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How to Use This Book

The Library dox User’s Manual describes how to use the S-PLus library dox, and
includes detailed descriptions of the principal library dox functions.

In this document, you will learn how to perform the following tasks with library dox:
e Identify the most important factors affecting a product or process using frac-
tional factorial designs.

e Analyze the response to changes in these key factors using response surface
methods.

e Find the settings of “control” factors for which a response is minimally sensi-
tive to “noise” factors, using robust design methods.

Note: This manual does not describe full or replicated factorial designs in detail,
although library dox handles these designs. These designs are described in the
chapters Designed Experiments and Analysis of Variance and Further Topics in
Analysis of Variance in the S-PLUS Guide to Statistics.

vi
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Intended Audience

This manual, like the library dox is intended for industrial engineers, scientists, and
statisticians—anyone involved in the design and analysis of industrial experiments.

Typographic Conventions
This manual obeys the following typographic conventions:

e The italic font is used for emphasis, and also for user-supplied variables within
UNIX, Windows, and S-PLUS commands. For example,

All objects have implicit, defining, and optional attributes.

e The bold font is used for UNIX and Windows commands and filenames, as
well as for chapter and section headings. For example,

setenv S_ PRINT_ORIENTATION portrait
SET SHOME=C:\SPLUS

In this font, both “ and ” represent the double-quote key on your keyboard
(")

e The typewriter font is used for S-PLUS functions and examples of S-PLUS
sessions. For example,

> plot(corn.rain)

Displayed S-PLUS commands are shown with the S-PLUS prompt >. Com-
mands that require more than one line of input are displayed with the S-PLUS
continuation prompts + and Continue string:.

e |Boxed text| represents either keys from the workstation keyboard or mouse
buttons. For example,

To delete a character, press the key.

Warning: When you see the “dangerous bend” sign followed by the word Warn-
ing, you are seeing a warning about S-PLUS behavior. Read these warnings care-
fully.

Hint: When you see the right arrow followed by the word Hint, you are getting
a peek ahead into more sophisticated use of S-PLUS.

Note: Points of interest that are neither warnings nor hints are preceded by the
word Note.
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Related Books

For users familiar with S-PLus, the Library doxr User’s Manual contains all the
information most users need to begin making productive use of library dox.

The S-PLus User’s Manual provides complete procedures to basic S-PLUS opera-
tion, including graphics manipulation, customization, and data input and output.

The S-PLUS Guide to Statistics describe how to analyze data using a variety of sta-
tistical and mathematical techniques, including classical statistical inference, linear
regression, ANOVA models, generalized linear and generalized additive models,
loess models, nonlinear regression, and regression and classification trees.

Comments?

We want our documentation to be useful, and we want it to address your needs.
If you have any comments on this or any S-PLuS-related document, please send
electronic mail to the following address:

doc@insightful.com

We'd love to hear from you.
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Chapter 1

Overview of the dox Library

Library dox is the S-PLUS library for design and analysis of industrial experiments.
It provides a powerful, easy-to-use set of functions to simplify the design of exper-
iments and to facilitate graphical analysis of the results. It is intended for use by
industrial engineers, scientists, and statisticians. The functionality of library dox
includes three major areas; design and analysis of fractional factorial experiments,
response surface/optimization experiments, and robust design experiments (includ-
ing Taguchi methods).

1.1 Why Design Experiments?

The competitive position of an industry or company depends on introducing new
products quickly and efficiently, and on making continuous improvements to existing
products and processes. To maintain a competitive position, industrial engineers
and scientists must be able to efficiently collect and analyze data to develop and/or
improve products. Statistical experimental design and analysis is a proven method-
ology for conducting and analyzing experiments efficiently and with reliable results.

Consider the development of a new chemical process. The developers seek operat-
ing conditions that produce the highest yield, acceptable purity, lowest cost, and
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consistent performance over a wide range of conditions. The factors that affect the
chemical process may include pH, amounts and types of catalysts, purity of the
starting materials, reaction times and temperatures, amounts of various additives,
etc. Optimal settings for each of these factors must be found to achieve the high-
est yield. If experiments are conducted by varying each factor in isolation, critical
interactions are likely to be missed; for example, different catalysts may work more
efficiently at different pH levels. On the other hand, a study of all possible combi-
nations of the experimental factors would be impossible, as it would require a great
number of experimental trials. Such an optimization problem appears daunting to
an engineer or scientist untrained in statistical methods, so there is a great tendency
to address only the obvious possibilities and hope for the best.

Industrial prosperity, even survival, demands higher quality than “change one vari-
able at a time” or “try only the obvious” approaches can provide. What is needed
is the application of statistical experimental design and analysis techniques. In this
approach experimental trials are carefully selected in such a way that the effects
of each of the experimental factors and their critical interactions are clearly delin-
eated. Graphical methods are used to carry out an informative and helpful analysis.
Consequently, experimenters move rapidly through a series of small experiments to
optimize even extremely complex and costly processes.

It is no accident that today’s leaders in research and development encourage the
use of statistically designed experiments at all stages of the development cycle. The
library dox software for industrial experimental design provides a resource that facil-
itates the use of statistical methods in industrial applications. Industrial engineers
and scientists who use designed experiments can expect to make higher quality
products—products with both high return and consistent performance. In addi-
tion, because of the efficient use of resources, these products can be brought to the
market more quickly.

1.2 Approach and Philosophy

library dox was originally developed to support the consulting practice of indus-
trial statisticians at the Becton Dickinson Research Center. library dox has a very
practical, focused outlook and provides for the most common activities of industrial
experimenters. The most commonly used experimental designs are readily avail-
able, together with straightforward, state-of-the art tools for data analysis. The
analysis is primarily graphical, so experimental results are easily visualized and
presented to others. Much of the graphical approach adopted in library dox is de-
scribed in the book Experimental Design in Biotechnology by P. Haaland (Haa89).
This reference is recommended as a practical guide for scientists and engineers who
want to get started using statistical design to solve real problems. Experimenters
are also referred to the excellent book by Box, Hunter and Hunter, Statistics for
Ezperimenters (BHHTS).
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1.2.1 Integrating the Needs of Statisticians, Engineers, and
Scientists

library dox has been designed to meet the needs of both the statistician and the
practicing engineer/scientist. library dox provides an integrated resource for a mod-
ern industrial facility where engineers and scientists are expected to be largely re-
sponsible for their own experimental design and analysis, with statisticians available
for special assistance. For scientists with less statistical training, standard analyses
are simple to use and interpret. For statisticians, library dox and S-PLUS offer a
rich resource for statistical methods. With library dox, the same software resource
supports both high and low end users.

1.2.2 Object Oriented Structure Gives Simplicity and Guid-
ance

All of the functions in library dox are object oriented. This means that the val-
ues returned by a function are self describing; for example an experimental design
“knows” its design type, properties and experimental factors. Similarly, when a
model is fit to experimental results the returned model result retains information
about the original design, the factor names, various estimates of error, the use of
transformations, etc. As a result, graphics and summary functions in library dox
need only be given an analysis object for an appropriate graph or table to be created.
This gives library dox a pleasantly simple structure with only a few commands.

library dox uses sensible, context-sensitive defaults. As the functions are object-
oriented, the defaults can depend on the specific analysis. In most cases, a sophis-
ticated graphical analysis can be completed using default parameters generated by
library dox. In this way, library dox provides simple but very functional guidance
to the practitioner.

1.3 Overview of Specific Capabilities

library dox may be sectioned into three closely related areas for the design and
analysis of experiments: fractional factorial designs, response surface methods and
robust designs. By fractional factorial designs we mean designs with all factors
at two levels or just one factor at three levels. We use the term response surface
methods to describe traditional second order designs with more than one factor at
more than two levels. The term robust designs is used in reference to design analysis
techniques for the joint analysis of mean and variance (signal and noise). Included
in this is the Taguchi approach to design and analysis.
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1.3.1 Fractional Factorial Designs

Fractional factorial designs are typically used by engineers and scientists to screen
many experimental factors (or process variables) and, as a result, to find the im-
portant factors affecting the process responses. These designs provide the greatest
amount of information in the fewest number of runs.

Special problems are encountered in the analysis and interpretation of these designs
because they are often unreplicated and effect saturated. Unreplicated experiments
have only one observation per set of experimental conditions so there is no inde-
pendent estimate of error. Effect saturated experiments have as many independent
model terms as there are observations. These designs present similar difficulties
because there is no objective, classical method for testing significance of effects.
library dox provides a state-of-the-art solution to this problem by implementing
model selection methods based on the pseudo standard error (PSE) and other ro-
bust estimates of scale (Len89; HO94).

All of the standard two-level fractional factorial, Plackett-Burman, and orthogonal
array designs are available in library dox. Designs can be generated using a simple
naming convention. Specific designs can be obtained by providing the generating
fraction. Blocking, center points, and randomization are available as appropriate
for each design. A number of interesting and useful mixed level designs with two
and three level factors are also provided.

The analysis of fractional factorial designs provided by library dox is primarily
graphical. The graphical analysis consists of Pareto plots, normal and half-normal
plots, active contrast (Bayes) plots, and interaction plots. In the unreplicated, ef-
fect saturated case, tests and approximate critical values are provided based on the
pseudo standard error (PSE) and other robust estimates of scale (HO94). The clas-
sical ANOVA table may be obtained when there are degrees of freedom available to
estimate the error. Transformation analysis of the response is simple to understand
via the graphical interpretation provided. Classical statistical model fitting and
diagnostics are also available.

1.3.2 Response Surface Methods

Response surface methods are used by engineers and scientists to optimize a process
or product response. They typically involve three or four experimental factors, and
often follow after a fractional factorial screening experiment has identified these few
factors. Points are chosen in a “space-filling” design, so that a smooth surface can
be fit to the response. From this surface, engineers can identify settings where the
response is optimized.

library dox provides central composite designs, including face-centered cube designs,
Box-Behnken designs and full matrix designs, with or without added center points.
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Some or all of the factors can be specified on a log scale. By default, full quadratic
surfaces are fitted, though the user can specify simpler models. Contour, surface
and image plots are easily displayed and the user can specify slices of the surface
using a straightforward syntax. Both constrained and unconstrained searches for
optimal settings are available. Multiple responses can be overlaid on a single plot,
allowing the scientist to visualize trade-offs between responses.

1.3.3 Robust Design

The robust design approach aims to develop processes and products that are insen-
sitive to sources of “uncontrollable” noise. A common objective of a robust design
is to make a process perform on target with minimum variability. For example, an
engineer may wish to make a machine fill a container with a target volume and to
rarely be over or under by more than 0.01%. These kinds of studies are often a key
component in quality improvement work.

library dox provides both the Taguchi approach to robust design and analysis and
a more standard statistical approach. In the Taguchi approach, the engineer uses
inner (control) and outer (noise) arrays as elements of the design, and signal-to-
noise ratios as the response in analysis. By maximizing an appropriate signal-to-
noise ratio, the mean and variance are optimized together. This approach has been
somewhat controversial and indeed has inherent problems as pointed out by (Box88)
and others. The Taguchi approach has, however, been successful and certainly has
drawn much needed attention to variance modeling and optimization.

The more standard approach replaces signal-to-noise ratios with transformations of
the mean and standard deviation. Robust designs are simple to generate and ana-
lyze, and graphical methods are heavily emphasized. Regardless of the response(s)
chosen for analysis, library dox uses the same graphical methods as for fractional
factorial designs to identify important effects and recommend factor settings for
optimization of the process mean and variance.

library dox provides significance testing based on robust estimates of scale as de-
scribed by (HO94).



Chapter 2

Fractional Factorial Designs

Fractional factorial designs provide an efficient and reliable method for identifying
important factors affecting a process or product. A typical application is a complex
industrial process, where there are many factors that may affect the process, but
only limited resources for investigation.

An example is taken from a company developing an enzyme immunoassay as a
medical diagnostic test kit. The test kit is a complex product involving many
separate components. Because components of the test kit lose their potency over
time, the kit has a limited shelf life. The company is interested in developing a
storage buffer solution that enhances the stability of the components, and hence
increases the shelf life of the kit.

Different combinations of storage buffer components need to be tested in order to
find a buffer with good stability for storage. There are many possible factors that
might affect stability: pH, type of buffer, ionic strength, buffer salts, addition of
proteins, chelators, and antimicrobial agents (Haa89, Chapter 4).

This is a typical situation where a fractional factorial experiment is used—there
are many factors you want to test, but making up and testing new buffers is time
consuming and expensive, so you have a limit on the number of candidate buffer
solutions you can try. A fractional factorial experiment is an efficient way to screen
several factors with just a few storage solutions.



The main aim of a factorial experiment is to find out if the factors are important
or not. To do this, you only need to use two levels for each factor—this is enough
to see whether changing the factor setting affects the response. For example, a
factorial design with three factors at two levels requires eight experimental runs to
study all combinations of the factor settings:

pH azide thimer

1 - — —
2 - - -
3 - 4 -
4 - 4+ -
5 0+ - -
6 + - -
T+ 4 -
8 + 4 +

Each row represents the settings of the factors for one storage solution. For pH,
the “—” indicates a low setting and the “+” a high setting. For azide and thimer
(thimerosal) which are both antimicrobial agents, the “—” means “absent” and the
“+” means “present”. The specific settings are determined by the scientists previous
experience with the process. To carry out the experiment, eight different storage
buffers are prepared and their storage stability is measured (a response value) for
each storage buffer (run).

Notice the symmetry in the pattern of the levels in the experiment above—the
levels are chosen so the effect of each factor (pH, azide, thimer) can be calculated
independently. For instance, suppose changing pH from high to low increases the
response by about 4 but the presence of azide decreases the response by about 2.
The effect of pH can be computed by comparing all the responses at high pH against
all those at low pH: the effect is the difference of the average response at each level.
Note that azide is present in two and absent in two of the high pH responses, so
that the decreasing effect of azide cancels out—similarly at low pH. So the pH effect
is independent of the azide effect. Designs with this property have effects that are
called orthogonal.

The above design is a full factorial, which has all combinations of all factor levels.
With a full factorial the effects of all the factors and their interactions can be
computed, but the number of experimental runs needed increases by a factor of two
for each factor added—so for 5 factors 2° = 32 runs are needed.

A fractional factorial design contains only a (small) fraction of the runs required for
the full factorial—usually an even fraction, like 1/2 or 1/4. If the runs in the fraction
are chosen carefully, all the main effects can still be estimated, that is, the effect
of changing between levels for pH, azide, and thimer. However not all interactions
can be estimated. An interaction is an effect that indicates a dependency between
two or more factors, for instance if azide has a different effect at high pH than low
pH there is a two-factor azide:pH interaction.



An example of a fractional factorial is a half fraction of the above eight run exper-
iment:

pH azide thimer
- + +
+ - +
+ + -

~N O =

With this design the main effects of pH, azide, and thimer can still be estimated.

Once the experimental responses have been collected, the aim of the analysis in
library dox is to determine which experimental factors are important. To decide
which factors “significantly” affect the response you need to estimate the natural
variability of the response, that is, the change in the response measured several times
with exactly the same factor settings. This natural variation is the experimental
error. In an unreplicated factorial experiment you do not have a direct measure
of the experimental error (because you never use exactly the same settings twice),
but you can estimate the error based on the variability of the unimportant effects.
In library dox there are several alternative methods for calculating an approximate
error, and we give some guidance on when to use each method. The estimated error
is then used as a guide for assessing which effects are large.

The analysis of the fractional factorial experiment reveals which factors are im-
portant. But for continuous factors, you can only assess the direction of the best
settings from the experiment. For example, a single storage buffer experiment as
described above could establish that high pH is better than low, but could not
identify the optimal high pH setting. Finding optimal settings for the experimental
factors would be the aim of a subsequent experiment, possibly a response surface
experiment. See chapter 3, Response Surface Methods and Process Optimization.

The analysis of fractional factorials usually follows a simple initial sequence:

1. Read in or create the design and response;
2. Take an initial look at the data with some simple exploratory plots;
3. Fit a saturated model;

4. Examine a Pareto plot of the effects to identify the most important factors
and interactions.

The effects are explored further using a main effects plot, two-factor interaction
plots, and a half normal plot. A full normal plot is used as a simple check for
a single outlier. If it is difficult to decide whether a factor is significant, further
analysis using active contrast plots and empirical Bayes methods can be helpful.
Sometimes transforming the response can lead to a much simpler model; the Box-
Cox log-likelihood transformation analysis evaluates the best transformation.
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In summary, a fractional factorial is a screening experiment used to find the most
important factors with the fewest number of experimental runs. Fractional factorial
experiments are both efficient and cost-effective first steps in investigating a process.
The software and procedures described in this chapter are especially helpful for
unreplicated, effect-saturated designs for which there is no estimate of error. The
techniques can also be used for unsaturated and replicated designs.

2.1 Starting out with Fractional Factorial
Designs

The most important stage in designing an experiment is outside the scope of this
software: defining the goal of the experiment, choosing a response that will reflect
that goal, and deciding on the experimental factors and their levels. This is an
iterative process requiring careful thought about the particular problem.

Once the experimental objectives are decided, the response variables have been
selected and possible experimental factors are identified, an experimental design
can be selected. Choosing an experimental design involves compromising between
the number of factors you want to include, the number of runs you can afford, and
the numbers of interactions you want to be able to estimate. With 4 factors, if
you can afford a full factorial with 2 = 16 runs, you will be able to estimate all
main effects and two and three way interactions. If you use 8 runs (half fraction)
of the full design, you can still estimate all main effects but two way interactions
are confounded with each other. When two effects are confounded they cannot be
estimated independently. Often in screening experiments you are willing to assume
three-way interactions are unimportant, and sometimes that main effects are more
important than two-way interactions, in exchange for using fewer experimental runs.

Generate the eight run design with four two-level factors with either of these calls:

> half.four <- design.digest(rep(2,4), fraction = 1/2)

or

> half.four <- design.digest("f££0408")

> half.four
Design Name: ££0408

ABCD
1____
2 - -+ +
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0N O W
+ + + 4+

+

I

I

Fraction: ~ A:B:C:D

The character string provides a shorthand notation for designs in the
design.digest: in "££0408", £f stands for fractional factorial, the next two digits
stand for 4 factors, and the last two digits stand for 8 runs.

The confounding pattern of this design shows which terms are confounded. This
information is in the summary of the design:

> summary (half.four)
Design Name: ££0408

Generating Fraction: ~ A:B:C:D
Fractional Number of Runs: 1 / 2
Resolution: IV

Confounding Pattern:

Main effects are not confounded with two-factor
interactions. Two-factor interactions are confounded
with other two-factor interactions. Only one two-factor
interaction from each line listed below can be estimated.

A:B + C:D
A:C + B:D
B:C + A:D

Variable summaries:

A B C D
-:4 -:4 -:4 -:4
+:4 +:4 +:4 +:4

The confounding pattern shows the terms that are completely confounded (or equiv-
alently, aliased) with other model terms. Terms that are completely confounded are
actually indistinguishable from each other. The above design allows us to estimate
the main effects of each factor. However, the two-factor interactions are confounded
with each other, e.g., A:B! is confounded with C:D, so you will not be able to tell
whether a significant interaction is due to a A:B, C:D, or a combination of the two.

14:B is the notation for the two-factor interaction between A and B.
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Fractional factorial designs are characterized by their confounding patterns. In
general, you always want at least main effects to be independent of each other
(resolution IIT designs). In resolution IIT designs, two-way interactions are con-
founded with main effects. Designs like the above example, that have main effects
independent of all two-way interactions are called resolution IV designs. Designs
with all main effects and all two-way interactions independent of each other are
called resolution V designs. The different resolution designs are suited to different
experimental applications.

The following table summarizes the highest resolution available for 8 and 16 run
experiments for the given number of factors:

Runs
Number of factors 8 16

3 full

4 IV full
5 I v
6 I 1Iv
7 Inmr 1Iv

By default, fractions with highest resolution are returned by design.digest, and
the summary function gives the confounding pattern of the returned design.

For early screening experiments with many factors, even if you can afford more
runs, a good strategy is to start with a minimal design (resolution III). Then, after
analyzing the results of this first experiment, you can decide whether to complete
the fraction, or—if you have eliminated some factors—to use the extra runs to re-
fine your analysis. For intermediate screening experiments where there are not so
many factors and some information regarding interactions is desirable, resolution
IV designs are appropriate. Resolution V designs are generally used for late screen-
ing experiments when most of the unimportant factors have been eliminated and
interactions between the remaining factors are all possible.

2.1.1 Generating a Design

The initial analysis of a factorial design usually follows a straightforward sequence
of steps: getting the data into library dox, plotting the data, fitting a saturated
model, and examining the estimated effects.

The actual fractional factorial screening experiment that was conducted to study
storage buffer stability used five experimental factors: pH of the buffer; the presence
or absence of three antimicrobial agents: gentamicin, thimerosal, and azide; and
the presence or absence of a chelating agent which scavenges free electrons from the
buffer: chelex.
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A design of 16 runs is selected. The data frame is already available in library dox
with the name buffer.df, but you could create the design data frame as follows:

\2

buffer.design <- design.digest("ff0516",
+  c("pH","chelex","azide","gent","thimer"))

or

v

buffer.design <- design.digest(rep(2,5), c("pH",
"chelex","azide","gent","thimer"), fraction = 1/2)

+

The first argument to design.digest gives either the name of the design ("££0516",
a fractional factorial design with five factors and 16 runs) or the number of levels in
each factor. The second names the factors. The default levels for two level factors

are “=” and “4”, representing low and high levels. The default fraction is chosen
by design.digest from a list of standard fractions?.

2.1.2 Randomizing the Design

In experimental designs it is extremely important that the order of the runs is
randomized when the experiment is conducted. This guards against effects from
time of day or temperature of the laboratory getting mixed up with the effect of
experimental factors (which could happen if all of the runs with the low level of
a factor were prepared together, followed by all of the high level). To make this
easy, library dox provides two functions, randomize.design and sort.design, to
randomize and then resort the design.

Before the experiment, create a randomized version of buffer.design, then print
the design using worksheet for use in the laboratory.

> buffer.rdes <- randomize.design(buffer.design)
> worksheet (buffer.rdes, response = "rate", graphics = T)

The worksheet in figure 2.1 appears in the graphics window with an empty column
for the single response rate.

“Note that the S-PLUS function design.digest uses a default row ordering different
from that of fac.design, with the leftmost factor varying slowest. For example, to generate
the same design with fac.design, reverse the order of the factors: fac.design((rep(2,5),
c("thimer","gent","azide","chelex", "pH"), fraction = 1/2)
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pH chelex azide gent  thimer rate

1 - + - + +
2 + - + + -
3 - + - - -
4 + + - - +
5 + - - - -
6 + - + - +
7 - + + - +
8 - - + - -
9 - - - + -
10 + + + + +
11 + + + - -
12 - - + + +
13 + + - + -
14 - + + +

15 - - - - +
16 + - - + +

Figure 2.1: A worksheet of the randomized design for the storage
buffer experiment.

2.1.3 Entering the Data

The 16 experimental buffers were made up and reagents stored in each of the buffers
for one month. The stability response is measured as the amount or rate of degra-
dation (determined by assay) based on the amount of active component remaining.
The aim is to achieve a low rate of degradation.

Enter the response, degradation rate, in the order corresponding to the randomized
design. Add it to the data frame, then resort the design®:

> rate <- c(7.04, 1.73, 8.42, 1.55, 2.34, 1.29, 7.21, 8.78,
+ 9.81, 1.36, 1.81, 7.92, 1.68, 9.96, 6.9, 1.22)

> buffer.rdf <- cbind(buffer.rdes, rate)

> buffer.df <- sort.design(buffer.rdf)

> buffer.df

3If the response has already been reordered to match the design in standard order, omit
the reordering step and cbind the response to the original design frame
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Design Name: f£f0516

pH chelex azide gent thimer rate

1 - - - - + 6.90
2 - - - + - 9.81
3 - - + - - 8.78
4 - - + + + 7.92
5 - + - - - 8.42
6 - + - + + 7.04
T - + + - +7.21
8 - + + + - 9.96
9 + - - - - 2.34
10 + - - + +1.22
11+ - + - +1.29
12+ - + + -1.73
13 + + - - + 1.55
14 + + + - 1.68
15 + + + - - 1.81
16 + + + + + 1.36
Fraction: =~ pH:chelex:azide:gent:thimer

If the experiment is in an ASCII file buffer.dat with the column labeled at the
top of the file, create the fractional factorial data frame in library dox* by:

> buffer.rate <- read.table("buffer.dat", header = T),
> buffer.rate <- as.fac.design(buffer.rate, factors = 1:5)

2.1.4 Fitting a Model to the Data

The default data plot splits the response by each factor:
> plot(buffer.df)

Figure 2.2 is clearly dominated by a large pH effect.

Now fit an effect saturated model to the data using fac.aov and print the model
summary:

‘design.digest returns an object of class fac.design. The properties of fac.design
objects are used extensively by library dox. The function as.fac.design is required to
convert the data frame created by read.table to this class.
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Main Effects Plot for rate
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Figure 2.2: An exploratory plot of the buffer experiment with the
response plotted by each experimental factor.

> summary (buffer.fac)
Estimated Effects for Response: rate

Design Name: ff0516
Effect Std. Error |t(PSE)| P-value

pH -6.6300 0.216 30.700 <.001

chelex -0.1200 0.216 0.555 >0.3

azide 0.1370 0.216 0.635 >0.3

gent 0.3030 0.216 1.400 0.165

thimer -1.2600 0.216 5.800 0.009
pH:chelex 0.0750 0.216 0.347 >0.3
pH:azide -0.2870 0.216 1.330 0.184
chelex:azide 0.2750 0.216 1.270 0.201
pH:gent -0.5530 0.216 2.550 0.031
chelex:gent -0.0400 0.216 0.185 >0.3
azide:gent 0.1670 0.216 0.774 >0.3
pH:thimer 0.7200 0.216 3.330 0.015
chelex:thimer 0.0775 0.216 0.358 >0.3
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azide:thimer 0.1300 0.216 0.601 >0.3
gent:thimer -0.1550 0.216 0.716 >0.3

Pseudo Standard Error of the Effects = 0.216

Approximate P-values calculated based on an
empirical distribution for the PSE obtained
via simulation from an appropriate null

An effect saturated model has no residual degrees of freedom. The estimated effects
are the average change in response from - to + level of a factor, e.g., on average, the
rate of degradation decreases by 6.6% when pH is changed from low to high. The
standard errors given in the summary are approximate and based on the pseudo
standard error (Len89) which basically reflects the variance of the smallest effects.
The p-values are based on the empirical distribution of the statistic t(PSE) which
is equal to the absolute value of an estimated effect divided by the pseudo stan-
dard error (HO94). The pseudo standard error and alternative error methods are
explained in section 2.2.3.

Important in the analysis of saturated designs is the so-called Pareto principle: the
idea that usually only a few of the factors are responsible for most of the variability
in the response. The Pareto plot is a graphical display of the effects ordered by size:

> pareto(buffer.fac)

The Pareto plot shown in figure 2.3 displays the ordered absolute effects, where the
sign of the effect is indicated by shading. Often, as in this plot, there are some
obviously large effects and some obviously small effects, and a few lying in-between.
The standard error is needed to assess these in-between effects. The significance
line gives a 5% critical value based on the pseudo standard error: effects larger than
this are possibly significant. In this case, pH and thimer are clearly significant, and
the two interactions pH:thimer and pH:gent are probably also important.

A second view of the effects is given by the half-normal plot (based on the quantile-
quantile or QQ-plot, hence the function name):

> qqnorm(buffer.fac)

In a half-normal plot the ordered absolute values of the effects are plotted against
ordered normal quantiles. If none of the factors affect the response, the data should
look like a random sample from a normal distribution, and the points on the half-
normal plot lie close to a straight line, with slope equal to the reciprocal standard
error of the effects. If there are significant factors, their effects will be much larger
than expected in a normal sample, and they will lie far below and to the right of
this line. The non-significant effects will still lie close to the line.
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Pareto Plot for rate
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Figure 2.3: In this Pareto plot of factorial effects for the buffer
experiment, the effects of pH and thimer are clearly important,
and the two-way interactions pH:thimer and pH:gent are possibly
important.

In figure 2.4 the largest four effects seem to “fall off” the pseudo standard error
line through the remaining small effects. See section 2.2.3 for further use of the
half-normal plot. From this plot and the Pareto plot, it seems likely that the two
largest interactions are significant.

You can easily interpret these interactions with the help of two-factor interaction
plots:

> tfiplot(buffer.fac,” pH:thimer + pH:gent)

The second argument to tfiplot is an S-PLUS formula that specifies the two factor
interactions you want to plot. It is usually better to put the biggest effect (here,
pH) on the z-axis, by naming it first in each formula term.

Recall that a slow degradation rate is better, so clearly high pH is preferable. Fig-
ure 2.5 also shows that while the presence of thimerosal at low pH has a large effect
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Half-Normal Plot for rate
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Figure 2.4: The half-normal plot of effects are shown for the buffer
experiment, with the line of slope equal to the pseudo standard
error. Possibly significant effects are labeled.

in reducing the degradation rate, at high pH it makes less difference. This type of
interaction is often referred to as a proportional interaction, and can sometimes be
removed by transforming the response; see section 2.4. The pH:gent interaction
is often referred to as an inconsistent interaction because at low pH degradation
rate is lower without gentamicin while at high pH (though there is only a small
difference) degradation rate seems lower with gentamicin.

With an effect-saturated model, there are as many terms in the model as there are
total degrees of freedom, so the data “fit perfectly”, and in general it is difficult
to check for outliers. However, a single outlier will change the estimates of all
effects; in particular, the near-zero effects will be shifted away from zero as the
outlying observation contributes either by addition or subtraction to every effect.
This creates a shift in the effects at zero, so a full-normal (QQ) plot of the effects
will show a gap at zero (Dan76). A full-normal plot is similar to the half-normal
plot, but the signed effects are plotted, rather than their absolute values.

Use a full-normal plot to check for an outlier in the buffer experiment:
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Two-Factor Interaction Plot for rate
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Figure 2.5: Two-factor interactions are plotted for the effects
pH:thimer and pH:gent.

> qqnorm(buffer.fac, full = T)

No outlier is apparent in figure 2.6.

To illustrate the plot when there 4s an outlier, we create an outlier in this data and
display the full-normal:

buffer.outlier <- buffer.df

# create an outlier in the first observation
buffer.outlier[1,"rate"] <- buffer.outlier[1,"rate"] - 4
buffer.outfac <- fac.aov(buffer.outlier)
qgnorm(buffer.outfac, full = T, omit = 1)

vV V V Vv VvV

The argument omit = 1 omits the largest (absolute) effect simply to reduce the
distortion in the plot due to the large pH effect. You can clearly see a gap in the
effects at zero in figure 2.7: this feature usually indicates a single outlier in the data.
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Normal Plot for rate
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Figure 2.6: Quantiles of the fitted effects are plotted against Nor-
mal quantiles for the buffer experiment fit.

Thus far, you can eliminate azide and chelex as relatively unimportant influences
in the buffer solution. If the high pH, high gentamicin condition has not produced
a desirable degradation rate, further experiment could concentrate on a new high
pH range and investigate the effect of thimerosal and gentamicin in that range.

2.2 Options in Analyzing the Data

This section gives more details regarding the analysis techniques and illustrates
some of the options available in the factorial analysis functions. This includes more
information on the use of formulas to specify terms included in the model, aliasing
of effects, selecting a method for estimating the error, and Bayesian methods for
identifying important effects.
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Normal Plot for rate
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Figure 2.7: Quantiles of the fitted effects are plotted against Nor-
mal quantiles, where the data have an outlier. The gap in the effects
at zero indicates the presence of an outlier. The largest (pH) effect
has been omitted from the plot to make the outlier effect easier to

see.

2.2.1 Fitting Models

21

The default method for fractional factorials fits an effect-saturated model to the

data, using the default formula®:

> formula(buffer.df)

rate 7 pH * chelex * azide * gent * thimer

Because there are only 16 data points and 15 degrees of freedom available, only
the first 15 terms implied by the formula are fitted, giving the effect-saturated

5When there are 7 or more factors, the default formula is simplified to a third order
model, y © (.)~3. In general the default model will have enough terms to ensure that the
full effect-saturated model will be obtained but not so many terms as to cause excessively

long times to fit the model.
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analysis of the previous section. Of course, you may choose to use only some of
the factors in the data frame by giving the formula explicitly, in the usual S-PLuUs
style. (Formulas are discussed thoroughly in the S-PLUS Guide to Statistics.)

To show how formulas work, suppose you have decided that chelex is not a signif-
icant factor and that it has no important interactions with other factors. Redo the
analysis excluding chelex:

> buffer.newfac <- fac.aov(rate ~ pH * azide * gent *
+ thimer, data = buffer.df)
> pareto(buffer.newfac)

Pareto Plot for rate
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Figure 2.8: The Pareto plot for the effects of the model rate ~ pH
* azide * gent * thimer.

Comparing the Pareto plots figures 2.8 and 2.3 you get the same values for the esti-
mated effects, but the effects have different names! The terms that were previously
associated with chelex are now labeled as three and four-way interaction effects:
these are effects that were confounded with the chelex effects in the original model.
If you were willing to ignore the high order interactions, you could specify a second
order model (only main effects and two-way interactions) by:
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> buffer.newfac2 <- update(buffer.newfac, . ~ (pH + azide
+ + gent + thimer) ~2)

> summary (buffer.newfac2)

Estimated Effects for Response: rate

Design Name: ff0516 (reduced model)
Effect Std. Error [t(MSE)| P-value

pH -6.630 0.144 46.200 <.001

azide 0.137 0.144 0.957 0.383

gent 0.303 0.144 2.110 0.089

thimer -1.260 0.144 8.730 <.001
pH:azide -0.287 0.144 2.000 0.102
pH:gent -0.553 0.144 3.840 0.012

pH:thimer 0.720 0.144 5.010 0.004
azide:gent 0.167 0.144 1.170  0.296
azide:thimer 0.130 0.144 0.905  0.407
gent:thimer -0.155 0.144 1.080 0.33

Mean Standard Error of Effects = 0.144
with 5 degrees of freedom.
Experimental Error (RMSE) = 0.287
R-squared = 0.998
P-values calculated using the t-distribution.

The omitted effects allow estimation of the experimental error with the usual root
mean squared error of the standard ANOVA, and the mean standard error of the
effects is based on this.

2.2.2 Aliased Terms

Effects that are completely confounded or aliased are indistinguishable, so when
interactions are aliased the name of the interaction is completely arbitrary. For
instance, suppose you fit a saturated model to the following half fraction of a four
factor experiment on latching mechanism performance (Dia81, p. 113).

tension angle slength swidth fail

1 - - - - 30
2 — —~ + -~ 8
3 — - — - 12
4 - - + —~ 0
5 + - — + 32
6 + — + - 8
7 + - — - 8
8 + - + - 4
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The data frame latch.df is available in library dox, but you could create it with
the following commmands:

latch.design <- design.digest("f££0408",
c("tension", "angle", "slength", "swidth")

latch.fail <- c(30, 8, 12, 0, 32, 8, 8, 4)

latch.df <- cbind(latch.design, fail=latch.fail)

vV V + V

The confounding pattern among the two-way interactions is:

> summary (latch.df)
Design Name: ££0408

Generating Fraction: ~ tension:angle:slength:swidth
Fractional Number of Runs: 1 / 2
Resolution: IV

Confounding Pattern:

Main effects are not confounded with two-factor
interactions. Two-factor interactions are confounded
with other two-factor interactions. Only one two-factor
interaction from each line listed below can be estimated.

A:B + C:D
A:C + B:D
B:C + A:D

Variable summaries:

tension  angle slength  swidth fail
-:4 -:4 -:4 -:4 Min. : 0.00
+:4 +:4 +:4 +:4 1st Qu.: 7.00

Median : 8.00
Mean :12.75
3rd Qu.:16.50
Max. :32.00

The main effects are independent, but the two-way interactions are confounded.
This is a resolution v design. In particular,
tension:angle (A:B) is confounded with slength:swidth (C:D),
tension:slength (A:C) is confounded with angle:swidth (B:D) etc. You can
look at two different “interpretations” of the saturated model effects, by changing
the order of the factors in the formula:
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> summary (fac.aov(latch.df))
Estimated Effects for Response: fail

Design Name: ££0408
Effect Std. Error |t(PSE)| P-value

tension 0.5 2.17 0.231 >0.3
angle -13.5 2.17 6.230 0.01
slength -15.5 2.17 7.150 0.01
swidth 2.5 2.17 1.150 0.229
tension:angle -0.5 2.17 0.231 >0.3
tension:slength 1.5 2.17 0.692 >0.3
angle:slength 7.5 2.17 3.460 0.027
Pseudo Standard Error of the Effects = 2.17

Approximate P-values calculated based on an
empirical distribution for the PSE obtained
via simulation from an appropriate null

> summary(fac.aov(fail ~
+  swidth*slength*tension*angle, latch.df))
Estimated Effects for Response: fail

Design Name: ££0408
Effect Std. Error [t(PSE)| P-value

swidth 2.5 2.17 1.150 0.229
slength -15.5 2.17 7.150 0.01
tension 0.5 2.17 0.231 >0.3
angle -13.5 2.17 6.230 0.01
swidth:slength -0.5 2.17 0.231 >0.3
swidth:tension 7.5 2.17 3.460 0.027
slength:tension 1.5 2.17 0.692 >0.3
Pseudo Standard Error of the Effects = 2.17

Approximate P-values calculated based on an
empirical distribution for the PSE obtained
via simulation from an appropriate null

Each of the interaction terms has been given a different label—the large interaction

of 75 is called angle:slength in the first model, and
tension:swidth in the second. Note that interpreting the interaction as angle:slength
is the most likely and consistent explanation of the data, because both slength and
angle have large main effects. Thus even though a resolution IV design was used

the large interaction may be given a “most likely” interpretation.
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2.2.3 Selecting an Error Method

In effect-saturated models, there is no direct measurement of error: the tests you
use to identify the significant effects are based on methods that approximate the
error. The error approximations all assume that only some of the fitted effects
are really active; the other smaller effects are inactive and reflect the error of the
response. The methods differ in how the “small” effects are defined and the type of
scale estimate used.

The default method is the pseudo standard error (PSE), which is a robust scale es-
timate calculated from the trimmed effects®. The following definition of the pseudo
standard error is similar to that given by Lenth (Len89) but has been adapted
according to Haaland and O’Connell(HO94):

so = 1.5 x median(||T;||)
opse = apsg X median([|T;|| : [|Ti]| < 2.5s0)
where ||T;||,i = 1,..., k are the absolute values of the estimated effects and apgg is

a consistency constant that depends on the total number of effects.

Simulation studies have shown that the PSE is a good all-around method that works
well under a variety of conditions (HO94). Two additional estimates of the standard
error of the effects that are available are the trimmed standard error (TSE) and the
adaptive standard error (ASE).

The adaptive standard error (Don93) is based on trimmed effects as per the pseudo
standard error but it follows up with an efficient scale estimate namely,

> 7
. (T3 ]1<2.550 Li
OASE = GASE X \[ —— =

where m is the number of ||T;|| in the summation and asgsg is a consistency constant
that depends on the total number of effects. The ASE is a very efficient estimate of
scale when there are only a few significant effects, but it breaks down when there
are many significant effects.

The trimmed standard error is similar to an ANOVA-based method proposed by
Berk and Picard (BP92), namely,

ST,
m

OTSE = GTSE X

where || Ty < [|T2) < ... < ||T (%) are the order statistics of the absolute values
of the effects, m = |.6k], the smallest integer less than .6k, and asg is a consistency
constant that depends on the total number of effects.

S Trimmed effects are those remaining after the largest effects are removed according to
some rule.
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The TSE is equivalent to using the standard error from an ANOVA with the smallest
60% of the effects included in the error.

There are two situations where you might want to consider an alternative to the
default method PSE. The first case is if you have a strong a prior: belief that there
are only a few significant effects. In this case, the adaptive standard error ASE
seems to fare well because of its efficient (second stage) scale estimate. The TSE
may also be useful in this case. The second case is where possibly as many as
half of the effects may be significant. In this case, the PSE has the best chance of
providing a good estimate of the error, but an estimate with a higher breakdown
point may be required. Note that the PSE and ASE both use the median to provide
a (first stage) estimate of scale, so if half of the effects are of even moderate size
these estimates of scale will be too large. For m = 0.6 this argument also applies
to the TSE. Development of a useful scale estimate is an active area of research,
and we hope to have additional methods available for this case in the future. The
best solution for now is to closely examine the Pareto plot and the half-normal plot
and to use your common sense in deciding which estimated effects are of possible
practical significance. It is, in fact, important to understand both the statistical
and practical significance of effects in all applications.

Note that the test statistics t (PSE), t (ASE), and t (TSE) do not follow a known dis-
tribution, that is, you can’t look up initial values in a Student’s ¢-table. The critical
values and p-values used in library dox are based on simulation results (HO94).

The results from the different error estimates are easily compared by asking for a
Pareto plot with all error methods:

> pareto(buffer.fac, method = "all")

In figure 2.9, all but the trimmed standard error agree that there are four significant
effects at the 5% level.

A further informal check is to examine the half-normal plot with the significant
effects omitted; the points should look like a sample from a normal distribution,
and a line through the origin with a slope given by the error estimate should fit the
data. For this example, omit the four largest effects and look at the half-normal
plot of the remaining effects:

> gqnorm(buffer.fac, method = "all", omit = 4)

Figure 2.10 indicates that opgg estimates standard error of small effects well.

In many cases, the results are the same for all error estimates. Where the errors
change dramatically, common sense will often indicate which error term is most
appropriate. Active contrast plots (see section 2.2.4) and further analysis of a
reduced model (see section 2.3) can also be used to help assess the consistency of
the results for a given error method.
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Pareto Plot for rate
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Figure 2.9: This Pareto plot compares different error methods for
the degradation rate in the buffer experiment.

2.2.4 Bayesian Analysis

In the analysis of fractional factorial designs, you are often willing to accept the
Pareto principle and assume that most of the effects are small, and that only a few
of the factors (or interactions) are responsible for most of the observed variability in
the response. This can be made into an explicit prior assumption; for example, you
may believe that 40% of the true effects are nonzero. Then the remaining effects
look like normal observations with some variance, ¢2. This assumption means that
the observed effects would look similar to data where 40% of the observations have
a large variance, k202, and the rest are normal, N(0,0?), i.e., the effects may be
thought to arise from a contaminated normal distribution:

(1 — a)N(0,0?) + aN(0, k%0?).

where a(= 0.4) is the probability that an individual effect is “active,” and k is a
scale factor for the active effects (BM86).

If you know both « and k, you can use Bayesian methods to calculate the probability
of any effect being “active” (nonzero), based on the data observed. The active
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Figure 2.10: Half-normal plot of the “non-significant” effects, with
slopes based on each of the error estimates. This plot illustrates
the estimate of the error relative to the smallest effects.

contrast plot displays the posterior probability of an effect being active for a given
a and k. Our recommended default values are a« = 0.4 and k = 5 (Haa89). Another
useful set of values, given by Box and Meyer, is « = 0.2 and & = 10 (BMS6).
The default settings are appropriate for the case of “many small effects” while the
other are appropriate for the case of “a few large effects”. These two cases could
be interpreted as “intermediate to late” and “early” screening, respectively.

The active contrast plot for the storage buffer data is displayed by:
> acplot(buffer.fac)

Effects with probabilities greater than 0.5 are usually interpreted as active. So
figure 2.11 indicates only the two main effects pH and thimer are active for a = 0.4
and k£ = 5. In this case, the active contrast plot for the Box and Meyer settings
a = 0.2 and k = 10 is quite similar.

An alternative way to compute active contrast probabilities is the empirical Bayes
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Active Contrast Plot for rate
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Figure 2.11: Active contrast plot for the storage buffer problem.
For each effect the probability of that effect being active is plotted,
as calculated from the parameters o and k. Typically, an effect is
considered to be active if this probability is greater than 0.5.

method. If you haven’t had enough experience with the process to guess appropriate
values for o and k, the empirical Bayes method can provide (empirical) values of
both a and k from the observed data. Another alternative is to specify how many
effects you think are active based on your analysis so far—this determines a—and
to let the empirical Bayes method estimate k based on the resulting model.

The default for the empirical Bayes procedure is to use the effects that are significant
from the PSE method in a reduced model and to then estimate k from the overall
F-ratio of this model. Since the summary output for the storage buffer data shows
four effects are significant at the 95% confidence level based on the PSE method,
this is the same as setting a=4/15=0.27. The estimated & is 18.69 in this case (this
is the square root of the F-ratio for a reduced model containing these four effects).
Compute and display the empirical Bayes probabilities:

> ebplot(buffer.fac)
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Figure 2.12: Empirical Bayes plot for effects selected by the PSE
method at the 5% significance level. Like the active contrast plot,
the probability of an effect being active is plotted. Empirical Bayes
methods are used to compute values for the parameters o and k.

The empirical Bayes plot given in figure 2.12 lends support to the belief that pH,
thimer and pH:thimer are significant. The effect pH: gent stands out from the rest
of the effects but is not clearly significant.

The active contrast plot can be used to corroborate the tentative conclusions drawn
from the Pareto, half-normal, and two-factor interaction plots. If alpha and k are
specified, the posterior probabilities are independent of the error estimates in the
analysis. In cases where it is not clear if certain effects are significant, it is often
helpful to look at the active contrast plots with the standard settings described
above along with any values for alpha and k which seem reasonable based on your
experience. Occasionally it is hard to find values for a and k that gives the clear
separation shown, for example, in figure 2.12. This can occur when there are very
many significant effects or when there is not a very clear distinction between the
null effects and the smallest of the possibly significant effects.
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2.3 Fitting a Reduced Model

Based on the results of the analysis so far, you can usually identify which effects
are significant. A reduced model containing just these effects provides a useful
summary of the experiment. This empirical model may also be used to predict the
response. Prediction of the response should only be carried out within the space
defined by the levels of the experimental factors. However, if the target response is
not achieved withing this space, the reduced (empirical) model may be used, with
care, to suggest a region for further experimental investigation.

If the reduced model is to be used for prediction, it is important to examine the
diagnostic plot.

The reduced model also provides an alternative estimate of the experimental error.

2.3.1 Specifying the Reduced Model

An extensive graphical analysis has already been conducted for the degradation
rate data. One way to summarize the results of this analysis is that the pH and
thimer effects are clearly significant, the pH:thimer effect is probably significant,
and the pH:gent effect is possibly significant. You now may fit reduced model with
just these factors and their interactions:

> buffer.redmod <- update(buffer.fac,
+ . 7 pH * thimer + pH * gent)

> summary (buffer.redmod)

Estimated Effects for Response: rate

Design Name: ff0516 (reduced model)
Effect Std. Error |t(MSE)| P-value

pH -6.630 0.165 40.10  <.001
thimer -1.260 0.165 7.58  <.001
gent 0.303 0.165 1.83  0.097
pH:thimer 0.720 0.165 4.35  0.001
pH:gent -0.553 0.165 3.34  0.008

Mean Standard Error of Effects = 0.165
with 10 degrees of freedom.
Experimental Error (RMSE) = 0.331
R-squared = 0.994
P-values calculated using the t-distribution.

The “.” on the left hand side of the formula implies that the same response is to
be used in the updated model as in the original buffer.fac.
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First note that in addition to the largest four effects, the model contains also con-
tains a fifth effect, gent, so that the model is “hierarchical.” That is, if a two-factor
interaction term is included in the model, both corresponding main effects are also
included.

Because you have only five effects in the model, the remaining ten effects can be used
to provide an alternate estimate of the experimental error and the standard error
of the estimated effects. The estimated mean standard error (MSE) of the effects is
0.165, which seems in good agreement with the pseudo standard error estimate of
0.216. The experimental error, which is the usual root mean square error from an
ANOVA, provides an estimate of the standard deviation of the response variable.
This value should seem reasonable based on previous experience with the process.
The percentage of variability in the response explained by the statistical model, or
R-squared, is quite high at 99.4%, indicating that the other non-significant effects
explain a very small portion of the total variability in the response. As expected,
all of the terms included in the model are highly significant (except for gent which
was included to obtain a hierarchical model).

As a final view of the reduced model you look at the Pareto plot with all of the
effects and a new significance line drawn using the mean standard error from the
reduced model:

> pareto(buffer.redmod)

Figure 2.13 shows that the significance lines for the PSE and MSE estimates agree
quite closely. This is a good indication that the reduced model is consistent with
the conclusions of the previous analysis. Note that you could have generated the
reduced model with the function fac.aov but we chose to use the function update.
Using update, instead of refitting the model with fac.aov, has the advantage that
the standard error estimates PSE, TSE, and ASE from the saturated model are
retained by the returned model. It also keeps the estimates of the effects from the
saturated model so that meaningful Pareto and half-normal plots can be generated.
These estimates from the saturated model, not present in the reduced model, are
parenthesized in the Pareto plot.

2.3.2 Diagnostic Plots

Now that you have fit a reduced model, the model is no longer saturated, hence
there are residuals. The residuals are the observed values of the response minus
the predicted values. Our tests for significant effects are valid if the residuals ap-
proximately follow a normal distribution and do not show any unusual patterns.
Diagnostic plots evaluate these assumptions and also provide assurance for using
the submodel to predict the response over the space defined by the factor levels.

> plot(buffer.redmod)
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Pareto Plot for rate
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Figure 2.13: The Pareto chart for the reduced model showing sig-
nificance lines for both the PSE and MSE estimates.

In the first of the diagnostic plots shown in figure 2.14 the observed degradation
rates are plotted against the values predicted from the reduced model. The points
lie close to a diagonal line indicating that the reduced model fits the observed data
well over the range of the response. It is interesting to note that the responses are
separated into two groups. The values with higher responses correspond to low pH
and the values with lower responses correspond to high pH.

The second diagnostic plot (residuals versus run order) is useful in detecting any
source of systematic bias in the response values. For example, suppose the measure-
ment of degradation took a long time and the samples sat on the laboratory bench
during waiting to be assayed. If additional degradation could be taking place while
the samples are waiting to be measured, you would expect a downward drift in the
residuals versus run order. In this example, the values were listed in a standard
order rather than in run order so this plot is not very meaningful.

The bottom left hand plot in figure 2.14 shows the standardized errors versus the
predicted values. If there is a “V” shaped pattern going from left to right, it suggests
that the variance of the residuals is an increasing function of the response. There
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Figure 2.14: Diagnostic plots to evaluate the assumptions of the
reduced model. The upper left plot shows the predicted versus
observed values. The upper right hand plot shows the residuals
versus run order. The lower left hand plot shows standardized
residuals versus predicted values. The lower right hand plot shows
a normal (QQ) plot of the residuals.

is some suggestion of increasing variance of the residuals with the mean in this
example. A logarithmic or square root transformation may be useful in satisfying
the assumptions of the analysis in this case; namely, that the residuals have constant
variance. When there are four or more residual degrees of freedom, the standardized
residuals follow the usual definition; namely,

s Ti
T = e——
V1T —hy

otherwise the ordinary residuals are simply divided by the standard error. See
section 2.4, Transformation Analysis, for how to carry out a formal transformation
analysis.

The last plot in figure 2.14 is a full-normal (QQ) plot of the residuals. Ideally, the
residuals should all fall along a straight line. Patterns to watch out for are generally
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“S” shaped curves which suggest that there may be one or more unusually large
residual. Such residuals may correspond to outliers and should be identified and
closely studied.

2.4 Transformation Analysis

It is not uncommon for a response to be much more variable at the high level set-
tings than the low level settings. This tends to happen for counts and percentages,
or when the response is related to duration. In some of these cases, it is appropriate
to transform the response. The response on the transformed scale will often better
satisfy the assumption that the error variance of the response is constant over the
design. Another reason to use a transformation is that after a transformation of the
response variable, the fitted model may be more parsimonious or simpler to inter-
pret. For example, it may contain only main effects of factors and no interactions
(see figure 2.5).

The Box-Cox transformation analysis summarizes the models for power transforms
for the response, yN = (y* — 1)/y*, for a range of values of A\, where A = 0
corresponds to the logarithm transform. Typically a range from A = —1 (the
reciprocal) to A = 1 (the identity) is considered.

Notice in the first exploratory plot of the storage buffer data, figure 2.2, the rate
seems to be a little more variable when it is higher. This pattern was seen again in
figure 2.14. Transformation of the response may lead to a more constant variance.
Results of a Box-Cox analysis for —1 < A <1 are given in figure 2.15:

> buffer.bc <- boxcox(buffer.fac, n.effects = 4)
> plot(buffer.bc)

For the transformation analysis, a reduced model must be specified, as given by
the second argument, n.effects = 4, which specifies a model with the four largest
terms in the untransformed (current) model. Alternatively, a model formula can
be supplied. The mean square error from this reduced model is used to compute
t-statistics for each of the terms, as displayed in the lower plot. Maximizing the
log likelihood is equivalent to minimizing the residual sum of squares for the model:
the first plot shows the log likelihood for —1 < A < 1, indicating a 95% confidence
interval for the optimal A between about 0 and 0.75. Usually, you choose convenient
transforms from this interval: in this analysis, possibilities are a log transform, at
A = 0 and square root transform, at A = 0.5. The second plot shows the t-statistic
of the 4 largest terms in the analysis of the transformed response, and the 5%
significance band for the t-statistic. In this plot, you see that the t-statistic for
pH:thimer lies inside the confidence band, so the model for log(rate) does not
have a significant pH:thimer interaction.
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Transformation Analysis: Lambda Plot for rate
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Figure 2.15: Transformation analysis of the degradation rate. The
upper plot gives the log likelihood values, the lower, t-statistics
from the analysis on the transformed scale.

Thus a choice of a square root or logarithmic transformation may achieve constant
variance and/or provide a simpler model. To verify this, refit the reduced model
on the transformed scale. Since the best transformation is closest to the standard
square root transformation, consider it first:

> buffer.sqrt <-fac.aov(sqrt(rate) “pH*thimer+pH*gent,
+ buffer.df)

> summary (buffer.sqrt)

Estimated Effects for Response: sqrt(rate)

Design Name: ff0516
Effect Std. Error |t(MSE)| P-value

pH -1.6000 0.0367 43.60 <.001

thimer -0.2760 0.0367 7.53 <.001
gent 0.0256 0.0367 0.70 0.5

pH:thimer 0.0673 0.0367 1.84 0.096

pH:gent -0.1190 0.0367 3.25 0.009
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Mean Standard Error of Effects = 0.0367
with 10 degrees of freedom.

Experimental Error (RMSE) = 0.0733

R-squared = 0.995

P-values calculated using the t-distribution.

Notice that in this model the pH:thimer interaction is not significant at the 5%
level.

Now look at the same two-factor interactions as examined in the untransformed
models:

> tfiplot(buffer.sqrt,” pH:thimer + pH:gent)

Two-Factor Interaction Plot for sgrt(rate)
Approximate 90% CL'’s based on MSE
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Figure 2.16: Two-factor interaction plots for the model of the
square root of rate in the buffer experiment.

The two-factor interaction plot using the square root transformation shows that
the lines for thimer=- and thimer=+ are nearly parallel. As discussed above the
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pH:gent is not transformable and hasn’t been greatly affected by the transforma-
tion. Thus the square root transformation can be used to obtain a simpler, model
with one fewer interaction.

Now, fit a model without pH:thimer and examine the diagnostic plots again:
> buffer.sqrtrm <- update(buffer.sqrt,

+ . 7 pH + thimer + pH * gent, buffer.df)
> plot(buffer.sqrtrm)
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Figure 2.17: Diagnostic plots for square root response.

The residuals on the square root scale for the reduced model without the pH: thimer
interaction are shown in figure 2.17. Most of the plots look similar to those shown
in figure 2.14. The plot of standardized residuals versus predicted values shows that
the variance is more stable across the range of the response. Thus the analysis on
the transformed scale better satisfies the model assumptions.

As a final note, there is not much difference in the analysis between the log and the
square root analysis. The log transformation makes the pH:thimer interaction even
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less significant, but it tends to overcorrect for the nonconstant variance. The impor-
tant point of the transformation is that it highlights the proportional nature of the
pH:thimer interaction in that thimer slightly modifies the pH effect in proportion
to the size of response obtained at each level of pH.

2.5 Conclusions

Fractional factorial designs provide a powerful way to screen many factors while
using only a small number of experimental runs. Because of the way the runs are
selected it is often possible to estimate all main effects and two-factor interactions
independently. When fewer runs are chosen some confounding may be introduced,
but it is known in advance which effects are confounded. Thus the experimenter
may make a reasoned trade-off between experimental objectives and cost. The
dox library provides a number of functions that make it easy to design fractional
factorial experiments.

The analysis of fractional factorials provided in library dox is straightforward and
primarily graphical. This allows you to quickly visualize the effects of the exper-
imental factors on the response and provides useful material for presentation of
the experimental results to others. The graphical methods include Pareto plots,
normal plots, and two-factor interaction plots. Active contrast (Bayes) plots and
transformation analysis are also available. An additional summary is provided by
available by fitting reduced models and examining diagnostic plots. By combining
this informative analysis with carefully selected designs and clear thinking about
experimental objectives, the experimenter can quickly and reliably solve complex
problems with limited resources.



Chapter 3

Response Surface Methods
and Process Optimization

Response surface methods are used to study changes in a process response in terms
of a few key experimental factors. Often response surface methods are used after
an initial screening experiment. The screening experiment identifies the important
factors affecting the response, and a follow-up response surface experiment studies
the response over these important factors in more detail. The aim is to fit a second
order polynomial surface to the response in terms of the experimental factors. The
surface may then be used to reveal combinations of factor settings at which, say, the
maximum yield of the process occurs. Also, if multiple responses are measured, re-
gions of factor settings which, for example, yield is maximized and cost is minimized
may be readily identified. For responses with a specific target value, the surface
may be used to indicate a region of suitable operating conditions. From this region,
manufacturing conditions can be chosen to give cheaper or faster production. Box,
in (BD8T), provides a comprehensive treatise on response surface methodology. In
addition, an excellent review of response surface methods is given by Myers et al.
(MKC89).

A diagnostic assay that includes a method for amplifying DNA known as Strand

Displacement Amplification (SDA), developed at Becton Dickinson Research Cen-
ter, uses two enzymes, Hinc II and Exo-Klenow. Of these, Hinc II is the more

41
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expensive. In preparing the diagnostic assay kit, a response surface experiment is
used to try to reduce the cost of the assay, possibly by reducing the amount of
Hinc IT used (KDNT93).

This experiment is well-suited to response surface methods, since there are three
relevant factors, time and the two enzymes, and much is already known about the
assay. This knowledge includes a desired range of values for the response, and
operating levels for the factors, that indicate satisfactory assay performance.

The response surface is constructed using a low-order polynomial, typically a second
order, or quadratic model. A second order model can only capture simple curvature,
but this is often sufficient as an approximation to the response near its optimum.
The advantage of a quadratic model is that only a few settings are needed for each
factor—typically only three to five different settings. This means we do not need a
large number of runs. For example, a response surface for a three factor experiment
requires only 14 runs, plus between two and four center points.

Most popular RSM designs are constructed by augmenting a fractional factorial
design (‘cube’), which may be used to estimate a linear surface, with design points
that allow estimation of the quadratic terms. Center points are added to provide an
estimate of the response variance at the center of the design. The default response
surface design is known as a central composite design and includes a ‘star’ of points
outside the cube placed in line with the center of each face. Each factor then has
five different settings. By placing the star points actually on the cube one may
reduce this to three settings per factor. This design is called a face-centered cube
design.

For the strand displacement amplication (SDA) example, only three levels of each
factor were considered and a face-centered cube design was used. Prior to this
work the operational settings for SDA were 150 units of Hinc II, 5 units of Exo-
Klenow, and a test time of 2 hours at 37 C. Since the aim was to reduce the amount
of enzymes, the enzyme amounts given above were used as the high levels of the
factors, and two lower levels were chosen. It was thought that if the amount of
either enzyme was reduced, the test time may need to be increased to maintain the
same signal, so 2 hours was chosen as the shortest time. The 18 runs used in the
design are as follows:
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Hinc.II Exo.Klenow time

1 50 1 2.0
2 50 1 3.0
3 90 ) 2.0
4 50 5 3.0
5 150 1 2.0
6 150 1 3.0
7 150 ) 2.0
8 150 ) 3.0
9 50 3 2.5
10 150 3 2.5
11 100 1 2.5
12 100 ) 2.5
13 100 3 2.0
14 100 3 3.0
15 100 3 2.5
16 100 3 2.5
17 100 3 2.5
18 100 3 2.5

The first eight runs are a “cube” on the high and low levels of each factor, the next
six are points at the center of each “face”, and the last four, points in the center.

With this design, we can fit the default quadratic model in library dox:
y=p+ a1z + asxs + azrs + ble + ngg + ngg 4+ 12129 + Cox9x3 + C31123

where x; are the three experimental factors, and a;, b; and ¢; are coefficients of the
model.

After the experiment has been run, the data are entered into library dox, ready
for analysis. Briefly, the standard analysis procedure is to first fit the quadratic
model and examine the residual plot for lack of fit. If the model seems adequate it
may then be used to construct a response surface. Also, the fitted coefficients are
studied using Pareto plots and printed summaries. The Pareto plot gives a quick
visualization of the important factors and is useful in deciding which factors to use
in the surface plots.

The surface is visualized using contour, surface, and image plots. The contour and
image plots provide useful two dimensional views of the surface classified by two
factors. The surface plot gives a three dimensional view of the response in terms
of two factors. In each of these functions, by default, additional factors are set to
their center value, but they may also be set to any other values as appropriate.

Lastly, numerical optimization is used to obtain an estimate of the optimum of the
surface and the corresponding settings of the factors. This optimization may be
done over the entire factor space or over a subspace defined by constraints on one
or more factors. Also, joint optimization of more than one response in terms of
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any two of the factors can be assessed informally by overlaying contour plots of two
different responses.

3.1 Response Surface Designs

Four types of response surface designs are provided: central composite, face-centered
cube, 3*, and Box-Behnken designs.

The 3* designs are not as efficient as the other designs, as they require many more
runs. Any of the face-centered cube, Box-Behnken, and central composite designs
are good candidates for a response surface experiment. The central composite
designs! with star points placed on the sphere containing all the cube points, have
the advantage that variances of the predictions from the model are functions only
of the distance from the center of the design, due to design rotatability. Hence, for
example, the variance of predictions at the design points are equal. In library dox
all three of these preferred designs, by default, include replication of the center point
which may be used to provide an estimate of the pure (experimental) error.

Note that response surface designs are used only with continuous factors, where it
makes sense to smoothly interpolate between settings. For nominal factors, such as
present and absent, the best levels are usually discovered in a screening experiment.

The SDA data set is available under the name sda.df. The face-centered cube
design for the SDA experiment may also be generated using rsm.design:

> sda.design <- rsm.design(3, type = "fc", alpha = 1,
+ factor = list(Hinc.II = c(50, 150),
+ Exo.Klenow = c(1, 5), time=c(2,3)))

The first argument is the number of factors, type="fc" specifies a face-centered
cube, factor gives the names and levels of the cube points of the design.

A worksheet with space for recording two response measurements resulting from
each of the factor combinations run in the laboratory experiment can be generated
as follows:

> worksheet(sda.design, responses = c("opt.dens", "vis"))

'Sometimes called star designs, because of the “star” shaped pattern of points at the
largest and smallest factor settings.
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3.2 Adding the Response

In the SDA experiment, two different responses are measured to assess the assay
results: a visual score between 1 and 4, and a measure of optical density. In both
cases, a higher value indicates better DNA amplification and a more promising
assay.

The two responses, visual score (vis) and optical density (opt.dens) are added to
the design:

> sda.vis <- ¢(1.5,2.5,1.5,3,2,3.5,2.5,2.5,1.5,3,

+ 2.5,2.5,2.5,3.5,3,3.5,2.5,2.5)

> sda.od <- ¢(10.45,23.24,7.00,43.00,28.62,72.66,35.02,
+ 96.87,7.56,50.88,37.28,37.94,29.01,36.64,39.32,

+ 63.36,28.88,50.87)

> sda.df <- cbind(sda.design, vis = sda.vis,

+ opt.dens = sda.od)

Alternatively, if the experimental design and response measurements are already
available in a file, read in these data and convert them to a response surface design,
specifying which columns are factors:

> sda.df <- read.table("sda.dat")
> sda.df <- as.rsm.design(sda.df, rsm.factors = 1:3)

Plot the response data in terms of the experimental factors:
> plot(sda.df)

The resulting plots are given in Figure 3.1. The optical density increases with both
enzyme amounts and time indicating a possible useful tradeoff. In particular, the
visual score clearly improves with time and Hinc.II, but is low at the low level of
Hinc.II and time.

3.3 Coding of the Factors

The convention in fitting response surface models is to fit the surface using stan-
dardized factors. This involves recoding the experimental factors to the standard
coding, with the center point 0, and cube points 1 and —1. For the factor Hinc.IT,
for example, the standard coding is:
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Figure 3.1: Plots of the individual and mean response for the ex-
perimental factors Hinc.II, Exo.Klenow and time.

Hinc.II Standard Coding

50 -1

50 -1

50 -1

50 -1
150 1
150 1
150 1
150 1

50 -1
150 1
100 0
100 0
100 0
100 0
100 0
100 0
100 0
100 0

The reason for this is that on the standardized scale the columns of the design matrix
are orthogonal, so the coefficients of the model are independent. As a result, each
of the statistics in the summary may be interpreted independently, and if terms are
dropped from the model, the remaining coefficients are unchanged. Translating the
coefficients of the standardized model to the original factor levels involves a simple
linear transformation.?

2For the users’ convenience, print prints coefficients for both the original and coded
(scaled) factors, and summary prints coefficients for the coded factors.
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3.4 Fit the Response Surface

The response surface is fitted to the response optical density via a linear model
function rsm.1lm

> sda.od.rsm <- rsm.lm(sda.df, response = opt.dens)

By default, this call fits the full quadratic model, as generated by the following
formula:

> formula(sda.df, response = opt.dens)
opt.dens ~ (Hinc.II + Exo.Klenow + time) "2 + Hinc.II"2 +
Exo.Klenow™2 + time™2

First, we check the fit of the model by looking at the diagnostic plots of the resid-
uals. A residual is the difference between the observed response and the fit of the
quadratic surface at a given design point. If the fit is poor, the residual is large:

> plot(sda.od.rsm, run.order = c(7, 6, 10, 11, 14,
+8, 4, 13, 9, 18, 16, 5, 15, 1, 17, 3, 12, 2))

While the model does not fit the data very closely, there are no systematic depar-
tures and no major problems regarding the usual second order assumptions of the
model.

Now summarize the model:

> summary(sda.od.rsm)
Estimated Effects for Response: opt.dens

Summary for the scaled coefficients

Coef. Std. Error t_value P-value
(Intercept) 42.00 6.6 6.300 <.001
Hinc.II 11.00 5.3 2.000 0.08
Exo.Klenow -4.00 5.3 -0.740 0.48
time 7.50 5.3 1.400 0.20
Hinc.II"2 -8.70 10.0 -0.850 0.42
Exo.Klenow™2 -0.28 10.0 -0.027 0.98
time”2 -5.10 10.0 -0.490 0.63
Hinc.II:Exo.Klenow -9.10 6.0 -1.500 0.17
Hinc.II:time -3.80 6.0 -0.630 0.55
Exo.Klenow:time -5.80 6.0 -0.970 0.36
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Figure 3.2: Residual plots for the quadratic model fitted to the
response Optical Density.

Experimental Error (RMSE) = 17 on 8 degrees of freedom
R-Squared = 0.61

The Pareto plot displays the relative size and sign of the ¢-statistics given in the
summary table and is useful for quick visualization of the order of importance of
the effects:

> pareto(sda.od.rsm)

The vertical line in the Pareto plot, Figure 3.3, indicates the 10% significance level
cutoff for the ¢-statistic based on the residual mean square estimate of experimen-
tal error. Although no factors appear to have a dramatic effect on optical density,
Hinc.II and time appear to be most important. Also, the sizes of the two interac-
tions with Exo.Klenow indicate that the effects of both these factors are modified
somewhat by Exo.Klenow.
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Pareto Plot for vis

time 3.491
Hinc.ll 2.444
. 0 B
time”2 0.974
Exo.Klenow"2 -0.844
Exo.Klenow:time -0.781
Hinc.Il:time -0.781
Hinc.ll:Exo.Klenow -0.781 Significance Level = 0.05
Exo.Klenow |-0
T T 1
0 1 2 3

t-values of Coefficients

Figure 3.3: The Pareto plot for optical density, displaying the ¢-
statistics for the model.

Contour, surface, and image plots help to visualize the response surface. These
plots display the fitted surface in terms of two experimental factors. The Pareto
plot (Figure 3.3) indicates Hinc.II and time are the most important factors, so
fitted surface plots with the value of Exo.Klenow fixed at its center value, 3, are
first constructed.

+ V + VvV + V

contour(sda.od.rsm, vary=list(Hinc.II="v",time="v",

Exo.Klenow = 3))

surface(sda.od.rsm, vary=list(Hinc.II="v",time="v",
Exo.Klenow = 3))

image(sda.od.rsm, vary=list(Hinc.II="v", time="v",
Exo.Klenow = 3))

These plots are given in Figure 3.4 and show that by increasing the time to three
hours, we can dramatically reduce the amount of Hinc II, without compromising
the optical density response of the assay. For example, the contour plot shows that
an Opt.dens response of 35 units may be obtained by using about 140 units of
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Figure 3.4: Contour and surface plots of the surface fitted to optical
density, with Exo-Klenow held at 3 units.
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Hinc IT and a reaction time of about 2 hours, or by using just 70 units of Hinc II
and a reaction time of 3 hours.

Now the reader can repeat the same analysis sequence on the visual score response.
Fit the surface:

> sda.vis.rsm <- rsm.lm(sda.df, response = vis)

The reader can verify, using diagnostic plots, that the model is adequate. Again,
the Pareto plot shows that Hinc.II and time are important effects on the visual
score, as was the case for optical density.? We again plot the response surface in
terms of Hinc.II and time. To examine the effect of Exo.Klenow along with this,
we construct a sequence of contour plots at three different levels of Exo.Klenow,
keeping the same contour lines in all plots. This simultaneous investigation of the
factor effects is also recommended for the opt.dens response given the possible
interactions of Exo.Klenow with the other factors suggested in Figure 3.3.

> lvls <- seq(1.6,3.6,.2)

> contour(sda.vis.rsm, vary = list("Hinc.II" = "v",
+ time = "v", Exo.Klenow = 1), levels = lvls)

> contour(sda.vis.rsm, vary = list("Hinc.II" = "v",
+ time = "v", Exo.Klenow = 3), levels = 1lvls)

> contour(sda.vis.rsm, vary = list("Hinc.II" = "v",
+ time = "v", Exo.Klenow = 5), levels = 1lvls)

As noted in Figure 3.4, the visual score response may be maintained for a reduced
amount of Hinc.II by increasing time (Figure 3.5). Also, Figure 3.5 shows the
surface is steepest for Exo.Klenow = 1, as the contour lines for the first plot are
closer together than the plots for Exo.Klenow = 3 and 5. This is not a dramatic
effect however, and it appears that the Exo.Klenow setting may be comfortably
reduced. In the next Section, optim is used to estimate the maximum of the visual
score.

3.5 Optimization

Frequently, response surface methods are used to find “optimal” operating condi-
tions, i.e., settings of the factors for which the response reaches a maximum or
minimum. Contour and surface plots allow visualization of the location of such an
optimum. The function optim computes where the minimum or maximum value of
the response surface occurs. For example, the maximum visual score is obtained as

3Even though the visual score is discrete, we treat it as a continuous response in this
analysis and keep this in mind when interpreting residual plots and the like.
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> optim(sda.vis.rsm)
Convergence has been reached

Hinc.II Exo.Klenow time vis
113.8967 2.311882 3 3.6242
( relative function convergence )

Notice the maximum of 3.6 occurs on the boundary, time = 3. By default, the
optimization is confined to the range of the experimental factors. Also the value
or range of any of the factors can be further constrained in the optimization. For
example, if the amount of Hinc.II was restricted to be less than 80, optim can
then compute the new constrained maximum:

> optim(sda.vis.rsm, constrained = list(Hinc.II = c(0,80)))
Convergence has been reached

Hinc.II Exo.Klenow time vis
80 2.676924 3 3.410343
( relative function convergence )

Variables were constrained as follows:
Hinc.II = [0, 80 1]

While the maximum of the fitted visual score occurs for a relatively high value of
Hinc.II, the contour plot shows the function is fairly flat near the maximum at a
time of 3 hours. It seems we could use less Hinc.II, and still achieve a visual score
of around 3.4.

3.5.1 Optimization of Multiple Responses

The two responses in the above example measure a similar performance criterion,
namely the SDA assay signal. In some applications multiple responses may measure
two quite different response attributes of a process. In the above example, increased
time may incur cost, so a possible response would measure the cost of the assay in
addition to its performance. The goal of the joint analysis may then be to minimize
cost and maximize signal, or at least to minimize cost for a fixed desirable signal.
A graphical solution to this joint optimization problem is to overlay contour plots
of different responses at the same factor settings:

> contour(sda.vis.rsm, vary = list("Hinc.II" = "v",
+ time = "v", Exo.Klenow = 2.3), main = "")
> contour(sda.od.rsm, vary = list("Hinc.II" = "v",
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+ time = "v",

Exo.Klenow = 2.3), add = T, 1ty = 2,
+ main =

"Contour plot for Visual Score and Optical Density")
legend(par("usr") [1],par("usr") [4], lty=c(1,2),

legend.names = c("Visibility", "Optical Density")

+ Vv

Contour plot for opt.dens
Holding Exo.Klenow at 2.3
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Figure 3.6: Contour plot with the fits for visual score and optical
density overlaid.

In this case the two responses both measure the assay signal. Figure 3.6 shows the
visual score is flat across a wide range of Hinc.II values for time close to 3 hours.
A similar reasonable opt.dens response may be obtained for Hinc.II at around
140 units and time of 2 hours, and for Hinc.II at around just 70 units and time
of 3 hours. Thus both responses indicate satisfactory assay signal at around 70
units of Hinc.II for a 3 hour assay time. As noted above, this type of plot may
be much more informative for multiple responses measuring quite different process
performance criteria.
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3.6 RSM Problems with Factors on the Log Scale

In many industrial applications it is natural to consider experimental factors on the
log scale. For example the concentration of a chemical additive may be considered
as a solution percentage and this may be most appropriately studied on the log
scale. An example of this application is currently awaiting publication approval
and will be included in the main release.

3.7 Adding New Design Points to Fractional Fac-
torial Screening Design

In industries where the raw materials for experiments are expensive, it may not
be possible to repeat runs from an earlier screening design. Instead, the response
surface may be modeled by adding “star” and center points to an earlier fractional
factorial design. In library dox the fractional factorial is converted to a response
surface design by:

> convert.to.rsm(inhib.df[,c("pH","gent","thimer")],
+ numeric.levels = list(raddos=c(100,200), gent = c(5,10),
+ thimer = c(100, 200)))

The design returned is a central composite design. The “cube” portion is the
factors of the factorial design converted into numeric variables using the numeric
levels given. Center and star points are added to the cube design, as in rsm.design.

3.8 Summary

Response surface designs are used to study the effects of a few key factors on the
response(s). such designs typically have factors with between three ad five levels
and allow for fitting of a second order polynomial model or response surface. Based
on the response surface model, contour and surface plots can be used to study the
behavior of the response. The optimum value of the response and the corresponding
factor settings can be determined by numerical methods. Response surfaces fro
two different responses can be compared by overlaying their contour plots. Thus,
response surfaces provide a powerful means of optimizing and understanding process
response over key manufacturing factors.



Chapter 4

Robust Design Methods

Like fractional factorial designs, robust design methods! are used to improve prod-
uct and process performance in industrial applications. Robust design methods
focus on improving the consistency of product performance as well as the average
performance. In a robust design approach, the process mean and variance are stud-
ied simultaneously to find settings of the experimental factors that produce minimal
variance at the desired process mean. In contrast, traditional fractional factorial
design and analysis assume that variation is the same over the range of factor set-
tings, and study only the process mean. library dox provides design and analysis
tools for implementing robust design methods including the Taguchi method. Ex-
cellent reviews of the Taguchi method are given by both Kacker and Phadke (Kac85;
Phag9).

The goal of industrial research is to develop a product that is robust to the conditions
experienced in manufacturing and customer environments. Using robust design
allows technology to be transferred from research to development, from there to
manufacturing, and finally to the customer, with little change in performance.

The fundamental principle of robust design is to improve the quality of a product by

!The ideas of this chapter relate to those popularized by Taguchi’s work in industrial
design. However, because we only loosely follow his approach, we prefer to use the term
“robust design” to describe the analysis methods we present.
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minimizing the effect of causes of variation without actually eliminating the causes.
This is achieved by finding settings of “control” factors for which the process is
minimally sensitive, or robust, to the effects of “noise” factors. A control factor is an
experimental factor that can be freely controlled by the experimenter, e.g., the speed
of injection of a polymer in an injection molding process. A noise factor is a factor
that cannot be controlled easily or economically in the customer’s environment, e.g.,
ambient temperature in the manufacturing facility. As a result of a robust design
experiment, the control factors may be set at levels where the process response is
consistent over the space defined by the noise factors. At these settings the process
is more stable and consequently the quality of the product is improved: since the
response changes very little over a range of operating conditions, it will always be
close to target.

In the following example a robust design was used to study the factors affect-
ing shrinkage of products made by injection molding as reported by Engel in
(Eng92).Seven control factors were chosen:

cycle time

mold temperature
holding pressure
cavity thickness
holding time
injection speed
gate time

TO@mOaQwe

Each of these factors may affect the amount of shrinkage, and their settings are
easily altered within an injection molding cycle.

Three noise factors were selected: these are difficult to control in the manufacturing
cycle, so we want the process to be insensitive to their values:

M : percentage regrind
N : moisture content
O : ambient temperature

A robust design experiment aims to identify settings of the control factors where
the response is both “good” and unaffected by the noise factors. For manufacturing
of the molded parts, the goal is to stabilize the shrinkage at 2.5% across the set-
tings of percentage regrind, moisture content of the injected material and ambient
temperature.

Robust design methods often use orthogonal arrays. The important property of an
orthogonal array is that main effect estimates are all independent of each other. The
fractional factorial designs discussed in chapter 2 are all orthogonal arrays. Taguchi
also introduced orthogonal arrays that allow several factors to be studied at three
levels. These designs employ a minimal number of runs for estimating effects of
a relatively large number of control factors and may be obtained via the function
oa.design. For example, the popular Lig orthogonal array, which has one factor
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at two levels and seven factors at three levels may be obtained as follows:

> oa.design(c(2,rep(3,7)))

1 ________
2--000000
3 - -+ ++ + + +
4-0--00++
5-000++- -
6-0++--00
7-+-0-+0+
8-+0+0-+-
9-++-+0-0
10+--++00 -
11+-0--++0
12+ -+00- -+
13+40-0+-+0
14 +00+ -0 -+
15+0+-0+0 -
16 ++-+0+-0
17+ +0-+-0+
18+ ++0-0+ -

Orthogonal array design with 2 residual df.
Using columns 1, 2, 3, 4, 5, 6, 7, 8
from design oa.18.2p1x3p7

Constructing a robust design in library dox involves choosing a design for both the
control and noise factors. Typically an orthogonal array is chosen for the control
factors, and a (fractional) factorial for the noise factors. In this setting a robust
design is constructed by combining each point in the noise array with each combi-
nation of the control array factors. While this involves a lot of experimental runs, it
may provide a thorough understanding as to how variability due to the noise factor
is affected by settings of the control factors. Under this approach, the design on the
control factors is often called the “inner” array, and the design on the noise factors
the “outer” array. The robust design method allows us to study the variance of the
response over the noise array at each point of the control array.

The 32-run design chosen for the shrinkage experiment is:
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- 4+ + - M
- + - + N
A°B CDEGH - - + + O
- -+ - 4+ + +
-+ - + 4+ - 4+
-+ + + - 4+ -
+ - - 4+ - + 4+
+ - + + 4+ - -
+ + - - 4+ + -
+ + + - - - 4+

Once the response data have been collected, library dox is used to view and analyze
the data. The goal of the statistical analysis is to identify those control factors
that affect the mean response, and those that affect the variance of the response.
Settings of the control factors that satisfy the dual requirements of achieving optimal
response and small variance over the noise factors may then be obtained. Selecting
good settings is not a cut and dried procedure: often there are several possible
settings, and cost and convenience determine the final choice. We will illustrate some
approaches to selecting suitable control factor settings in the following sections.

The first step in the statistical analysis is to summarize the experimental data over
the noise array at each point of the control design. These summaries are often
referred to as performance criteria and they characterize the mean and/or variance
of the response over the noise array. There is ongoing debate regarding the choice
of suitable performance criteria. Taguchi methods advocate using signal-to-noise
ratios as performance criteria and different signal-to-noise ratios are recommended
depending on whether the goal is to maximize, minimize or achieve a certain tar-
get value for the response (see section 4.1.3, Signal-to-Noise Ratios Explained, for
further details). Box, in (Box88), presents some criticisms regarding the use of
signal-to-noise ratios and recommends analysis of the mean and standard deviation
of the response, often on some transformed scale. In order to facilitate each type of
analysis in library dox, we construct both the Taguchi signal-to-noise ratios and the
mean and standard deviation for the response on both raw and transformed scales.

In library dox, each performance criterion is treated as a response in an analysis
of control factor effects. We use the graphical fractional factorial methods of chap-
ter 2, Fractional Factorial Designs, to identify the factors that affect each response.
Using this analysis approach, factor settings are selected that achieve the maximal,
minimal or target response, as the case may be.

In summary, the analysis of robust designs in library dox usually involves the fol-
lowing steps: first create control and noise designs and combine them into a single
robust design frame. Enter the experimental response and add them to the design
frame. These can then be examined graphically, displayed by each factor in turn.
Next, compute and plot performance criteria for the analysis: by default library dox
computes the mean and standard deviation on raw and transformed scales, and an
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appropriate signal-to-noise ratio. For each performance criterion then conduct a
graphical analysis: compute the effects, examine the Pareto plot, half normal plots
and active contrast plots as described in chapter 2. Based on these plots, the best
settings for the process may then be selected.

4.1 Choosing a Robust Design

The most important part of designing an experiment is actually outside the scope
of this software. This is the process of selecting informative response variables,
identifying important control and noise factors, and choosing good settings for the
factors. These choices, which ultimately determine the success of the experiment,
can only be guided by experience and knowledge of the process or product. A
good summary of the issues affecting these choices is found in Phadke (Pha89) and
Coleman and Montgomery (CM93).

To construct a robust design using robust.design, choose a fractional factorial or
orthogonal array for both the control and noise factors?. The number of runs in a
robust design experiment tends to become large quickly, so minimal designs (where
only main effects can be estimated) are usually chosen. These may be generated
by fac.design, design.digest and oa.design. The control and noise designs are
then combined to form the robust design.

For the injection molding experiment, the combined seven-factor control design and
the three-factor noise design are available in the data set named mold.df but these
can also be generated and combined using robust.design:

cont.des <- oa.design(rep(2,7), min.resid.df=0)

nois.des <- fac.design(rep(2,3), c("M","N","0"),
fraction=1/2)

mold.des <- robust.design(control = cont.des,
noise = nois.des)

+ VvV + Vv VvV

This gives the 32-run experiment of the previous section—eight runs in the control
design, each repeated at the four points of the noise design:

> summary (mold.des)
Pattern of noise over control factors

-+ + -M

2Technically, the noise array is chosen to allow consistent estimation of the sensitivity
of the response to the noise factors at the control factor settings. The points in the noise
space are often chosen to follow a fractional factorial design but may also be chosen to
simply cover the noise space.
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-+ -4+N
ABCDEGH=--++0
1 _______
2 - -+ -+ + +
3 -+ -+ + -+
4 -+ + + - + -
B+ — -+ - + +
6+ -+ + + - —
7T ++ - -+ + -
8+ ++ - - -+

4.1.1 Randomizing the Design

In any experimental design, it is important to randomize the order of the runs in
the design, so that, for example, time of day and position effects are not confused
with the effects of the experimental factors. In robust design it may not always be
feasible to completely randomize the design: for instance, if it is difficult to change
the levels of the noise factors, the randomization is within the levels of the noise
design. The function randomize.design is used with restrict before the design
is printed as a worksheet for recording the results.

> mold.rdes <- randomize.design(mold.des,
+ restrict = C("M","N","D"))
> worksheet(mold.rdes, response = "Shrinkage", graphics = T)

A work sheet appears in the graphics window, as in figure 4.1, with the randomiza-
tion restricted to be within levels of the three noise factors.

Once the experiment has been run at the 32 different settings, enter the measured
values obtained for the response and add them to the design (here we assume the
responses are in the experimental run order):

response <- c(2.2, 4, 2.1, 0.5, 2, 2, 3, 0.3, 2.1, 1.9,
3.1, 1.9, 1.9, 2.5, 4.2, 3.1, 4.6, 3, 1.9, 0.4, 2.3,
2.7, 1, 1.8, 2, 0.3, 2.3, 3.1, 1.8, 2.2, 2.8, 3)

mold.rdf <- cbind(mold.rdes, shrink = response)

mold.df <- sort.design(mold.rdf)

summary (mold.df)

Response: shrink

vV V.V + + V

- + + - M
- + - 4+ N
ABCDEGH- - + + 0

1------- 2.2 2.32.32.1
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A B C D E G H M N O Shrinkage

2 + + - + + - - - -
3 + - + + + - - - - -
4 - + - + + - + - - -
5 + + + - - - + - - -
6 - + + + - + - - - -
7 + - - + - + + - - -
8 - - + - + + + - - -
9 - - - - - - - + +
10 + + - - + + - - + +
11 + - - + - + + - + +
12 + + + - - - + - + +
13 - + + + - + - - + +
14 - - + - + + + + +
15 + - + + + - - - + +
16 - + - + + - + - + +
17 + + - - + + - + - +
18 + - - + - + + + - +
19 + + + - - - + + - +
20 - + - + + - + + - +
21 - - - - - - - + - +
22 - - + - + + + + - +
23 + - + + + - - + - +
24 - + + + - + - + - +
25 - + + + - + - + + -
26 - - + + + + + + -
27 - - - - - - - + + -
28 + - + + + - - + + -
29 + + + - - - + + + -
30 + + - - + + - + + -
31 - + - + + - + + + -
32 + - - + - + + + + -

Figure 4.1: A worksheet for the molding experiment.

2--+-+++0.30.32.72.5
3-+-++-+0.52.80.43.1
4 -+ ++ -+ -2 2 1.8 1.9
5+--+-++3 3 3 3.1
6 +-+++--2.13.11 4.2
7++--++-4 2.24.61.9
8+++---+2 1.81.91.9

4.1.2 Computing Performance Criteria

Compute the performance criteria over the noise array at each control point. The
function robust.sn returns the fractional factorial control array and the five dif-
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ferent performance criteria. These performance criteria are subsequently analyzed
using the graphical techniques presented in chapter 2, Fractional Factorial Designs.

> mold.sn <- robust.sn(mold.df, snratio
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In the injection molding experiment, the aim is to achieve a shrinkage percentage
close to the target of 2.5% so the "target" signal-to-noise ratio is specified (other
choices are "small" and "large").

By default five summary statistics are computed for each control factor combination:

mean mean response

sd standard deviation response

meanl  mean log response
1sdln  log standard deviation of the log response

target

target signal-to-noise ratio (small, large are other options)

Each performance criterion is computed over the noise design for each combination
of control settings. For instance, the mean response for the first combination of
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control factors (where all factors are at their low level) is computed as

22+23+23+21
4

= 2.225

Choice of an appropriate signal-to-noise ratio depends on the type of response mea-
sured in the experiment, that is, whether the aim is to maximize, minimize, or
achieve a fixed target. Problems are usually classified into three types:

smaller-is-better: want to minimize the response, e.g., number of defects.
larger-is-better: want to maximize the response, e.g., yield.

nominal-is-best: the response has some ideal target value, and the closer to the
target (nominal) value the better, e.g., % shrinkage.

4.1.3 Signal-to-Noise Ratios Explained

The robust design approach aims to increase the quality of products and processes.
Taguchi defines ideal quality as a product that gives on-target performance always
for its entire life. Deviations from this result in a loss of quality. Quality loss is
then defined as the total loss to society for the life of the product. With increased
quality as the goal of the experiment, performance criteria are chosen to reflect this
loss of quality. Commonly, simple quadratic loss is used:

L =k(y —m)*

where y is the response, m is the target value, and k is a quality loss coefficient
related to costs and limits of the response.

In smaller-is-better problems, the target value is m = 0 so L = ky? is an appropri-
ate measure of loss. By analogy, for larger-is-better problems, L = k(1/y?) is an
intuitively reasonable measure of loss. The signal-to-noise (SN) ratios essentially
rescale the quadratic loss functions so that maximizing the SN ratio leads to a bet-
ter process. The signal-to-noise ratios recommended by Taguchi, defined for each
point in the control design, are as follows:

smaller-is-better : SNg, = —10log(: > 7))

n 1

= (yig)?

larger-is-better : SN, = —10log(1 3 )

—2
Yj
2

nominal-is-best : SNy, = —10log(=
s

)
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where y;; ¢ = 1,n are response observations for the n points in the noise array at
the jth run of the control array.

In each case a larger SN ratio indicates a better process. The larger-is-better and
smaller-is-better SN ratios are derived directly from the simple quadratic loss func-
tions above. The derivation of the nominal-is-best SN ratio is a little more complex
and essentially assumes that the standard deviation of the response is proportional
to the mean over the noise factors (Box88; Pha89). There is, in fact, on going de-
bate in the statistical literature regarding appropriate performance criteria for use
in the nominal-is-best problem. An alternative to SNp, based on a Taylor series
expansion for the variance of the log response, is to use the standard deviation of
the log response, sd (logy), or as suggested by Box (Box88), log(sd (logy)). (Note,
however, that difficulties may arise if the target is near zero). If the standard de-
viation is not proportional to the mean, then we should simply minimize var(Y")
(equivalently, sd(Y)).

Notice that the nominal-is-best SN ratio is not a function of the target value, m,
even though the object is to bring the mean to target while minimizing variability in
the response.For nominal-is-best problems the optimization has two stages (Pha89).
The first stage involves finding the control factor settings that maximize the signal-
to-noise ratio, or minimize the standard deviation of the response, over the noise
array. This gives settings where the variance is small. The response is then adjusted
to target. In practice it is hoped that this can be done by using a “scaling” factor
that does not affect the SN ratio.

In what follows we restrict attention to the standard Taguchi analysis of the mean
and signal-to-noise ratio as performance criteria for a robust design analysis. We
analyze a nominal-is-best example since this involves a more detailed analysis than
the larger-is-better and smaller-is-better cases. We emphasize that there may be
several advantages to an alternative analysis of the mean and standard deviation
of the response on the raw or transformed scale, and we refer the reader to Box
(Box88). For an interesting approach to joint modeling of the mean and variance
of the response, see Engel (Eng92).

4.2 Analyzing the Data

First plot the data:

"shrink.mean")
"shrink.target")

> plot(mold.sn, y
> plot(mold.sn, y

Figure 4.2 is a plot of the main effects for each factor. Factors A, C and H appear to
have the biggest effect on the mean; E has a big effect on the signal-to-noise ratio.
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Mean shrinkage
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Figure 4.2: Plots of the main effects for the summary responses
mean shrinkage and the target SN ratio.

Now analyze the responses more formally. First estimate the effects of the control
factors on the response shrink.mean:

> moldmean.fac <- fac.aov(mold.sn, response = shrink.mean)

> moldmean.fac

Estimated Effects for Response: shrink.mean
Effect

0.8500

-0.1500

-0.5625

.1250

-0.0375

0.2875

-0.4625

T QMo Qme
(@]

Pseudo Standard Error of Effects = 0.4155
Mean Standard Error = not available
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Now look at the effects using a pareto plot.

> pareto(moldmean.fac)
Look at the fitted means:

> fitted(moldmean.fac)
1 2 3 4 5 6 7 8
2.225 1.45 1.7 1.925 3.025 2.6 3.175 1.9

These easily encompass the target of 2.5%. In figure 4.3 the A, C and H effects
are the largest, although none are judged significant at the 5% level based on the
pseudo standard error estimate of scale. In this case with just eight experimental
runs, and with four of the seven estimated effects being at least moderate in size,
the PSE estimate of scale breaks down and does not provide a meaningful cutoff
for identifying significant effects (HO94).

Pareto Plot for shrink.mean

C -0.562
H -0.462
B -0.15
o o=
Method = PSE
E -0.037 Significance Level = 0.05
I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Size of Effect

Figure 4.3: The Pareto plot of effects for response mean shrinkage.

Repeat the same sequence for the target SN ratio SNp:
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> moldtarget.fac <- fac.aov(mold.sn, response =

+  shrink.target)

> moldtarget.fac

Estimated Effects for Response: shrink.target
Effect

5.15

-1.73

-3.05

.42

-25.27

2.10

-0.36

T OOMnoaQome
[N

Pseudo Standard Error of Effects = 2.768
Mean Standard Error = not available
> pareto(moldtarget.fac)

In figure 4.4 the factor E has a large effect on the SN ratio: since the estimated
effect is negative we know that the maximum SN ratio occurs at the low level of E.

4.3 Selecting the Best Settings

Often there is no best setting of the factors but rather a range of possible choices. In
such cases cost or convenience may determine the final choice. Compromises often
have to be made, especially when there is more than one response variable being
analyzed.

4.3.1 Selecting the Best Settings for Nominal-is-Best

We now give a two-stage procedure for choosing the control factor settings that
minimize variability over the noise array subject to bringing the process mean to
its target value. Justification of this procedure is given in Phadke (Pha89, pp. 281-
283). First, maximize the target signal-to-noise ratio (or alternatively minimize
1sdl = log(sd(log(Y)))). Then find a scaling factor (a factor that does not affect
the variance, but does affect the mean) and adjust the response to target.

To find settings that maximize the signal-to-noise ratio, simply choose appropriate
levels of factors that have an important effect on SNp. For two level factors, if the
estimated effect is negative, choose the low level; if positive, choose the high level.
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Pareto Plot for shrink.target

-25.27

Method = PSE

Significance Level = 0.05

E
A 5.
C . -3.049
G 2.101
B l -1.729
D 1.42
H |§-0.358
T T
0 5

10 15 20 25

Size of Effect

Figure 4.4: The Pareto plot of effects for response target SN ratio.

69

From the analysis held in moldtarget.fac, E is the only important factor affecting

the target SN ratio, and its effect is negative, so E should be set at its low level.

We now want to adjust the mean to the target value 2.5%. To do this, control
factors that affect the mean response but don’t affect the target SN ratio are used,
if they are available. That way, the SN ratio remains high and we achieve the
target. In this case A, C and H affect the mean, and none of them affect SN, so
there are several combinations of factor settings that we may use to adjust the mean

to target without affecting SNp.

First fit a model comprising these three factors and the factor affecting SN, i.e.,

factor E:

> moldmean.facs <- update(moldmean.fac, . ~ A+ C + E + H)

Since we now want to use this submodel for predicting and adjusting the process
mean to target we must first examine the relevant diagnostic plots.
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> plot(moldmean.facs)
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Figure 4.5: Diagnostic plots for the submodel shrink.mean ~ A +
C+E+ H

Figure 4.5 shows that the submodel predicts the mean shrinkage well across the
entire factor space and that the second order assumptions of the submodel are
satisfied. Prediction and adjustment of the mean shrinkage from this model may
then proceed.

Contour plots of the response in terms of two factors, with the other factors fixed,
are now examined. These may be used to identify combinations of factor settings
for which the response is predicted at the target value. Factors A and C have the
largest effects in the full model, so these are obvious candidates. In the contour
plot construction, the factor levels are coerced into integers, so that "-" becomes
1 and "+" becomes 2. This essentially converts the factors to continuous variables
and thus allows location of the target response in terms of intermediate settings of
the factors.? Since factor E is known to maximize the signal-to-noise ratio when set

Py cotttt i below include E = "-". o
Clearly this will only make sense when the factors are levels of some intrinsically

continuous variable.



4.3. Selecting the Best Settings 71

> contour (moldmean.facs, vary = list(A = "v", C = "v",
+ E="-", H="-"), levels = seq(1.5,3,.25))
> contour( moldmean.facs, vary = list(A = "v", C = "v",
+ E="-"H="+"), levels = seq(1.5,3,.25))

In the first plot, A and C vary over their (coerced) ranges 1 to 2 and H is fixed at
its low level?. In the second plot H is fixed at its high level. The contour plots in
figure 4.6 show a range of possible settings for which the target value is obtained.
Settings can be picked that are most convenient: for instance, if the low levels of C
and H are the usual operating levels, it may be convenient to choose A to adjust the
target. From the leftmost plot in figure 4.6, we can read off an approximate value
for A of 1.2, with C and H at "-". Thus factor A may be set at 20% of the distance
between its low and high settings, and in combination with C and H at their low
levels, the process mean response should be approximately brought to target.

Holding E at -, H at - Holding E at-, H at +
1 2,25 1 5 145
« A/Z @© A/
- -
[©] ©]
< <
- / -
S 24 275 ‘ ‘ S 4 _ 275 26
10 12 14 16 18 20 10 12 14 16 18 20
A A

Figure 4.6: Contour plots for the reduced mean shrinkage model:
shrink.mean A + C + E + H.

The settings of factors A, C and H for which the target values are achieved can be
explored further, as explained in section 4.3.2, Fine Tuning the Response to Target.
In practice, the approximate method given above, combined with knowledge of the
cost and use of each factor, produces an equally effective strategy.

4.3.2 Fine Tuning the Response to Target

Now that some possible settings have been chosen, we can check the results by
predicting values for the mean response at these settings. In accordance with the

4p and C have levels "=" and "+" in the design. In drawing a contour plot, we are using
a tacit assumption that A and C are continuous, thus "-" and "+" are mapped to 1 and 2
respectively. The contour function also allows you to give numeric levels for A and C.
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first graph in figure 4.6, try two different settings for A and C of (1.2,1) and (1.8,2),
with E and H at "-".

> newdata <- data.frame(A = c(1.2, 1.8),
+ C=2c(1, 2), E = rep("-", 2), H = rep("-", 2))
> predm <- predict(moldmean.facs, newdata, numeric.levels =
+ list(A = c(1,2), C = c(1,2)))
> cbind(newdata, predm)
ACEH X
1 1.2 1 - - 2.52625
2 1.8 2 - - 2.47375

Both of these combinations of factor settings closely satisfy our goal: a high signal-
to-noise ratio and a mean of 2.5% shrinkage.

To keep track of the target signal-to-noise ratio we may also like to construct a
model for SNp. Note that SN is really affected only by factor E, so an appropriate
submodel is fit as follows:

> moldtarget.facs <- update(moldtarget.fac, . ~ E)
> newdata.t <- data.frame(E = c("-","+"))
> predt <- predict(moldtarget.facs, newdata.t)
> cbind(newdata.t, predt)
E X
1 - 29.090520
2 + 3.820328

Note the huge effect of factor E on SNz. You should examine the diagnostic plot
for this model. Note that a model for SNt containing additional terms for factors
A’ C and H produces similar predictions to the simple model for SN above. This
is because these factors have little effect on SNp. Thus for any settings that bring
the mean close to target SN has a similar value of around 29, provided factor E is
at its low setting.

moldtarget.facs <- update(
moldtarget.fac, . " A+ C + E + H)
predt <- predict(moldtarget.facs, newdata,
numeric.levels = list(A = c(1,2), C = c(1,2)))
cbind(newdata, predt)
ACEH X
1.2 1 - - 29.24969
21.82 - -29.28944

vV + VvV + V

[N

Alternatively, rather than having to read approximate factor settings off the contour
plots, we can use values returned by the contour function. contour can return a
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vector of values corresponding to the target line on the contour plot. These can
then be used as values in a prediction data set. We obtain and save combinations
of A and C that produce predictions of 2.5% as follows:

> contour.save <- contour (moldmean.facs, vary =
+ list(A=’v’, C=’v’, E=’-’, H="-7), levels = 2.5,
+ save= T)

The output contour.save is a list containing a structure "2.5" with vectors x and
y containing values for A and C, respectively, that achieve the target value 2.5%.
Predictions for these values of A and C in combination with the chosen levels for
the other factors, or predictions for any other set of factor combinations, may be
obtained using predict. In this example there are 82 pairs of (A,C) settings saved
in contour.save that achieve the target value 2.5%. You may check that these
combinations all produce a prediction of 2.5% mean shrinkage as follows:

Avals <- contour.save$"2.5"$x

Cvals <- contour.save$"2.5"$y

ACpairs <- data.frame(A=Avals, C=Cvals,
E=rep(’-’,length(Avals)), H=rep(’-’,length(Avals)))

predm.all <- predict(moldmean.facs, ACpairs,
numeric.levels = list(A = c(1,2), C = c(1,2)))

cbind (ACpairs, predm.all)

VvV + V + V VvV V

4.3.3 Verification

A further small experiment with the control factors set at some of these combina-
tions is then recommended to verify and document the on-target response. The
improvement in signal-to-noise ratio, or alternatively in standard deviation of the
response, may also be verified and documented in this experiment by considering
each of the combinations of control factors at each of the noise array settings stud-
ied in the robust design experiment described above. With three combinations of
the control factors A and C from the above list, each examined at four noise array
settings, a twelve-run verification experiment could be conducted. Factor E will be
set at its low level, "-", in the verification experiment, and the other factors may
be set at their most convenient and/or inexpensive levels.

If the verification experiment confirms the findings of the initial robust design ex-
periment, the process is then set to target, is robust to known sources of noise and
furthermore is set to run as cheaply and easily as it can.



Appendix A

Design Digest

The purpose of the design digest and of the function design.digest is to facilitate
the selection and creation of commonly used fractional factorial designs. This ap-
pendix includes information about how to generate designs and about the properties
of these designs. Center points, blocking, replication, and randomization are also
addressed. In addition, information is provided on irregular fractions, partial con-
founding, fold-over designs, mixed-level designs, and orthogonal arrays. For more
information on these topics, see (Haa89) and (BHHT7S8) listed in the Bibliography.
At the end of this appendix are descriptions of each of the designs that can be
generated by name using design.digest. Each description includes a listing of the
design and information about its properties.

A.1 Designs Available in the Design Digest

The function design.digest can generate standard designs using a simple naming
convention. This collection of designs is called the design digest. A design name is
of the form aakkrr, where

aa = ff for a standard two-level fractional factorial

74
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= mf for a mixed factorial with one factor having three levels and the rest of
the factors having 2 levels
= if for an irregular two-level fractional factorial design
= pb for a two-level Plackett-Burman design

kk = number of experimental factors, kk = 03,04,05,...,11

rr = number of runs, rr = 08,12, 16,24, 32,64

Table A.1 lists the names of the designs that are included in the design digest.

Table A.1: Designs available in the design digest.

Number of 8-Run 12-Run 16-Run 24-Run 32-Run 64-Run

Factors
3 ff0308 mf0312 - *
4 ££0408 if0412 ££0416 mf0424
mf0412
5 ££f0508 if0512 f£0516 mf0524 ££0532 *
mf0512
6 f£f0608 if0612 f£0616 if0624 ££0632 ££0664
7 ££f0708 pb0712 ££0716 pb0724 ££0732 ££0764
8 + pb0812 ££0816 pb0824 ££0832 ££0864
9 + pb0912 ff0916 pb0924 ££f0932 ££0964
10 + pb1012 ££1016 pb1024 ££1032 f£1064
11 + pbl1112 f£f1116 pbl124 ££1132 f£1164

* Replicate a smaller design to achieve this sample size.
+ No design exists for this combination of factors and runs.

The designs listed in table A.1 are frequently used fractional factorial designs. Any
of these designs can be generated via the function design.digest using the design
name as follows:

> design.digest ("££0308")
Design Name: ££f0308

ABC
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The same design can be generated with customized factor names and levels as
follows:

> fac.names <- list(time=c(30,60) ,temp=c(25,35),
+ catalyst=c("A","B"))
> design.digest("f£f0308",factor.names=fac.names)

Design Name: ££f0308

time temp catalyst

1 30 25 A
2 30 25 B
3 30 35 A
4 30 35 B
5 60 25 A
6 60 25 B
7 60 35 A
8 60 35 B

In this case, fac.names is a list providing names and levels for the correspond-
ing factors. As long as the second argument to design.digest is the value of
factor.names, the argument name doesn’t have to be explicitly given. For exam-
ple, a design with custom factor names but having the default factor levels of - and
+ can be generated as follows:

> design.digest("££0308",c("time","temp","catalyst"))
Design Name: ££f0308

time temp catalyst

1 - - -
2 - - +
3 - + -
4 - + +
5 + - -
6 + - +
7 + + -
8 + + +
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The expression factor.names(design) returns a list containing the factor names
and levels. It can also be used to assign factor names and levels to an existing
design. For example, another way to produce the design above is as follows:

> fac.names <- list(time=c(30,60) ,temp=c(25,35),
+ catalyst=c("A","B"))

> a.design <- design.digest("££0308")

> factor.names(a.design) <- fac.names

The names of the rows can be changed similarly by using the function row.names,
for example:

> row.names (a.design) <- paste("Run",1l:nrow(a.design))

Many other kinds of designs can be generated using the functions fac.design and
oa.design. There are also other methods for creating designs using design.digest.
These methods are covered in section A.10, More on generating designs.

A.2 Design Resolution

One of the important properties of fractional factorial designs is resolution. A
resolution III design is one in which two-factor interactions may be confounded
with each other and with main effects. Two effects are confounded if they cannot
be independently estimated. A resolution IV design does not have confounding
between two-factor interactions and main effects, but does have confounding among
two-factor interactions. A resolution V design does not have confounding among
main effects and two-factor interactions or among two-factor interactions. Thus
all of the terms up to two-factor interactions can be independently estimated in a
resolution V design. There are resolutions higher than V, but typically you are not
interested in them since the allowable confounding involves three-way interactions
which are generally assumed to be negligible.

One way to remember the different levels of resolution is to count up the num-
ber of factors involved in the allowable confounding. For example, a main effect
confounded with a two-factor interaction has one + two = three factors involved
in the confounding relationship and so is classed as resolution III. Two two-factor
interactions involve four factors corresponding to a resolution IV design. Finally,
a resolution V design allows at most confounding between a two-factor interaction
and a three-factor interaction.

In general, when choosing an experimental design you should use the highest res-
olution design that you can afford because of the protection offered against misin-
terpretation of two-factor interactions. However, higher resolutions require larger
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sample sizes so there is a trade-off between this protection and the cost of running
the experiment. Table A.2 provides information about the sample sizes required
to get resolution III, IV, and V designs for standard two-level fractional factorial
designs.

Table A.2: Sample sizes for standard fractional factorial designs.

Number of Resolution Resolution Resolution

Factors 111 1A% Vv
3 4 * 8
4 * 8 16
) 8 * 16
6 8 16 32
7 8 16 64
8 * 16 64
9 16 32 128+
10 16 32 128+
11 16 32 128+

* There is no standard two-level fractional factorial design for this combination.
* This design is not available in library dox. The maximum number of runs is 64.

To find out the resolution of a design, use the summary function as follows:

> summary (design.digest ("££0308"))
Design Name: f£f0308

Fractional Number of Runs: Full Factorial
Resolution: >V

No confounding.
All main effects and two-factor interactions can be estimated.

Variable summaries:

A B C
-:4 -:4 -:4
+:4 +:4 +:4

Design ££0308 is a full factorial design with resolution greater than V. Thus there
is no confounding between main effects and two-factor interactions or among two-
factor interactions. Further interpretation of the information provided by the
summary function is provided in the following sections.
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A.3 Confounding

For designs with less than resolution V, you need to be aware of which effects
are confounded with each other. For example, from table A.2, design £f0408 is a
resolution I'V design so two-factor interactions may be confounded with each other.
The function summary lists the confounding pattern of the design so that you can
properly interpret the results of the analysis; namely,

> summary(design.digest ("££0408"))

Design Name: f£f0408

Fractional Number of Runs:
Resolution: IV

Generating Fraction: ~ A:B:C:D
1/ 2

Confounding Pattern:

Main effects are not confounded with two-factor
interactions. Two-factor interactions are confounded
with other two-factor interactions. Only one two-factor
interaction from each line listed below can be estimated.

A:B + C:D
A:C + B:D
B:C + A:D

Variable summaries:

A B C D
-:4 -:4 -:4 -:4
+:4 +:4 +:4 +:4

The first line in the confounding pattern is A:B + C:D. This means that the two-
factor interaction A:B is confounded with the two-factor interaction C:D. Thus A:B
and C:D can not be distinguished from each other. Only the sum (or difference)
between the two interactions can be estimated.

If you rank your experimental factors in order of importance based on your prior
belief, then it is often reasonable to assume that two-factor interactions among
more important factors are more likely to be significant than interactions among
less important factors. The default saturated models fit to designs in the design
digest label the interactions terms as interactions of the factors leftmost in the
design frame. Hence when generating designs, put the factors in order of importance
from left to right in the design (most important first). For example, consider the
confounding pattern for the design ££0508:
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> summary(design.digest ("££0508"))
Design Name: ££f0508

Generating Fraction: ~ - A:D:E - B:C:E
Fractional Number of Runs: 1 / 4
Resolution: III

Confounding Pattern:

Main effects are confounded with two-factor interactioms.
Only one effect from each line listed in the confounding
pattern given below may be estimated.

A + D:E

B + C:E

C + B:E

D + A:E

E + B:C + A:D
A:B + C:D
A:C + B:D

Variable summaries:

A B C D E
-:4 -:4 -:4 -:4 -:4
+:4 +:4 +:4 +:4 +:4

If the design is arranged so that A is assigned to the most important and E to the
least important, then D:E may be assumed to be the least likely interaction. In this
design it is confounded with the factor A which is mostly likely to be important.
Similarly, the A:B interaction may be assumed to be more likely to be important
than the C:D interaction. Therefore, a significant A:B + C:D interaction would
typically be interpreted as being due simply to A:B.

While this is not a foolproof rule, it does make it worthwhile to rank the experi-
mental factors in order of presumed importance before assigning them to factors in
a design. In this way, you will take best advantage of the confounding properties of
the designs in the design digest.

In addition to the summary function, the alias function also provides information
about the confounding pattern of a design. Although the information provided by
alias is in a slightly more difficult form to interpret, it is more complete in that
information about confounding of higher level interactions is also present. Compare
for example, the results of the following two commands:
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> summary(design.digest ("££0508"))
> alias(design.digest("££0508"))

In the output from alias there is a one in the intersection between the column
labeled A and the row labeled D:E which indicates that these two effects are con-
founded with each other. This same information is provided in the confounding
pattern.

A.4 Replication

When a design is replicated, each of its runs is repeated one or more times so that
there are multiple, independent response values for each run. Replication is a good
practice when there is quite a bit of experimental noise and the cost of repeating
runs is small compared to the overall cost of setting up the experiment. A design
can be replicated as follows:

> design.digest("££0308",rep=2)

Design Name: f£f0308

ABC
1 - - -
2 - - -
3 - -+
4 - -+
5 -+ -
6 - + -
7 -+ +
8 - + +
9+ - -
10 + - -
11+ -+
12 + - +
13 + + -
14 + +
15 + + +
16 + + +

Note that there are 16 runs in the new design; each of the original eight runs appears
twice. One advantage of replication is that it provides an independent measure of
the experimental error. This is especially useful for significance testing. Replication
also increases the power of the experiment; that is, it makes it easier (more likely)
to detect smaller effects.
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A caution to be aware of in replication is that simply repeatedly measuring the same
sample is not the same as making independent runs of the experiment. As a general
rule, making repeated measurements is desirable when the cost of measurement is
low but the measurements are noisy. Repeated measurement are then averaged,
and the averages analyzed as an unreplicated experiment. The experiment should
not be treated as if it is replicated.

A.5 Center Points

A center point is a run made with the each of the factors set at the midpoint
of its range. Center points are used to provide information about experimental
error and about the value of the response in the middle of the experimental region.
Center points are difficult to interpret if one or more of the experimental factors is
qualitative.

To create a design with center points use the arguments n.cp to specify how many
center points, cp.values to give the values for the center points, and cp.place
to specify where in the design the center points should be placed. The possible
values for cp.place are "first", "last", "ends", "spaced", and "random". If the
design is blocked the placement occurs within each block (see below). When "ends"
is used, half of the center points are placed at the beginning and half at the end.
When "spaced" is used, center points are evenly divided between the beginning,
middle, and end of the design (block). n.cp is adjusted if not divisible by two or
three, respectively. The default is "last". For example,

> factor.names <- list(temp=c(25,45),time=c(10,30),pH=c(7,8))
> design.digest("£f0308",factor.names,n.cp=2,

+ cp.values=c(30,20,7.5),cp.place="ends")

Design Name: ££0308

temp time pH

1 30 207.5
2 25 10 7
3 25 10 8
4 25 30 7
5 256 30 8
6 45 10 7
7 45 10 8
8 45 30 7
9 45 30 8
10 30 20 7.5

> design.digest("£f0308",factor.names,n.cp=3,
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+  cp.values=c(30,20,7.5),cp.place="spaced")

Design Name: f£f0308

temp time pH
1 30 207.5
2 25 10 7
3 25 10 8
4 25 30 7
5 25 30 8
6 30 207.5
7 45 10 7
8 45 10 8
9 45 30 7
10 45 30 8
11 30 20 7.5

Center points may be added to an existing design using the function addcp.

If a design includes center points, then fac.aov automatically computes an estimate
of the curvature or quadratic effect. If this term is significant, it means that the
mean value of the center points is significantly higher or lower than the average of
the other design points.

A.6 Randomization

Systematic changes in experimental conditions can lead to confusion and misinter-
pretation of experimental results. For example, suppose that samples to be tested
are left on the lab bench during the day and that there is degradation in the samples
during the course of measurement. If all of the runs with high settings of factor A
are run first and all of the runs with low settings are run last, then the degradation
in the samples will be confounded with the effect of factor A.

The best strategy is to think carefully about which conditions might change during
the course of an experiment and take proper precautions to minimize or eliminate
their effects. Sometimes changes are unavoidable; for example two batches of raw
materials may need to be used to complete the experiment. In this case the ex-
periment should be blocked to account for the planned change. (See section A.7,
Blocking.)

Randomization can prevent you from misinterpreting a degradation effect as a treat-
ment effect as described in the example above. An experiment is randomized by
randomly rearranging the order of the runs. For example, to randomize an experi-
ment in library dox, use the function randomize.design as follows:
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> randomize.design(design.digest ("££0408"))
Design Name: ££0408

AB

+ + +
I+ +

o+ +Q
+ 1 + + O

0N U W
I
+
+ +

Fraction: ~ A:B:C:D

To return a design to its original order, use the function sort.design(design).
Sometimes it may not be possible to completely randomize a design, either due
to expense or difficulty of changing factor settings. In this case, you can use the
argument restrict to restrict the randomization as follows:

> randomize.design(design.digest ("££0408") ,restrict=c("A","B"))
Design Name: ££0408

ABCD

|

o+ o+
+ 1+ o+
+ o+ 1+ +

~N 00 OO W N
+
+

+ + + +

Fraction: ~ A:B:C:D

The function randomize.design randomizes within blocks if a design is already
blocked. If a design has center points, their placement is preserved unless a new
value is given for the argument cp.place, for example cp.place="random" would
randomize the location of the center points regardless of there previous placement.
The allocation of center points to blocks is always preserved.
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A.7 Blocking

Blocking is used when it is known in advance that experimental conditions will
change during the course of an experiment and it is desired to keep these changes
from influencing the results of the experiment. For example, if more than one batch
of raw materials or more than one technician is required to complete the experiment,
then this source of variation should be controlled by blocking.

If, for example, two batches of raw materials will be used, then half of the experiment
should be done with each batch. When an experiment is blocked, the runs are
divided up in such a way that the difference between batches of raw materials is
independent of the main effects (and often of the two-factor interactions). This is
done by associating the difference in raw materials with one of the model terms,
typically a higher-order interaction.

For example, consider the problem of blocking the design ££f0516. Because it is a
resolution V design, all of the two-factor interactions can be estimated. If factors
are listed in order from most to least important, it is reasonable to assume that
D:E is the interaction that is least likely to be important. Thus, it makes sense to
associate the affect of raw material batch with the D:E interaction. Generate this
design as follows:

> design.digest("ff0516" ,n.blocks=2)

Design Name: f£f0516

Blocks A B CDE
1 1 --+--
2 1 - -+ + +
3 1 -+---
4 1 -+ -+ +
5 1+----
6 1+ - -+ +
7 1+ ++ - -
8 1+ + + + +
9 2 ----+
10 2 - - -+ -
11 2 -+ + -+
12 2 -+ + + -
13 2+ -+ -+
14 2+ -+ + -
15 2 ++ - -+
16 2+ + -+ -

Fraction: ~ - A:B:C:D:E
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Notice that the runs in Block #1 and Block #2 correspond to the product of
columns D and E being + and -, respectively. More information about the blocked
design can be obtained using the summary function as follows:

> summary(design.digest("£f£0516" ,n.blocks=2))

Design Name: ff0516

Blocking: 2 Blocks of Size 8

Blocks are confounded with at least one two-factor interactionm.
Blocks Generated by: ~ D:E

Generating Fraction: ~ - A:B:C:D:E

Fractional Number of Runs: 1 / 2

Resolution: V

No confounding.
All main effects and two-factor interactions can be estimated.

Variable summaries:

Blocks A B C D E
1:8 -:8 -:8 -:8 -:8 -:8
2:8 +:8 +:8 +:8 +:8 +:8

Since the blocks were generated by the D:E interaction, the estimate of block effect
is confounded with the estimated D:E interaction. Thus, an estimated block effect
replaces an estimated D:E interaction in the analysis.

Blocking has been implemented in library dox following the guidelines presented
by Box, Hunter, and Hunter (BHH78). Tables A.3 and A.4 show the blocking
arrangements available in library dox.

There are three arguments to design.digest that control blocking. These are
block.size, the number of runs in each block, n.blocks, the number of blocks, and
block.gen, a model formula giving one or more defining contrasts (e.g., A:B:D + B:C:E)
to be used to generate blocks. If either block.size or n.blocks is given, then
design.digest looks up block.gen in the table of blocking patterns shown in
table A.4. For example, the three calls

> design.digest("£f£f0308",n.blocks=2)
> design.digest("ff0308",block.size=4)
> design.digest("££f0308",block.gen="A:B:C)

are equivalent. However, giving a defining contrast other than one shown in ta-
ble A.4 generates a different blocking pattern from the default.
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Table A.3: Blocking patterns for factorial designs: 1-5 factors.

Design Number of Block Block Interactions
Name Blocks Size Generator Confounded with Blocks
0308 2 4 A:B:C A:B:C

4 2 B:C, A:C B:C, A:C, A:B
££0312 2 6 A:B:C A:B:C
££0408 2 4 B:C B:C
if0412 2 6 C:D C:D
mf0412 2 6 C:D C:D
££0416 2 8 A:B:C:D A:B:C:D

4 4 A:C:D, A:B:D A:C:D, A:B:D, B:C

8 2 C:D, B:C, A:D C:D, B:C, A:D,

B:D, A:C, A:B:C:D, A:B

mf0424 2 12 A:B:C:D A:B:C:D

££0508 2 4 A:C A:C

if0512 2 6 C:E C:E

mf0512 2 6 B:D B:D

££0516 2 8 D:E D:E

mf0524 2 12 A:C:D A:C:D

££0532 2 16 A:B:C:D:E A:B:C:D:E
4 8 C:D:E, A:B:C C:D:E, A:B:C, A:B:D:E
8 4 A:D:E, A:C:D, A:D:E, A:C:D, A:B:C,

A:B:C A:C:E, B:C:D:E, B:D, B:E

16 2 D:E, C:E,B:C, A:B all 2fis and 4fis

T2fi, 4fi, etc. are abbreviations for two-factor interaction, four-factor interaction,
etc.
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Table A.4: Blocking patterns for factorial designs: 6-11 factors.

Design Number of Block Block Interactions
Name Blocks Size Generator Confounded with Blocks
ff0608 2 1 A:B A:B
if0612 2 6 C:E C:E
££0616 2 8 A:B:D A:B:D
££0632 2 16 D:E:G D:E:G
£f£0664 2 32 A:B:C:D:E:G A:B:C:D:E:G
££0664 4 16 A:D:E:G, A:B:C:D no 2fist
££0664 8 8 B:D:G, A:B:E:G, no 2fis
C:D:E:G
££0664 16 2 E:G, D:E, C:D, all 2fis, 4fis and 6fis
B:C, A:B
££0716 2 8 A:B:C A:B:C
pb0724 2 12 A:C:E A:C:E
££0732 2 16 C:D:G C:D:G
££0764 2 32 A:C:E:H, B:C:G:H, 4fis only
D:E:G:H
f£0816 2 8 C:D C:D
pb0824 2 12 A:B:C A:B:C
££0832 2 16 A:E:I A:E: T
££0864 4 32 D:G:I, A:E:G D:G:I, A:E:G, A:D:E:I
££0916 2 8 A:E A:E
££0932 2 16 A:E:T A:E:I
££1016 2 8 B:D B:D
££1032 2 16 A:E:I A:E:I
ff1116 2 8 A:D A:D
££1132 2 16 A:D:L A:D:L

T2fi, 4fi, etc. are abbreviations for two-factor interaction, four-factor interaction,
etc.
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A.8 Irregular Fractions and Placket-Burman De-
signs

The standard fractional factorials designs of 8, 16, and 32 runs are used extensively
and their properties are well known. However, there are times when an eight-
run design doesn’t provide high enough resolution while a sixteen-run design is
too expensive. The design digest includes a number of twelve-run designs for this
purpose; namely, if0412, if0512, if0612, pb0712, pb0812, pb0912, pb1012, and
pb1112. There are also compromise designs of 24 runs that provide an alternative
between 16 and 32 run designs; namely if0624, pb0724, pb0824, pb0924, pb1024,
and pb1124.

The if series of designs represent a special type of fractional factorial called irregular
fractions (Joh69; Haa89). For example, the design 10412 is a 3/4 fraction of the
full factorial ££0416. It is interesting to note from the summary of design if0412
that it is a nearly resolution V design. By nearly resolution V, we mean that there
is some partial confounding or correlation among the main effects and two factor
interactions. To investigate this further consider the following:

> if.design <- design.digest("if0412")
> alias(design.digest("if0412"))
Model

“A*Bx*xC=x*xD

Complete
(Intercept) A B C D A:B A:C B:C A:D B:D C:D B:C:D
A:B:C:D 1 1 -1
A:C:D 1 1 -1
A:B:D 1 1 -1
A:B:C 1 -1 1
Partial
(I) ABCD A:B A:C B:C A:D B:D C:D B:C:D
(Intercept) 1 -1
A -1
B 1 -1
C 1 -1
D -1 1
A:B -1
A:C -1
B:C -1
A:D
B:D
C:D
B:C:D
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Notes:
$"Max. Abs. Corr.":
[1] 0.5

Notice that the effect A:B is partially confounded with B. This means that if we
look at the model matrix used to estimate the effects, the correlation between the
columns labeled B and A:B is nonzero. We can look at these terms directly as
follows:

> attach(if.design)
> a.b <- fac2num(A,numeric.levels=c(-1,1))*
+ fac2num(B,numeric.levels=c(-1,1))
> a.b
1] ¢+ 11 1-1-1-1-1-1-1 1 1
> b <- fac2num(B,numeric.levels=c(-1,1))
>b
(M1 -+ -1 -1-1 1 1 1 1-1-1 1 1
> cor(a.b,b)
[1] -0.3333333

Thus, the correlation between the B and A:B columns in the model matrix is -0.33.
This is different from the correlation reported by alias because the alias function
reports the correlation between the coefficients. For the purposes of evaluating an
experimental design, we generally prefer to look at the correlation between columns
in the design matrix. We can look at all of the correlations between main effects
and two-factor interactions as follows:

> if.fac <- fac.aov(y~."2,cbind(if.design,y=rnorm(12)))
> round(cor(if.fac$x) [-1,-1],2) # omit intercept
A B C D A:B A:C A:D B:C B:D C:D

A1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BO 1.00 0.00 0.00 -0.33 0.00 0.00 0.00 0.00 0.33
co0 0.00 1.00 0.00 0.00 -0.33 0.00 0.00 0.33 0.00
DO 0.00 0.00 1.00 0.00 0.00 -0.33 0.33 0.00 0.00
A:B O -0.33 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.33
A:CO0 0.00 -0.33 0.00 0.00 1.00 0.00 0.00 0.33 0.00
A:DO 0.00 0.00 -0.33 0.00 0.00 1.00 0.33 0.00 0.00
B:C 0 0.00 0.00 0.33 0.00 0.00 0.33 1.00 0.00 0.00
B:DO 0.00 0.33 0.00 0.00 0.33 0.00 0.00 1.00 0.00

Thus, the correlations among model terms are at most £0.33. This level of partial
confounding is often an acceptable trade-off against the cost of doing the extra 4
runs necessary to get the true resolution V design (££0416).
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Note: In the above code, it was necessary to create a dummy fac.aov object
in order to get the model matrix. This was done by adding a dummy response to
the design consisting of 12 uniform random normal deviates. The formula y~."2
specifies all main effects and all interactions up to order 2. The resulting model
matrix is the component x of the resulting object if.fac. In order to have a more
readable output, the correlation result was rounded to 2 decimal places and the row
and column corresponding to the correlation with the intercept were omitted.

One interesting note about the design 10412 is that it is the only design in the
design digest that is not balanced. When running this design, select the levels of
factor A so that the low level (with eight runs) is of more interest than the high
level (with only four runs).

The pb series of designs is based on the well known Plackett-Burman design (PB46;
BHHT78; Haa89). The Plackett-Burman designs also have interesting confounding
patterns. By executing the following commands, you can see that in the twelve-run
Plackett-Burman designs the main effects are unconfounded with other main effects
but the two-factor interactions are partially confounded with each other (correlation
= 40.33).

> pb.design <- design.digest(’pb1112’)
> pb.fac <- fac.aov(y~."2,cbind(pb.design,y=rnorm(12)))
> round(cor(pb.fac$x),2)

Note that the design digest produces a design with 11 columns when you request
the design pb0712. This is because you can include the extra columns as dummy
factors in the analysis. If any of the dummy factors turn up as being significant, it
suggests the presence of two-factor interactions. (See (Haa89) for more details.)

The 24-run Plackett-Burman designs are called fold-over designs (BW51). Main
effects in these designs are clear of other main effects and two-factor interactions.
Two-factor interactions are partially confounded (correlation = 40.33) with other
two-factor interactions that do not have a letter in common. For example, A:B is par-
tially confounded with C:D but is independent of A:C. Thus the estimable two-factor
interactions in these designs are those that involve factor A. For example, in pb1124
there is no partial confounding among the effects A, B, C, ... , L, A:B, A:C,

A.9 Mixed-Level Designs

The designs mf0412, mf0424, mf0512, and mf0524 are mixed-level fractional fac-
torial designs (LH88; Haa89). Each of these designs allows for one factor to have
three levels while all the rest of the factors must have two levels.

e Design mf0412 is a 1/2 fraction of a 3 x 23 factorial.

A:L.
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e Design mf0424 is a full 3 x 23 factorial.
e Design mf0512 is a 1/4 fraction of a 3 x 2% factorial.

e Design mf0524 is a 1/2 fraction of a 3 x 24 factorial.

Designs mf0412 and mf0524 are nearly resolution V while mf0412 is nearly res-
olution IV. In each of these designs except mf0524 the interactions between the
quadratic term (three-level factor) and other two-level factors and two-factor inter-
actions involving only two-level factors are confounded. There is also some other
partial confounding (correlation = £0.33) but it can be ignored in the analysis.

A.10 More on Generating Designs

The design names given in table A.1 provide a shortcut for generating designs.
However, in general a design can be specified by giving a vector of levels for the
factors and by specifying a fraction as follows:

> design.digest(rep(2,4) ,fraction=1/2)

This gives the same design as design.digest ("££0408"). Consider the following
ways of generating a one-fourth fraction of a two-level, five factor design:

design.digest ("££0508")

design.digest(rep(2,5) ,fraction=1/4)
design.digest(rep(2,5) ,fraction="- A:D:E - B:C:E)
design.digest(rep(2,5) ,fraction="- B:D:E - A:C:E)

vV V V V

The first three calls produce the same result because the design ££f0508 is a 1/4
fraction of the full factorial generated by the defining contrasts ~ - A:D:E - B:C:E.
(See (BHHT78) for more information on defining contrasts.) However, the last design
which was generated with a different defining contrast is different from the first
three.

The function fac.design is similar to design.digest except that it doesn’t follow
the naming conventions of the design digest (so design names can’t be used). If the
same fraction is given, the both functions return the same design although there
are differences in how the design is sorted. For example, the following are generally
equivalent for any design:

> design.digest(rep(2,4) ,fraction=" A:B:C:D)
> sort.design(fac.design(rep(2,4),fraction=" A:B:C:D))
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Although design.digest can only generate designs with one factor at 3 levels and
the rest at two levels, fac.design can generate designs with arbitrary numbers of
levels for each factor. For example, a useful design with three factors at three levels
can be generated as follows:

fac.design(rep(3,3))

However, fac.design cannot fractionate designs unless all of the factors have two-
levels. See (CH92) for more information about fac.design.

A.11 Generating Standard Orthogonal
Arrays

In the application of robust design or Taguchi methods, orthogonal array designs are

often used (Pha89). The common two-level orthogonal arrays are called L4, 18, L12, L16,
and L32. The common three-level orthogonal arrays are called L9, L18 and L27.

In many cases, these correspond to standard designs that are available in the de-

sign digest. In other cases, specific orthogonal arrays can be generated using the
function oa.design.

For example, the two-level designs of size 8, 16, and 32 are equivalent to standard
fractional factorial designs so you can use ££0516 instead of L16(5) for the case of
five two-level factors. (For a design with only two-level or only three-level factors,
we use the notation Ln(k) to indicate that there are n runs and k factors. For
designs that can have both two and three-level factors, we use the notation Ln(kq,
ko) to indicate that there are k; factors with two levels and ko, factors with 3 levels.)
As an alternative to the L12 designs, you can use the if and pb although they are
not exactly equivalent. The following are a few examples of how to generate selected
orthogonal arrays:

> oa.design(rep(2,7)) # L12(7)

> oa.design(rep(2,11) ,min.resid.df=0) # L12(11)
> oa.design(rep(3,4)) # L9(4)

> oa.design(c(2,rep(3,6))) # L18(1,6)

The designs L9 and L18 are especially useful because they allow several factors to
have three levels each.
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