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A Graphical Representation of Little’s Test for MCAR
Tim C. Hesterberg

Abstract

We describe a graphical representation of Little’s (1988) test for MCAR (missing completely
at random). The test statistic has an asymptotic x* distribution. Terms in the statistic
are represented graphically as rectangles, whose widths, areas, and heights are chosen to
accurately indicate the contributions of the terms to the final statistic.
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1 Introduction

This document describes a graphical representation of the test for MCAR, (missing com-
pletely at random) described in Little (1988). There are p variables (columns), J unique
(row) patterns of missing values (out of 27 possible patterns), m; observations (rows) with
the j’th missingness pattern, p; is the number of nonmissing observations in pattern j, f
and ¥ are the maximum likelihood estimates of the parameters of a p-dimensional multi-
variate normal distribution based on the available data, fisys; and f];bls,j are the subsets of
the parameters corresponding to nonmissing observations for pattern j (a vector of length p;
and matrix of dimension p; X p;, respectively), and Uobs,; the pj-dimensional sample average
of observed data in pattern j.
The test statistic is
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(Little’s equation (5)) in the case ¥ is unknown. Asymptotically, this has a x? distribution
with
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degrees of freedom under fairly general assumptions.

If this test rejects Hy it may be possible to gain insight as to why the test was rejected by
looking at the individual terms to see which were particularly large. However straightforward



comparisons of the sizes of terms are misleading. We describe here a graphical presentation
of Little’s test which is intended to avoid misleading.

There are two themes which inform our proposed representation. First, and most im-
portant, is that the individual terms d? in (1) should be compared to x? distributions with
different degrees of freedom. Second, the expected values of the individual terms are equal
to certain factors times the nominal degrees of freedom for the terms.

The test statistic (1) is similar to

J
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If MCAR holds and X is positive definite, and if the underlying distribution is normal (or
asymptotically otherwise), then each of the terms in the summation has a x* distribution
with p; degrees of freedom. This continues to hold, asymptotically, if 3 is replaced by S, or
by any other consistent estimate.

2 Rectangles

We propose to represent the terms d? graphically by rectangles, one for each pattern j, with
width equal to the degrees of freedom p;, and height d?/pj. The area of the jth rectangle is
d?, and the total area is d°>. The heights of the individual rectangles encode the contribution
of that pattern to d?, normalized by the degrees of freedom. A horizontal line at height 1
(the expected value of a x? variable divided by its degrees of freedom) is added for reference.
These rectangles are shown in Figure 1. In this case Little’s test does not reject Hy, and
none of the rectangles are much taller than 1. The rectangle for missingness pattern 2 is the
tallest, indicating that the means for that pattern were the most different from the overall
means.

3 Height Factors

If fiobs; in (2) is replaced by fions; (as in (1)) the test loses p degrees of freedom and the
individual terms tend to be correspondingly smaller, in general by different factors. We
propose to calculate these factors and include them in the graphical representation, to help
avoid misleading comparisons.

The expected heights (the factors) are

E(dj)/pj =¢j =1~ tr((%: Ao) ' A)/p;, (3)

where Ay are weight matrices such that g = (3, Ag)’1 > Ajyj. We defer the derivation
to the Appendix. Three points are worth noting here. First, 0 < ¢; < 1. Second, A; is
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Figure 1: Graphical representation of Little’s Test. There is one rectangle for each term in
the test, with widths proportional to the nominal degrees of freedom for the term, and area
proportional to the term. There is a single horizontal reference line at 1, and individual ref-
erence lines for each rectangle at the expected height for that rectangle. Individual variable
factors are shown as well; these are optional.



proportional to m;, the number of observations in pattern j, so that rectangles for “large”
patterns (those which many observations match) tend to be shorter. Third, 3°;pjc; =
>.;pj — p. In other words, adding the products of the width and approximate expected
height of each rectangle gives the degrees of freedom of the test statistic.

The expected heights are shown as horizontal black lines in Figure 1. In this case the
first three rectangles are slightly taller than their expected values under the null hypothesis,
and so make positive contributions to the the overall y? statistic, but the last rectangle is
shorter than expected.

An alternate representation would modify the rectangles, multiplying the width and
dividing the height of each rectangle by the factor. However then the widths of the rect-
angles would no longer indicate the number of non-missing variables in the corresponding
missingness pattern, which is particularly useful in the next section.

3.1 Individual Variable Factors

Here we derive an alternative way to indicate the expected height of each pattern, in which
the single factor ¢; for term j is replaced by multiple factors c;;, each of which corresponds
to one of the p; nonmissing variables in pattern j.

The idea is to focus on one variable at a time, say variable k. We estimate jix by Yops £
the average of the available data for that variable. Then for any missingness pattern j for
which variable k is observed,

Cjk = E(mJ (gobs,j,k - gobs,lc)zlzkl (gobs,j,k - gobs,lc)T)
= (L—m;/> my)E(m, (Tobs.jk — 79) o (Jobs,jk — 1))
l

= (1- mj/%:mé)- (4)

The terms here are the expected values of x? variables times factors which depend only
on the patterns of missing values; see the Appendix for a proof. The same results hold
asymptotically if ¥, is replaced by a consistent estimate.

In the multivariable situation, each term d? is a normalized Mahalanobis distance, based
on p; nonmissing variables for that pattern. For each of those variables we may compute
a factor ¢j; = (1 —m;/ X ,mey). Figure 1 shows dots corresponding to these individual
variable factors over the corresponding rectangle, at a height equal to the factor. The
average height of the dots is roughly equal to the expected height of the rectangle, under
the null hypothesis.

The dots also give an idea of the number of observations in each pattern, because the
distance 1 — c;, between each dot and the horizontal line at y = 1 is equal to the proportion
of nonmissing observations for variable £ which are found in missingness pattern j. In this
case pattern 1, the pattern with no missing variables, had the most observations (6 out



of 9 total observations, and a higher proportion of the nonmissing observations for some
variables).
These factors also satisfy an equality for the overall degrees of freedom, 3=, cjx = > p;j—p.

Appendix

We prove two results in this appendix. We defer till last (3), which requires new notation
and is more involved, and begin instead with equation (4). This is equivalent to the simpler
one-variable, two-group situation in which 7; is the sample average of m; observations in
group j, j = 1,2, with the grand average ¥ = (m1¥; + ma¥,)/(my + my). Let p and o2 be
the mean and variance of the underlying distribution. Then

U, =7 = T;— (T +maly)/(my + my)
= (- )G -7 ) )

where §_; is the sample average of the “other” (not j) group, so

my + Mo

E(mo™(m; —7)°) = mo>(1 - ﬁ)?((ﬂ/ml + 0% /o)
= 1—mj/(m1+m2) (6)

Furthermore, §; —¥_; is normally distributed if the underlying distribution is normal,
or asymptotically otherwise, in which case mja_Q(yj —7)?%) is (asymptotically) distributed
as 1 —m;/(my + my) times a x? random variable.

Now turn to (3). We begin by giving some notation, then derive a matrix expression for
the the maximum likelihood estimate of i for given X, then use that expression to find the
desired expected value.

Let j be an index vector of length p corresponding to missingness pattern j, such that
15 is a vector of length p which has the same elements as p in those positions corresponding
to variables which are present in pattern j, and which has structural zeros in the other
positions. Similarly let 7, be the vector of length p containing the observed means for
pattern j.

Let X5 = be p X p covariance matrix which matches ¥ except for structural zeros in those
rows and columns for which the corresponding variables are missing for pattern j, and let
E;Jl be its generalized inverse with structural zeros in the same positions. Note that the
variance (matrix) of 7,5 is m;'S; . Let ¥ 5 match ¥ except for structural zeros in columns

which are missing for pattern j, so that ¥ ; = 3 -+3 -, - where —j is the complement of j.
Now given an observation from pattern j, the expected values for the missing observations

are given by the usual multiple linear regression, written here as

E(Y:]|Y}) = /ij + X "~E~_}(}/5 — :U’j)

=707 3,3



Rearranging this slightly, and combining it with the known value for Y3, we obtain
v y-lys -1
E(Y]Y;) = E,JE%;Y]- +(I- E_,JE;J);L.

This forms the basis for the EM algorithm for estimating y if ¥ is known, with

= IZ mJE NI ]]y]J) (m](I_E jzjj)ﬂ(t))
= C+Mu() (7)

where C is a matrix that depends on the observed data but not on 4® and M is a matrix
depends only on X. This iterative equation has the fixed point solution

po= I-M)'C

= (AT AT (8)
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where A; = (m;/n)X ]E]’Jl
Now the variance of /i is given by

Var(fi) = (ZAk)‘lZAjVar@j,;)A;(ZAk)‘l
= (iAk)—lzj:Aj 7S5 AL ZAk
= (Xk:Ak)_lz]:A-n_lE ZAk
= n—kl(ZAk ZAEZAk
= n_lEEZAk
- nl(zk:kAk)lz. (9)

The last step is by symmetry. The change from X: to ¥ = . is justified because the A;
has structural zeros in the appropriate columns.

We next use the variance of i to find an expected value we need below; assuming that
p =0 (this will not cause a loss of generality later),

E(m;ji-X

_ Al —1 A
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= mjtr(Var(/l)E;;.)
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= (S A7) (10)
Two of the steps here are justified by the locations of structural zeros; the first equality
involving the trace of the matrix is justified because for any variable Y and matrix M,

EY'MY) = tr(Xy M).
We are now ready to find the desired expected value,

B(&) = Blmy(T,; - ig)SA(T,; - i)
= E(m YME Y5 — 2E(m]Y o u])+E(m]u]E”u])
= pj— 2B(m;V;55 (S A ZA,_; )+ (A 4)
k
= pj_2tr((ZAk j +tI‘ ZAk IA]')
k k
= pj — (D] Ax) 7' Ay). (11)
k

Of the three terms in the second line above, the third was simplified earlier and the first
simplifies because m]ZL - is the generalized inverse of the covariance matrix of Y =. For the

second term one step is Justlﬁed by the independence of Y 7 and Y“ for £ # j, and another
because for any variable Y and matrix M, E(Y'MY') = tr(EyM)
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