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1 Introduction

We address the problem of estimating the distributional parameters for multivariate normal
(MVN) data that contains missing values via the well-known EM (Expectation-Maximization)
iteration (Dempster, Laird, and Rubin [3]). The data Y is represented as a matrix of n rows
and p columns, whose rows correspond to the individual observations and whose columns
correspond to the variables in the model. The rows of Y are assumed to be independent
and identically distributed (iid) according to a multivariate normal distribution with mean
vector � and covariance matrix �. The objective is to estimate the parameters � and � of
this distribution, assuming no prior restrictions other than positive de�niteness of �.

The (MVN) density of a single observation of Y is

(j2��j)�1=2 exp
�
�1
2
(yk � �)T��1(yk � �)

�

where yk is the kth row of Y represented as a column vector, so that an expression for the
likelihood for Y is then

L(�;� j Y ) / j�j�n=2 exp
(
�1
2

nX
k=1

(yk � �)T��1(yk � �)

)
: (1)

When all of the data in Y is observed, the values of � and � maximizing (1) are

�̂ =
1

n

nX
k=1

yk; (2)

the vector of individual column means, and

�̂ =
1

n
Y TY � �̂�̂T : (3)

However, when Y contains missing data, further assumptions have to be made about the
distribution of the missing data in order to obtain a solution. Following Little and Rubin
[10] and Schafer [12], let YO be the observed portion of Y , and YM be the missing portion.
If the mechanism for creating the missing data is ignorable, that is, if the probability that a
particular variable in an observation is missing may depend on YO but not on YM , then the
relevant density can be obtained by integrating the missing data YM out of the complete data
loglikelihood. This reasoning holds for more general distributions, although the multivariate
normal model is the only one of interest here. The parameters can be estimated via the EM
algorithm ([3] | see McLachlan and Krishnan [11] for a recent treatment of EM and its
applications).

The EM iteration alternates between two steps, an `E-step', in which the conditional
expectation of the complete data loglikelihood given the observed data and the current pa-
rameter estimates is computed, and an `M-step' in which parameters are determined that
maximize the expected loglikelihood from the E-step. Under fairly mild regularity assump-
tions, the iteration converges to a local maximum of the complete data loglikelihood ([?],
Boyles [1], Wu [14], [11], [12]).

Arguments for and against the use of EM have been presented elsewhere (e. g. Little
and Rubin [10], Schafer [12]). Its main drawback is that the rate of covergence is linear and
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can be slow. However, in the multivariate normal case direct optimization of the complete
data loglikelihood via superlinearly convergent methods is impractical except when the num-
ber of variables p is small because there are p + (p(p + 1))=2 parameters to be estimated,
and the required derivatives are not sparse. Although the Gaussian model is not always a
good representation of the data, it is nevertheless useful as a point of departure in iterative
simultation for data whose distributions are not directly accessible [12].

The E-step involves linear regressions and formation of the covariance matrix that are
typically computed via sweep operations. This allows relevant quantities to be updated
rather than recomputed between successive missing data patterns, as well as e�cient use
of memory. A disadvantage is that it involves formation of sums of crossproducts of data
values, so that scaling may be required to keep quantities involved in the computations from
growing too large. Moreover, the sweep method allows growth in numerical errors which
can increase the number of iterations required for convergence and/or reduce the accuracy
of the resulting estimates of the optimal parameters. The purpose of this paper is to give a
scheme based on parameterization in terms of the Cholesky factor of � that is more stable
and accurate.

This paper is organized as follows. Section 2 gives the E-steps and M-steps of the iteration
as they are conventionally formulated. Computation of the E-step via sweep operations is
then described in section 3, followed by details of a Cholesky-based method for computing
the EM iteration in section 4.

2 EM for Multivariate Normal Missing Data

This section summarizes information that is covered in more detail in [10] and [12]. In the
EM iteration for multivariate normal datawith missing values, the E-step involves computing
the expectation values of the su�cient statistics

Pn
k=1 yk and

Pn
k=1 ykiykj, for i; j = 1; 2; : : : ; p

given the current values of the parameters � and �. The M-step is then straighforward |
these expectation values are just substituted into the maximum likelihood expressions (2)
and (3) for complete data:

� n�1E(
nX

k=1

yk); �ij  n�1E(
nX

k=1

ykiykj)� �i�j: (4)

It is understood that all expectations are taken with respect to the observed data and the
current estimates of the parameters � and �.

Since E(Pn
k=1 yk) =

Pn
k=1 E(yk), expectations of the individual missing values are com-

puted in the E-step. An observation yk containing missing data can be partitioned into
observed and missing portions; that is

Pyk =
�
yOk
yMk

�
;

where P is permutation. The current parameter estimates can be correspondingly parti-
tioned:

P� =
�
�O

�M

�
and P�P T =

�
�OO �T

MO

�MO �MM

�
: (5)
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Because of the iid assumption, each observation has a multivariate normal distribution with
unknown mean � and covariance � (for which there are estimates). Because of the ignora-
bility assumption, the conditional distribution of the missing observations is also normal, so
that

E(yMk jyOk ; �;�) = �M + �MO�
�1
OO
(yOk � �O):

This is the mean value of a linear regression with the observed values of yk as predictor
variables, given the current � and �. Hence

E(yOk ) = yOk ;
E(yMk ) = �M + �MO�

�1
OO

(yOk � �O) :
(6)

For the crossproduct terms,

E(ykiykj) = E(yki)E(ykj) + Cov(ykiykj)

=

8>>>>><
>>>>>:

ykiykj; yki, ykj observed;

ykiE(ykj); yki observed, ykj missing;

E(yki)E(ykj) + &kij; yki, ykj missing.

(7)

The term &kij is the element corresponding to yki and ykj in

�MM � �MO�
�1
OO
�T
MO

; (8)

the covariance matrix of the missing elements given the observed data and the current values
of � and �. This value is the same for all rows having a given missing data pattern.

Given the above formulas for the expectation values of the data, a procedure for com-
puting the estimated parameters is given in Figure 2. Note that only �OO, rather than �,
need be nonsingular for all data patterns.

If the missing data patterns are organized in such a way that close patterns are pro-
cessed in succession, then it is more e�cient to update the quantities needed to form
�MM � �MO�

�1
OO
�T
MO

and yMk than compute them completely from scratch. Finding the pat-
tern that produces the most e�cient computation in every case is impractical since it would
involve the solution of a combinatorial problem. A good heuristic is to organize columns
in order of increasing number of missing observations, and then order the rows in increas-
ing numeric order treating the missing data patterns as bitwise representations of integers
(missing obervations encoded as 0). Patterns of missingness in which observed data always
precedes missing data are called monotone data patterns, and parameter estimates can be
obtained directly rather than iteratively for data that falls into this category. The heuristic
mentioned above for ordering will expose monotone patterns.

Because sums of products of the data elements are being formed to get the elements
of �, quantities could become rather large course of the computation, leading to numerical
instability. The data can be centered and scaled relative to the observed values, although
there may be some loss of accuracy in recovering the original parameters. Moreover, estimates
obtained from centered and scaled data will not necessarily correspond to larger values of
the observed data loglikelihood than estimates from unscaled data (see section [?]).
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Form so, the sum of the observed values in each variable of Y , and
Wo, the matrix of partial sums of products involving pairs of observed values.

Assume estimates �;� of the mean and covariance are given.

repeat

s so; W  Wo

for each missing data pattern P
for each observation k conforming to P

yMk  �M +�MO�
�1
OO

(yOk � �O)

Add values of yMk to the appropriate components of s.

Form all products involving yMk and add them into W .

Add the corresponding entry of �MM � �MO�
�1
OO

�T
MO

to each product involving two

missing terms of the current observation.

end for

end for

� s

n
; � W

n
� ��T

until termination criteria are satis�ed

Figure 1: Conventional procedure for estimation of � and � via EM.

3 Computation via Sweep Operations

Little and Rubin [10] and Schafer [12] give computational methods for the EM iteration for
MVN missing data following the scheme of Figure 2 in terms of sweep operations. This
allows advantage to be taken of symmetry as well as updating between related missing data
patterns. Sweep operations are widely used for organizing computations for linear regression
via the normal equations (see, e. g. Thisted [13]), and expectation values of the missing
elements in the E-step of the EM iteration are obtained via linear regression (see section 2).

Sweeping a (symmetric) positive-de�nite matrix relative to the �rst variable has the
following e�ect: �

� b
bT C

�
sweep�!
f1g

��1=� bT =�
b =� C � (bbT )=�

�

The matrix can be swept relative to any variable, although it is easier to visualize by per-
muting the relevant rows and columns into the leading positions, while suppressing notation
for the permutations. For the EM iteration, sweeping the current � relative to the observed
variables for a given missing data pattern results in the quantities needed to compute the
expectation values in the E-step (see section 2). As an example, for a missing data pattern in
which the �rst k variables are observed and the remaining variables are missing, the current
� would be swept relative to those variables to give:

�
�OO �T

MO

�MO �MM

�
sweep�!
f1;:::;kg

� ���1
OO

��1
OO
�T
MO

�MO�
�1
OO

�MM � �MO�
�1
OO
�T
MO

�
; �OO k � k.
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A sweep operation cannot be represented by a single matrix operator; it is rather a composite
of matrix operations. Sweep operations are reversible, so that in the EM iteration one can
proceed from one missing data pattern to the next by doing a reverse sweep operation for
each variable that is observed in the current pattern but missing in the next, and a sweep
operation for each variable that is missing in the current pattern but observed in the next.
All sweep and reverse sweep operations are commutative, so that they can be performed in
any order. Since the matrices involved are symmetric, operations need only be carried out
on either an upper or lower triangle.

Sweep operations are usually presented in terms of the individual arithmetic operations re-
quired to transform one tableau to another. However, provided the relevant rows and columns
are gathered into contiguous blocks, sweeps can be carried out via matrix operations, allowing
more opportunity for compiler and run-time optimization [9], [5], [4]. The same holds true
for the matrix multiplication in computing the missing data estimates (6) and for extracting
elements in (8) when forming crossproducts involving two missing entries. Depending on the
missing data pattern and the computing environment, permuting to achieve the ordering in
(5) could be more e�cient despite the need for data movement.

4 Computation Based on the Cholesky Factor of �

4.1 Expectations of missing values

Analogous to the partitioning of � in (5), the columns in the Cholesky factor R of � can be
partitioned so that observed variables precede the missing ones

�
ROO ROM

0 RMM

�T �ROO ROM

0 RMM

�
=
�
RT
OO
ROO RT

OO
ROM

RT
OM

ROO RT
OM

ROM +RT
MM

RMM

�
=
�
�OO �T

MO

�MO �MM

�
:

The expression for the expectation values of the missing data in (6) has the equivalent
formulation

E(yMk ) = �M +RT
OM

R�T
OO

(yOk � �O) (9)

since
�MO�

�1
OO

= RT
OM

ROO(R
�1
OO
R�T
OO

) = RT
OM

R�T
OO

:

If the number of missing observations in this particular pattern is greater than the number
of observations having the pattern, then z = R�T

OO
(yOk � �O) should be computed for each

missing observation by solving ROOz = (yOk � �O), followed by formation of RT
OM

z. Otherwise
it is more e�cient to form Z = R�1

OO
ROM by solving ROOZ = ROM (Z overwrites ROM), then

form ZT (yOk � �O) for each missing observation. Note that only the nonsingularity of ROO

for each missing data pattern is required in order to obtain new parameter estimates. An
advantage of using (9) is that the upper bound on the size of numerical errors is approximately
the square root of that for the normal equations (6) (Golub and Van Loan [8]). Moreover,
solution of linear equations with triangular coe�cient matrices can be accomplished very
e�ciently ([8], Dongarra et al. [5]).

In order to take full advantage of the e�ciency of the triangular solves in (9), it is nec-
essary to order the rows of Y so that those with the same data pattern occur consecutively,
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and to permute the columns of the Cholesky factor between missing data patterns. The
following illustrates the permutation procedure for a �ve-dimensional case, in which obser-
vations having missing data in (say) column 5 are followed by ones in which columns 2 and
4 are missing. The �rst step is a permutation step, while the remaining steps restore the
matrix to triangular form.

0
BBBBB@

� � � � �
0 � � � �
0 0 � � �
0 0 0 � �
0 0 0 0 �

1
CCCCCA

permute�!

0
BBBBB@

� � � � �
0 � � � �
0 � � 0 �
0 0 � 0 �
0 0 � 0 0

1
CCCCCA

Givens�!

0
BBBBB@

� � � � �
0 ~� ~� ~� ~�
0 ~0 ~� ~� ~�
0 0 � 0 �
0 0 � 0 0

1
CCCCCA

Givens�!

0
BBBBB@

� � � � �
0 � � � �
0 0 ~� ~� ~�
0 0 ~0 ~� ~�
0 0 � 0 0

1
CCCCCA

Givens�!

0
BBBBB@

� � � � �
0 � � � �
0 0 ~� ~� ~�
0 0 0 � �
0 0 ~0 ~� ~�

1
CCCCCA

Givens�!

0
BBBBB@

� � � � �
0 � � � �
0 0 � � �
0 0 0 ~� ~�
0 0 0 ~0 ~�

1
CCCCCA

The symbol
Givens�! stands for application of a Givens rotation, an elementary orthogonal

transformation that allows selective and numerically stable introduction of zero elements in
a matrix [8]. The marked entries are values changed in the last transformation. The basic
idea is to permute the columns in such a way that missing columns follow the observed ones,
but otherwise the order of columns is preserved from the previous con�guration. This ensures
that the sparser columns tend to be the leading columns, thus minimizing the number of
operations required to restore upper-triangular form. In the example above more operations
would have been required had column 5 preceded column 3 in the permutation.

The e�ciency of the update sequence is dependent on the overall missing data pattern.
For a monotone data pattern (observed values always precede missing values) in which the
rows are ordered by increasing number of missing values, no column permutation is necessary.
However in this case the parameter estimates need not be computed iteratively [10], [12].The
number of operations required for the permutations will be minimized if the the rows and
columns of Y are ordered so that the overall missing data pattern is as close to monotone as
possible (see sections 2 and 4.3).

4.2 Forming the Cholesky factor of the estimate for �

Instead of obtaining an estimate for Y TY in the E-step, the Cholesky factor of the estimate
of � resulting from the M-step is formed as the rows are processed.

From the expressions for the elements of � is the M-step (4), it follows that

�̂ =
E(Y TY )

n
� �̂�̂T : (10)

The matrix E(Y TY ) can be expressed as the sum of two parts:

E(Y TY ) = E(Y )TE(Y ) + S; S �
nX

k=1

Cov(ykiykj):

6



Since Cov(ykiykj) is the same for all rows k having a given missing data pattern, an alter-
native expression for E(Y TY ) is

E(Y TY ) = E(Y )TE(Y ) +
mX
i=1

niSi; (11)

where m is the number of missing data patterns, ni is the number of observations having
the ith missing data pattern, and Si the covariance matrix associated with that pattern (its
nonzero portion is a permutation of (8)). Moreover, each Si is positive semi-de�nite, with
non-zero elements corresponding to the matrix �MM � �MO�

�1
OO
�T
MO

in (8) for the ith data
pattern. Since

�MM � �MO�
�1
OO
�T
MO

=
�
RT
OM

ROM +RT
MM

RMM

�
�
�
RT
OM

R�T
OO

�
RT
OO
ROM = RT

MM
RMM ;

RMM is the Cholesky factor of �MM � �MO�
�1
OO
�T
MO

. It follows that Si = AT
i Ai, where the

associated RMM is a submatrix of a permutation of the columns of Ai (all other elements
of Ai vanish). Using this representation of Si in (11) gives the following expression for the
updated estimate of � (10) :

�̂ =
E(Y )TE(Y )

n
� �̂�̂T +

mX
i=1

ni
n
RT

i Ri:

Now
E(Y )TE(Y )

n
� �̂�̂T =

1

n

nX
k=1

(E(yk)� �̂)(E(yk)� �̂)T =
1

n
~Y T ~Y ;

where ~Y is the matrix E(Y ) after subtracting the estimated column means. The matrix
~Y T ~Y has an alternative decomposition in terms of rank-1 matrices that allows row-wise
accumulation:

~Y T ~Y =
nX

k=1

vk v
T
k ; vk �

s
1

k(k � 1)
sk�1 �

s
k � 1

k
E(yk) s0 � 0; sj �

jX
i=1

E(yj):

Note that each vk depends only on rows j � k. Assuming that rows are ordered according
to missing data patterns, we may write

~Y T ~Y = ~Y T
0
~Y0 +

mX
i=1

k
(i)
maxX

k=k
(i)
min

vk v
T
k �

mX
i=0

~Y T
i
~Yi;

where ~Y T
0
~Y0 involves only complete rows, and k

(i)
min; k

(i)
max are the largest and smallest row

indexes associated with the ith nontrivial missing data pattern. It follows that

n�̂ = ~Y T
0
~Y0 +

mX
i=1

n
~Y T
i
~Yi + niA

T
i Ai

o
=

0
BBBBBBBBB@

~Y0
~Y1p
n1A1

...
~Ymp
nmAm

1
CCCCCCCCCA

T 0BBBBBBBBB@

~Y0
~Y1p
n1A1

...
~Ymp
nmAm

1
CCCCCCCCCA
;
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a formulation that is compatible with row-wise formation of the Cholesky factor. The
Cholesky factor of ~Y T

0
~Y0 is formed at the outset, before the iteration is started. As the

iteration, proceeds this Cholesky factor is updated one row at a time. For each missing
data pattern Pi, expectation values of the missing data are computed using (9). When the
Cholesky factor has been updated for each row having that pattern, the non-zero rows of Ai

are incorporated with the appropriate weight (
p
ni). The number of these rows is equal to

the number of missing elements (mi) in the pattern.
The row update is accomplished as follows: if R is the Cholesky factor X, then the

Cholesky factor �R of
�
X
xT

�T � X
xT

�
= XTX + xxT can be formed using Givens rotations.

The procedure is illustated below for a 5-dimensional example:

�
X
xT

�
=

0
BBBBB@

� � � �
0 � � �
0 0 � �
0 0 0 �
� � � �

1
CCCCCA

Givens�!

0
BBBBB@

~� ~� ~� ~�
0 � � �
0 0 � �
0 0 0 �
~0 ~� ~� ~�

1
CCCCCA

Givens�!

0
BBBBB@

� � � �
0 ~� ~� ~�
0 0 � �
0 0 0 �
0 ~0 ~� ~�

1
CCCCCA

Givens�!

0
BBBBB@

� � � �
0 � � �
0 0 ~� ~�
0 0 0 �
0 0 ~0 ~�

1
CCCCCA

Givens�!

0
BBBBB@

� � � �
0 � � �
0 0 � �
0 0 0 ~�
0 0 0 ~0

1
CCCCCA =

� �R
0

�
;

XTX + xxT = �RT �R:

The marked entries are values changed in the last transformation. The time e�ciency for the
Cholesky update is O(p2), in contrast to O(p3) for forming a new Cholesky factor from the
updated p� p matrix XTX + xxT . For details of the Cholesky update via Givens rotations,
see [8]. The non-zero rows of Ai will often contain leading zeros, so that it will require fewer
rotations to incorporate them than otherwise.

4.3 Retaining invariant Givens rotations

A synthesis of the Cholesky-based method for the EM iteration described in sections 4.1 and
4.2 is given in Figure 4.3.

We have already mentioned that it is desirable for the rows and columns of the data Y
to be ordered so that its overall missing data pattern is as close to monotone as possible
for e�cient restoration of triangular form between missing data patterns (section 4.1) and
described a heuristic for achieving this order (section 2).

Further advantage can be taken of the monotone structure of the data with Cholesky
method. For a given data set, assume that the rows of its missing data pattern are ordered
according to decreasing number of leading observed elements (complete rows can be ignored,
since they are processed in advance). If the observations are processed in this order, then
the Givens rotations needed to process the entries corresponding to the leading observed
elements in the restoration to triangular form are known and can be applied before the
iteration begins. The rotations can be saved in a preprocessing step as a vector that is
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accessed sequentially during the iteration and applied starting with the �rst missing element
in each row. Ordinarily two values are used to specify a Givens rotation, but these can
be encoded by a single value if necessary in order to save space [8]. The requirement of
additional storage of one or two values for each leading observed element in a row is o�set
by the savings for computing and applying the Givens rotations to the leading observed
elements in each iteration.
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Order the rows of Y according to missing data pattern.

Compute sc and Rc, the column sums and Cholesky factor of the sample cross-product matrix for

the complete observations.

Assume estimates �;R of the mean and the Cholesky factor of � are given.

repeat

k  number of complete observations; s sc; U  Rc

for each nontrivial missing data pattern Pi; i = 1; 2; : : : ;m

Let ni be the number of observations conforming to Pi, and
let mi be the number of missing observations in that pattern.

Permute columns of R so that observed variables precede missing ones (P);

Restore to upper triangular via using orthogonal transformations (Q):

QRP =

�
ROO ROM

0 RMM

�
:

Condition estimate of ROO; take appropriate action if nearly singular.

if ni � mi then

for each observation conforming to Pi
Solve RT

OO
z = (yOk+1 � �O) for z; yMk+1  �M +RT

OM
z.

Rank-one update of U with
q

1
k(k+1)s�

q
k

(k+1)yk+1; s s+ yk+1; k  k + 1

end for

else

Solve ROOZ = ROM for Z (Z overwrites ROM)

for each observation conforming to Pi
yMk+1  �M + ZT (yOk+1 � �O).

Rank-one update of U with
q

1
k(k+1)s�

q
k

(k+1)yk+1; s s+ yk+1; k  k + 1

end for

end if

for each missing variable in Pi
Let w be a p-vector which has the corresponding row of RMM in the respective positions

of missing variables and is otherwise zero.

Rank-one update of U with
p
ni w.

end for

end for

� s=n; R U=
p
n

until termination criteria are satis�ed

Figure 2: EM iteration based on the Cholesky factor of the estimate of �. Can be enhanced
by ordering data patterns to be as close to monotone as possible, as well as applying Givens
rotations corresponding to the leading observed elements and saving them for later use.
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