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Chapter 1  Introduction To Robust Library
OUR OVERALL GOAL

Our overall goal is to provide a broad range of robust methods for 
statistical modeling with the following features:

• Automatic Computation of both Classical and Robust 
Estimates  When using the graphical user interface dialog for 
the Robust Library, the default choice is to automatically 
compute both the classical and the robust estimate.  A special 
“fit.models” function for fitting multiple models is provided to 
facilitate computing both classical and robust estimates at the 
command line.

• Outlier Data Mining and Comparison Plots. Diagnostic 
plots are provided as a fundamental data mining tool that will 
assist you in quickly identifying outliers, in isolation or in 
small clusters, and determining whether or not outliers have 
substantial influence on the classical estimate. 

• Trellis Graphics Diagnostic Comparison Plots. Trellis 
graphics are used to display side by side diagnostic plots for 
comparing classical maximum likelihood estimate (MLE) 
model fits with robust fits.

• Robust Statistical Inference. Robust t-statistics, p-values, F-
tests, and bias-detection tests are provided, based on robust 
covariances and normal distribution approximations for 
parameter estimates.

• Robust vs. Classical Inference Comparison is Facilitated. 
Pairwise tabular displays of the robust and classical inference 
results facilitate quick comparison of inference results.

• Special Scalable Methods for Linear Model Fits and 
Covariance Matrix Estimation.  Special methods are 
provided for robust fitting of linear models with large 
numbers of numeric predictor variables and/or many factor 
variables with possibly many levels, and for robust covariance 
matrix estimation with large numbers of variabels and large 
numbers of observations.
2



Basic Notions of Robustness
BASIC NOTIONS OF ROBUSTNESS

Classical maximum likelihood estimates (MLE) based on assumed 
idealized distributions almost always lack robustness toward outliers 
in the sense that outliers can have a very substantial influence on 
maximum likelihood parameter estimates. This is true not only of 
Gaussian maximum likelihood estimates such as the least squares 
estimates of linear models and the classical covariance matrix 
estimates, but also of a variety of non-Gaussian maximum likelihood 
estimates such as the MLE’s for the parameters of exponential, 
Weibull and gamma distributions.

The probability distribution models that generate outliers are often 
close to the assumed ideal distribution in the central portion of the 
distribution, but differ from the ideal distribution in the tails of the 
distribution in a seemingly small but potent manner. The major 
consequence of such outlier-generating distributions is that the 
maximum likelihood parameter estimates based on the ideal 
distribution can suffer from large bias and substantially increased 
variability (or equivalently decreased statistical efficiency). Furthermore, 
the resulting bias persists even as the sample size  increases toward 
infinity, while the increased variability typically tends to zero like   

. Thus control of bias is more important for larger sample sizes.

Robust estimation methods were invented to deal with the above 
problems, and the important properties of a good robust estimator are 
as follows: 

• In data-oriented terms: parameter estimates and the 
associated robust model fit are minimally influenced by 
outliers, and provide a good fit to the bulk of the data.

• Diagnostic plots based on the robust fit will allow you to 
quickly and easily identify outliers, and determine whether or 
not outliers are affecting the classical MLE model fits.

• In probability-oriented terms, a robust method minimizes the 
bias in coefficient estimates due to outlier-generating 
distribution models, while at the same time achieving a high 
efficiency when the data has the assumed ideal distribution 
(equivalently, the variance is not much larger than that of the 
MLE at the assumed ideal distribution)

n

n 1–
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Chapter 1  Introduction To Robust Library
• The robust parameter estimates provide good approximate 
statistical inference based on the large sample size 
approximate normality of the parameter estimates.

For further information, read the sections on Theoretical Details in 
subsequent chapters.
4



Robust Modeling Methods
ROBUST MODELING METHODS

The following robust modeling methods are provided in the Robust 
Library.

• Robust Linear Regression and Model Selection

• Robust ANOVA

• Robust Covariance and Correlation Estimation

• Robust Principal Component Analysis

• Robust Fitting of Poisson and Logistic GLIM’s

• Robust Discriminant Analysis

• Robust Parameter Estimates for Asymmetric Distributions

Robust 
Regression for 
the Linear 
Model

Two robust linear model fitting methods are included: (1) An MM-
estimate, and (2) a new adaptive estimate due to Gervini and Yohai 
(1999). The MM-estimate is the default choice. The new adaptive 
estimate has the feature that it is asymptotically efficient when the data 
is Gaussian, i.e., is as good as least-squares when the data is Gaussian, 
while at the same time controlling bias due to outliers in a nearly 
optimal manner.

computation time

Both estimators described above require a highly robust initial 
estimate, and for the case all the predictor variables are numeric we 
continue to use a sampling approach to computing an initial S-
estimate. It is known that such an approach has exponential 

complexity of order where p is the number of predictor variables. 
We provide some tabled estimates, based on empirical studies, of 
approximate computation times of the robust linear model fit as 
function of p, the number of observations, and the computer platform. 
The practical limit on the number of independent variables for 
reasonably quick computation with present generation workstations is 
roughly 15. In addition, we print out estimates of the time remaining 
for a robust fit so that you can decide whether to wait for the result or 
defer the computation to a more convenient time.

2p
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Chapter 1  Introduction To Robust Library
fast robust regression procedure

A fast procedure for obtaining initial estimates is implemented 
following Pena and Yohai (1999). Although these estimates are not 
guaranteed to have high breakdown point, they result in enormous 
speed improvement for large problems. The reliability of these 
estimates has been confirmed by simulation.

fitting models with both numeric and categorical variables

When you have factor type variables as well as numeric variables, 
each factor level requires an additional linear model parameter and 
dummy predictor variable. In such cases you may often find yourself 
with many more than 15 predictor variables. On the other hand, the 
predictor variables used to model the factor variables only take on the 
values 0 and 1, and for such variables a high breakdown point initial 
S-estimate is not really required. A least absolute deviations (LAD) 
type M-estimate will suffice. Based on this observation, Maronna and 
Yohai (1999) designed an alternating S-estimate/M-estimate method 
for fitting linear models with both factor and numeric predictor 
variables, which we have implemented for this release. This method 
will allow you to handle linear models with factor variables that 
require many more than 15 parameters.

robust model tests and robust model selection

Robust F-tests and robust Wald tests are provided. In addition, a 
robust model selection criterion called RFPE is provided. RFPE is a 
robust version of Akaike’s Final Prediction Error criterion (FPE). 
Also, a robust backward elimination method for model selection is 
provided.

Robust ANOVA A robust ANOVA capability has been introduced using the same final 
M-estimate as is used for the MM-estimate for the linear model. The 
main difference is that since the ANOVA setup has only factor 
variables, a high-breakdown initial S-estimator is not required and it 
suffices to use an LAD initial estimate.

Robust 
Covariance 
Estimation

We provide the Fast Minimum Covariance Determinant (MCD) 
covariance matrix estimate of Rousseeuw and van Driessen (1999), 
the Donoho-Stahel projection-type estimator, an M-estimator, and a 
new scalable estimator based on pairwise robust covariance estimates 
due to Maronna and Zamar (2001). The pairwise covariance matrix 
6



Robust Modeling Methods
estimate is adjusted so that it is positive definite.  The default choice is 
the Donoho-Stahel estimator for sufficiently small numbers of 
observations and variables, and otherwise is the MCD estimator.  
Also included are:  plots for the comparison of robust and classical 
covariance estimates: an overlaid eigenvalue scree plot, a distance-
distance plot, an ellipses plot for smaller matrices, and an image 
display for larger covariance matrices.

Robust 
Principal 
Component 
Analysis

The Robust Library includes functions for conducting a principal 
component analysis (PCA) based on a robust covariance matrix 
estimate. You can use any of the estimators mentioned above for the 
robust covariance matrix estimate.

Robust 
Logistic and 
Poisson 
Generalized 
Linear Models

Robust generalized linear model fitting has been provided for the 
logistic and Poisson link functions, using the conditionally unbiased 
bounded-influence function approach of Künsch, Stefanski and 
Carroll (1989). For logistic regression models, the Robust Library 
provides two additional robust estimates: a weighted MLE estimate 
with Mallows-type leverage-dependent weights and a consistent 
estimate based on Copas's (1988) misclassification model (Carroll and 
Pederson, 1993).

Deviance residuals qq-plots

Deviances are not normally distributed in GLIM’s, and hence normal 
QQ-plots of deviances can be misleading when assessing the fit of a 
GLIM model. The QQ-plot of deviances estimates the distribution of 
the deviances and uses the resulting estimated quantiles to draw the 
QQ-plot (Garcia Ben and Yohai, 2000).

Robust 
Discriminant 
Analysis

A robust discriminant analysis function is provided, based on one of 
the above robust covariance matrix estimates. Error rate estimates are 
provided via a Monte Carlo simulation based on the fitted model.

Parameter 
Estimates for 
Asymmetric 
Distributions

The robust library includes functions that calculate the following two 
classes of estimates for Gamma, Weibull and Lognormal distributions: 
(i) Truncated-mean estimates, and (ii) optimal bounded-influence M-
7



Chapter 1  Introduction To Robust Library
estimates.  The truncated-mean estimates are simpler to compute than 
the optimal M-estimates, and are intuitive in nature to most users.  
Thus the truncated-mean estimates are the default choice.
8



Special Features of the Robust Library
SPECIAL FEATURES OF THE ROBUST LIBRARY

Plots for 
Outlier 
Detection and 
Comparing Fits

When both a classical and a robust fit are computed, all plots selected 
on the Plots page of the dialog are created in a Trellis display with the 
classical and robust results displayed sided by side. For linear 
regression models including ANOVA models, QQ-plots and residuals 
density estimates are also available as overlaid plots. For regression 
models, plots of standardized residuals or deviances versus robust 
distances, introduced by Rousseeuw and von Zomeren (1990) are 
provided.

Multiple Model 
Fits and 
Comparisons 
Paradigm

A command line creator function fit.models is provided for 
creating an object of class “fit.models”, along with print, plot 
and summary methods for this class of objects. You can use the 
function fit.models to create an object that contains both the least-
squares and robust fits. Then you can make convenient comparison 
of the fits with respect to inference results by using summary, and 
convenient visual comparison of the fits and visual outlier detection 
by using plot.

GUI for the NT/
Windows 
Version

A uniform model-fitting dialog design has been created with the 
following basic features. Each robust model fitting dialog uses the 
current dialog for the classical model fitting method, with two 
minimal changes to accommodate the robust method. The first is that 
on each dialog’s Model page you have three fitting method choices: 
(1) Compute both the classical and the robust fit, (2) Compute only 
the classical fit, and (3) Compute only the robust fit, with choice (1) 
being the default. Second, an Advanced page containing the various 
parameters and tuning constants used in the numerical procedures for 
the robust methods has been added to each dialog. Most users will not 
want to bother with these options.
9



Chapter 1  Introduction To Robust Library
DATA SETS IN THE ROBUST LIBRARY

The following data sets are included in the Robust Library and can 
be used to carry out the examples in this document and to 
experiment with the library.

• stack.dat This data set has been analyzed by a large 
number of statisticians. See Dodge (1996) for the history of 
this data set. 

• wagner.dat The data set has been analyzed by Wagner 
(1994), Hubert and Rousseeuw (1997), and Maronna and 
Yohai (1999).

• breslow.dat This data set is used by Breslow (1996).

• lawson.dat This data set is from Lawson and Gold (1988).

• milkcomp.dat This data set is analyzed by Atkinson.

• bushfire.dat This data set is analyzed by Maronna and 
Yohai (1995).

• woodmod.dat This data set is a modified version of the wood 
gravity data from Rousseeuw and Leroy (1987).

• hawkins.dat This data set is used by Hawkins, Bradu and 
Kass (1984).

• sim.dat This artificial data set is used for illustrating robust F 
tests and robust model fitting for robust linear regression.

In addition, the S+PLUS built-in data set oilcity is used for illustrating 
the control of Advanced options in robust modeling.

In order to conveniently view and use these data sets in the Windows
version of Spotfire S+, follow the instructions for viewing the 
Robust Library data sets in the next section.
10



Loading the Robust Library
LOADING THE ROBUST LIBRARY

Loading the 
library from 
the NT/
Windows GUI

To load the Robust Library from the NT/Windows GUI, select File 
� Load Library... from the S+PLUS menu bar to bring up the fol-
lowing dialog window.

Select Robust from the list of library names, and make sure to check
Attach at top of search list. Click OK to load the library. After the
Robust Library is loaded, a menu will be added to the S+PLUS

menubar. Most of the functions provided by the Robust Library can
be accessed through this menu.

Viewing the 
Robust Library 
Data Sets

If you use the Object Explorer you will want to be able to view and
use the example data sets included in the Robust Library. To do
this, right click (after loading the library) on the Data icon and
select Advanced from the context menu to open the Database Filter
dialog.

Figure 1.1:  Load Library Dialog
11



Chapter 1  Introduction To Robust Library
l

Uncheck the Search Working Chapter Only check box. Select
Robust from the list of databases and enter data.frame Classes
field (or select data.frame from the Classes drop-down list box).
Then click OK. Notice that shortcuts to the Robust Library data
sets have been added in the right pane of the Object Explorer.

Alternatively, in the Object Explorer you can expand the SearchPath
object, then expand the robust object to access the data sets in the
Robust Library directly.

Figure 1.2:  Database Filter Dialog
12



Loading the Robust Library
Loading the 
Library from 
the Command 
Line

Use the following command to load the library from the commands
window:

> library(robust, first=T)

This command will attach the Robust Library in position 2 and
add the robust menu to the Spotfire S+ menubar.
13
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Overview of the Method: A Special M-Estimate

ly

te
OVERVIEW OF THE METHOD: A SPECIAL M-ESTIMATE

You are fitting a general linear model of the form

, 

with p-dimensional independent predictor (independent) variables 

and coefficients , and scalar response (dependent) variable .

Spotfire S+ computes a robust M-estimate  which minimizes 
the objective function

where  is a robust scale estimate for the residuals and  is a
particular optimal symmetric bounded loss function, described in the

section Theoretical Details. Alternatively  is a solution of the
estimating equation

where  is a redescending (nonmonotonic) function. The
shapes of the  and  functions are shown in Figure 2.17.

The above minimization problem can have more than one local
minima, and correspondingly the estimating equation above can have
multiple solutions. Spotfire S+ deals with this by computing special high

robust initial estimates  and , using the methods described in the
section Theoretical Details. Then Spotfire S+ computes the final estima

 as the local minimum of the M-estimate objective function nearest
to the initial estimate. We refer to an M-estimate of this type and
computed in this special way as an MM-estimate, a term introduced
by Yohai (1987).
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Chapter 2  Robust Linear Regression
COMPUTING LS AND ROBUST FITS WITH THE WINDOWS 
GUI

Computing 
Both LS and 
Robust Fits

You easily obtain both a least squares and robust linear model fit for
the so called “stack loss” data using the Robust Linear Regression
dialog in the Robust Library. The stack loss data is known to contain
highly influential outliers, and is included in the Robust Library as
the data frame stack.dat. Display the Robust Library data sets in
the left-hand pane of Spotfire S+ Object Explorer using one of the
methods recommended in the Introduction chapter and select
stack.dat. The right-hand pane of the Object Explorer displays the
four variables in stack.dat: the dependent (response) variable Loss,
and the three independent (predictor) variables Air.flow, Water.Temp
and Acid.Conc. First select the response variable Loss, and then 

)

Figure 2.1:  The Linear Regression Dialog: Model Page
18



Computing LS and Robust Fits with the Windows GUI
select the three independent (predictor) variables (you can do this by
shift clicking on Acid.Conc.  Choose Robust � Linear Regression
from the menubar. The dialog shown in Figure 2.1 appears.  Because
you selected the response variable Loss first, followed by the three
predictor variables, the Formula field is automatically filled in with
correct formula Loss ~ Air.Flow + Water.Temp + Acid.Conc. for
modeling Loss in terms of the three predictor variables.

Note that the Model page of this dialog looks exactly like that of the
Linear Regression dialog in Spotfire S+, except for the Fitting Options
choices, with the default choice LS + Robust (both least squares and
robust fits are computed) and alternate choices LS (least squares fit
only) and Robust (robust fit only) and the Advanced tab.   Click on
the Advanced tab to access optional advanced features of the robust
fitting method. These are discussed in the section Advanced Options
For Robust Regression, and we suggest you wait until reading that
section to experiment with the robust fitting method options.

Figure 2.2:  The Linear Regression Dialog: Plot Page
19



Chapter 2  Robust Linear Regression
Click on the tabs labeled Results, Plot and Predict to look at those
dialog pages. You will notice that the Results and Predict pages are
identical to those of the Linear Regression dialog in Spotfire S+.
However, the Plot page shown in Figure 2.2 is different in that it has
several new Plots region entries: Std. Resid. vs. Robust Distances,
Estimated Residual Density, Standardized Resid. vs. Index (Time) and Data
with Fit. The latter is greyed out when there is more than one
independent variable. The Plot page also has a new Overlaid Plots
region with the entries: Residuals Normal QQ and Estimated Residual
Density. The latter are only available when you have chosen the
default choice LS + Robust on the Model page.

We have made the default choices of plots indicated by the checked
boxes. This will encourage you to quickly compare the LS and robust
versions of these plots and quickly determine whether or not there are
any outliers in the data, and whether or not the outliers have an
impact on the least squares fit. In the Number of Extreme Points to
Identify text box, replace the 3 by 4.

Click OK to compute both the LS and robust fits, along with the four
diagnostic comparison plots and other standard statistical summary
information. The results appear in a Report window and four tabbed
pages of a Graph Sheet, respectively.

The Diagnostic 
Plots

Each of the Graph Sheet pages contains a Trellis display for the LS
and robust fit, as shown below.

Normal QQ-Plots 
of Residuals

As seen in Figure 2.3, the normal QQ-plot for the LS fit residuals
shows at most one outlier, while the one for the robust fit reveals four
outliers. The outliers are those points that fall outside the 95%
simulation envelopes for the normal qq-plot, shown as dotted lines.
This reveals one of the most important advantages of a good robust fit
relative to a least squares fit: the least squares fit is highly influenced
by outliers in such a way that the outliers are not clearly revealed in
the residuals, while the robust fit clearly exposes the outliers. 

You also note that if you ignore the outliers, a normal distribution is a
pretty good model for the residuals in both cases. However, the slope
of the central linear portion of the normal QQ-plot of the residuals for
the robust fit is noticeably smaller than that for the LS fit. This
indicates that the normal distribution fit to the robust residuals,
20



Computing LS and Robust Fits with the Windows GUI
Figure 2.3:  LS and Robust Normal QQ-Plots of Residuals: stack.dat

ignoring the outliers, has a substantially smaller standard deviation
than the normal distribution fit to the LS residuals. In this sense, the
robust method provides a better fit to the bulk of the data.

Probability 
Density 
Estimates of 
Residuals

Figure 2.4 displays the (kernel) probability density estimates for the
residuals for the least squares and robust fits, and it clearly reveals the
existence of outliers that adversely influence the LS fit. The story here
is consistent with that provided by the normal QQ-plot comparisons:
you see that density estimate of the LS residuals is much broader in
the central region than that of the robust residuals, and is rather
skewed and not centered on zero. The density estimate of the
residuals for the robust fit is very compact and centered on zero in the
central region, and exhibits two distinct bumps that indicate the
presence of outliers. From this point of view, the robust fit again
provides a better fit to the bulk of the data and indicates the presence
of outliers.
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Chapter 2  Robust Linear Regression
Figure 2.4:  LS and Robust Density Estimates of Residuals: stack.dat

Standardized 
Residuals versus 
Robust Distances

A highly useful plot of scaled residuals versus robust distances of the
predictor variables was invented by Rousseeuw and van Zomeren
(1990). For both the LS and robust fits, the robust distances are the
Mahalanobis distances based on a robust covariance matrix estimate
for the predictor variables, as described in the section Theoretical
Details. A large robust distance for a predictor variable indicates that
the predictor variable has leverage that might exert undue influence on
the fit. The scaled residuals for the LS fit are the residuals divided by
the standard error of the residuals. The scaled residuals for the robust
fit are the residuals divided by a robust scale estimate for the
residuals, obtained as part of the robust fitting method.

The standardized residuals vs. robust distances plots for both the least
squares and robust fits are shown in Figure 2.5. Following Rousseeuw
and van Zomeren (1990), the horizontal dashed lines are located at
+2.5 and -2.5, and the vertical line is located at the upper .975 percent
point of a chi-squared distribution with p degrees of freedom, where p

0.0

0.05

0.10

0.15

0.20

LS

-10 -5 0 5 10

Robust

-10 -5 0 5 10

Residuals

K
er

ne
lD

en
si

ty

Kernel Density of Residuals
22



Computing LS and Robust Fits with the Windows GUI
= 3 in this case. Points outside the horizontal lines are regarded as
residual outliers, and points to the right of the vertical line are
regarded as leverage points or x-outliers.

Figure 2.5:  LS and Robust Standardized Residuals vs. Robust Distances: stack.dat

In this case the LS fit produces no residuals outliers and four x-
outliers, whereas the robust fit produces four residuals outliers and
four x-outliers. Three of the four x-outliers for the robust fit are also
residuals outliers, while one x-outlier is not a residuals outlier. The
interpretation is that three of the x-outliers have substantial influence
on the LS fit, while the fourth x-outlier does not. The robust fit is not
much influenced by outliers, whether they occur in the response
space or the predictor space, or both.

This example illustrates the problem of outlier masking in least squares
fits, i.e., the influence of outliers on the least squares parameter
estimates distorts the parameter estimates in such a manner that the
outliers can not be detected in plots of the LS residuals. The robust
estimate does not suffer from this problem. 
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Chapter 2  Robust Linear Regression
Standardized 
Residuals versus 
Index (Time)

Figure 2.6 shows the standardized residuals vs. index (time) plots for
both the LS and robust fits. As in the previous plot, the standardized
residuals for the LS fit are the residuals divided by the standard error
of the residuals, and the standardized residuals for the robust fit are
the residuals divided by a robust scale estimate for the residuals. If the
response variable is a time series, then this plot is a time series plot. 

From Figure 2.6, you can see that the LS fit does not reveal any
outlier, while the robust fit again clearly reveals the four outliers in
the data set: the first three occur at the startup of the underlying
chemical process and the other one in the end when the process is
shut down. 

Figure 2.6:  LS and Robust Standardized Residuals vs. Index (Time): stack.dat

The Statistics 
Report

The Report window contains the following results.

*** Classical and Robust Linear Regression ***

Calls: 
Robust    lmRob(formula = Loss ~ Air.Flow + Water.Temp + 
Acid.Conc., data = stack.dat, na.action = na.exclude)
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Computing LS and Robust Fits with the Windows GUI
    LS    lm(formula = Loss ~ Air.Flow + Water.Temp + 
Acid.Conc., data = stack.dat, na.action = na.exclude)

Residual Statistics:
           Min      1Q  Median      3Q     Max 
Robust -8.6299 -0.6713  0.3594  1.1507  8.1740
    LS -7.2377 -1.7117 -0.4551  2.3614  5.6978

Coefficients:
                      Value Std. Error  t value Pr(>|t|) 
Robust (Intercept) -37.6525   5.0026    -7.5266   0.0000
    LS (Intercept) -39.9197  11.8960    -3.3557   0.0038
Robust    Air.Flow   0.7977   0.0713    11.1886   0.0000
    LS    Air.Flow   0.7156   0.1349     5.3066   0.0001
Robust  Water.Temp   0.5773   0.1755     3.2905   0.0043
    LS  Water.Temp   1.2953   0.3680     3.5196   0.0026
Robust  Acid.Conc.  -0.0671   0.0651    -1.0297   0.3176
    LS  Acid.Conc.  -0.1521   0.1563    -0.9733   0.3440

Residual Scale Estimates:
: 1.837 on 17 degrees of freedom
: 3.243 on 17 degrees of freedom

Proportion of variation in response(s) explained by 
model(s):
Robust : 0.6205 
    LS : 0.9136 

Bias Tests for Robust Models:

Robust:
Test for Bias:
            Statistics P-value 
 M-estimate       2.75    0.60
LS-estimate       2.64    0.62

The standard errors, the t-statistics, and the p-values of the robust
coefficient estimates for the robust fit are themselves robust because
they are computed using a robust covariance matrix for the
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he
parameter estimates. The Proportion of variation in response explained by

model, or multiple R2, for the robust fit is a robust version of the

classical least-squares R2.

There is also a Test for Bias in the summary statistics provided in the
Report window. This provides two statistical tests of the bias: the first
for bias of the final M-estimate relative to a highly robust initial
estimate, and the second for the bias of the LS estimate relative to the
final M-estimate. In this example, the p-values for these tests are .60
and .62, indicating that for both comparisons there is little evidence of
bias.

Read the section Theoretical Details to find out how these robust
inference quantities are computed.

COMPUTING LS AND ROBUST FITS AT THE COMMAND 
LINE

Computing 
Both LS and 
Robust Fits

If you prefer to work at the Spotfire S+ command line, you can use t
fit.models function in the Robust Library to compute both an LS
and a robust linear model fit and store them as a single S-PLUS object,
say stack.fits:

> stack.fits <- fit.models(list(Robust = "lmRob",
+ LS = "lm"), Loss ~. , data = stack.dat)

Now view a brief summary of the results:

> stack.fits

Calls: 
Robust    lmRob(formula = Loss ~ ., data = stack.dat)
    LS    lm(formula = Loss ~ ., data = stack.dat)

Coefficients:
              Robust       LS 
(Intercept) -37.6525 -39.9197
   Air.Flow   0.7977   0.7156
 Water.Temp   0.5773   1.2953
 Acid.Conc.  -0.0671  -0.1521
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Computing LS and Robust Fits at the Command Line
Residual Scale Estimates:
Robust : 1.837 on 17 degrees of freedom
    LS : 3.243 on 17 degrees of freedom

Use the summary function to obtain a more complete summary of the
model fitting results:

> summary(stack.fits)

Calls: 
Robust    lmRob(formula = Loss ~ ., data = stack.dat)
    LS    lm(formula = Loss ~ ., data = stack.dat)

Residual Statistics:
           Min      1Q  Median      3Q     Max 
Robust -8.6299 -0.6713  0.3594  1.1507  8.1740
    LS -7.2377 -1.7117 -0.4551  2.3614  5.6978

Coefficients:
                      Value Std. Error  t value Pr(>|t|) 
Robust (Intercept) -37.6525   5.0026    -7.5266   0.0000
    LS (Intercept) -39.9197  11.8960    -3.3557   0.0038
Robust    Air.Flow   0.7977   0.0713    11.1886   0.0000
    LS    Air.Flow   0.7156   0.1349     5.3066   0.0001
Robust  Water.Temp   0.5773   0.1755     3.2905   0.0043
    LS  Water.Temp   1.2953   0.3680     3.5196   0.0026
Robust  Acid.Conc.  -0.0671   0.0651    -1.0297   0.3176
    LS  Acid.Conc.  -0.1521   0.1563    -0.9733   0.3440

Residual Scale Estimates:
Robust : 1.837 on 17 degrees of freedom
    LS : 3.243 on 17 degrees of freedom

Proportion of variation in response(s) explained by 
model(s):
Robust : 0.6205 
    LS : 0.9136 
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Correlations:
Robust 
            (Intercept) Air.Flow Water.Temp Acid.Conc. 
(Intercept)  1.0000                                   
   Air.Flow  0.0049      1.0000                       
 Water.Temp -0.0828     -0.7077   1.0000              
 Acid.Conc. -0.8442     -0.2885  -0.0453     1.0000   

    LS 
            (Intercept) Air.Flow Water.Temp Acid.Conc. 
(Intercept)  1.0000                                   
   Air.Flow  0.1793      1.0000                       
 Water.Temp -0.1489     -0.7356   1.0000              
 Acid.Conc. -0.9016     -0.3389   0.0002     1.0000   

Bias Tests for Robust Models:

Robust:
Test for Bias:
            Statistics P-value 
 M-estimate       2.75    0.60
LS-estimate       2.64    0.62

The Diagnostic 
Plots

You can also make comparison plots with the plot function:

> plot(stack.fits)

Make plot selections (or 0 to exit):
 
1: plot: All 
2: plot: Normal QQ-Plot of Residuals 
3: plot: Estimated Kernel Density of Residuals 
4: plot: Robust Residuals vs Robust Distances 
5: plot: Residuals vs Fitted Values 
6: plot: Sqrt of abs(Residuals) vs Fitted Values 
7: plot: Response vs Fitted Values 
8: plot: Standardized Residuals vs Index (Time) 
9: plot: Overlaid Normal QQ-Plot of Residuals 
10: plot: Overlaid Estimated Density of Residuals 
Selection(s): 9, 10
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Computing LS and Robust Fits at the Command Line
Note that in the Robust Library, you can select more than one plot
from the above menu of choices, which was not possible before. On
Windows platform, this will result in a multi-paged Graph Sheet,
with each plot on one page. In this case, both the overlaid normal
QQ-plot and residuals density are shown in Figure 2.8. One thing you
might have noticed is that in the overlaid normal QQ-plot, the
residuals are plotted on the horizontal axis, instead of on the vertical
axis as shown in Figure 2.3 for the Trellis display. This makes it easier
to compare the normal QQ-plot with the density plot. In Figure 2.8
you can easily visualize the impacts of outliers in the robust fit.

Figure 2.7:  Overlaid Normal QQ-Plot of Residuals
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Chapter 2  Robust Linear Regression
Figure 2.8:  Overlaid Kernel Density of Residuals

Computing 
Only a Robust 
Fit

Use the function lmRob to compute only a robust fit:

> stack.robfit <- lmRob(Loss ~., data = stack.dat)
> stack.robfit
Call:
lmRob(formula = Loss ~ ., data = stack.dat)

Coefficients:
 (Intercept)  Air.Flow Water.Temp  Acid.Conc. 
   -37.65246 0.7976856  0.5773405 -0.06706018

Degrees of freedom: 21 total; 17 residual
Residual scale estimate: 1.837073 

You can also use the summary and plot functions to get more
extensive summary results and plots, just as in the case of a least
squares fit “lm” object.
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Computing LS and Robust Fits at the Command Line
Computation 
Time Required

For the size of most regression problems, the robust regression
method requires a computationally intensive resampling method to
obtain an initial robust estimate of the regression parameters and
residual scale, as a starting point for computing the final robust
estimates. This initial estimate requires a number of samples and

corresponding computational time proportional to , where p is the
number of regression parameters. Obviously when p is large, the
computation time can quickly become prohibitive. 

Recently Pena and Yohai (1999) proposed a fast procedure for
obtaining a reliable initial regression estimate, which can be used as a
starting point for high efficiency estimates. Although the initial
estimates from the fast procedure are not guaranteed to have high
breakdown point, Pena and Yohai (1999) showed that they are
comparable with other available robust estimates for a wide range of
problems.

By default, Spotfire S+ employs the random resampling algorithm
for initial estimates when the number of variables is smaller than 15,
and switches to the fast procedure when the number of variables is 
greater than 15.

The tables below compare the computation times required by the
resampling algorithm and the fast procedure, as a function of p and
the number of observations n, for Spotfire S+ on a Sun SPARC Ultra-
60 with 1024MB memory.

2p

Table 2.1:  Spotfire S+ User Time with Random Sampling Initial Estimate Method

n = 50 n = 100 n = 150 n = 200 n = 250 n = 300 n = 500

p = 5 0.20 0.21 0.22 0.24 0.25 0.29 0.34

p = 10 0.73 0.90 1.08 1.26 1.49 1.67 2.59

p = 15 28.54 34.82 41.86 49.84 58.01 64.73 92.98

p = 20 1580.47 1812.71 2099.97 2444.63 2663.29 2942.46 4001.77
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t

s

In the case you choose to use the random resampling initial estimate
whe p is greater than 15 by choosing it on the Advanced tab of Robust
Linear Regression dialog, Spotfire S+ informs you in the case of 
long computation time requirements for the robust regression method
by printing out estimates of the remaining computing time. The printou
occurs in the Report window on the NT/Windows platform, as
shown in Figure 2.9 (and in the Command Window on a UNIX/
LINUX platform).

NOTE:  For small values of n and p, Spotfire S+ automatically doe
exhaustive sampling for the initial estimate.  Specifically, this happens
for n < 250 for p = 2, and for n < 80 for p = 3.  Otherwise, random
resampling is used as the default for p < 16.

Table 2.2:  Spotfire S+ User Time with Pena-Yohai Fast Initial Estimate Method

n = 50 n = 100 n = 150 n = 200 n = 250 n = 300 n = 500

p = 5 0.20 0.22 0.23 0.26 0.28 0.28 0.36

p = 10 0.28 0.32 0.34 0.37 0.44 0.53 0.58

p = 15 0.36 0.44 0.57 0.53 0.60 0.82 1.03

p = 20 0.51 0.71 0.85 1.11 1.15 1.65 2.10

p = 30 N/A 1.05 1.94 2.08 2.02 2.39 6.34

p = 50 N/A 3.24 4.38 5.52 17.24 14.91 14.18
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Computing LS and Robust Fits at the Command Line
Figure 2.9:  Computation Time Left in Report Window

The printout of the remaining time estimate using the usual
hours:minutes:seconds format. So in the above example, the first
printout states that approximately one minute and twenty-seven
seconds remain, and the time between successive printouts is
approximately twelve seconds.
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Chapter 2  Robust Linear Regression
In the event you want to defer the computation of the robust estimate
until another time such as over your coffee break or lunch, press ESC
once on an Windows version (control-C on a UNIX/LINUX
version) and wait until the error message appears in the Messages
window as shown.

Fitting Models 
with Both 
Numeric and 
Factor 
Variables

Often you fit linear models with both numeric and factor variables.
When the factor variables have many levels, you may be fitting a
linear model with considerably more independent variables than
fifteen or so. An example of this type is provided by the data set
wagner.dat included with this library, and a portion of this data set is
displayed below. For this data set y is the response variable.

Region   PA    GPA  HS    GHS     y    Period 
 1     46.84 -2.60 1.68  0.20   0.97      1
 2     35.54 -1.42 1.67  0.63   2.14      1
 3     28.42 -1.48 1.71  0.12   6.13      1
 4     32.54 -4.51 1.37  0.32   7.36      1
 5     28.92 -0.88 2.14 -0.08   3.63      1
 6     36.61 -1.39 3.00  0.45  -4.30      1
 7     34.71 -2.22 2.94  0.27   2.06      1
 8     24.32 -5.11 3.57 -0.55 -18.64      1
 9     35.15 -0.16 3.27  0.03   5.15      1
10     34.06 -3.86 2.74  0.19   6.88      1
11     37.94 -4.61 2.07  0.38  -1.24      1
12     35.88 -2.17 1.57 -0.11  -1.31      1
13     31.28 -1.90 2.74 -0.57   1.73      1
14     33.61  2.02 1.92  0.32   0.44      1
15     33.86  0.75 0.86  0.46 -15.53      1
16     43.24 -4.41 1.82  0.52 -10.99      1
17     42.65 -2.28 1.52 -0.17   0.60      1
18     37.19 -2.75 2.39  0.40   3.71      1
19     49.70 -4.86 1.16  0.09  -2.38      1
20     41.96 -4.59 2.00 -0.12  -1.35      1
21     28.86 -2.11 5.17  0.46  -1.08      1
 1     44.24  3.80 1.88  0.13   8.47      2
 2     34.12 -3.33 2.30  1.04   2.76      2
 3     26.94 -1.71 1.83  1.28  24.08      2
..       ................................
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This data set contains four numeric variables: PA, GPA, HS, GHS, two
factor variables Region and Period, and response variable y. Region
has twenty-one levels and Period has three levels, resulting in a total
of 4 + 1 + 20 + 2 = 27 independent variables.

If you try to fit a linear model using the function lmRobMM, available in
current versions of Spotfire S+, you will find that it takes a long 
time (some hours) to compute the fit (or the algorithm fails due
to singularity problems). This is because lmRobMM uses a subsampling
approach with exponential complexity in the number of independent
variables, as described earlier.

The Robust Library deals with this problem by using a new
alternate S/M-estimate computing algorithm due to Maronna and
Yohai (1999) for robustly fitting linear models which contain factor
variables with possibly many levels. Spotfire S+ automatically uses 
the new S/M-estimate algorithm whenever the linear model 
data contains at least one factor variable. For further information see 
the Theoretical Details section Alternating S and M Initial Estimate.

Compute LS and robust fits to wagner.dat in a manner similar to the
one you used for the stack loss data set stack.dat. Open the Robust
Library data sets in the Object Explorer and select wagner.dat. The
right-hand pane of the Object Explorer displays the seven variables in
wagner.dat. First select the dependent (response) variable y. Then
select the other variables by pressing the CTRL while selecting them
(you have to do it this way for wagner.dat because the response
variable is not the top icon, and so you can not select it first and then
SHIFT select the bottom icon to get all the dependent variables as
you did with stack.dat). Now choose Robust � Linear Regression
from the menubar, and proceeding just as you did with the stack loss
data set. The resulting residuals diagnostic plot comparisons for the
LS and robust fits are shown below.

(Alternatively, you could skip selecting variables in the Object
Browser and just select them in the Robust Linear Regression dialog
box).

Note that when a linear model contains factor variables as well as
continuous (numeric) variables, robust distances are computed only
for the continuous variables (it does not make much sense to look at
robust distances for factor variables, which are represented by values
of zero and one for the corresponding independent variables).
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Chapter 2  Robust Linear Regression
Figure 2.10:  LS and Robust Normal QQ-Plots of Residuals: wagner.dat

Figure 2.11:  LS and Robust Density Estimates of Residuals: wagner.dat
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Figure 2.12:  LS and Robust Standardized Residuals vs. Robust Distances: 
wagner.dat

Figure 2.13:  LS and Robust Standardized Residuals vs. Index (Time): wagner.dat
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Chapter 2  Robust Linear Regression
Figure 2.10-Figure 2.13 show quite dramatic differences between the
LS and robust fits: The LS fits give no hints whatsoever of outliers,
and the robust method provides a good fit to the bulk of the data and
exposes a number of outliers quite clearly.

The Report window output for this example is shown below:

*** Classical and Robust Linear Regression ***

Calls: 
Robust  : lmRob(formula = y ~ Period + GHS + HS + GPA + PA +
Region, data = wagner.dat, na.action = na.exclude)
    LS  : lm(formula = y ~ Period + GHS + HS + GPA + PA +
Region, data = wagner.dat, na.action = na.exclude)

Residual Statistics:
              Min       1Q   Median       3Q      Max 
Robust : -21.0047  -1.6697  -0.2091   1.5360  20.4836
    LS : -10.2302  -3.4272  -0.2351   3.4048  13.2492

Coefficients:
                      Value Std. Error  t value Pr(>|t|) 
Robust (Intercept) -40.4171  73.5980    -0.5492   0.5863
    LS (Intercept)   4.7556  23.5957     0.2015   0.8414
Robust     Period1   4.3807   2.6139     1.6759   0.1024
    LS     Period1   1.9477   1.4944     1.3033   0.2007
Robust     Period2   3.9658   1.1962     3.3152   0.0021
    LS     Period2   1.0876   1.0953     0.9930   0.3273
Robust         GHS   2.7902   2.0520     1.3597   0.1824
    LS         GHS   6.1485   1.7159     3.5832   0.0010
Robust          HS   3.7261   5.4735     0.6808   0.5004
    LS          HS   5.0899   2.1070     2.4157   0.0209
Robust         GPA   0.3912   1.3309     0.2939   0.7705
    LS         GPA   0.0737   0.5583     0.1320   0.8958
Robust          PA   1.1309   1.8571     0.6089   0.5464
    LS          PA  -0.4104   0.7058    -0.5815   0.5645
Robust     Region1   2.1205   8.6427     0.2453   0.8076
    LS     Region1  -5.1072   5.5911    -0.9135   0.3671
Robust     Region2   8.9457   7.7568     1.1533   0.2564
    LS     Region2   2.1396   3.5075     0.6100   0.5457
Robust     Region3   3.6278   3.2025     1.1328   0.2648
    LS     Region3   1.2105   1.5928     0.7600   0.4522
38



Computing LS and Robust Fits at the Command Line
Robust     Region4   1.6062   2.2043     0.7286   0.4709
    LS     Region4  -0.1202   1.1281    -0.1065   0.9158
Robust     Region5  -2.8809   1.9829    -1.4529   0.1549
    LS     Region5  -2.5068   0.8667    -2.8925   0.0064
Robust     Region6  -0.3746   1.7531    -0.2137   0.8320
    LS     Region6  -0.7652   0.7343    -1.0421   0.3043
Robust     Region7   1.3170   1.3252     0.9938   0.3269
    LS     Region7  -2.4701   1.2616    -1.9580   0.0580
Robust     Region8   0.0130   0.7499     0.0173   0.9863
    LS     Region8   0.4503   0.4824     0.9334   0.3568
Robust     Region9  -0.0148   0.4902    -0.0302   0.9761
    LS     Region9  -0.0349   0.4032    -0.0865   0.9316
Robust    Region10  -0.5491   0.5011    -1.0959   0.2804
    LS    Region10   0.2104   0.4260     0.4939   0.6244
Robust    Region11  -0.2878   0.4718    -0.6100   0.5457
    LS    Region11  -0.0978   0.3249    -0.3011   0.7650
Robust    Region12   0.1403   0.7538     0.1861   0.8534
    LS    Region12   0.5725   0.3422     1.6729   0.1030
Robust    Region13  -0.2356   0.6115    -0.3854   0.7022
    LS    Region13  -0.1733   0.3510    -0.4937   0.6245
Robust    Region14  -0.7599   0.5812    -1.3075   0.1993
    LS    Region14  -0.2735   0.3100    -0.8823   0.3835
Robust    Region15  -1.2966   0.5723    -2.2655   0.0296
    LS    Region15  -0.3064   0.3279    -0.9343   0.3564
Robust    Region16  -0.2686   0.5598    -0.4798   0.6343
    LS    Region16   0.3953   0.4052     0.9758   0.3357
Robust    Region17   0.0871   0.5872     0.1483   0.8830
    LS    Region17  -0.0266   0.2529    -0.1051   0.9169
Robust    Region18  -0.2807   0.5688    -0.4936   0.6246
    LS    Region18   0.5132   0.4305     1.1921   0.2410
Robust    Region19  -0.3779   0.1529    -2.4712   0.0183
    LS    Region19  -0.0294   0.2137    -0.1377   0.8912
Robust    Region20  -0.8073   0.7121    -1.1338   0.2644
    LS    Region20  -1.3662   0.4549    -3.0033   0.0048

Residual Scale Estimates:
Robust : 2.68 on 36 degrees of freedom
    LS : 6.229 on 36 degrees of freedom
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Proportion of variation in response(s) explained by 
model(s):
Robust : 0.596 
    LS : 0.773 

Bias Tests for Robust Models:
Robust:
Test for Bias:
            Statistics P-value 
 M-estimate      17.17   0.927
LS-estimate       3.41   1.000
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Robust Model Selection
ROBUST MODEL SELECTION

It is not enough for you to robustly fit a linear model when you are
trying to decide which of two linear models with different
independent/predictor variables to use, or which of several
alternative linear models with different sets of independent/predictor
variables to use. You also need robust test statistics and robust model
selection criteria. In this section we first briefly mention robust t-tests,
and then show you how to use Spotfire S_ to obtain robust F-tests and
robust Wald tests for determining which of two candidate models is
preferred.   After that we show you how to use a new robust model
selection criterion called Robust Final Prediction Error (RFPE)
criterion for selecting a “best” model from a set of several candidate
models.

Since we have not yet implemented a dialog access to use the robust
tests and RFPE, we show you how to use them at the command line.

Robust F Tests The data set sim.dat is a simulated data set provided in the Robust
Library. The data was created by first generating four independent
standard normal random variables, x1, x2, x3, x4, and then added
outliers in special locations. Then we generated the response y
according to the linear model equation: 

where the first two coefficients have value one and the third and
fourth coefficients have value zero, and the error term u is normally
distributed.

Use the function pairs

> pairs(sim.dat)

to obtain the pairwise scatter plots of the five-dimensional data
consisting of the response and four independent variables. The result
is shown in the figure below.

y b1x1 b2x2 b3x3 b4x4 u+ + + +=
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Chapter 2  Robust Linear Regression
Now make two least squares linear model fits, one with just the first
two variables and one with all four variables:

> lm.mod12 <- lm(y ~ x1+x2, data = sim.dat)

> lm.mod1234 <- lm(y ~ x1+x2+x3+x4, data = sim.dat)

The short summary of the lm.mod12 fit is as follows:

Figure 2.14:  Pairwise Scatter plots of Simulated Linear Model Data with Outliers
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Robust Model Selection
> lm.mod12

Call:
lm(formula = y ~ x1 + x2, data = sim.dat)

Coefficients:
 (Intercept)        x1        x2 
    2.368499 -0.175945 0.0217107

Degrees of freedom: 100 total; 97 residual
Residual standard error: 1.801764 

The coefficients are nowhere near their common true values of one. If
you use the summary function on lm.mod12, you will find that these
coefficient estimates are not significantly different than zero.

The short summary of the lm.mod1234 fit is:

> lm.mod1234

Call:
lm(formula = y ~ x1 + x2 + x3 + x4, data = sim.dat)

Coefficients:
 (Intercept)         x1        x2        x3        x4 
   0.8810634 0.05003338 0.1185325 0.4257607 0.3557092

Degrees of freedom: 100 total; 95 residual
Residual standard error: 1.511241 

The first two coefficients are nowhere near their common true value
of one, while the third and fourth coefficients are far from their
common true value of zero. If you use the summary function on
lm.mod1234, you will find that the first two coefficients are not
significant, while the third and fourth are highly significant.   These
results are quite opposite of the truth.

Now use the anova function to compute a classical F-test of whether or
not the third and fourth coefficients belong in the model:
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Chapter 2  Robust Linear Regression
> anova(lm.mod12, lm.mod1234)

 Analysis of Variance Table

Response: 
        Terms ResDf   RSS    Test   Df    SS     F Value 
1     x1 + x2   97  314.8961                             
2 x1+x2+x3+x4   95  216.9657 +x3+x4  2  97.93038 21.43976

          Pr(F) 
1              
2 2.068392e-008

The (classical) F-test erroneously tells you that the third and fourth
variables should be in the model!

Now make two robust model fits, the first using the first two variables
x1 and x2, and the second using all four variables x1, x2, x3, x4. 

> rob.mod12 <- lmRob(y ~ x1+x2, data = sim.dat)

> rob.mod1234 <- lmRob(y ~ x1+x2+x3+x4, data = sim.dat)

The short summaries of these two robustly fitted models are as
follows:

> rob.mod12

Call:
lmRob(formula = y ~ x1 + x2, data = sim.dat)

Coefficients:
 (Intercept)       x1       x2 
 -0.04584343 1.072822 1.015621

Degrees of freedom: 100 total; 97 residual
Residual scale estimate: 0.7566563 
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Robust Model Selection
> rob.mod1234

Call:
lmRob(formula = y ~ ., data = sim.dat)

Coefficients:
 (Intercept)       x1       x2           x3          x4 
 -0.02257299 1.072947 1.017503 -0.005768044 -0.01629436

Degrees of freedom: 100 total; 95 residual
Residual scale estimate: 0.7776201 

You notice that rob.mod12 provides coefficient estimates that are quite
close to the true values of one. You also notice that rob.mod1234
provides estimates for the first two coefficients that are quite close to
their true values of one, and estimates for the third and fourth
coefficients that are quite close to their true values of zero.

Now use the anova function on these two robustly fitted models to
compute a robust F test:

> anova(rob.mod12,rob.mod1234)

Response: y
              Terms     Df    RobustF     P(>RobustF) 
1           x1 + x2                                 
2 x1 + x2 + x3 + x4      2 0.02121456      0.9890456

The test accepts the null hypothesis that the third and fourth
coefficients are not significant.

Robust Wald 
Tests

The default test used by anova is a robust F test. You can also use
anova to compute a robust Wald test based on robust estimates of the
coefficients and covariance matrix. To use the robust Wald test, use
the optional argument test = “RWald”:

> anova(rob.mod12,rob.mod1234, test = "RWald")
Response: y
              Terms     Df       Wald  P(>Wald) 
1           x1 + x2                            
2 x1 + x2 + x3 + x4      2 0.07997027 0.9608037

which gives a result quite similar to that of the robust F test.
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Robust FPE for 
Model 
Selection

Although many robust estimators have been constructed in the past,
the issue of robust model selection has not received its due attention.
For robust model selection, Spotfire S+ provides a Robust 
Final Prediction Error (RFPE) criterion proposed by V. Yohai (1997). 
This criterion is a robust analogue to the Akaike’s Final Prediction 
Error (FPE) criterion.   

You may use the RFPE criterion to choose a best model when
robustly fitting linear models from the Robust Linear Regression
dialog by selecting the Robust fitting option and checking the
stepwise (backwards) check box, as shown in the figure 2.15 below.

 

Figure 2.15:  
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Robust Model Selection
When considering a variety of model choices with respect to several
different choices of predictor variables, you choose the model with
the smallest value of RFPE. See the section Theoretical Details for
further information.

The RFPE criterion is  used by the function step to compute a
backward stepwise robust method of model selection (only backward
stepwise robust regression is available in this release of the Robust
Library). For example, when you use step on the robustly fitted
model rob.mod1234:

> step(rob.mod1234)

Start:  RFPE= 79.7096 
 y ~ x1 + x2 + x3 + x4 

Single term deletions

Model:
y ~ x1 + x2 + x3 + x4

scale:  0.7776201 

       Df     RFPE 
<none>     79.7096
    x1  1 117.1077
    x2  1 143.8299
    x3  1  79.2279
    x4  1  79.2475

Step:  RFPE = 79.2279 
 y ~ x1 + x2 + x4 

Single term deletions

Model:
y ~ x1 + x2 + x4

scale:  0.7776201 
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       Df     RFPE 
<none>     79.2279
    x1  1 124.4032
    x2  1 129.2550
    x4  1  78.7647

Step:  RFPE = 78.7647 
 y ~ x1 + x2 

Single term deletions

Model:
y ~ x1 + x2

scale:  0.7776201 

       Df     RFPE 
<none>     78.7647
    x1  1 129.0664
    x2  1 160.7258
Call:
lmRob(formula = y ~ x1 + x2, data = sim.dat)

Coefficients:
 (Intercept)       x1       x2 
 -0.04584343 1.072822 1.015621

Degrees of freedom: 100 total; 97 residual
Residual scale estimate: 0.7566563 

Recall that sim.dat was generated by a model in which only the two
coefficients associated with x1 and x2 were non-zero and have the
common value one. RFPE has clearly chosen the correct robustly
fitted model!
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Advanced Options For Robust Regression
ADVANCED OPTIONS FOR ROBUST REGRESSION

In this section, you will learn how to change the default settings of
some control parameters for the robust estimator so as to obtain
particular estimates that fit your purpose. You can change those
options either through a GUI dialog for Spotfire S+ or from the
command line. From the command line, most of the default settings
can be changed through the functions lmRob.robust.control and
lmRob.genetic.control. Only the commonly used control
parameters are introduced in this section. For the default settings of
other parameters and how to change them, see the online help file for
lmRob.robust.control and lmRob.genetic.control.
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Chapter 2  Robust Linear Regression
Launch the 
GUI Dialog

Selecting the Advanced tab in the dialog shown in Figure 2.1 brings
up the following page:

Adaptive Robust 
Estimate

For the final estimate, Spotfire S+ uses the MM-estimate briefly described
in the section Overview of the Method: A Special M-Estimate on
page 17. Alternatively, you can also use a very new adaptive robust
estimate recently introduced by Gervini and Yohai (1999). This
estimate has the property that in large samples it is fully efficient, i.e.,
has 100% efficiency, when the data is Gaussian. Thus the estimator
performs equally as well as least squares in large samples. At the same
time the estimator minimizes bias due to outliers nearly as well as the
MM-estimate. See the section Theoretical Details for more
information on this new estimator (not yet added in the current
documentation).

Figure 2.16:  The Robust Regression Advanced Page
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lt
To choose the adaptive robust estimate from the dialog, you simply
click the down arrow to the right of the Estimate list box, and then
select Adaptive from the drop-down list. 

From the command line, you can use the lmRob.robust.control
optional argument final.alg. For example,

> oil.tmp <- lmRob(Oil ~ Market, data = oilcity,
+ robust.control = lmRob.robust.control(final=”adaptive”))

Efficiency at 
Gaussian 
Model

If the final MM-estimates are chosen, they have a default asymptotic
efficiency of 90% compared with the LS estimates, when the errors
are normally distributed. However, sometimes an efficiency of 90%
may not be what you exactly want. For example, you might prefer
85% or 95%. Keep in mind that when you increase the efficiency from
the default setting of 0.9 you get less protection from bias due to
outliers, and conversely if you want more protection from bias due to
outliers, use a smaller efficiency, e.g., 0.85 or 0.8.

To change the efficiency level, you can either type your desired
Gaussian model efficiency in the Efficiency field, or use the
lmRob.robust.control optional argument efficiency from the
command line:

> oil.tmp <- lmRob(Oil ~ Market, data = oilcity,
+ robust.control = lmRob.robust.control(efficiency=0.95))
> coef(oil.tmp)

 (Intercept)    Market
  -0.0739893  0.8491134

M-Estimate 
Loss Function

The Loss Function list box in the Final Estimator region displays
the default choice Optimal, indicating that Spotfire S+ uses as its defau
the optimal loss function  discovered by Yohai and Zamar (1998) for
the final M-estimate (see Theoretical Details). This optimal loss
function is shown in the upper right of Figure 2.17, and the
corresponding psi-function  is shown in the lower right of that
figure. The exact forms of the optimal  and  functions can be found
in the section Theoretical Details.

ρ

ψ ρ′=

ρ ψ
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Chapter 2  Robust Linear Regression
If you wish, you can also choose to use the Tukey bisquare loss
function  shown in the upper left of Figure 2.17 by selecting
Bisquare from the drop-down list. The corresponding Tukey
bisquare psi-function  is shown in the lower left of Figure 2.17.

To choose different settings of the loss function from the command
line, you use the lmRob.robust.control optional argument weight as
follows:

> control <- lmRob.robust.control(weight = c(“Bisquare”,
+ “Optimal”))
> oil.tmp <- lmRob(Oil ~ Market, data = oilcity,
+ robust.control = control)

ρ

ψ

Figure 2.17:  Available Loss Functions
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s,

ve
> coef(oil.tmp)

 (Intercept)     Market
  -0.07914363  0.8450448

In the above commands, the rescaled bisquare function is used for the
initial S-estimates, and the optimal loss function is used for the final
M-estimates.

Optimizer 
Parameters

Describe maximum number of iterations and tolerance control
constants here in the next release.   The current default settings are
reasonable.

Confidence 
Level of Bias 
Test

Spotfire S+ provides two bias tests for the default MM-estimate:
one testing the bias of least squares coefficients against final M-estimate
and the other testing the bias of final M-estimate against the initial
robust estimates.

To compute these tests for the model fit oil.tmp created in the above
subsection, use the following command:

> test.lmRob(oil.tmp)

Test for Bias
            Statistics   P-value 
 M-estimate       1.99 3.69e-001
LS-estimate      23.58 7.57e-006

The results show that the least squares estimate is biased relative to
the final M-estimate, while the bias of the final M-estimates relative to
the initial S-estimate is not significant.

By default, the level of significance of the tests is set at 10%. To change
the level of the tests, you should specify the argument level for the
test.lmRob function. A higher value of level will reject the final
M-estimates more often, and a lower value of level will reject the
final M-estimates less often. 

Resampling 
Algorithms

When computing the initial S-estimates, Spotfire S+ uses an exhausti
resampling scheme for sufficiently small combinations of n and p, and
otherwise uses a random resampling scheme when the number of
numeric predictor variables p is no greater than 15.  The random
resampling scheme is designed so that a high breakdown point is
achieved with high probability.  When the number of numeric
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predictors is greater than 15, S p o t f i r e  S + uses a fast initial
estimate due to Pena and Yohai (1999).   You can over-ride this default
if you wish, at both the GUI and the command line.  You can also use
a genetic algorithm for the initial S-estimate if you wish . 

To choose a particular resampling algorithm from the dialog, you
simply click the down arrow to the right of the Sampling Method list
box, and then pick one from the drop-down list. These algorithms can
also be selected from the command line by using the initial.alg
argument to the function lmRob.robust.control, for which the valid
choices are "Random", "Exhaustive" and "Genetic". Note that
exhaustive resampling is only used/recommended when the sample
size is small and there are less than 10 predictor variables.

Random 
Resampling 
Parameters

Random resampling is controlled by two parameters: a random seed
and the number of subsamples to draw. By default, the number of

subsamples is set at , where  is the number of explanatory
variables, and  denotes the operation of rounding a number to its
closest integer. Note that this number will work fine if you have less
than 15 predictor variables. However, if you have more than 15
predictor variables, the default number may be too big for computing
in a reasonable time. To choose a different value for the number of
subsamples to draw, use the optional argument nrep as follows:

> oil.tmp <- lmRob(Oil ~ Market,data = oilcity, nrep = 10)

The seed of the random resampling can be controlled by specifying
the argument seed to lmRob.robust.control.

Genetic 
Algorithm 
Parameters

If you choose to use the genetic algorithm, the parameters for genetic
algorithm can be changed through the lmRob optional argument
genetic.control, the default of which is NULL. The optional argument
genetic.control should be a list, usually returned by a call to the
function lmRob.genetic.control. To look at the arguments of the
function lmRob.genetic.control, use the following command:

> args(lmRob.genetic.control)
function(popsize = NULL, mutate.prob = NULL,
random.n = NULL, births.n = NULL, stock = list(),
maxslen = NULL, stockprob = NULL, nkeep = 1)

4.6 2p⋅[ ] p

 [ ]
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For an explanation of the various arguments above, see the online
help file for the function ltsreg.default.
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ll
THEORETICAL DETAILS

Initial 
Estimate When 
p is Not Too 
Large

The key to obtaining a good local minimum of the M-estimation
objective function when using a bounded, nonconvex loss function is

to compute a highly robust initial estimate . For models where the
number of variables p is not too large, namely for p less than 15,
Spotfire S+ does this by using the S-estimate method introduced
by Rousseeuw and Yohai (1984). The S-estimate is part of an overa
MM-estimate computational strategy proposed by Yohai, Stahel and
Zamar (1991), and supported by a number of robustness experts who
participated in the 1989 IMA summer conference on “Directions in
Robust Statistics and Diagnostics.”

The S-estimate approach has as its foundation an M-estimate  of an

unknown scale parameter for observations , assumed to
be robustly centered (that is, by subtracting a robust location

estimate). The M-estimate  is obtained by solving the equation

where  is a symmetric, bounded function. It is known that such a
scale estimate has a breakdown point of one-half (Huber, 1981), and
that one can find min-max bias robust M-estimates of scale (Martin
and Zamar, 1989, 1993).

The following regression S-estimate method was introduced by
Rousseeuw and Yohai (1984). Consider the linear regression model
modification of Equation (2.1):

(2.1)

(2.2)
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yi
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Tβ–
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l

For each value of , we have a corresponding robust scale estimate
. The regression S-estimate (which stands for “minimizing a

robust scale estimate”) is the value  that minimizes :

This presents another nonlinear optimization, one for which the
solution is traditionally found by a random resampling algorithm,
followed by a local search, as described in Yohai, Stahel and Zamar
(1991). Spotfire S+ allows you to use a genetic algorithm in place of t
resampling algorithm, and also to use an exhaustive form of sampling

algorithm for small problems. Once the initial S-estimate  is
computed, the final M-estimate is obtained as the nearest local
minimum of the M-estimate objective function.

For details on the numerical algorithms used, see Marazzi (1993),
whose algorithms, routines and code were used in creating lmRob.

Fast Initial 
Estimate for 
Large p

When the number of variables p is 15 or greater, the above S-estimate
based on random sample is often requires too much computation
time for most users. Consequently Spotfire S+ uses a new “fast” initia
estimate due to Pena and Yohai (1999).   Although their new fast
initial estimate is not guaranteed to have a high breakdown point,
these authors provided evidence that the method favors well relative
to other available robust estimates.

Alternating S 
and M Initial 
Estimate

For models with factor variables (with possibly many levels), Spotfire S+
uses a new initial estimate due to Maronna and Yohai. The new initial
estimate uses an alternating resampling based S-estimate for the
continuous (numeric) variables and a Huber type M-estimate with a
least absolute deviations (LAD) start for the factor variables. This
approach is based on the fact that for a model which contains only
factor variables, there are no leverage points among the predictor
variables and consequently LAD and Huber type M-estimates
provide good initial parameter estimates. In this overall approach, the
final estimate is the same as in the case of a linear model with only
continuous (numeric) variables.

(2.3)

β
ŝ β( )

β̂
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ŝ β( )

β̂
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Optimal and 
Bisquare Rho 
and Psi-
Functions

A robust M-estimate of regression coefficient  is obtained by
minimizing

where  is a convex weight function of the residuals with tuning

constant . The derivative of  is usually denoted by . For
both the initial S-estimate and the final M-estimate in S-PLUS, two
different weight functions can be used: Tukey’s bisquare function and
an optimal weight function introduced in Yohai and Zamar (1998).

Tukey’s bisquare functions  and  are as follows:
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The Yohai and Zamar optimal functions  and  are as
follows:

where

     .

The Efficient 
Bias Robust 
Estimate

Yohai and Zamar (1998) showed that the  and  functions given
above are optimal in the following highly desirable sense: the final
M-estimate has a breakdown point of one-half, and minimizes the
maximum bias under contamination distributions (locally for small
fractions of contamination), subject to achieving a desired efficiency
when the data are Gaussian.
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Efficiency 
Control

The Gaussian efficiency of the final M-estimate is controlled by the
choice of the tuning constant . As discussed in the earlier sections,
you can specify a desired Gaussian efficiency and Spotfire S+ 
automatically uses the correct  for achieving that efficiency.

Robust 
R-Squared

The robust R2 is calculated as follows:

• Initial S-estimator 

If an intercept term is included in the model, then

where  and  is the minimized , for a regression

model with only an intercept term with parameter . If there

is no intercept term, replace  in the above formula

with .

• Final M-estimator 

If an intercept term µ is included in the model, then

where  is the location M-estimate corresponding to the local
minimum of

such that
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0

= sy ŝ µ( )
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ŝ
0

-------------
 
 
 

∑=
60



Theoretical Details
where  is the sample median estimate. If there is no

intercept, replace  with zero in the formula.

Robust 
Deviance

For an M-estimate, the deviance is defined as the optimal value of the

objective function on the -scale; that is:

• Initial S-estimator 

• Final M-estimator 

Robust F Test The robust F-statistics is

where the subscript p indicates the predictor variables, coefficients,
and robust residuals scale for the “full” p parameter model, and the
subscript q indicates similar quantities for the “smaller” q parameter
model, i.e. q < p.

Robust Wald 
Test

See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986). 

Robust FPE 
(RFPE)

Ronchetti (1985) proposed to generalize the Akaike Information
Criterion (AIC) to robust model selection. The results therein mimic
the maximum likelihood approach thereby relying on an unbounded

. But such an estimate has a zero breakdown point. Yohai (1997)
proposed an RFPE criterion which is a natural generalization of
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Chapter 2  Robust Linear Regression
Akaike’s Final Prediction Error (FPE) criterion, and which is not tied
to the likelihood approach. RFPE is based on the use of a bounded

function , and which should therefore retain a high breakdown
point.

This new RFPE is calculated as follows:

with

where  is the final M-estimate of , and . Note that

when , RFPE reduces to the Akaike’s classical FPE. 
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Chapter 3  Robust Generalized Linear Models
OVERVIEW OF THE METHODS

The Robust Library enables you to robustly fit Generalized Linear
Models (GLIM’s) for response observations , that
follow one of the following two distributions:

The Binomial Distribution

 

where  and  is the number of binomial trials for observation

. When  the observations are called  Bernoulli trials. The

expected value of  for the Binomial distribution is related to  by:

The Poisson Distribution:

where .   The expected value of  for the Poisson distribution
is:

In both of these cases you have a vector 

of p independent explanatory variables, and corresponding vector
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Overview of the Methods
of unknown regression coefficients, from which you form the linear
predictor

.

The linear predictor  and the expected value  are related through

the link function g which maps  to :

.

The inverse link transformation  maps  to :

.

The robust library currently allows you to use (only) the canonical
links for the Binomial and Poisson Families:

Binomial Model Canonical Link (the Logit link):

with inverse transformation

.

Poisson Model Canonical Link:

with inverse transformation

For the Binomial model you have conditional expectation
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Chapter 3  Robust Generalized Linear Models
and for the Poisson model you have conditional expectation

The classical approach to fitting the above models is to compute a

maximum likelihood estimate (MLE)  as a solution of the
following estimating equation.:

These are nonlinear equations that are solved iteratively, as described
in McCullagh and Nelder (1989).

The classical MLE’s for generalized linear models can be highly
influenced by outliers. In all of the above models the explanatory
vectors  can be highly influential outliers, calling for the use of a

robust alternative to the MLE. In the Bernoulli case, the response 
is either 0 or 1, and so can not be an outlier. In the general Binomial
model when  is large, the  can also be outliers in cases where the

expected values of  are small, and in the Poisson model the 
can take on arbitrarily large integer values and so can be outliers.
Thus in the general Binomial and Poisson cases, influential  outliers
also call for a robust alternative to the MLE.

You may use one of the following three robust model fitting methods,
the first of which you can use for both Binomial and Poisson models,
while you use the second and third only for the Bernoulli model.
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Overview of the Methods
Conditionally 
Unbiased 
Bounded 
Influence 
Estimate

You compute a conditionally unbiased bounded influence (CUBIF)

estimate  as a solution of the following equation:

for certain constants  and  that make the estimate  consistent.

The inverse link function  is given above for the Binomial and
Poisson models. The function  is even, bounded and chosen to
minimize the trace of the asymptotic covariance matrix of the

estimator , subject to a bound on bias due to a small fraction of
outliers. For more details on the choice of  and other elements in
the equation above, see the Theoretical Details section below. 

Mallows-Type 
Unbiased 
Bounded 
Influence 
Estimates

For the Bernoulli case you compute a Mallows-type unbiased

bounded influence estimate (a Mallows estimate) as a solution : of
the estimating equation

where the weights , with  a robust covariance
matrix estimate are decreasing functions of the robust Mahalanobis
distance of the explanatory vectors  (robustly measured leverages of

). You can use one of two weight functions, the Carroll and the Huber
type, with the Carroll type being the default. For further details see the
Theoretical Details section below.
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Chapter 3  Robust Generalized Linear Models
Consistent 
Mis- 
Classification 
Model 
Estimate

For the Bernoulli model, you may also compute a so-called mis-

classification model estimate , as a solution of the estimating equation

where F is given by the mis-classification model

with  the Binomial inverse link given above, and the weights 
are given by a formula provided in the Theoretical Details section.
This estimator, introduced by Copas (1988), has properties similar to
those of the Mallows-type unbiased bounded influence estimates.
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Computing MLE and Robust Fits with the NT/Windows GUI
COMPUTING MLE AND ROBUST FITS WITH THE NT/
WINDOWS GUI

Computing 
Both MLE and 
Robust Fits

You can easily compute both MLE and robust GLIM fits for the
Binomial and Poisson models with canonical links from the NT/
Windows GUI. Let’s do so for the data set breslow.dat, analyzed by
Breslow (1996) using a Poisson GLIM to explain the number of
epilepsy attacks patients have during a given time interval. Choose
Robust � Generalized Linear Models from the menubar, to open
the dialog shown below. Type in breslow.dat for Data Set, and
select sumY as the dependent variable, and type the formula Age10 +
Base4 * Trt in the Formula field. Select the Poisson Family and the
log Link in the Model region to the right. The variable sumY 

Figure 3.1:  The Robust Generalized Linear Models Dialog: Model Page
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Chapter 3  Robust Generalized Linear Models
contains the sum of the number of epilepsy attacks of each patient
during the four weeks of the study, Age10 contains the age of each
patient divided by 10, Base4 contains the base line number of
epilepsy episodes in the four weeks prior to the study divided by 4,
and Trt is a factor variable that indicates whether the patient received
the active drug or the placebo.

The Model page is similar to the Model page for Generalized Linear
Models except for the addition of the Fitting Method group. The
default choice is MLE + Robust (both MLE and robust fits are
computed) and the alternate choices are MLE (MLE only) and
Robust (robust fit only). The Advanced page provides access to the
various optional control features of the robust fit. The Results and
Predict pages are identical to those of the Generalized Linear Models
dialog. Also, you will notice some differences between the Plots page

Figure 3.2:  The Robust Generalized Linear Models Dialog: Plots Page
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Computing MLE and Robust Fits with the NT/Windows GUI
shown in Figure 3.2 and Plots page in the Generalized Linear Models
dialog. Several new plots have been added, the Sqrt Abs Residuals vs
Fit has been removed, and the Partial Residuals plots selection has
been moved to the Partial Residuals Plot Options group.

The following three new plots are computed as defaults: the Deviance
QQ plot, the Deviances versus Robust Distances plot, and the Deviances
versus Index plot. The Deviance QQ plot is of particular note, having
been added following a recent paper of Yohai and Garcia Ben (2000)
that points out the inadequacy of normal QQ-plots of deviances.
Since deviances are not typically well-approximated by a normal
distribution, the deviance QQ-plot estimates the distribution of the
deviances and plots the deviances against these estimated quantiles
(see Yohai and Garcia Ben, 2000). 

The Deviances versus Robust Distances plot gives information about the
influence and outlyingness of the observations by plotting the
deviances versus the robust distances of the corresponding predictor
vectors, i.e., Mahalanobis distances based on a robust covariance
matrix estimate for the predictor vectors. A large robust distance
indicates that the observation has leverage and might overly influence
the fit. See the corresponding section in Chapter 2 for more details.

In addition to the three plot types checked by default, check the
Residuals versus Fit and Response versus Fit check-boxes. Click OK to
compute both fits, along with the selected diagnostic plots. The results
appear in a Report window and five tabbed pages of a Graph Sheet.
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Chapter 3  Robust Generalized Linear Models
The Diagnostic 
Plots

Each of the Graph Sheet pages contains a Trellis display of the MLE
and robust fits, as shown below.

Residuals versus 
Fitted Values

Figure 3.3 shows the Deviances vs. Fitted Values plots for both the
MLE and robust fits. The MLE fit fails to identify the outlier, while
the robust fit shows it clearly.

Figure 3.3:  Deviances vs Fitted Values
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Computing MLE and Robust Fits with the NT/Windows GUI
Response versus 
Fitted Values

Figure 3.4 shows the Response vs. Fitted Values plots for both MLE
and robust fits. Note that the MLE fitted line tries to accommodate
the outlier, and consequently the corresponding deviance is small. On
the other hand the robust fit downweights this observation, and
achieves a fit that clearly reveals the anomaly.

Figure 3.4:  Response vs Fitted Values
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Chapter 3  Robust Generalized Linear Models
Deviances QQ-
Plot

In Figure 3.5 below, the deviances QQ-plot for the robust fit is shown
side by side with the corresponding plot for the MLE fit.

We immediately identify an outlier in the robust deviances QQ-plot.
In contrast, the MLE fit does not reveal any unusual observations.
This illustrates one of the most important advantages of a robust fit
relative to the MLE fit: the MLE fit is influenced by the outlier in
such a way that the outlier is not revealed by the deviances.

.

Figure 3.5:  Deviances QQ-Plot
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Deviances versus 
Robust Distances

Figure 3.6 shows a plot of the deviances versus the robust distances
for both the MLE and robust fits.   Both plots reveal that there are a
number of predictor vectors that have high leverage. In the MLE plot
only one of these, labeled 25, shows up as a large deviance, but in the
robust plot, four of the high leverage points have large (negative)
deviances.

Figure 3.6:  Standardized Deviances vs Robust Distances
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Chapter 3  Robust Generalized Linear Models
Deviances versus 
Index

Figure 3.7 shows a plot of deviances versus observation index (row
number) for both the MLE and robust fits. This plot lets you clearly
see which observations are the outliers in the fits, and in particular
those that are revealed by the robust fit but not by the MLE.

The Statistics 
Report

The Report window contains the following results. 

*** GLM Fits Comparison ***

Calls: 
Robust : glmRob(formula = sumY ~ Age10 + Base4 * Trt, family
= "poisson", data = breslow.dat, na.action = na.exclude)
   MLE : glm(formula = sumY ~ Age10 + Base4 * Trt, family =
"poisson", data = breslow.dat, na.action = na.exclude)

Figure 3.7:  Standardized Deviances vs Index (Time)
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Computing MLE and Robust Fits with the NT/Windows GUI
Residual Statistics:
              Min       1Q   Median       3Q      Max 
Robust : -55.9440  -1.4577  -0.0307   1.0632   9.4756
   MLE :  -6.0032  -2.0744  -1.0803   0.8202  11.0386

Coefficients:
                        Value Std. Error  t value Pr(>|t|)
Robust : (Intercept)   1.6294   0.2709     6.0145   0.0000
   MLE : (Intercept)   1.8404   0.1298    14.1800   0.0000
Robust :       Age10   0.1286   0.0789     1.6305   0.1030
   MLE :       Age10   0.2435   0.0413     5.8967   0.0000
Robust :       Base4   0.1472   0.0224     6.5774   0.0000
   MLE :       Base4   0.0892   0.0022    40.4874   0.0000
Robust :         Trt  -0.2211   0.1169    -1.8914   0.0586
   MLE :         Trt  -0.1276   0.0383    -3.3359   0.0009
Robust :   Base4:Trt   0.0153   0.0221     0.6913   0.4894
   MLE :   Base4:Trt   0.0038   0.0022     1.7089   0.0875

Residual Deviance of model(s):
Robust : 3962 

MLE : 556.5 
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Chapter 3  Robust Generalized Linear Models
COMPUTING MLE AND ROBUST ESTIMATES AT THE 
COMMAND LINE

Computing 
Both MLE and 
Robust Fits

If you prefer to work at the command line, use the fit.models
function in the Robust Library to compute both the MLE and the
robust GLIM estimates and store them in a single S-PLUS object.

The different estimates (Conditionally Unbiased Bounded Influence,
Mallows-type and Consistent Misclassification) are selected by
specifying the argument fit.method of glmRob. You use fit.method
= ’cubif’, fit.method = ’mallows’ and fit.method = ’misclass’
respectively. Recall that the options mallows and misclass only apply
to the case of a Bernoulli response variable.

Conditionally 
Unbiased 
Bounded 
Influence

Compute both robust and MLE fits of a Poisson GLIM for the data
set breslow.dat, and store the result as the fitted models object
breslow.fits as follows:

> breslow.fits <- fit.models(list(Robust='glmRob',
+ MLE = 'glm'), sumY ~ Age10 + Base4 * Trt,
+ family = poisson, data = breslow.dat)

Now display a brief summary of the results

> breslow.fits

Calls: 
Robust : glmRob(formula = sumY ~ Age10 + Base4 * Trt,
family = poisson, data = breslow.dat)
   MLE : glm(formula = sumY ~ Age10 + Base4 * Trt,
family = poisson, data = breslow.dat)

Coefficients:
             Robust     MLE 
(Intercept)  1.6294  1.8404
      Age10  0.1286  0.2435
      Base4  0.1472  0.0892
        Trt -0.2211 -0.1276
  Base4:Trt  0.0153  0.0038
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Computing MLE and robust estimates at the Command Line
Residual Deviance Estimates:
Robust : 3962 on 54 degrees of freedom
   MLE : 556.5 on 54 degrees of freedom

Use the summary function to obtain more detailed information on the
fit.

> summary(breslow.fits)

Calls: 
Robust : glmRob(formula = sumY ~ Age10 + Base4 * Trt,

family = poisson, data = breslow.dat)
   MLE : glm(formula = sumY ~ Age10 + Base4 * Trt,

family = poisson, data = breslow.dat)

Residual Statistics:
              Min       1Q   Median       3Q      Max 
Robust : -55.9440  -1.4577  -0.0307   1.0632   9.4756
   MLE :  -6.0032  -2.0744  -1.0803   0.8202  11.0386

Coefficients:
                        Value Std. Error  t value Pr(>|t|) 
Robust : (Intercept)   1.6294   0.2709     6.0145   0.0000
   MLE : (Intercept)   1.8404   0.1298    14.1800   0.0000
Robust :       Age10   0.1286   0.0789     1.6305   0.1030
   MLE :       Age10   0.2435   0.0413     5.8967   0.0000
Robust :       Base4   0.1472   0.0224     6.5774   0.0000
   MLE :       Base4   0.0892   0.0022    40.4874   0.0000
Robust :         Trt  -0.2211   0.1169    -1.8914   0.0586
   MLE :         Trt  -0.1276   0.0383    -3.3359   0.0009
Robust :   Base4:Trt   0.0153   0.0221     0.6913   0.4894
   MLE :   Base4:Trt   0.0038   0.0022     1.7089   0.0875

Residual Deviance of model(s):
Robust : 3962 
   MLE : 556.5 
79



Chapter 3  Robust Generalized Linear Models
Correlations:
Robust: 
            (Intercept)   Age10   Base4     Trt Base4:Trt 
(Intercept)  1.0000                                      
      Age10 -0.9022      1.0000                          
      Base4 -0.5218      0.1536  1.0000                  
        Trt -0.0472     -0.0254  0.3243  1.0000          
  Base4:Trt  0.1536     -0.0115 -0.5477 -0.8985  1.0000  

   MLE: 
            (Intercept)   Age10   Base4     Trt Base4:Trt 
(Intercept)  1.0000                                      
      Age10 -0.9556      1.0000                          
      Base4 -0.4421      0.2234  1.0000                  
        Trt -0.0166     -0.0150  0.2401  1.0000          
  Base4:Trt -0.1442      0.2260 -0.3834 -0.7784  1.0000The 
Diagnostic Plots

Use the plot function to obtain diagnostic plots. When the command
line menu appears as below, type 2 and 8 after “Selection:”.

> plot(breslow.fits)

Make plot selections (or 0 to exit):

1: plot: All 
2: plot: Deviances vs Fitted Values 
3: plot: Response vs Fitted Values 
4: plot: QQ-Plot of Pearson Residuals 
5: plot: Deviances QQ-Plot 
6: plot: Standardized Deviances vs Robust Distances 
7: plot: Standardized Deviances vs Index (Time) 
8: plot: Sqrt of abs(Deviances) vs Fitted Values 
Selection(s): 3, 5

This results in the “Response vs Fitted Values” plots and the
“Deviances QQ-Plot” in Figure 3.4 and Figure 3.5, respectively
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Computing MLE and robust estimates at the Command Line
You can also obtain any one of the plots in the menu with the
plot.glmRob command, and appropriate arguments. For example,
you get the Deviances QQ-plots with the command
plot.glmRob(my.glm.obj, which = 5).

Mallows-type 
estimate

Consider the data leuk.dat (Cook and Weisberg, 1982, p. 193). The
data consist of measurements on 33 leukemia patients. The response
variable is 1 if the patient survived more than 52 weeks. There are
two covariates: WBC: White blood cell count, and AG: Presence or
absence of certain morphologic characteristic in the white cells. You
want to fit a Binomial GLIM.

Compute the MLE fit and a Mallows type fit with the default Carroll
type weight function:

> leuk.mallows.default.fits <-fit.models(list(
+ Robust ='glmRob', MLE='glm'), y ~ wbc + ag,
+ family = binomial, data = leuk.dat,
+ fit.method = "mallows")

Now look at the brief summary of your fits,

> leuk.mallows.default.fits 

Calls: 
Robust : glmRob(formula = y ~ wbc + ag, family = binomial,

data = leuk.dat, fit.method = "mallows")
   MLE : glm(formula = y ~ wbc + ag, family = binomial,

data = leuk.dat)

Coefficients:
             Robust     MLE 
(Intercept)  0.1710 -1.3074
        wbc -0.0002  0.0000
         ag  2.5240  2.2610

Residual Deviance Estimates:
Robust : 18.47 on 24 degrees of freedom
   MLE : 31.06 on 30 degrees of freedom
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The Diagnostic 
Plots

Note that the coefficients of the robust Mallows type fit are different
from those of the MLE. Cook and Weisberg (1982) detected that
observation #15 was very influential in the model and that removing
it yielded a better fit for the rest of the data. So make a deviance QQ-
plots with:

> plot(leuk.mallows.default.fits, which = 4)

The deviance QQ-plot for the MLE in Figure 3.8 does not give much
hint of an outlier, and is furthermore rather ragged and irregular. On
the other hand, the deviance QQ-plot for the Mallows estimate in
Figure 3.8 clearly reveals the outlier, and is otherwise more smoothly
linear than in the case of the MLE. This large deviance in the case of
the robust fit is due to the fact that the fitted probability for
observation #15 is almost zero but the observed value is 1.

You can check to see if this observation automatically received weight
zero with our Mallows-type estimate, by checking to see observations
which received weight zero as follows:

Figure 3.8:  Deviances QQ-Plot
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Computing MLE and robust estimates at the Command Line
> (1:33)[leuk.mallows.default.fits[[1]]$mallows.
+ weights == 0]
 [1] 15 16 17 31 32 33

Now you see that in fact observation #15 was removed from the fit. 

To fit a Mallows-type estimate with Huber’s weight function and
tuning constant equal to 0.5, use

> leuk.mallows.huber.fits <- fit.models(list(
+ Robust = ‘glmRob’, MLE = ’glm’), y ~ wbc + ag,
+ family = binomial, data = leuk.dat,
+ fit.method = ‘mallows’, mallows.control =
+ glmRob.mallows.control(wt.fn = wt.huber, wt.tuning = .5))

> leuk.mallows.huber.fits 

Calls: 
Robust : glmRob(formula = y ~ wbc + ag, family = binomial,

data = leuk.dat, fit.method = "mallows",
mallows.control = glmRob.mallows.control(wt.fn =
wt.huber, wt.tuning = 0.5))

   MLE : glm(formula = y ~ wbc + ag, family = binomial,
data = leuk.dat)

Coefficients:
             Robust     MLE 
(Intercept) -0.4913 -1.3074
        wbc -0.0001  0.0000
         ag  2.1547  2.2610

Residual Deviance Estimates:
Robust : 13.28 on 30 degrees of freedom
   MLE : 31.06 on 30 degrees of freedom

The shapes of the Carroll and Huber weight functions are different as
indicated in Figure 3.9 and Figure 3.10, respectively. The former
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Figure 3.9:  Carroll’s weight function

Figure 3.10:  Huber’s weight function
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Computing MLE and robust estimates at the Command Line
gives weight zero to sufficiently large observations, whereas the later
gives weights that only approach zero for large argument values. This
results in somewhat different values for the Mallows type estimates
using these two weight functions. The Carroll type is preferred, which
is why it is the default weight type. However, you may wish to
experiment with both types.

Consistent 
Misclassification 
estimate

To fit a consistent misclassification estimate to the data analyzed
above with misclassification probability  use

> leuk.misclass.fits <- fit.models(list(Robust='glmRob',
+ MLE = 'glm'), y ~ wbc + ag, family = binomial,
+ data = leuk.dat, fit.method = "misclass",
+ misclass.control = glmRob.misclass.control(mc.gamma =
+ 0.02))

> leuk.misclass.fits 

Calls: 
Robust : glmRob(formula = y ~ wbc + ag, family = binomial,

data = leuk.dat, fit.method = "misclass",
misclass.control = glmRob.misclass.control(mc.gamma =
0.02))

   MLE : glm(formula = y ~ wbc + ag, family = binomial,
data = leuk.dat)

Coefficients:
             Robust     MLE 
(Intercept)  0.1447 -1.3074
        wbc -0.0002  0.0000
         ag  2.4613  2.2610

Residual Deviance Estimates:
Robust : 17.66 on 30 degrees of freedom
   MLE : 31.06 on 30 degrees of freedom

Computing 
only a Robust 
GLIM Fit

Use the function glmRob to compute only the robust fit. For example,
for the conditionally unbiased bounded influence example:

> breslow.robfit <- glmRob(sumY ~ Age10 + Base4*Trt,
+ family = poisson, data = breslow.dat)

γ 0.02=
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Chapter 3  Robust Generalized Linear Models
> breslow.robfit
Call:
glmRob(formula = sumY ~ Age10 + Base4 * Trt, family =

poisson, data = breslow.dat)

Coefficients:
 (Intercept)     Age10   Base4        Trt  Base4:Trt
    1.629352 0.1286164 0.14723 -0.2211265 0.01529229

Degrees of Freedom: 59 Total; 54 Residual
Residual Deviance: 3962.335 

You can also use plot and summary to obtain more detailed
information and plots, just as you would do with a “glm” object. The
other estimates are fitted in a similar manner. For example, the
Mallows-type estimate is obtained by typing

> leuk.mallows.default <- glmRob(y ~ wbc + ag,
+ family = binomial, data = leuk.dat,
+ fit.method = "mallows")
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CONTROLLING OPTIONS FOR ROBUST GILM FITS

Conditionally 
Unbiased 
Bounded 
Influence

The user can set the parameters of the fitting algorithm for the
Conditionally Unbiased Bounded Influence robust GLIM fits. These
include: the maximum number of iterations, the tolerance of the
convergence criterion, and the tuning constant of the final estimate.
These control parameters can be set from the GUI by clicking the
Advanced tab in Figure 3.1, or from the command line with the
function glmRob.control. For example, in the commands shown
below we set the maximum number of iterations to 50 and the
precision of the convergence criteria to 10^-5.

> breslow.control <- glmRob.cubif.control(maxit=50,
+ epsilon=1e-5)
> breslow.robfit <- glmRob(formula =
+ sumY ~ Age10 + Base4 * Trt, family = poisson,
+ data = breslow.dat, cubif.control = breslow.control)
> coef(breslow.robfit)

 (Intercept)     Age10    Base4        Trt Base4:Trt
    1.629497 0.1286316 0.147239 -0.2210817 0.0152693

The parameter cpar controls the initial estimate used in the iterative
algorithm. By default it is set to 1.5. For more information see the
section Theoretical Details below.

Mallows type 
estimate

For these estimates you can control the weighting function and its
corresponding tuning constant. For example

> mallows.par <- glmRob.mallows.control(wt.fn = wt.huber,
+ wt.tuning = 3)
> mallows.rob <- glmRob(y~a + b + c, data = mallows.dat,
+ family = binomial, fit.method = 'mallows',
+ mallows.control = mallows.par)

The default values are wt.fn = wt.carroll and wt.tuning = 8. See
section Theoretical Details below for more information on them.
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Chapter 3  Robust Generalized Linear Models
Consistent 
Misclassificatio
n estimate

For these estimates you can set the probability of misclassification, the
tolerance for the convergence criterion and the maximum number of
iterations. You can also specify an initial value for the iterations and
you can have glmRob print a trace of the current values of the
parameters estimates while the algorithm iterates. 

> misclass.par <- glmRob.misclass.control(mc.gamma = .01,
+ mc.maxit = 50, mc.tol = 1e-6, mc.trc = T)
> misclass.rob <- glmRob(y ~ ag + wbc, data = leuk.dat,
+ family = binomial, fit.method = 'misclass',
+ misclass.control = misclass.par)

The default values are mc.gamma = 0.01, mc.maxit = 30, mc.trc = F,
mc.tol = 0.001 and mc.initial = NULL. 
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Theoretical Details
THEORETICAL DETAILS

Conditionally 
Unbiased 
Bounded 
Influence 
Estimate

Consider general M-estimators defined implicitly by an estimating
equation of the form

In order to obtain consistent estimators we require that the above
equation be unbiased. We say that an M-estimator is conditionally
Fisher consistent if it satisfies

for all  and for all . Pregibon (1981) and Stefanski, Carroll and
Ruppert (1986) proposed M-estimates for Generalized Linear Models.
However, those proposals are not conditionally Fisher consistent as
defined above. Künsh, Stefanski and Carroll (1989) derived M-
estimates that satisfy the above consistency condition and that are
optimal in the following sense: they achieve minimum trace of the
asymptotic covariance matrix subject to an upper bound on their
sensitivity. Intuitively the sensitivity of an estimator measures the
maximum influence that an arbitrary observation can have on any
linear combination of the parameters (see Hampel et al. 1986). Künsh,
Stefanski and Carroll (1989) also showed that the resulting estimator

 is asymptotically normally distributed.
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Chapter 3  Robust Generalized Linear Models
The estimate  is defined by the following system of equations

where  is the inverse of the link function;  is a  by  lower
triangular matrix;  is the Huber

function with tuning constant ; ;  is a user chosen

tuning constant that satisfies ;  is the identity matrix of

dimension ;  in the Binomial case, and  in the

Poisson case. The function  is given by
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Theoretical Details
(see Marazzi, 1993). The fitting algorithm iterates updating estimates

of ,  and . The initial estimates are Mallows estimates  and

 that solve the following equations:

where  is chosen so that  is consistent for normally distributed

data,  is the Huber’s function as above, and  and  are chosen by

the user. The option ufact controls  in both sets of equations by

setting  where  is the number of predictors. The
constant  for the initial estimate is set with the option cpar. 

Künsh, Stefanski and Carroll (1989) show that the estimate  is
asymptotically normal. Its asymptotic covariance matrix can be
consistently estimated by 

where
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Chapter 3  Robust Generalized Linear Models
Mallows-type 
estimate

To calculate these estimates we need to asses the leverage of each

observation . Assume that  where  and let

 be a weight function that depends on a tuning constant . Let

 be robust estimates of the center and dispersion matrix of the
observations  (see the documentation for the Splus function covRob

for details of these estimates). Let  be the
Mahalanobis distances of the covariates to their centres. Define the
weights  as 

Carroll and Pederson (1993) discuss the following choice for :

where 

The choice  gives weight 0.75 or higher to those points with
, weight 0.50 or greater to those with  and weight 0.25

or greater when . 

Another choice for the weights is based on Huber’s function . Let 
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Theoretical Details
where  is  times the square root of the -quantile of a

 distribution. Typically  or . To use these
functions set wt.fn = wt.huber in glmRob.mallows.control().

The default values in glmRob.mallos.control() are wt.fn =
wt.carroll and wt.tuning = 8. 

Carroll and Pederson (1993) show that the Mallows-type estimate is
asymptotically normal and that its asymptotic covariance matrix can
be consistently estimated by

where

and  denotes the derivative of .

Consistent 
Misclassificatio
n Estimate

Copas (1988) proposed a misclassification model for the case of
Bernoulli logistic regression. In this model each observation  is

mistakenly classified with probability , , i.e.: 

where  as before. The MLE estimator
based on this model is not consistent to the parameters of the logistic
model. Carroll and Pederson (1993) proposed the following simple
procedure to obtain a consistent estimate based on the
misclassification model. 
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Chapter 3  Robust Generalized Linear Models
with 

Now, the corrected estimator  is defined by the following equation:

To specify a particular value of  use the option mc.gamma in
glmRob.misclass.control(). 

These estimates are determined by the choice of , the probability of
misclassification. Carroll and Pederson (1993) show that these
estimates have the same asymptotic behavior as the Mallows-type
ones discussed above. They only difference is that in the above
formulas for the asymptotic covariance matrix we have to use
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Chapter 4  Robust Analysis of Variance
INTRODUCTION

This chapter shows you how to analyze designed experiments using
robust model fitting as a complement to least squares model fitting.
For designed experiments, it is usually assumed that experimental
errors are normally distributed. In this case, the classical Analysis of
Variance (ANOVA) technique based on least squares is safe to use.
However, in many experiments the data may contain outliers that
exert considerable undesirable influence on the least squares fit, and
subsequent misleading analysis in the ANOVA context.

Outliers in data from industrial or laboratory experiments might be
due to recording errors, or they might be valid and highly informative
data points. For example, when industrial design experiments are
performed, the independent variable design points may sometimes be
set at rather extreme values in order to see how the dependent
variable responds to extreme conditions. In such cases the response
may take on extreme values that appear as outliers. Such data points
should not be ignored as they may convey very important
information about the response variable.

No matter what the cause of outliers, it is highly desirable to have a
good robust model fitting method that fits the majority of the data
well. Then outliers will be clearly exposed in the residuals for further
study, no matter what the cause of the outliers. The robust ANOVA
method that you will learn to use in this chapter accomplishes exactly
that purpose. We remark that the robust fitting method will often lead
to a better model choice with regard to the inclusion or exclusion of
interaction terms. The reason is that even a single outlier can result in
apparent significant interaction effects when fitting by the classical
least squares method, and this is not the case when using a robust fit.

The robust ANOVA model fitting is carried out using an MM-
estimate as in the case of robust linear regression described in
Chapter 2, Robust Linear Regression, with one important difference.
Because there are no independent variable leverage points in
designed experiments, the computationally expensive initial estimate
based on resampling is not required.   Instead an L1 initial estimate is
used.
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Fitting LS and Robust ANOVA Models with the NT/Windows GUI
FITTING LS AND ROBUST ANOVA MODELS WITH THE NT/
WINDOWS GUI

This section shows you how to fit a robust ANOVA model using the
NT/Windows GUI dialog.

The Lawson 
Data Set

The data object lawson.dat in the Robust Library consists of sixteen

measurements from an unreplicated 24 designed experiment. View
this data object via the GUI as follows. Display the Robust Library
data sets in the left-hand pane of the Object Browser by one of the
methods recommended in the Introduction chapter. Then double
click on the lawson.dat   icon to display the data sheet shown below:

Figure 4.1:  The Lawson Data Set
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Chapter 4  Robust Analysis of Variance
You do not spot any unusual observations by simply looking at the
data in tabular form.

Computing 
Both Least 
Squares and 
Robust Fits

You easily compute both classical and robust ANOVA fits to the
lawson.dat data set using the fixed effects ANOVA dialog in the
Robust Library. 

Choose Robust � Fixed Effects ANOVA from the menubar. The
dialog shown below appears.

Note that the Robust ANOVA dialog is identical to the (classical)
ANOVA dialog under Statistics � ANOVA � Fixed Effects, except
for the Fitting Option group at the upper right of the Model page,

Figure 4.2:  The Robust ANOVA Dialog: Model Page
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Fitting LS and Robust ANOVA Models with the NT/Windows GUI
some differences on the Plot page, and the Advanced tab which
replaces the Compare tab. The default fitting option LS + Robust
computes robust and least squares fits and ANOVA, LS computes
only with a least squares fit, and Robust computes with a robust fit.

Type in lawson.dat under Data Set of the Model page, select y from
the Dependent Variable drop-down list, and select ALL from the
Independent Variable drop-down list. The formula y~.
automatically appears in the Formula box, where y is the dependent
variable and the “.” on the right-hand side of the “~” indicates that all
the four independent variables (factors) C1, C2, C3, and C4 are included
in the model. (Alternatively, select your dependent and independent
variables in the Object Explorer before opening the Robust ANOVA
dialog, as described in the Robust Linear Regression chapter).
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Chapter 4  Robust Analysis of Variance
Now click the Plot page tab to view the Plot page below. 

Note the checked boxes for the Residuals Normal QQ, Estimated
Residual Density and Standardized Resid. vs Index (Time) plots. Uncheck
the Estimated Residual Density box in the Plots region, and check the
Estimated Residuals Density box in the Overlaid Plots region.

Click OK. This results in the computation of an ANOVA table for the
Robust and LS fits, and three diagnostic plots corresponding to the
above plot selections.

Figure 4.3:  The Robust ANOVA Dialog: Plots Page
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Fitting LS and Robust ANOVA Models with the NT/Windows GUI
The Report 
Window

First look at the Report Window, which shows the following two
ANOVA tables, one for the LS fit and one for the robust fit, with
values arranged to facilitate easy comparison of the LS versus robust
results: 

Calls: 
Robust : aovRob(formula = y ~ C1 + C2 + C3 + C4,

data = lawson.dat, na.action = na.exclude)
    LS : aov(formula = y ~ C1 + C2 + C3 + C4,

data = lawson.dat, na.action = na.exclude)

Comparison of ANOVA Tables:
          Df Sum of Sq Mean Sq RobustF   Pr(F) 
Robust C1  1    0.3535  0.3535  0.1920  0.6552
    LS C1  1    2.5600  2.5600  0.3797  0.5503
Robust C2  1   39.0057 39.0057  5.5157  0.0167
    LS C2  1   71.2336 71.2336 10.5646  0.0077
Robust C3  1   27.3054 27.3054  8.5384  0.0029
    LS C3  1   55.0564 55.0564  8.1654  0.0156
Robust C4  1    0.0305  0.0305  0.0066  0.9341
    LS C4  1    4.0804  4.0804  0.6052  0.4530

Note that the robust F and p-values for the robust fit are rather
different than those from the classical least squares fit.   For details on
the robust F and p-values, see the Theoretical Details section.

The Diagnostic 
Plots

From the above ANOVA tables, you see that the classical analysis of
variance produces different results from the robust analysis, and you
wonder whether this is caused by one or more outliers in the data.
You quickly answer this question by looking at the three diagnostic
plots you selected, which give you a quick visual comparison of
results of the robust and classical fits. You find these plots on the three
tabbed graph sheet pages, as shown below.

Look at normal QQ-plots for the LS and Robust residuals shown in
Figure 4.4.
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Chapter 4  Robust Analysis of Variance
Figure 4.4:  Normal QQ-Plots for LS and Robust Residuals

The dotted lines are 95% simulation envelopes. For the classical least
squares fit you conclude that the residuals are approximately
normally distributed, except for one moderately sized outlier and
three marginal outliers in the right hand part of the left panel.
However, the normal qq-plot of residuals from the robust fit in the
right hand panel shows that there is really only one residual outlier,
corresponding to the 13th observation, and that all the other residuals
conform quite well to a normal distribution.   For details on the 95%
simulation envelopes, see the Theoretical Details section.

The plots of Standardized Residuals versus Index (in this case
observation number) for the LS and Robust fits are shown in Figure
4.5 below. The horizontal reference lines at  correspond to tail
probabilities of .006 for a standard normal random variable. Note that
the LS residuals barely hint at the presence of an outlier, while the
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Fitting LS and Robust ANOVA Models with the NT/Windows GUI
robust residuals clearly identify observation #13 as an outlier. These
plots are consistent with the behavior of the normal QQ-plots in
Figure 4.4.

Figure 4.6 below shows overlaid probability density estimates for the
residuals from the least squares and robust fits. The density estimate
for the latter gives a much more accurate picture of the distribution of
the error term in the model: The main mode of the density estimate
for the Robust residuals is well centered on zero, and has a single
bump in the right-hand tail reflecting the presence of a single large
positive outlier. On the other hand for the least squares fit, the density
estimate main mode is shifted to the left of the origin, and there are
two misleading bumps to the right.

Figure 4.5:  Standardized Residuals vs Index for the LS and Robust fits
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Chapter 4  Robust Analysis of Variance
Figure 4.6:   Least Squares (Classical) and Robust Residuals Density Estimates
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Computing Robust ANOVA at the Command Line
COMPUTING ROBUST ANOVA AT THE COMMAND LINE

View the Data View lawson.dat at the command line by typing lawson.dat and
pressing ENTER:

> lawson.dat
   C1 C2 C3 C4     y
 1  N  N  N  N 47.46
 2  P  N  N  N 49.62
 3  N  P  N  N 43.13
 4  P  P  N  N 46.31
 5  N  N  P  N 51.47
 6  P  N  P  N 48.49
 7  N  P  P  N 49.34
 8  P  P  P  N 46.10
 9  N  N  N  P 46.76
10  P  N  N  P 48.56
11  N  P  N  P 44.83
12  P  P  N  P 44.45
13  N  N  P  P 59.15
14  P  N  P  P 51.33
15  N  P  P  P 47.02
16  P  P  P  P 47.90

Fitting LS and 
Robust ANOVA 
Models

Use the fit.models function in the Robust Library to fit two or
more ANOVA models at once. For example, you fit ANOVA models
for the lawson.dat data set with both least squares and robust fits as
follows:

> lawson.both <- fit.models(list(Robust="aovRob", 
+ Classical="aov"), y~., data=lawson.dat)

The function aovRob computes the robust fit and the function aov
computes the LS fit. The returned object lawson.both is of class
“fit.models”. You use the print, summary and plot functions to
compare different aspects of the two fitted models.
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Chapter 4  Robust Analysis of Variance
> lawson.both

Calls: 
   Robust    aovRob(formula = y ~ ., data = lawson.dat)
Classical    aov(formula = y ~ ., data = lawson.dat)

Terms:
                               C1      ...       C4  Residuals 
   Robust Sum of Squares  0.35348   ...   0.03047  98.24935
Classical Sum of Squares  2.56000   ...   4.08040  74.16920
   Robust Deg. ofFreedom        1      ...       1        11
Classical Deg. ofFreedom        1      ...       1        11

Residual Scale Estimates:
   Robust : 2.061 on 11 degrees of freedom
Classical : 2.597 on 11 degrees of freedom

Applying 
Generic 
Functions to 
Individual 
Models

Also, you can apply the print, summary and plot functions to
individual fitted models in a “fit.models” object by using the models =
optional argument, with the right-hand side a number indicating the
position of the model in the “fit.models” object. For example, you
view a summary of the robust fit as follows:

> summary(lawson.both, models = 1)

Calls: 
Robust : aovRob(formula = y ~ ., data = lawson.dat)

Comparison of ANOVA Tables:
          Df Sum of Sq Mean Sq RobustF   Pr(F)
Robust C1  1    0.3535  0.3535  0.1920  0.6552
Robust C2  1   39.0057 39.0057  5.5157  0.0167
Robust C3  1   27.3054 27.3054  8.5384  0.0029
Robust C4  1    0.0305  0.0305  0.0066  0.9341

Here the models = optional argument specifies that you want a
summary of the first fit only. Alternatively, you can call the print,
summary and plot methods on the individual elements of the
“fit.models” object. For example, you can make diagnostic plots for
the robustly fitted model in lawson.both as follows:
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Computing Robust ANOVA at the Command Line
> plot(lawson.both$Robust)

Make plot selections (or 0 to exit):
 
1: plot: All 
2: plot: Normal QQ-Plot of Residuals 
3: plot: Estimated Kernel Density of Residuals 
4: plot: Residuals vs Fitted Values 
5: plot: Sqrt of abs(Residuals) vs Fitted Values 
6: plot: Response vs Fitted Values 
7: plot: Residual-Fit Spread 
8: plot: Standardized Residuals vs Index (Time) 
9: plot: Overlaid Normal QQ-Plot of Residuals 
10: plot: Overlaid Estimated Density of Residuals 
Selection(s): 

Fit Only a 
Robust ANOVA 
Model

The robust ANOVA method can also be invoked from the command
line using the function aovRob. For example, you can use the
following command to fit the same model as in the previous sections:

> lawson.rob <- aovRob(y~., data=lawson.dat)

The syntax for aovRob is the same as that for aov, and the returned
object lawson.rob is of class “aovRob”, which inherits from the class
“lmRob”. Typing the name of the object automatically invokes the
print method giving a short summary of the fit:

> lawson.rob
Call:
aovRob(formula = y ~ ., data = lawson.dat)

Terms:
               C1       C2       C3       C4 
 RobustF 0.191975 5.515712 8.538365 0.006575
Chisq Df        1        1        1        1

Robust residual scale: 2.060918 

Use the summary function on this object to print the ANOVA table:
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> summary(lawson.rob)
   Df   Sum of Sq     Mean Sq    RobustF       Pr(F)
C1  1  0.35348430  0.35348430 0.19197506 0.655245174
C2  1 39.00570248 39.00570248 5.51571219 0.016699961
C3  1 27.30537521 27.30537521 8.53836475 0.002904638
C4  1  0.03046612  0.03046612 0.00657517 0.934145352

The sums-of-squares are “robust sums-of-squares” and the F-test is a
“robust F test”. For information on these see the Theoretical Details
section at the end of this chapter.

To view the diagnostic plots, use the command:

> plot(lawson.rob)

Make plot selections (or 0 to exit):
 
1: plot: All 
2: plot: Normal QQ-Plot of Residuals 
3: plot: Estimated Kernel Density of Residuals 
4: plot: Residuals vs Fitted Values 
5: plot: Sqrt of abs(Residuals) vs Fitted Values 
6: plot: Response vs Fitted Values 
7: plot: Residual-Fit Spread 
8: plot: Standardized Residuals vs Index (Time) 
9: plot: Overlaid Normal QQ-Plot of Residuals 
10: plot: Overlaid Estimated Density of Residuals 
Selection(s): 
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THEORETICAL DETAILS

Normal QQ-
Plot 
Simulation 
Envelopes

The simulation envelopes are constructed by generating a 100-by-n
matrix of independent standard normal samples. The rows of this
matrix are then sorted so that the first column contains a sample of
first order statistic, the second column contains a sample of the

second order statistic, and so on. The third row and the 98th row
plotted against the sample quantiles form a roughly 95% quantile
based confidence envelope for the observed values. For a more
thorough discussion of simulation envelopes see Atkinson pp. 34-48.

Robust Sums-
of Squares

The robust sums-of-squares are obtained by using the well-known
expressions for sums-of-squares in terms of sums of squared model
coefficients for balanced designs, using the robust model-coefficient
estimates. For example in a two-way layout with I levels for main

effects estimates , J levels for main effects estimates , IJ

interaction estimates , and K observations per cell, the adjusted
sums of squares is:

or

.

We compute robust sums-of-squares by using robust estimates in
place of the usual least squares estimates of the main effects and
interactions.   We compute such robust sums-of-squares only for
balanced designs.

Robust F-Tests The robust F-test is of the same form as the robust F-test used for
robust linear regression. See the Theoretical Details section of
Chapter 2, Robust Linear Regression.
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Chapter 5  Robust Covariance Matrix Estimation
OVERVIEW OF THE METHOD

The robust covariance estimators implemented in the Robust
Library function covRob include the Fast MCD estimator, the
Donoho-Stahel projection  estimator, an M-estimator based on the
Tukey biweight function that uses the Fast MCD for an initial
estimate, and a new and relatively untested “pairwise” estimator
(where the pairwise covariances are estimated using either the
Gnanadesikan-Kettenring method or the quadrant correlation
method) that adjusts the resulting covariance matrix to be positive
definite. The default behavior is to choose an estimator from among
the Donoho-Stahel, the Fast MCD and the quadrant correlation
version of the pairwise estimtor based on the size of the data.  If the
data has dimension smaller than 1000 by 10 or smaller than 5000 by 5
the Donoho-Stahel is used.  If the data has dimension greater than
50000 by 20 then the pairwise estimator is used.  Otherwise (for
medium sized problems), the Fast MCD is used.

We note that the robust correlation matrices are obtained from robust
covariance matrices by dividing the latter by pairwise products of
robust scale estimates obtained from the robust covariance matrix
estimates.

Timing The robust covariance estimators included in the Robust Library rely
on computationally intense algorithms. The following tables compare
the computation time required for each of the three estimators on
several different sized data sets. These simulations were carried out
on a Sun SPARC Ultra-60 with 1024MB of RAM.

Table 5.1:  MCD, Time in Seconds

n = 500 n = 1,000 n = 10,000 n = 50,000

p = 2 0.87 .77 1.24 3.96

p = 5 1.95 1.74 2.59 6.18

p = 10 4.18 3.52 5.40 10.98

p = 30 31.52 26.26 33.86 49.92
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NOTE: Timing results for the pairwise estimators will be provided
here in a future release of the Robust Library.  This estimator is quite
new, and we encourage you to experiment with it and provide your
feedback to us.

Table 5.2:  Donoho-Stahel estimator, Time in Seconds

n = 500 n = 1,000 n = 10,000 n = 50,000

p = 2 .84 1.87 31.04

p = 5 .92 1.98 31.86

p = 10 9.17 19.74 312.31

p = 30

Table 5.3:  M-estimator, Time in Seconds

n = 500 n = 1,000 n = 10,000 n = 50,000

p = 2 1.35 1.55 7.01 31.58

p = 5 3.28 2.75 12.01 61.26

p = 10 5.85 5.22 35.15 142.61

p = 30 35.79 34.80 129.96 496.00
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ds
COMPUTING ROBUST COVARIANCE WITH THE WINDOWS 
GUI

Computing 
Both Classical 
and Robust 
Estimates

You can compute both classical and robust covariance or correlation
estimates and compare the results using the Robust Covariance
dialog. Try this out with the data set woodmod.dat which is included in
the Robust Library. Display the Robust Library data sets in the left-
hand pane of the Spotfire S+ Object Explorer using one of the metho
recommended in the Introduction then select the data set
woodmod.dat. Choose Robust � Covariance (Correlations) ... from
the Spotfire S+ menubar to open the Robust Covariance dialog.

 

Figure 5.1:  Robust Covariance (Correlation) Dialog: Estimates Page

NOTE: You could also skip selecting woodmod.dat in the Object
Explorer, in which case you could type woodmod.dat into the Data
Set combo box.

The default is to compute both classical and robust covariance
estimates. You compute only one or the other by clicking the radio
button of your choice in the Method region.
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Computing Robust Covariance with the Windows GUI
If you wish to compute covariances or correlations for only some of
the variables in the data set, then select those variables in the
Variables list.

To compute correlation estimates rather than covariance estimates,
click the Correlations radio button in the Type region of the dialog.

Click on other page tabs to see what options are available for
covariance estimation. For example, click the Plot page tab to reveal
the plot options for the returned object:

Figure 5.2:  Robust Covariance (Correlation) Dialog: Plot Page
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Eigenvalues 
Plot

The Eigenvalues comparison plot is shown in Figure 5.3. This plot is a
convenient way for you to immediately see whether or not there is
much difference between the classical and robust covariance (or
correlation) estimates.

Mahalanobis 
Distances

The Mahalanobis distances based on the classical and robust
estimates are shown with Trellis display in Figure 5.4. From the
distances based on classical covariance estimate, you do not see any
outliers in the data set. In contrast, the robust distances using the
default robust covariance estimate reveal quite a few outliers in the
data set that are otherwise hard to find.

Figure 5.3:  Eigenvalues Plot
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Figure 5.4:  Robust and Classical Mahalanobis Distances

Distance- 
Distance Plot

The Distance-Distance Plot in Figure 5.5 plots the robust distances
versus the classical Mahalanobis distances. The dashed line is the set
of points where the robust distance is equal to the classical distance.
The horizontal and vertical dotted lines are drawn at values equal to
square root of the 97.5% quantile of a chi-squared distribution with p
degrees of freedom. Points beyond these lines can be considered
outliers.
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Figure 5.5:  Robust Distance vs. Classical Distance

Visual 
Correlation 
Comparison 
Plot

This plot compares robust and classical correlation matrix estimates
by interpreting the correlations in the upper triangle of each matrix as

ellipses. The ellipses are drawn such that the ith, jth ellipse is the
contour of a bivariate normal distribution with correlation ρij. The
lower triangle contains the numerical correlations. The overlaid
ellipses are particularly useful for spotting where the robust and
classical correlation estimates differ. In practice, this plot works best
for matrices smaller than 10 by 10 and may still be useful for matrices
as large as 25 by 25.
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Figure 5.6:  Classical vs Robust Correlation Ellipses Plot

Correlation 
Image Display

For sufficiently large covariance or correlation matrices the above
display will no longer be useful because the ellipses and text will be
too small. So we provide you with an image type display that gives an
indication of pairs of variables for which the classical and robust
correlations differ substantially. Specifically, the image function is used
to display “significant” differences between robust and classical

correlation matrix estimates as follows: the i-jth (j > i) element of the
image matrix displays the standardized difference of the Fisher z-
transformations of the robust and classical correlations for the two
variables corresponding to i and j: 

where n is the number of observations and p is the dimension of the

data. Since Zrob and Zcls are approximately standard normal and
typically positively correlated, 2(n-p) is conservative upper bound on
the variance of their difference. The significance is calculated from
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Chapter 5  Robust Covariance Matrix Estimation
the quantiles of a standard normal so the values in the Correlation
Image Display are almost certain to be more significant than the scale
suggests.

 

Note that you interpret the legend intervals as follows: a cell value
coded 0% has a value anywhere between zero and the 95th-percentile
of the standard normal distribution; a cell value coded 95% has a
value anywhere between the 95th and the 99th-percentile of the
standard normal distribution; a cell value coded 99% has a value at
least as large as the 99th-percentile of the standard normal
distribution.

You can use the command line function identify.cov to view the robust
and classical correlation estimates for a given cell. The function
requires a graphsheet showing a Correlation Image Display and the
fit.models object that created it. If the plot was created with the

Figure 5.7:  Display of Significant Differences Between Classical and Robust 
Correlation Estimates
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Computing Robust Covariance with the Windows GUI
GUI, the most recent object is saved as .Last.guiCovRob (unless you
changed the default value in the Save As field). In this case, use the
command,

> identify.cov(.Last.guiCovRob)

and select a cell from the display. For example, clicking in the (2,3)
cell produces:

Correlation between V2 and V3:
        correlation
Robust:   0.7078387
    LS:  -0.2461404

NOTE: The above image display is a first attempt to display/compare
large covariance matrix estimates. We hope to improve it in future
releases of the Robust Library and we welcome any suggestions you
may have.

The Statistics 
Report

The Report window output is shown below.

Calls: 
   Robust : covRob(data = woodmod.dat, na.action = na.omit)
Classical : cov(data = woodmod.dat, na.action = na.omit)

Comparison of Covariance/Correlation Estimates:
 (unique correlation terms) 
            [1,1]   [2,1]   [3,1]   [4,1]   [5,1]   [2,2]
   Robust  0.0102  0.0018  0.0011 -0.0002 -0.0008  0.0005
Classical  0.0083 -0.0003  0.0036  0.0027 -0.0029  0.0005

            [3,2]   [4,2]   [5,2]   [3,3]   [4,3]   [5,3]
   Robust  0.0008  0.0001  0.0005  0.0052  0.0008  0.0021
Classical -0.0004 -0.0008  0.0006  0.0042  0.0016 -0.0017

            [4,4]   [5,4]   [5,5]
   Robust  0.0035  0.0012  0.0042
Classical  0.0039 -0.0008  0.0028

Comparison of Location Estimates: 
              V1     V2     V3     V4     V5
   Robust 0.5671 0.1165 0.5050 0.5520 0.9017
Classical 0.5509 0.1330 0.5087 0.5112 0.9070
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Comparison of Eigenvalues: 
         Eval. 1 Eval. 2 Eval. 3 Eval. 4 Eval. 5 
   Robust 0.0108  0.0074  0.0031  0.0022  0.0001 
Classical 0.0129 0.0030 0.0021 0.0016 0.0001 
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he
COMPUTING ROBUST COVARIANCE AT THE COMMAND 
LINE

Computing 
Both Classical 
and Robust 
Estimates

You can simultaneously compute classical and robust covariance (or
correlation) estimates at the command line using the function
fit.models in the Robust Library:

> woodmod.fm <- fit.models(list(Robust = "covRob",
+ Classical = "cov"), corr = T, data = woodmod.dat)

> woodmod.fm

Calls: 
   Robust : covRob(data = woodmod.dat, corr = T)
Classical : cov(data = woodmod.dat, corr = T)

Comparison of Covariance/Correlation Estimates:
 (unique covariance terms) 
            [1,1]   [2,1]   [3,1]   [4,1]   [5,1]   [2,2]
   Robust  0.0102  0.0018  0.0011 -0.0002 -0.0008  0.0005
Classical  1.0000 -0.1447  0.6115  0.4704 -0.5999  1.0000

            [3,2]   [4,2]   [5,2]   [3,3]   [4,3]   [5,3]
   Robust  0.0008  0.0001  0.0005  0.0052  0.0008  0.0021
Classical -0.2461 -0.6039  0.5275  1.0000  0.3885 -0.4980

            [4,4]   [5,4]   [5,5]
   Robust  0.0035  0.0012  0.0042
Classical  1.0000 -0.2401  1.0000

Comparison of Location Estimates: 
              V1     V2     V3     V4     V5
   Robust 0.5671 0.1165 0.5050 0.5520 0.9017
Classical 0.5509 0.1330 0.5087 0.5112 0.9070

Note that the optional argument corr=T tells Spotfire S+ to compute t
correlation matrix instead of the covariance matrix (the default,
corr=F, is to compute a covariance estimate). The returned object is
of class “fit.models”. You can use the generic plot function on the
returned object:
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> plot(woodmod.fm)

which brings up the following menu of plot options for covariance
models.

Make plot selections (or 0 to exit):
 
1: plot: All 
2: plot: Eigenvalues of Covariance Estimate 
3: plot: Sqrt of Mahalanobis Distances 
4: plot: Ellipses Matrix 
5: plot: Distance - Distance Plot 
Selection(s):

The menu choices 2 through 5 produce the plots that appear in Figure
5.3, Figure 5.4, Figure 5.6, and Figure 5.5 respectively. All draws all
four plots in order. You can create the Correlation Image Display
described in the previous section using the function image.cov,

> image.cov(woodmod.fm)

and you can view the correlation of specific cells using identify.cov.

> identify.cov(woodmod.fm)

Finally, you can use the summary function on the “fit.models” object
to produce the output shown in the Statistics Report above.

Computing 
Only One 
Estimate

Use the function cov if you just want a classical covariance or
correlation matrix estimate, and use the function covRob if you just
want a robust covariance matrix estimate. For example:

> covRob(stack.dat)
Call:
covRob(data = stack.dat)

Robust Estimate of Covariance: 
               Loss Air.Flow Water.Temp Acid.Conc. 
      Loss 30.35614 32.18611  12.727357  19.505018
  Air.Flow 32.18611 36.94189  12.223170  24.125233
Water.Temp 12.72736 12.22317   8.755008   9.727378
Acid.Conc. 19.50502 24.12523   9.727378  39.274340

Robust Estimate of Location: 
     Loss Air.Flow Water.Temp Acid.Conc. 
 13.83285 56.88652   20.51654    86.2826
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CONTROLLING OPTIONS FOR ROBUST COVARIANCE 
ESTIMATION

In this section, you will learn how to change the default settings of the
control parameters used by the robust covariance (correlation)
estimators. You can change these options either through a GUI dialog
(Windows only) or from the command line. 

From the GUI 
Dialog

To change the default options for the robust covariance or correlation
estimates from the GUI, click on the Advanced tab in the Robust
Covariance (Correlation) dialog. This opens the Advanced page
shown in Figure 5.8:

Figure 5.8:  Robust Control Parameters Dialog

The control parameters are estimator specific, only the parameters
relevant to the selected estimator are enabled in the dialog. Note that
here are no control parameters for either of the pairwise estimators. 
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Table 5.4:  MCD Parameters

GUI Option Command 
Line Option

Description

Trials: ntrial: Number of subsets used for initial estimates. Default is 500.

Quantity: quan: The integer size of the subsets over which the determinant is
minimized. Must be between the default is (n+p+1)/2 and the
n. You may provide a fraction between .5 and 1, indicating the
fraction of the data over which the determinant is minimized.

Table 5.5:  Donoho-Stahel Parameters

GUI Option Command 
Line Option

Description

Samples: nresamp: The number of resamples required (integer). If
nresamp=0, all subsamples are taken. By default,
nresamp is calculated so that P(high breakdown) = .99.

Max Resamples: maxres: The maximum number of resamples allowed.

Use Random
Subsets?

random.
sample:

A logical parameter. If TRUE, the current .Random.seed
is used. If FALSE, the seed is fixed before the samples are
drawn. For a specific seed x, at the command line use
set.seed(x) and random.sample=T.

Tune: tune: The proportion of points assigned nonzero weight. Used
to calculate the square root of the tune quantile of a chi
squared distribution with p degrees of freedom.

Contamination: eps: Fraction of contamination used to calculate nresamp. By
default, .5. If nresamp is given, eps is ignored.

Prob: prob: Probability of high breakdown used to calculate
nresamp.   Default is .99.  Ignored if nresamp is given.
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Remarks:

Since the M-estimator uses the MCD for an initial estimate, the MCD
parameters are also relevant for the M-estimator.

The control option can also be used by any function that relies on
covRob, namely princompRob and discRob.

Controlling 
Options at the 
Command Line

You can also change the default options for the robust covariance/
correlation estimation from the command line. This involves using
the covRob optional arguments estim, center, distance, and
control as well as the function covRob.control.

estim

This argument allows you to specify the robust estimator used by
covRob.  The choices are “M” for a constrained M-estimate,
“donostah” for a Donoho-Stahel estimate, “pairwiseQC” for a
quadrant correlation based pairwise estimate, “pairwiseGK” for a
Gnanadesikan-Kettenring based pairwise estimate, and “MCD” for
the Fast MCD.  The default value “Auto” chooses from among the
Donoho-Stahel, the MCD and the quadrant correlation based
pairwise estimator based on the size of the data.

Table 5.6:  M-estimator Parameters

GUI Option Command 
Line Option

Description

Contamination: r: The fraction of contamination. The default is .45.

Alpha: alpha: Fraction of points receiving zero weight. By default, .05.

Max Iterations: maxit: The maximum number of M-iterations performed. By
default, 150.

tolerance: tol: The relative precision of the solution of the M-estimate.
The default is 1e-003.

tau: tau: The tolerance used to determine the singularity of the
scatter matrix estimate. The default is 1e-006.
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center

If center = T, a robust location estimate is computed. If center = F,
then the mean is assumed to be zero. A vector containing the mean
may also be given. Note that center is only implemented for the
Donoho-Stahel estimator.

distance

If distance = T, then the Mahalanobis distances are computed.

control

A list of control parameters for the estimator named in the covRob
argument estim.  The utility function covRob.control is useful for
generating this list. It takes as arguments the name of the estimator
(the same value assigned to estim in covRob) and the names and
values of the control parameters you wish to specify.  Any parameters
not specified in the call to covRob.control will be assigned their
default values.  Refer to Figure 5.4, Figure 5.5, and Figure 5.6 for
estimator specific parameters and their default values.

Examples: Control parameters may be specified by using the function
covRob.control,

> covRob(woodmod.dat, estim = “mcd”,
+ control = covRob.control(estim = “mcd”, ntrial = 250,
+ quan = 17))

or by passing them directly to covRob.

> covRob(woodmod.dat, estim = “mcd”, ntrial = 250,
+ quan = 17))

The control argument is also useful for performing several analyses
with the same list of parameters. Use covRob.control to make the list,

> rob.params <- covRob.control(estim = “donostah”,
+ nresamp = 500)

then use rob.params as the control argument.

> covRob(woodmod.dat, estim = “donostah”,
+ control = rob.params)

When using fit.models to fit multiple covariance/correlation models
the control parameters must be specified through the control
argument.
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THEORETICAL DETAILS

MCD The minimum covariance determinant estimator of location and
covariance available in the Robust Library function covRob is similar
to the existing S-PLUS function cov.mcd. This implementation uses the
Fast MCD algorithm of Rousseeuw and Van Driessen (1999) to
approximate the minimum covariance determinant estimator. This
algorithm relies on a method called the “C-step” with which, given
any approximation to the MCD, it is possible to compute another
approximation with a smaller determinant.

Description of 
the C-step

Let  be a set of n data points in . Suppose

, , and put  and

. If , calculate the

distances

and form a new subset Hj+1 by choosing the h points with the smallest
distances dj. Then

with equality if and only if Tj+1=Tj and Sj+1=Sj.

The Fast MCD 
algorithm

By default h is set equal to [n+p+1]/2 (h may be specified by using the
control argument quan).

Repeat ntrial (by default, ntrial = 500) times:

• Draw a random (p+1)-subset J, and compute T0 = mean(J)

and S0 = cov(J). If  then extend J by adding
another randomly chosen observation. Continue until

. Compute the relative distances (as in the C-step)
and let H1 be the set of h points with the h smallest distances.

X x1x2…xn( )T
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det S0( ) 0>
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• Carry out two C-steps and calculate det(S3).

For the 10 results with the lowest det(S3), continue taking C-steps until

then return the solution (T, S) with the minimum det(S).

Remark: When n is large, the initial 2 C-steps are done on a
collection of up to 5 disjoint subsets containing at most 1500 data
points.

For a complete description of the Fast MCD see Rousseeuw, P.J. and
Van Driessen, K. (1999), A Fast Algorithm for the Minimum
Covariance Determinant Estimator, Technometrics, 41, 212-223.

Donoho-Stahel The Donoho-Stahel estimator is defined as a weighted mean and a
weighted covariance matrix, where the weight of each point is a
function of an “outlyingness” measure. The outlyingness measure r is
based on the idea that if a point is a multivariate outlier then there
must be some one-dimensional projection of the data for which the

point is a univariate outlier. Suppose  is a set of n

points in . The outlyingness r of each point xi is computed by

finding the direction  where  such that

.

The weight wi is computed using the following function of
outlyingness:
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where

            

            .

The tuning constant is set, by default, to be the square root of the .95
quantile of a chi squared distribution with p degrees of freedom.

The Donoho-Stahel estimator of location and scatter (t(X), V(X)) is
defined as

and

Computation The practical difficulty with the Donoho-Stahel estimator lies in
computing r. The algorithm implemented in the Robust Library uses
an approximation based on subsampling. Define  as r but where the
supremum is taken over a finite set , defined as follows. For each

subsample  of size p from X, let  be the direction orthogonal to the

hyperplane containing ; let  be the set of all these ’s. Since 
will in general be too large to be useful for computation, one replaces

 with a random subsample  of size N. The number of
subsamples N is computed using the relation

 where ε  (eps) is the desired breakdown
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Chapter 5  Robust Covariance Matrix Estimation
point and prob is the probability of not breaking down. By default we
take ε  = 0.5, prob = 0.99, and solve for N as a function of p. The
weights are calculated using the resulting outlyingness measure . 

For the complete description see Maronna, R.A. and Yohai, V.J.
(1995), The Behavior of the Stahel-Donoho Robust Multivariate
Estimator, Journal of the American Statistical Association, Vol. 90, No.
429, 330-341.

M-estimator Suppose  is a set of n points in Rp. An S-estimate of

multivariate location and shape is defined as the vector  and the

positive definite symmetric matrix  that minimize the determinant

of  subject to

(5.1)

where  and ρ is a non-decreasing

function on .

The function ρ is chosen to be a scaled version of a base function such
as the biweight, which reaches a maximum of 1 at c0. The constant b0

is chosen as  for breakdown r which is set by default to
0.45. Since ρ reaches a maximum of 1 at c0, b0 equals 0.45 as well.

The constant c is chosen so that the estimate  of  is consistent
under multivariate normality, that is such that 
where the expectation is taken under a chi-squared distribution with p
degrees of freedom.

Let . An S-estimate is also a solution  of a weighted
mean and covariance iteration
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(5.2)

(5.3)

where

.

Note that zero weight is given when .

The above iteration in turn can be viewed as an iterative computation
of an M-estimate of location and covariance, starting with a highly

robust initial estimate . The M-estimator included in the
Robust Library uses the Fast MCD as an initial robust estimate then
refines the estimate with M iterations using the translated biweight
function described below.

For the complete description of this estimator see Rocke, D.M. (1996),
Robustness Properties of S-Estimators of Multivariate Location and
Shape in high Dimension, Annals of Statistics, Vol 24, No. 3, 1327-1345.

Translated 
Biweight

Since zero weight is given to points with distance larger than c, one
might expect that points that are a great distance from the main body
of points will receive zero weight. This is the case for one-dimensional
data where the 50% breakdown biweight S-estimator gives zero

weight to any point xi such that . However, this behavior
changes as p increases. In 20 dimensions a point must lie at least a

distance of  from the mean to receive zero weight from the 50%
breakdown biweight S-estimator. Under normality, such distances

occur with probability on the order of 10-11. Points much closer to the
center are clear outliers, but are still assigned positive weight in the

analysis. Figure 5.9 shows the weight versus the distance  for the
biweight and the translated biweight. Also shown is the density of the
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Chapter 5  Robust Covariance Matrix Estimation
square root of a chi-squared variate with 10 degrees of freedom (the

distribution of the  for normal data). The biweight assigns positive
weight to outliers and down-weights most of the “good” data.

Figure 5.9:  The Biweight and Translated Biweight Functions

This problem is addressed by using a weight function that is
essentially the same as the biweight except that it has been translated.
It is clear from figure 5.8 that the translated biweight assigns full
weight to the major of the data and zero weight to any clear outliers.
The translated biweight is defined by a two-parameter class of ρ
functions.
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(5.6)

where

(5.7)

The parameters c and M are chosen to give the desired breakdown
point and asymptotic rejection probability (that is the probability that
a “good” data point lies beyond the rejection point).

The Pairwise 
Robust 
Covariance 
Estimator

This estimator was recently proposed by Maronna and Zamar (2001)
to allow you to compute robust covariance matrices “safely” with
many more variables p than with the other estimators above. This

estimator has complexity n in the sample size n, and  in the
number of variables p. The estimator computes all pairwise
covariances using either the estimator proposed by Gnanadesikan
and Kettenring (1972), or the quadrant correlation estimator, using a
very clever adjustment to insure that the resulting covariance matrix
is positive definite. Further details on the estimator will be provided
in the next release of the Robust Library.
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Chapter 6  Robust Principal Component Analysis

er.
+

COMPUTING ROBUST PRINCIPAL COMPONENTS WITH 
THE NT/WINDOWS GUI

Computing 
Both Classical 
and Robust 
Estimates

You can quickly compute both classical and robust principal
components estimates and generate a comparison of the results using
the Robust Principal Component Analysis dialog. Try this out with
the data set woodmod.dat which is included with the Robust Library.
First select the data set woodmod.dat in the Spotfire S+ Object Explor
Then choose Robust � Principal Components ... from the Spotfire S
menubar to open the following dialog box.

 

Figure 6.1:  Robust Principal Components Dialog: Estimates Page

NOTE: You could also skip selecting woodmod.dat in the Object
Explorer, in which case you could type woodmod.dat in Data Set
combo box.

If you wish to compute the principal components for only some of the
variables in the data set, then select those variables in the Variables
list.
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Computing Robust Principal Components with the NT/Windows GUI
The default is to compute both classical and robust principal
components estimates. You can compute only classical or only robust
estimates by clicking the radio button of your choice in the Method
region.

To base the principal component analysis on robust correlation
estimates rather than covariance estimates, click the Correlations
radio button in the Type region of the dialog.

Click on other page tabs to see what options are available for
covariance estimation. For example, click the Plot page tab to reveal
the plot options for the returned object.

Figure 6.2:  Robust Principal Components Dialog: Plot Page

Scatter Plot of 
Components

This Trellis display plots pairwise the scores of the principal
components for the robust model and for the classical model. You can
use the which components field to specify the components included in
the plot. The built in choices are “Auto” and “All”. “All” includes all
of the components, and “Auto” displays the top five components (all
139



Chapter 6  Robust Principal Component Analysis
if there are less than 5). Additionally, an integer vector may also be

given. For example c(1, 2, 5) would plot the scores for the 1st, 2nd,

and 5th components.

Figure 6.3:  Scatter Plot of Components
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Computing Robust Principal Components with the NT/Windows GUI
Loadings The second option produces a side-by-side plot of the loadings for
each component. Only four components are displayed per page so
that high dimensional cases will not confound the plot.

Figure 6.4:  Robust and Classical Loadings (first page only)
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Chapter 6  Robust Principal Component Analysis
Screeplot The final choice is an overlaid screeplot.

The Statistics 
Report 
Window

The Long Output and Loadings are shown below.

Calls: 
   Robust : princompRob(data = woodmod.dat, na.action = 
na.omit)
Classical : princomp(data = woodmod.dat, na.action = 
na.omit)

Importance of components:

Standard deviation
          Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 
   Robust  0.1039  0.0862  0.0561  0.0466  0.0079
Classical  0.1105  0.0530  0.0448  0.0394  0.0101

Proportion of Variance
          Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 
   Robust  0.4574  0.3147  0.1332  0.0920  0.0026
Classical  0.6534  0.1506  0.1074  0.0831  0.0055

Figure 6.5:  Overlaid Screeplot
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Computing Robust Principal Components with the NT/Windows GUI
Cumulative Proportion
          Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
   Robust  0.4574  0.7721  0.9054  0.9974       1
Classical  0.6534  0.8040  0.9114  0.9945       1

Loadings:
    Robust 
   Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
V1 -0.962  -0.133  -0.128  -0.104  -0.172 
V2 -0.181                           0.974 
V3 -0.201   0.686   0.511   0.472         
V4          0.347  -0.840   0.416         
V5          0.619  -0.127  -0.765  -0.121 

 Classical 
   Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
V1 -0.760 -0.252  0.530 -0.235 -0.151
V2        -0.194  0.111 -0.349  0.907
V3 -0.444        -0.829 -0.325       
V4 -0.343  0.902                0.245
V5  0.321  0.274  0.130 -0.843 -0.307
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COMPUTING ROBUST PRINCIPAL COMPONENTS 
ESTIMATES AT THE COMMAND LINE

Computing 
Both Classical 
and Robust 
Estimates

You can compute both classical and robust estimates of the Principal
Components at the command line using the Robust Library
function fit.models.

> wood.rpc <- fit.models(list(Classical = "princomp",
+ Robust = "princompRob"), data = woodmod.dat)
> wood.rpc

Calls: 
Classical : princomp(data = woodmod.dat)
   Robust : princompRob(data = woodmod.dat)

Standard deviations:
              Comp.1     Comp.2     Comp.3     Comp.4
Classical 0.11049902 0.10394430 0.05304690 0.08621876
   Robust 0.05609822 0.03940449 0.04661103 0.01010690

               Comp.5
Classical 0.044797818
   Robust 0.007907684

The number of variables is 5 and the number of observations 
is 20.

The returned object is of class “fit.models”. You can use the generic
plot function on the returned object:

> plot(wood.rpc)

which displays the following menu of choices.

Make plot selections (or 0 to exit):
 
1: plot: All 
2: plot: Trellis of Component Scatter Plots 
3: plot: Loadings 
4: plot: Variances 
Selection(s):
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Computing Robust Principal Components Estimates at the Command Line
Choices 2 through 4 correspond to Figure 6.3, Figure 6.4, and Figure
6.5 respectively. All draws all three plots in order.

The generic function summary is also supported for class
“fit.models” objects. The following command will produce the
output found in the Statistics Report shown above.

> summary(wood.rpc, loadings = T)

Computing 
Only One 
Estimate

Use the function princomp if you only want a classical principal
component analysis, and use the function princompRob if you want
only a robust estimate. For the robust case:

> princompRob(woodmod.dat)

Standard Deviations:
   Comp. 1    Comp. 2    Comp. 3    Comp. 4     Comp. 5 
 0.1039443 0.08621876 0.05609822 0.04661103 0.007907684

The number of variables is 5 and the number of observations 
is 20 

Component names:
                                                                                                
 "sdev" "loadings" "correlations" "scores" "center" "scale" 
"n.obs" "call" "factor.sdev" "coef"

Call:
princompRob(x = woodmod.dat)

The returned object is of class “princompRob”. The generic plot and
summary functions are similar to those for the existing “princomp”
class.

You can use the princompRob optional argument corr=T for a
principle component analysis based on the robust correlation matrix
rather than the covariance matrix:

> princompRob(x = woodmod.dat, corr = T)

Standard Deviations:
  Comp. 1  Comp. 2   Comp. 3   Comp. 4   Comp. 5 
 1.474969 1.209257 0.8883914 0.7091129 0.2647359
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Chapter 6  Robust Principal Component Analysis
The number of variables is 5 and the number of observations 
is 20 

Component names:
                                                                                                
 "sdev" "loadings" "correlations" "scores" "center" "scale" 
"n.obs" "call" "factor.sdev" "coef"

Call:
princompRob(x = woodmod.dat, corr = T)
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Chapter 7  Robust Discriminant Analysis
OVERVIEW OF THE METHOD

Introduction Suppose you have a set of quantitative observations about individuals
belonging to two or more groups, along with a group identifier for
each vector observation that is represented by a categorical (factor)
variable. Discriminant analysis uses the quantitative variables along
with the group identifier to create a model that can be used to assign
new observations to one of the groups (i.e., classify new observations).
See the documentation for the S-PLUS discrim function for further
details about this technique.

Robust discriminant analysis is implemented for two classes of
models where the quantitative data in each group follows a nominally
multivariate normal distribution: the homoscedastic and the
heteroscedastic models. We say nominally because we are allowing for
heavy-tailed departures for multivariate normality that give rise to
multivariate outliers.

In the homoscedastic model the covariance matrices of the groups are
assumed to be the same for every group. In this case you can derive a
linear discriminant function

where  is a scalar and  is a vector, and you classify new
observations as being in one of two groups depending on whether or
not l(x) is larger or smaller than a certain threshold.

In the heteroscedastic model you do not make any assumption on the
covariance matrices, and allow them to be different for each group. In
this case the discriminant functions is quadratic:

where  is a matrix. For classical discriminant analysis, the scalar,

vector and matrix quantities ,  and  depend on maximum
likelihood estimates of the multivariate group means and variance-

covariance matrices  and  respectively, assuming multivariate
normal distributions for each group. 

l x( ) β0 β1
T x+=

β0 β1

q x( ) β0 β1
T x xT β2 x+ +=

β2

β0 β1 β2

µi Σ i
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Overview of the Method
Because outliers can badly distort the Gaussian MLE’s of the group
means and covariances, and hence distort the linear and quadratic
discriminant function, it is highly desirable to have robust
discriminant methods that are not much influenced by a small
fraction of outliers. 

The basic idea behind the robust discriminant methods we provide
you with here is to replace the Gaussian maximum likelihood

estimates  and  by the robust alternatives provided by the
function covRob in this Robust Library.

µi Σ i
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COMPUTING MLE AND ROBUST DISCRIMINANT MODELS 
WITH THE NT/WINDOWS GUI

Computing 
Both MLE and 
Robust 
Discriminants

Consider the data frame hemo.cont included in the library, of
observations on two variables for subjects belonging to two groups.
The original data ( Johnson and Wichern, 1992, page 570) has been
contaminated by adding 10 outliers to the first group. Fit a
discriminant analysis model to this data by choosing Robust �

Discriminant Analysis from the menubar. Select Group as the
dependent variable and Activity and Antigen as your dependent
variables. In the Model region, select classical from the Family pull-
down menu and select heteroscedastic from the Covariance Struct
pull-down menu. Save the discriminant model object by typing the
name hemo.gui in the Save As box in the Save Model Object
region.
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Computing MLE and Robust DISCRIMINANT MODELS with the NT/Windows GUI
Note that the above dialog Model page looks exactly like the one for
Discriminant Analysis in Spotfire S+, except for the Fitting Method
choices, with the default choice MLE + Robust (both maximum
likelihood estimates and robust fits are computed) and alternate
choices MLE (maximum likelihood estimates only) and Robust
(robust fit only).

Click on the tab labeled Results and select the Short Output option
only. Note that the option Cross-Validate that is available in the
(classical) Discriminant Analysis dialog is not available here, as it
demands excessive computing time for the default robust estimate
implemented in covRob. 
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The Statistics 
Report

Click OK. The output comparing the MLE and the robust
discriminant models appears in the Report window:

*** Robust Discriminant Analysis ***

Calls: 
   MLE : discrim(formula = structure(.Data = Group ~ 
Activity + Antigen, class

 = "formula"), data = hemo.cont, family = Classical(
"homoscedastic"), na.action = na.omit, prior = 

"proportional")
Robust : discRob(formula = structure(.Data = Group ~ 
Activity + Antigen, class

 = "formula"), data = hemo.cont, family = Classical(
"homoscedastic"), na.action = na.omit, prior = 

"proportional")

Constants:

   MLE
         1         2 
 -1.120877 -1.319132

Robust
         1         2 
 -1.336137 -6.527361

Linear Coefficients:

   MLE
                  1          2 
Activity  0.4801456 -4.4227122
 Antigen -4.8420655 -0.7207522

Robust
                 1         2 
Activity -10.50404 -35.60441
 Antigen   1.95306  12.32662
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Mahalanobis Distances:

   MLE
        X1       X2 
1 0.000000 2.338221
2          0.000000

Robust
        X1       X2 
1 0.000000 5.843787
2          0.000000

Plug-in classification table:

   MLE
        X1 X2     Error Posterior.Error 
      1 21 19 0.4750000       0.5964972
      2  0 45 0.0000000      -0.0183033
Overall       0.2235294       0.2710146

Robust
        X1 X2     Error Posterior.Error 
      1 37  3 0.0750000      -0.0394930
      2  9 36 0.2000000       0.2168326
Overall       0.1411765       0.0962088
(from=rows,to=columns)

Monte Carlo Error Rates:
       Group 1 Group 2 
   MLE   0.265   0.802
Robust   0.140   0.904

(conditioned on the training data)

Note that there is a marked difference in the values of the MLE and
robust coefficient estimates for the quadratic discriminant function
above. But how do you compare the relative classification error-rate
performance of these two methods?
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One way is to use simple “plug-in” empirical error rates for the
“training” sample used to fit the discriminant model. This approach
tends to give inaccurate estimates of the error rate. Another way is to
simulate multivariate “test” data using the estimated means and
covariances for the groups. Both of these methods are used when you
check the Long Output box on the Results page of the dialog. Try this,
and see what happens. You will also see these kinds of results when
you carry out robust discriminant analysis from the command line as
described in the next section.

NOTE: The options in the Saved Results region of the Results page
are not currently available when you select MLE+Robust or Robust
on the Model page. We expect to fix this in a future release of the
Robust Library.
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COMPUTING MLE AND ROBUST DISCRIMINANT MODELS 
AT THE COMMAND LINE

Computing 
Both MLE and 
Robust 
Discriminants

If you prefer to work at the command line, use the new fit.models
function in the Robust Library to compute both the MLE and the
robust discriminant estimates and store them in a single S-PLUS
object.

> hemo.fit <- fit.models(model = list(MLE = 'discrim',
+ Robust = 'discRob'), formula = Group ~., 
+ data = hemo.cont, family = Classical('hetero'))

To obtain a detailed comparison of the fits use the summary method
(this might take a few minutes to finish). 

> summary(hemo.fit)

Starting simulation. Generating 1000 new random samples.
This may take a few minutes.
Done.

Starting simulation. Generating 1000 new random samples.
This may take a few minutes.
Done.

Calls: 
   MLE : discrim(formula = structure(.Data = Group ~ 
Activity + Antigen, class = "formula"), data = hemo.cont, 
family
 = 

Classical("hetero"))
Robust : discRob(formula = structure(.Data = Group ~ 
Activity + Antigen, class = "formula"), data = hemo.cont, 
family
 = 

Classical("hetero"))

Constants:

   MLE
        1          2 
 1.718957 0.04783382
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Robust
        1        2 
 15.06448 8.648668

Linear Coefficients:

   MLE
                  1         2 
Activity -0.4619015 -21.80618
 Antigen -4.3220909  13.70132

Robust
                 1          2 
Activity -11.31777 -36.418161
 Antigen   4.29550   8.399457

Quadratic Coefficients:

Group: 1 

   MLE
          Activity    Antigen 
Activity -4.730540  -3.213555
 Antigen -3.213555 -15.854149

Robust
          Activity   Antigen 
Activity -71.99090  46.86212
 Antigen  46.86212 -52.63087

Group: 2 

   MLE
          Activity   Antigen 
Activity -35.85158  22.93602
 Antigen  22.93602 -35.47632

Robust
          Activity   Antigen 
Activity -54.38198  14.10806
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 Antigen  14.10806 -15.31899

Pairwise Generalized Squared Distances:

   MLE
         1        2 
1 0.000000 15.25672
2 1.195969  0.00000

Robust
         1        2 
1 0.000000 5.720328
2 8.225338 0.000000

Plug-in classification table:

   MLE
        X1 X2     Error Posterior.Error 
      1 27 13 0.3250000       0.4186656
      2  1 44 0.0222222       0.0081484
Overall       0.1647059       0.2013330

Robust
        X1 X2     Error Posterior.Error 
      1 31  9 0.2250000       0.0714852
      2  9 36 0.2000000       0.1097189
Overall       0.2117647       0.0917266
(from=rows,to=columns)

Monte Carlo Error Rates:
       Group 1 Group 2 
   MLE   0.250   0.958
Robust   0.077   0.861

(conditioned on the training data)
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Note the Plug-in classification table results above. The X1 column
gives the number of observations from groups 1 and 2 that are
classified as group 1, in the rows labeled 1 and 2, respectively.
Similarly, the X2 column gives the number of observations that are
classified as group 2.

The last table “Monte Carlo Error Rates” is computed as follows. We
simulated 1000 observations (this number can be controlled with the
option n.MC of summary.discRob, see below) for each group. These
observations were drawn from a multivariate normal distribution with
the mean and covariance matrix equal to the corresponding
estimates. We used the discriminant function to assign them to one of
the two groups, and then counted how many of these new
observations were misclassified. The above table contains the
corresponding proportions. Note that in this example the Robust
estimates performs significantly better than the classical estimate for
the first group (0.7% versus 25% misclasified observations) and both
methods are comparable for Group 2 (97.5% versus 95.8%). See
below to learn how to obtain such a measure for classical discriminant
analysis objects of class discrim.

NOTE: A predict method does not currently exist for a discRob
object. We expect to remedy this in a future release.

Computing 
only a Robust 
Discriminant

Use the function discRob to compute only the robust fit. For
example:

> hemo.rob <- discRob(Group ~., data = hemo.cont, family =
+ Classical('hetero'))

By default, the summary method does not calculate the Monte Carlo
Error Rates discussed above. To obtain it, use the optional
arguments MC and n.MC (the number of simulated observations to
generate) as follows:

> summary(hemo.rob, MC=T, n.MC = 500)

Starting simulation. Generating 500 new random samples.
This may take a few minutes.
Done.
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Call:
discRob(structure(.Data = Group ~ Activity + Antigen,

class = "formula"), data = hemo.cont, family =
Classical("hetero"))

Group means:
    Activity     Antigen  N    Priors 
1 -0.1237905 -0.06941429 40 0.4705882
2 -0.3465000 -0.04495833 45 0.5294118

Covariance Structure: heteroscedastic 

Group: 1 
           Activity    Antigen 
Activity 0.01652061 0.01470982
 Antigen            0.02259764

Group: 2 
           Activity    Antigen 
Activity 0.01208047 0.01112554
 Antigen            0.04288533

Constants:
        1        2 
 15.06448 8.648668

Linear Coefficients:
                X1        X2 
Activity -11.31777 -36.41816
 Antigen   4.29550   8.39946

Quadratic coefficents:

group: 1 
          Activity   Antigen 
Activity -71.99090  46.86212
 Antigen           -52.63087

group: 2 
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          Activity   Antigen 
Activity -54.38198  14.10806
 Antigen           -15.31899

Pairwise Generalized Squared Distances:
         1        2 
1 0.000000 5.720328
2 8.225338 0.000000

Classification table:
        X1 X2     Error Posterior.Error 
      1 31  9 0.2250000       0.0714852
      2  9 36 0.2000000       0.1097189
Overall       0.2117647       0.0917266
(from=rows,to=columns)

Monte Carlo Error Rates:
 Group 1 Group 2 
    0.07    0.83
(conditioned on the training data)

Computing 
Monte Carlo 
Error Rates for 
a Classical 
Discriminant 
Model

To obtain a Monte Carlo error rates table for the classical
discriminant fit you use the function summary.discRob on an object
of class discrim as follows. First fit an MLE model to the data.

> hemo.mle <- discrim(Group ~., data = hemo.cont,
+ family = Classical('hetero'))

Now use the function summary.discRob on it. 

> summary.discRob(hemo.mle, MC = T, n.MC = 500)

Starting simulation. Generating 500 new random samples.
This may take a few minutes.
Done.

Call:
discrim(structure(.Data = Group ~ Activity + Antigen,
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class = "formula"), data = hemo.cont, family =
Classical("hetero"))

Group means:
     Activity      Antigen  N    Priors 
1  0.05076578 -0.146597846 40 0.4705882
2 -0.30794889 -0.005988889 45 0.5294118
Covariance Structure: heteroscedastic 

Group: 1 
           Activity     Antigen 
Activity  0.1225740 -0.02484513
 Antigen             0.03657347

Group: 2 
           Activity    Antigen 
Activity 0.02378340 0.01537636
 Antigen            0.02403498

Constants:
        1          2 
 1.718957 0.04783382

Linear Coefficients:
                X1        X2 
Activity -0.461902 -21.80618
 Antigen -4.322091  13.70132

Quadratic coefficents:

group: 1 
          Activity   Antigen 
Activity -4.730540  -3.21356
 Antigen           -15.85415

group: 2 
          Activity   Antigen 
Activity -35.85158  22.93602
 Antigen           -35.47632

Pairwise Generalized Squared Distances:
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         1        2 
1 0.000000 15.25672
2 1.195969  0.00000

Plug-in classification table:
        X1 X2     Error Posterior.Error 
      1 27 13 0.3250000       0.4186656
      2  1 44 0.0222222       0.0081484
Overall       0.1647059       0.2013330
(from=rows,to=columns)

Monte Carlo Error Rates:
 Group 1 Group 2 
   0.244   0.942
(conditioned on the training data)
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Tuning constants 176OVERVIEW OF THE METHOD

Introduction Asymmetric distributions of positive random variables occur in many
statistical applications concerning, for example, survival data
(medicine), yield data (agriculture, industry), failure times (industry),
income and resource consumption measures (econometric studies).

We focus on two particular aspects of this kind of data. First, the
population mean or the total of a finite population is the characteristic
of interest; because the total is a multiple of the mean, we concentrate
on the population mean. Second, the data may contain values that are
markedly different from most others. When some of these values are
observed, the sample mean can be much larger than when none are
observed, and, therefore, it varies strongly from sample to sample.

Transformations are often used to make the distribution (closely)
symmetric; many robust procedures based on the Gaussian model are
then available to estimate the transformed mean. Unfortunately,
symmetrizing transformations do not always exist. Moreover, the
original mean cannot usually be estimated by transforming back the
transformed mean. For example, to estimate a lognormal mean both
the estimates of normal mean and scale are required; therefore, the
distinction between main (mean) and nuisance (scale) parameters–
that characterizes most location and scale procedures–is not
appropriate anymore. The Robust Library makes available two
procedures that do not make this distinction: the truncated mean

estimate proposed by Marazzi and Ruffieux (1999), and the Bs
p-

estimate proposed in Hampel et al. (1986, pp 238-257).

Function 
Names Table 8.1:  Function Names

Classical Robust

Gamma gammaMLE gammaRob

Weibull weibullMLE weibullRob

Lognormal lognormMLE lognormRob
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COMPUTING MLE AND ROBUST FITS WITH THE NT/
WINDOWS GUI

Computing 
Both MLE and 
Robust Fits

Consider the data los included in this library. The vector los
represents the observed lengths of stay (LOS) in days of 32 patients
hospitalized in a Swiss hospital during 1988 for certain “disorders of
the nervous system” (Marazzi, Paccaud and Ruffieux, 1998). LOS is
an important indicator of hospital costs. The LOS means of medically
homogeneous groups of patients (e.g., the group considered here)
within a hospital are used for hospital planning and budgeting; the
means of different hospitals are used to compare costs and explore
possible reductions.

The mean is 25.5 days. In many applications it is useful to use a
mathematical model in order to summarize the entire distribution; for
example, one can use the Gamma distribution to model and simulate
hospital stays. To adjust a Gamma distribution according to both the
maximum likelihood criterion and the robust estimate use the GUI
dialog as follows. Choose Robust � Asymmetric Parameter
Estimation. The dialog window is shown in Figure 8.1.

Figure 8.1:  The Robust Gamma and Weibull Fit Dialog
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When you press OK the results appear in a Report window and a
Graph Sheet. The plot is shown in Figure 8.2. 

Diagnostic 
Plots

In the Graph Sheet you obtain a histogram of the data with the
overlaid estimated density functions (one for the MLE estimate and
one for the Robust estimate) and a QQ plot showing the response vs.
estimated quantiles. These plots appear in Figure 8.2 and Figure 8.3.

The Statistics 
Report

In the Report window you obtain a short description of the estimates
(or a longer more detailed listing if you check the Long output in the
Results page of the GUI Dialog).
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COMPUTING MLE AND ROBUST ESTIMATES AT THE 
COMMAND LINE

Computing 
Both MLE and 
Robust Fits

To fit the same models using the command line use the Robust
Library function fit.models.

> los.fits <- fit.models(list(mle = 'gammaMLE',
+ robust = 'gammaRob'), data = los)

The detailed summary of the estimates obtained by checking the
Long Output option on the Results tab page of the GUI Dialog is
obtained using the generic summary method on the fit.models
object (los.fits).

> summary(los.fits)

Calls: 
   mle : gammaMLE(data = los)
robust : gammaRob(data = los)

Coefficients:
               Estimates Std. Error 
   mle : Alpha 0.9263    0.7735    
robust : Alpha 1.3858              
   mle : Sigma 8.4992    0.0645    
robust : Sigma 3.6396              
   mle :    Mu 7.8730    0.4609    
robust :    Mu 4.9727    0.2750    

Diagnostic 
Plots

The generic plot method is also implemented for fit.models objects.

> plot(los.fits)

Make plot selections (or 0 to exit):

1: plot: All 
2: plot: Overlaid Density Estimates 
3: plot: Response vs Estimated Quantiles 
Selection(s): 1

Select 1 to produce the following diagnostic plots.
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Figure 8.2:  MLE and Robust Gamma fits for the los data 

Figure 8.3:  Response vs. Estimated Quantiles for both the MLE and Robust fits
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Computing MLE and robust estimates at the Command Line
Note that the robust estimate has been applied to the entire data set
but that the Gamma distribution has automatically been fitted to the
“majority” of the data. The mean of the fitted model is 4.97 days. 

Computing 
only a Robust 
GLM Fit

If you want to fit a robust estimate to the los data you can use the
function gammaRob()

> los.robust.fit <- gammaRob(los)

Detailed information on the estimated parameters is obtained by
using the summary() function.

> summary(los.robust.fit)

Robust gamma distribution parameter estimate

Call:
  gammaRob(data = los)

Coefficients:
      Estimates Std. Error 
Alpha 1.3857686           
Sigma 3.6395658           
   Mu 4.9726962 0.2749752 

The Diagnostic 
Plots

The command

> plot(los.robust.fit)

is used to produce the plots similar to those in Figure 8.2 and Figure
8.3 except that only the information pertaining to the robust fit is
displayed.
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CONTROLLING OPTIONS FOR ROBUST WEIBULL AND 
GAMMA FITS

The parameters that control the computational procedures used to
compute the MLE and robust estimates for both gamma, lognormal,
and Weibull distributions are passed to their respective functions
through the control argument. The Robust Library provides the
following funcions which are useful for creating these lists.

• gammaMLE.control

• gammaRob.control

• lognormRob.control

• weibullMLE.control

• weibullRob.control

The functions for generating the control lists for the robust estimators
each have one required argment: the name of the estimator (the same
value that is passed to the estim argument in gammaRob, lognormRob,
or weibullRob). If no additional arguments are provided then a list
with the control parameters each set to their default valu is returned.
Only the parameters required for the specified estimator are returned.
Please refer to the online help for explanations of the parameters and
their default settings. For example,

> help(lognormRob.control)

will display the help for lognormRob.control. Also, it may be helpful
to note that the control list can be save in your working chapter and
used for several analyses. For example, we can shorten th initial
interval used by the truncated mean estimator:

> los.robust.control <- gammaRob.control(“tdmean”,
+ alpha1 = .5, alpha2 = 10.5)
> los.robust.fit <- gammaRob(los, robust.control =
+ los.robust.control)
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Controlling Options for Robust Weibull and Gamma FITS
Note that control arguments can also be passed directly to the
corresponding function. Internally they are processed through the
corresponding control function. Hence the following is equivalent to
the lines above.

> los.robust.fit <- gammaRob(los, alpha1 = .5,
+ alpha2 = 10.5)

The same applies to all the asymmetric distribution parameter
estimation functions included in the Robust Library.
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THEORETICAL DETAILS

The Models Let  be a random variable with unknown cumulative
distribution function  and asymmetric density . We suppose that,
as it often occurs in practice, we are mainly interested in estimating

, the expected value of , using  independent observations
. Moreover, we are willing to use a parametric model 

for the distribution  (with density ) of some monotone
increasing transformation . The corresponding model for

 is  (density ) and define . We assume that:

(a)  is a scale parameter of ; and (b) either  is a location

parameter or  is a shape parameter of . 

Two popular asymmetric models that satisfy (a) and (b) are the
Weibull and the Gamma distributions. The Weibull distribution with
shape  and scale  has density

The mean is . It is often convenient to consider
; the density of  is then

where  is a location parameter and  a scale
parameter. The Gamma distribution with shape  and scale  has
density

We have . 

Y 0>
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The Bs
p-

estimate
This estimator is used to estimate the gamma and Weibull distribution
parameters. Let  denote the score vector function of , i.e.,

 and let  be a user chosen tuning constant.

The Bs
p-estimate  of  is then defined as a solution of

where the function  is defined by

,  and

 denotes the Huber function.

Moreover,  is a 2 by 2 non-singular lower triangular matrix and

 is a 2-component vector; they are both functions of  and are

defined jointly and implicitly by the following equations

(see Hampel et al., 1986, pp 238-256). The corresponding estimate of

 is . 

Under certain regularity conditions  is asymptotically normally
distributed with asymptotic covariance matrix

S y θ,( ) Fθ

S y θ,( ) fθ y( )ln∂ θ∂⁄= b

θ̂ θ

Ψb Ab θ( ) S y θ,( ) Cb θ( )–( )[ ]
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where 

Let  denote the empirical distribution of the sample. In practice we

use  or  as approximations for the

covariance matrix of . 

Computations The computation of the Bsp-estimate is discussed in Marazzi and
Ruffieux (1996); details can be found in Marazzi and
Randriamiharisoa (1997a, 1997b, 1997c). The general approach is as
follows: given an initial value for , one computes ,  and

an improved value of . However, in the Gamma case,  and

 depend on . The repeated computation of  and 

slows down iterations. Therefore, the following two-step procedure is
used: (a) for fixed b, determine  and  for a discrete set of

values of ; (b) solve the equations for  using a linear interpolation
of the tables obtained in step (a) in order to compute  and

. This scheme is particularly time efficient when the estimator

has to be evaluated for a sequence of similar problems, such as those
required in a bootstrap procedure.

The Truncated 
Mean Estimate

This estimator is used to estimate the lognormal distribution
parameters. Let m(Fn) and s(Fn) be robust measures of location and
dispersion based on n (transformed) observations y1,...,yn. Specifically,
we take the median and the median absolute deviation or the β-
trimmed mean and the γ -trimmed absolute deviation defined below.
Let m(F) and s(F) denote the asymptotic values of m(Fn) and s(Fn)
when the data is distributed according to the distribution F. The

truncated mean is based on four steps. First, an initial estimate 
is computed by solving

Q ψ F,( ) ψ y θ̂,( ) ψ y θ̂,( )( )t F y( ) ,∂∫=
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 and 

Second, an upper truncation limit Tu is defined as the u-quantile

of the fitted model for X, where u is a user chosen

number (i.e., a “tuning constant”) e.g., u = 0.99. Third, a lower limit Tl
is determined so that the mean of the truncated model coincides with
the mean of the entire model, i.e.,

The truncated mean estimate  is the arithmetic mean of the xi such

that :

The truncated mean estimate does not strongly depend on the
parametric model which is only used to compute Tl and Tu. It is very
robust because it completely rejects extreme observations (its
breakdown point is the minimum between the breakdown points of s

and m). The influence functions  and
can be computed but the formulae are cumbersome (Marrazzi and

Ruffieux, 1999). The asymptotic variance of  is obtained using,

The efficiency of the truncated mean with respect to the maximum
likelihood estimator depends on u (see tuning constants) and can be
very high.
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Trimmed Mean and Trimmed Absolute Deviation

The β-trimmed mean m(Fn) and the γ -trimmed absolute deviation
s(Fn) of y1,...,yn are defined as follows:

where , , , ,

, , , ,

; moreover,  denote the order

statistics and the notation  is used for the largest integer smaller
than z. The constants  and  are user chosen.
For β = γ  = 0.5, m is the median and d is the median absolute
deviation. For β and γ  close to 0.5, m and d are “smoothed” versions
of these estimates. By default we use β = γ  = 0.4.

Tuning 
constants

Classical statistics assumes that  is distributed according to some

distribution  for an unknown value of a parameter . The
maximum likelihood (ML) criterion is often used to estimate this
value of . In robustness theory, one assumes that  belongs to a
neighborhood  of one of the , say . For example, one can use

the -contamination model (Huber, 1981)
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If we let  denote the Maximum Likelihood (ML) estimate of ,

then the asymptotic relative efficiency (ARE) of  with respect to
 at the distribution  is

ARE is usually evaluated at the model . We also define the

maximum asymptotic variance (MAV) of  over the neighborhood

 of distribution functions, for a given mean , as

The most common rule for determining the tuning constants of an M-
estimator is to require that the ARE with respect to the ML estimator
at the model be a certain value, e.g., 90%. The higher the value of
ARE, the more the estimate is sensitive to outliers. There are,
however, several pairs of values of  with the same ARE, and
the rule does not determine them uniquely. As a remedy, it has been
proposed to minimize MAV as a function of  and find optimal

values  for varying  and . The sensitivity of the estimate to

contamination depends then on  and on the optimal value  of

. The choice of  would be made on the grounds of collateral
information about the frequency of outliers. It turns out, however,
that minimization of MAV under the constraint  gives almost
the same minimum as the unconstrained minimization. Therefore, we
suggest to use a single tuning constant . Unfortunately,
the ARE of the mean estimate depends on the estimated value of the
parameters and the choice of the tuning constant must be made on
the grounds of a preliminary guess of . In the Weibull and Gamma
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cases ARE only depends on  and hence, given a rough estimate for
, Table 1 allows us to choose  to obtain a certain ARE at the

model. 

ARE Gamma Weibull Lognormal

α b b u

0.85 1 1.76 1.83 .997

2 1.48 1.38 .996

3 1.39 1.26 .995

4 1.35 1.25 .993

5 1.33 1.22 .992

10 1.29 1.21 .991

0.90 1 2.12 2.18 -

2 1.76 1.67 .998

3 1.62 1.39 .997

4 1.55 1.36 .996

5 1.51 1.34 .996

10 1.44 1.32 .995

α
α b
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Chapter 9  CONTRIBUTED CODE
OVERVIEW OF CONTRIBUTED CODE

This chapter very briefly describes contributed code for three
statistical methods:  (1) Robust smoothing splines, (2) A robust
version of Mallows’ Cp for robust selection of linear models, and (3)
Quantile regression.  The methodology and S-PLUS functions for the
robust smoothing splines and robust Cp were developed by
combinations   of the following individuals:  Eva Cantoni, Evezio
Ronchetti, Suzanne Sommer, and Robert Staudte.  The regression
quantiles methodology and S-PLUS code were developed by Roger
Koenker.

We did not have time to develop a menu/dialog interface for these S-
PLUS functions, so they are only available at the command line.
Also, we only had time for minimal testing of the S-PLUS functions.
None-the-less, we hope they will be  of interest to users of the Robust
Library, and that user feedback and interest will result in further
development of these functions as needed.Computing Robust
Covariance at the Command Line

Robust 
Smoothing 
Splines

You fit a robust smoothing spline that is not distorted by outliers with
the function smooth.spline.Rob.  Here is a brief example:

> attach(ethanol)
> plot(E, NOx)
> temp.cv <- smooth.splineRob(E, NOx, lambda = "cv")
> lines(temp.cv)

The resulting plot is shown in the figure below.

For further details see the Help file for smooth.splineRob.  See also,
Cantoni and Ronchetti (2000), “Resistant selection of the smoothing
parameter for smoothing splines”, Statistics and Computing.

NOTE:  The function smooth.spline.Rob bundles up several
functions provided by Eva Cantoni and Elvezio Ronchetti, namely:

e.psi, frob, matS, my.smooth.spline, opt.RCp, opt.cv,
psihuber.

Although we do not provide Help files for these individual functions,
you may view them by printing smooth.splineRob.
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.

Robust Cp The function RCp computes a robust version of Mallows’ Cp based on
weighted least squares, which provides for robust model selection of
subset models that fit the bulk of the data in the presence of outliers.

Here is a simple example of using RCp:

> rcp.result <- RCp(stack.x, stack.loss)
> plot(rcp.result)

This results in the plot shown below.  You can also get a long
summary with:

> summary(rcp.result)

Figure 9.1:  Robust Smoothing Spline Fit
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For further details see the Help file for RCp.  See also, Ronchetti and
Staudte (1994), “A robust version of Mallows’ Cp”, Jour. Amer. Statist.
Assoc., 89, 550-559, and Sommer and Staudte (1995), “Robust variable
selection in regression in the presence of outliers and leverage
points”, Australian Jour. of Statistics, 37, 323-336..

NOTE:  The function RCp bundles up several functions provided by
Eva Cantoni and Elvezio Ronchetti, namely:

Bfinal, Hwt, Label, Mwt, plot.RCp, Plot.cp, RCp, RCp.reduced,
select.best, Subset.

Although we do not provide Help files for these individual functions,
you may view them by printing RCp.

Figure 9.2:  Robust Cp Plot for Stack Loss Data
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Quantile 
Regression

The function rq computes a quantile regression fit.  This methodology
has been extensively developed by Roger Koenker.  See for example
Koenker and Bassett (1978), “Regression quantiles”, Econometrica, 46,
33-50, Koenker and d’Orey (1987, 1994), and “Computing regression
quantiles”, Applied Statistics, 36, 383-393, and 43, 410-414.

For example:

> qreg.mod <- rq(stack.loss ~ stack.x, .4)

computes a .4 quantile regression for the stack loss data.

See the Help file for rq for more examples, further use details, and
additional references.
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	Overview of the Method: A Special M�Estimate
	You are fitting a general linear model of the form
	,
	with p�dimensional independent predictor (independent) variables and coefficients , and scalar re...
	where is a robust scale estimate for the residuals and is a particular optimal symmetric bounded ...
	where is a redescending (nonmonotonic) function. The shapes of the and functions are shown in Fig...
	The above minimization problem can have more than one local minima, and correspondingly the estim...

	Computing LS and Robust Fits with the Windows GUI
	Computing Both LS and Robust Fits
	You easily obtain both a least squares and robust linear model fit for the so called “stack loss”...
	)
	select the three independent (predictor) variables (you can do this by shift clicking on Acid.Con...
	Note that the Model page of this dialog looks exactly like that of the Linear Regression dialog i...
	Click on the tabs labeled Results, Plot and Predict to look at those dialog pages. You will notic...
	We have made the default choices of plots indicated by the checked boxes. This will encourage you...
	Click OK to compute both the LS and robust fits, along with the four diagnostic comparison plots ...

	The Diagnostic Plots
	Each of the Graph Sheet pages contains a Trellis display for the LS and robust fit, as shown below.
	Normal QQ-Plots of Residuals
	As seen in Figure 2.3, the normal QQ-plot for the LS fit residuals shows at most one outlier, whi...
	You also note that if you ignore the outliers, a normal distribution is a pretty good model for t...
	ignoring the outliers, has a substantially smaller standard deviation than the normal distributio...

	Probability Density Estimates of Residuals
	Figure 2.4 displays the (kernel) probability density estimates for the residuals for the least sq...

	Standardized Residuals versus Robust Distances
	A highly useful plot of scaled residuals versus robust distances of the predictor variables was i...
	The standardized residuals vs. robust distances plots for both the least squares and robust fits ...
	In this case the LS fit produces no residuals outliers and four x- outliers, whereas the robust f...
	This example illustrates the problem of outlier masking in least squares fits, i.e., the influenc...

	Standardized Residuals versus Index (Time)
	Figure 2.6 shows the standardized residuals vs. index (time) plots for both the LS and robust fit...
	From Figure 2.6, you can see that the LS fit does not reveal any outlier, while the robust fit ag...


	The Statistics Report
	The Report window contains the following results.
	The standard errors, the t�statistics, and the p�values of the robust coefficient estimates for t...
	There is also a Test for Bias in the summary statistics provided in the Report window. This provi...
	Read the section Theoretical Details to find out how these robust inference quantities are computed.


	Computing LS and Robust Fits at the Command Line
	Computing Both LS and Robust Fits
	If you prefer to work at the S�Plus command line, you can use the fit.models function in the Robu...
	Now view a brief summary of the results:
	Use the summary function to obtain a more complete summary of the model fitting results:

	The Diagnostic Plots
	You can also make comparison plots with the plot function:
	Note that in the Robust Library, you can select more than one plot from the above menu of choices...

	Computing Only a Robust Fit
	Use the function lmRob to compute only a robust fit:
	You can also use the summary and plot functions to get more extensive summary results and plots, ...

	Computation Time Required
	For the size of most regression problems, the robust regression method requires a computationally...
	Recently Pena and Yohai (1999) proposed a fast procedure for obtaining a reliable initial regress...
	By default, S�Plus employs the random resampling algorithm for initial estimates when the number ...
	The tables below compare the computation times required by the resampling algorithm and the fast ...
	Table 2.1: S-PLUS User Time with Random Sampling Initial Estimate Method
	Table 2.2: S-PLUS User Time with Pena-Yohai Fast Initial Estimate Method

	In the case you choose to use the random resampling initial estimate whe p is greater than 15 by ...
	NOTE: For small values of n and p, S-PLUS automatically does exhaustive sampling for the initial ...
	The printout of the remaining time estimate using the usual hours:minutes:seconds format. So in t...
	In the event you want to defer the computation of the robust estimate until another time such as ...

	Fitting Models with Both Numeric and Factor Variables
	Often you fit linear models with both numeric and factor variables. When the factor variables hav...
	This data set contains four numeric variables: PA, GPA, HS, GHS, two factor variables Region and ...
	If you try to fit a linear model using the function lmRobMM, available in current versions of S�P...
	The Robust Library deals with this problem by using a new alternate S/M-estimate computing algori...
	Compute LS and robust fits to wagner.dat in a manner similar to the one you used for the stack lo...
	(Alternatively, you could skip selecting variables in the Object Browser and just select them in ...
	Note that when a linear model contains factor variables as well as continuous (numeric) variables...
	Figure 2.10-Figure 2.13 show quite dramatic differences between the LS and robust fits: The LS fi...
	The Report window output for this example is shown below:


	Robust Model Selection
	It is not enough for you to robustly fit a linear model when you are trying to decide which of tw...
	Since we have not yet implemented a dialog access to use the robust tests and RFPE, we show you h...
	Robust F Tests
	The data set sim.dat is a simulated data set provided in the Robust Library. The data was created...
	where the first two coefficients have value one and the third and fourth coefficients have value ...
	Use the function pairs
	to obtain the pairwise scatter plots of the five-dimensional data consisting of the response and ...
	Now make two least squares linear model fits, one with just the first two variables and one with ...
	The short summary of the lm.mod12 fit is as follows:
	> lm.mod12

	The coefficients are nowhere near their common true values of one. If you use the summary functio...
	The short summary of the lm.mod1234 fit is:
	> lm.mod1234

	The first two coefficients are nowhere near their common true value of one, while the third and f...
	Now use the anova function to compute a classical F-test of whether or not the third and fourth c...
	> anova(lm.mod12, lm.mod1234)

	The (classical) F-test erroneously tells you that the third and fourth variables should be in the...
	Now make two robust model fits, the first using the first two variables x1 and x2, and the second...
	The short summaries of these two robustly fitted models are as follows:
	> rob.mod12
	> rob.mod1234

	You notice that rob.mod12 provides coefficient estimates that are quite close to the true values ...
	Now use the anova function on these two robustly fitted models to compute a robust F test:
	> anova(rob.mod12,rob.mod1234)

	The test accepts the null hypothesis that the third and fourth coefficients are not significant.

	Robust Wald Tests
	The default test used by anova is a robust F test. You can also use anova to compute a robust Wal...
	which gives a result quite similar to that of the robust F test.

	Robust FPE for Model Selection
	Although many robust estimators have been constructed in the past, the issue of robust model sele...
	You may use the RFPE criterion to choose a best model when robustly fitting linear models from th...
	When considering a variety of model choices with respect to several different choices of predicto...
	The RFPE criterion is used by the function step to compute a backward stepwise robust method of m...
	> step(rob.mod1234)

	Recall that sim.dat was generated by a model in which only the two coefficients associated with x...


	Advanced Options For Robust Regression
	In this section, you will learn how to change the default settings of some control parameters for...
	Launch the GUI Dialog
	Selecting the Advanced tab in the dialog shown in Figure 2.1 brings up the following page:
	Adaptive Robust Estimate
	For the final estimate, S�Plus uses the MM-estimate briefly described in the section Overview of ...
	To choose the adaptive robust estimate from the dialog, you simply click the down arrow to the ri...
	From the command line, you can use the lmRob.robust.control optional argument final.alg. For exam...
	> oil.tmp <- lmRob(Oil ~ Market, data = oilcity,



	Efficiency at Gaussian Model
	If the final MM�estimates are chosen, they have a default asymptotic efficiency of 90% compared w...
	To change the efficiency level, you can either type your desired Gaussian model efficiency in the...
	> oil.tmp <- lmRob(Oil ~ Market, data = oilcity,


	M-Estimate Loss Function
	The Loss Function list box in the Final Estimator region displays the default choice Optimal, ind...
	If you wish, you can also choose to use the Tukey bisquare loss function shown in the upper left ...
	To choose different settings of the loss function from the command line, you use the lmRob.robust...
	> control <- lmRob.robust.control(weight = c(“Bisquare”,

	In the above commands, the rescaled bisquare function is used for the initial S�estimates, and th...
	Optimizer Parameters
	Describe maximum number of iterations and tolerance control constants here in the next release. T...


	Confidence Level of Bias Test
	S�Plus provides two bias tests for the default MM-estimate: one testing the bias of least squares...
	To compute these tests for the model fit oil.tmp created in the above subsection, use the followi...
	The results show that the least squares estimate is biased relative to the final M-estimate, whil...
	By default, the level of significance of the tests is set at 10%. To change the level of the test...

	Resampling Algorithms
	When computing the initial S�estimates, S�Plus uses an exhaustive resampling scheme for sufficien...
	To choose a particular resampling algorithm from the dialog, you simply click the down arrow to t...

	Random Resampling Parameters
	Random resampling is controlled by two parameters: a random seed and the number of subsamples to ...
	> oil.tmp <- lmRob(Oil ~ Market,data = oilcity, nrep = 10)

	The seed of the random resampling can be controlled by specifying the argument seed to lmRob.robu...

	Genetic Algorithm Parameters
	If you choose to use the genetic algorithm, the parameters for genetic algorithm can be changed t...
	> args(lmRob.genetic.control)

	For an explanation of the various arguments above, see the online help file for the function ltsr...


	Theoretical Details
	Initial Estimate When p is Not Too Large
	The key to obtaining a good local minimum of the M�estimation objective function when using a bou...
	The S�estimate approach has as its foundation an M�estimate of an unknown scale parameter for obs...
	where is a symmetric, bounded function. It is known that such a scale estimate has a breakdown po...
	The following regression S�estimate method was introduced by Rousseeuw and Yohai (1984). Consider...
	For each value of , we have a corresponding robust scale estimate . The regression S�estimate (wh...
	This presents another nonlinear optimization, one for which the solution is traditionally found b...
	For details on the numerical algorithms used, see Marazzi (1993), whose algorithms, routines and ...

	Fast Initial Estimate for Large p
	When the number of variables p is 15 or greater, the above S-estimate based on random sample is o...

	Alternating S and M Initial Estimate
	For models with factor variables (with possibly many levels), S-PLUS uses a new initial estimate ...

	Optimal and Bisquare Rho and Psi- Functions
	A robust M�estimate of regression coefficient is obtained by minimizing
	where is a convex weight function of the residuals with tuning constant . The derivative of is us...
	Tukey’s bisquare functions and are as follows:
	The Yohai and Zamar optimal functions and are as follows:
	where
	.

	The Efficient Bias Robust Estimate
	Yohai and Zamar (1998) showed that the and functions given above are optimal in the following hig...

	Efficiency Control
	The Gaussian efficiency of the final M�estimate is controlled by the choice of the tuning constan...

	Robust R�Squared
	The robust R2 is calculated as follows:

	Robust Deviance
	For an M�estimate, the deviance is defined as the optimal value of the objective function on the ...

	Robust F Test
	The robust F-statistics is
	where the subscript p indicates the predictor variables, coefficients, and robust residuals scale...

	Robust Wald Test
	See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986).

	Robust FPE (RFPE)
	Ronchetti (1985) proposed to generalize the Akaike Information Criterion (AIC) to robust model se...
	This new RFPE is calculated as follows:
	with
	where is the final M�estimate of , and . Note that when , RFPE reduces to the Akaike’s classical ...
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