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TIBCO SPOTFIRE S+ BOOKS

The TIBCO Spotfire $+® documentation includes books to address
your focus and knowledge level. Review the following table to help
you choose the Spotfire S+ book that meets your needs. These books
are available in PDF format in the following locations:

*+ In your Spotfire S+ installation directory (SHOME\help on
Windows, SHOME/doc on UNIX/Linux).

* In the Spotfire S+ Workbench, from the Help » Spotfire S+

Manuals menu item.

«  In Microsoft”™ Windows®, in the Spotfire S+ GUI, from the

Help » Online Manuals menu item.
Spotfire S+ documentation.

Information you need if you... See the...
Are new to the S language and the Spotfire S+ Getting Started
GUI, and you want an introduction to importing Guide

data, producing simple graphs, applying statistical

- . . ®
models, and viewing data in Microsoft Excel .

Are a new Spotfire S+ user and need how to use
Spotfire S+, primarily through the GUIL

User’s Guide

Are familiar with the S language and Spotfire S+,
and you want to use the Spotfire S+ plug-in, or
customization, of the Eclipse Integrated
Development Environment (IDE).

Spotfire S+ Workbench
User’s Guide

Have used the S language and Spotfire S+, and
you want to know how to write, debug, and
program functions from the Commands window.

Programmer’s Guide

Are familiar with the S language and Spotfire S+,
and you want to extend its functionality in your
own application or within Spotfire S+.

Application
Developer’s Guide
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Spotfire S+ documentation. (Continued)

Information you need if you...

See the...

Are familiar with the S language and Spotfire S+,
and you are looking for information about creating
or editing graphics, either from a Commands
window or the Windows GUI, or using Spotfire
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+,
and you want to use the Big Data library to import
and manipulate very large data sets.

Big Data
User’s Guide

Want to download or create Spotfire S+ packages
for submission to the Comprehensive S-PLUS
Archive Network (CSAN) site, and need to know
the steps.

Guide to Packages

Are looking for categorized information about
individual Spotfire S+ functions.

Function Guide

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 1 includes
information on specifying models in Spotfire S+,
on probability, on estimation and inference, on
regression and smoothing, and on analysis of
variance.

Guide to Statistics,
Vol. 7

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 2 includes
information on multivariate techniques, time series
analysis, survival analysis, resampling techniques,
and mathematical computing in Spotfire S+.

Guide to Statistics,
Vol. 2
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Chapter 1 Introduction to the Big Data Library

INTRODUCTION

In this chapter, we discuss the history of the S language and large data
sets and describe improvements that the Big Data library presents.
This chapter discusses data set size considerations, including when to
use the Big Data library. The chapter also describes in further detail
the Big Data library architecture: its data objects, classes, functions,
and advanced operations.

To use the Big Data library, you must load it as you would any other
library provided with Spotfire S+: that is, at the command prompt,
type library(bigdata).

* To ensure that the library is always loaded on startup, add
Tibrary(bigdata) to your SHOME/local/S.init file.

* Alternatively, in the Spotfire S+ GUI for Microsoft

Windows®, you can set this option in the General Settings
dialog box.

* In the Spotfire S+ Workbench, you can set this option in the
Spotfire S+ section of the Preferences dialog box, available
from the Window menu.



Working with a Large Data Set

WORKING WITH A LARGE DATA SET

Finding a
Solution

Out-of-Memory
Processing

When it was first developed, the S programming language was
designed to hold and manipulate data in memory. Historically, this
design made sense; it provided faster and more efficient calculations
and modeling by not requiring the user’s program to access
information stored on the hard drive. Data size has outstripped the
rate at which RAM size increased; consequently, S program users
could have encountered an error similar to the following:

Problem in read.table: Unable to obtain requested dynamic
memory .

This error occurs because Spotfire S+ requires the operating system
to provide a block of memory large enough to contain the contents of
the data file, and the operating system responds that not enough
memory is available.

While Spotfire S+ can access data contained in virtual memory, the
maximum size of data files depends on the amount of virtual memory
available to Spotfire S+, which depends in turn on the user’s
hardware and operating system. In typical environments, virtual
memory limits your data file size, and then it returns an out-of-
IMEemory error.

Finally, you can also encounter an out-of-memory error after
successfully reading in a large data object, because many S functions
require one or more temporary copies of the source data in RAM for
certain manipulation or analysis functions.

S programmers with large data sets have historically dealt with
memory limitations in a variety of ways. Some opted to use other
applications, and some divided their data into “digestible” batches,
and then recompile the results. For S programmers who like the
flexibility and elegant syntax of the S language and the support
provided to owners of a Spotfire S+ license, the option to analyze and
model large data sets in S has been a long-awaited enhancement.

The Big Data library provides this enhancement by processing large
data sets using scalable algorithms and data streaming. Instead of
loading the contents of a large data file into memory, Spotfire S+
creates a special binary cache file of the data on the user’s hard disk,



Chapter 1 Introduction to the Big Data Library

Scalable
Algorithms

Data Streaming

Data Type

Flexibility

and then refers to the cache file on disk. This out-of-memory design
requires relatively small amounts of RAM, regardless of the total size
of the data.

Although the large data set is stored on the hard drive, the scalable
algorithms of the Big Data library are designed to optimize access to
the data, reading from disk a minimum number of times. Many
techniques require a single pass through the data, and the data is read
from the disk in blocks, not randomly, to minimize disk access times.
These scalable algorithms are described in more detail in the section
The Big Data Library Architecture on page 8.

Spotfire S+ operates on the data binary cache file directly, using
“streaming” techniques, where data flows through the application
rather than being processed all at once in memory. The cache file is
processed on a row-by-row basis, meaning that only a small part of
the data is stored in RAM at any one time. It is this out-of-memory
data processing technique that enables Spotfire S+ to process data
sets hundreds of megabytes, or even gigabytes, in size without
requiring large quantities of RAM.

Spotfire S+ provides the large data frame, an object of class bdFrame.
A big data frame object is similar in function to standard Spotfire S+
data frames, except its data is stored in a cache file on disk, rather
than in RAM. The bdFrame object is essentially a reference to that
external file: While you can create a bdFrame object that represents an
extremely large data set, the bdFrame object itself requires very little

RAM.

For more information on bdFrame, see the section Data Frames on
page 11.

Spotfire S+ also provides time date (bdTimeDate), time span
(bdTimeSpan), and series (bdSeries, bdSignalSeries, and
bdTimeSeries) support for large data sets. For more information, see
the section Time Date Creation on page 177 in the Appendix.

The Big Data library provides reading, manipulating, and analyzing
capability for large data sets using the familiar S programming
language. Because most existing data frame methods work in the
same way with bdFrame objects as they do with data. frame objects,
the style of programming is familiar to Spotfire S+ programmers.
Much existing code from previous versions of Spotfire S+ runs



Balancing
Scalability with
Performance

Metadata

No 64-Bit
Solution

Working with a Large Data Set

without modification in the Big Data library, and only minor
modifications are needed to take advantage of the big-data
capabilities of the pipeline engine.

While accessing data on disk (rather than in RAM) allows for scalable
statistical computing, some compromises are inevitable. The most
obvious of these is computation speed. The Big Data library provides
scalable algorithms that are designed to minimize disk access, and
therefore provide optimal performance with out-of-memory data sets.
This makes Spotfire S+ a reliable workhorse for processing very large
amounts of data. When your data is small enough for traditional
Spotfire S+, it’s best to remember that in-memory processes are faster
than out-of-memory processes.

If your data set size is not extremely large, all of the Spotfire S+
traditional in-memory algorithms remain available, so you need not
compromise speed and flexibility for scalability when it's not needed.

To optimize performance, Spotfire S+ stores certain calculated
statistics as metadata with each column of a bdFrame object and
updates the metadata every time the data changes. These statistics
include the following:

+  Column mean (for numeric columns).

+  Column maximum and minimum (for numeric and date
columns).

*  Number of missing values in the column.
+ Frequency counts for each level in a categorical column.

Requesting the value of any of these statistics (or a value derived from
them) is essentially a free operation on a bdFrame object. Instead of
processing the data set, Spotfire S+ just returns the precomputed
statistic. As a result, calculations on columns of bdFrame objects such
as the following examples are practically instantaneous, regardless of
the data set size. For example:

mean(census$Income)
range(census$Age)

Are out-of-memory data analysis techniques still necessary in the 64-
bit age? While 64-bit operating systems allow access to greater
amounts of *virtual* memory, it is the amount of *physical* memory



Chapter 1 Introduction to the Big Data Library

that is the primary determinant of efficient operation on large data
sets. For this reason, the out-of-memory techniques described above
are still required to analyze truly large data sets.

64-bit systems increase the amount of memory that the system can
address. This can help in-memory algorithms handle larger problems,
provided that all of the data can be in physical memory. If the data
and the algorithm require virtual memory, page-swapping (that is,
accessing the data in virtual memory on the disk) can have a severe
impact on performance.

With data sets now in the multiple gigabyte range, out-of-memory
techniques are essential. Even on 64-bit systems, out-of-memory
techniques can dramatically outperform in-memory techniques when

the data set exceeds the available physical RAM.



Size Considerations

SIZE CONSIDERATIONS

Summary

While the Big Data library imposes no predetermined limit for the
number of rows allowed in a big data object or the number of
elements in a big data vector, your computer’s hard drive must
contain enough space to hold the data set and create the data cache.
Given sufficient disk space, the big data object can be created and
processed by any scalable function.

The speed of most Big Data library operations is proportional to the
number of rows in the data set: if the number of rows doubles, then
the processing time also doubles.

The amount of RAM in a machine imposes a predetermined limit on
the number of columns allowed in a big data object, because column
information is stored in the data set’s metadata. This limit is in the
tens of thousands of columns. If you have a data set with a large
number of columns, remember that some operations (especially
statistical modeling functions) increase at a greater than linear rate as
the number of columns increases. Doubling the number of columns
can have a much greater effect than doubling the processing time.
This is important to remember if processing time is an issue.

By bringing together flexible programming and big-data capability,
Spotfire S+ is a data analysis environment that provides both rapid
prototyping of analytic applications and a scalable production engine
capable of handling datasets hundreds of megabytes, or even
gigabytes, in size.

In the next section, we provide an overview to the Big Data library
architecture, including data types, functions, and naming
conventions.
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THE BIG DATA LIBRARY ARCHITECTURE

Block-based
Computations

The Big Data library is a separate library from the Spotfire S+ engine
library. It is designed so that you can work with large data objects the
same way you work with existing Spotfire S+ objects, such as data
frames and vectors.

Data sets that are much larger than the system memory are
manipulated by processing one “block” of data at a time. That is, if
the data is too large to fit in RAM, then the data will be broken into
multiple data sets and the function will be applied to each of the data
sets. As an example, a 1,000,000 row by 10 column data set of double
values is 76MB in size, so it could be handled as a single data set on a
machine with 256 MB RAM. If the data set was 10,000,000 rows by
100 columns, it would be 7.4GB in size and would have to be handled
as multiple blocks.

Table 1.1 lists a few of the optional arguments for the function
bd.options that you can use to set limits for caching and for
warnings:

Table 1.1: bd.options block-based computation arguments.

bd.option argument | Description

block.size The block size (in number of rows), the number
of bytes in the cache to be converted to a
data.frame.

max.convert.bytes The maximum size (in bytes) of the big data
cache that can be converted to a data.frame.

max.block.mb The maximum number of megabytes used for
block processing buffers. If the specified block
size requires too much space, the number of rows
is reduced so that the entire buffer is smaller than
this size. This prevents unexpected out-of-
memory errors when processing wide data with
many columns. The default value is 10.
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The function bd.options contains other optional arguments for
controlling column string width, display parameters, factor level
limits, and overflow warnings. See its help topic for more
information.

The Big Data library also contains functions that you can use to
control block-based computations. These include the functions in
Table 1.2. For more information and examples showing how to use
these functions, see their help topics.

Table 1.2: Block-based computation functions.

Function name Description

bd.aggregate Use bd.aggregate to divide a data object into
blocks according to the values of one or more of
its columns, and then apply aggregation
functions to columns within each block.

bd.aggregate takes two required arguments:
data, which is the input data set, and by .columns,
which identifies the names or numbers of
columns defining how the input data is divided
into blocks.

Optional arguments include columns, which
identifies the names or numbers of columns to
be summarized, and methods, which is a vector
of summary methods to be calculated for
columns. See the help topic for bd.aggregate for
a list of the summary methods you can specify
for methods.

bd.block.apply Run a Spotfire S+ script on blocks of data, with
options for reading multiple input datasets and
generating multiple output data sets, and
processing blocks in different orders. See the
help topic for bd.block.apply for a discussion on
processing multiple data blocks.

bd.by.group Apply the specified Spotfire S+ function to
multiple data blocks within the input dataset.
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Table 1.2: Block-based computation functions. (Continued)

Function name Description

bd.by.window Apply the specified Spotfire S+ function to
multiple data blocks defined by a moving
window over the input dataset. Each data block
is converted to a data.frame, and passed to the
specified function. If one of the data blocks is too
large to fit in memory, an error occurs.

bd.split.by.group Divide a dataset into multiple data blocks, and
return a list of these data blocks.

bd.split.by.window Divide a dataset into multiple data blocks
defined by a moving window over the dataset,
and return a list of these data blocks.

For a detailed discussion on advanced topics, such as block size issues
and increasing efficiency, see Chapter 5, Advanced Programming
Information.

10



Data Types

Data Frames

The Big Data Library Architecture

Spotfire S+ provides the following data types, described in more
detail below:

Table 1.3: New data types and data names for Spotfire S+.

Big Data class Data type
bdFrame Data frame
bdVector, bdCharacter, bdFactor, Vector
bdLogical, bdNumeric, bdTimeDate,

bdTimeSpan

bdLM, bdGLM, bdPrincomp, bdCluster Models
bdSeries, bdTimeSeries, bdSignalSeries Series

The main object to contain your large data set is the big data frame,
an object of class bdFrame. Most methods commonly used for a
data.frame are also available for a bdFrame. Big data frame objects
are similar to standard Spotfire S+ data frames, except in the
following ways:

A bdFrame object stores its data on disk, while a data.frame
object stores its data in RAM. As a result, a bdFrame object has
a much smaller memory footprint than a data.frame object.

A bdFrame object does not have row labels, as a data.frame
object does. While this means that you cannot refer to the
rows of a bdFrame object using character row labels, this
design reduces storage requirements and improves
performance by eliminating the need to maintain unique row

labels.

A bdFrame object can contain columns of only types doub1e,
character, factor, timeDate, timeSpan or 1ogical. No other
column types (such as matrix objects or user-defined classes)
are allowed. By limiting the allowed column types, Spotfire
S+ ensures that the binary cache file representing the data is
as compact as possible and can be efficiently accessed.

11
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* The print function works differently on a bdFrame object than
it does for a data frame. It displays only the first few rows and
columns of data instead of the entire data set. This design
prevents accidentally generating thousands of pages of output
when you display a bdFrame object at the command line.

Note

You can specify the numbers of rows and columns to print using the bd.options function. See
bd.options in the Spotfire S+ Language Reference for more information.

Vectors

Models

12

* The summary function works differently on a bdFrame object
than it does for a data frame. It calculates an abbreviated set
of summary statistics for numeric columns. This design is for
efficiency reasons: summary displays only statistics that are
precalculated for each column in the big data object, making
summary an extremely fast function, even when called on a
very large data set.

The Spotfire S+ Big Data library also introduces bdVector and six
subclasses, which represent new vector types to support very long
vectors. Like a bdFrame object, the big vector object stores data out-of-
memory as a cache file on disk, so you can create very long big vector
objects without needing a lot of RAM.

You can extract an individual column from a bdFrame object (using
the $ operator) to create a large vector object. Alternatively, you can
generate a large vector using the functions listed in Table A.3 in the
Appendix. Like bdFrame objects, the actual data is stored out of
memory as a cache file on disk, so you can create very long big vector
objects without worrying about fitting them into RAM. You can use
standard vector operations, such as selections and mathematical
operations, on these data types. For example, you can create new
columns in your data set, as follows:

census$adjusted.income <- Tog(census$income -
census$tax)

Spotfire S+ Big Data library provides scalable modeling algorithms to
process big data objects using out-of-memory techniques. With these
modeling algorithms, you can create and evaluate statistical models
on very large data sets.
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The Big Data Library Architecture

A model object is available for each of the following statistical
analysis model types.

Table 1.4: Big Data library model objects.

Model Type Model Object
Linear regression bdLm
Generalized linear models bdGTm
Clustering bdCluster
Principal Components Analysis bdPrincomp

When you perform statistical analysis on a large data set with the Big
Data library, you can use familiar Spotfire S+ modeling functions and
syntax, but you supply a bdFrame object as the data argument, instead
of a data frame. This forces out-of-memory algorithms to be used,
rather than the traditional in-memory algorithms.

When you apply the modeling function 1m to a bdFrame object, it
produces a model object of class bdLm. You can apply the standard
predict, summary, plot, residuals, coef, formula, anova, and fitted
methods to these new model objects.

For more information on statistical modeling, see Chapter 2, Census
Data Example.

The standard Spotfire S+ library contains a series object, with two
subclasses: timeSeries and signalSeries. The series object contain:

* A data component that is typically a data frame.

* Apositions component that is a timeDate or timeSequence
object (timeSeries), or a bdNumeric or numericSeries object
(signalSeries).

* Aunits component that is a character vector with
information on the units used in the data columns.

13
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Classes

14

The Big Data library equivalent is a bdSeries object with two
subclasses: bdTimeSeries and bdSignalSeries. They contain:

e Adata component that is a bdFrame.

* Apositions component that is a bdTimeDate object
(bdTimeSeries), or bdNumeric object (bdSignalSeries).

* A units component that is a character vector.

For more information about using large time series objects and their
classes, see the section Time Classes on page 17.

The Big Data library follows the same object-oriented design as the
standard Spotfire S+ Sv4 design. For a review of object-oriented
programming concepts, see Chapter 8, Object-Oriented
Programming in Spotfire S+ in the Programmer’s Guide.

Each object has a class that defines methods that act on the object.
The library is extensible; you can add your own objects and classes,
and you can write your own methods.

The following classes are defined in the Big Data library. For more
information about each of these classes, see their individual help
topics.

Table 1.5: Big Data classes.

Class(es) Description

bdFrame Big data frame

bdLm, bdG1m, bdCluster, bdPrincomp | Rich model objects

bdVector Big data vector

bdCharacter, bdFactor, bdLogical, | Vector type subclasses

bdNumeric, bdTimeDate,
bdTimeSpan

bdTimeSeries, bdSignalSeries Series objects
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Data Import and
Export

Big Vector
Generation

Data Exploration

Functions

Data
Manipulation
Functions

Graph Functions

The Big Data Library Architecture

In addition to the standard Spotfire S+ functions that are available to
call on large data sets, the Big Data library includes functions specific
to big data objects. These functions include the following.

* Big vector generating functions

* Data exploration and manipulation functions.
+ Traditional and Trellis graphics functions.

*  Modeling functions.

The functions for these general tasks are listed in the Appendix.

Two of the most frequent tasks using Spotfire S+ are importing and
exporting data. The functions are described in Table A.1 in
Appendix. You can perform these tasks from the Commands
window, from the Console view in the Spotfire S+ Workbench, or
from the Spotfire S+ import and export dialog boxes in the Spotfire
S+ GUI. For more information about importing large data sets, see
the section Data Import on page 25 in Chapter 2, Census Data
Example.

To generate a vector for a large data set, call one of the Spotfire S+
functions described in Table A.3 in the Appendix. When you set the
bigdata flag to TRUE, the standard Spotfire S+ functions generate a
bdVector object of the specified type. For example:

# sample of size 2000000 with mean 10*0.5 = 5
rbinom(2000000, 10, 0.5, bigdata = T)

After you import your data into Spotfire S+ and create the
appropriate objects, you can use the functions described in Table A.4
in the Appendix. to compare, correlate, crosstabulate, and examine
univariate computations.

After you import and examine your data in Spotfire S+, you can use
the data manipulation functions to append, filter, and clean the data.
For an overview of these functions, see Table A.5 in the Appendix.
For a more in-depth discussion of these functions, see the section
Data Manipulation on page 37 in Chapter 2, Census Data Example.

The Big Data library supports graphing large data sets intelligently,

using the following techniques to manage many thousands or millions
of data points:

15
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+ Hexagonal binning. (That is, functions that create one point
per observation in standard Spotfire S+ create a hexagonal
binning plot when applied to a big data object.)

*+  Plot-specific summarizing. (That is, functions that are based
on data summaries in standard Spotfire S+ compute the
required summaries from a big data object.)

*  Preprocessing data, using table, tapply, 1oess, or aggregate.

* Preprocessing using interp or hist2d.

Note

The Windows GUI editable graphics do not support big data objects. To use these graphics,
create a data frame containing either all of the data or a sample of the data.

For a more detailed discussion of graph functions available in the Big
Data library, see Chapter 4, Creating Graphical Displays of Large

Data Sets.
Modeling Algorithms for large data sets are available for the following statistical
Functions modeling types:

* Linear regression.

*  Generalized linear regression.
*  Clustering.

*  Principal components.

See the section Models on page 12 for more information about the
modeling objects.

If the data argument for a modeling function is a big data object, then
Spotfire S+ calls the corresponding big data modeling function. The
modeling function returns an object with the appropriate class, such
as bdLm.

See Table A.12 in the Appendix for a list of the modeling functions
that return a model object.

See Tables A.10 through A.13 in the Appendix for lists of the
functions available for large data set modeling. See the Spotfire S+
Language Reference for more information about these functions.
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Time Classes

Time Series
Operations

Time and Date
Operations

The Big Data Library Architecture

Formula operators

The Big Data library supports using the formula operators+, -, *, :,
%in%, and /.

The following classes support time operations in the Big Data library.
See the Appendix for more information.

Table 1.6: Time classes.

Class name Comment

bdSignalSeries A bdSignalSeries object from
positions and data

bdTimeDate A bdVector class

bdTimeSeries See the section Time Series
Operations for more information.

bdTimeSpan A bdVector class

Time series operations are available through the bdTimeSeries class
and its related functions. The bdTimeSeries class supports the same
methods as the standard Spotfire S+ library’s timeSeries class. See
the Spotfire S+ Language Reference for more information about
these classes.

*  When you create a time object using timeSeq, and you set the
bigdata argument to TRUE, then a bdTimeDate object is
created.

*  When you create a time object using timeDate or
timeCalendar, and any of the arguments are big data objects,
then a bdTimeDate object is created.

17



Chapter 1 Introduction to the Big Data Library

See Table A.14 in the Appendix.

Note

bdTimeDate always assumes the time as Greenwich Mean Time (GMT); however, Spotfire S+
stores no time zone with an object. You can convert to a time zone with timeZoneConvert, or
specify the zone in the bdTimeDate constructor.

Time Conversion To convert time and date values, apply the standard Spotfire S+ time

Operations conversion operations to the bdTimeDate object, as listed in Table
A.14 in the Appendix.

Matrix The Big Data library does not contain separate equivalents to matrix

Operations and data.frame.

Spotfire S+ matrix operations are available for bdFrame objects:
*  matrix algebra ( +, -, /,*, 1, &, |, >, <, ==, =, <=, =>, %%, %/%)
*  matrix multiplication (%*%)
*  Crossproduct (crossprod)

In algebraic operations, the operators require the big data objects to
have appropriately-corresponding dimensions. Rows or columns are
not automatically replicated.

Basic algebra

You can perform addition, subtraction, multiplication, division,
logical (!, &, and |), and comparison (>, <, =, !=, <=, >=) operations
between:

e A scalar and a bdFrame.
* Two bdFrames of the same dimension.

* A bdFrame and a single-row bdFrame with the same number of
columns.

* A bdFrame and a single-column bdFrame with the same
number of rows.

The library also offers support for element-wise +, -, *, /, and matrix
multiplication (%*%).

18



Summary

The Big Data Library Architecture

Matrix multiplication is available for two bdFrames with the
appropriate dimensions.

Cross Product Function

When applied against two bdFrames, the cross product function,
crossprod, returns a bdFrame that is the cross product of the given
bdFrames. That is, it returns the matrix product of the transpose of the
first bdFrame with the second.

In this section, we’ve provided an overview to the Big Data library
architecture, including the new data types, classes, and functions that
support managing large data sets. For more detailed information and
lists of functions that are included in the Big Data library, see the
Appendix: Big Data Library Functions.

In the next chapter, we provide examples for working with data sets
using the types, classes, and functions described in this chapter.
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Census data provides a rich context for exploratory data analysis and
the application of both unsupervised (e.g., clustering) and supervised
(e.g., regression) statistical learning models. Furthermore the data sets
(in their unaggragated state) are quite large. The US Census 2000
estimates the total US population at over 281 million people. In its
raw form, the data set (which includes demographic variables such as
age, gender, location, income and education) is huge. For this
example, we focus on a subset of the US Census data that allows us to
demonstrate principles of working with large data on a data set that
we have included in the product.

Census data has many uses. One of interest to the US government
and many commercial enterprises is geographical distribution of sub
populations and their characteristics. In this initial example, we look
for distinct geographical groups based on age, gender and housing
information (data that is easy to obtain in a survey), and then
characterize them by modeling the group structure as a function of
much harder-to-obtain demographics such as income, education,
race, and family structure.

The data for this example is included with Spotfire S+ and is part of
the US Census 2000 Summary File 3 (SF3). SF3 consists of 813
detailed tables of Census 2000 social, economic, and housing
characteristics compiled from a sample of approximately 19 million
housing units (about 1 in 6 households) that received the Census 2000
long-form questionnaire. The levels of aggregation for SF3 data is
depicted in Figure 2.1.

The data for this example is the summary table aggregated by Zip
Code Tabulation Areas (ZCTA5) depicted as the left-most branch of the
schematic in Figure 2.1.

The following site provides download access to many additional SF3
summary tables:

http://www.census.gov/Press-Release/www/2002/sumfile3.htm]l
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Figure 2.1: US Census 2000 data grouping hierarchy schematic with implied
aggregation levels. The data used in this example comes from the Zip Code Tabulation
Area (ZCTA) depicted at the far left side of the schematic.

The variables included in the census data set are listed in Table 2.1.
They include the zip code, latitude and longitude for each zip code
region, and population counts. Population counts include the total
population for the region and a breakdown of the population by
gender and age group: Counts of males and females for ages 0 - 5, 5 -
10, ..., 80 - 85, and 85 or older.
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Table 2.1: Variable descriptions for the census data example.

New Variable
Variable(s) Name(s) Description
ZCATS zipcode five-number zip code
INTPT.LAT Tat Interpolated latitude
INTPT.LON Tong Interpolated longitude
P008001 popTotal Total population
M.00 - M.85 male.00 - Male population by age group:
male.85 0 - 4 years, 5 - 9 years, and so
on.
F.00 - F.85 female.00 - Female population by age
female.85 group: 0 - 4 years, 5 - 9 years,
and so on.
H007001 housingTotal Total housing units
H007002 own Owner occupied
H007003 rent Renter occupied

A script file can be downloaded from TIBCO’s Support site that
contains all the commands used in this chapter:

www./support.tibco.com

If you want to build the cluster model starting on page 57, you also
need to download the censusDemogr.sdd object.

Then run data.restore("C:/test/censusDemogr.sdd") to restore it
for use in Spotfire S+, where C:/test is an example download folder.
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EXPLORATORY ANALYSIS

Data Import

The data is provided as a comma-separated text file ( .csv format).
The file is located in the SHOME location (by default your
installation directory) in /samples/bigdata/census/census.csv.

As mentioned on the previous page, you can also download an
analysis script named new.census.demo.ssc to execute the
commands referenced in this chapter.

Reading big data is identical to what you are familiar with in previous
versions of Spotfire S+ with one exception: an additional argument to
specify that the data object created is stored as a big data (bd) object.

> census <- importData(paste(getenv("SHOME"),
"/samples/bigdata/census/census.csv", sep=""),
stringsAsFactors=F, bigdata=T)

View the data with the Data Viewer as follows:
> bd.data.viewer(census)

The Data Viewer is an efficient interface to the data. It works on big
out-of-memory data frames (such as census) and on in-memory data
frames.
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Big Data, Viewer, - census

File Edit Rounding Help
Murmeric | Factor | String | Date
ICTAS INTPTLAT INTPTLOM POOS001 .00
string FILmEric nUmeric nummeric MUmEric
1 "eQLlt 12,180,102.00 -66,745, 47200 13,142.00 FLlz.00f M
2 “"eoz" 18,363,285.00 -g7,180,247.00 4z ,04Z.00 1,642.00
3 "EQ3" 12,442, 615.00 -67,134, 22400 EE,E2Z.00 Z,043_ 00
4 "E04n 12,492, 98700 -67,1325,335.00 2,844 00 1z3.00
35 "e0s" 12,182,151.00 -66&,358,207.00 6,443 00 2E3.00
5] "elo" lg,2882,315.00 -67,.1326,046.00 zg,005.00 l,0z5.00
7 "ElE" 18,449 73Z.00 -66 698, 737_00 7E,865.00 Z,767.00
g "Elg" 18,426, 748,00 -6& ,E675,692.00 10, 5EE5.00 233.00
9 "EL7" 18,455,495 00 -66&, EEL, 758,00 23,2E3.00 1,033.00
10f "ezE" 158,003,125.00 -&67,167,456.00 8,284.00 29Z.00
11 "EE3" 1g,086,430.00 -67,15Z,EZZ6.00 28,6E7.00 1,451.00
12 "EE4" 12, 0EE5,395.00 -66, 7E5,0Z5.00 Z6,713.00 1,195, 00| %
£ >
Total number columns: 43 Mumeric columns: 42
Total number rovwws: 33178 Factor columnzs: O
String columns: 1
Date columns: o

Figure 2.2: Viewing big data objects is done with the Data Viewer.

The Data View page (Figure 2.2) of the Data Viewer lists all rows
and all variables in a scrollable window plus summary information at
the bottom, including the number of rows, the number of columns,
and a count of the number of different types of variables (for
example, a numeric, factor). From the summary information, we see
that census has 33,178 rows.

In addition to the Data View page, the Data Viewer contains tabs
with summary information for numeric, factor, character, and date
variables. These summary tabs provide quick access to minimums,
maximums, means, standard deviations, and missing value counts for
numeric variables and levels, level counts, and missing value counts
for factor variables.
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Big Data Yiewer - census

File Rounding  Help

Data iew |: Humeric:| Factar | String | Date

[ #] [ Variable] [ Mean] [ Min] [ Max] [ StDev] [ Missing]

2 INTPTLAT 38,530,386...[17 962,234....| 71,299 525, | 5,350,396 53 o~
3 INTPTLOM -91,054,343...|-176,636,75... -65,202 575...| 15,070 ,686.... 0

4 POOE001 5,596 95 0.00 14402400 12875.76 o

=] .00 295.57 0.00 5,247.00 495,55 o

5] .05 322.52 0.00 5,115.00 929.70 o

7 h.10 323.57 0.00 5,566.00 20526 o
& h.15 31345 0.00 5,918.00 49620 o

9 .20 297 .14 0.00 15,461.00 089.12 o

10 .25 295.79 0.00 §,152.00 925.85 o

11 .30 311.60 0.00 6,318.00 02297 o

12 .35 349.59 0.00 5,280.00 94610 o

13 .40 34492 0.00 4,997.00 916.25 o

14 .45 302.37 0.00 4,107.00 442 56 o

15 .50 259.35 0.00 4,025.00 37666 0]

Total number columns: 43 Mumeric columns: 42

Total number rovwes: 33178 Factor columns: 0

String columns: 1
Date columns: o

Figure 2.3: The Numeric summary page of the Data Viewer provides quick access
to minimum, maximum, mean, standard deviation, and missing value count for
numeric data.

Data Before beginning any data preparation, start by making the names
Preparation more intuitive using the names assignment expression:

> names(census) <- c("zipcode™, "Tat™, "Tong™, "popTotal",
paste("male", seq(0, 85, by = 5), sep ="."),
paste("female", seq(0, 85, by =5), sep ="."),
"housingTotal", "

own", "rent")
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The row names are shown in Table 2.1, along with the original
names.

Note

The Spotfire S+ expression paste("male”, seq(0, 85, by = 5), sep = ".") creates a sequence
of 18 variable names starting with male.0 and ending with male.85. The call to seq generates a
sequence of integers from 0 to 85 incremented by 5, and the call to paste pastes together the
string “male” with the sequence of integers separated with a period (.).

A summary of the data now is:

> summary(census)

zipcode lat long
Length: 33178  Min.:17962234  Min.:-176636755
Class: Mean:38830389 Mean: -91084343

Mode:character Max.:71299525 Max.: -65292575

popTotal male.0 male.5

Min.: 0.000 Min.: 0.0000 Min.: 0.000
Mean: 8596.977 Mean: 298.5727 Mean: 322.822
Max.:144024.000 Max.:6247.0000 Max.:6115.000

From summary of the census data, you might notice a couple of
problems:

1. The population total (popTotal) has some zero values,
implying that some zip codes regions contain no population.

2. The zip codes are stored as character strings which is odd
because they are defined as five-digit numbers.

To remove the zero-population zip codes you can do it the you
typically would when working with data frames:

> census <- census[census[, "popTotal™] > 0, 1

However, there is a more efficient way. Notice that the example
above (finding rows with non-zero population counts) implies two
passes through the data. The first pass extracts the popTotal column
and compares it (row by row) with the value of zero. The second pass
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removes the bad popTotal rows. If your data is very large, using
subscripting and nested function calls can result in a prohibitively
lengthy execution time.

A more efficient “big data” way to remove rows with no population is
to use the bd.filter.rows function available in the Big Data library
in Spotfire S+. bd.filter.rows has two required arguments:

1. data: the big data object to be filtered.

2. expr: an expression to evaluate. By default, the expression
must be valid, based on the rules of the row-oriented
Expression Language. For more details on the expression
language, see the help file for ExpressionLanguage.

Note

If you are familiar with the Spotfire S+ language, the Excel formula language, or another
programming language, you will find the row-oriented Expression Language natural and easy to
use. An expression is a combination of constants, operators, function calls, and references to
columns that returns a single value when evaluated

For our example, the expression is simply popTotal > 0, which you
pass as a character string to bd.filter.rows. The more efficient way
to filter the rows is:

> census <- bd.filter.rows(census, expr= "popTotal > 0")
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Using the row-oriented Expression Language with bd.filter.rows
results in only one pass through the data, so the computation time will
usually be reduced to about half the execution time of the previously-
described Spotfire S+ expression. Table 2.2 displays additional

examples of row-oriented expressions.

Table 2.2: Some examples of the row-oriented Expression Language.

Expression Description

age > 40 & gender == “F” All rows with females greater than
40 years of age.

Test != “Failed” All rows where Test is not equal to
“Failed”.

Date > 6/30/04 All rows with Date later than
6/30/04.

voter == “Dem” | voter == “Ind” | All rows where voter is either

democrat or independent.

Now, remove the cases with bad zip codes by using the regular
expression function, regexpr, to find the row indices of zip codes that
have only numeric characters:

> census <- bd.filter.rows(census,
"regexpr('~[0-9]1+$', zipcode)>0",
row.language=F)

Notes

*  The call to the regexpr function finds all zip codes that have only integer characters in
them. The regular expression “~[0-9]+$” produces a search for strings that contain only
the characters 0, 1, 2, ..., 9.The * character indicates starting at the beginning of
the string, the $ character indicates continuing to the end of the string and the + symbol
implies any number of characters from the set {0, 1, 2,..., 9}.

*  The call to bd.filter.rows specified the optional argument, row.language=F. This
argument produces the effect of using the standard Spotfire S+ expression language,
rather than the row-oriented Expression Language designed for row operations on big
data.
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Tabular
Summaries

Generate the basic tabular summary of variables in the census data
set with a call to the summary function, the same as for in-memory data
frames. The call to summary is quite fast, even for very large data sets,
because the summary information is computed and stored internally
at the time the object is created.

> summary(census)
zipcode lat long

Length: 32165 Min.:17964529 Min.:-176636755
Class: Mean:38847016 Mean: -91103295
Mode:character Max.:71299525 Max.: -65292575
popTotal male.0 male.5

Min.: 1.000 Min.: 0.0000 Min.: 0.0000

Mean: 8867.729 Mean: 307.9759 Mean: 332.9889

Max.:144024.000

female.85

Min.: 0.00000
Mean: 92.77398
Max.:2906.00000

Max.:6247.0000

housingTotal

Min.: 0.000
Mean: 3318.558
Max.:61541.000

Max.:6115.0000

own
Min.: 0.000
Mean: 2199.168
Max.:35446.000

rent
Min.: 0.000
Mean: 1119.391
Max.:40424.000

To check the class of objects contained in a big data data frame (class
bdFrame), call sapply, which applies a specified function to all the
columns of the bdFrame.

> sapply(census, class)
zipcode lat long popTotal
"pbdCharacter" "bdNumeric" "bdNumeric"™ "bdNumeric"

male.O male.b5 male.10 male.1l5
"bdNumeric" "bdNumeric" "bdNumeric" "bdNumeric"
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Generate age distribution tables with the same operations you use for
in-memory data. Multiply column means by 100 to convert to a
percentage scale and round the output to one significant digit:

> ageDist <-
colMeans(census[, 5:40] / census[, "popTotal™]) * 100
> round(matrix(ageDist,

nrow = 2,
byrow = T,
dimnames = 1ist(c("Male", "Female"),

seq(0, 85, by=5))), 1)

numeric matrix: 2 rows, 18 columns.
0 1 15 20 25 30 35 40 45 50 5
Male 3.2 8
7

5 0 5
3.6 3.83.82.92.93.23.94.13.83.32.7
Female 3.0 3.4 3.6 3.4 2.7 2.8 3.2 3.9 4.0 3.7 3.3 2.7

6

0
Male 2.3
Female 2.3

65 80 85
0 0.8 0.5
1 1 1.1

nN =
O N O
_ =
~N W o
N

2.

2.

Graphics You can plot the columns of a bdFrame in the same manner as you do
for regular (in-memory) data frames:

> hist(census$popTotal)

will produce a histogram of total population counts for all zip codes.
Figure 2.4 displays the result.
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Figure 2.4: Histogram of total population counts for all zip codes.

You can get fancier. In fact, in general, the Trellis graphics in Spotfire
S+ work on big data. For example, the median number of rental units
over all zip codes is 193:

> median(census$rent)
[1] 193

You would expect that, if the number of rental units is high (typical of
cities), the population would likewise be high. We can check this
expectation with a simple Trellis boxplot:

> bwplot(rent > 193 ~ log(popTotal), data = census)
Figure 2.5 displays the resulting graph.
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Figure 2.5: Boxplots of the log of popTotal for the number of rental units above and
below the median, showing higher populations in areas with more rental units.

You can address the question of population size relative to the
number of rental units in a more general way by examining a
scatterplot of popTotal vs. rent. Call the Trellis function xyplot for
this. Take logs (after adding 0.5 to eliminate zeros) of each of the
variables to rescale the data so the relationship is more exposed:

> xyplot(log(popTotal) ~ log(rent + 0.5), data = census)
The resulting plot is displayed in Figure 2.6.

Note

The default scatterplot for big data is a hexbin scatterplot. The color shading of the hexagonal
“points” indicate the number of observations in that region of the graph. For the darkest shaded
hexagon in the center of the graph, over 800 zip codes are represented, as indicated by the
legend on the right side of the graph.
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Figure 2.6: This hexbin scatterplot of Tog(popTotal) wvs. Tog(rent+0.5)
shows population sizes increasing with the increasing number of rental units.

The result displayed in Figure 2.6 is not surprising; however, it
demonstrates the straightforward use of known functions on big data
objects. This example continues with Trellis graphics with
conditioning in the following sections.

The age distribution table created in the section Tabular Summaries
on page 31 produces the plot shown in Figure 2.7:

> bars <- barplot(rbind(ageDist[1:18], -ageDist [19:361]),
horiz=T)
> mtext(c("Female"™, "Male"), side =1, line = 3, cex = 1.5,
at = c(-2, 2))
> axis(2, at bars, labels = seq(0, 85, by
ticks =F)

5),
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Note

In creating this plot, the example starts with big out-of-memory data (census) and ends
with small in-memory summary data (agedist) without having to do anything special to
transition between the two. Spotfire S+ takes care of the data management.
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Figure 2.7: Age distribution by gender estimated by US Census 2000.
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DATA MANIPULATION

Stacking

The census data contains raw population counts by gender and age;
however, the counts for different genders and ages are in different
columns. To compare them more easily, stack the columns end to
end and create factors for gender and age. Start with the stacking
operation.

The bd.stack function provides the needed stacking operation. Stack
all the population counts for males and females for all ages with one
call to bd.stack:

> censusStack <- bd.stack(census,
columns = 5:40,
replicate = c(1:4, 41:43),
stack.column.name = "pop",
group.column.name = "sexAge")

Table 2.3 lists the arguments to bd.stack.
Table 2.3: Arguments to bd. stack.

Argument Name Description

data Input data set, a bdFrame or data.frame.

columns Names or numbers of columns to be stacked.

replicate Names or numbers of columns to be replicated.

stack.column.name Name of new stacked column.

group.column.name Name of an additional group column to be
created in the output data set. In each output
row, the group column contains the name of the
original column that contained the data value in
the new stacked column.

The first few rows of the resulting data are listed below. Notice the
values for the sexAge variable are the names of the columns that were
stacked.
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Variable
Creation

38

> censusStack
** bdFrame: 1150236 rows, 9 columns **

zipcode lat long popTotal housingTotal own rent
1 601 18180103 -66749472 19143 5895 4232 1663
2 602 18363285 -67180247 42042 13520 10903 2617
3 603 18448619 -67134224 55592 19182 12631 6551
4 604 18498987 -67136995 3844 1089 719 370
5 606 18182151 -66958807 6449 2013 1463 550
pop sexAge
1 712 male.O
2 1648 male.0
3 2049 male.O
4 129 male.O

5 259 male.O
1150231 more rows

Notice that the census data started with a little over 33,000 rows.
Now, after stacking, there are over 1.15 million rows.

Now create the sex and age factors. There are several ways to do this,
but the most computationally efficient way for large data is to use the
bd.create.columns function, along with the row-oriented expression
language. Before starting, notice that the column names for the
stacked columns (male.0, male.5, ..., female.80, female.85) can be
separated into male and female groups simply by the number of
characters in their names. All male names have seven or fewer
characters and all female names have eight or more characters.
Therefore, by checking the number of characters in the string, you
can determine whether the value should be “male” or “female”. Here
is an example of the row-oriented Expression Language:

" ifelse(nchar(sexAge) > 7, 'female', 'male' "
Notice the use of a single quote, *, to embed a quote within a quote.

To create the age variable is a little harder. You must subset the string
differently, depending on whether the value of sexAge corresponds to
a male or female.

1. For males, extract from the sixth character to the end, and for
females, extract from the eighth character to the end. The
row-oriented expression language follows:
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" ifelse(nchar(sexAge) > 7,
substring(sexAge, 8, nchar(sexAge)),
substring(sexAge, 6, nchar(sexAge))) "

2. Create an additional variable that is a measure of the
population size for each age and gender group relative to the
population size for the entire zip code area. Because each row
contains gender and age specific population estimates and the
total population estimate for that zip code area, the relative
population size for each gender and age group is simply

"pop/popTotal”

3. Create all three new variables in a single call to
bd.create.columns (which requires only a single pass
through the data) by including all three of the above
expressions in the call.

> censusStack <- bd.create.columns(censusStack,
exprs = c("ifelse(nchar(sexAge) > 7, 'female', 'male')",
"ifelse(nchar(sexAge) > 7,
substring(sexAge, 8, nchar(sexAge)),
substring(sexAge, 6, nchar(sexAge)))" ,
"pop/popTotal™),
names. = c("sex", "age"™, "popProp"),
types = c("factor", "character", "numeric"))

In this example, bd.create.columns arguments include the
following:

* exprs takes a character vector of strings; each string is the
expression that creates a different column.

* names supplies the names for the newly-created columns.
* types specifies the type of data in the resulting column.

For more information on bd.create.columns, see its help file
by typing help(bd.create.columns), or by typing
?bd.create.columns in Spotfire S+.

Note

The age column in the call to bd.create.columns is stored as a character column so we have
more control when creating an age factor. A discussion of this is included in the next section
Factors.
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Factors

40

In the previous section, we created age as a character vector, because
when bd.create.columns creates factors, it establishes levels as the
set of alphabetically sorted unique values in the column. The levels are
not arranged numerically. In the example output below, notice the
placement of the “5” between “45” and “50”.

> levels(factor(censusStack[, “age”]))
[1] lloll "10" "15" ll20ll Il25" "30" ll35ll "40" "45" ll5ll Il50ll
[12] ll55" "60" "65!! ll70" "75" "80!! ll85"

When Spotfire S+ creates tables or graphics that use the levels as
labels, the order is as the levels are listed, rather than in numerical
order.

To control the order of the levels of a factor, call the bdFactor
function directly and state explicitly the order for the levels. For
example, using the census data:

> censusStack[, "age"] <- bdFactor(censusStack[, "age"],
levels = c("0", "5", "10"™, "15", "20", "25",

"30"™, "35"™, "40", "45", "50", "55",

"60", "65", "70", "75", "80", "85"))
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MORE GRAPHICS

The data is now prepared to allow more interesting graphics. For
example, create an age distribution plot conditional on gender (Figure
2.8) with the following call to bwplot, a Trellis graphic function:

> bwplot(age ~ Tog(popProp + 0.00001) | sex,
data = censusStack)

Note

0.00001 is added to the population proportions to avoid taking the log of zero.
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Figure 2.8: Boxplots of logged relative population numbers by age and sex.

The following call to bwplot creates a plot (Figure 2.9) of logged
relative population numbers by age and whether the zip code area
contains more than the median number of rental units:

> bwplot(age ~ Tog(popProp + 0.00001) | rent > 193,
data = censusStack)
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Note the span of the boxes for 80 and older when there are fewer
than the median number of rental units, implying that the population
numbers for this group drops dramatically in some areas where there
few rental units.
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Figure 2.9: Boxplots of logged relative population numbers by age and rent>193.

Another interesting plot is of the zip code area centers in units of
latitude and longitude. Highly populated areas show a higher density
of zip code numbers; therefore, they show greater density in the
hexbin scatterplot. First, however, notice that the scale of Tat and
Tong is off by a factor of 1,000,000. The 1at variable should be in the
range of 20 to 70 and Tong should be in the range of -60 to -180. So
first rescale these variables by a call to bd.create.columns.

> summary(census[, c("lat", "long")])
lat long
Min.:17964529 Min.:-176636755
Mean:38851462 Mean: -91044543
Max.:71299525 Max.: -65292575

Even more efficient, requiring no passes through the data:
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> summary(census)[, c("lat", "long")]

Because the summary is stored in metadata, it does not have to be
computed. The first form creates a two-column big data object, and
then gets the summary from that object.

To rescale Tat and Tong simultaneously, use the following
expressions:

"lat/1le6"™, "Tong/le6"

Use the original data set census, rather than censusStack, because
census has just one row per zip code.

> census <- bd.create.columns(census,
exprs=c("lat/1l.e6"™, "long/l.e6"),
names=c("Tat","long"))

The values of Tat and Tong are now scaled appropriately:

> summary(census[, c("lat", "long")])
lat long
Min.:17.96453 Min.:-176.63675
Mean:38.85146 Mean: -91.04454
Max.:71.29953 Max.: -65.29257

Or, more efficiently:
> summary(census)[, c("lat", "long")]

Now produce the plot with a simple call to xyplot.
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> xyplot(lat ~ long, data = census)
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Figure 2.10: Hexbin scatterplot of latitudes and longitudes. Zip codes are denser
where populations are denser, so this plot displays relative population densities.
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CLUSTERING

Data
Preparation

Clustering

This section applies clustering techniques to the census data to find
sub populations (collections of zip code areas) with similar age
distributions. The section Modeling Group Membership develops
models that characterize the subgroups we find by clustering.

The section Tabular Summaries computed the average age distribution
across all zip code areas by age and gender, depicted in Figure 2.7.
Next, group zip-code areas by age distribution characteristics, paying
close attention to those that deviate from the national average. For
example, age distributions in areas with military bases, typically
dominated by young adult single males without children, should
stand out from the national average.

Unusual populations are most noticeable if the population
proportions (previously computed as pop/popTotal by age and
gender) are normalized by the national average. One way to
normalize is to divide population proportions in each age and gender
group by the national average for each age and gender group. The
(odds) ratio represents how similar (or dissimilar) a zip-code
population is from the national average. For example, a ratio of 2 for
females 85 years or older indicates that the proportion of women 85
and older is twice that of the national average.

To prepare the population proportions, recall that the national
averages are produced with the colMeans function:

> ageDist <-
colMeans(census[, 5:40] / census[, "popTotal™])
Also recall that, in Spotfire S+, if you multiply (or divide) a matrix by
a vector, the elements of each column are multiplied by the
corresponding element of the vector (assuming the length of the
vector is equivalent to the number of rows of the matrix). We want to

divide each element of a column by the mean of that column. In-
memory computation might proceed as follows:

> popPropN <- t(t(census[, 5:40]1) / ageDist)

That is, transpose the data matrix, divide by a vector as long as each
column of the transposed matrix, and then transpose the matrix back.
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The above operation is inefficient for large data. It requires multiple
passes through the data. A more efficient way to compute the
normalized population proportions is to create a series of row-
oriented expressions:

"male.0/ageDist[1]"
and process them with bd.create.columns.
Here is how to do this:
1. Create the proportions matrix:
> popProp <- census[, 5:40] / census[, "popTotal™]
2. Create the expression vector:

> norm.exprs <- paste(names(popProp),
paste("/ageDist[", 1:36, "1",sep=""), sep="")

3. Normalize the population proportions:

> popPropN <- bd.create.columns(popProp,
exprs = norm.exprs,
names. = names(popProp),
row.language = F)

4. Join the normalized population proportions with the rest of
the census data:

censusN <- bd.join(Tlist(census[, c(1:4, 41:43)1],
popPropN))

Notes

* Instep 3, row.language = F is specified because the expressions use Spotfire S+ syntax
to do subscripting.

* In step 4, there are no key variables specified in the join operation, which results in a
join by row number.

- ou are now ready to do the clustering. The big data version of k-
K-Means Y dy to do the clustering. The big dat ion of k
CIustering means clustering is bdCluster. The important arguments are:

* The data (a bdFrame in this example).

* The columns to cluster (if all columns of the bdFrame are not
included in the clustering operation).
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*  The number of clusters, k.

Typically, determining a reasonable value for k requires some effort.
Usually, this involves clustering repeatedly for a sequence of k values
and choosing the k that greatly reduces the residual variance without
adding an excessive number of clusters. For this example, after a little
experimentation, we set k = 40.

> clusterCensusN <- bdCluster(censusN,
columns=names (popPropN),k=40)

Notes

To match the results presented here, set the random seed to 22 before calling bdCluster. To set
the seed, at the prompt, type set.seed(22).

This example focuses on only the age x gender distributions, so columns is set to just those
columns with population counts.

Analyzing the
Results

The bdCTuster function has a predict method, so you can extract
group membership identifiers for each observation and append them
onto the normalized data, as follows:

> censusNPred <- cbind(censusN, predict(clusterCensusN))

In this section, examine the results of applying k-means clustering to
the census data. To get a sense of how big the clusters are and what
they look like, start by combining cluster means and counts.

1. To compute cluster means, call bd.aggregate as follows:

> clusterMeans <- bd.aggregate(censusNPred,
columns = names(popProp),
by.columns="PREDICT.membership",
methods="mean")

2. To compute cluster group sizes, call bd.aggregate again with
“count” as the method:

> clusterCounts <- bd.aggregate(censusNPred,
columns=1,
by.columns="PREDICT.membership",
methods="count")

3. Merge the two aggregates:
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> clusterMeansCounts <- merge(clusterCounts, clusterMeans)

The call to merge without a key.variables argument matches
on the common columns names, by default.

The clusterMeansCounts object contains mean population estimates
for each zip code area, age and gender. The first 24 groups (ordered
by the number of zip code regions that comprise them) are plotted in
Figure 2.11. The upper left panel corresponds to the group with the
most zip codes and the lower right panel has the fewest. The graphs
that appear top-heavy reflect more older people. Notice the panel in
the third row down, first position on the left. It is very heavily
weighted on the top. These are retirement communities. Also, notice
the second panel from the left in the bottom row. The population is
dominated by young adult males. These are primarily military bases.
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N =5533 N = 4807 N= 4235 N=3204 N = 2839 N=1711

=12
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Figure 2.11: Age distribution barplots for the first 24 groups resulting from k-means
clustering with 40 groups specified. The horizontal lines in each panel correspond to
20 (the lower one) and 70 years of age. Females are to the left of the vertical and
males are to the right.

To produce Figure 2.11, run the following:
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> source(paste(getenv("SHOME™),

"/samples/bigdata/census/my.vbar.q", sep=""))

> index16 <- rep(l:16, length = 24)

> par(mfrow=c(4,6))

> for(k in 1:24) {
my.vbar(bd.coerce(clusterMeansCounts), k=k,

plotcols=3:38,
Nreport.col=2,
col=1+index16[k])

}

An interesting graphic that dramatizes group membership displays
each zip code as a single black point for the center of the zip code
region, and then overlays points for any given cluster group in
another color. Technically, this plot is more interesting, because it
uses a new function, bd.block.apply, to process the data a block at a

The bd.block.apply function takes two primary arguments:
The data, usually a bdFrame, census in this case.

a function for processing the data a block at a time.

Note

The bd.block.apply argument FUN is a Spotfire S+ function called to process a data frame. This
function itself cannot perform big data operations, or an error is generated. (This is true for
bd.by.group and bd.by.window, as well.)

Define the block processing function as follows:

f <- function(SP){

par(plt = c(.1, 1, .1, 1))
if(SP$inl.pos == 1){
plot(SP$inl[,"long™], SP$inl[, "lat"],
pch = 1, cex = 0.15,
xlim=c(-125,-70), ylim=c(25, 50),
xlab="", ylab="", axes = F)
axis(l, cex = 0.5)
axis(2, cex = 0.5)
title(xlab = "Longitude", ylab = "Latitude")
} else {
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points(SP$inl[, "long"]1, SP$inl[, "lat™], cex =
0.2)

}
}

This function processes a list object, which contains one block of the
census bdFrame. SP$inl corresponds to the data, and SP$inl.pos
corresponds to the starting row position of each block of the bdFrame
that is passed to the function. The test if(SP$inl.pos == 1) checks if
the first block is being processed. If the first block is processed, a call
to plot is made; if the first block is not processed, a call to points is
made. The call to bd.block.apply is:

> bd.block.apply(census, FUN = f)

This call makes this new graph select only those rows that belong to
the cluster group of interest, and then coerce it to a data frame to
demonstrate the simplicity of using both bdFrame and a data.frame
objects in the same function. Start by keeping only those variables
that are useful for displaying the cluster group locations.

> censusNPsub <- bd.filter.columns(censusNPred,
keep = c("lat","long","PREDICT.membership™))
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Figure 2.12: Plot of all zip code region centers with cluster group 20 overlaid in
another color. The double histogram in the bottom lefi corner displays the age
distributions for females to the left and males to the right for cluster group 20. The
horizontal lines in the histogram are at 20 and 70 years of age.

To generate graphs for the first 22 cluster groups, it is slightly more
work:

> pred <- clusterMeansCounts[, "PREDICT.membership"]
> for(k in 1:22) {
> setk <- bd.coerce(bd.filter.rows(censusNPsub,
expr = "PREDICT.membership == pred[k]",
columns = c("lat", "long"),
row.language = F))
par(plt=c(.1, 1, .1, 1))
bd.block.apply(census, FUN = f)
points(setk[, "long"], setk[, "lat"],
col=1+index16[k],
cex=0.6, pch=16)
par(new=T)
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par(plt=c(.1, .3, .1, .3))

my.vbar(clusterMeansCounts, k=k, plotcols=3:38,
Nreport.col=2, col=1+index16[k])

box()

Notes

1. setkis created as a regular data frame using bd. coerce, assuming that once a
given cluster group is selected the data is small enough to process it entirely in
memory.

2. bd.block.apply is used to plot all the zip code region centers, which requires
processing the entire bdFrame.

3. setk contains the latitude and longitude locations for zip code centers for the
selected group, pred(k]

4. setk was created to demonstrate the use of both bdFrame objects and data. frame
objects in a single function. Placing the cluster group points on the graph could
also be accomplished in the function passed to bd.block.apply.
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MODELING GROUP MEMBERSHIP

The age distributions in Figure 2.11 are intriguing, but we know little
about why the ages are distributed the way they are. Except for
obvious deductions like retirement communities and military bases,
we do not have much more information in the current data set.
Another data set, censusDemogr, provides additional demographics
variables such as household income, education and marital status.

By modeling group membership as a function of an assortment of
explanatory variables, we can characterize the groups relative to
those variables. The data in censusDemogr contains the variables
listed in Table 2.4. Note that all the variables except housingTotal
and the cluster group variables at the end contain the proportion of
households (hh) with the characteristic stated in the description
column.

Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables,
except housingTotal, contain the proportion of households (hh) in the zip code area
with the stated characteristic.

Variable Description

housingTotal Total number of housing units.

own Own residence.

onePlusPersonHouse Two or more family members in hh.
nonFamily Two or more non-family members in hh.
Plus65InHouse 65 or older in family hh.
PTus65InNonFamily 65 or older in non-family hh.
Plus65InGroup 65 or older in group quarters.
marriedChildren Married-couple families with children.
marriedNoChildren Married-couple families without children.
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Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables,
except housingTotal, contain the proportion of households (hh) in the zip code area
with the stated characteristic.

54

Variable

Description

maleChildren

Male householder with children.

maleNoChildren

Male householder without children.

femaleChildren

Female householder with children.

femaleNoChildren

Female householder without children.

maleSingle

Single male.

femaleSingle

Single female.

maleMarried

Married male.

femaleMarried

Married female.

maleWidow

Male widower.

femaleWidow

Female widow.

maleDiv

Male divorced.

femaleDiv

Female divorced.

english5tol7

5 - 17 year olds speak only English.

englishl8to65

18 - 65 year olds speak only English.

englishOver65

Over 65 year olds speak only English.

native

Born in US.

entryToUS95t000

Entry to US from 1995 to 2000.
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Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables,
except housingTotal, contain the proportion of households (hh) in the zip code area
with the stated characteristic.

Variable Description

entryToUS90to94 Entry to US from 1990 to 1994.
entryToUS85t089 Entry to US from 1985 to 1989.
entryToUS80to84 Entry to US from 1980 to 1984.
entryToUS75t079 Entry to US from 1975 to 1979.
entryToUS70to74 Entry to US from 1970 to 1974.
entryToUS65t069 Entry to US from 1965 to 1969.
entryToUSBefore65 Entry to US before 1965.

changedHouseSince95 Changed residence since 1995.

maleloEd Male head of household with low education.
femalelokd Female head of hh with low education.
maleHS Male head of hh with HS education.
femaleHS Female head of hh with HS education.
maleCollege Male head of hh with college education.
femaleCollege Female head of hh with college education.
maleBA Male head of hh with bachelor’s degree.
femaleBA Female head of hh with bachelor’s degree.
maleAdvDeg Male head of hh with advanced degree.
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Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables,
except housingTotal, contain the proportion of households (hh) in the zip code area
with the stated characteristic.
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Variable

Description

femaleAdvDeg

Female head of hh with advanced degree.

maleWorked99

Male head of hh worked in 1999.

femaleWorked99

Female head of hh worked in 1999.

maleBlueCollar

Male head of hh blue-collar worker.

femaleBlueCollar

Female head of hh blue-collar worker.

maleWhiteCollar

Male head of hh white-collar worker.

femaleWhiteCollar

Female head of hh white-collar worker.

houseUnder30K hh income under $30K.
house30to60K hh income $30K - $60K.
house60t0200K hh income $60K - $200K.
houseOver200K hh income over $200K.

houseWithSalary

hh with salary income.

houseSelfEmp1

hh with self-employment income.

houselnterestEtc

hh with interest and other investment income.

houseSS

hh with social security income.

housePubAssist

hh with public assistance income.

houseRetired

Head of hh retired.
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Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables,
except housingTotal, contain the proportion of households (hh) in the zip code area
with the stated characteristic.

Variable Description

houseNotVacant House not vacant.

houseOwnerOccupied House owner occupied.

groupl8 Cluster group18.
Building a The cluster group membership variables are binary with “yes” or
Model “no”, indicating group membership for each zip code area. To get a

sense of group membership characteristics, you can create a logistic
model for each group of interest using g1m, which has been extended
to handle bdFrame objects. The syntax is identical to that of g1m with
regular data frames.The model specification is as follows:

> groupl8Fit <- gIim(groupl8 ~ ., data = censusDemogr,
family = binomial)

And the output is similar:

> groupl8Fit

Call:

bdGIm(formula = groupl8 ~ ., family = binomial, data
= censusDemogr)

Coefficients:
(Intercept) housingTotal own

-51.49204 0.0002713171 -0.0005471851

onePlusPersonHouse nonFamily Plus65InHouse
3.560468 10.21905 18.44271

Degrees of freedom: 31951 total; 31888 residual

57



Chapter 2 Census Data Example

Residual Deviance: 5445.941

Note

The g1m function call is the same as for regular in-memory data frames; however, the extended
version of g1m in the bigdata library applies appropriate methods to bdFrame data by initiating a
call to bdG1m. The cal1 expression shows the actual call went to bdG1m.

Summarizing  You can apply the usual operations (for example, summary, coef,
the Fit plot) to the resulting fit object. The plots are displayed as hexbin
scatterplots because of the volume of data.

> plot(groupl8Fit)
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Fitted : housingTotal + own + onePlusPersonHouse + nonFamily + Plus65InHouse + P .

Figure 2.13: Residuals vs. fitted values resulting from modeling cluster group 18
membership as a function of census demographics.

Characterizing To characterize the group, examine the significant coefficients as
the GV’OUP follows:
> groupl8Coeff <- summary(groupl8Fit)[["coef"]]
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> groupl8Coeffl[abs(groupl8Coeff[,"t value™])
> qnorm(0.975),]
Value Std. Error t value

(Intercept) -51.492043 13.866083 -3.713525
nonFamily 10.219051 4.079199 2.505161
Plus65InHouse 18.442709 6.172655 2.987808
Plus65InNonFamily 19.186751 5.953835 3.222587
maleSingle 39.541568 9.123876 4.333857
femaleWidow 23.710092 10.332282 2.294759
maleDiv 23.374178 8.807237 2.653974
changedHouseSince95 6.253725 2.492780 2.508735
femaleloEd -12.132175 2.986016 -4.062997
maleCollege 5.820187 2.897105 2.008966
femaleBA -9.518559 3.518594 -2.705217
maleAdvDeg 10.536835 3.553861 2.964898
femaleAdvDeg -7.932499 3.568260 -2.223072
maleWorked99 6.598822 2.787717 2.367107
femaleWorked99 7.200051 3.244321 2.219278

To interpret the above table, note that positive coefficients predict
group 18 membership and negative coefficients predict non-group
membership. With that understanding, group 18 members are more

likely:

* In non-family households that have changed location in the
last 5 years.

+ Single or divorced males or widowed females.

* Males with some college education and frequently with
advanced degrees who worked the previous year.

Cluster group 18 corresponds to zip code regions dominated by
young adult males, typical of military bases and penal institutions.
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INTRODUCTION

The Apriori
Algorithm

62

Association rules specify how likely certain items occur together with
other items in a set of transactions. The classic example used to
describe association rules is the "market basket" analogy, where each
transaction contains the set of items brought on one shopping trip.
The store manager might want to ask questions, such as “if a shopper
buys chips, does the shopper usually also buy dip?” Using a market
basket analysis, the store manager can discover association rules for
these items, so he knows whether he should plan on stocking chips
and dip amounts accordingly and place the items near each other in
the store.

When you encounter an association rule, you might see it notated as
X <- Y, where item X is the consequent and item Y is the antecedent. For
example, examine the following rule:

chips <- dip

Your analysis would show the relationship between chips (the
consequent) and dip (the antecedent).

For the Big Data library’s implementation of association rules, only
one consequent is allowed; however the rule can have multiple
antecedents. To the above example, you might also add beer:

chips <- dip beer

A collection of items is sometimes referred to as an itemset. You are
interested in the significance of items in an itemset and the likelihood
of them occurring with other items (that is, chips and dip, in the
example above). In association rule algorithms, these two measures
(the significance and the occurrence) are referred to as support and
confidence, respectively. A third measure, liff, is the ratio of the
confidence to that expected by chance. These three measures
determine if a rule is interesting. They are discussed more thoroughly
later.

You can use the Big Data library function bd.assoc.rules to
generate association rules from a set of transactions that have a
specified minimum support and confidence. This function uses the
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Apriori algorithm, which is the best-known algorithm to mine
association rules. It uses a breadth-first search strategy to counting the
support of itemsets and rules.

Downward closure property

The apriori characteristic support, described in the section Support on
page 66, possesses the downward closure property, indicating that all
subsets of a frequent set also are frequent. This property, which
specifies that no superset of an infrequent set can be frequent, is used
in the apriori algorithm to prune the search space. Usually, the search
space is represented as a lattice or tree of itemsets with increasing size.

Note

Using the apriori algorithm with support introduces the disadvantage of the rare item problem.
Items that occur infrequently in the data set are pruned; although they could produce interesting
and potentially valuable rules. The rare item problem is important for transaction data that
usually have a very uneven distribution of support for the individual items (few items are used all
the time and most items are used rarely).

A solution to the rare item problem is to pre-filter your dataset. For example, if you were
interested in the occurrence of certain furniture items in transactions in a department store, you
might filter out sales of women's clothing, where sales might far outpace furniture sales.

63



Chapter 3 Analyzing Large Datasets for Association Rules

BIG DATA ASSOCIATION RULES IMPLEMENTATION

bd.assoc.rules

The Big Data library defines three association rules functions:

bd.assoc.rules
bd.assoc.rules.get.item.counts
bd.assoc.rules.graph

The Big Data library defines the function bd.assoc.rules, which
reads input transactions from a bdFrame or data.frame, and then
generates association rules using the apriori algorithm. The input data
can be very large, with millions of transactions. The input transactions
can be expressed in several different input formats, which are
described in Table 3.1. bd.assoc.rules provides control over the
output format of the generated rules and associated measures..

Note

The apriori algorithm was originally developed by Argawal (1994). The Big Data library uses a
version of the apriori algorithm implemented by Christian Borgelt (2002). The original source
code and the modified source code provided by the Big Data functions are included in the
SHOME/library/bigdata/apriori directory (where SHOME is your Spotfire S+ installation

directory).
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bd.assoc.rules arguments

The Help files for bd.assoc.rules provide detailed information
about each of its arguments. This section provides a high-level
discussion of some of the options.

The argument input. format, along with several others, specify how
the transaction items are read from the input data. For more detailed
information about the recognized input formats, see Table 3.1.

Other arguments specify which elelents (rule strings, measures, and so
on) are output by the function.

Other arguments, such as min.support, min.confidence,
min.rule.items, and max.rule.items, control how the algorithm is
applied to give meaningful results. min.rule.items and
max.rule.items determine how many antecedents your rule can
have. (Remember: you can have one and only one consequent.) For
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example, if you set min.rule.items to 1, then your results can return
rules with just the consequent and no antecedents. (The default is 2,
which allows for one consequent and at least one antecedent.) The
default of max.rule.items is 5, which allows for 1 consequent and up
to 4 antecedents.

The argument rule.support.both indicates whether to include both
the consequent and the antecedent when calculating the support. For
more information on this argument, see the section Support on page
66.

This section contains definitions of some of the key terms for using
the Spotfire S+ function bd.assoc.rules. To help describe these
terms, we use a small dataset called marketdata2. In this dataset, each
row represents a transaction. The TransID column contains a unique
identifier for each transaction. The other columns (Mi1k, Bread,
Cheese, Apple) represent products of interest. The presence or
absence of each item in a particular transaction is represented by a 1
or a 0, respectively, in the appropriate column. (You can find this
sample in the file SHOME/samples/bigdata/assocrules/
marketdata2.txt.) While this dataset is too small to provide any real
meaningful output, it helps to demonstrate the terms and their
formulas.)

TranslId Milk Bread Cheese Apple

1 1 1 1 1
2 1 0 0 1
3 0 1 0 1
4 0 1 1 1
5 0 1 0 1
6 1 1 0 0
7 1 0 1 1

We can pass this dataset to the bd.assoc.rules functions, as follows:

bd.assoc.rules(marketdata?,
item.columns=c(2:5),
input.format="column.flag")

This function returns the following data:

rule support confidence l1ift
1 Cheese <- Apple Bread Milk 0.1428571 1.0 2.3333333
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2 Apple <- Bread Cheese 0.2857143 1.0 1.1666667
3 Apple <- Bread Cheese Milk 0.1428571 1.0 1.1666667
4 Apple <- Cheese 0.4285714 1.0 1.1666667
5 Apple <- Cheese Milk 0.2857143 1.0 1.1666667
6 Apple <- Bread 0.5714286 0.8 0.9333333

Support, confidence, and lift are the measures that determine whether
a rule is interesting. The following sections describe the results
displayed in the columns support, confidence, and 1ift..

Note

The following formula explanations use the raw count column names, which are output by
bd.assoc.rules when output.counts=TRUE:

* antCount: Number of input transactions containing the rule antecedents.
*  conCount: Number of input transactions containing the rule consequent.

*  ruleCount: Number of input transactions containing both the rule consequent and
antecedents.

* itemCount: Number of items used for creating rules.
* transCount: Total number of transactions in the input set.

The transCount and itemCount values are the same for every rule

Support

The input of an itemset is defined as the proportion of transactions
containing all of the items in the itemset. The support of a rule can be
defined in different ways

By default, in bd.assoc.rules, support is measured as follows:
ruleCount / transCount

or < the # of transactions containing the rule consequent and
antecedent> /
<the total number of transactions>

Support measures significance (that is, the importance) of a rule. The
user determines the minimum support threshold; that is, the
minimum rule support for generated rules. The default value for the
minimum rule support is 0. 1. Any rule with a support below the
minimum is disregarded.
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Using our marketdata2 data, above, we see the following rule:

rule support confidence 1ift
6 Apple <- Bread 0.5714286 0.8 0.9333333

Support for this rule (consequent App1e, the antecedent Bread) is
0.5714286

support = ruleCount / transCount
= <# transactions with Apple and Bread>/
<total # of transactions>
=4/7
=0.5714286

Note

bd.assoc.rules also provides the argument rule.support.both, which is set to T by default. If
you set this flag to F, then only the antecedent is included in the support calculation. That is, for
the rule Apple and Bread:

support = antCount / transCount
= <# transactions w Bread> / <total # transactions>
=5/7
=0.7142857

As you can see, calculating support using this argument provides very different results.

Next, try these calculations for a rule that contains multiple

antecedents:
rule support confidence 1ift
1 Cheese <- Apple Bread Milk 0.1428571 1.0 2.3333333

The standard rule support for Cheese <- Apple Bread Milkis as
follows:

support = ruleCount / transCount
= <4 transactions w rule consequent and antecedents> /
<total # transactions>
= <# transactions w Cheese Apple Bread Milk >/
<total # transactions>
=1/7
= 0.1428571
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The alternative rule support (setting rule.support.both to F) for
Cheese <- Apple Bread Milk is the same for this rule:

support = antCount / transCount
= <# transactions w rule antecedents>
/ <total # transactions>
= <# transactions w Apple Bread Milk>
/ <total # transactions>
=1/7
=0.1428571

Confidence

Also called strength. Confidence can be interpreted as an estimate of
the probability of finding the antecedent of the rule under the
condition that a transaction also contains the consequent. In our
marketdata2 example, we see that the confidence for the rule Apple
<- Breadis 0.8:

rule support confidence 1ift
6 Apple <- Bread 0.5714286 0.8 0.9333333

confidence = ruleCount / antCount
= <#f transactions w rule consequent and antecedents>
/ <# transactions w rule antecedents>
= <# transactions w Apple and Bread>
/ <# transactions w Bread>
=4/5
=0.8

bd.assoc.rules sets the minimum confidence as 0.8 by default. Any
rule with a confidence below the minimum is disregarded.

Next, try these calculations for a rule that contains multiple

antecedents:
rule support confidence 1ift
1 Cheese <- Apple Bread Milk 0.1428571 1.0 2.3333333

confidence = ruleCount / antCount
= <# transactions w rule consequent and antecedents>
/ <# transactions w rule antecedents>
= <# transactions w Cheese Apple Bread Milk >
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/ <# transactions w Apple Bread Milk >
=1/1
=1.0

Lift

Often, bd.assoc.rules returns too many rules, given the
min.support and min.confidence constraints. If this is the case, you
might want to apply another measure to rank your results. Liftis such
a measure. Greater lift values indicate stronger associations. (Hahsler

et al, 2008).

In our marketdata2 example, we see the following:

rule support confidence 1ift
6 Apple <- Bread 0.5714286 0.8 0.9333333

Lift is defined as the ratio of the observed confidence to that expected
by chance. That is, lift for AppTle <- Breadis 0.9333333:

lift = (ruleCount / antCount) / (conCount / transCount)

= ( <# transactions w rule consequent and antecedents> /

<# transactions w rule antecedents> ) /

( <# transactions w rule consequent> /

<total # transactions> )
= (<3 transactions w Apple and Bread>
/ <# transactions w Bread>) /
( <# transactions w Apple> / <total # transactions> )

—=(4/5)/(6/7)
=0.9333333

The lift looks to be lower than what we might find interesting.
Examining the data, we see that an Apple purchase appears in six of
our seven transactions, suggesting that nearly everyone buys App1e.
Knowing that everyone buys App1e might be interesting on its own,
but it is not that interesting for our association rules. To get
meaningful lift results, you might consider filtering lower results (less
than 1). Note that in small databases, lift can be subject to a lot of
noise; it is most useful for analyzing larger databases.

Try these calculations for a rule that contains multiple antecedents:

rule support confidence 1ift
1 Cheese <- Apple Bread Milk 0.1428571 1.0 2.3333333
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bd.assoc.rules.
get.item.
counts
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lift = (ruleCount / antCount) / (conCount / transCount)
= ( <# transactions w rule consequent and antecedents>

/ <# transactions w rule antecedents> ) /
( <# transactions w rule consequent> / <total # transactions> )
( <# transactions w Cheese Apple Bread Milk >

/ <# transactions w Apple Bread Milk>)/
( <# transactions w Cheese> / <total # transactions> )
=(1/1)/(3/7)
=2.333333

Market analysis databases can be very large, so you need tools to
manage memory use for your analysis. The Big Data library function
bd.assoc.rules.get.item.counts is a function used along with, and
sometimes by, bd.assoc.rules to count the occurance of items within
a set of transactions without storing all of the different items in
memory. That is, you can use this function to avoid memory
problems generating association rules when you have a large number
of different possible items.

This function is used in two ways:

+ Itis called by bd.assoc.rules if the argument
prescan.items=T so all of the unique items are not stored in
memory.

+ Itis called by the user to generate the list of items and filter
the resulting list to produce a vector of interesting items. The
user then can pass this vector of items as the bd.assoc.rules
argument init.items.

The arguments for bd.assoc.rules.get.item.counts are a subset of
those for bd.assoc.rules.

The following shows a call to bd.assoc.rules.get.item.counts on
our marketdata2 data:

bd.assoc.rules.get.item.counts(marketdata?,
item.columns=2:5, input.format="column.flag")

item count totalTransactions

1 Apple 6 7
2 Bread 5 7
3 Cheese 3 7
4 Milk 4 7
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Plotting your association rules can give you a rough sense of which
consequent and antecedent items appear most often in the rules with
high column values. The function bd.assoc.rules.graph creates a
plot of a set of association rules. It takes one required argument,
rules, which is the rules produced by your call to bd.assoc.rules.
Optionally, you can limit the number of rules displayed to those
columns within a specified range using the arguments column.min
and column.max.

To create an association rules graph

1. Create a data.frame or bdFrame using bd.assoc.rules:

x<-bd.assoc.rules(marketdata?2, item.columns=2:5,
input.format="column.flag”)

2. Graph the results:

bd.assoc.rules.graph(x)
Rule "lift" values : 0.933333 to 2.33333

Apple e @.O..Q

consequents

Apple
Bread
Cheese
Milk:

antecedents

Figure 3.1: Plot of marketdata2.

This plot processes the association rules, collecting a list of all items
that appear as consequents in any rules, and a list of all items that
appear as antecedents in any rules. Each of these lists is sorted
alphabetically and displayed in the graph, with consequent items
displayed in a vertical list along the left side, and the antecedent items
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Data Input
Types

displayed in a list along the bottom side. For each rule, a symbol is
displayed at the intersection of the rule's consequent item and each of
its antecedent items. The symbol is an unfilled diamond, whose size is
proportional to the column value for the rule. Because the diamond is
not filled, multiple diamonds can be plotted in the same location and
still be visible, if they represent rules with different column values.

You can use this plot to get a rough idea of which consequent and
antecedent items appear most often in the rules with high column
values. Because information from multiple rules can be plotted over
each other, it is not possible to read individual rules from this graph.
(To view individual rules, examine the rules data directly.)

The AssocRules functions bd.assoc.rules and
bd.assoc.rules.get.item.counts handle input data formatted in the
four ways described below. In each input format, the input data
contains a series of transactions, where each transaction contains a set
of items.

Table 3.1: Association Rules Data Input Types

Input Format

Description

item.1ist

Each input row contains one transaction. The transaction items are all non-
NA, non-empty strings in the item columns. There must be enough columns
to handle the maximum number of items in a single transaction.

For example, the file SHOME/samples/bigdata/assocrules/
groceries.il.txt starts with the following column names and first two rows:

"11"’ "1'2"’ "1'3"’ "1'4"’ ll.iS", 'l.i6'l
"milk"™, "cheese", "bread"
"meat", "bread"

The first transaction contains items "milk", "cheese", and "bread", and the
second transaction contains items "meat" and "bread".
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Table 3.1: Association Rules Data Input Types (Continued)

Input Format

Description

column.flag

Each input row contains one transaction. The column names are the item
names, and each column's item is included in the transaction if the column's
value is "flagged." More specifically, if an item column is numeric, it is
flagged if its value is anything other than 0.0 or NA. If the column is a string or
factor, the item is flagged if the value is anything other than "0", NA, or an
empty string.

For example, the file SHOME/samples/bigdata/assocrules/
groceries.cf.txt starts with the following two transactions, encoding the same
transactions as the example above:
"bread","meat","cheese”,"milk","cereal™,"chips"”,"dip"

1, 0, 1, 1, 0, 0, 0

1, 1, 0, 0, 0, 0, 0
This format is not suitable for data where there are a large number of possible

items, such as a retail market basket analysis with thousands of SKUs,
because it requires so many columns.

transaction.id

One or more rows specify each transaction. Each row has a transaction.id
column, specifying which transaction contains the items. This is a very
efficient format when individual transactions can have a large number of
items, and when there are many possible distinct items.

For example, the file SHOME/samples/bigdata/assocrules/
groceries.ti.txt starts with the following two transactions, encoding the same
transactions as the example above:

"id","item"

10001, "bread"

10001, "cheese"

10001, "miTk"

10002, "meat”

10002, "bread"
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Table 3.1: Association Rules Data Input Types (Continued)

Input Format

Description

column.value

Each input row contains one transaction. Items are created by combining
column names and column values to produce strings of the form
"<col>=<val>". This is useful for applying association rules to surveys where
the results are encoded into a set of factor values.

This format is not suitable for the groceries example described for the three
other input types. The file SHOME/samples/bigdata/assocrules/
fuel.cv.txt starts with the following four transactions:

"Weight"™, "Mileage", "Fuel"”
"medium", "high", "Tow"
"medium", "high", "low"
"Tow", "high", "Tow"
"medium", "high", "Tow"

The first, second, and third transactions contain the items "Weight=medium",
"Mileage=high", and "Fuel=Tow". The third transaction contains the items
"Weight=Tow", "Mileage=high", and "Fuel=Tow".
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ASSOCIATION RULE SAMPLE

The directory SHOME/samples/bigdata/assocrules/ (where
SHOME is your Spotfire S+ installation) contains the following
example datasets in different input formats.

» groceries.il.txt
* groceries.cf.txt
* groceries.ti.txt
* fuel.cv.txt

The first three datasets encode the same set of transactions. The data
was generated randomly, and then modified to produce some
interesting associations. fuel.cv.txt was derived from the standard
fuel.frame dataset.

These datasets are small enough that they can be read as data.frame
objects; however, bd.assoc.rules can handle very large input datasets
represented as bdFrame objects with millions of rows.

To load the library and import association rules examples

1. Load the bigdata library, which contains the Spotfire S+
association rules functions.

library(bigdata)
2. Read in the data files, as follows:

groceries.il <-
importData(file.path(getenv("SHOME"),

"samples/bigdata/assocrules/groceries.il.txt",
sep=""),
colNameRow=1,stringsAsFactors=F)

groceries.cf <-
importData(file.path(getenv("SHOME"),

"samples/bigdata/assocrules/groceries.cf.txt",
sep=""),
colNameRow=1,stringsAsFactors=F)

groceries.ti <-
importData(file.path(getenv("SHOME"),
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"samples/bigdata/assocrules/groceries.ti.txt",
Sep="") s

colNameRow=1,stringsAsFactors=F)

fuel.cv <-
importData(file.path(getenv("SHOME"),
"samples/bigdata/assocrules/fuel.cv.txt", sep=""),
colNameRow=1,stringsAsFactors=F)

The following example demonstrates processing the dataset
groceries.cf with bd.assoc.rules

To work through association rules examples

O NOoO OB W N

O

10
11
12
13
14
15
16
17
18
19
20
21

L.

By default, the output is sorted so the rules with the highest lift
are listed first.

bd.assoc.rules(groceries.cf,
input.format="column.flag")

rule support confidence 1ift

dip <- chips 0.180 0.9183673 3.6156195

dip <- chips milk 0.162 0.9101124 3.5831195

bread <- cheese meat 0.120 0.8955224 1.5821950
bread <- cheese meat milk 0.110 0.8870968 1.5673088
milk <- bread chips 0.100 0.9433962 1.0165908

milk <- bread dip 0.126 0.9264706 0.9983519

milk <- cheese meat 0.124 0.9253731 0.9971693

milk <- bread meat 0.196 0.9245283 0.9962589

milk <- bread 0.522 0.9222615 0.9938163

milk <- bread cereal 0.250 0.9191176 0.9904285

milk <- bread cheese meat 0.110 0.9166667 0.9877874
milk <- meat 0.276 0.9139073 0.9848139

milk <- dip 0.232 0.9133858 0.9842520

milk <- cheese 0.372 0.9117647 0.9825051

milk <- cereal 0.454 0.9116466 0.9823778

milk <- chips 0.178 0.9081633 0.9786242

milk <- bread cheese 0.240 0.9022556 0.9722582

milk <- chips dip 0.162 0.9000000 0.9698276

milk <- cereal dip 0.118 0.8939394 0.9632968

milk <- cereal cheese 0.168 0.8936170 0.9629494
milk <- cereal meat 0.134 0.8933333 0.9626437

22 milk <- bread cereal cheese 0.100 0.8928571 0.9621305
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The first observation from the results is that many of the rules contain
milk because almost all of the original transactions contain milk, as
shown in the item counts:

bd.coerce(bd.assoc.rules.get.item.counts(groceries.cf,
input.format="column.flag"))

item count totalTransactions

1 bread 283 500
2 cereal 249 500
3 cheese 204 500
4 chips 98 500
5 dip 127 500
6 meat 151 500
7 milk 464 500

You can see the same item counts by using colSums on groceries.cf:
colSums(groceries.cf)

bread meat cheese milk cereal chips dip
283 151 204 464 249 98 127

In this case, we probably are not interested in associations involving
milk, because it is so frequent. We can ignore the item mi1k by listing
the other items as follows:

bd.assoc.rules(groceries.cf,
input.format="column.flag",

init.items=c("bread™, "meat", "cheese",
"Cerea]", llch.ipsll’ lld.ipll))

rule support confidence 1ift

1 dip <- chips 0.18 0.9183673 3.615619

2 bread <- cheese meat 0.12 0.8955224 1.582195

Without the mi1k item, we have only a few rules. These rules also
appeared in the larger list, above.

We created the grocery data by selecting random items (with differing
probabilities), and then we changed the data by:

* Increasing the probability of including dip for transactions
containing chips.
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* Increasing the probability of including bread for transactions
containing both cheese and meat.

The second and fourth rules detect both of these changes.

We could produce the same sets of rules with the other grocery
datasets, because they encode the same sets of transactions:

bd.assoc.rules(groceries.il,
input.format="item.Tist"™)

bd.assoc.rules(groceries.ti,
input.format="transaction.id",
item.columns="1item",
id.columns="1id")

Also, we could derive rules from the fuel.cv dataset:

bd.assoc.rules(fuel.cv,
input.format="column.value"”,
min.support=0.3)

rule support confidence l1ift
1 Fuel=high <- Weight=high 0.3833333 0.8260870 2.155009
2 Weight=high <- Fuel=high 0.3833333 0.8260870 2.155009

3 Weight=medium <- Fuel=medium 0.4333333 0.8461538
1.450549

4 Weight=medium <- Fuel=medium Mileage=medium 0.4333333
0.8461538 1.450549

5 Mileage=medium <- Fuel=medium 0.4333333 1.0000000
1.363636

6 Mileage=medium <- Fuel=medium Weight=medium 0.3666667
1.0000000 1.363636

7 Mileage=medium <- Weight=medium 0.5833333 0.8000000
1.090909

In this case, we specify min.support=0.3 to reduce the number of
rules generated to those with the given minimum support. The most
interesting rules are those indicating that Fue1=high is associated with
Weight=high, which is what one would expect from this data.



More information

MORE INFORMATION

Many valuable sources of information on Association Rules and the
Apriori algorithm exist. Additionally, the Spotfire S+ Big Data library
functions for association rules is similar to the arules package

available on the CRAN Web site.

For more information on Association Rules, we suggest the following
sources:

http://cran.org/ (Package arules)
http://www.borgelt.net/doc/apriori/apriori.html

http://michael.hahsler.net/research/association_rules/
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Chapter 4 Creating Graphical Displays of Large Data Sets

INTRODUCTION

This chapter includes information on the following:

An overview of the graph functions available in the Big Data
Library, listed according to whether they take a big data
object directly, or require a preprocessing function to produce
a chart.

Procedures for creating plots, traditional graphs, and Trellis

graphs.

Note

In Microsoft Windows, editable graphs in the graphical user interface (GUI) do not support big
data objects. To use these graphs, create a Spotfire S+ data. frame containing either all of the

data or a sample of the data.
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OVERVIEW OF GRAPH FUNCTIONS

Functions
Supporting
Graphs

The Big Data Library supports most (but not all) of the traditional and
Trellis graph functions available in the Spotfire S+ library. The design
of graph support for big data can be attributed to practical
application. For example, if you had a data set of a million rows or
tens of thousands of columns, a cloud chart would produce an

illegible plot.

This section lists the functions that produce graphs for big data
objects. If you are unfamiliar with plotting and graph functions in
Spotfire S+, review the Guide to Graphics.

Implementing plotting and graph functions to support large data sets
requires an intelligent way to handle thousands of data points. To
address this need, the graph functions to support big data are
designed in the following categories:

*  Functions to plot big data objects without preprocessing,
including:
+  Functions to plot big data objects by hexagonal binning.

+ Functions to plot big data objects by summarizing data in
a plot-specific manner.

*  Functions providing the preprocessing support for plotting big
data objects.

+ Functions requiring preprocessing support to plot big data
objects.

The following sections list the functions, organized into these
categories. For an alphabetical list of graph functions supporting big
data objects, see the Appendix.

Using cloud or parallel results in an error message. Instead, sample
or aggregate the data to create a data.frame that can be plotted using
these functions.
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Graph Functions The following functions can plot a large data set (that is, can accept a
using Hexagonal big data object without preprocessing) by plotting large amounts of
Binning data using hexagonal binning.

Table 4.1: Functions for plotting big data using hexagonal binning.

Function Comment
pairs Can accept a bdFrame object.
plot Can accept a hexbin, a single bdVector, two bdVectors,

or a bdFrame object.

splom Creates a Trellis graphic object of a scatterplot matrix.

xyplot Creates a Trellis graphic object, which graphs one set
of numerical values on a vertical scale against another
set of numerical values on a horizontal scale.

Functions Adding Reference Lines to Plots

The following functions add reference lines to hexbin plots.
Table 4.2: Functions that add reference lines to hexbin plots.

Function Type of line
abline(1sfit()) Regression line.
Tines(loess.smooth()) Loess smoother.
Tines(smooth.spline()) Smoothing spline.
panel.lmline Adds a least squares line to an
xyplot in a Trellis graph.
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Table 4.2: Functions that add reference lines to hexbin plots. (Continued)

Function Type of line

panel.loess Adds a loess smoother to an xyplot
in a Trellis graph.

qqline() QQ-plot reference line.

xyplot(Imline=T)

Adds a least squares line to an
xyplot in a Trellis graph.

The following functions summarize data in a plot-specific manner to

plot big data objects.
Table 4.3: Functions that summarize in plot-specific manner.
Function Description
boxplot Produces side by side boxplots from a number of
vectors. The boxplots can be made to display the
variability of the median, and can have variable widths
to represent differences in sample size.
bwplot Produces a box and whisker Trellis graph, which you

can use to compare the distributions of several data
sets.

plot(density)

density returns x and y coordinates of a non-
parametric estimate of the probability density of the
data.

densityplot Produces a Trellis graph demonstrating the
distribution of a single set of data.

hist Creates a histogram.

histogram Creates a histogram in a Trellis graph.

aq Creates a Trellis graphic object comparing the

distributions of two sets of data
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Table 4.3: Functions that summarize in plot-specific manner. (Continued)

Function Description
qgmath Creates normal probability plot for only one data
object in a Trellis graph. qgmath can also make
probability plots for other distributions. It has an
argument distribution whose input is any function that
computes quantiles.
qgqnorm Creates normal probability plot in a Trellis graph.
qgnorm can accept a single bdVector object.
qgplot Creates normal probability plot in a Trellis graph. Can
accept two bdVector objects. In qqplot, each vector or
bdVector is taken as a sample, for the x- and y-axis
values of an empirical probability plot.
stripplot Creates a Trellis graphic object similar to a box plot in
layout; however, it displays the density of the
datapoints as shaded boxes.
Functions The following functions are used to preprocess large data sets for
Providing graphing:
Support to Table 4.4: Functions used for preprocessing large data sets.
Preprocess Data
for Graphing Function Description
aggregate Splits up data by time period or other factors
and computes summary for each subset.
hexbin Creates an object of class hexbin. Its basic
components are a cell identifier and a count of
the points falling into each occupied cell.
hist2d Returns a structure for a 2-dimensional
histogram which can be given to a graphics
function such as image or persp.
interp Interpolates the value of the third variable onto
an evenly spaced grid of the first two variables.

86




Functions
Requiring
Preprocessing
Support for
Graphing
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Table 4.4: Functions used for preprocessing large data sets. (Continued)

Function

Description

loess

Fits a local regression model.

loess.smooth

Returns a list of values at which the loess curve
is evaluated.

Isfit

Fits a (weighted) least squares multivariate
regression.

smooth.spline

Fits a cubic B-spline smooth to the input data.

table Returns a contingency table (array) with the
same number of dimensions as arguments
given.

tapply Partitions a vector according to one or more

categorical indices.

The following functions do not accept a big data object directly to
create a graph; rather, they require one of the specified preprocessing

functions.

Table 4.5: Functions requiring preprocessors for graphing

large data sets.

Function Preprocessors Description

barchart table, tapply, Creates a bar chart in a Trellis
aggregate graph.

barplot table, tapply, Creates a bar graph.
aggregate

contour

interp, hist2d

Make a contour plot and possibly
return coordinates of contour lines.

contourplot

loess

Displays contour plots and level
plots in a Trellis graph.
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Table 4.5: Functions requiring preprocessors for graphing
large data sets. (Continued)

Function Preprocessors Description
dotchart table, tapply, Plots a dot chart from a vector.
aggregate
dotplot table, tapply, Creates a Trellis graph, displaying
aggregate dots and labels.
image interp, hist2d Creates an image, under some
graphics devices, of shades of gray
or colors that represent a third
dimension.
Tevelplot loess Displays a level plot in a Trellis
graph.
persp interp, hist2d Creates a perspective plot, given a
matrix that represents heights on an
evenly spaced grid.
pie table, tapply, Creates a pie chart from a vector of
aggregate data.
piechart table, tapply, Creates a pie chart in a Trellis graph
aggregate
wireframe Toess Displays a three-dimensional
wireframe plot in a Trellis graph.
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EXAMPLE GRAPHS

Plotting Using
Hexagonal
Binning

The examples in this chapter require that you have the Big Data
Library loaded. The examples are not large data sets; rather, they are
small data objects that you convert to big data objects to demonstrate
using the Big Data Library graphing functions.

Hexagonal binning plots are available for:
+  Single plot (p1ot)
+  Matrix of plots (pairs)
« Conditioned single or matrix plots (xyp1ot)

Functions that evaluate data over a grid in standard Spotfire S+
aggregate the data over the grid (such as binning the data and taking
the mean in each grid cell, and then plot the aggregated values) when
applied to a big data object.

Hexagonal binning is a data grouping or reduction method typically
used on large data sets to clarify a spatial display structure in two
dimensions. Think of it as partitioning a scatter plot into larger units
to reduce dimensionality, while maintaining a measure of data clarity.
Each unit of data is displayed with a hexagon and represents a bin of
points in the plot. Hexagons are used instead of squares or rectangles
to avoid misleading structure that occurs when edges of the rectangles
line up exactly.

Plotting using hexagonal binning is the standard technique used when
a plotting function that currently plots one point per row is applied to
a big data object.

Plotting using hexagonal bins is available for a single plot, a matrix of
plots, and conditioned single or matrix plots.
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Create a Pair-
wise Scatter Plot
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The Census example introduced in Chapter 2 demonstrates plotting
using hexagonal binning (see Figure 2.6). When you create a plot
showing a distribution of zip codes by latitude and longitude, the
following simple plot is displayed:
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Figure 4.1: Example of graph showing hexagonal binning.
The functions listed in Table 4.1 support big data objects by using

hexagonal binning. This section shows examples of how to call these
functions for a big data object.

The pairs function creates a figure that contains a scatter plot for
each pair of variables in a bdFrame object.

To create a sample pair-wise scatter plot for the fuel.frame bdFrame
object, in the Commands window, type the following:

pairs(as.bdFrame(fuel.frame))



Example Graphs

The pair-wise scatter plot appears as follows:
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Figure 4.2: Graph using pairs for a bdFrame.

This scatter plot looks similar to the one created by calling
pairs(fuel.frame); however, close examination shows that the plot
is composed of hexagons.

Create a Single The plot function can accept a hexbin object, a single bdVector, two

Plot bdVectors, or a bdFrame object. The following example plots a simple
hexbin plot using the weight and mileage vectors of the fuel.bd
object.

To create a sample single plot, in the Commands window, type the
following:

fuel.bd <- as.bdFrame(fuel.frame)
plot(hexbin(fuel.bd$Weight, fuel.bd$Mileage))
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The hexbin plot is displayed as follows:

35

ICounts

30
1

25
1
L

20
1

T T T T
2000 2500 3000 3500

Figure 4.3: Graph using single hexbin plot for fuel. bd.

Create a Multi- The function splom creates a Trellis graph of a scatterplot matrix. The
Panel Scatterplot scatterplot matrix is a good tool for displaying measurements of three
Matrix or more variables.

To create a sample multi-panel scatterplot matrix, where you create a
hexbin plot of the columns in fuel.bd against each other, in the
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
splom(~., data=fuel.bd)

Note

Trellis functions in the Big Data Library require the data argument. You cannot use formulas
that refer to bdVectors that are not in a specified bdFrame.

Notice that the ‘.’ is interpreted as all columns in the data set
specified by data.
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The splom plot is displayed as follows:
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Figure 4.4: Graph using sp1om for fuel.bd.
To remove a column, use - term. To add a column, use +term. For
example, the following code replaces the column Disp. with its log.

fuel.bd <- as.bdFrame(fuel.frame)
splom(~.-Disp.+1og(Disp.), data=fuel.bd)

v logiDisp.) .

PR RN}

Type

Fuel

hfleage
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Figure 4.5: Graph using sp1om to designate a formula for fuel. bd

For more information about sp1om, see its help topic.
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Create a
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or Scatter Plot

Adding
Reference
Lines
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The function xyplot creates a Trellis graph, which graphs one set of
numerical values on a vertical scale against another set of numerical
values on a horizontal scale.

To create a sample conditioning plot, in the Commands window,
type the following:

xyplot(data=as.bdFrame(air),
ozone~radiation|temperature,
shingle.args=list(n=4), Tmline=T)

The variable on the left of the ~ goes on the vertical (or y) axis, and
the variable on the right goes on the horizontal (or x) axis.

The function xyplot contains the default argument Tm1ine=T to add
the approximate least squares line to a panel quickly. This argument
performs the same action as panel.1mline in standard Spotfire S+.

The xyplot plot is displayed as follows:
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Figure 4.6: Graph using xyplot with Tmline=T.

Trellis functions in the Big Data Library handle continuous “given”
variables differently than standard data Trellis functions: they are sent
through equal.count, rather than factor.

You can add a regression line or scatterplot smoother to hexbin plots.
The regression line or smoother is a weighted fit, based on the binned
values.



Add a Regression
Line

Example Graphs

The following functions add the following types of reference lines to
hexbin plots:

* A regression line with abTine

* A Loess smoother with Toess.smooth

* A smooth spline with smooth.spline

* Alineto a qqplot with qqline

* A least squares line to an xyplot in a Trellis graph.

For smooth.spline and loess.smooth, when the data consists of
bdVectors, the data is aggregated before smoothing. The range of the
x variable is divided into 1000 bins, and then the mean for x and y is
computed in each bin. A weighted smooth is then computed on the
bin means, weighted based on the bin counts. This computation
results in values that differ somewhat from those where the smoother
is applied to the unaggregated data. The values are usually close
enough to be indistinguishable when used in a plot, but the difference
could be important when the smoother is used for prediction or
optimization.

When you create a scatterplot from your large data set, and you
notice a linear association between the y-axis variable and the x-axis
variable, you might want to display a straight line that has been fit to
the data. Call 1sfit to perform a least squares regression, and then
use that regression to plot a regression line.

The following example draws an ab1ine on the chart that plots
fuel.bd weight and mileage data. First, create a hexbin object and
plot it, and then add the abline to the plot.

To add a regression line to a sample plot, in the Commands window,
type the following:

fuel.bd <- as.bdFrame(fuel.frame)

hexbin.out <- plot(fuel.bd$Weight, fuel.bd$Mileage)
# displays a hexbin plot

# use add.to.hexbin to keep the abline within the

# hexbin area. If you just call abline, then the

# 1ine might draw outside of the hexbin and interfere
# with the label.

add.to.hexbin(hexbin.out, abline(1sfit(fuel.bd$Weight,
fuel.bd$Mileage)))
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The resulting chart is displayed as follows:
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Figure 4.7: Graph drawing an abline in a hexbin plot.
Add a Loess Use 1ines(loess.smooth) to add a smooth curved line to a scatter

Smoother plot.

To add a 1oess smoother to a sample plot, in the Commands
window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)

hexbin.out <- plot(fuel.bd$Weight, fuel.bd$Mileage)
# displays a hexbin plot

add.to.hexbin(hexbin.out,
lines(loess.smooth(fuel.bd$Weight,
fuel.bd$Mileage), 1ty=2))
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The resulting chart is displayed as follows:
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Figure 4.8: Graph using Toess.smooth in a hexbin plot.

Add a Smoothing Use Tines(smooth.spline) to add a smoothing spline to a scatter
Spline plot.
To add a smoothing spline to a sample plot, in the Commands
window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
hexbin.out <- plot(fuel.bd$Weight, fuel.bd$Mileage)
# displays a hexbin plot
add.to.hexbin(hexbin.out,
lines(smooth.spline(fuel.bd$Weight,
fuel.bd$Mileage),Tty=3))
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Add a Least
Squares Line to
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Add a qgplot
Reference Line
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The resulting chart is displayed as follows:
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Figure 4.9: Graph using smooth.spiine in a hexbin plot.

To add a reference line to an xyplot, set Tm1ine=T. Alternatively, you
can call panel.Imline or panel.loess. See the section Create a
Conditioning Plot or Scatter Plot on page 94 for an example.

The function qq1ine fits and plots a line through a normal qgplot.

To add a qq1ine reference line to a sample qqplot, in the
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
ggnorm(fuel.bd$Mileage)
qqline(fuel.bd$Mileage)



Plotting by
Summarizing
Data

Create a Box Plot

Example Graphs

The qqline chart is displayed as follows:
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Figure 4.10: Graph using qq1ine in a qgplot chart.

The following examples demonstrate functions that summarize data
in a plot-specific manner to plot big data objects. These functions do
not use hexagonal binning. Because the plots for these functions are
always monotonically increasing, hexagonal binning would obscure
the results. Rather, summarizing provides the appropriate
information.

The following example creates a simple box plot from fuel.bd. To
create a Trellis box and whisker plot, see the following section.

To create a sample box plot, in the Commands window, type the
following:

fuel.bd <- as.bdFrame(fuel.frame)
boxplot(split(fuel.bd$Fuel, fuel.bd$Type), style.bxp="att")
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The box plot is displayed as follows:
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Figure 4.11: Graph using boxplot.

The box and whisker plot provides graphical representation showing
the center and spread of a distribution.

To create a sample box and whisker plot in a Trellis graph, in the
Commands window, type the following:

bwplot(Type~Fuel, data=(as.bdFrame(fuel.frame)))

The box and whisker plot is displayed as follows:
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Figure 4.12: Graph using bwplot.
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Plot

Example Graphs

For more information about bwplot, see Chapter 3, Traditional
Trellis Graphics, in the Guide to Graphics.

The density function returns x and y coordinates of a non-parametric
estimate of the probability density of the data. Options include the
choice of the window to use and the number of points at which to
estimate the density. Weights may also be supplied.

Density estimation is essentially a smoothing operation. Inevitably
there is a trade-off between bias in the estimate and the estimate's
variability: wide windows produce smooth estimates that may hide
local features of the density.

Density summarizes data. That is, when the data is a bdVector, the
data is aggregated before smoothing. The range of the x variable is
divided into 1000 bins, and the mean for x is computed in each bin. A
weighted density estimate is then computed on the bin means,
weighted based on the bin counts. This calculation gives values that
differ somewhat from those when density is applied to the
unaggregated data. The values are usually close enough to be
indistinguishable when used in a plot, but the difference could be
important when density is used for prediction or optimization.

To plot density, use the plot function.

To create a sample density plot from fuel.bd, in the Commands
window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
plot(density(fuel.bd$Weight), type="1")
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The density plot is displayed as follows:

0.0004 0.0006 0.0008
1 1 1

density fuel.bdF eightiFy

0.0002
1

T T T T T T
1800 2000 2500 2000 2500 4000

density(fuel bdFilreightdx

Figure 4.13: Graph using density

Create a Trellis The following example creates a Trellis graph of a density plot, which

Density Plot displays the shape of a distribution. You can use the Trellis density
plot for analyzing a one-dimensional data distribution. A density plot
displays an estimate of the underlying probability density function for
a data set, allowing you to approximate the probability that your data
fall in any interval.

To create a sample Trellis density plot, in the Commands window,
type the following:

singer.bd <- as.bdFrame(singer)

densityplot( ~ height | voice.part, data = singer.bd,
layout = c(2, 4), aspect= 1, xlab = "Height (inches)",
width = 5)
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The Trellis density plot is displayed as follows:
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Figure 4.14: Graph using densityplot.

For more information about Trellis density plots, see Chapter 3,
Traditional Trellis Graphics, in the Guide to Graphics.

A histogram displays the number of data points that fall in each of a
specified number of intervals. A histogram gives an indication of the
relative density of the data points along the horizontal axis. For this
reason, density plots are often superposed with (scaled) histograms.

To create a sample hist chart of a full dataset for a numeric vector, in
the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
hist(fuel.bd$Weight)
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The numeric hist chart is displayed as follows:
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Figure 4.15: Graph using hist for numeric data.

To create a sample hist chart of a full dataset for a factor column, in
the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
hist(fuel.bd$Type)

The factor hist chart is displayed as follows:
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Figure 4.16: Graph using hist for factor data.
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Example Graphs

The histogram function for a Trellis graph is histogram.

To create a sample Trellis histogram, in the Commands window,
type the following:

singer.bd <- as.bdFrame(singer)

histogram( ~ height | voice.part, data = singer.bd,
nint = 17, endpoints = c(59.5, 76.5), layout = c(2,4),
aspect = 1, xlab = "Height (inches)")

The Trellis histogram chart is displayed as follows:
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Figure 4.17: Graph using histogram.
For more information about Trellis histograms, see Chapter 3,
Traditional Trellis Graphics, in the Guide to Graphics.

The functions qq, qgmath, qgnorm, and qqplot create an ordinary x-y
plot of 500 evenly-spaced quantiles of data.

The function qq creates a Trellis graph comparing the distributions of
two sets of data. Quantiles of one dataset are graphed against
corresponding quantiles of the other data set.

To create a sample qq plot, in the Commands window, type the
following:

fuel.bd <- as.bdFrame(fuel.frame)
qq((Type=="Compact")~Mileage, data = fuel.bd)
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Distribution
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The factor on the left side of the ~ must have exactly two levels
(fuel.bd$Compact has five levels).

The qq plot is displayed as follows:
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Figure 4.18: Graph using qq.

(Note that in this example, by setting Type to the logical Compact, the
labels are set to FALSE and TRUE on the x and y axis, respectively.)

The function qqmath creates normal probability plot in a Trellis
graph. that is, the ordered data are graphed against quantiles of the
standard normal distribution.

qgmath can also make probability plots for other distributions. It has
an argument distribution, whose input is any function that
computes quantiles. The default for distribution is gnorm. If you set
distribution = gexp, the result is an exponential probability plot.

To create a sample qqmath plot, in the Commands window, type the
following:

singer.bd <- as.bdFrame(singer)

qgmath( ~ height | voice.part, data = singer.bd,
layout = c(2, 4), aspect =1,
xlab = "Unit Normal Quantile",
ylab "Height (inches)")



Create a Single
Vector QQ Plot

The qgmath plot is displayed as follows:
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Figure 4.19: Graph using gqmath.

Example Graphs

The function ggnorm creates a plot using a single bdVector object. The
following example creates a plot from the mileage vector of the

fuel.bd object.

To create a sample ggnorm plot, in the Commands window, type the

following:

fuel.bd <- as.bdFrame(fuel.frame)

ggnorm(fuel.bd$MiTea

ge)
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Create a Two
Vector QQ Plot
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The qgqnorm plot is displayed as follows:
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Figure 4.20: Graph using gqnorm.

The function qgplot creates a hexbin plot using two bdVectors. The
quantile-quantile plot is a good tool for determining a good
approximation to a data set’s distribution. In a qqpTot, the ordered
data are graphed against quantiles of a known theoretical distribution.

To create a sample two-vector qgplot, In the Commands window,
type the following:

fuel.bd <- as.bdFrame(fuel.frame)

qqplot(fuel.bd$MiTleage, runif(length(fuel.bd$Mileage),
bigdata=T))

Note that in this example, the required y argument for qqplot is
runif(length(fuel.bd$Mileage): the random generation for the
uniform distribution for the vector fuel.bd$Mileage. Also note that
using runif with a big data object requires that you set the runif
argument bigdata=T.

The qqplot plot is displayed as follows:
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Figure 4.21: Graph using qgplot.

The function stripplot creates a Trellis graph similar to a box plot in
layout; however, the individual data points are shown instead of the
box plot summary.

To create sample one-dimensional scatter plot, in the Commands
window, type the following:

singer.bd <- as.bdFrame(singer)

stripplot(voice.part ~ jitter(height),
data = singer.bd, aspect =1,
xlab = "Height (inches)")
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The stripplot plotis displayed as follows:
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Figure 4.22: Graph using stripplot for singer.bd.

The functions discussed in this section do not accept a big data object

Graphs with directly to create a graph; rather, they require a preprocessing

function such as those listed in the section Functions Providing

Prepr?cessmg Support to Preprocess Data for Graphing on page 86.

Functions

Create a Bar Calling barchart directly on a large data set produces a large number
Chart of bars, which results in an illegible plot.
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+ If your data contains a small number of cases, convert the
data to a standard data.frame before calling barchart.

+ If your data contains a large number of cases, first use
aggregate, and then use bd.coerce to create the appropriate
small data set.

In the following example, sum the yields over sites to get the total
yearly yield for each variety.



Example Graphs

To create a sample bar chart, in the Commands window, type the
following:

barley.bd <- as.bdFrame(barley)

temp.df <- bd.coerce(aggregate(barley.bd$yield,
list(year=barley.bd$year,
variety=barley.bd$variety), sum))

barchart(variety ~ x | year, data = temp.df,
aspect = 0.4,xlab = "Barley Yield (bushels/acre)")

The resulting bar chart appears as follows:
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Figure 4.23: Graph using barchart.
Create a Bar Plot The following example creates a simple bar plot from fuel.bd, using
table to preprocess data.

To create a sample bar plot using table to preprocess the data, in the
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)

barplot(table(fuel.bd$Type), names=levels(fuel.bd$Type),
ylab="Count™)
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The bar plot is displayed as follows:
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Figure 4.24: Graph using barplot.

To create a sample bar plot using tapply to preprocess the data, in
the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)

barplot(tapply(fuel.bd$Mileage, fuel.bd$Type, mean),
names=levels(fuel.bd$Type), ylab="Average Mileage")

The bar plot is displayed as follows:
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Figure 4.25: Graph using tapply to create a bar plot.
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Create a Contour A contour plot is a representation of three-dimensional data in a flat,

Plot

Create a Trellis
Contour Plot

two-dimensional plane. Each contour line represents a height in the z
direction from the corresponding three-dimensional surface. A level
plot is essentially identical to a contour plot, but it has default options
that allow you to view a particular surface differently.

The following example creates a contour plot from fuel.bd, using
interp to preprocess data. For more information about interp, see
the section Visualizing Three-Dimensional Data in the Application
Developer’s Guide.

Like density, interp and 1oess summarize the data. That is, when
the data is a bdVector, the data is aggregated before smoothing. The
range of the x variable is divided into 1000 bins, and the mean for x
computed in each bin. See the section Create a Density Plot on page
101 for more information.

To create a sample contour plot using interp to preprocess the data,
in the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)

contour(interp(fuel.bd$Weight, fuel.bd$Disp.,
fuel.bd$Mileage))

The contour plot is displayed as follows:
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Figure 4.26: Graph using interp to create a contour plot.

The function contourplot creates a Trellis contour plot. The
contourplot function creates a Trellis graph of a contour plot. For big
data sets, contourplot requires a preprocessing function such as
loess.
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The following example creates a contour plot of predictions from
loess.

To create a sample Trellis contour plot using Toess to preprocess
data, in the Commands window, type the following:

environ.bd <- as.bdFrame(environmental)

ozo.m <- loess((ozone”(1/3)) ~
wind * temperature * radiation,data = environ.bd,
parametric = c("radiation", "wind"),
span = 1, degree = 2)
w.marginal <- seq(min(environ.bd$wind),
max(environ.bd$wind), length = 50)
t.marginal <- seq(min(environ.bd$temperature),
max(environ.bd$temperature), Tength = 50)
r.marginal <- seq(min(environ.bd$radiation),
max(environ.bd$radiation), length = 4)
wtr.marginal <- list(wind = w.marginal,
temperature = t.marginal, radiation = r.marginal)
grid <- expand.grid(wtr.marginal)
grid[, "fit"] <- c(predict(ozo.m, grid))
print(contourplot(fit ~ wind * temperature | radiation,
data = grid, xlab = "Wind Speed (mph)",
ylab = "Temperature (F)",
main "Cube Root Ozone (cube root ppb)™))
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The Trellis contour plot is displayed as follows:
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Figure 4.27: Graph using loess to create a Trellis contour plot.

Create a Dot When you create a dot chart, you can use a grouping variable and
Chart group summary, along with other options. The function dotchart can
be preprocessed using either table or tapply.

To create a sample dot chart using table to preprocess data, in the
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)

dotchart(table(fuel.bd$Type), Tabels=levels(fuel.bd$Type),
xlab="Count™)
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The dot chart is displayed as follows:
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Figure 4.28: Graph using table to create a dot chart.

To create a sample dot chart using tapply to preprocess data, in the
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)

dotchart(tapply(fuel.bd$Mileage, fuel.bd$Type, median),
labels=levels(fuel.bd$Type), xlab="Median Mileage")

The dot chart is displayed as follows:
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Figure 4.29: Graph using tapply to create a dot chart.
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Create a Dot Plot The function dotplot creates a Trellis graph that displays that

Create an Image
Graph Using
hist2d

displays dots and gridlines to mark the data values in dot plots. The
dot plot reduces most data comparisons to straightforward length
comparisons on a common scale.

When using dotplot on a big data object, call dotplot after using
aggregate to reduce size of data.

In the following example, sum the barley yields over sites to get the
total yearly yield for each variety.

To create a sample dot plot, in the Commands window, type the
following:

barley.bd <- as.bdFrame(barley)

temp.df <- bd.coerce(aggregate(barley.bd$yield,
list(year=barley.bd$year, variety=barley.bd$variety),
sum))

(dotplot(variety ~ x | year, data = temp.df,
aspect = 0.4, xlab = "Barley Yield (bushels/acre)"))

The resulting Trellis dot plot appears as follows:
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Figure 4.30: Graph using aggregate to create a dot chart.

The following example creates an image graph using hist2d to
preprocess data. The function image creates an image, under some
graphics devices, of shades of gray or colors that represent a third
dimension.
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Create a Trellis
Level Plot
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To create a sample image plot using hist2d preprocess the data, in
the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
image(hist2d(fuel.bd$Weight, fuel.bd$Mileage, nx=9, ny=9))

The image plot is displayed as follows:
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Figure 4.31: Graph using hist2d to create an image plot.

The Tevelplot function creates a Trellis graph of a level plot. For big
data sets, 1evelplot requires a preprocessing function such as 1oess.

A level plot is essentially identical to a contour plot, but it has default
options so you can view a particular surface differently. Like contour
plots, level plots are representations of three-dimensional data in flat,
two-dimensional planes. Instead of using contour lines to indicate
heights in the z direction, level plots use colors. The following
example produces a level plot of predictions from 1oess.

To create a sample Trellis level plot using Toess to preprocess the
data, in the Commands window, type the following:

environ.bd <- as.bdFrame(environmental)
{

ozo.m <- loess((ozone”(1/3)) ~
wind * temperature * radiation, data = environ.bd,
parametric = c("radiation™, "wind"),
span = 1, degree = 2)
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w.marginal <- seq(min(environ.bd$wind),
max(environ.bd$wind), Tength = 50)
t.marginal <- seq(min(environ.bd$temperature),
max(environ.bd$temperature), Tength = 50)
r.marginal <- seq(min(environ.bd$radiation),
max(environ.bd$radiation), length = 4)
wtr.marginal <- Tist(wind = w.marginal,
temperature = t.marginal, radiation = r.marginal)
grid <- expand.grid(wtr.marginal)
grid[, "fit"] <- c(predict(ozo.m, grid))
print(levelplot(fit ~ wind * temperature | radiation,
data = grid, xlab = "Wind Speed (mph)",
ylab = "Temperature (F)",
main = "Cube Root 0Ozone (cube root ppb)™))
}

The level plot is displayed as follows:
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Figure 4.32: Graph using Toess to create a level plot.

Create a persp The persp function creates a perspective plot given a matrix that

Graph Using represents heights on an evenly spaced grid. For more information
hist2d about persp, see the section Perspective Plots in the Application
Developer’s Guide.

To create a sample persp graph using hist2d to preprocess the data,
in the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
persp(hist2d(fuel.bd$Weight, fuel.bd$Mileage))
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The persp graph is displayed as follows:
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Figure 4.33: Graph using hist2d to create a perspective plot

Hint

Using persp of interp might produce a more attractive graph.

Create a Pie
Chart

120

A pie chart shows the share of individual values in a variable, relative
to the sum total of all the values. Pie charts display the same
information as bar charts and dot plots, but can be more difficult to
interpret. This is because the size of a pie wedge is relative to a sum,
and does not directly reflect the magnitude of the data value. Because
of this, pie charts are most useful when the emphasis is on an
individual item’s relation to the whole; in these cases, the sizes of the
pie wedges are naturally interpreted as percentages.

Calling pie directly on a big data object can result in a pie with
thousands of wedges; therefore, preprocess the data using table to
reduce the number of wedges.

To create a sample pie chart using table to preprocess the data, in the
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)

pie(table(fuel.bd$Type), names=levels(fuel.bd$Type),
sub="Count")
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The pie chart appears as follows:

Figure 4.34: Graph using table to create a pie chart.

Create a Trellis The function piechart creates a pie chart in a Trellis graph.
Pie Chart

+ If your data contains a small number of cases, convert the
data to a standard data. frame before calling piechart.

+ If your data contains a large number of cases, first use
aggregate, and then use bd.coerce to create the appropriate
small data set.

To create a sample Trellis pie chart using aggregate to preprocess the
data, in the Commands window, type the following:

barley.bd <- as.bdFrame(barley)

temp.df <- bd.coerce(aggregate(barley.bd$yield,
list(year=barley.bd$year, variety=barley.bd$variety),
sum))

piechart(variety ~ x | year, data = temp.df,
xlab = "Barley Yield (bushels/acre)")
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The Trellis pie chart appears as follows:
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Figure 4.35: Graph using aggregate to create a Trellis pie chart.

Create a Trellis A surface plot is an approximation to the shape of a three-

Wireframe Plot dimensional data set. Surface plots are used to display data collected
on a regularly-spaced grid; if gridded data is not available,
interpolation is used to fit and plot the surface. The Trellis function
that displays surface plots is wireframe.

For big data sets, wireframe requires a preprocessing function such as
loess.

To create a sample Trellis surface plot using Toess to preprocess the
data, in the Commands window, type the following:

environ.bd <- as.bdFrame(environmental)
{

0ozo.m <- loess((ozone”(1/3)) ~
wind * temperature * radiation, data = environ.bd,
parametric = c("radiation™, "wind"),
span = 1, degree = 2)

w.marginal <- seg(min(environ.bd$wind),
max(environ.bd$wind), length = 50)

t.marginal <- seq(min(environ.bd$temperature),
max(environ.bd$temperature), length = 50)

r.marginal <- seq(min(environ.bd$radiation),
max(environ.bd$radiation), length = 4)

wtr.marginal <- list(wind = w.marginal,
temperature = t.marginal, radiation = r.marginal)

grid <- expand.grid(wtr.marginal)
grid[, "fit"] <- c(predict(ozo.m, grid))
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print(wireframe(fit ~ wind * temperature | radiation,
data = grid, xlab = "Wind Speed (mph)",
ylab = "Temperature (F)",
main "Cube Root 0Ozone (cube root ppb)™))

}

The surface plot is displayed as follows:

Cube Root Ozone (cube root ppk)

Rdiation Rdiation

Tempe% Ullllcl/q:ee:qnpl) Te'“p:% l'lllld/spee:llﬂpi)

Rdiation Rdiation

Tempe% Ullllcl/q:ee:qnpl) Te'“p:% l'lllld/spee:llﬂpi)

Figure 4.36: Graph using 1oess to create a surface plot.

Unsupported  Using the functions that add to a plot, such as points and Tines,
Functions results in an error message.
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As a Spotfire S+ Big Data library user, you might encounter
unexpected or unusual behavior when you manipulate blocks of data
or work with strings and factors.

This section includes warnings and advice about such behavior, and
provides examples and further information for handling these
unusual situations.

Alternatively, you might need to implement your own big-data
algorithms using out-of-memory techniques.



Big Data Block Size Issues

BIG DATA BLOCK SIZE ISSUES

Block Size
Options

Big data objects represent very large amounts of data by storing the
data in external files. When a big data object is processed, pieces of
this data are read into memory and processed as data “blocks.” For
most operations, this happens automatically. This section describes
situations where you might need to understand the processing of

individual blocks.

When processing big data, the system must decide how much data to
read and process in each block. Each block should be as big as
possible, because it is more efficient to process a few large blocks,
rather than many small blocks. However, the available memory limits
the block size. If space is allocated for a block that is larger than the
physical memory on the computer, either it uses virtual memory to
store the block (which slows all operations), or the memory allocation
operation fails.

The size of the blocks used is controlled by two options:

* bd.options("block.size")
The option "block.size" specifies the maximum number of
rows to be processed at a time, when executing big data
operations. The default value is 1e9; however, the actual
number of rows processed is determined by this value,
adjusted downwards to fit within the value specified by the
option "max.block.mb".

* bd.options("max.block.mb™)
The option "max.bTock.mb" places a limit on the maximum
size of the block in megabytes. The default value is 10.

When Spotfire S+ reads a given bdFrame, it sets the block size initially
to the value passed in "bTock.size", and then adjusts downward until
the block size is no greater than "max.block.mb". Because the default
for "block.size" is set so high, this effectively ensures that the size of
the block is around the given number of megabytes.

The resulting number of rows in a block depends on the types and
numbers of columns in the data. Given the default "max.block.mb" of
10 megabytes, reading a bdFrame with a single numeric column could

127



Chapter 5 Advanced Programming Information
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be read in blocks of 1,250,000 rows. A bdFrame with 200 numeric
columns could be read in blocks of 6,250 rows. The column types
also enter into the determination of the number of rows in a block.

There is rarely a reason to change bd.options("block.size") or
bd.options("max.block.mb"). The default values work well in almost
all situations. In this section, we examine possible reasons for
changing these values.

A bad reason for changing the block size options is to guarantee a
particular block size. For example, one might set
bd.options("block.size") to 50 before calling bd.block.apply with
its FUN argument set to a function that depends on receiving blocks of
exactly 50 rows. Writing functions that depend on a specific number
of rows is strongly discouraged, because there are so many situations
where this function might fail, including:

+ If the whole dataset is not a multiple of 50 rows, then the last
block will have fewer than 50 rows.

+ If the dataset being processed has a large number of columns,
then the actual rows in each block will be less than 50 (if
bd.options("max.block.mb") is too small), or an out of
memory error might occur when allocating the block (if
bd.options("max.block.mb") is too high). If it is necessary to
guarantee 50-row blocks, it would be better to call
bd.by.window with window=50, offset=0, and
drop.incomplete=T.

A good reason for changing bd.options("block.size") is if you are
developing and debugging new code for processing big data.

Consider developing code that calls bd.bTock.apply to processes
very large data in a series of chunks. To test whether this code works
when the data is broken into multiple blocks, set "block.size" to a
very small value, such as bd.options(block.size=10). Test it with
several small values of bd.options("block.size") to ensure that it
does not depend on the block size. Using this technique, you can test
processing multiple blocks quickly with very small data sets.

One situation where it might be necessary to increase
bd.options("max.block.mb") is when you use bd.by.group or
bd.by.window. These functions call a Spotfire S+ function on each
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data block defined by the group columns or the window size, and it
will generate an error if a data block is larger than
bd.options("max.bTock.mb™).

You can work around this problem by increasing
bd.options("max.block.mb™), but you run the risk of an out of
memory error. If the number of groups is not large, it would be better
to call bd.split.by.group or bd.split.by.window to divide the
dataset into separate datasets for each group, and then process them
individually. The section Group or Window Blocks on page 130
contains an example.

A common reason for increasing bd.options("block.size") or
bd.options("max.block.mb") is to attempt to improve performance.
Most of the time this is not effective. While it is often faster to process
a few large blocks than many small blocks, this does not mean that
the best way to improve performance is to set the block size as high as
possible.

With very small block sizes, a lot of time can go into the overhead of
reading and writing and managing the individual blocks. As the block
sizes get larger, this overhead gets lower relative to the other
processing. Eventually, increasing the block size will not make much
difference. This is shown in Figure 5.1, where the time for calling
bd.block.apply on a large data set is measured for different values of
bd.options("max.bTock.mb").

bd.options("block.size™) is set to the default of 1e9 in all cases, so
the actual block size used is determined by
bd.options("max.block.mb™). The different symbols show
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measurements with four different FUN functions. All of the symbols
show the same trend: Increasing the block size improves the
performance for a while, but eventually the improvement levels out.
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Figure 5.1: Efficiency of setting bd. options(“max.block.mb”).

If you suspect that increasing the block size could help the
performance of a particular computation, the best strategy is to
measure the performance of the computation with
bd.options(™max.block.mb™) set to the default of 10, and then
measure it again with bd.options("max.block.mb") set to 20. If this
test shows no significant performance improvement, it probably will
not help to increase the block size further, but could lead only to out
of memory problems. Using large block sizes can actually lead to
worse performance, if it causes virtual memory page swapping.

Note that the “block” size determined by these options and the data is
distinct from the “blocks” defined in the functions bd.by.group,
bd.by.window, bd.split.by.group, and bd.split.by.window. These
functions divide their input data into subsets to process as determined
by the values in certain columns or a moving window. Spotfire S+
imposes a limit on the size of the data that can be processed in each
block by bd.by.group and bd.by.window: if the number of rows in a
block is larger than the block size determined by
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bd.options("block.size") and bd.options("max.block.mb"), an
error is displayed. This limitation does not apply to the functions
bd.split.by.group and bd.split.by.window.

To demonstrate this restriction, consider the code below. The
variable BIG.GROUPS contains a 1,000-row data.frame with a column
GENDER with factor values MALE and FEMALE, split evenly between the
rows. If the block size is large enough, we can use bd.by.group to
process each of the GENDER groups of 500 rows:

BIG.GROUPS <-
data.frame(GENDER=rep(c("MALE","FEMALE"),
length=1000), NUM=rnorm(1000))

bd.options(block.size=5000)

bd.by.group(BIG.GROUPS, by.columns="GENDER",
FUN=function(df)
data.frame(GENDER=df$GENDER[1],
NROW=nrow(df)))

GENDER NROW
1 FEMALE 500
2 MALE 500

If the block size is set below the size of the groups, this same
operation will generate an error:

bd.options(block.size=10)

bd.by.group(BIG.GROUPS, by.columns="GENDER",
FUN=function(df)
data.frame(GENDER=df$GENDER[1],
NROW=nrow(df)))

Problem in bd.internal.exec.node(engine.class = :
BDLManager$BDLSplusScriptEngineNode (0): Problem in
bd.internal.by.group.script(IM, function(..: can't process
block with 500 rows for group [FEMALE]: can only process 10
rows at a time (check bd.options() values for block.size
and max.block.mb)

Use traceback() to see the call stack

In this case, bd.sp1it.by.group could be called to divide the data
into a list of multiple bdFrame objects and process them individually:
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BIG.GROUPS.LIST <- bd.split.by.group(BIG.GROUPS,
by.columns="GENDER")

data.frame(GENDER=names(BIG.GROUPS.LIST),
NROW=sapply(BIG.GROUPS.LIST, nrow, simplify=T),
row.names=NULL)

GENDER NROW
1 FEMALE 500
2 MALE 500
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BIG DATA STRING AND FACTOR ISSUES

String Column
Widths

String Widths

and
importData

Big data columns of types character and factor have limitations that
are not present for regular data. frame objects. Most of the time, these
limitations do not cause problems, but in some situations, warning
messages can appear, indicating that long strings have been
truncated, or factors with too many levels had some values changed
to NA. This section explains why these warnings may appear, and how
to deal with them.

When a bdFrame character column is initially defined, before any data
is stored in it, the maximum number of characters (or string width)
that can appear in the column must be specified. This restriction is
necessary for rapid access to the cache file. Once this is specified, an
attempt to store a longer string in the column causes the string to be
truncated and generate a warning. It is important to specify this
maximum string width correctly. All of the big data operations
attempt to estimate this width, but there are situations where this
estimated value is incorrect. In these cases, it is possible to explicitly
specify the column string width.

To retrieve the actual column string widths used in a particular
bdFrame, call the function bd.string.column.width.

Unless the column string width is explicitly specified in other ways,
the default string width for newly-created columns is set with the
following option. The default value is 32.

bd.options("string.column.width™)

When you convert a data. frame with a character column to a
bdFrame, the maximum string width in the column data is used to set
the bdFrame column string width, so there is no possibility of string
truncation.

When you import a big data object using importData for file types
other than ASCII text, Spotfire S+ determines the maximum number
of characters in each string column and uses this value to set the
bdFrame column string width.
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When you import ASCII text files, Spotfire S+ measures the
maximum number of characters in each column while scanning the
file to determine the column types. The number of lines scanned is
controlled by the argument scanLines. If this is too small, and the
scan stops before some very long strings, it is possible for the
estimated column width to be too low. For example, the following
code generates a file with steadily-longer strings.

f <- tempfile()

cat("strsize,str\n",file=f)

for(x in 1:30) {
str <- paste(rep("abcd:",x),collapse="")
cat(nchar(str), ",", str, "\n", sep="",
append=T, file=f)

}

Importing this file with the default scanLines value (256) detects that
the maximum string has 150 characters, and sets this column string
length correctly.

dat <- importData(f, type="ASCII", stringsAsFactors=F,

bigdata=T)
dat
**pdFrame: 30 rows, 2 columns**
strsize str
1 5 abcd:
2 10 abcd:abcd:
3 15 abcd:abcd:abcd:
4 20 abcd:abcd:abcd:abcd:
5 25 abcd:abcd:abcd:abcd:abcd:

. 25 more rows
bd.string.column.width(dat)

strsize str
-1 150

(In the above output, the strsize value of -1 represents the value for
non-character columns.)

If you import this file with the scanLines argument set to scan only
the first few lines, the column string width is set too low. In this case,
the column string width is set to 45 characters, so longer strings are
truncated, and a warning is generated:
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dat <- importData(f, type="ASCII"™, stringsAsFactors=F,
bigdata=T, scanLines=10)

Warning messages:

"ReadTextFileEngineNode (0): output column str has 21
string values truncated because they were Tonger than the
column string width of 45 characters -- maximum string size
before truncation was 150 characters" in:
bd.internal.exec.node(engine.class = engine.class,

You can read this data correctly without scanning the entire file by
explicitly setting bd.options("default.string.column.width™)
before the call to importData:

bd.options("default.string.column.width"=200)

dat <- importData(f, type="ASCII"™, stringsAsFactors=F,
bigdata=T, scanlLines=10)

bd.string.column.width(dat)

strsize str
-1 200

This string truncation does not occur when Spotfire S+ reads long
strings as factors, because there is no limit on factor-level string
length.

One more point to remember when you import strings: the low-level
importData and exportData code truncates any strings (either
character strings or factor levels) that have more than 254 characters.
Spotfire S+ generates a warning in importData if bigdata=T if it
encounters such strings.

You can use one of the following techniques for setting string column
widths explicitly:

» To set the default width (if it is not determined some other
way), use bd.options("string.column.width™).

+ To override the default column string widths, in
bd.block.apply, specify the outl.column.string.widths list
element when IM$test==T, or when outputting the first non-
NULL output block.

+ To set the width for new output columns, use the
string.column.width argument to bd.create.columns.
When you use bd.create.columns to create a new character
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column, you must set the column string width. You can set
this width explicitly with the string.column.width argument.
If you set it smaller than the maximum string generated, then
this will generate a warning:

bd.create.columns(as.bdFrame(fuel.frame),
"Type+Type", "t2", "character",
string.column.width=6)

Warning in bd.internal.exec.node(engine.class = engi..:
"CreateColumnsEngineNode (0): output column t2 has 53
string values truncated because they were Tonger than the
column string width of 6 characters -- maximum string size
before truncation was 14 characters"”

**bdFrame: 60 rows, 6 columns**

Weight Disp. Mileage Fuel Type t2
2560 97 33 3.030303 Small SmallS
2345 114 33 3.030303 Small SmallS
1845 81 37 2.702703 Small SmallS
2260 91 32 3.125000 Small SmallS
2440 113 32 3.125000 Small SmallS

. 55 more rows

g wWwnN -

If the character column width is not set with the
string.column.width argument, the value is estimated differently,
depending on whether the call.splus argument is true or false. If
row.language=T, the expression is analyzed to determine the
maximum length string that could possibly be generated. This
estimate is not perfect, but it works well enough most of the time.

If row.1anguage=F, the first time that the Spotfire S+ expression is
evaluated, the string widths are measured, and the new column's
string width is set from this value. If future evaluations produce longer
strings, they are truncated, and a warning is generated.

Whether row.language=T or F, the estimated string widths will never
be less than the value of
bd.options("default.string.column.width™).

Because of the way that bdFrame factor columns are represented, a
factor cannot have an unlimited number of levels. The number of
levels is restricted to the value of the option. (The default is 500.)

bd.options("max.levels™)
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If you attempt to create a factor with more than this many levels, a
warning is generated. For example:

dat <- bd.create.columns(data.frame(num=1:2000),
"lxl+num"’ llf"’ 'Ifactor")

Warning messages:

"CreateColumnsEngineNode (0): output column f has 1500 NA
values due to categorical level overflow (more than 500
levels) -- you may want to change this column type from
categorical to string” in: bd.internal.ex\
ec.node(engine.class = engine.class, node.props =
node.props,

summary(dat)

num f

Min.: 1.0 x99: 1

1st Qu.: 500.8 x98: 1

Median: 1001.0 x97: 1

Mean: 1001.0 x96: 1

3rd Qu.: 1500.0 x95: 1

Max.: 2000.0 (Other): 495
NA's:1500

You can increase the "max.Tevels" option up to 65,534, but factors
with so many levels should probably be represented as character
strings instead.

Note

Strings are used for identifiers (such as street addresses or social security numbers), while factors
are used when you have a limited number of categories (such as state names or product types)
that are used to group rows for tables, models, or graphs.

String Normally, if strings are truncated or factor levels overflow, Spotfire
Truncation and S+ displays a warning with detailed information on the number of
altered values after the operation is completed. You can set the
following options to make an error occur immediately when a string
Errors truncation or level overflow occurs.

Level Overflow

bd.options("error.on.string.truncation"=T)
bd.options("error.on.level.overflow"=T)
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The default for both options is F. If one of these is set to T, an error
occurs, with a short error message. Because all of the data has not

been processed, it is impossible to determine how many values might
be effected.

These options are useful in situations where you are performing a
lengthy operation, such as importing a huge data set, and you want to
terminate it immediately if there is a possible problem.
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STORING AND RETRIEVING LARGE S OBJECTS

When you work with very large data, you might encounter a situation
where an object or collection of objects is too large to fit into available
memory. The Big Data library offers two functions to manage storing
and retrieving large data objects:

* bd.pack.object
* bd.unpack.object

This topic contains examples of using these functions.

Managing Suppose you want to create a list containing thousands of model
Large Amounts objects, and a single list containing all of the models is too large to fit
in your available memory. By using the function bd.pack.object,

of Data you can store each model in an external cache, and create a list of the
smaller “packed” models. You can then use bd.unpack.object to
restore the models to manipulate them.

Creating a In the following example, use the data object fuel. frame to create

Packed Object 1000 linear models. The resulting object takes about 6MB.

Wit_h bd.pack. 1, the Commands window, type the following:
object

#Create the Tinear models:

many.models <- Tapply(1:1000, function(x)
Im(Fuel ~ Weight + Disp., sample(fuel.frame, size=30)))

{#fGet the size of the object:
object.size(many.models)

[1] 6210981

You can make a smaller object by packing each model. While this
exercise takes longer, the resulting object is smaller than 2MB.

In the Commands window, type the following:

f#iCreate the packed linear models:

many.models.packed <- Tapply(1:1000,
function(x) bd.pack.object(
Im(Fuel ~ Weight + Disp., sample(fuel.frame, size=30))))
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##Get the size of the packed object:
object.size(many.models.packed)

[1] 1880041

Remember if you use bd.pack.object, you must unpack the object to
use it again. The following example code unpacks some of the models
within many .models.packed object and displays them in a plot.

In the Commands window, type the following:

for(x in 1:5)
plot(
bd.unpack.object(many.models.packed[[x]]),
which.plots=3)

The above example shows a space difference of only a few MB, (6MB
to 2MB), which is probably not a large enough saving to take the time
to pack the object. However, if each of the model objects were very
large, and the whole list were too large to represent, the packed
version would be useful.
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INCREASING EFFICIENCY

bd.select.
rows

bd.filter.
rows

The Big Data library offers several alternatives to standard Spotfire
S+ functions, to provide greater efficiency when you work with a
large data set. Key efficiency functions include:

Table E.1: Efficient Big Data library functions.

Function name Description

bd.select.rows Use to extract specific columns and a block of
contiguous rows.

bd.filter.rows Use to keep all rows for which a condition is
TRUE.
bd.create.columns Use to add columns to a data set.

The following section provides comparisons between these Big Data
library functions and their standard Spotfire S+ function equivalents

Using bd.select.rows to extract a block of rows is much more
efficient than using standard subscripting. Some standard subscripting
and bd.select.rows equivalents include the following:.

Table E.2: bd.select. rows efficiency equivalents.

Standard Spotfire S+
subscripting function bd.select.rows equivalent

x[, "Weight"] bd.select.rows(x,
columns="Weight")

x[1:1000, c(1,3)] bd.select.rows(x, from=1, to=1000,
columns=c(1,3))

Using bd. filter.rows is equivalent to subscripting rows with a
logical vector. By default, bd.filter.rows uses an “expression
language” that provides quick evaluation of row-oriented expressions.
Alternatively, you can use the full range of Spotfire S+ row functions
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by setting the bd.filter.rows argument row.language=F, but the
computation is less efficient. Some standard subscripting and
bd.filter.rows equivalents include the following:.

Table E.3: bd. filter.rows efficiency equivalents.

Standard Spotfire S+
subscripting function

bd.filter.rows equivalent

x[x$Weight > 100, 1]

bd.filter.rows(x, "Weight > 100™)

x[pnorm(x$stat) > 0.5

.

bd.filter.rows(x, "pnorm(stat) >
0.5", row.language=F)

Like bd.filter.rows, bd.create.columns offers you a choice of using
the more efficient expression language or the more flexible general
Spotfire S+ functions. Some standard subscripting and
bd.create.columns equivalents include the following:

Table E.4: bd. create.columns efficiency equivalents.

Standard Spotfire S+
subscripting function

bd.create.columns equivalent

x$d <- (x$a+x$b)/x$c

x <- bd.create.columns(x, "(a+b)/
c"omd™y

x$pval <- pnorm(x$stat)

x <- bd.create.columns(x,
"pnorm(stat)", "pval",
row.language=F)

y <- (x$a+x$b)/x$c

y <- bd.create.columns(x, "(a+b)/
c", "d", copy=F)

Note that in the last function, above, specifying copy=F creates a new
column without copying the old columns.
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INTRODUCTION

The Big Data library is supported by many standard Spotfire S+
functions, such as basic statistical and mathematical functions,
properties functions, densities and quantiles functions, and so on. For
more information about these functions, see their individual help
topics. (To display a function’s help topic, in the Commands window,
type help( functionname).)

The Big Data library also contains functions specific to big data
objects. These functions include the following.

* Import and export functions.

*  Object creation functions

* Big vector generating functions.

* Data exploration and manipulation functions.
+ Traditional and Trellis graphics functions.

*  Modeling functions.

These functions are described further in the following section.
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BIG DATA LIBRARY FUNCTIONS

The following tables list the functions that are implemented in the Big
Data library.

Data Import For more information and usage examples, see the functions’

and Export individual help topics.
Table A.1: Import and export functions.

Function name Description

data.dump Creates a file containing an ASCII
representation of the objects that are named.

data.restore Puts data objects that had previously been put
into a file with data.dump into the specified
database.

exportData Exports a bdFrame to the specified file or

database format. Not all standard Spotfire S+
arguments are available when you import a
large data set. See exportData in the Spotfire
S+ Language Reference for more information.

importData When you set the bigdata flag to TRUE, imports
data from a file or database into a bdFrame. Not
all standard Spotfire S+ arguments are
available when you import a large data set.
See importData in the Spotfire S+ Language
Reference for more information.
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Object The following methods create an object of the specified type. For
Creation more information and usage examples, see the functions’ individual
help topics.
Table A.2: Big Data library object creation functions

Function

bdCharacter

bdCluster

bdFactor

bdFrame

bdG1m

bdLm

bdLogical

bdNumeric

bdPrincomp

bdSignalSeries

bdTimeDate

bdTimeSeries

bdTimeSpan

146



Big Vector
Generation

Big Data Library Functions

For the following methods, set the bigdata argument to TRUE to
generate a bdVector. This instruction applies to all functions in this
table. For more information and usage examples, see the functions’
individual help topics.

Table A.3: Vector generation methods for large data sets.

Method name

rbeta

rbinom

rcauchy

rchisq

rep

rexp

rf

rgamma

rgeom

rhyper

rinorm

rlogis

rmvnorm

rnbinom

rnorm
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Table A.3: Vector generation methods for large data sets. (Continued)

Method name

rnrange

rpois

rstab

rt

runif

rweibull

rwilcox

The Big Data library introduces a new set of "bd" functions designed
to work efficiently on large data. For best performance, it is important
that you write code minimizing the number of passes through the
data. The Big Data library functions minimize the number of passes
made through the data. Use these functions for the best performance.
For more information and usage examples, see the functions’
individual help topics.



Big Data Library Functions

Data Exploration

Functions Table A.4: Data exploration functions.
Function name Description
bd.cor Computes correlation or covariances for a data

set. In addition, computes correlations or
covariances between a single column and all
other columns, rather than computing the full
correlation/covariance matrix.

bd.crosstabs Produces a series of tables containing counts for
all combinations of the levels in categorical
variables.

bd.data.viewer Displays the data viewer window, which displays

the input data in a scrollable window, as well as
information about the data columns (names,
types, means, and so on).

bd.univariate Computes a wide variety of univariate statistics. It
computes most of the statistics returned by PROC
UNIVARIATE in SAS.
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Data
Manipulation Table A.5: Data manipulation functions.
Functions
Function name Description
bd.aggregate Divides a data object into blocks

according to the values of one or
more columns, and then applies
aggregation functions to columns
within each block.

bd.append Appends one data set to a second
data set.
bd.bin Creates new categorical variables

from continuous variables by
splitting the numeric values into a
number of bins. For example, it can
be used to include a continuous age
column as ranges (<18, 18-24, 25-
35, and so on).

bd.block.apply Executes a Spotfire S+ script on
blocks of data, with options for
reading multiple input datasets and
generating multiple output data
sets, and processing blocks in
different orders.

bd.by.group Apply an arbitrary Spotfire S+
function to multiple data blocks
within the input dataset.

bd.by.window Apply an arbitrary Spotfire S+
function to multiple data blocks
defined by a moving window over
the input dataset.

bd.coerce Converts an object from a standard
data frame to a bdFrame, or vice
versa.
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Table A.5: Data manipulation functions. (Continued)

Function name Description

bd.create.columns Creates columns based on
expressions.

bd.duplicated Determine which rows in a dataset
are unique.

bd.filter.columns Removes one or more columns

from a data set.

bd.filter.rows Filters rows that satisfy the
specified expression.

bd.join Creates a composite data set from
two or more data sets. For each
data set, specify a set of key
columns that defines the rows to
combine in the output. Also, for
each data set, specify whether to
output unmatched rows.

bd.modify.columns Changes column names or types.
Can also be used to drop columns.

bd.normalize Centers and scales continuous
variables. Typically, variables are
normalized so that they follow a
standard Gaussian distribution
(means of 0 and standard
deviations of 1).

To do this, bd.normalize subtracts
the mean or median, and then
divides by either the range or
standard deviation.
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Table A.5: Data manipulation functions. (Continued)

Function name Description

bd.partition Randomly samples the rows of
your data set to partition it into
three subsets for training, testing,
and validating your models.

bd.relational.difference Get differing rows from two input
data sets.
bd.relational.divide Given a Value column and a Group

column, determine which values
belong to a given Membership as
defined by a set of Group values.

bd.relational.intersection Join two input data sets, ignoring all
unmatched columns, with the
common columns acting as key

columns.

bd.relational.join Join two input data sets with the
common columns acting as key
columns.

bd.relational.product Join two input data sets, ignoring all

matched columns, by performing
the cross product of each row.

bd.relational.project Remove one or more columns
from a data set.

bd.relational.restrict Select the rows that satisfy an
expression. Determines whether
each row should be selected by
evaluating the restriction. The
result should be a logical value.
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Table A.5: Data manipulation functions. (Continued)

Function name

Description

bd.relational.union

Retrieve the relational union of two
data sets. Takes two inputs (bdFrame
or data. frame). The output
contains the common columns and
includes the rows from both inputs,
with duplicate rows eliminated.

bd.

remove.missing

Drops rows with missing values, or
replaces missing values with the
column mean, a constant, or values
generated from an empirical
distribution, based on the observed
values.

bd.

reorder.columns

Changes the order of the columns
in the data set.

bd.sample Samples rows from a dataset, using
one of several methods.
bd.select.rows Extracts a block of data, as

specified by a set of columns, start
row, and end row.

bd.

shuffle

Randomly shuffles the rows of your
data set, reordering the values in
each of the columns as a result

bd.

sort

Sorts the data set rows, according
to the values of one or more
columns.

bd.

split

Splits a data set into two data sets
according to whether each row
satisfies an expression.
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Table A.5: Data manipulation functions. (Continued)

Function name

Description

bd.sql

Specifies data manipulation
operations using SQL syntax.

e The Select, Insert,
Delete, and Update
statements are supported.

«  The column identifiers are
case sensitive.

*  SQL interprets periods in
names as indicating fields
within tables; therefore,
column names should not
contain periods if you plan
to use bd.sql.

*  Mathematical functions
are allowed for
aggregation (avg, min,
max, sum, count, stdev,
var).

The following functionality is not
implemented:

e distinct

*  mathematical functions in
set or select, such as abs,
round, floor, and so on.

*  natural join
*  union

*  merge

*  between

*  subqueries

You can use the WHERE clause only
on the first referenced data table in
a SQL statement.
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Table A.5: Data manipulation functions. (Continued)

Function name Description

bd.stack Combines or stacks separate
columns of a data set into a single
column, replicating values in other
columns as necessary.

bd.string.column.width Returns the maximum number of
characters that can be stored in a
big data string column.

bd.transpose Turns a set of columns into a set of
TOWsS.
bd.unique Remove all duplicated rows from

the dataset so that each row is
guaranteed to be unique.

bd.unstack Separates one column into a
number of columns based on a
grouping column.
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Programming
Table A.6: Programming functions.

Function name Description

bd.cache.cleanup Cleans up cache files that have not
been deleted by the garbage
collection system. (This is most
likely to occur if the entire system
crashes.)

bd.cache.info Analyzes a directory containing big
data cache files and returns
information about cache files,
references counts, and unknown
files.

bd.options Controls Spotfire S+ options used
when processing big data objects.

bd.pack.object Packs any object into an external
cache.

bd.split.by.group Divide a dataset into multiple data
blocks, and return a list of these

data blocks.

bd.split.by.window Divide a dataset into multiple data
blocks, defined by a moving
window over the dataset, and
return a list of these data blocks.

bd.unpack.object Unpacks a bdPackedObject object
that was previously stored in the
cache using bd.pack.object.

Data Frame The following table lists the functions for both data frames (bdFrame)
and Vector and vectors (bdVector). The the cross-hatch (#) indicates that the
function is implemented for the corresponding object type. The

Functions Comment column provides information about the function, or
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indicates which bdVector-derived class(es) the function applies to. For
more information and usage examples, see the functions’ individual
help topics.

Table A.7: Functions implemented for bdVector and bdFrame.

Function Name bdVector | bdFrame Optional Comment
- # #
I= # #
$ #
$<- ¥
L # #
tt # #
[[<- # #
[<- # #
abs #

aggregate # #
all # #
all.equal # #
any # #
anyMissing # #
append #

apply #
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment

Arith # #

as.bdCharacter #

as.bdFactor #

as.bdFrame ¥# #

as.bdlLogical # Handles all bdvector-
derived object types.

as.bdVector # ¥

attr # #

attr<- # #

attributes # ¥

attributes<- # #

bdFrame # # Constructor. Inputs
can be bdVectors,
bdFrames, or ordinary
objects.

boxplot # # Handles bdNumeric.

by #

casefold #

ceiling ¥

coerce # #
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment

collds #

collds<- #

colMaxs # #

colMeans # #

colMins # #

colRanges # #

colSums # #

colVars # #

concat.two # #

cor # #

cut #

dbeta # Density, cumulative
distribution (CDF),
and quantile function.

dbinom # Density, CDF, and
quantile function.

dcauchy # Density, CDF, and
quantile function.

dchisq # Density, CDF, and
quantile function.
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment

density #

densityplot #

dexp # Density, CDF, and
quantile function.

df # Density, CDF, and
quantile function.

dgamma # Density, CDF, and
quantile function.

dgeom # Density, CDF, and
quantile function.

dhyper # Density, CDF, and
quantile function.

diff # #

digamma #

dim #

dimnames # a bdFrame has no row
names.

dimnames<- # a bdFrame has no row
names.

dlnorm # Density, CDF, and
quantile function.

dlogis # Density, CDF, and

quantile function.
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Big Data Library Functions

Function Name bdVector | bdFrame Optional Comment
dmvnorm # Density and CDF
function.
dnbinom # Density, CDF, and
quantile function.
dnorm # Density, CDF, and
quantile function.
dnrange # Density, CDF, and
quantile function.
dpois # Density, CDF, and
quantile function.
dt # Density, CDF, and
quantile function.
dunif # Density, CDF, and
quantile function.
duplicated # # Density, CDF, and
quantile function.
durbinWatson # Density, CDF, and
quantile function.
dweibull # Density, CDF, and
quantile function.
dwilcox # Density, CDF, and
quantile function.
floor # #
format # #
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment
formula #

grep #

hist #

hist2d #

histogram ¥#

html.table # #

intersect #

is.all.white #

is.element #

is.finite ¥# #

is.infinite # #

is.na # #

is.nan # #

is.number # #

is.rectangular ¥ #

kurtosis # Handles bdNumeric.
Tength # #
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment

Tevels # Handles bdFactor.

Tevels<- # Handles bdFactor.

mad #

match # #

Math # # Operand function.

Math2 # # Operand function.

matrix # #

mean # #

median #

merge # #

na.exclude # #

na.omit # #

names # # bdVector cannot have
names.

names<- # # bdVector cannot have
names.

nchar # Handles bdCharacter,
not bdFactor.

ncol #
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment

notSorted #

nrow #

numberMissing # #

Ops # #

pairs #

pbeta # Density, CDF, and
quantile function.

pbinom # Density, CDF, and
quantile function.

pcauchy # Density, CDF, and
quantile function.

pchisq # Density, CDF, and
quantile function.

pexp # Density, CDF, and
quantile function.

pf # Density, CDF, and
quantile function.

pgamma # Density, CDF, and
quantile function.

pgeom # Density, CDF, and
quantile function.

phyper # Density, CDF, and

quantile function.
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment

plnorm # Density, CDF, and
quantile function.

plogis # Density, CDF, and
quantile function.

plot # #

pmatch #

pmvnorm # Density and CDF
function.

pnbinom # Density, CDF, and
quantile function.

pnorm # Density, CDF, and
quantile function.

pnrange # Density, CDF, and
quantile function.

ppois # Density, CDF, and
quantile function.

print # #

pt # Density, CDF, and
quantile function.

punif # Density, CDF, and
quantile function.

pweibull # Density, CDF, and
quantile function.
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment
pwilcox # Density, CDF, and
quantile function.
gbeta # Density, CDF, and
quantile function.
gbinom # Density, CDF, and
quantile function.
qcauchy # Density, CDF, and
quantile function.
qchisgq # Density, CDF, and
quantile function.
qexp # Density, CDF, and
quantile function.
qf # Density, CDF, and
quantile function.
ggamma # Density, CDF, and
quantile function.
qgeom # Density, CDF, and
quantile function.
ghyper # Density, CDF, and
quantile function.
glnorm # Density, CDF, and
quantile function.
qlogis # Density, CDF, and
quantile function.
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment

gnbinom # Density, CDF, and
quantile function.

gnorm # Density, CDF, and
quantile function.

gnrange # Density, CDF, and
quantile function.

gpois # Density, CDF, and
quantile function.

qq #

qgmath #

qgnorm #

qqplot #

qt # Density, CDF, and
quantile function.

quantile #

qunif # Density, CDF, and
quantile function.

qweibull # Density, CDF, and
quantile function.

qwilcox # Density, CDF, and
quantile function.

range #
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment
rank #

replace #

rev # #

rle #

row.names # Always NULL.
row.names<- # Does nothing.
rowlds # Always NULL.
rowIds<- # Does nothing.
rowMaxs #

rowMeans #

rowMins #

rowRanges #

rowSums #

rowVars #

runif #

sample # #

scale #
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment

setdiff #

shiftPositions #

show # #

skewness # Handles bdNumeric.

sort #

split #

stdev # Handles
bdCharacter.

sub # #

sub<- #

substring #

substring<- #

Summary # # Operand function.

summary # #

sweep #

t #

tabulate # Handles bdNumeric.

tapply # #
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Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector | bdFrame Optional Comment

trigamma #

union #

unique # #

var # #

which.infinite # #

which.na # #

which.nan # #

xy2cell #

xyCall #

xyplot #
Graph For more information and examples for using the traditional graph
Functions functions, see their individual help topics, or see the section Functions

Supporting Graphs on page 83.
Table A.8: Traditional graph functions.

Function name

barplot

boxplot

contour

dotchart

170



Big Data Library Functions

Table A.8: Tiaditional graph functions. (Continued)

Function name

hexbin

hist

histad

image

interp

pairs

persp

pie

plot

ggnorm

qqplot

For more information about using the Trellis graph functions, see their
individual help topics, or see the section Functions Supporting

Graphs on page 83.
Table A.9: Tiellis graph functions.

Function name

barchart

contourplot

densityplot

dotplot
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Table A.9: Tiellis graph functions. (Continued)

Function name

histogram

levelplot

piechart

qq

Note

The cloud and parallel graphics functions are not implemented for bdFrames.

Data Modeling For more information and usage examples, see the functions’ individual
help topics.

Table A.10: Fitting functions

Function name

bdCluster

bdGTm

bdLm

bdPrincomp

172



Model Methods

Big Data Library Functions

Table A.11: Other modeling utilities.

Function name

bd.model.frame.and.matrix

bs

ns

spline.des

contrasts

contrasts<-

The following table identifies functions implemented for generalized
linear modeling, linear regression, principal components modeling,
and clustering. The cross-hatch (#) indicates the function is
implemented for the corresponding modeling type.

Table A.12: Modeling and Clustering Functions.

principal
Generalizedlinear | Linear components
Function name | modeling (bdG1m) Regression (bdLm) | (bdPrincomp) bdCluster
AIC #
all.equal #
anova * #
BIC #
coef # #
deviance #* #
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Table A.12: Modeling and Clustering Functions. (Continued)

principal
Generalized linear | Linear components
Function name | modeling (bdG1m) Regression (bdLm) | (bdPrincomp) bdCluster
durbinWatson #
effects #
family # #
fitted # # # #
formula # #
kappa #
Tabels #
loadings #
loglLik i
model. frame #
model.matrix #
plot # #
predict # # # #
print # # # #
print.summary # # #
ggnorm # #
residuals # #
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Table A.12: Modeling and Clustering Functions. (Continued)

principal
Generalized linear | Linear components

Function name | modeling (bdG1m) Regression (bdLm) | (bdPrincomp) bdCluster

screeplot #

step # #

summary # # #
Predict from This table lists the small data models that support the predict
Small Data function. For more information and usage examples, see the functions’
Models individual help topics.

Table A.13: Predicting from small data models.

Small data model using predict
function

arima.mle

bs

censorReg

coxph

coxph.penal

discrim

factanal

gam

glm
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Table A.13: Predicting from small data models. (Continued)

Small data model using predict
function

gls

gnls

m

Tme

TmList

TmRobMM

loess

loess.smooth

mim

nlme

ns

princomp

safe.predict.gam

smooth.spline

smooth.spline.fit

survreg
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Functions

Time Date
Creation

Big Data Library Functions

Table A.13: Predicting from small data models. (Continued)

Small data model using predict
function

survReg

survReg.penal

tree

The following tables include time date creation functions and
functions for manipulating time and date, time span, time series, and

signal series objects.

Table A.14: Time date creation functions.

Function name

Description

bdTimeDate

The object constructor.

Note that when you call the
timeDate function with any big
data arguments, then a bdTimeDate
object is created.

timeCalendar

Standard Spotfire S+ function.
When you call the timeCalendar
function with any big data
arguments, then a bdTimeDate
object is created

timeSeq

Standard Spotfire S+ function; to
use with a large data set, set the
bigdata argument to TRUE.
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In the following table, the cross-hatch (#) indicates that the function is
implemented for the corresponding class. If the table cell is blank, the
function is not implemented for the class. This list includes bdVector
objects (bdTimeDate and bdTimeSpan) and bdSeries classes
(bdSignalSeries, bdTimeSeries).

Table A.15: Time Date and Series Functions.

Function bdTimeDate bdTimeSpan bdSignalSeries bdTimeSeries
- # #

[ # # #
[<- #

+ # #

align # #
all.equal # #

Arith # #

as.bdFrame # # #
as.bdlLogical ¥ #

bd.coerce # # # #
ceiling # #

coerce/as # # # i
cor # # # #
cumsum #

cut # 1
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Table A.15: Time Date and Series Functions. (Continued)

Function bdTimeDate bdTimeSpan bdSignalSeries bdTimeSeries
data.frameAux # # #
days #

deltat # #
diff ¥# ¥#
end # #
floor # 1

hms #

hours #

match # 1

Math # # # #
Math2 # # # #
max # #

mdy #

mean # # # #
median # # # #
min # #

minutes #
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Table A.15: Time Date and Series Functions. (Continued)

Function bdTimeDate bdTimeSpan bdSignalSeries bdTimeSeries
months #

plot # # # #
quantile # # # #
quarters #

range # #

seconds #

serieslag # #
shiftPositions # #

show # # # #
sort # # # #
sort.list # # # #
split # #

start # #
substring<- # # # #
sum #

Summary # # # #
summary # # # #
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Table A.15: Time Date and Series Functions. (Continued)

Function bdTimeDate bdTimeSpan bdSignalSeries bdTimeSeries
timeConvert ¥#

trunc # #

var # # # #

wdydy #

weekdays #

yeardays #

years #
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