, which is Lot 19 in this
example. To exit identify, press either the middle or right mouse
button, and 19 is returned at the Spotfire S+ prompt. Figure 32.4
displays the resulting chart with the 19th observation labeled.

It is possible to use runs.target to make a Shewhart chart more
sensitive to small shifts off the center. However, such rules are
typically ad hoc. A better way to detect small shifts is through the use
of cusum charts, which we discuss in the next section.



xbar Chart
for gcdata

Shewhart Charts
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CUSUM CHARTS

Overview
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Cusum charts display how the group summary statistics deviate above
or below the process center or target value, relative to the standard
errors of the summary statistics. In essence, a cusum chart
accumulates zscores of deviations above (or below) the center and
then charts them. Consequently, the points plotted are not the
original data, but are cumulative sums of deviations in standard errors
from the center. Cusum charting in Spotfire S+ follows a decision
interval scheme discussed in detail by Ryan (1989) and Wetherill and
Brown (1991).

For the ith group in an xbar chart, the upper cumulative sum S;; and

lower cumulative sum S ; are defined as follows:

Syi = max{0, (z;—k)+Sy;_;} (32.1)

S = max{0, (-z;—-k)+S,;_;} (32.9)

In these equations, z; is the zscore for the ith group centered about

X , the center of the group summary statistics :

x|

%; —
Ox,

The lower cumulative sums are charted as —S;;. In both Equation

(32.1) and Equation (32.2), k is called the reference value and

corresponds to the amount by which the absolute zscore must exceed
the target before either cumulative sum increases.

A cusum chart in Spotfire S+ is really a composite of two charts: one
of the upper cumulative sums and one of the negative lower
cumulative sums. The upper and lower sums, typically charted
separately in standard quality control text books, are plotted on the
same graph by the cusum function in Spotfire S+.
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In the section Control Chart Objects on page 446, we simulated some
process data in the matrix qcdata, and created a corresponding qcc
object named gccobj. You can plot a cusum chart of the data with the
following command:

> cusum(gccobj)

Note that qcdata is preserved in qccobj as a qcc object, which is the
type of object that cusum requires. In the section Specifying New Data
on page 453, we also created a matrix called newdata. To see the new
data charted, request it in addition to the reference data in the call to
cusum. The following command uses the chart.all=T argument to
plot both the new and old data on the same graph:

> cusum(gccobj, newdata = newdata, chart.all =T)

Figure 32.5 displays the resulting chart. Compare this figure with the
Shewhart chart displayed in Figure 32.2 to see how dramatically
cusum charts signal a detectable shift in the process. In newdata, the
last six observations are shifted up from qcdata by one standard
deviation of the population, which is about two standard errors of the
summary statistics. This shift is not highlighted in the Shewhart chart,
but it is clearly detected in the cusum chart.
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Cusum Chart of xbar
for gcdata and newdata
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Figure 32.5: Cusum chart of newdata using gccobj as the reference data. Both
the new and old data are included in the chart.

Arguments and A summary of the arguments to cusum are as follows.

Return Values

462

object: An object of class "gcc”, which provides information
on the type of group summary statistics to compute and the
within group standard deviation necessary for computing the
z-scores.

newdata: A vector, matrix, data frame, or list to be charted.

type: A character string or function specifying the group
statistics to compute.
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z.scores: An optional function to compute the zscores. This
argument is required if type is not one of "xbar", "s", "R",
"p", "np", "u", or "c", or if there does not exist a function with
the name zs. #ype.

decision.int: A numeric value specifying the number of
standard errors of the summary statistics at which the
cumulative sum is out of control.

se.shift: The amount of shift to detect in the process,
measured in standard errors of the summary statistics.

target: A numeric value specifying the center of the process.
By default, this is the center component of object.

std.dev: A numeric value specifying the overall within-group
standard deviation.

sizes: A numeric vector specifying the sample sizes
associated with each group of newdata.

Tabels: A character vector of labels to associate with each
group of newdata.

Tabel.bounds: A character vector of length two containing
labels for the decision interval boundaries.

headstart: A numeric value specifying the number of
standard errors of the group summary statistics at which the
cumulative sums should be reset. This argument is ignored if
reset=FALSE.

reset: A logical value indicating whether the cumulative
sums should be reset after an out-of-control signal.

add.stats: A logical value indicating whether statistics should
be listed at the bottom of the chart.

chart.all: A logical value indicating whether the cumulative
sums of the object$statistics component should be charted
along with the new.statistics component and the
cumulative sums of the summary statistics for newdata (if

given).

ylim.min: A numeric vector of values to be included in the
computation of the approximate y-axis limits for the control
chart.
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* check.c1: A logical value indicating whether the summary
statistics beyond the control limits of the Shewhart chart
should be highlighted on the chart, in addition to the decision
boundary violations of the cumulative sums of the summary
statistics.

* highlight: A list of graphical parameters for highlighting the
points outside the decision boundaries, or beyond the
Shewhart control limits.

The type argument is the same as that specified for the shewhart
function; see the section Shewhart Charts for more details. If type is
one of "xbar", "s", "R", "p", "np", "u", or "c", there are built in
functions for computing the group summary statistics and zscores. If
type is not one of these options, you must either create two functions
with names stats. type and zs.type, or pass functions to the type
and z.scores arguments explicitly.

The type and z.scores arguments to cusum are useful when charting
is based on nonstandard summary statistics. For example, recall the
qccobj.med object we create in the section Control Chart Objects, in
which the estimate of the center of the process is based on the median
and the standard deviation is based on the MAD. If the type
component of gccobj.med is equal to "med" and you have defined the
external functions stats.med and zs.med, simply type the following
command to see the cusum chart:

> cusum(qgccobj.med, newdata = newdata)

If you haven’t defined appropriate stats and zs functions, or if you
require functions other than those used to create qccobj.med, you
must specify the names explicitly in the call to cusum. For example, to
do a cusum chart of the group means of newdata with the center and
standard deviation based on the median and mad, respectively, use
type="xbar":

> cusum(qgccobj.med, newdata = newdata, type = "xbar")

With this argument, the stats.xbar function is used to compute the
summary statistics, and the zscore function associated with xbar
charts, zs.xbar, is used as well.

The se.shift argument is twice the reference value k in Equations
(32.1) and (32.2). This corresponds roughly to the sensitivity of the
cusum chart, in terms of detecting shifts in standard errors of the
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summary statistics. By default, se.shift=1, which corresponds to a
cusum chart being sensitive to one standard error shift and is

equivalent to setting< = 1/ 2in (32.1) and (32.2).

Usually, when an out-of-control signal is generated by a large (in
absolute value) cumulative sum, a search is conducted and a cause is
assigned and removed to correct the process. In this case, the
cumulative sums are reset and the monitoring continues. The act of
resetting the sums to something other than zero is called a headstart.
With headstarts, you can produce a fast initial response (FIR) cusum
chart. This is useful for quickly detecting a process that has not been
fully corrected. When reset=TRUE the cumulative sums are reset to
headstart each time one exceeds a decision boundary.

A group summary statistic greater than three standard errors from the
target in a cusum chart is equivalent to that summary statistic being
outside three-sigma Shewhart control limits. When check.c1=TRUE,
summary statistics violating Shewhart control limits are flagged as
well as large cumulative sums. If object is of class "shewhart", it has a
cntrl.limits component that is used to check for violating summary
statistics. Otherwise, three-sigma Shewhart control limits (centered
about target) are computed to check for violating summary statistics.

The cusum function returns an object that contains all the components
of the reference object, plus the following additional components.

* new.statistics: A vector of group summary statistics for
newdata.

* new.sizes: A vector of group sample sizes for newdata.
* target: The target argument if specified.

* newdata.name: A character string containing the name of the
input data passed to the newdata argument.

e cusum.upper: A numeric vector of the upper cumulative
sums.

e cusum.lower: A numeric vector of the lower cumulative sums.
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To create “moving” charts, Spotfire S+ bases standard deviation
estimates on a moving interval within which the standard deviation is
computed. These estimates may be calculated from the range of
values in a given interval, or from the standard deviation of values
within the interval. You can produce moving Shewhart charts based
on one-at-a-time data in the same way you produce basic Shewhart
charts, but with the addition of two optional arguments to qcc.

* sigma.span: The number of data values used in each
computation of sigma. This can be any integer larger than 1,
but cannot be larger than the length of the data. The default
value is 2.

* moving.sigma: A character string specifying the method used
to compute the standard deviation in each interval. This must
be one of "range" or "s".

In addition to these arguments, the type argument may be one of the
four options listed in Table 32.2: "ma", "ms", "mR", and "ewma". As an
example, the following commands convert the qcdata matrix to a
vector, and then generate a moving average chart with a moving
window of three observations:

> mgcdata <- as.vector(qcdata)
> shewhart(qcc(mgcdata, type = "ma", sigma.span = 3))

For exponentially weighted moving average charts, specify the type
argument as "ewma", and provide a value from the closed interval
[0.1,0.5] for the weight argument wt. The default for wt is 0.25. The
sequence

is plotted, where w is the wt value and X; is the group mean or one-

at-a-time data values associated with the ith group. For more details,
see the help files for stats. type and sd. type, where type is one of
the chart types.
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PROCESS CAPABILITY

Process capability computations quantify the ability of a process to
maintain its end product within the specification limits required by
engineering. That is, capability compares the requirements of product
engineering with the reality of the process. You can compute process
capability with the capability function using an optional gcc object
to define the process. The two values computed by capability are
defined as follows:

_ USL-LSL
Cp = 60

. JUSL-p p-LSL
Cpk = rmn{ 6o 6o }

where USL is the upper specification limit, LSL is the lower
specification limit, p is the process center, and o is the process

standard deviation. The quantity USL — LSL is referred to in some
texts as the allowable range.

The arguments to capability are as follows.
* qccobj: An object returned by a call to the qcc function.

* allowable.range: The range between the upper and lower
specification limits.

* Tlimits: A vector of length two providing upper and lower
specification limits.

+ center: The process center.
* std.dev: The process standard deviation.

* nsigmas: The number of sigmas used to compute control
limits. By default, nsigmas=3.

To compute C,, provide a qcc object and the allowable range in the
call to capability. If 1imits is not specified, then C is set equal to

Cp- If the center and std.dev arguments are not specified, the

corresponding values from qccobj are used.
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For example, to compute process capability for the mqcdata vector
defined in the previous section, do the following:

> capability(qcc(mgcdata, type = "ma"™, sigma.span = 3),
+ allowable.range = 6, limits = c(8,14))

cp cpk
0.927223 0.6443803

If you know the process parameters but do not have a qcc object, you
can still compute process capability by providing the parameters
directly as follows:

> capability(allowable.range = 6, Timits = c(8,14),
+ std.dev = 1.09, center = 10.08)

cp cpk
0.9174312 0.6360856
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PROCESS MONITORING

In many manufacturing situations, processes are monitored in real
time by production engineers and product managers. You can use
Spotfire S+ for real-time monitoring with a few simple functions. We
present examples below of two functions, monitor and get.process,
which you can use to monitor a process data file and update a control
chart as data comes in.

The basic idea is the following:

1. Create a file for accumulating the process data. In our
example, this file is called Process.

2. Track the growth of Process with get.process and monitor,

updating the control chart only when new data have been
added to the file.

Suppose a typical line of the Process data file looks like the following:
Lotl 9.496215 8.718396 11.470395 9.671888 11.328800

Also, suppose you want to accumulate the data in a matrix. Then you
could write the data-reading function, get.process, as follows:

> get.process <- function(file, skip = 0) {

+ data <- scan(file, what = Tist(names = "",0,0,0,0,0),
+ skip = skip)

+ nm <- data$names

+ data <- cbind(datal[[2]],data[[3]],datal[[4]],datal[[51],
+ datal[[6]1])

+ dimnames(data) <- Tist(nm, NULL)

+ return(data)

+ 1}

The configuration of the data fields are built into the get.process
function. The first field in Process is a character label, and the
remaining five fields are numeric data. The skip argument is added
so that previously read data can be skipped when it is time to update
the chart.
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The monitor function keeps track of which data have already been
read, and updates the control chart with any new data. An example of
what monitor might look like is the following:

> monitor

function(file, qgc.object, sleep.time = 5)
{
# define a subfunction to obtain the Tength of a file
file.length <- function(file)
length(count.fields(file, sep="\n"))

i
i
old.length <- file.length(file)
new.data <- get.process(file)
i
# put up initial chart
i
gcc.shew <- shewhart(qc.object, new.data, add.stats=F)
cat("to quit type CNTRL-CESC\n™")
repeat {
new.length <- file.length(file)
if(new.length > old.Tength) {
i
# new data have come in, we need to update the plot
#
new.data <- get.process(file, skip = old.length)
old.length <- new.length
qgcc.shew <- shewhart(qcc.shew, new.data,
add.stats = F)
}
sleep(sleep.time)
}
}

The statistics on the bottom of the chart have been turned off so that a
number of charts can be efficiently placed within a single figure. The
monitor function makes use of the fact that shewhart updates its
return object; thus, the data that have just been added to Process are
all you need to scan in each iteration.
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Suppose now that qcdata, defined in the section Control Chart
Objects, is coming in one row (or one lot) at a time. Place the first lot
in the file Process to start the monitoring, and then run monitor as
follows:

> monitor("Process", qccobj)

to quit type CNTRL-CESC

Spotfire S+ now monitors Process for a change in size. When one is
detected, the new data are read in and the chart is updated. Figure
32.6 displays the results of 19 updates.
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Figure 32.6: A series of Shewhart charts of the data resulting from running monitor on a growing process
data file.

472



References
REFERENCES

Ryan, T.P. (1989). Statistical Methods for Quality Improvement. New
York: John Wiley & Sons, Inc.

Wetherill, G.B. & D.W. Brown (1991). Statistical Process Control. New
York: Chapman and Hall.

473



Chapter 32 Quality Control Charts

474



RESAMPLING TECHNIQUES:
BOOTSTRAP AND JACKKNIFE

Introduction 476
Creating a Resample Object 479
The Bootstrap 479
The Jackknife 481
Methods for Resample Objects 483
The print Method 483
The summary Method 483
The plot Method 483
Normal Quantile-Quantile Plots 484
Percentile Estimates 485
Empirical Percentiles 485
BCa Percentiles 485
Jackknife After Bootstrap 486
The Jackknife After Bootstrap Object 486
The print Method 486
The plot Method 486
Examples 487
Resampling the Variance 487
Resampling the Correlation Coefficient 491
Resampling Regression Coefficients 495
References 500

475



Chapter 33 Resampling Techniques: Bootstrap and Jackknife

INTRODUCTION

476

In statistical analysis, the researcher is usually interested in obtaining
not only a point estimate of a statistic but also an estimate of the
variation in this point estimate, and a confidence interval for the true
value of the parameter. For example, a researcher may calculate not
only a sample mean, but also the standard error of the mean and a
confidence interval for the mean.

Traditionally, researchers have relied on the central limit theorem
and normal approximations to obtain standard errors and confidence
intervals. These techniques are valid only if the statistic, or some
known transformation of it, is asymptotically normally distributed.
Hence, if the normality assumption does not hold, then the traditional
methods should not be used to obtain confidence intervals.

A major motivation for the traditional reliance on normal-theory
methods has been computational tractability. Now, with the
availability of modern computing power, researchers need no longer
rely on asymptotic theory to estimate the distribution of a statistic.
Instead, they may use resampling methods which return inferential
results for either normal or nonnormal distributions.

Resampling techniques such as the bootstrap and jackknife provide
estimates of the standard error, confidence intervals, and distributions
for any statistic. In the bootstrap, for example, B new samples, each of
the same size as the observed data, are drawn with replacement from
the observed data. The statistic is calculated for each new set of data,
yielding a bootstrap distribution for the statistic. The fundamental
assumption of bootstrapping is that the observed data are
representative of the underlying population. By resampling
observations from the observed data, the process of sampling
observations from the population is mimicked. For more detailed
descriptions of bootstrapping, see Efron and Tibshirani (1993) and
Shao and Tu (1995).

Spotfire S+ includes a suite of functions for bootstrapping and
jackknifing with the basic capabilities listed below.



Introduction

* Given a vector, matrix, or data frame, create bootstrap or
jackknife resamples of observations and use these to calculate
resampling replicates of a specified statistic. The statistic may
be a scalar, vector, or matrix and may be specified as an
Spotfire S+ function or call.

*  Produce informative summaries and plots for a resample
object (resamp) produced by bootstrapping or jackknifing.

+ Calculate empirical percentile and BCa confidence limits for
a bootstrap object, and empirical percentiles for a jackknife
object.

*  Use jackknife after bootstrap to examine the influence of
observations, and to estimate the standard error of a
functional of the bootstrap distribution for a statistic.

A list of the bootstrapping and jackknifing functions is presented in
Table 33.1.

Table 33.1: Spotfire S+ bootstrapping and jackknifing functions.

Function Description

bootstrap Main bootstrap function
jackknife Main jackknife function
summary.bootstrap Summary method for bootstrap
print.resamp Methods for resamp objects

plot.resamp
qgnorm.resamp
summary.resamp

Timits.emp Calculate empirical and BCa
limits.bca percentiles
jack.after.bootstrap Perform jackknife after bootstrap
print.jack.after.bootstrap Methods for jackknife after
plot.jack.after.bootstrap bootstrap object
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Table 33.1: Spotfire S+ bootstrapping and jackknifing functions. (Continued)

Function Description

update.bootstrap Add more replicates to a boot
object

bootstats Called by bootstrap and

jackstats

jackknife to calculate
resampling statistics

samp.boot.mc Functions to generate resampling
samp.boot.bal indices
samp.permute
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Creating a Resample Object

CREATING A RESAMPLE OBJECT

The Bootstrap

Main Arguments

Optional
Arguments

There are two types of resample objects: bootstrap objects and
jackknife objects. The main functions for generating these objects are
bootstrap and jackknife. These functions call the more primitive
functions bootstats and jackstats, which use the replicated
parameter values and other information to calculate the bootstrap or
jackknife statistics, and return an object of the appropriate class.

In bootstrap resampling, B new samples, each of the same size as the
observed data, are drawn with replacement from the observed data.
The statistic is first calculated using the observed data and then
recalculated using each of the new samples, yielding a bootstrap
distribution. The resulting replicates are used to calculate the
bootstrap estimates of bias, mean, and standard error for the statistic.

The main arguments in bootstrapping are the data (a vector, matrix,
or data frame) and a statistic, which returns a scalar, vector, or
matrix. This statistic may be a Spotfire S+ function or an unevaluated
call (that is, any expression that one might type at the command line).
Additional arguments to statistic may be passed as a list through
args.stat.

You may specify the number B of resamples to draw. The default is
1000, which is the recommended minimum for estimating
percentiles. Although a smaller B may be specified, 250 is
recommended as a minimum for estimating standard errors.

* seed: Sets the random number seed. It may be a legal random
number seed, or an integer between 0 and 1000.

* group: Specifies a stratifying variable. If supplied, then
resampling is performed independently within each stratum.
This argument can be used to bootstrap a two-sample or
multiple-sample statistic. Note that the bootstrap estimates are
not adjusted based on stratifying.

* sampler: Generates resampling indices. The default function
samp.boot.mc performs standard Monte Carlo bootstrapping
of observations. The samp.boot.bal function performs
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balanced bootstrapping. In some cases, the bootstrap
function may be used to perform a permutation test by using
samp.permute with an appropriately defined statistic.

block.size: Controls computational details of the
bootstrapping. By default, this is set to min(B,100) and the
bootstrapping is performed using one large Tapply. If the
sample size n and number B of resamples are large, then this
default may be slower than the alternative of performing a for
loop over smaller blocks of observations. The block.size
argument specifies the size of each block over which a for is
applied. For example, if n=1000 and B=1000, then it may be
preferable to do 10 loops with block.size=100 rather than a
single 1apply.

Note

Pressing ESC during the looping interrupts the process and saves the replicates computed so far.

480

block.size: Controls computational details of the
bootstrapping. For efficiency, the samples are drawn in blocks
of size block.size and Tapply is used over each block to
evaluate the statistic. The drawing of blocks is embedded
within a for loop to draw a total of B samples. When n is small
it is most efficient to perform a single 1apply so that
block.size=B. When n is large, it is more efficient to use a
smaller block.size. For example, if n=1000 and B=1000, then
it may be preferable to do 10 loops with block.size=100
rather than a single 1app1y. By default the block.size is set to
min(B,100).

assign.framel: Logical flag indicating whether the resampled
data should be assigned to frame 1 before evaluating the
statistic. This may be necessary if the statistic is reevaluating
the call of a model object. If all bootstrap estimates are
identical, try setting assign. framel=T. Note that this option
slows down the algorithm.

trace: Logical flag indicating whether to print a message
indicating which set of replicates is currently being drawn.




Other Functions

Components of
the Object

The Jackknife

Creating a Resample Object

* save.indices: Logical flag indicating whether to save the
matrix of resampling indices. By default, the value of the
random number seed used is saved, and the sampler used is
specified in the call, which is enough information to
reproduce the resampling indices in later analyses. The
matrix of resampling indices may be saved as part of the
object by setting save.indices=T. This matrix has dimension
n x B.

Additional arguments are described in the help file for the bootstrap
function.

The bootstrap function calls bootstats to calculate bootstrap
statistics. If you specify the required information, then bootstats may
be called directly to produce a bootstrap object. The main caveat is
that 1imits.bca and jack.after.bootstrap look at the call
component of the object, so the function calling bootstats should
pass along an appropriate call if these functions are to be used on the
resulting object.

A bootstrap object has components call, observed, replicates,
estimate, B, n, dim.obs, group, seed.start, and seed.end. The
observed component contains the observed parameter values
calculated using the original data. The estimate data frame contains
bootstrap estimates of bias, mean, and standard error. The
replicates are the bootstrap replicates of the parameters. The call
component, starting random number seed seed.start, ending
random number seed seed.end, and group are stored for future
reference, as are the number B of replicates and the sample size n. If
statistic returns a matrix, then its dimension is stored as dim.obs
for use in the layout of plots. In many cases, dim.obs and group are
NULL.

In jackknife resampling, a statistic is calculated for the n possible
samples of size n-1, each with one observation left out. The default
sample size is n-1, but more than one observation may be removed
using the group.size argument (see below). Jackknife estimates of
bias, mean, and standard error are available and are calculated
differently than the equivalent bootstrap statistics.
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Arguments

Other Functions

482

The jackknife function takes the arguments data, statistic,
args.stat, and assign.framel, which have the same meanings as for
bootstrap.

The seed argument may be used to specify a seed for randomization
done by the statistic, and for random assignment of observations to
groups if group.size is not equal to one. It may be a legal random
number seed, or an integer between 0 and 1000.

The group.size argument may be used to specify the removal of
more than one point in each sample. This argument is useful in partial
jackknifing for calculating the acceleration when forming BCa
percentiles. It forms floor(n/group.size) replicates, each missing
group.size observations. These replicates are treated as a jackknife
sample of size floor(n/group.size).

The jackstats function calculates the jackknife statistics.



Methods for Resample Objects

METHODS FOR RESAMPLE OBJECTS

The print
Method

The summary
Method

The plot
Method

The print method for a resample object, print.resamp, prints out the
call, the number of resamples used, and a table giving the values of
the statistic for the original data and resampling estimates of bias,
mean, and standard error for the statistic.

The summary method for a resample object prints out the same
information as print.resamp, followed by the empirical percentiles of
the replicates. The summary of a bootstrap object also calculates BCa
percentiles. If the statistic is vector-valued, a correlation matrix for the
components of the vector is also printed. The optional probs
argument specifies probabilities at which the empirical quantiles are
calculated.

Additional arguments useful in 1imits.bca may be specified with
summary.bootstrap. These arguments include z0, acceleration, and
group.size. By default, a group.size of floor(n/20) is used in
Timits.bca for reasons of speed. To do a full jackknifing when
estimating acceleration, specify group.size=1.

The plot method for a resample object produces plots of the
distributions of the statistics. For each statistic, a histogram of the
replicates is displayed with an overlaid smooth density estimate. A
solid vertical line is plotted at the observed parameter value, and a
dashed vertical line is plotted at the mean of the replicates. The
distance between the dotted line and the solid line is the estimated
bias. The shape of the distribution may be examined to assess issues
such as skewness of the distribution of the statistic.

You may specify plot with a bandwidth.func argument to calculate
the bandwidth of the density estimate. By default, the normal
reference density estimate is used. In addition, you may specify plot
with an nclass. func argument to calculate the number of classes in
the histogram. By default, the Freedman and Diaconis rule is used.
Arguments may also be passed to histogram through the ellipsis

(..).
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Normal
Quantile-
Quantile Plots

484

Plots are displayed in a grid (grid=T) by default. Use nrow to specify
the number of rows in the grid. If the statistic is a matrix, then by
default the plots are arranged in the same order as the terms appear in
the matrix.

The ggnorm method for a resample object produces a plot with the
same layout as in plot.resamp, but with each plot containing a
normal quantile-quantile plot for the relevant statistic. If the argument
Tines=T, as is the default, then a qq11ine is also added to each plot.

This plot is used to assess the normality of the distribution of each
statistic. If the points fall on a straight line, the empirical distribution
of the replicates is similar to that of a normal random variate.



Percentile Estimates

PERCENTILE ESTIMATES

Empirical
Percentiles

BCa
Percentiles

Two types of percentile estimates are supported: empirical
percentiles, and bias-corrected and adjusted (BCa) percentiles. These
are calculated by limits.emp and Timits.bca, respectively. The
empirical percentiles are available for bootstrap and jackknife objects,
while BCa percentiles are available only for bootstrap objects. The
empirical percentiles are easy to calculate, but may not be accurate
unless the sample size is very large. The BCa percentiles require more
computation but are more accurate. For either type of percentile,
using at least 1000 replications is recommended for accurate
estimation. The probs argument to the Timits.emp and Timits.bca
functions specifies which percentiles are computed.

The empirical percentiles are simply the percentiles of the empirical
distribution of the replicates. Linear interpolation is used if necessary
to obtain the specified percentiles.

The BCa method transforms the specified prob values to determine
which percentiles of the empirical distribution most accurately
estimate the percentiles of interest. The percentiles of the empirical
distribution corresponding to these values are then returned.

To estimate the BCa percentiles, the bias correction (denoted z,) and

the acceleration must be calculated. If these values are not specified
(and they usually are not), the bias correction is obtained from the
replicates and the acceleration is obtained using jackknifing. Note that
rather than doing a complete delete-1 jackknife, the data are broken
into groups of size group.size and the groups are jackknifed. If
group.size is not specified, it is calculated as floor(n/20), which
yields roughly 20 jackknife replicates depending on the magnitude of
n.

To return the values of z0, acceleration, and the empirical
percentile level for each BCa percentile, set detail=T.
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JACKKNIFE AFTER BOOTSTRAP

The Jackknife
After
Bootstrap
Object

The print
Method

The plot
Method

486

Jackknife after bootstrap is a technique for obtaining estimates of the
variation in functionals of a bootstrap distribution, such as the bias or
standard error of a statistic, without performing a second level of
bootstrapping. It also provides information on the influence of each
observation on the functionals. See Efron and Tibshirani (pp. 275-
280) for details on this procedure.

Simulation studies have shown that, in general, jackknife after
bootstrap standard error estimates tend to be too large. A technique
called weighted jackknife after bootstrap may resolve some of these
difficulties. This technique is currently under investigation and has
not yet been implemented.

The jackknife after bootstrap object has components call,
functional, rel.influence, large.rel.influence,
values.functional, dim.obs, and threshold. The wvalue of the
functional for the bootstrapped parameter replicates, and for the
jackknife after bootstrap estimates of standard errors, is given as the
functional data frame. The value of the functional over the samples
with each point removed is given in values.functional. Normalized
versions of these values are given in rel.influence. The list
Targe.rel.influence gives the relative influence values for points
with absolute relative influences in excess of tolerance. The call is
the call to jack.after.bootstrap. The dim.obs is the corresponding
component of the bootstrap object. The jackknife after bootstrap
object is of class "jack.after.bootstrap”.

The print method for a jack.after.bootstrap object displays the
call, the description of the functional under consideration, the data
frame of functional values and standard errors, and the list of large
relative influences.

The plot method for a jack.after.bootstrap object produces a plot
for each parameter, indicating the relative influence of each
observation. Values greater than a specified tolerance (default = 2) are
flagged as being particularly influential.



EXAMPLES

Resampling
the Variance

Examples

This section describes three examples. The first is a bootstrap of a
variance and discusses the output and basic plots associated with the
bootstrap object. The second example resamples a correlation
coefficient, and details the application of bootstrap, jackknife after
bootstrap, and jackknife tools. The third example shows how to test
linear regression coefficients using the bootstrap and jackknife after
bootstrap.

This example uses data from the swiss.x matrix, which contains
socioeconomic indicators for the provinces of Switzerland in 1888.
More particularly, this example resamples the variance of the
Education variable, the percent of the population whose education is
beyond primary school.

First, Education is separated from the swiss.x matrix.

> Education <- swiss.x[,3]
> Education

20
13

[1112 9 5 715 7 7 8 713 612 7
[20] 910 312 6 1 8 31019 8 2 6
[39] 12 11 13 32 7 7 53 29 29

12 5 2 8 28
2 6 3 9 3
The bootstrap function is used to draw resamples and construct a
bootstrap object.

> boot.objl <- bootstrap(Education, var, B = 1000, seed = 0)

Forming replications 1 to 100
Forming replications 101 to 200
Forming replications 201 to 300
Forming replications 301 to 400
Forming replications 401 to 500
Forming replications 501 to 600
Forming replications 601 to 700
Forming replications 701 +to 800
Forming replications 801 to 900
Forming replications 901 +to 1000

To prevent the preceding messages from being displayed, set
trace=F.
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Note

those shown here.

All examples in this section use B=1000, the number of resamples recommended for accurate
estimation of percentiles. Users who want to replicate the examples might use a lower number of
resamples (say, B=250) to speed up estimation. Note, however, that results will differ slightly from

Printing the object displays the call used to construct it, the number of
replications used, and summary statistics for the parameter. The
summary statistics are the observed value of the parameter, the mean
of the parameter estimate replicates, and bootstrap estimates of bias

and standard error.
> boot.objl

Call:

bootstrap(data = Education, statistic

seed = 0)
Number of Replications: 1000
Summary Statistics:

Observed Bias Mean SE
var 92.46 -3.362 89.09 38.67

var,

B

1000,

A more complete summary of the bootstrap object, obtained via the
summary function, includes empirical and BCa percentiles for the
statistic. The BCa percentiles, for example, show that the 95%
confidence interval for the Education variance has endpoints 45.34

and 221.2.

> summary(boot.objl)

Call:
bootstrap(data = Education, statistic
seed = 0)

Number of Replications: 1000
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Summary Statistics:
Observed Bias Mean SE
var 92.46 -3.362 89.09 38.67

Empirical Percentiles:
2.5% 5%  95% 97.5%
var 32.9 36.17 163.9 177.1

BCa Percentiles:
2.5% 5% 95% 97.5%
var 45.34 51.44 211.6 221.2

Empirical and BCa percentiles may also be obtained separately using
the 1imits.emp and 1imits.bca functions, respectively.

> Timits.emp(boot.objl)

2.5% 5% 95% 97.5%
var 32.89544 36.16716 163.8941 177.1408

> limits.bca(boot.objl)

2.5% 5% 95% 97.5%
var 45.33665 51.4373 211.6284 221.1731

Plotting the bootstrap object provides a histogram of the replicated
variances along with a smooth density estimate (Figure 33.1). The
solid line indicates the observed parameter value, and the dotted line
indicates the mean of the replicates. The difference between these two
values is the bootstrap estimate of bias.

> plot(boot.objl)

The histogram in Figure 33.1 shows that the distribution of replicated
variances is highly skewed. A normal quantile-quantile plot can be
used to further assess deviation from the normal distribution. Figure
33.2 suggests that both tails of the distribution of replicated variances
deviate from the normal distribution. Thus there is evidence that
bootstrapping is a better approach than normal-based methods.

> qggnorm(boot.objl)
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Figure 33.1: Histogram of replicated variances.
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Examples

This example uses the law school data from Efron and Tibshirani
(p- 9). Starting with 82 American law schools participating in a study
of admission practices, they constructed a random sample of 15
schools. Efron and Tibshirani then examined the correlation between
LSAT score and GPA for the 1973 entering classes at these schools

(p- 49).

Traditionally, Fisher’s transformation would be used to transform the
correlation coefficient into a normally distributed variable on which
normal-based inference would be wused. This example uses
resampling to obtain inferential quantities instead of employing
Fisher’s transformation.

First, the data are entered into Spotfire S+ and stored as a data frame.

> school <- 1:15
> Isat <- c(576, 635, 558, 578, 666, 580, 555, 661, 651,

+ 605, 653, 575, 545, 572, 594)

> gpa <- ¢(3.39, 3.30, 2.81, 3.03, 3.44, 3.07, 3.00, 3.43,
+ 3.36, 3.13, 3.12, 2.74, 2.76, 2.88, 2.96)

> law.data <- data.frame(School = school, LSAT = 1Isat,

+ GPA = gpa)

Next, the bootstrap function is used, and the summary of the
resulting object displayed.

> boot.obj2 <- bootstrap(law.data, cor(LSAT, GPA),
+ B = 1000, seed = 0, trace = F)

> summary(boot.obj2)

Call:
bootstrap(data law.data, statistic = cor(LSAT, GPA),
B = 1000, seed = 0, trace = F)

Number of Replications: 1000
Summary Statistics:

Observed Bias Mean SE
Param 0.7764 -0.008768 0.7676 0.1322
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Empirical Percentiles:
2.5% 5% 95% 97.5%
Param 0.4673 0.523 0.9432 0.9593

BCa Percentiles:
2.5% 5% 95% 97.5%
Param 0.3443 0.453 0.9255 0.9384

The bootstrap object is plotted to obtain a histogram of the replicated
correlation values along with a smooth density estimate (Figure 33.3).
The distribution is clearly skewed.

> plot(boot.obj2)

Param

Density
15 20 25 3.0

1.0

0.0

0.2 0.4 0.6 0.8 1.0

Value

Figure 33.3: Histogram of replicated correlations.

Another tool available for exploring the bootstrap object is the
jackknife after bootstrap (Efron and Tibshirani, p.275). This
technique provides standard error estimates for functionals of the
bootstrap distribution, and influence measures for each observation.
By default, the functional is the mean of the distribution. In this case,
the standard error of the functional is the standard error of the mean,
and the influence indicates the influence of each observation on the
mean. Jackknife after bootstrap is commonly used to get standard
error estimates for the bootstrap estimate of standard error.
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> jab.obj2 <- jack.after.bootstrap(boot.obj2)
> jab.obj2

Call:

jack.after.bootstrap(boot.obj = boot.obj2, functional =
mean)

Functional Under Consideration:
mean

Functional of Bootstrap Distribution of Parameters:
Func SE.Func
Param 0.7676 0.1432

Observations with Large Influence on Functional:
$Param:

Param
1 -3.025

Plotting the jack.after.bootstrap object provides an influence plot
similar to a Cook’s distance plot (Figure 33.4). Observations with
absolute relative influence greater than 2 are considered particularly
influential.

> plot(jab.obj2)

The jackknife after bootstrap identifies observation 1 as being
particularly influential. A plot of GPA versus LSAT with this
observation plotted as a triangle shows that this point is indeed an
outlying observation (Figure 33.5).

> plot(lsat[-11, gpal[-1]1, xlab = "LSAT", ylab = "GPA™)
> points(lsat[1], gpal[l]l, pch = 2)
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Figure 33.4: Influence plot for correlation.
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Figure 33.5: GPA versus LSAT.
Jackknife summary statistics for the correlation may be obtained also.

> jackknife(law.data, cor(LSAT, GPA))
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Call:
jackknife(data = law.data, statistic = cor(LSAT, GPA))

Number of Replications: 15

Summary Statistics:
Observed Bias Mean SE
Param 0.7764 -0.006473 0.7759 0.1425

The last example shows how to test linear regression coefficients, and
uses the bootstrap to obtain standard error estimates and confidence
intervals. The data are from operation of a plant for the oxidation of
ammonia to nitric acid, measured on 21 consecutive days. See the
Spotfire S+ help file for stack for details.

First, the stack.loss vector and stack.x matrix are combined into a
data frame.

> stack <- data.frame(stack.loss, stack.x)
> names(stack)

[1] "stack.loss" "Air.Flow" "Water.Temp"” "Acid.Conc."

The bootstrap function resamples the vector of linear regression
coefficients from the model of stack.loss regressed on Air.Flow,
Water.Temp, and Acid.Conc.

> boot.obj3 <- bootstrap(stack,
+ coef(Im(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.,
+ stack)), B = 1000, seed = 0, trace = F)

> boot.obj3

Call:

bootstrap(data = stack, statistic = coef(Im(stack.loss ~
Air.Flow + Water.Temp + Acid.Conc., stack)), B = 1000,
seed = 0, trace = F)

Number of Replications: 1000
Summary Statistics:
Observed Bias Mean SE

(Intercept) -39.9197 0.829215 -39.0905 8.8239
Air.Flow 0.7156 0.004886 0.7205 0.1749
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1.2639 0.4753
-0.1573 0.1180

1.2953 -0.031415
-0.1521 -0.005164

Water.Temp
Acid.Conc.

The summary for a vector statistic includes the correlation matrix for
the replicate values. Based on the 95% confidence limits, for either
the empirical or the BCa percentiles, all coefficients except the
Acid.Conc. coefficient are significantly different from zero.

> summary(boot.obj3)

Call:

bootstrap(data = stack, statistic = coef(Im(stack.loss ~
Air.Flow + Water.Temp + Acid.Conc., stack)), B = 1000,
seed = 0, trace = F)

Number of Replications: 1000

Summary Statistics:
Observed Bias Mean SE
(Intercept) -39.9197 0.829215 -39.0905 8.8239

Air.Flow 0.7156 0.004886 0.7205 0.1749
Water.Temp 1.2953 -0.031415 1.2639 0.4753
Acid.Conc. -0.1521 -0.005164 -0.1573 0.1180

Empirical Percentiles:
2.5% 5% 95% 97.5%
(Intercept) -55.4846 -52.7583 -23.4913 -17.84522

Air.Flow 0.3844 0.4454 1.0136 1.05255
Water.Temp 0.3913 0.4768 2.0544 2.23920
Acid.Conc. -0.4181 -0.3604 0.0209 0.06103

BCa Percentiles:
2.5% 5% 95% 97.5%
(Intercept) -58.8427 -54.3320 -25.385390 -21.48317

Air.Flow 0.3197 0.3897 0.987308 1.01691
Water.Temp 0.4977 0.5811 2.278439 2.46017
Acid.Conc. -0.4250 -0.3743 0.008729 0.04447

496



Examples

Correlation of Replicates:
(Intercept) Air.Flow Water.Temp Acid.Conc.

(Intercept) 1.00000 -0.1376 0.03551 -0.7848

Air.Flow -0.13760 1.0000 -0.79387 -0.1096
Water.Temp 0.03551 -0.7939 1.00000 -0.2007
Acid.Conc. -0.78483 -0.1096 -0.20067 1.0000

The plot function provides histograms of the replicated regression
coefficients (Figure 33.6). Skewness is particularly evident in the
Acid.Conc. coefficients.

> plot(boot.obj3)

(Intercept) Air.Flow
v
> 9 2 2
z 3 z
2 Jdﬂmm 2 J(Ii"li"ihk
o o _qll | - 0 o 1 -
o o
-70 -50 -30 -10 0.0 0.4 0.8 1.2
Value Value
Water.Temp Acid.Conc.
2 © > <
£ 3 g |
o g A I I LS o o a Il | I I
0.0 1.0 2.0 3.0 -0.8 -0.4 0.0
Value Value

Figure 33.6: Histograms of replicated regression coefficients.

Next, the jackknife after bootstrap is used to assess the accuracy of the
standard error estimates, and the influence of each observation on
these estimates.

> jab.obj3 <- jack.after.bootstrap(boot.obj3, "SE")
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> jab.obj3

Call:

jack.after.bootstrap(boot.obj = boot.obj3, functional =
IISEII)

Functional Under Consideration:
[1] uSEll

Functional of Bootstrap Distribution of Parameters:
Func SE.Func
(Intercept) 8.8239 3.67775
Air.Flow 0.1749 0.06149
Water.Temp 0.4753 0.17850
Acid.Conc. 0.1180 0.05395

Observations with Large Influence on Functional:

$"(Intercept)™:
(Intercept)
21 2.863

$Air.Flow:
Air.Flow
21 3.672

$Water.Temp:
Water.Temp
21 3.214

$Acid.Conc.:
Acid.Conc.

14 -2.184

21 2.589

The jackknife after bootstrap and the corresponding influence plot
(Figure 33.7) suggest that points 14 and 21 are particularly influential.

> plot(jab.obj3)
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Figure 33.7: Influence plots for regression coefficients.
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Introduction

INTRODUCTION

Spotfire S+ was designed for data analysis, so it is rich in quantitative
methods. Many of these methods, while designed for particular data
analysis tasks, have been implemented as general mathematical tools.
These tools can be applied to a wide variety of numerical
applications. This chapter is a brief survey of mathematical
computing in Spotfire S+.

In this chapter, we assume a basic familiarity with the operation of the
command line. For the most part, however, this chapter is self-
contained and can be read independently of the other chapters in this
manual.
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ARITHMETIC OPERATIONS

You perform basic arithmetic in Spotfire S+ as you would with a
calculator, using the operators +, -, *, and /:

>2+ 2
(11 4

>9 -3
[11 6

>3 *8
[1] 24

> 17 / 4
[1] 4.25

Use the operator » for exponentiation, including root extraction:

>3 "2
(119

>7 ~ (1 7/ 3)
[1] 1.912931

Operators have their usual precedence (powers, multiplication/
division, addition/subtraction), and parentheses can be used (as in the
previous example) to group calculations. Two other operators provide
integer quotients and remainders. The integer divide operator, %/%,

returns the integer quotient q and the modulo operator, %%, returns

the remainder 7 of two numbers y and X, so thaty = gx+r:

> 24.5 %/% 3.2
(117

> 24.5 %% 3.2
[1] 2.1

>7 *3.2+ 2.1
[1] 24.5
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The abs function returns the absolute value of a number:

> abs(-4.5)
[1] 4.5

The greatest-integer function | x | is obtained using f1oor:
> floor(2.3)
[11 2

Similarly, the “next integer” [ x| is obtained using ceiling:
> ceiling(2.3)
[11 3

A wvector in Spotfire S+ is an ordered set of values. Simple numeric
vectors can be created with the c function or the sequence operator

(:):

>x <-¢(3, 1, 7)
> X

[11 317

>w <- 1:6
>w

[11123456

A matrix, in Spotfire S+, is simply a vector with a specified number of
rows and columns, that is, an ordered set of data in a rectangular
array. You can create matrices with the matrix command:

> A <- matrix(c(19, 8, 11, 2, 18, 17, 15, 19, 10), nrow = 3)

(.11 [,2]1 [,3]
[1,1] 19 2 15
[2,1 8 18 19
[3.] 11 17 10

You can also build matrices from existing vectors using rbind (which
assigns vectors to the rows of the matrix) or cbind (which assigns
vectors to the columns of the matrix):

>m <- c(14, 13, 10)
>n <- c¢(10, 11, 15)
> o <- c(19, 3, 15)

505



Chapter 34 Mathematical Computing in Spotfire S+

506

> B <- cbind(m, n, o)
> B

m n O
[1,] 14 10 19
[2,] 13 11 3
[3,]1 10 15 15

Most calculations on vectors or matrices are carried out element by
element, so, for example, if X = {;} and Y = {;;}, we have

X*#Y = {;;y;j} - Multiplying A times B with the standard * operator
yields the following:

>A *B

m n 0
[1,1 266 20 285
[2,] 104 198 57
[3,]1 110 255 150

For matrices, these element by element operations require that the
matrices have the same dimension; that is, the same number of rows
and the same number of columns, so that the matrices are conformable
Jor addition. For vectors, if one vector is shorter than the other, the
shorter vector is repeated cyclically to match the length of the longer
vector:

> X +w
[1T 4 310 7 6 13

Mathematical operations on combinations of vectors and matrices are
permitted, but may have unexpected results. For example, suppose
you define the matrix E as follows:

> E <- matrix(1l:4, nrow = 2)

Dividing by the previously defined vectors x and w yields the
following results:

> E/w

[1] 1.0000000 1.0000000 1.0000000 1.0000000 0.2000000
[6] 0.3333333
Warning messages:

Length of longer object is not a multiple of the



Arithmetic Operations

length of the shorter object in: E/w
> E/x

[,1] [.2]
[1,] 0.3333333 0.4285714
[2,1 2.0000000 1.3333333
Warning messages:
Length of Tonger object is not a multiple of the
length of the shorter object in: E/x

Spotfire S+ returns an object with the attributes of the longer object in
the calculation. Since Tength(E) < Tength(w), E/w returned an object
matching the attributes of w, namely a vector of length 6. On the other
hand, since Tength(E) > length(x), E/x returned an object matching
the attributes of E, namely, a matrix of length 4 with dim = c(2,2).

To perform matrix multiplication, use the matrix multiplication operator
%*%

> A %*% B

m n 0
[1,]1 442 437 592
[2,] 536 563 491
[3,]1 475 447 410

The two matrices must be conformable for multiplication, that is, the
number of columns of A must be the same as the number of rows of B.

Using the matrix multiplication operator on two equal length vectors
yields the vector dot product:

>z <- c(1l, 0, 3, 4, 8)
>y <-¢(2,9, 3,2,7)
> Z %*h Yy

[,1]
[1,1 75
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COMPLEX ARITHMETIC

508

In addition to the ordinary operators described in the section
Arithmetic Operations, five special operators are provided for
manipulating complex numbers.

Re and Im are used to extract the real and imaginary parts,
respectively, from a complex number. Mod and Arg return the modulus
and argument for the polar representation of the complex number.
Conj returns the complex conjugate of the complex number.

When you graph a vector of complex numbers with plot, the real
parts are graphed along the xaxis and the imaginary parts are
graphed along the y-axis.



ELEMENTARY FUNCTIONS

Elementary Functions

The elementary functions included in Spotfire S+ are listed in Table

34.1.

Table 34.1: Elementary Functions in Spotfire S+.

Name Operation
sqrt Square root
abs Absolute value

sin, cos, tan

Trigonometric functions (radians)

asin, acos, atan

Inverse trigonometric functions (radians)

sinh, cosh, tanh

Hyperbolic trigonometric functions
(radians)

asinh, acosh, atanh

Inverse hyperbolic trigonometric functions
(radians)

exp, log Exponential and natural logarithm (base € )
10910 Common logarithm (base 10)
Togb Logarithm for bases other than € and 10

gamma, lgamma

Gamma function and its natural logarithm

Each function acts element-by-element on its argument:

> d

(.11 0,21 [,3]1 [,4]

[1,] 12 15
[2,1 2 9
[3.1] 19 14

10
7
19
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> sqrt(J)

[,1] [.2] [.3] [.4]
[1,] 3.464102 3.872983 2.449490 3.162278
[2,] 1.414214 3.000000 1.414214 2.645751
[3,] 4.358899 3.741657 3.316625 4.358899

> tan(J)

L.1] £.2] [,3] [.4]
[1,] -0.6358599 -0.8559934 -0.2910062 0.6483608
[2,] -2.1850399 -0.4523157 -2.1850399 0.8714480
[3,] 0.1515895 7.2446066 -225.9508465 0.1515895

You can use Togb to compute logarithms of any base with the optional
argument base. For example, to compute log,7:

> logb(7, base = 2)

[1] 2.807355
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VECTOR AND MATRIX COMPUTATIONS

The pnorm of a vector x of length n is defined as:

p p

D p 1/
[X] +Xg + -+ X ]

for p>1. To obtain the p-norm of a vector in Spotfire S+, use the
vecnorm function (by default, p=2):

> vecnorm(1l:2)
[1] 2.236068

> ( sum( (1:2) ~2) ) ~ (1/2)
[1] 2.236068

The vecnorm function works with both real and complex vectors:

> vecnorm(1+27)
[1] 2.236068

You can specify the type of norm desired with the p argument.
Possible values include real numbers greater than or equal to 1, Inf,
and the character strings "euclidean” or "maximum":

> vecnorm(l:2, p = 1)

[1] 3

> vecnorm(l:2, p = "maximum")
[1] 2

> vecnorm(l:2, p = Inf)

[1] 2

To obtain the transpose of a matrix, use the t function:

> d

(.11 [,2]1 [,31 [.4]
[1,] 1215 6 10
[2,1] 2 9 2 7
[3.] 19 14 11 19
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> t(J)

[,11 [.,2]1 [.31]
[1,1] 12 2 19
[2,1] 15 9 14
[3.] 6 2 11
[4,] 10 7 19

You can obtain the diagonal of a matrix with the diag function:

> diag(Jd)
[1] 12 9 11

You can also use diag to construct diagonal matrices:

> x <-¢(3, 1, 7)
> diag(x)

[,11 [.2] [.31]
[1,] 3 0 0
[2,] 0 1 0
[3.1] 0 0 7

To obtain the #race of a square matrix, use sum with diag, as follows:

> sum(diag(A))

[11 47
Identity To generate identity matrices in Spotfire S+, use diag with an integer
Matrices argument representing the rank » as follows:

> diag(n)

For example, the rank 4 identity matrix is created as follows:

> diag(4)

[,11 [.,2] [.,3]1 [.4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
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Determinants

Kronecker
Products

Vector and Matrix Computations

There is no built-in Spotfire S+ function to calculate determinants.
However, the following one-line function can be used to calculate
determinants for realvalued matrices:

> det <- function(x) prod(eigen(x)$values)

The eigen function is discussed in the section Eigenvalues and
Eigenvectors.

A Kronecker product of two matrices A, , and B, , is the matrix

allB ..-aqu

B..a,B

ap1 pq

To calculate a Kronecker product in Spotfire S+, use the kronecker
function:

> N <- matrix(5:8, nrow = 2)
> 0 <- matrix(4:1, nrow 2)
> kronecker(N, 0)

(.11 [,2]1 [,31 [.4]
[1,] 20 10 28 14
[2,1] 15 5 21 7
[3.] 24 12 32 16
[4,] 18 6 24 8

You can generalize kronecker to other operations besides
multiplication by changing the operator with the fun argument:

> kronecker(N, 0, fun = "+")

(.11 [,21 [,3]1 [,4]
[1,1] 9 7 11 9
[2,] 8 6 10 8
[3,] 10 8 12 10
[4,] 9 7 11 9
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SOLVING SYSTEMS OF LINEAR EQUATIONS

Spotfire S+ provides several methods for solving systems of linear
equations such as the following:

19a+2b+15c =9
8a+18b+19c = 5
1l1a+17b+10c = 14

This system of equations can be expressed as the matrix equation
Ax =y, where A is the matrix of coefficients, X is the (column)
vector of unknowns ‘a, b, ¢), and y is the column vector of known

values 9, 5, 14). To define the coefficient matrix, type:

> A <- matrix(c(19, 8, 11, 2, 18, 17, 15, 19, 10), nrow=3)
> A

(.11 [,2]1 [,3]
[1,] 19 2 15
[2,1] 8 18 19
[3.] 11 17 10

The solve function takes the square matrix of coefficients and the
vector of known values as arguments, and it returns the solution
vector:

> solve(A, c(9, 5, 14))

[1I] 0.9914429 0.6161109 -0.7379758

You can also use solve to obtain the inverse of a matrix:

> solve(A)

(.11 [.2] [,3]
[1,] 0.04219534 -0.069341989 0.06845677
[2,] -0.03806433 -0.007376807 0.07111242
[3,] 0.01829448 0.088816760 -0.09619357
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Choleski
Decomposition

Solving Systems of Linear Equations

If the matrix is singular, solve returns an error message:

> S <- matrix(c(9, 3, 3, 3,1, 1, 2, 4, 7), ncol = 3,
+ byrow = T)
> S

[,11 [,2] [,3]
[1,] 9 3 3
[2,] 3 1 1
[3.] 2 4 7

> solve(sS)

Error in solve.qr(a): apparently singular matrix

If the matrix of coefficients is upper triangular, you can use backsolve
to solve the system of equations:

> U <- matrix(c(3, 0, 0, 1, 1, 0, 4, 5, 9), ncol=3)
> U

(.11 [,2]1 [,3]
[1,] 3 1 4
[2.] 0 1 5
[3.] 0 0 9

> backsolve(U, c(9, 5, 14))

[1I] 1.851852 -2.777778 1.555556

For symmetric, positive-definite matrices, the Choleski decomposition

factors the matrix X uniquely in the form X = RTR, where R is
upper triangular. You can use the Choleski decomposition to generate
upper triangular matrices for use with the backsolve function.
Spotfire S+ has two functions for performing the Choleski
decomposition: chol and choleski. The chol function is most useful
for obtaining new matrices, since it returns only the upper triangular
matrix R. The choleski function returns a list with the R matrix as
one of its components.

For more information on the Choleski decomposition, see the cho]l
help file and Chapter 8 of the LINPACK User’s Guide by Dongarra, et
al.

515



Chapter 34 Mathematical Computing in Spotfire S+

QR

Decomposition

516

The QR decomposition expresses an N x p matrix X as the product of
an n x n orthogonal matrix Q and an nx p upper triangular matrix

R. The QR decomposition is the foundation for solve and 1sfit, the
(nonrobust) least-squares fit function.

To compute a QR decomposition, use the qr function. The value
returned by qr is a list representing the QR numerical decomposition.
The first component of the list is an n X p matrix in which the upper
triangle, including the diagonal, is the R matrix. The entries under
the diagonal contain most of a compact representation of Q. To
obtain R and Q explicitly, use the functions qr.R and qr.Q,
respectively. Another function, qr.X, reconstructs the original nx p
matrix X from the numerical decomposition. In the following

example, we use all four QR functions on the matrix A defined at the
beginning of this section:

> qr(A)

$qr:

[,1] [.2] [,3]
[1,] -23.3666429 -15.7917422 -23.409439
[2,] 0.3423684 -19.1734420 -8.987649
[3,1 0.4707565 0.6457152 -7.564412

$qraux:
[1] 1.813125 1.763578 0.000000

$rank:
[1]1 3

$pivot:
[11] 123

> qr.Q(qr(A))

[,1] [,2] [,3]
[1,] -0.8131249 0.5653998 -0.1383870
[2,] -0.3423684 -0.6568151 -0.6718465
[3,] -0.4707565 -0.4989158 0.7276478



Solving Systems of Linear Equations

> qr.R(gr(A))

[1,]
[2,]
[3.]

[,1] [.2] [,3]
-23.36664 -15.79174 -23.409439
0.00000 -19.17344 -8.987649
0.00000 0.00000 -7.564412

> qr.X(qr(A))

(1,1
(2,1
[3,]

(.11 [.2]1 [,3]
19 2 15
8 18 19
11 17 10

The following functions use the return value from qr to perform
additional calculations.

qr.coef: Returns the coefficients obtained by a least-squares
fit of response data y to the X matrix on which qr was used.

qr.fitted: Returns the fitted values obtained by a least-
squares fit of response data y to the X matrix on which qr
was used.

qr.resid: Returns the residuals obtained by a least-squares fit
of response data y to the X matrix on which qr was used.

qr.qy: Returns the results of the matrix multiplication Qy,
where Q is the orthogonal transformation represented by qr
and Yy is the response data.

qr.qty: Returns the results of the matrix multiplication QTy ,
where Q is the orthogonal transformation represented by qr

and y is the response data.

For more details on the QR decomposition, see the help files for qr,
qr.coef, and qr.Q and Chapter 9 of the LINPACK User’s Guide by
Dongarra, et al.
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The Singular
Value
Decomposition

518

The singular value decomposition takes an nx p matrix X and

decomposes it into ubv' , where U and V are orthogonal and D isa
diagonal matrix. The elements of D are the singular values of X. The
squares of the singular values of X are the eigenvalues of the matrix
X'X.

To obtain a singular value decomposition in Spotfire S+, use the svd
function. This function returns a list in which the first component is a
vector of singular values, the second component is the orthogonal
matrix V, and the third component is the orthogonal matrix U. In
the following example, we compute the singular value decomposition
for the matrix A defined at the beginning of this section:

> svd(A)

$d:
[1] 40.000114 14.687207 5.768609

$v:

[,1] [.2] [.3]
[1,] -0.5280363 0.6449356 0.5524814
[2,] -0.5533835 -0.7547957 0.3522074
[3,]1 -0.6441618 0.1197558 -0.7554563

$u:

[,1] [.2] [.3]
[1,] -0.5200456 0.8538399 -0.02258456
[2,] -0.6606048 -0.4188323 -0.62304157
[3,1 -0.5414369 -0.3090905 0.78186261

The singular value decomposition can be used as a numerically stable
way to perform many operations that are used in multivariate
statistics. One such operation is estimating the rank of a matrix X.

For more information on the singular value decomposition, see the
svd help file and Chapter 10 of the LINPACK User’s Guide by
Dongarra, et al.



Eigenvalues and Eigenvectors

EIGENVALUES AND EIGENVECTORS

If A is a square matrix and AX = AX for a scalar A and a vector X,

then A is an eigenvalue of A and X is an eigenvector of A. The Spotfire
S+ function eigen returns both the eigenvalues and the eigenvectors
associated with them. In the following example, we compute the
eigenvalues and eigenvectors for the matrix A defined in the section
Solving Systems of Linear Equations:

> eigen(A)

$values:
[11 39.581985 13.677784 -6.259769

$vectors:

[.1] [,2] [,3]
[1,] 0.6224278 0.8664541 0.3124109
[2,] 0.8793762 -0.6095730 0.3450415
[3,]1 0.7368032 -0.2261540 -0.5721007

For more information on the eigen function, see the eigen help file.
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INTEGRALS, DIFFERENCES, AND DERIVATIVES

Use the integrate function to compute the integral of a real-valued
function over a given interval. The integrate function returns a list,
of which the first two components are the integral and the absolute
error:

> integrate(sin, 0, pi)[1:2]

$integral:
[1] 2

$abs.error:
[1] 2.220446e-14

For this simple example, we know that the integral of sin(x) over the

interval [0, m] is equal to —cosm— (—cos0). We can therefore check
the result that Spotfire S+ returns with the following command:

> (-cos(pi)) - -cos(0)
[11 2

Like many of the Spotfire S+ mathematical functions, integrate is
most commonly used inside other function definitions. The following
“wrapper” function provides a convenient command-line interface,
and returns a single numeric value:

> integral <- function(f, lower, upper, ...) {

+ results <- integrate(f, lower, upper, ...)
+ if(results$message != "normal termination™)
+ results$message

+ else results$integral

+ }

Use the diff function to obtain the nth difference of lag k for a set of

data x. The default for both k and n is 1. The data may be in the
form of a vector, time series, or matrix:

>y <= (1:10)72
> diff(y)

[I] 3 5 7 911 13 15 17 19
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Integrals, Differences, and Derivatives

With the following command, we compute differences for the built-in
corn.rain time series:

> diff(corn.rain)

1891: 3.3 -3.0 -1.2 -1.9 5.7 0.5 -2.9 0.0 0.0 0.7
1901: -3.0 8.4 -2.1 -3.5 -0.6 1.5 2.1 -1.5 -0.1 -2.7
1911: -1.6 3.3 -4.1 2.6 7.0 -7.2 0.1 -0.7 0.8 2.1
1921: 0.5 -4.1 2.7 3.2 -2.6 0.3 -1.2

Differences on matrices are performed on each column separately:

> K <- matrix(c(l2, 2, 13, 5, 10, 16, 7, 1), nrow=4)
> K

(.11 [,2]
[1,1] 12 10
[2,1] 2 16
[3.1] 13 7
[4,] 5 1

> diff(K)

(.11 [,2]
(1,1 -10 6
[2,] 11 -9
[3,1] -8 -6

You can use diff to write a function for approximating the derivative
of a data set:
> numdiff <- function(y, x=seq(along=y)) diff(y)/diff(x)

To perform symbolic differentiation, use the D function. AT&T
suggests the deriv function, but deriv is most useful for providing
derivatives to other Spotfire S+ functions. The D function is more
useful for obtaining an isolated derivative:

> D(expression(3*x~2), "x")
3% (2 * x)

> D(expression(exp(x”2)), "x")
exp(x”2) * (2 * x)

> D(expression(log(y)), "y™)
17y
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Spotfire S+ has a variety of functions for interpolation and
approximation, most of them developed to aid in fitting curves and
lines to data. However, they are sufficiently general to have wide
application in mathematical settings.

To find interpolated values in Spotfire S+, use the approx function.
You provide a vector of X values, a vector of associated y values, and
(optionally) a vector of x values at which you want interpolated

values. Spotfire S+ returns a list of X values and the associated y
values:

> approx(1:10, (1:10)*2, xout = c(2.5, 3.5))

$x:
[1] 2.5 3.5

$y:
[1] 6.5 12.5

A more specialized interpolation function, interp, can be used to
generate input for the three-dimensional plotting functions image,
contour, and persp. The interp function interpolates the value of the

z variable onto an evenly spaced grid of the x and y variables:

> x <- cos(seq(-pi, pi, len = 9))
>y <- sin(seq(-pi, pi, len 9))
>z <K-x+y

> slanted.disk <- interp(x, y, z)
> persp(slanted.disk)

The resulting plot is shown in Figure 34.1.
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Figure 34.1: A perspective plot created using interp.

Convex Hull To obtain the convex hull of a planar set of points, use the chull
function, which returns the indices of the points belonging to the hull:

> chull(corn.rain)

[1] 1 2 13 26 35 37 38 33 24 5

The peel option allows you to peel off the convex hull, take the
convex hull of the remaining points, peel off ¢that hull, and so on, until

either all points are assigned to a hull or a user-specified limit is
reached:

> chull(corn.rain, peel =T)

$depth:
[11112212234542126553443251413
[28] 42332131211
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$hull:

[1] 1 213 26 3537383324 5 4 3 6 7 14 32 36 29
[19] 22 12 21 8 18 31 34 30 27 9 11 19 20 28 25 10 17 23
[37] 16 15

$count:
[1T1 10 10 7 6 4 1

The depth component specifies which hull each point belongs to; 1 is
the outermost hull. The hull component gives the indices of the
points belonging to each hull. The first count[1] points belong to the
outermost hull, the next count[2] points belong to the next hull, and
so on.

Cubic Spline Splines approximate a function with a set of polynomials defined on

Approximation subintervals. A cubic spline is a collection of polynomials of degree
less than or equal to 3 such that the second derivatives agree at the
“knots.” That is, the spline has a continuous second derivative.

When interpolating a number of points, a spline can be a much better
solution than a polynomial interpolation, since the polynomial can
oscillate wildly in order to hit all of the points. Polynomials fit the data
globally while splines fit the data locally.

Use the sp1ine function to obtain a cubic spline approximation:

> x <- 1:5
>y <- c(5, -5, 0, -5, 5)
> spline(x, y)

$x:
[1] 1.000000 1.333333 1.666667 2.000000 2.333333 2.666667
[7]1 3.000000 3.333333 3.666667 4.000000 4.333333 4.666667
[13] 5.000000

$y:

[1] 5.0000000 0.1851852 -3.5185184 -5.0000000 -3.7037036
[6] -1.2962964 0.0000000 -1.2962964 -3.7037036 -5.0000000
[11] -3.5185184 (0.1851852 5.0000000

The spline function is primarily used for graphing, and so it returns
approximately three times as many output points as input points. For
more details, see the spTine help file.
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Step Functions The Spotfire S+ function stepfun creates a step function from either
two vectors or a list with components named x and y. You can specify
whether the step function is left- or right-continuous with the type
argument. If type="1eft" (the default), the given points are at the left
end of the level steps of the function; this gives a right-continuous
function. If type="right", the given points are at the right end of the
level steps of the function; this gives a left-continuous function.

> x <- seq(l, 15, Tength=5)
>y <- x*2
> stepfun(x, y)

$x:
[1] 1.0 4.5 4.5 8.0 8.0 11.5 11.5 15.0 15.0

$y:
[1] 1.00 1.00 20.25 20.25 64.00 64.00 132.25 132.25
[9] 225.00

> plot(stepfun(x, y), type = "1")
The resulting plot is shown in Figure 34.2.

200
\
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\

stepfun(x, y)$y
100
!

50

\ \ \ \ \ \ \
2 4 6 8 10 12 14

stepfun(x, y)$x

Figure 34.2: A step function.
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An initial value problem is a system of first order differential equations
together with a complete set of initial conditions, one for each
equation in the system:

Y1 (X) = (% yi(X), ... ¥y(X)) yi(Xp) = a;

/n'(x) = fn(Xa yl(x), ey yn(x)) yn(XO) = q,

Since second and higher order differential equations can always be
expressed as systems of first order equations, this definition of the
initial value problem is completely general. The solution of an initial

value problem with n equations is, for any specified point x, a vector
y of function values (y(X), .., ¥,(X)). The initial conditions a,, .., a,

are simply the solution at a given initial point X, .

To solve initial value problems in Spotfire S+, use the ivp.ab
function. You set up the problem as follows:

1. Specify a system of differential equations as in the above
definition. For example, consider the following initial value
problem:

Yi' = Y y;(0) = 2
Yo' = Yy +X Yo (0) = -1
2. Define a Spotfire S+ function that returns a vector
representing the derivatives y;' expressed as functions of X

and Y;. For the system given above, a Spotfire S+ function

ivp.exl is defined as follows:

> jvp.exl <- function(x, y) c(-y[2], y[1] + x)

3. Define the initial condition as a vector of the form
Xos(Y1(Xg)s --» Yn(Xp))). The first element of this vector

specifies the initial point and the remaining elements are the



Example:
Projectile Motion

Initial Value Problems

initial conditions for the equations in the system. In our
example, this vector can be defined with the Spotfire S+
command init.vals <- c(0, c(2,-1)).

4. Choose the point at which you want Spotfire S+ to calculate
the solution; this point is called the final point.

Once you've worked out the form of the derivatives and the initial
condition list, the call to ivp.ab is straightforward. For example, here

we solve our initial value problem at the final point X = w:
> jvp.exl.sol <- jvp.ab(final.point=pi, initial=init.vals,
+ derivatives=ivp.exl)

The ivp.ab function returns a list with several components, many of
which are most useful as input for further iterations of the function.
The solution itself is stored in the values component:

> ivp.exl.sol$values

point val 1 val 2
3.141593 -5.141677 2.999694

This particular example has the known analytic solution
Y1(X) = =X +AcosXx+ (1-B)sinx

Yo(X) = 1—(1-B)cosx+ AsinXx

where A =y,(0) and B = y,(0). You can therefore check the
solution that ivp.ab computes by substituting A = 2, B = -1, and

the final point X = m into the analytic solution:

> c(-pi + 2*cos(pi) + (1 - (-1))*sin(pi),
+ 1 - (1 - (-1))*cos(pi) + 2*sin(pi))

[1] -5.141593 3.000000

One familiar source of initial value problems is projectile motion.
Consider a body of constant mass m that is launched vertically
upward from the surface of the earth at an initial velocity of v, = 500
meters per second. Near sea level, the gravitational acceleration is
assumed to be constant at g = 9.8 meters per second squared. What

is the height of the projectile at time t = 47?
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We have the following one-dimensional initial value problem:
y'(t) = vo—0t y(0) = 0.
We can set up our derivative function to accept v, and g as
parameters with the following Spotfire S+ command:
> ivp.ex2 <- function(t,y,v0,g) return(v0 - g*t)

We then specify the values of v, and g as a list to the aux argument in
ivp.ab. The following syntax solves our initial value problem at the
point t = 4:

> jvp.ex2.so0l <- jvp.ab(final.point = 4, initial = c(0,0),
+ derivatives = ivp.ex2, aux = 1list(v0=500, g=9.8))

> ivp.ex2.sol$values

point wval 1
4 1921.6

The analytic solution to this equation is easily obtained by
integrating:

/(1)

| ;<vo— gx)dx + y(0)

Vot — %th

We can therefore verify the solution that ivp.ab returns by
substituting the appropriate values into the analytic solution:

> 500*%4 - 0.5*%9.8%472

[1] 1921.6

You can also use the Spotfire S+ function integrate to solve one-
dimensional problems directly:

> integrate(function(t, v0 = 500, g = 9.8) {v0-g*t},
+ lower = 0, upper = 4)$integral

[1] 1921.6

For more details on the integrate function, see the section Integrals,
Differences, and Derivatives.



Example: Simple
Harmonic Motion

Initial Value Problems

Simple harmonic motion is governed by the second-order differential
equation

mu" = —ku,

where u is displacement as a function of time, uU" is acceleration, m is

mass, and K is the spring constant. For example, consider a spring that
has a natural length of 5 centimeters. Suppose the spring stretches an
additional centimeter when a 30 gram weight is attached to one end

of it. In this case, m = 30 grams, 1 = 1/ 100 meters, and u" is
gravitational acceleration (9.8 meters per second squared). The spring
constant k can be calculated by substituting these values into the
above equation:

_30x 9.8

——== = 29, 400.
1/ 100

The differential equation that describes the motion of the spring is
therefore

30u" = =29, 400u.

If the spring is stretched 2 centimeters past its natural length and then
released so that it oscillates, what is the displacement u at time
t=175?

To solve second-order differential equations in Spotfire S+, we must
rewrite them as systems of first-order equations. Let y, = u and

Yo = U'. This change of variables gives the following initial value

problem for the spring example:

Yi' = Yo y;(0) = 2

. 29, 400 .
y2 = - 30 yl yQ(O) =0

We define our derivative function ivp.ex3 with the following Spotfire
S+ command:

> jvp.ex3 <- function(t,y) c(y[2], -(29400/30)*y[1])
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To solve the initial value problem at time t = 1.75, we call ivp.ab
and extract the resulting values component:

> ivp.ex3.s0l <- jvp.ab(final.point=1.75,
+ initial=c(0, c(2,0)), derivatives=ivp.ex3)

> jvp.ex3.sol$values

point val 1 val 2
1.75 -0.3854707 61.40628

The displacement at t = 1.75 is therefore u =y, = -0.3854707.

This solution indicates that the spring is approximately 0.385
centimeters shorter than its natural length after 1.75 seconds.

You should be aware that you won't be able to solve all initial value
problems with the ivp.ab function. First of all, not every initial value
problem has a solution. Secondly, the problem may be unstable, so
that errors are magnified by the numerical method as the solution
proceeds. Finally, the method has difficulty with some s¢iff problems,
in which solutions have several components that exhibit widely
varying behaviors over the solution interval. For further discussion of
these and other topics, see Shampine and Gordon (1975).



The Fast Fourier Transform

THE FAST FOURIER TRANSFORM

Spotfire S+ has several functions useful for signal processing,
including the fast Fourier transform and three kinds of filters:
convolution, recursive, and low-pass. For a complete description of
the filters implemented in Spotfire S+, see the section Linear Filters in
the chapter Analyzing Time Series and Signals.

The function fft calculates the unnormalized discrete Fourier
transform of the input data, which can be any numeric or complex

vector, array, or time series. For a vector z of length n, the definition
of the transform x<-fft(z) is:
Xj = Yziexp(-ig_;(t-1)),
t=1
where 1 <h and @ is the jth Fourier frequency 2mj/ n. Because of

the imaginary exponent, the output from fft is of mode "complex".
This can be seen in the following example:

> fft(1:10)

[1] 55+ 0.0000007 -5+15.388418i -5+ 6.881910i
[4] -5+ 3.63271371 -5+ 1.6245981 -5+ 0.000000i
[7] -5- 1.624598i -5- 3.632713i -5- 6.881910i
[10] -5-15.388418i

If the input data is an array (for example, a matrix), fft returns the
multi-dimensional unnormalized discrete Fourier transform of the
array. For an m x n array Z, the definition of the transform X<-fft(z)
is:
“2mi(j - 1)(s—1) -2mi(k— 1)(t-1)
Xk = 2 XZ«® e )
s=1t=1
where 1g§<m , 1<k<n ,and X denotes the [jk] entry of X. The

result is a complex array with the same shape as the input data Z.
Therefore, using fft on a multivariate time series does not compute
the time transform. With the following command, we compute the

discrete Fourier transform of the matrix A that we defined in the
section Solving Systems of Linear Equations.
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> A

(.11 [,21 [,3]
[1,1] 19 2 15
[2,1] 8 18 19
[3.] 11 17 10

> fft(A)

[.1] [.2] [,3]
[1,] 119.0+0.0000001 -2.5+ 6.06217871 -2.5- 6.062178i
[2,] -5.5-6.0621781 23.0+20.7846101 11.0- 6.9282031
[3.] -5.5+6.0621781 11.0+ 6.9282031 23.0-20.7846101

To compute the inverse transform, use fft with the argument
inverse=TRUE. For a vector X of length n, the definition of the
transform z<-fft(x, inverse=T) is:

2= Sxexplia_ (- 1),
i=1
where 1g2<n and @@ = 2nt/ n. Likewise, for an m x n matrix X,
the definition of the transform Z<-fft(X, inverse=T) is:

" "

2mi(s— 1)(j- 1) 2mi(t- 1)(k—-1)
ZSt = z leke e 5
i=1k=1
where 1s<n , 1<<n ,and Z denotes the [s,t] entry of Z. In the

following example, we compute the inverse Fourier transform of the
vector, (—=1+i/3)/ 2, (-1-i./3)/ &

> cuberoot.l <- (cos(2*pi/3) + sin(2*pi/3)*1i)~(0:2)
> cuberoot.1l

[1] 1.0+0.0000000i -0.5+0.86602541 -0.5-0.86602541
> fft(cuberoot.1l, inverse =T)

[1] 0.000000e+00+3.330669e-161 2.220446e-16+3.142072e-16i
[3] 3.000000e+00-6.472741e-161
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Note that the wunnormalized transforms implemented in fft involve
sums instead of means. For an n dimensional vector X, this causes the
commands

> fft(fft(x), inverse=T)
> fft(fft(x, inverse=T))

to both return nx (approximately, depending on roundoff error). In
contrast, the mnormalized discrete Fourier transform divides the
unnormalized result by the length of the input; the normalized output
contains the Fourier coefficients. If you require Fourier coefficients for
your analysis, you should divide the value that fft returns by the
length of your input vector.
The discrete Fourier transform is used to compute an approximation
to the continuous Fourier transform of a periodic function f. In the
usual definition, n points are sampled from f symmetrically around
0; that is, the domain of the sampled pointsis-N/ 2, N/ 2, where N
is the period of f. However, Spotfire S+ assumes the n points are
sampled from the interval [0, N]. When this convention is followed,
the resulting frequencies are shifted. For example, let j be the index
of the sampled points and suppose n is even. In Spotfire S+, the zero
frequency corresponds to j = 1, the positive frequencies correspond
to 2g<n/ 2, the negative frequencies correspond to
n/ 2+2<g<n, and the Nyquist critical frequency corresponds to
= n/ 2+ 1. The definitions are analogous if n is odd: the zero

frequency corresponds to j = 1, the positive frequencies correspond

to 2§j£n%1 , the negative frequencies correspond to

nTl + 1 g <n , and there is no Nyquist critical frequency. For more

details, see Press et al. (1996).
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Spotfire S+ has many functions that perform probability calculations
for the most common distributions. Each of these functions has a
name that begins with a one-letter code indicating the type of
function: rdist, pdist, ddist, and qdist, respectively, where dist is
the Spotfire S+ distribution function. The one-letter codes are as
follows.

* r: Random number generator. Requires an argument
specifying the sample size, plus any required distribution
parameters.

*  p: Probability function. Requires a vector of quantiles, plus
any required distribution parameters.

* d: Density function. Requires a vector of quantiles, plus any
required distribution parameters.

*  q: Quantile function. Requires a vector of probabilities, plus
any required distribution parameters.

For a detailed description of the distribution functions implemented
in Spotfire S+, see the chapter Probability in the Guide to Statistics,
Volume 1. The probability chapter includes a table of distributions
currently supported by Spotfire S+, along with the codes used to
identify them.

For those users interested in understanding the Spotfire S+ pseudo-
random number generator (PNG), we present the internals of the
algorithm here. All Spotfire S+ functions that generate random
numbers rely on the underlying PNG, which computes uniform
random numbers in the interval (0,1). We discuss the algorithm
briefly and at a relatively high level; for general background
knowledge on random number generators, see Ripley (1987) or
Kennedy and Gentle (1980).
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The pseudo-random number generator implemented in Spotfire S+ is
based on George Marsaglia’s original “Super-Duper” package from
1973. It produces a 32-bit integer whose top 31 bits are divided by

3 2, 147, 483, 64¢ The result is a real number in the half-open

interval [0, 1).The 32-bit integer is computed by a bitwise exclusive-
or of two additional 32-bit integers: one produced by a congruential
generator, and one produced by a Tausworthe generator.

The congruential generator, also known as the /linear or mixed
congruential method, is one of the most commonly-used random

number generators. It produces a sequence of numbers X; via the

recursive relationship

Xi,1 = (aX;+c)modm,
where a is a multiplicative constant and ¢ is an additive constant.
The modulus m is chosen to be as large as possible, since the period of

the generator cannot be larger than m. In Spotfire S+, m = 2% and

all overflowing bits are discarded. The initial value X, is called the

seed. Various combinations have been proposed for a and c, and
Spotfire S+ uses the values a = 69069 and ¢ = 0:

Xi,, = (69069%;) mod 2%.

This recursion results in a strictly multiplicative generator that has a

period of n/ 4 = 9%

The Tausworthe generator produces a sequence of numbers Y; via

the exclusive-or operation

Y; :Yi—p xor Yif(pfq)'

In Spotfire S+, p = 32 and q = 15. For most starting seeds Y, this

generator has a period of ;, 292, 868, 09'. Combining this with the
congruential part gives a PNG that has a period of

0y 4, 292, 868, 097 = 4.6 x 10. The Spotfire S+ generator skips
cases in which the result is exactly 0, producing random numbers in
the open interval (0,1) ; this reduces the period by a small amount.
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The Spotfire S+ vector .Random.seed stores the starting values X,

and Y|, for the congruential and Tausworthe generators, respectively.

The first time random numbers are computed in a Spotfire S+
session, .Random.seed is modified and copied to the local working
database. In general, .Random.seed is updated with the current
congruential and Tausworthe values whenever Spotfire S+ computes
a random sample. The following example illustrates this. In the code
below, the function set.seed defines the starting seeds for a particular
sequence of random numbers.

> set.seed(l)
> .Random.seed

[1] 21 14 49 48 24 1 32 22 36 23 28 3

> x <- rnorm(100)
> .Random.seed

[1] 13 8 57 53 18 3 33 33 11 41 53 3

This mechanism maintains the long-term properties of the generator,
and also allows for reproducibility of results. For more details, see the
help files for .Random.seed and set.seed.

When a function containing a call to the random number generator
aborts before finishing, .Random.seed is not modified. The following
contrived example illustrates this. In the code below, we create a
function test.func that is guaranteed to abort before it completes.

> .Random.seed

[1] 13 8 57 53 18 3 33 33 11 41 53 3

> test.func <- function() {

+ x <- rnorm(100)

+ x[1] <- NA

+ if(any(is.na(x))) stop("NAs are not allowed in x")
+ return(x)

+ 3

> test.func()
Error in test.func(): NAs are not allowed in x

> .Random.seed
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[1] 13 8 57 53 18 3 33 33 11 41 53 3
The .Random.seed vector encodes the base 64 representations of the
current congruential and Tausworthe values. It stores twelve integers
from the interval [0,63], where the sixth and twelfth entries are from
[0,3]. The congruential value X is encoded in the first six integers of
.Random.seed, and the Tausworthe part Y is encoded in the last six. If
the entries of .Random.seed are denoted by r; fori =1, 2, .., 12,
then
X = UzriQG(i_l)>
i=1
Y = zri+626(i_l).
i=1

It is possible to shorten the period of this generator dramatically by
changing specific bits in .Random. seed. Because of this, set the starting

seed only with the methods outlined in the set.seed and
.Random.seed help files.

Note that 64 bits are required by the Spotfire S+ pseudo-random
number generator (32 for X and 32 for Y) to produce the final value
returned. This means that it is possible to generate repeats in a long
sequence of random numbers, even though the full period has not
been reached. For example, consider the following command:

> set.seed(15)
> table(table(runif(500000)*2147483648))

1 2
499866 67

We multiply the results from runif by 31 2, 147, 483, 64¢ to

recover the original 31 bits produced by the exclusive-or of X and Y.
The output says that 499,866 of the random numbers show up once
in the sequence and 67 show up twice. However, the period of the
Spotfire S+ random number generator is much larger than 500,000,
the length of the sequence in this example.
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Spotfire S+ can be useful in many number-theoretic computations, as
we have already seen with the %% and %/% operators. You can define
simple functions to list prime numbers and perform factorization;
although they will not set computational records, you may find them
useful.

The primes function returns all prime numbers less than or equal to a
given n, where by default n = 100:

> primes <- function(n = 100) {

+ n <- as.integer(abs(n))

+ if(n < 2)

+ return(integer(0))

+ p <- 2:n

+ smallp <- integer(0) # the sieve
+ repeat {

+ i <- p[1l]

+ smallp <- c(smallp, i)
+ p <- plp %% i != 0]

+ if(i > sqrt(n))

+ break

+ }

+ c(smallp, p)

+ 3

> primes(75)

(1] 2 3 5 711 13 17 19 23 29 31 37 41 43 47 53 59 61
[19] 67 71 73

The factors function returns the prime factors of an integer n:

> factors <- function(n) {

+ n <- as.integer(abs(n))

+ if(lexists(".Primes™) || max(.Primes) < sqrt(n))
+ assign(".Primes"™, primes(as.integer(1.3 *
+ sqrt(n))), where = 1)

+ pfactors <- integer(0)

+ while(n > 1) {

+ new.factors <- .Primes[n %% .Primes == 0]



Primes and Factors

+ if(length(new.factors) == 0)

+ new.factors <- n

+ n <- as.integer(n/(prod(new.factors)))
+ pfactors <- c(pfactors, new.factors)

+ }

+ sort(pfactors)

+}

> factors(3012)

(11 2 2 3 251
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Spotfire S+ performs its computations in double precision, unless
specifically written as integer or single precision. Computed values
are accurate to approximately 14 decimal places. However, computed
values can provide no more significant digits than the data they are
computed from.

The exact limits on computations in Spotfire S+ are determined by
the parameters of machine arithmetic stored in the Spotfire S+ object
.Machine. The object .Machine is a list with various numeric
components whose names are made up of the characters single. or
double. followed by the name of a particular parameter of machine
arithmetic. For example, single.digits is the number of base
single.base digits in the floating point representation of a single-
precision number. In addition, the component integer.max is the
largest integer.

See the .Machine help file for more information.
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Symbols

* operator
arithmetic 504
+ operator
arithmetic 504
.Machine list 540
.Random.seed vector 536
/ operator
arithmetic 504
: operator
sequence 505
" operator
arithmetic 504

Numerics

90% criterion for selecting principal
components 54

A

abs function 505, 509

absolute value 505, 509
accelerated failure time models 378
accelerated testing models 378

acf function 173, 189

acm.ave function 222

acm.filt function 222

acm.smo function 222, 231

acos function 509

acosh function 509

addition 504

agglomerative methods 108

agnes function 108, 130, 132, 147
AIC 179, 193

Akaike’s Information Criterion 179

Index

Akaike’s Information Criterion
(AIC) 189
Akaike’s information criterion (AIC)
193
algorithms
AIC 193
Akaike’s Information Criterion
179
ARMA 186
autocorrelation function 169
autocovariance function 169
autoregressive process 175
Burg’s 184
cluster analysis 141
covariance function matrix 172
Cox proportional hazards
model 273
factor analysis 66
hazard function 250
Levinson-Durbin recursion 178
low-pass filter transfer function
219
moving average process 170
robust filtering 228
survival curves 250, 255
survival function 250
Yule-Walker equations 176
alternative robust smoothers 231
approx function 522
approximation
cubic splines 524
derivatives 521
linear interpolation 522
ar.gm function 222
ar.yw function 181
Arg function 508
args.stat argument 482
args.stat function 479
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arima.diag function 195, 196
arima.filt function 196
arima.forecast function 195
arima.mle function 193
arima.sim function 196
arima.td function 197
ARIMA coefficients, transforming
192
ARIMA models 186, 187
autoregressive vs. general 189
diagnostics for and criticism of
194
estimating the parameters of
189
filtered values 196
forecasting with 195
fractionally differenced 200
identifying and fitting 189
identifying the model 189
missing values 192
modeling effects of trading days
197
multiplicative 191
predicted and filtered values for
196
regression parameters 193
residuals of 194
seasonal 187
simulating fractionally
differenced 201
simulating processes 196
with regression variables 188
arithmetic 504-507
complex 508-??
vectors and matrices 506
ARMA models 186
ARMA process 189
AR process 179
asin function 509
asinh function 509
assign.framel argument 482
assign.framel function 480
asymmetric binary variables 113
atan function 509
atanh function 509

autocorrelation function 189
algorithm 169
for time series
multivariate 171
univariate 168
lag 171
partial 173, 179
plot 173
residuals of ARIMA models 194
simple use of 173
value of 174
autocovariance
mean squared error of 171
positive semi-definiteness of 171
autocovariance function
algorithm 169
for AR process 176
for time series
multivariate 171
univariate 168
autocovariance sequence 204
autoregression
estimation
via Yule-Walker equations
181
with Burg’s algorithm 184
generalized M-estimates for 225
multivariate 179
univariate 175
autoregression parameter estimates,
robust 222
autoregressive (AR) filters 214
autoregressive coefficients 186
autoregressive filters 215
autoregressive integrated moving-
average (ARIMA) models 186,
187
autoregressive models 176
autoregressive moving-average
(ARMA) models 186
autoregressive operators 196
autoregressive process 175
autoregressive spectrum estimation
211
average weighted link 141



B

backshift operator 186
backsolve function 515
bandwidth 207
banner 132
B component 481
between-cluster dissimilarity 131
bias

minimizing 222
biplot function 60, 79
biplots 60, 61

factor analysis 79
bladder 306
block.size function 480
bootstats function 479
bootstrap function 479
bootstrapping

main arguments to 479

optional arguments to 479
bootstrapping functions 477
bootstrap resampling 479
bounded influence autoregression

estimates 225

Box-Jenkins airline model 194
browser function 23
browser function 26
burl.tree function 28

C

call function 481
Cattell’s criterion for selecting
principal components 54

cbind function 505
ceiling function 505
censoring 250, 252
censorReg

covariates 396
censorReg function 392
centroid method 141
¢ function 505
charts

see plots
Choleski decomposition 191, 515

Index

choleski function 515
chol function 515
chull function 523
clara function 108, 123, 147
classification tree
pruning 17
classification trees
browsing nodes 23, 26
classification rules 2
determining splits 27
editing 31
example 6
manipulating 145
nodes 25
plotting 145
pruning 17
removing subtrees 23
selecting subtrees 23, 24
shrinking 19
summarizing 12
see also tree-based models
clorder function 145
cluster 308
cluster analysis
algorithms 141
approximate weight of evidence
(AWE) 144, 145
criteria 143
distance matrices 145
functions listed 145, 146
hierarchical agglomeration
algorithm 141, 145
robust methods 144, 145
clustering methods
calling the functions 148
summary of functions 148
clustering tree 132
CO, data set 209
complete linkage method 131
complete link method 141
complex demodulation 218
complex numbers 508-??
complex conjugate 508
plotting 508
p-norm of vectors 511
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546

computational accuracy 540
conditioning 190, 193
confidence intervals 195
congruential random number
generator 535
Conj function 508
continuous ordinal variables 111
convex hull 523
convolution filters 214
examples of 215
correlation matrix 50
cos function 509
cosh function 509
cost—complexity measure
tree models 17
counting process
using 298
covariance function matrix 172
covariance matrix 50, 72
Cox model 416
adjusted variable plots 287
algorithm 273
deviance residuals 288
estimated relative risk 280
functional form for predictor
287
grouped jackknife estimate of
variance 333
improvement in fit 280
influential points 288
jackknife estimate of variance
333
likelihood ratio test 276, 281
log likelihood 281
martingale residuals 287
modified sandwich variance
estimator 336
null model 281
plotting 297
poorly predicted subjects 288
proportional hazards
assumption 288
relative risk 276
robust estimate of variance 333
robust variance estimation 336

sandwich estimate of variance
sandwich variance estimator
334
Schoenfeld residuals 288
Wald test 276
zero iterations 287
Cox models
complex 302
Cox proportional hazards model
see Cox model
crosscorrelation function 171
crosscovariance function 171
cross-spectrum 207
cu.summary data set 28
cubic splines 524
cumulative hazard 250
cusum charts 460
fast initial response 465
new data 461
sensitivity 464
types of charts 464
xbar charts 460
cusum function 460
arguments listed 462
cutoff frequency 219
cutree function 145

D

daisy function 109, 113, 147
Daniell windows 207
data argument 482
data function 479
data taper 205, 213
decomposing matrices
Choleski 515
QR 516
singular value 518
degrees of freedom 207
de-meaning 205
demod function 218
demodulation, complex 218
density function 534
derivatives



approximating 521

finding 521
determinants 513
detrending 205
d-fold differencing operator 187
D function 521
diag function 512
diagonal matrices 512
diana function 108, 132, 134, 147
differenced series 187
difference equation 175
differences 520
differencing operators 187, 196
diff function 520
digital filter 214
digital filters

see filters
dim.obs component 481
discontinuous intervals of risk 299
discrete Fourier transform (DFT)

206

discrete ordinal variables 112
discrete time 203
discrete time random walk 175
dissimilarities 110
dissimilarity matrix 109
di st function 145
division 504
divisive methods 108
dot products 507
Dunn’s partition coefficient 126

E

edit.tree function 31
eigen function 519
eigenvalues 519
eigenvectors 519
entropy 184
error covariance matrix 67
errors, Gaussian 165
estimate component 481
event history analysis 236
example functions
factors 538

Index

primes 538
stats.med 447
examples
bladder cancer study 306
classification tree from kyphosis
data 6
complex Cox models 302
factor analysis of test scores data
68
lung cancer study 289
ovarian cancer study 275
principal components analysis
of exam scores 40
principal components analysis
of states data 47
spectral analysis of sunspots 208
Stanford heart transplant study
302
expected survival
Bonsel estimator 416
conditional estimate 416
Ederer’s method 416
Hakulinen’s method 416
exp function 509
explanatory variables 188
exponential function 509
exponents 504

F

factanal function 68
choosing rotation 75, 77
maximum likelihood 71
return object 68
valid rotation arguments 77

factor analysis
algorithm 66
communalities 67, 70
compared with principal

components analysis 66
correlation matrix 72
covariance matrix 72
estimating the model 68
loadings 66, 70
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maximum likelihood estimate
68, 71
plotting 78, 79
prediction 80
rotations 75
scores 80
simple structure 75
summary of return object 69
uniquenesses 67, 70
factor covariance matrix 67
factor loadings 66, 70
plotting 78
rotated 75
failure time data
analysis of 236
fanny function 108, 126, 127, 147
fast Fourier transform 206, 531
fast Fourier transform (FFT) 206
fft function 531
filters 223
autoregressive 215
autoregressive (AR) 214
causal 214
cleaners 224
convolution 214
examples of 215
finite-impulse response (FIR)
214
infinite-impulse response (IIR)
214
Kalman 191, 192, 195
least squares low-pass 219
linear time-invariant 214
low-pass 218
moving average (MA) 214
non-causal 214
recursive 214, 215
robust 223, 230
finite-impulse response (FIR) filters
214
first-difference operator 187
floor function 505
Fourier series 203
Fourier transform 203
definition 531

definition of inverse 532

discrete (DFT) 206

fast 206, 531

fast (FFT) 206

Fourier coefficients 533

Fourier frequency 531

inverse 205, 532

negative frequencies 533

Nyquist critical frequency 533

positive frequencies 533

unnormalized 533

zero frequency 533
functions

mathematical, listed 509
fuzzy analysis 123

G

gamma function 509

Gaussian errors 165

Gaussian maximum likelihood 190,
191, 193

generalized M-estimates 225

geostatistical data 155

GM estimates 225

goodness-of-split criterion (tree
models) 28

greatest-integer function 505

group.size argument 481, 482

group average method 131

group component 481

H

harmonic motion 529
spring constant 529
hazard function
algorithm 250
cumulative 250
hazard rate 250
hclust function 145
hexagonal binning 155-159
hexbin function 155-??
hexbin function 154
hexbin function ??-158



hierarchical algorithms 108

hist.tree function 29

Huber psi-function 227

hyperbolic trigonometric functions
509

I

identify function 158, 458
offset argument 158
tree models 27
identifying plotted points 458
identity matrix 512
imaginary numbers 508
Im function 508
infinite-impulse response (IIR)
filters 214
infinitesimal jackknife 337
initial value problems 526
definition 526
harmonic motion 529
initial conditions 526
projectile motion 527
second-order differential
equations 529
solving one-dimensional 527
solving two-dimensional 529
stiff problems 530
unstable problems 530
innovations process 186, 189
integer divide 504
integrate function 520, 528
integration 520
interp function 522
interpolation
cubic splines 524
linear 522
interval censored data 381
interval-scaled variables 110
inverse Fourier transform 205
inverse hyperbolic trigonometric
functions 509
inverse trigonometric functions 509
invertibility 192
IVP

Index

See initial value problems
ivp.ab function 526
aux argument 528
derivatives argument 526
extracting the solution 527
final.point argument 527
initial argument 526
limitations 530

J

jack.after.boot function 481
jackknife function 479
jackknife resampling 481
jackknifing functions 477
jackstats function 479

K

Kaiser’s criterion for selecting
principal components 54, 56
Kalman filter 191, 192, 195
Kaplan-Meier estimate, generalized
381
kaplanMeier function 388
Kaplan Meier survival curve
plotting 388
Kaplan-Meier survival curve
algorithm 250
kronecker function 513
Kronecker products 513
kyphosis data set 6

L

labclust function 145

lag 520

lag.plot function 167

lagged scatter plots 167

lapply function 480

leakage of power 205, 212

least squares approximation method
219

least squares low-pass filters 219

Levinson-Durbin recursion 178
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vector form 181
1gamma function 509
limits.bca function 481
linear combinations
standardized 38
linear equations
Choleski decomposition 515
eigenvalues 519
inverting 514
QR decomposition 516-517
singular value decomposition
518
solving 514-??
triangular systems 515
linear filters 214
linear interpolation 522
linear prediction modeling 176
loadings function 44, 45, 70
loadings see factor loadings
Loadings see principal component
loadings
10910 function 509
logarithms 509, 510
10g function 509, 510
log-likelihood function, penalized
version of 193
log-likelihood measure 189
log rank test 264
long memory time series modeling
199
low-pass filters 218
low-pass filter transfer function 219
lung cancer study 289
lynx data set 213

M

map function 158
maps library 158
Markov process 175
mathematics

elementary functions 509
matrices

arithmetic 506

creating 505

determinants 513
diagonal 512
differences on 521
distance 145
identity 512
Kronecker products 513
multiplication 507
trace 512
transpose 511
matrices see also linear equation
maximum likelihood estimate
factor analysis 68, 71
mclass function 145
mclust function 144
mclust function 145
mean squared error 171
medoids 117
Meeker, W.Q, 237, 379
missing data
tree models 14
missing values 191, 192
effect on computations 245
global action 245
report of action 245
warning 245
model assumptions 165
modeling
linear prediction 176
models
ARIMA 186, 187
forecasting with 195
fractionally differenced 200
identifying and fitting 189
modeling effects of trading
days 197
predicted and filtered
values for 196
simulating fractionally
differenced 201
simulating processes 196
with regression variables
188
ARMA 186
autoregressive 176
invertibility of 192



missing values 191
seasonal 187
signal plus noise 196
stationarity of 192
Mod function 508
modified sandwich estimator 336
modulo operator 504, 535
modulus
complex numbers 508
mona function 108, 136, 139, 147
moving average (MA) filters 214
moving-average coefficients 186
moving average process 170, 185,
186
mreloc function 145
multiple events 298
multiplication 504
multiplicative ARIMA models 191

N

na.action function 14

na.tree.replace function 14

n component 481

nearest crisp clustering 127

Nelson’s cumulative hazard estimate
algorithm 255

nominal variables 112

non-stationary process 175, 187

0]

observed component 481
offset argument 158
one-step prediction residuals 194
- operator
arithmetic 504
operators
artithmetic 504
dot product 507
integer divide 504
modulo operator 504
precedence hierarchy 504
sequence 505
vectors and matrices 506, 507

Index

outliers 222

additive (AO) 223

general replacement (RO) 222
ovarian cancer study 275
ozone data 158

P

padding 206
pam function 108, 116, 121, 147
parametric family 393
par function 158
par function 158
partial autocorrelation function 179,
189
partial correlation coefficients 184
partitioning algorithms 108
path.tree function 27
pclust function 145
periodogram 205, 206
smoothing 206
person years 417
phase 207
plot.hexbin function 156
plot.hexbin function 156
plot.kaplanMeier function 389
as low-level graphics function
390
plot function 10
plot of hexbin object 156
plots
autocorrelation function 173
basic time series 166
biplots 60, 61, 79
cusum charts 460
identifying points 458
lagged scatter 167
screeplots 54
shewhart charts 450
plot styles
hexbin objects 157
plotting
factor loadings 78
Kaplan Meier survival curve

388
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principal components 60, 61
principal components loadings

p-norm of vectors 511
polar representation
complex number 508
polynomial equations
finding roots of 185
polyroot function 185
portmanteau test statistic 195
power leakage 205, 212
power spectrum 206
precedence hierarchy
arithmetic 504
precision
arithmetic operations 540
predicted values 196
tree models 13
predict function
factor analysis 80
principal components 58
predict function
tree models 13, 16
prediction error decomposition 189
prediction errors 190, 191
prediction variance 180
prime numbers 538
principal component loadings 39, 44
plotting 45
principal components
calculating 40
summary 42
principal components analysis
90% selection criterion 54
Cattell’s selection criterion 54
compared with factor analysis
66
correlation matrix 47, 50
covariance matrix 50
ellipsoid covariance estimate 53
excluding components 54
interpreting 44, 45
Kaiser’s selection criterion 54,
56
loadings 39

plots 54, 60, 61
prediction 58
scaling data 47
scores 58
selection criteria 54
standardized linear
combinations 38
transformations 38
weighted covariance estimation
53
principal factor estimate 68
princomp function 40
return object 42
scaled data 47
probabilities 412
probability functions 534
prune.tree function 17
pruning trees 17
pseudo-random number generator
534
.Random.seed vector 536
congruential 535
period of 535
set.seed function 536
Tausworthe 535
purely random process 169

Q

gcc function 446
arguments listed 447
qcc objects 446
OR decomposition 516-517
qr function 516-517
quakes.bay data 155
quakes.bay data frame 155
quality control charts 444
control data 447
cusum charts 460
group statistics 447
Shewhart charts 450
types listed 444, 445
within-group standard deviation
447
quantile functions 534



quantiles 412
quasi-Newton optimizer 192

R

random number generator. See
pseudo-random number generator
random numbers 534
.Random.seed vector 536
set.seed function 536
random walk 175
ratio-scaled variables 111
rayplot function 158
rbind function 505
recursion 175
Levinson-Durbin 178
Whittle’s 181
recursive filters 214, 215
recursive partitioning 2
reference value (cusum charts) 460
reflection coefficients 179
Re function 508
regression trees
browsing nodes 23, 26
determining splits 27
editing 31
examples 4
nodes 25
pruning 17
regression rules 2
removing subtrees 23
selecting subtrees 23, 24
shrinking 19
summarizing trees 11
see also tree-based models
regression variables 188
relative risk 276, 280
reliability analysis 236
replicates component 481
resample objects 479
resampling techniques 476
residual deviance 10
residuals
tree models 13
robust filters 223, 230

Index

robust methods 165, 222
robust smoothers 222, 223
two-filter 230
rotations
factor analysis 75
oblimin 75
types listed 77
varimax 75
rug.tree function 35
running averages 206
Ruspini data 115
ruspini data 115

S

samp.boot.bal function 479
samp.boot.mc function 479
samp.permute function 480
sampler function 479
sandwich estimator 334
save.indices function 481
scaling data 47
scatter plots

lagged 167
scores

principal components 58
screeplot function 56
screeplots 54

creating 54
seasonal models 187
seed.end component 481
seed.start component 481
seed argument 482
seed function 479
select.tree function 24
sequence operator 505
set.seed function 536
shewhart 453
Shewhart charts 450

control limits 451

new data 453

reading 451

run length 451

summary statistic 456

target value 451
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violating points 457
shewhart function 450, 456
arguments listed 451
returned objects 453, 465
shrink.tree function 17, 20
shrinking trees 17, 19
signal plus noise model 196
signal processing 531
signals
analysis of
frequency methods 165
time domain methods 165
complex demodulation 218
linear filters for 214
convolution 214
least squares low-pass 219
recursive 215
plots for
basic 166
lagged scatter 167
robust methods for 222
alternative robust smoother
231
generalized M-estimates for
autoregression 225
robust filtering 228
two-filter robust smoother
230
spectral analysis of 203
spectrum estimation
autoregressive 211
from periodogram 205
tapering 212
silhouette plot 117
simple matching coefficient 112
s1in function 509
single linkage method 131
singular value decomposition 518
sinh function 509
SLC see standardized linear
combinations
smoothers
alternative robust 231
cleaners 224
definition of 223

periodogram 206
robust 222, 223
snip.tree function 23
solve function 514
spatial data 155
spec.ar function 212
spec.pgram function 205, 207, 208
spec.plot function 212
spec.taper function 213
spectral analysis
autocovariance sequence 204
cross-spectrum 207
detrending and de-meaning 205
Fourier series 203
padding 206
periodogram 205, 206
phase 207
spectral density 204
spectral density estimate 207
spectral representation 204
spectrum estimation
autoregressive 211
from periodogram 205
squared coherency 208
tapering 205, 212
spectral density 204
spectral density estimate 207
spectrum estimation
autoregressive 211
from periodogram 205
spectrum function 212
spline function 524
splines
cubic 524
split cosine bell taper 213
sqrt function 509
squared coherency 208
standard error 179
standardized linear combinations 38
standardized residuals 194
state transition matrix 229
stationarity 192
stationary process 175
stationary time series 168
statistic argument 481, 482



statistic function 479
stats.med function
created 447
stats.xbar function
qcc uses 447
step functions 525
stepfun function 525
subtraction 504
subtree function 145
summary function 156
summary function
principal components 42
summary function
tree models 10
survival
cohort expected 419
individual expected 418
survival analysis 378
censored observations 250, 252
correlated observations 308
discontinuous intervals of risk
299
examples 252, 275, 289
gaussian distribution for
parametric 368
hazard function 250
IRLS formulation for
parametric 363
least extreme value distribution
for parametric 369
logistic distribution for
parametric 370
log likelihood for parametric
363, 364
multiple events 298
other distributions for
parametric 371
overview 236
parametric distributions 368
parametric regression 348
person years 417
survival curves 250, 273
survival distributions 264, 267
survival function 250
tests 264

Index

time-dependent covariates 298
time-dependent strata 300
using the counting process 298
survival curve
confidence intervals 258
Cox model 273
Cox models 343
Kaplan-Meier estimate 250,
252, 267
Nelson’s cumulative hazard 255
survival curves 416
survival data 378
survival function
algorithm 250
survival time
mean 262
median 262
symmetric binary variables 112

T

tan function 509
tanh function 509
tapering 205, 212
data taper 213
split cosine bell taper 213
tapply function 159
tapply function 158
Tausworthe random number
generator 535
testscores data set 68
created 40
t function 511
Therneau, Terry 379
tile.tree function 33
time-dependent covariates 298
time-dependent strata 300
time series
analysis of
frequency methods 165
time domain methods 165
autoregression estimation
via Yule-Walker equations
181
with Burg’s algorithm 184
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autoregressive process 175
long memory modeling 199
multivariate
autocorrelation function in
171
autocovariance function in
171
autoregression 179
plots for
basic 166
lagged scatter 167
stationary 168
univariate
ARIMA models 186, 187,
193
forecasting with 195
fractionally differenced
200
identifying and fitting
189
modeling effects of
trading days 197
predicted and filtered
values for 196
simulating fractionally
differenced 201
simulating processes
196
with regression
variables 188
ARMA models 186
autocorrelation function in
168
autocovariance function in
168
autoregression 175
seasonal models 187

Toeplitz matrix 178
trace argument 480
trading days 197

tree-based models 8

see also classification trees
advantages 2

browsing nodes 23, 26
classification rules 2

determining splits 27

displaying 10

editing 31

factor response 6

finding paths 27

graphical interaction 23

identifying nodes 27

importance of subtrees 17

missing data 14

nodes 25

numeric response 4

partitioning 2

prediction 13

pruning 17

regression rules 2

removing subtrees 23

selecting subtrees 23, 24

shrinking 19

see also regression trees
trigonometric functions 509
Tukey’s bisquare psi-function 227
two-filter robust smoothers 230

U

uniform distribution
random number generation
534, 535
univariate time series 168

\'%

variability

minimizing 222
variables of mixed types 113
vecnorm function 511
vectors

arithmetic 506

computing p-norm 511

creating 505

dot product 507

w
Ward’s method 141



weighted least squares estimate 226
white noise 169, 175, 180, 186
Whittle’s recursion 181
Wilcoxon test

Peto-Peto modification 264

X
xy2cell function 158
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Y

Yule-Walker equations 176
sample-based 178
vector form 180

Yule-Walker estimates 222
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