)

TIBCO SPOTFIRE $+° 8.1
Programmer’s Guide

November 2008

TIBCO Software Inc.

IMPORTANT INFORMATION

ii

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER
TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON
FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT
LICENSED TO BE USED OR ACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS
SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE
AGREEMENT FOUND IN EITHER A SEPARATELY
EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF
THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS
DISPLAYED DURING DOWNLOAD OR INSTALLATION OF
THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SPOTFIRE $+® INSTALLATION AND ADMINISTRATION
GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO THOSE
TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to
U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO Software Inc., TIBCO, Spotfire, TIBCO Spotfire S+,
Insightful, the Insightful logo, the tagline "the Knowledge to Act,"
Insightful Miner, S+, S-PLUS, TIBCO Spotfire Axum,
S+ArrayAnalyzer, S+EnvironmentalStats, S+FinMetrics, S+NuOpt,
S+SeqTrial, S+SpatialStats, S+Wavelets, S-PLUS Graphlets,
Graphlet, Spotfire S+ FlexBayes, Spotfire S+ Resample, TIBCO
Spotfire Miner, TIBCO Spotfire S+ Server, and TIBCO Spotfire
Clinical Graphics are either registered trademarks or trademarks of
TIBCO Software Inc. and/or subsidiaries of TIBCO Software Inc. in
the United States and/or other countries. All other product and
company names and marks mentioned in this document are the
property of their respective owners and are mentioned for

Reference

Technical
Support

Important Information

identification purposes only. This software may be available on
multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time.
Please see the readme.txt file for the availability of this software
version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
DOCUMENT COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION
HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE
INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

Copyright © 1996-2008 TIBCO Software Inc. ALL RIGHTS
RESERVED. THE CONTENTS OF THIS DOCUMENT MAY BE
MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH
ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT
LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

TIBCO Software Inc. Confidential Information

The correct bibliographic reference for this document is as follows:

TIBCO Spotfire S+® 8.1 Programmer’s Guide, TIBCO Software Inc.

For technical support, please visit http://spotfire.tibco.com/support
and register for a support account.

ii

TIBCO SPOTFIRE S+ BOOKS

iv

The TIBCO Spotfire S+® documentation includes books to address
your focus and knowledge level. Review the following table to help
you choose the Spotfire S+ book that meets your needs. These books
are available in PDF format in the following locations:

* In your Spotfire S+ installation directory (SHOME\help on
Windows, SHOME/doc on UNIX/Linux).

* In the Spotfire S+ Workbench, from the Help » Spotfire S+
Manuals menu item.

+ In Microsoft® Windows®, in the Spotfire S+ GUI, from the
Help » Online Manuals menu item.

Spotfire S+ documentation.

Information you need if you... See the...

Are new to the S language and the Spotfire S+ | Getting Started
GUI, and you want an introduction to importing | Guide
data, producing simple graphs, applying statistical

models, and viewing data in Microsoft Excel®.

Are a new Spotfire S+ user and need how to use | User’s Guide
Spotfire S+, primarily through the GUL

Are familiar with the S language and Spotfire S+, | Spotfire S+ Workbench
and you want to use the Spotfire S+ plug-in, or | User’s Guide
customization, of the Eclipse Integrated
Development Environment (IDE).

Have used the S language and Spotfire S+, and | Programmer’s Guide
you want to know how to write, debug, and
program functions from the Commands window.

Are familiar with the S language and Spotfire S+, | Application
and you want to extend its functionality in your | Developer’s Guide
own application or within Spotfire S+.

TIBCO Spotfire S+ Books

Spotfire S+ documentation. (Continued)

Information you need if you...

See the...

Are familiar with the S language and Spotfire S+,
and you are looking for information about creating
or editing graphics, either from a Commands
window or the Windows GUI, or using Spotfire
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+,
and you want to use the Big Data library to import
and manipulate very large data sets.

Big Data
User’s Guide

Want to download or create Spotfire S+ packages
for submission to the Comprehensive S-PLUS
Archive Network (CSAN) site, and need to know
the steps.

Guide to Packages

Are looking for categorized information about
individual Spotfire S+ functions.

Function Guide

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 1 includes
information on specifying models in Spotfire S+,
on probability, on estimation and inference, on
regression and smoothing, and on analysis of
variance.

Guide to Statistics,
Vol. 7

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 2 includes
information on multivariate techniques, time series
analysis, survival analysis, resampling techniques,
and mathematical computing in Spotfire S+.

Guide to Statistics,
Vol. 2

vi

CONTENTS

Chapter 1 The Spotfire S+ Language

Introduction to Spotfire S+

Syntax of Spotfire S+ Expressions

Data Classes

The Spotfire S+ Programming Environment

Graphics Paradigms

Chapter 2 Data Management

Introduction

Frames, Names and Values
Databases in Spotfire S+
Matching Names and Values

Commitment of Assignments

Chapter 3 Computing on the Language

Introduction

Symbolic Computations

Making Labels From Your Expressions
Creating File Names and Object Names
Building Expressions and Function Calls

Argument Matching and Recovering Actual
Arguments

11
14
17

21
22
23
30
39
40

43
44
46
48
51
52

61

vii

Contents

Chapter 4 Data Objects 63
Introduction 64
Vectors 66
Structures 71
Lists 77
Factors and Ordered Factors 80

Chapter 5 Time Series and Signal Basics 87
Introduction 88
Creating Time Series and Signals 89
Subsetting and Basic Manipulation of Series 94
Interpolation and Alignment of Series 96
Merging Series 98
Aggregating and Coarsening Series 100
Plotting Time Series 102
Plotting Signals 113

Chapter 6 Dates, Times, Time Intervals, and

Sequences 117
Introduction 118
Times and Dates in Spotfire S+ 119
Time Intervals in Spotfire S+ 133
Time Sequences in Spotfire S+ 141
Numeric Sequences in Spotfire S+ 144
Representing Events in Spotfire S+ 146

Chapter 7 Data Frames 149
Introduction 150
The Benefits of Data Frames 151

Creating Data Frames 152

viii

Combining Data Frames

Applying Functions to Subsets of a Data Frame
Adding New Classes of Variables to Data Frames

Data Frame Attributes

Chapter 8 Writing Functions in Spotfire S+
Introduction
The Structure of Functions
Operating on Subsets of Data
Organizing Computations
Specifying Argument Lists
Error Handling
Input and Output
Wrap-Up Actions
Writing Special Functions

References

Chapter 9 Importing and Exporting

Supported File Types for Importing and Exporting

Importing Data

Using Direct Database Drivers
Exporting Data

Exporting Graphs

Creating HTML Output

Chapter 10 Using Direct Database Drivers

Overview

Spotfire S+ Commands for Importing and Exporting

Dialogs for Importing and Exporting
Install and Configure Database Clients (UNIX)

Contents

158
165
171
174

177
179
181
200
213
227
233
236
265
269
276

277
278
283
302
323
327
334

337
338
339
342
352

ix

Contents

Install and ConfigurE Database Clients (Windows)

Chapter 11 Debugging Your Functions
Introduction
Basic Spotfire S+ Debugging
Interactive Debugging
Other Debugging Tools

Chapter 12 Object-Oriented Programming in
Spotfire S+

Introduction

Fundamentals of Object-Oriented Programming
Defining New Classes in Spotfire S+

Editing Methods

Group Methods

Extraction and Replacement Methods

Chapter 13 Programming the User Interface
Using Spotfire S+

The GUI Toolkit

General Object Manipulation
Information On Classes
Information on Properties

Object Dialogs

Selections

Options

Graphics Functions

Utilities

Summary of GUI Toolkit Functions

353

361
362
363
368
387

393
394
396
400
406
407
414

417
419
422
434
437
440
445
448
449
452
453

Contents

Chapter 14 Using Less Time and Memory 455
Introduction 456
Time and Memory 457
Writing Good Code 465
Improving Speed 474

Chapter 15 Simulations in Spotfire S+ 477
Introduction 478
Working with Many Data Sets 479
Working with Many Iterations 480
Monitoring Progress 485
Example: A Simple Bootstrap Function 487
Summary of Programming Tips 489

Chapter 16 Evaluation of Expressions 491
Introduction 492
Spotfire S+ Syntax and Grammar 493

Chapter 17 The Validation Suite 505
Introduction 506
Outline of the Validation Routines 507
Running the Tests 511
Creating Your Own Tests 514

Index 517

xi

Contents

Xii

THE SPOTFIRE S+

LANGUAGE

Introduction to Spotfire S+
Interpreted vs. Compiled Languages
Object-Oriented Programming
Versions of the S Language
Programming Tools in Spotfire S+

Syntax of Spotfire S+ Expressions
Names and Assignment
Subscripting

Data Classes

The Spotfire S+ Programming Environment
Editing Objects
Functions and Scripts
Transferring Data Objects

Graphics Paradigms
Editable Graphics
Traditional Graphics
Traditional Trellis Graphics
(Windows) Converting Non-editable Graphics to
Editable Graphics
When to Use Each Graphics System

O oo Gk W wihd

-y
[y

[
Guobs e

Pk ek d ek
NN NN

—
o oo

Chapter 1 The Spotfire S+ Language

INTRODUCTION TO SPOTFIRE S+

Spotfire S+ is a language specially created for exploratory data
analysis and statistics. You can use Spotfire S+ productively and
effectively without even writing a one-line program in the Spotfire S+
language. However, most users begin programming in Spotfire S+
almost subconsciously—defining functions to streamline repetitive
computations, avoid typing mistakes in multi-line expressions, or
simply to keep a record of a sequence of commands for future use.
The next step is usually incorporating flow-of-control features to reduce
repetition in these simple functions. From there it is a relatively short
step to the creation of entirely new modules of Spotfire S+ functions,
perhaps building on the object-oriented features that allow you to
define new classes of objects and methods to handle them properly.

In this book, we concentrate on describing how to use the language.

As with any good book on programming, the goal of this book is to
help you quickly produce useful Spotfire S+ functions, and then step
back and delve more deeply into the internals of the Spotfire S+
language. Along the way, we will continually touch on those aspects
of Spotfire S+ programming that are either particularly effective (such
as vectorized arithmetic) or particularly troubling (memory use, for
loops).

This chapter aims to familiarize you with the language, starting with a
comparison of interpreted and compiled languages. We then briefly
describe object-oriented programming as it relates to Spotfire S+,
although a full discussion is deferred until Chapter 12, Object-
Oriented Programming in Spotfire S+. We then describe the basic
syntax and data types in Spotfire S+. Programming in Spotfire S+
does not require, but greatly benefits from, programming tools such
as text editors and source control. We touch on these tools briefly in
the section The Spotfire S+ Programming Environment (page 14).
Finally, we introduce the various graphics paradigms, and discuss
when each should be used.

Introduction to Spotfire S+

Interpreted vs. Like Java, Spotfire S+ is an interpreted language, in which individual

Compiled
Languages

Object-
Oriented
Programming

language expressions are read and then immediately executed. The
Spotfire S+ interpreter, which carries out the actions specified by the
Spotfire S+ expressions, is always interposed between your Spotfire
S+ functions and the machine on which those functions are running.

C and Fortran, by contrast, are compiled languages, in which complete
programs in the language are translated by a compiler into the
appropriate machine language. Once a program is compiled, it runs
independently of the compiler. Interpreted programs, however, are
useless without their associated interpreter. Thus, anyone who wants
to use your Spotfire S+ programs needs to have a compatible version
of Spotfire S+.

The great advantage of interpreted languages is that they allow
incremental development. You can write a function, run it, write another
function, run that, then write a third function that calls the previous
two. Incremental development is part of what makes Spotfire S+ an
excellent prototyping tool. You can create an empty shell of a function,
add features as desired, and relatively quickly create a working
version of virtually any application. You can then evaluate your
prototype to see if portions of the application might be more
efficiently coded in C or Fortran, and if so, easily incorporate that
compiled code into your finished Spotfire S+ application.

The disadvantage of interpreted languages is the overhead of the
interpreter. Compiled code runs faster and requires less memory than
interpreted code, in part because the compiler can look at the entire
program and optimize the machine code to perform the required
steps in the most efficient manner. Because there is no need for an
interpreter, more computer resources can be devoted to the compiled

program.

Traditional computer programming, as the very name implies, deals
with programs, which are sequences of instructions that tell the
computer what to do. In the sense that a computer language is a
language, programs (in Spotfire S+, functions) are verbs.

Object-oriented programming, by contrast, deals largely with nouns,
namely, the data objects that traditional programs manipulate. In
object-oriented programming, you start thinking about a type of
object and try to imagine all the actions you might want to perform

Chapter 1 The Spotfire S+ Language

Versions of the
S Language

on objects of that type. You then define the actions specifically for that
type of object. Typically, the first such action is to create instances of
the type.

Suppose, for example, that you start thinking about some graphical
objects, more specifically, circles on the computer screen. You want to
be able to create circles, but you also want to be able to draw them,
redraw them, move them, and so on.

Using the object-oriented approach to programming, you would
define a class of objects called circle, then define a function for
generating circles. (Such functions are called generator functions.) What
about drawing, redrawing, and moving? All of these are actions that
may be performed on a wide variety of objects, but may well need to
be implemented differently for each. An object-oriented approach,
therefore, defines the actions generically, with generic functions called
draw, redraw, move, and so on.

The actual implementation of the action for a specific class is called a
method. For example, for our class circle we might define class-
specific methods for the functions draw, redraw, and move. Spotfire S+
includes a mechanism for determining whether a function is generic,
and if so, determining the class of its arguments and calling the
appropriate method, so that, for example, if draw is generic and orb is
an object of class circle, the call draw(orb) would automatically call
the draw method for class circle, and draw orb.

We will take up object-oriented programming in detail in Chapter 12,
Object-Oriented Programming in Spotfire S+.

There are currently two distinct versions of the S language in
common use: the S Version 3 language that underlies Spotfire S+

2000 for Windows™ (and all earlier versions of Spotfire S+ for

Windows, as well as UNIX” versions of Spotfire S+ from 3.0 to 3.4)
and the S Version 4 language that underlies Spotfire S+ 5.0 and later
on UNIX and Spotfire S+ 6 for Windows and later.

The S Version 3 language (referred to in this document as SV3)
introduced the modeling language that is the foundation for most
Spotfire S+ statistical and analytic functionality. It had a simple
object-oriented structure with a dispatch mechanism built on naming
conventions. It did not apply any class structure to existing Spotfire
S+ objects such as vectors and matrices.

Programming
Tools in
Spotfire S+

Introduction to Spotfire S+

The S Version 4 language (referred to in this document as SV4)
introduced a strongly-typed object-oriented structure similar to that in
C++; in SV4, all objects are assigned classes, the dispatch mechanism
for methods is much more sophisticated, and there are far stricter
controls over inheritance. In particular, multiple inheritance is no
longer supported. If you are new to Spotfire S+, you will be using
SV4 from the start and you will find the instructions in this manual
accurate. If you have been working with Spotfire S+ a while, you may
find that certain S expressions you may have used in the past yield
different answers under SV4. We have tried to cover most of the
serious differences in output between SV3 and SV4 in the appendix
on migrating your code to the SV4 version of Spotfire S+ (6.0 and
higher) in the User’s Guide.

In the Microsoft Windows" GUI, there are two main tools for
developing Spotfire S+ programs: the Commands window and
Script windows. The Commands window will be familiar to all users
of Spotfire S+ prior to version 4. Only one Commands window can
be open, and the easiest way to do this is simply click on its Standard
toolbar button.

>
x|

Figure 1.1: The Commands window button, found on the Standard toolbar.

The > prompt in the Commands window indicates Spotfire S+ is
ready for your input. You can now type expressions for Spotfire S+ to
interpret. Throughout this book, we show typed commands preceded
by the Spotfire S+ prompt, as in the following example, because this
representation matches what you see in the Commands window:

> plot(corn.rain)

If you type in examples from the text, or cut and paste examples from
the on-line manuals, be sure to omit the prompt character. To exit the
Commands window, simply use the close window tool on the top
right of the window. The command

> qQ)
will close down Spotfire S+ altogether.

Chapter 1 The Spotfire S+ Language

The fix function is available from the Commands window to let you
edit a function within a text editor.

In the Microsoft Windows GUI Script windows, on the other hand,
do not execute each statement as it is typed in, nor is there a prompt
character. They are for developing longer Spotfire S+ programs, and
for building programs from a variety of sources, such as the History
log.

For your first sessions programming in Spotfire S+, we recommend
you use the Commands window.

Syntax of Spotfire S+ Expressions

SYNTAX OF SPOTFIRE S+ EXPRESSIONS

You interact with Spotfire S+ by typing expressions, which the Spotfire
S+ interpreter evaluates and executes. Spotfire S+ recognizes a wide
variety of expressions, but in interactive use the most common are
names, which return the current definition of the named data object,
and function calls, which carry out a specified computation. Typing the
name of a built-in Spotfire S+ function, for example, shows the
current definition of the function:

> sqrt
function(x)
.Cal1("S_c_use_method", "sqrt")

A name is any combination of letters, numerals, and periods (.) that
does not begin with a numeral.

Note

This definition applies to synéactic names, that is, names recognized by the Spotfire S+
interpreter as names. Spotfire S+ provides a mechanism by which virtually any character string,
including non-syntactic names, can be supplied as the name of the data object. This mechanism
is described in Chapter 2, Data Management.

Spotfire S+ is case sensitive, so that x and X are different names. A
function call is usually typed as a function name followed by an
argument list (which may be empty) enclosed in parentheses:

> plot(corn.rain)
> mean(corn.rain)
[1] 10.78421

All Spotfire S+ expressions return a value, which may be NULL.
Normally, this return value is automatically printed. Some functions,

however, such as graphsheet (in Microsoft Windows®) or motif (in
UNIX), plot, and q are called primarily for their side effects, such as
starting or closing a graphics device, plotting points, or ending a
Spotfire S+ session. Such functions frequently have the automatic
printing of their values suppressed.

Chapter 1 The Spotfire S+ Language

Names and
Assignment

If you type an incomplete expression (for example, by omitting the
closing parenthesis in a function call), Spotfire S+ provides a
continuation prompt (+, by default) to indicate that more input is
required to complete the expression.

Infix operators are functions with two arguments that have the special
calling syntax arg/ op arg2. For example, consider the familiar
mathematical operators:

> 2+ 7

[11 9

> 12.4 / 3
[1] 4.133333

One of the most frequently used infix operators is the assignment
operator <- (and its equivalents, the equal sign, =, and the
underscore, _) used to associate names and values. For example, the
expression

> aba <- 7

associates the value 7 with the name aba. The value of an assignment
expression is the assigned value, that is, the value on the right side of
the assignment arrow. Assignment suppresses automatic printing, but
you can use the print function to force Spotfire S+ to print the
expression’s value as follows:

> print(aba <- 7)
[11 7
If we now type the name aba, we see the stored value:
> aba
(117

The value on the right of the assignment arrow can be any Spotfire
S+ expression; the left side can be any syntactic name or character

string. There are a few reserved names, such as if and f unction.!
Assignments typed at the Spotfire S+ prompt are permanent; objects
created in this way endure from session to session, until removed.

1. The complete list is as follows: if, is, else, for,while, repeat,
next, break, in, function, return, TRUE, T, FALSE, F, NULL, NA,
Inf, NaN.

Subscripting

Syntax of Spotfire S+ Expressions

Assignments within functions, however, are local to the function; they
endure only as long as the call to the function in which they occur.
For a complete discussion of assignment, see Chapter 2, Data
Management.

Object names must begin with a letter or period, and may include any
combination of upper and lower case letters, numbers and periods
("."). For example, mydata, my.data and my.data.l are all legal
names. Note the use of the period to enhance readability. With
Spotfire S+ 5.x and later, another naming convention arose, where
words previously separated by periods were simply concatenated,
with the second and subsequent words having initial caps, as in the
following: exportData, getCurrDirectory, findClassObjects.

Another common operator is the subscript operator [, used to extract
subsets of a Spotfire S+ data object. The syntax for subscripting is

object [subscript |

Here object can be any Spotfire S+ object and subscript typically takes
one of the following forms:

* DPositive integers corresponding to the position in the data
object of the desired subset. For example, the Tetters data set
consists of the 26 lowercase letters. We can pick the third
letter using a positive integer subscript as follows:

> letters[3]
[1] "c

* Negative integers corresponding to the position in the data
object of points to be excluded:

> Tetters[-3]
[1] llall llbll "d" "e" Ul_‘:vl "g" llhll ll.ill IIJ'II llkll "'l" "m" "n"
[14] "O" llpll llqll llrll "S" lltll llull llvll "W" "X" "y" "Z"

* Logical values; true values correspond to the points in the
desired subset, false values correspond to excluded points:

Chapter 1 The Spotfire S+ Language

10

> 1 <-1:26
> i
(1] 1.2 3 4 5 6 7 8 910 11 12 13 14 15 16 17
[18] 18 19 20 21 22 23 24 25 26
> i <13
(1] TTTTTTTTTTTTFFFFFFFFFFFFFTF
> letters[i < 13]
[1] ™a™ "b"™ "c™" "d" "e" "f" "g" "h"™ "i" "j" "k"™ "1"

Subscripting is extremely important in making efficient use of Spotfire
S+ because it emphasizes treating data objects as whole entities,
rather than as collections of individual observations. This point of
view is central to Spotfire S+ utility as a data analysis computing
environment. For a full discussion of subscripting, see the Operating
on Subsets of Data on page 200.

Data Classes

DATA CLASSES

Everything in Spotfire S+ is an object. All objects have a class. A
Spotfire S+ expression (itself an object) is interpreted by the Spotfire
S+ evaluator and returns a value, another object that can be assigned
a name. An object’s class determines the representation of the object,
that is, what types of information can be found within the object, and
where that information can be found. Most information about an
object is contained within specialized structures called slozs.

The simplest data objects are one-dimensional arrays called vectors,
consisting of any number of elements corresponding to individual data
points. The simplest elements are literal expressions that, either singly
or matched like-with-like, produce the following classes:

* logical: The values T (or TRUE) and F (or FALSE).
* integer: Integer values such as 3 or -4.

* numeric: Floating-point real numbers (double-precision by
default). Numerical values can be written as whole numbers
(for example, 3., -4.), decimal fractions (4.52, -6.003), or in
scientific notation (6.02e23, 8e-47).

* complex: Complex numbers of the form a + bi, where a and
b are integers or numeric (for example, 3 + 1.231).

* character: character strings enclosed by matching double
quotes (") or apostrophes (’), for example, "Alabama",
*idea’.

These simple element classes are listed in order from least
informative (1ogical) to most informative (character); this order is
important when considering data objects formed by combining
elements from different classes.

The number of elements in a data object determines the object’s
length. A vector of length 1 can be created simply by typing a literal
and pressing ENTER:

> 7.4

[1] 7.4

> "hello"
[1I] "hello"

11

Chapter 1 The Spotfire S+ Language

12

To combine multiple elements into a vector, use the ¢ function:

> ¢(T,F,T)
[1ITTFT
> ¢(8.3, 9.2, 11)
[1] 8.3 9.2 11.0

If you try to combine elements of different classes into a single vector,

Spotfire S+ coerces all the elements to the most informative classlz

> ¢c(T, 8.3, 5)

[1] 1.0 8.3 5.0

> c(8.3, 9 + 61)

[1] 8.3+0i 9.0+6i

> c(T, 8.3, "hello™)

[1] "TRUE™ "8.3" "hello"

You can obtain the class and length of any data object using the class
and Tength functions, respectively:

> class(c(T, 8.3, 5.0))

[1] "numeric"

> length(c(T, 8.3, "hello"))
[1] 3

The most generally useful of the recursive data types is the 1ist
function, which can be used to combine arbitrary collections of
Spotfire S+ data objects into a single object. For example, suppose
you have a vector x of character data, a matrix y of logical data, and a
time series z as shown below:

> x <- ¢("Tom"™, "Dick", "Harry")
>y <- matrix(c(T, F, T, F), ncol=2)
>z <- ts(sin(1:36), start=1989)

You can combine these into a single Spotfire S+ data object (of class
"1ist") using the 1ist function:

1. This statement about coercion applies strictly only to the five simple
classes described on page 11. These simple classes correspond
roughly to what S version 3 and earlier referred to as modes.
(Although objects of class "integer" have mode "numeric".) The
concept of modes persists in S version 4, but it has been almost
entirely superseded by the new class mechanism.

Data Classes

> mylist <- list(x=x, y=y, z=2z)
> mylist

$x:

[1] "Tom™ "Dick™ "Harry"

$y:

[,11 [.2]
1,1 T T
2,] F F

$z:

1989: 0.841470985 0.909297427 0.141120008 -0.756802495
1993: -0.958924275 -0.279415498 0.656986599 0.989358247
1997: 0.412118485 -0.544021111 -0.999990207 -0.536572918
2001: 0.420167037 0.990607356 0.650287840 -0.287903317
2005: -0.961397492 -0.750987247 0.149877210 0.912945251
2009: 0.836655639 -0.008851309 -0.846220404 -0.905578362
2013: -0.132351750 0.762558450 0.956375928 0.270905788
2017: -0.663633884 -0.988031624 -0.404037645 0.551426681

2021: 0.999911860 0.529082686 -0.428182669 -0.991778853

The 1ist class is an extremely powerful tool in Spotfire S+, and we
shall use it extensively throughout this book.

13

Chapter 1 The Spotfire S+ Language

THE SPOTFIRE S+ PROGRAMMING ENVIRONMENT

Editing Objects

Functions and
Scripts

14

Spotfire S+ wuses tools available in the Microsoft Windows®
environment. Some of these tools are built into Spotfire S+ as
functions—for example, the edit function (Windows) and vi function

(UNIX®), which allows you to edit with the Windows Notepad in
Windows and vi editor in UNIX, respectively. Windows software,
including spreadsheets such as Microsoft Excel and word processors
such as Microsoft Word, can be called from Spotfire S+ using the dos
and system functions. UNIX system functions, such as 1s and awk,
can be called via the unix function.

In this section, we give a brief introduction to the most common tools
for writing, editing, and testing your Spotfire S+ functions, as well as
tools for transferring data objects between computers with differing
architectures.

You can edit Spotfire S+ data by using the fix function.

> fix(x)

The fix function uses an editor you specify with the Spotfire S+
editor option. At the Spotfire S+ prompt, type the following:

> options(editor="editor ")

where editor is the binary executable (.exe in Windows) or command
that runs your favorite text editor. To set this option for each Spotfire
S+ session, add the expression to your .First function. In Spotfire
S+, this option defaults to Windows Notepad or, in UNIX,
options()$editor.

Once you’ve set up Spotfire S+ to work with your favorite editor,
writing and testing new functions requires following the simple
sequence of writing the function, running the function, editing the
function, and so on.

Writing functions is the preferred way to incorporate new
functionality into Spotfire S+. Functions allow you to combine a
series of Spotfire S+ expressions into a single executable call. Every
function returns a single value, which for functions built from multiple

Transferring
Data Objects

The Spotfire S+ Programming Environment

expressions is the value of the last expression in the function’s body.
Sometimes, however, you may be interested in some or all of the
intermediate results of the combined expressions. You can (as we
shall see in the Data Output on page 236) pull the intermediate results
together into a return list. Sometimes, however, you may want those
intermediate results to be stored as individual data objects. In such
cases, it makes sense to program your task as a Spotfire S+ script,
which is just a text file containing valid Spotfire S+ expressions.

You can run Spotfire S+ scripts in any of the following ways:
1. The source function in the Commands window.

2. On Windows, loading it into a Script window, highlighting
the required code and clicking the Run button on the Script
toolbar. See Chapter 9, Using the Script and Report
Windows, in the User’s Guide.

3. The Spotfire S+ BATCH utility.

The methods differ primarily in that Spotfire S+ BATCH runs as a
background task and produces a file containing both the input and
the output of the job (you can suppress the input). This is frequently
useful if you have a complicated debugging task and need to recreate
the output of a number of expressions.

Spotfire S+ runs on a variety of hardware platforms with a variety of
architectures. The binary representation of Spotfire S+ objects varies
from platform to platform, so if you want to share your functions or
data sets with users on other platforms, you need to first dump them
to a portable ASCII format with one of several Spotfire S+ functions,
transfer the ASCII file, then restore them using one of several
Spotfire S+ functions.

The functions for dumping and restoring are roughly paired: dump,
source, data.dump and data.restore. Objects dumped with dump
must be restored with source—the ASCII form produced by dump is
just a Spotfire S+ script, which you can read or edit just like any text
file. Objects dumped by data.dump result in files that are not Spotfire
S+ scripts; in fact, these files are in a special format that was not
intended to be read by humans. Such objects can be restored only by
using the data.restore function. The data.dump and data.restore
functions are much faster than the dump and source functions, and
should always be used when transferring large data sets, such as

15

Chapter 1 The Spotfire S+ Language

16

image data. The dump function should be used when you want to
transfer an object, such as a function definition, that may need editing
before being restored.

The functions data.dump and data.restore are used for importing
and exporting files with the Spotfire S+ transport file format (see
Chapter 9, Importing and Exporting, for more details).

Graphics Paradigms

GRAPHICS PARADIGMS

Editable
Graphics

Traditional
Graphics

Traditional
Trellis Graphics

In Spotfire S+, there are three basic graphics paradigms for Windows
which we refer to as Editable Graphics, Traditional Graphics, and
Traditional Trellis Graphics. UNIX only has two and does not include
the capability cited below in the section (Windows) Converting Non-
editable Graphics to Editable Graphics on page 18),

Editable object-oriented graphics objects represent complete plots, or
elements added to plots such as lines, comments, and legends. The
plots generated from the plot palettes are each a single graph type
with sub-objects representing points, lines, axes, and more.

While most users will generate these graphs through menus and
toolbars, commands are also available to generate the plots
programmatically.

Chapter 4, Editable Graphics Commands, in the Guide to Graphics,
describes these graphics.

Traditional Spotfire S+ language functions are available to create
plots identical to those in previous versions of Spotfire S+.

Chapter 2, Traditional Graphics in the Guide to Graphics , describes
these graphics.

The Trellis graphics paradigm provides multipanel conditioning to
effectively discover relationships present in data. These graphics were
implemented using calls to the traditional graphics language
functions.

Chapter 3, Traditional Trellis Graphics in the Guide to Graphics,
describes using conditioning with the object-oriented plots.

17

Chapter 1 The Spotfire S+ Language

(Windows)
Converting
Non-editable
Graphics to
Editable
Graphics

When to Use
Each Graphics
System

Traditional
Graphics

18

By default, traditional graphics commands produce a single
composite graphics object which renders quickly. This object may be
annotated but its individual components are not available for editing.
To edit individual components -- such as points and lines in the graph
— first convert the graph to individual graphics objects by right-
clicking on the graph and selecting Convert to Objects from the
context menu.

The conversion step may be avoided by creating editable graphics
objects directly. To turn on this editable graphics mode, press the
Editable Graphs button on the Commands window toolbar.
Alternately, you may open a Graph sheet device in editable graphics
mode using

> graphsheet(object.mode="object-oriented").

However, as editable graphics are slower to render than non-editable
graphics we strongly recommend creating non-editable graphics and
converting them to editable graphics, when needed, rather than using
object-oriented mode.

Traditional Trellis graphs are created by changing the axis system for
each panel, strip, and plot. This corresponds to a large number of plot
and graph objects in the editable graphics system. Due to the
complexity of the plots produced by traditional Trellis we strongly
recommend that non-editable graphics mode be used when
producing traditional Trellis plots.

The existence of multiple interconnected graphics systems is largely
due to the evolution of Spotfire S+ as graphics methodology and
technology has evolved. Here we describe the genesis of each system
and the resulting benefits which derive therefrom.

The traditional graphics system is based on the pioneering work by
researchers at AT&T Bell Labs in graphical layout and perception. It
is optimized to provide smart default formatting and layout, while
providing programmatic specification of plot characteristics at a fine
level of control. These graphics have become the standard in
statistical publication-quality graphics due to their refined look and
ease of use.

Traditional Trellis
Graphics

Editable Graphics

Graphics Paradigms

As they pre-date modern object-oriented programming, they are
based on the rendering of low level graphics components such as
points and lines rather than on higher-level graphics objects. This
provides quicker rendering than editable graphics but does not yield
a high-level graphics object which may be accessed for editing. To
change a traditional graph the model is to regenerate the graph with
new specifications rather than to modify a graph object, although the
ability to convert to editable graphics does introduce the capability of
editing low level graph components.

Traditional graphics are produced by the techniques in the statistics
dialogs for speed of rendering and consistency with previous versions
of Spotfire S+. It is likely that users will want to use traditional
graphics for similar reasons. Routines which use these graphics are
widespread, and their usage is well documented in both these
manuals and third party texts. Also, additional graphics methods are
available through traditional graphics which have not been
implemented as editable graphics.

Trellis graphics is a powerful technique for exploring multivariate
structure in data. They were implemented in traditional graphics for
convenience and to make them available to all Spotfire S+ users. This
implementation is described in Chapter 3, Traditional Trellis graphics
in the Guide to Graphics.

Trellis conditioning has been incorporated directly into the editable
graphics system graphics menu, making the power of multipanel
conditioning available in all editable GUI-created graphs. Due to the
complexity of Trellis plots, the point-and-click graph property
specification is a much more convenient way to develop a Trellis
graph.

Traditional Trellis graphics will be of interest to users wanting more
control over the contents of each panel than is available in the
editable graphics. Also, additional graphics methods are available
through traditional Trellis graphics which have not been implemented
as editable graphics.

Editable graphics are new to Spotfire S+ version 4. They have been
developed based on modern C++ object-oriented programming
structures. As such they are based on a model of creating an object of
a particular class with properties containing a description of the

19

Chapter 1 The Spotfire S+ Language

20

object. The user edits the object by modifying its properties. Multiple
graphics objects form an object hierarchy of plots within graphs
within Graph sheets which together represent a graphic.

Programmers used to using this type of object-oriented programming
will prefer to program by creating and modifying editable graphics
objects. Users of previous versions of Spotfire S+ may want to
transition towards using editable graphics when doing so provides
benefits not available with the traditional graphics, and continue to
use traditional graphics when they can leverage their existing
experience to get superior results.

These graphics, introduced in Spotfire S+ 4 for Windows, are not
available to users running Spotfire S+ for UNIX. If you intend to
make your functions available to users on both Windows and UNIX
platforms, you need to use traditional graphics and traditional Trellis
graphics rather than editable graphics.

DATA MANAGEMENT

Introduction

Frames, Names and Values
Frames and Argument Evaluation
Creating and Moving Frames

Databases in Spotfire S+
Meta Databases
Database Dictionaries
Directory Databases and Object Storage
Recursive Objects as Databases

Matching Names and Values

Commitment of Assignments

22

23
28
28

30
34
35
36
37
39

40

21

Chapter 2 Data Management

INTRODUCTION

22

What happens when you associate a Spotfire S+ object with a name?
How does Spotfire S+ find the object again once assigned? For the
most part, when you are using Spotfire S+, the answers to such
questions are unimportant. However, when writing functions, you
may be surprised by an apparently correct function returning with an
error saying,

Object "a" not found

In such cases, some knowledge of how Spotfire S+ maintains data
objects can be helpful in debugging. Knowledge of Spotfire S+ data
management can also help you write more efficient functions, a topic
we will turn to in Chapter 14, Using Less Time and Memory.

This chapter discusses the main features of Spotfire S+ data
management.

Frames, Names and Values

FRAMES, NAMES AND VALUES

A frame is essentially a list associating names with values. Within a
single frame, each name can have at most one value. When we say an
expression is evaluated in a certain frame, we are saying that the
evaluation uses that frame’s associated names and values.

Frames are important in Spotfire S+ because they serve to limit the
scope of assignments.

Note

S Programming (Venables & Ripley, 2000) defines S scoping rules for resolving S expressions as
follows:

* Objects not found in the current (local) frame are next referred to the frame of the top-
level expression, then the frame of the session, and then on the search path. Note that
objects created in the parent functions are not found in the search.

Assignments associate names with values, and the Spotfire S+
evaluator uses this association to determine the values associated with
each name during the evaluation of a function. New frames are
created by Spotfire S+ functions when they are called; each function
call uses its own frame to determine the values associated with each
name during the evaluation of the function.

Note

Scoping rules vary between the R and S languages. For more information about differences
between R and S, see the Guide to Spotfire S+ Packages, or see the discussion on the Web site
http://spotfire.tibco.com/csan.

Every time you type an expression on the Spotfire S+ command line,
Spotfire S+ creates a frame called the task frame, expression frame, top-
level frame, or simply frame 1. The task frame initially contains the
unevaluated expression and a flag specifying whether automatic print
is enabled or disabled. If the expression is a function call, Spotfire S+
creates a new frame, frame 2, for the called function, containing the

23

Chapter 2 Data Management

24

arguments to the function, (unevaluated until needed), plus any
names assigned values in the body of the function. For example,
suppose we have the following function definition:

fcn.B <-
function(x, y)
{
a <- sqrt(x)
print(a)
b <- Tog(y)
C<-a+hb
sin(C)
}

Now, suppose we have the following vectors A and B:

> A
(r] 1.2 3 4 5 6 7 8 910
> B
[1] 10 12 14 16 18 20 22 24 26 28

If we call fcn.B with the expression fcn.B(A,B), then just before
fcn.B completes, its frame looks like the following when we use
sys.frame to display the frame:

$a:
[1] 1.000000 1.414214 1.732051 2.000000 2.236068
[6] 2.449490 2.645751 2.828427 3.000000 3.162278

$b:
[1] 2.302585 2.484907 2.639057 2.772589 2.890372
[6] 2.995732 3.091042 3.178054 3.258097 3.332205

$x:
[1] 1.2 3 4 5 6 7 8 910

$y:
[1] 10 12 14 16 18 20 22 24 26 28

$C:
[1] 3.302585 3.899120 4.371108 4.772589 5.126440
[6] 5.445222 5.736794 6.006481 6.258097 6.494482

Frames, Names and Values

$.Auto.print:
[1] F

Expressions that do not involve assignment (such as sin(C) in our
example) are not reflected in the frame list; this is only natural, since
the list is just an association of names and values. If there is no
assignment, a value has no name associated with it. Frames are
organized hierarchically, with the task frame at the top, and
subsequent function evaluation frames below. A frame is said to be
the parent of the frame immediately below it in the hierarchy. For
example, Figure 2.1 shows a hierarchy of three frames, generated by a
call to my.nest, which is defined as follows:

my.nest <-
function(x)
{

my.sqrt(x)
}

Frame |

\ Frame 2
my.sqrt

\ Frame 3
xM0.5

my.nest

Figure 2.1: The frame hierarchy.
The function my . sqrt, in turn, is defined as follows:

my.sqrt <-
function(x) { x*0.5 }

25

Chapter 2 Data Management

26

The expression frame is the parent of the function frame of my.nest.
The function frame of my.nest, in turn, is the parent of the function
frame of my.sqrt. Each frame has a number associated with it.
Frames can be referred to by number—as we have already mentioned,
the expression frame is frame 1 and the frame of the top-level
function call is frame 2.

The complete frame hierarchy is maintained in a list called the list of
frames. Each frame corresponds to a component of the list of frames.
You can view the list of frames with the sys.frames function, which is
most informative when called from within a nested function call. For
example, suppose we redefine my.sqrt as follows:

my.sqrt <-
function(x)
{
x*0.5
sys.frames()

}
A call to my.nest now yields the following:

> my.nest(4)
[[11]:
[[1]1]%$.Auto.print:
(117

[[2]1]:
[[2]]$expression:
expression(my.nest(4))

[[2]]%$Tocal:
(117

[[2]]$parent:
NULL

[[3]]:
[[3]1]1$x:
[1] 4

Frames, Names and Values

[[4]1]:
[[4]]1$x:
[1] 4

Here we see the expression frame in component [[2]]: it contains the
auto-print flag and the current expression. The evaluation frame for
my.nest consists of just the single argument 4, which needs no
evaluation. Finally, the evaluation frame for my.sqrt, shown as
component [[3]], contains the evaluated argument 4. Spotfire S+
includes several functions for using the data stored in frames. To see
the actual contents of the frames use sys.frame (to view the current
frame), or sys.frames (to view all frames). To obtain the current
frame’s position in the frame hierarchy, use sys.nframe. Use
sys.parent(n), where n is the number of generations to go back to
find the position of a frame’s parent, grandparent, or nth ancestor
frame. In the example above, if we replace sys.frames with
sys.parent in my.sqrt, we get the following result:

> my.nest(4)
[1] 3

indicating that the parent frame of my.sqrt is frame number 2 in the
frame hierarchy. If you know in which frame a particular name-value
pair is located, you can use the frame number, along with the get
function, to retrieve the correct value. For example, consider the
following function definitions:

top.lev.func <-
function(x)
{
a <- sqrt(x)
next.lev.func()

next.lev.func <-
function()
{
get("a", frame = sys.parent()) * 2

27

Chapter 2 Data Management

Frames and
Argument
Evaluation

Creating and
Moving Frames

28

When we call top.Tev.func, we obtain the following result:

> top.lev.func(25)
[1] 10

This is one method for passing assignments within functions to nested
function calls. A more useful method is to pass the assigned names as
arguments. This is discussed more fully in the section Frames and
Argument Evaluation (page 28). Each function is evaluated in its own
frame.

Default values for arguments are evaluated in the function’s frame,
while values for named arguments are evaluated in the parent frame.
When a function is called, arguments are placed, unevaluated, into
the function’s evaluation frame. As soon as the calling function
references the argument, Spotfire S+ evaluates the named argument
in the parent frame of the function’s evaluation frame. This ensures
that constructions such as the following will work:

my.plot <-
function(x, y)
{
a <- sqrt(x)
b <- Tog(y)
plot(a, b)
}

Here the actual arguments to plot are evaluated in my.plot’s
evaluation frame. If argument evaluation took place in the plot’s
evaluation frame, Spotfire S+ would be unable to find the appropriate
values for a and b, which belong to the frame evaluating my.plot.
Because the parent frame continues to exist at least as long as any of
its child frames exist, arguments do not have to be evaluated until
needed. This is the key to Spotfire S+ lazy evaluation, described in
Chapter 8, Writing Functions in Spotfire S+. Default values, however,
are evaluated in plot’s frame.

Most frames in Spotfire S+ are created automatically when the
evaluator encounters a function call. Sometimes, however, it is helpful
to create frames explicitly to exercise more control over the
evaluation. For example, the eval function allows you to evaluate any
Spotfire S+ expression. It takes an optional second argument, local,

Frames, Names and Values

that can be either a number (interpreted as one of the existing frames)
or an explicit list object, with the named elements defining the name-
value pairs. Data frames are lists, so Tocal is often a data frame.
Thus, for example, suppose we have a simple list object myframe:

> myframe <- 1list(a=100, b=30)

In evaluating the following, Spotfire S+ uses myframe as the frame for
evaluation:

> eval(expression(a + b), local=myframe)

This construction lets you share a set of name-value bindings over
many different expressions, without relying on the parent frame to
maintain the list. An important application of this is in conjunction
with the new.frame function, which lets you explicitly create a new
frame. For example, we can use myframe as a frame for a number of
calculations by defining a function as follows:

manycalc <-
function()
{ n <- new.frame(myframe)
a <- eval(expression(max(a, b)), n)
b <- eval(expression(mean(c(a, b))), n)
clear.frame(n)
a - b
}

The output from a call to manycalc is shown below:

> manycalc()
[1] 35

In this example, we take advantage of myframe to reuse the variable
names a and b in manycalc’s evaluation frame. Because the
evaluation of max and mean are performed in myframe, the assignment
to a does not affect the calculation of mean(c(a,b)) at all. The max of
a and b in myframe is 100, and the mean of a and b is 65. Taking the
difference of these two values, in manycalc’s frame, yields the answer,
35. We used the clear.frame function to get rid of frame n when we
were done with it. The frame is cleared automatically at the end of the
function that creates it unless move. frame is called.

29

Chapter 2 Data Management

DATABASES IN SPOTFIRE S+

30

A Spotfire S+ database is simply a collection of named objects. In this
respect it is closely related to a frame. The distinction is primarily one
of duration. Objects stored permanently by name are found in
databases, while objects stored temporarily are found in frames. For
this reason, the session frame, which we met previously as frame 0,
can also be thought of as a database, since it endures for an entire
Spotfire S+ session. Three types of databases are in common use:
ordinary chapters, which are directories that contain databases; meta
directories, which are directories used in Spotfire S+ 5.x and later to
hold Spotfire S+ objects that store class information, generic function
definitions, and method definitions; and recursive (list-like) objects,
particularly data frames. Other database types exist, but these three
types are adequate for most purposes. If an object is referred to in a
Spotfire S+ expression, and its name-value binding is not found in the
current frame, Spotfire S+ searches the expression frame. If the
binding is not found there, Spotfire S+ searches through databases,
starting with database 0 and continuing along a user-specified search
path. When you start Spotfire S+, this path consists of your working
directory and several directories of Spotfire S+ functions and data sets.
You can see the search path at any time using the search function:

> search()
[1]1 "/homes/username/MySwork"
[2] "splus™
[3] "stat"
[4] "data"
[5] "trellis"
[6] "nTme3"
[7]1 "menu"
[8] "sgui"
[9] "winspj"
[10] "main"

Databases can be added to the search list with the attach function:

f#in Windows:
> attach("c:/myfiles/.Data")
> search()
[1] "C:\\DOCUME~I\\MYDOCU~I\\Spotfi~1\\Projectl"

Databases in Spotfire S+

[2] ".Data"
[3] "splus™
[4] "stat"
[5] "data"
[6] "trellis"
[7] "nlme3"
[8] "menu"
[9] "sgui™
[10] "winspj"
[11] "main"

Similarly, databases can be removed from the search list with the
detach function:

in Windows:

> detach("c:/myfiles/.Data")

> search()

[1] "C:\\DOCUME~I\\MYDOCU~1I\\Spotfi~1\\Projectl™

[2] "splus™
[3] "stat"
[4] "data"
[5] "trellis"
[6] "nlme3"
[7]1 "menu"
[8] "sgui"
[9] "winspj"
[10] "main"

Databases are generally referred to either by number (that is, their
position in the search list) or by name (again, the name as returned by
search). A third way is to use an object of class "attached", which are
the objects returned by attach, 1ibrary, and module. You can save
these return objects in your database; they are valid for the full time
the database is attached. If you don’t assign these objects when you
attach the database, they can be recalled later by calling
database.attached with the position or name of the database as its
only argument.

By default, new databases are added in position two of the search list,
immediately after the working data. You can override this positioning
with the pos argument:

in Windows:
> attach("c:/myfiles/.Data", pos=8)

31

Chapter 2 Data Management

32

> search()
[1] "C:\\DOCUME~I\\MYDOCU~I\\Spotfi~1\\Projectl"
[2] "splus™
[3] "stat"
[4] "data"
[5] "trellis"
[6] "nlme3"
[7]1 "menu"
[8] "c:/myfiles/.Data"
[9] "sgui™
[10] "winspj"
[11] "main"

You can also provide an "alias" for a directory with the name
argument:

in Windows:
> attach("c:/myfiles/funcs", pos=2, name="myfuncs")
> search()
[1] "C:\\DOCUME~I\\MYDOCU~1\\Spotfi~1\\Projectl"
[2] "myfuncs"

[3] "splus™
[4] "stat"
[5] "data"
[6] "trellis"
[7] "nTme3"
[8] "menu"
[9] "squi"
[10] "winspj"
[11] "main"

Naming databases in the search list is particularly useful if you are
attaching and manipulating databases within a function, because it
means you don’t have to keep track of the database’s position within
the search list. (As the examples above show, a given directory can
occupy many different places in the list depending on where and
when different databases are attached.) For example, if you have a
function that makes extensive use of a particular group of functions
that are stored together in a directory, you might want to attach the
directory at the beginning of the function, to ensure that the group of
necessary functions is available, then detach it at the end of the
function:

Databases in Spotfire S+

function()
{
attach("\\myfiles\\Tib\\groupfuns.S", pos=2,
name="groupfuns")
on.exit(detach("groupfuns"))

The contents of databases in the search list can be manipulated using
the following generic functions:

Table 2.1: Functions to manipulate the contents of databases.

Function Purpose
exists Tests whether a given object exists in the search path.
get Returns a copy of the object, if it exists. Otherwise, returns an error.
assign Creates a new name-value pair in a specified database.
remove Deletes specified objects, if they exist, from the specified database.
objects Returns a character vector of the names of the objects in the specified
database.

Except for get and exists, these functions operate on the working
directory (or the current frame, if called within a function) unless
another database is specified. The exists and get functions search
the entire search path before returning an answer.

Warning

The assign and remove functions modify the contents of databases. In particular, if you assign a
value to a name that already has a value in the specified database, the old value is lost. For
example,

> get("x",where=2)

[11 "White™ "BTlack™ "Gray"™ "Gray" "White" "White"
> assign("x", 1:10, where=2)

> get("x",where=2)

[111 2345678910

33

Chapter 2 Data Management

These functions are the only way to manipulate Spotfire S+ objects
having names that do not follow Spotfire S+’s syntactic conventions,
that is, functions with names nof made up solely of alphanumeric
characters and periods, not beginning with a number. For example, in
Chapter 8, Writing Functions in Spotfire S+, we mentioned that the
name 2do was nof syntactically correct. However, virtually any quoted
string can be used as an object name, with the limitation that Spotfire
S+ does not automatically recognize such strings as names. Thus, we
can create an object "2do" in the usual way:

> "2do" <- 1:10

However, if we type the object’s name, we do not see the expected
behavior:

> 2do
Problem: Syntax error: illegal name ("do") on input line 1

Because 2do is not a syntactic name, the parser tries to interpret it as
best it can; it reads “2” as a numeric literal, then complains when it is
immediately followed by a name, “do.” To get around this problem,
we can use the database manipulation functions:

> get("2do")
[I11 2345678910

Assignments and quoted strings

If you assign a value to a quoted string that is a syntactically correct name, Spotfire S+ strips the
quotes from the string during the assignment. Thus, the assignments

zoo <- 1:10
"zoo" <- 1:100

result in only one object, zoo, with value the vector of integers from 1 to 100.

Meta
Databases

34

Meta databases store Spotfire S+ objects that describe the classes and
methods available in Spotfire S+. Calls to functions such as setMethod
or setClass perform assignment in these meta databases. Every
Spotfire S+ chapter includes, beneath its .Data directory, a _ Meta
directory. (Notice that the name is prefaced by two underscores.) You
can view the contents of the meta directory by using the objects
function with both the where and meta=1 arguments:

Database
Dictionaries

Databases in Spotfire S+

> objects("splus", meta=1)

[1] ".Generics" "C#DTDRef"
[3] "CfclipboardConnection” "C#fdConnection"
[5] "C#fillText" "Ci#fgroupVec"
[7]1 "C#groupVecVirtual" "C#numericSequence”
[9] "C#parseTest" "C#positions"
[11] "C#positionsCalendar™ "CffpositionsNumeric"
[13] "Cf#regularExpression” "Cfseries”
[15] "CitseriesVirtual" "Cfsgm1”
[17] "C#sgmlEmptyTag" "C#sgmiMap"

The objects with names beginning with C# contain class definition
information. Method definitions are in objects with names beginning
with M.

Meta databases can be explored and manipulated with the standard
database tools (get, exists, etc.), provided the meta=1 argument is
supplied. If you need to modify objects in the __Meta directory, use
functions such as getClass, setClass, getMethod, setMethod, etc.

Most databases are searched by means of dictionaries, which are
simply tables consisting of either the names of the objects in the
database, or the list of name-value pairs. The dictionary is constructed
when the database is attached, and the database manipulation
functions update it as necessary. However, events outside the current
Spotfire S+ session are not reflected in the dictionary. You can look at
the dictionary for any database with the objects function:

> objects("C:\\Documents and Settings\\My
Documents\\Spotfire S+ Projects\\Projectl")

[1] "myframe" "manycalc" "x" "2do"
[5]1 "assn.use" "o "airtemp.jit" "air.jit"
[9] "f" "i11it" "murder" "circle"
> dbobjects(kyphosis)

[11 "Number" "Kyphosis" "Start" "Age"

If dbobjects returns NULL, the database has no associated dictionary.
Databases without dictionaries must be searched using queries to
exists; this procedure is significantly slower than searching using a
dictionary.

35

Chapter 2 Data Management

Directory
Databases and
Object Storage

36

File system directories are used to store Spotfire S+ objects, and they
are thus the most common form of database for general use. Objects
are stored in a special binary format that includes both the object
itself and information about the object’s Spotfire S+ structure.
Because Spotfire S+ object files are neither readable by humans nor
necessarily under their own names, you should manipulate them only
from within Spotfire S+. For example, use the objects function
within Spotfire S+ to view a list of data objects. Similarly, you should
use the Spotfire S+ rm and remove functions. If you want to edit a data
object, use the Spotfire S+ Edit, or possibly fix, commands, rather
than editing the corresponding file outside of Spotfire S+. Most, but
not all, objects are stored as files under their own names. Objects with
names incompatible with the file system’s file naming conventions are
mapped to files with names chosen by Spotfire S+. Spotfire S+
maintains a list of all mapped objects and the file names under which
the objects are stored.

The mapping works as follows: when an object is assigned to a given
name in a given directory, Spotfire S+ checks whether the name can
be accommodated by the file system, and if so, creates a file with that
name. If the file system cannot accommodate the name, Spotfire S+
generates a “true file name” internally that is consistent with the
current file system, creates a file with this name, and maps the
Spotfire S+ object name to this file.

On DOS systems and other systems with restrictive naming
conventions, you can expect many more objects to be mapped than
on systems with less restrictive conventions. The true file names of
mapped objects have the form __n, where nindicates that the object is
the nth mapped object created. If you attempt to create an object with
a name of this form, Spotfire S+ maps it:

> "either/or" <- 1:10

> dos("DIR .data™)

[r3 "~

[2] "™ Volume in drive C has no label"”
[31 " Volume Serial Number is 0146-07CB"
[4] " Directory of C:\\RICH\\.data

[5] ""
(61 ". <DIR> 01-21-93 3:24p"
(71 ".. <DIR> 01-21-93 3:24p"

[8] "__META 0 01-21-93 3:29p"

Recursive
Objects as
Databases

Databases in Spotfire S+

[91 " NONFI 42 01-21-93 5:24p"

[10] "_1 156 01-28-93 2:02p"

[1171 ™ 7 file(s) 32345 bytes"

[121 " 131129344 bytes free"

> " 1" <-10:20
> dos("DIR .data")

[91 "___ NONFI 42 01-21-93 5:24p"
[10] "__2 234 01-28-93 2:05p"
[11] "__1 156 01-28-93 2:02p"

Here "either/or" needs to be mapped because DOS does not permit
file names with slashes, so Spotfire S+ maps the object to the file __1
and records the true file name and the mapped object name in the file
__nonfile. The new object "__1", while having a perfectly valid file
name, conflicts with the Spotfire S+ mapping scheme, so it is itself
mapped, to __2. To see that this is the case, remove "either/or":

> remove("either/or")
> dos("DIR .data™)

[91 "___NONFI 42 01-21-93 5:24p"
[10] "__2 234 01-28-93 2:05p"

To use the mapping scheme from Spotfire S+ functions, you can use
the Spotfire S+ function true.file.name. The only required
argument is the Spotfire S+ object name. You can also specify the
position of the database in the search list, and set a flag specifying
whether the true file name should be added to the ___nonfile file, if
it isn’t there already. For example, we can verify that our object "1"
has the true file name __2:

> true.file.name("__1")
[1] " 2"

Any recursive object with named components can be used as a
database, just as such objects were used as frames in the section
Frames, Names and Values (page 23). When you attach such an
object, a dictionary for the database is created containing copies of all
the named components of the object. Unlike directory databases, the

37

Chapter 2 Data Management

dictionary for an object database actually contains the data, not just
the names. Thus, finding a given component is faster for an attached
object than for an object in a directory. Attaching the object also
simplifies calling those components. For example, to view the Age
component of the kyphosis data frame, you could use the following:

> kyphosis$Age

[1] 71 158 128 2 1 1 61 37 113 59 82 148
[13] 18 1 168 1 78 175 80 27 22 105 96 131
[25]

After attaching kyphosis as a database, however, you can access its
components as whole objects:

> attach(kyphosis)

> Age
1 2 3456 7 8 9 10 11 12 13 14 16 17 18 19 20
71 158 128 2 1 1 61 37 113 59 82 148 18 1 168 1 78 175 80

The simplified syntax is useful when you are -constructing
complicated expressions involving different components. For
example, compare the following expressions:

if (any(kyphosis$Age > 130))
sqrt(kyphosis$Start)
else exp(kyphosis$Number)

if (any(Age > 130))
sqrt(Start)
else exp(Number)

Warning: Assignments to data frames

All assignments to a data frame must be to objects the same length as the variables in the original
data frame, or the assignments will be lost when the object is saved. Thus, do not try to carry out
an entire Spotfire S+ session with a data frame attached in position 1.

38

Matching Names and Values

MATCHING NAMES AND VALUES

When Spotfire S+ evaluates an expression, it must match any names
in the expression with the appropriate Spotfire S+ objects and their
values. The search begins in the current frame, typically the
evaluation frame of a function. Name-value pairs that are not found in
the current frame are then searched for in the expression frame, and
then in the session frame (database). If a name is not matched in any
of these three frames, Spotfire S+ searches in turn each of the meta
databases currently in the search path, starting with the working
directory, then the regular databases. Other existing frames are not
searched; this is of particular importance when considering the
evaluation of nested function calls. For example, suppose we have
two functions defined as follows:

fcn.C <-
function()
{
x <- 3
fecn.D()
}
fcn.D <-
function()
{
X2
}
If we call fcn.C, the call to fcn.D within fcn.C creates frame 3.
Objects referred to in frame 3 are first looked for there, then, if not

found there, are looked for in frame 1. Notice that frame 2 is not
searched. The list of searched databases can be arbitrarily long.

You can override the normal search path by specifying either the
where or frame argument (it is an error to specify both) to get.

39

Chapter 2 Data Management

COMMITMENT OF ASSIGNMENTS

40

Because permanent assignments to the working data alter the
contents of those data, there is a safety mechanism to prevent such
assignments when the top-level expression encounters an error or
interrupt. Thus, if you have the line x <<- Tetters[1:10] inside a
function fcn.E, and fcn.E stops with an error (any error), nothing is
assigned to name x. Thus, if x already exists, it is unchanged, and if it
does not exist, it is not created. For example, suppose we have an
existing object A and a function fcn. E defined as follows:

> A

[111 2345678910

> fcnlE

function(y)

{
A <<L- Tetters[1:10]
stop("Any error")

}

When we call fcn. E and then look at A, we find it is unchanged, even
though the assignment occurs before the error:

> fen.E(Q)

Problem in fcn.E(): Any error

Use traceback() to see the call stack
> A

[1]1 2345678910

This safety mechanism is called backout protection. For backout to be
possible, assignments remain pending until the top-level expression
completes, at which time the assignments are actually committed. For
purposes of evaluation, however, the assignments do take place
immediately. Thus, consider the following function:

assn.use <-

function()

{
assign("x", 10:1, where = 1)
print(2 * get("x", where = 1))
stop("Nothing is committed")

}

Commitment of Assignments

The value printed by the second line of assn.use reflects the
assignment to x on database 1, even though x has not yet been
permanently committed:

> assn.use()

[1] 20 18 16 14 12 10 8 6 4 2

Problem in assn.use(): Nothing is committed
Use traceback() to see the call stack

Because assignments remain pending until the completion of the top-
level expression, Spotfire S+ must retain the previous value, if any,
throughout evaluation of the top-level expression. Thus, repeated
assignment of large data objects can cause excessive memory buildup
inside Spotfire S+. The immediate argument to the assign function
can reduce this memory buildup. When you use assign with
immediate=T, Spotfire S+ overrides the normal backout mechanism
and commits the assignment immediately. (Similar memory growth can
occur simply from reading too many data objects, because by default
Spotfire S+ stores any newly-read object in memory in case it is
needed elsewhere in the top-level expression. To prevent this caching,
read objects using get with the immediate=T argument.)

The immediate argument is always true for databases other than the
working data. For such databases, backout protection is not provided.

Note

The elimination of backout protection for databases other than database 1 is a significant change
for Spotfire S+ 5.x and later. As you migrate your functions forward, be careful that you are not
relying on such protection.

Another way to override the backout mechanism is to use the
synchronize function, with no arguments. When called with no
arguments, synchronize simply commits all pending assignments to
the working data. If called with a numeric vector 7 as its argument,
synchronize tells SPOTFIRE S+ to reattach the databases given by 7in
the search path. Reattaching not only updates the dictionaries and
databases with respect to commitment, but also with respect to
changes (if any) made by other processes. Note, however, that the
reattachment takes place only at the end of the top-level expression.
Thus, you cannot (as in Spotfire S+ 4.x and earlier) use synchronize
to synchronize specific databases in the middle of a function call.

41

Chapter 2 Data Management

42

COMPUTING ON THE
LANGUAGE

Introduction

Symbolic Computations

Making Labels From Your Expressions
Creating File Names and Object Names

Building Expressions and Function Calls
Building Unevaluated Expressions
Manipulating Function Definitions
Building Function Calls

Argument Matching and Recovering Actual Arguments

44
46
48
51

52
52
53
57

61

43

Chapter 3 Computing on the Language

INTRODUCTION

44

One of the most powerful aspects of the Spotfire S+ language is the
ability to reuse intermediate expressions at will. The simplest
example is the ability to use arbitrary Spotfire S+ expressions as
arguments to functions. While evaluating an expression, Spotfire S+
stores the entire expression, including any function calls, for further
use. The stored expressions and function calls can be retrieved and
manipulated using a wide array of functions. The key to such
manipulation, which is called computing on the language, is that each
step of any Spotfire S+ calculation results in a new Spotfire S+ object,
and objects can always be manipulated in Spotfire S+. Chapter 2,
Data Management, discusses several uses of these techniques.

Computing on the language is useful for a number of tasks, including
the following:

* Symbolic computations.

* Making labels and titles for a graphics plot, using part or all of
the expression used to create the plot.

* Creating file names and object names.

* Building expressions and function calls within Spotfire S+
functions.

* Debugging Spotfire S+ functions.

+ Intercepting user input, a technique that can be useful when
building custom user interfaces.

This chapter discusses the first four of these tasks. (Computing on the
language for debugging purposes is described in Chapter 11,
Debugging Your Functions).

Most of these tasks involve some variant of the following basic
technique:

1. Create an unevaluated expression, with substitute,
expression, parse, or Quote (which is like expression).

2. Perform some intermediate computations.

Introduction

3. Generate finished output, using either or both of the following
methods:

* Deparsing the unevaluated expression (with deparse).

+ Evaluating the created expression (with eval).

45

Chapter 3 Computing on the Language

SYMBOLIC COMPUTATIONS

46

Symbolic computations involve manipulating formulas of symbols
representing numeric quantities without explicitly evaluating the
results numerically. Such computations arise frequently in
mathematics:

%Sin(X) = cos(X)

3 942
[(x2+3x+4)dx = X§+%—+4X+C

To perform symbolic computations in Spotfire S+, you must interrupt
the usual Spotfire S+ pattern of evaluation to capture unevaluated
expressions to represent formulas and then perform the desired
manipulations and return the result as a Spotfire S+ expression. The
returned expression can then, in general, be evaluated just as any
Spotfire S+ expression would be.

The key to capturing unevaluated expressions, and thus to symbolic
computations in general, is the substitute function. In its most
common use, you call substitute from inside a function, giving the
formal name of one of the function’s arguments as the argument to
substitute. Spotfire S+ returns the actual argument corresponding to
that formal name in the current function call.

For example, Spotfire S+ has a function, D, that takes a Spotfire S+
expression and returns a symbolic form for the expression’s
derivative. The form required, by default, is rather arcane:

> D(expression(3*x~2), "x")
3% (2 * x)

The following “wrapper” function allows you to find derivatives in a
much more natural way:

my.deriv <-

function(mathfunc, var) {
temp <- substitute(mathfunc)
name <- deparse(substitute(var))
D(temp, name)

Symbolic Computations

For example:

> my.deriv(3*x*2, x)

3% (2 * Xx)

> my.deriv(4*z~3 + 5*z~(1/2),z)

4 * (3 * z722) + 5 * (z~((1/2) - 1) * (1/2))

47

Chapter 3 Computing on the Language

MAKING LABELS FROM YOUR EXPRESSIONS

When you plot a data set with plot, the labels for the y axis, and
possibly the x axis, are drawn directly from what you type. For
example, if you type

> plot(corn.rain,corn.yield)

the resulting plot has corn.rain as the x-axis label and corn.yield as
the y-axis label. And it is not simply names that appear this way. If

you type
plot((1:10)"2, Tog(1:10))

you get x- and y-axis labels of (1:10)*2 and 10g(1:10), respectively.
Spotfire S+ is using the unevaluated form of these expressions, in the
form of character strings.

In general, these character strings result from substitute, which
returns the unevaluated actual argument, coupled with deparse,
which deparses the expression and returns a character vector
containing your originally typed string. For example, here is a
function that plots mathematical functions:

mathplot2 <-

function(f, bottom = -5, top = 5)

{
fexpr <- substitute(f)
ylabel <- deparse(fexpr, short=T)
x <- seq(bottom, top, Tength = 100)
y <- eval(fexpr)
plot(x, y, axes = F, type = "1",

ylab = paste("f(x) =", ylabel))

axis(l, pos =0, las =0, tck = 0.02)
axis(2, pos = 0, las 2)

}

Whenever you call mathplot?2, the actual argument you type as f is
stored as fexpr. Thus, in the call

> mathplot2(sin(x)*2

the expression sin(x)~2 is stored in the temporary variable fexpr.

48

Making Labels From Your Expressions

For creating labels, simply using the unevaluated expression is not
enough because in the course of creating the label Spotfire S+ will
evaluate the parsed expression. To protect the expression from
evaluation, it must be deparsed, that is, converted to a character string
corresponding to the unevaluated expression. Thus, the y-axis labels
in mathplot are created by deparsing the expression previously stored
in fexpr.

In mathplot2, fexpr was needed in at least two places, but in most
simple applications, you need not store the substituted expression
before deparsing. For example, in the ulorigin function described in
the online help, we pointed out that the labels could be improved.
Here is how to do so:

ulorigin2 <-

function(x, y, ...)

{
labx <- deparse(substitute(x))
laby <- deparse(substitute(y))
plot(x, - y, axes = F, xlab = labx, ylab = laby, ...)
axis(3)
yaxp <- par("yaxp")
ticks <- seq(yaxp[1l], yaxp[2], length = yaxp[3])
axis(2, at = ticks, labels = - ticks, srt = 90)
box ()

}

Many functions, including plot, use the deparse(substitute(x))
construction to create default labels.

Sometimes you want to title a plot using the complete expression that
generated the plot. This is also very easy, using the sys.cal1 function.
Here is a modified version of mathplot that prints the function call as
the plot’s main title:

mathplot3 <-
function(f, bottom = -5, top = 5)
{
fexpr <- substitute(f)
ylabel <- deparse(fexpr)
x <- seq(bottom, top,length=1000)
y <- eval(fexpr)

49

Chapter 3 Computing on the Language

50

plot(x, y, axes = F, type = "1",
ylab = paste("f(x) =",
ylabel),main=deparse(sys.call()))
axis(l, pos = 0, Tas =0, tck = 0.02)
axis(2, pos = 0, las = 2)

Creating File Names and Object Names

CREATING FILE NAMES AND OBJECT NAMES

Another use of the deparse(substitute(x)) syntax is in the
following simplified version of the fix function, which is a simple but
useful wrapper for the vi function. The fix function eliminates the
need to explicitly assign the output of vi back to a function you are
trying to alter (if you’ve ever typed vi(my.func) and then watched
several hours’ worth of fixes scroll by on your screen, you’ll see the
usefulness of fix):

my.fix <-
function(fcn, where = 1)
{
deparse(substitute(fcn), vi(fcn), where = where)
}

Often, you will create a useful function, like my. fix, that you want to
make available to all of your Spotfire S+ sessions. If you have many
different .Data directories, it makes sense to place all of your utility
functions in a single directory (better yet, create a library for these
functions) and attach this directory whenever you start Spotfire S+.

The following function makes it easy to move functions (or other
objects) between directories. Here the default destination for the
moved object is a Spotfire S+ chapter labeled .Sutilities:

move <-
function(object, from =1, to = ".Sutilities™)
{
objname <- deparse(substitute(object))
assign(objname, get(objname, where = from),
where = to)
remove(objname, where = from)

51

Chapter 3 Computing on the Language

BUILDING EXPRESSIONS AND FUNCTION CALLS

Building
Unevaluated
Expressions

52

Like lists, expressions, function definitions, and function calls are all
recursive Spotfire S+ objects and thus can be manipulated in exactly
the same way you manipulate lists. A common programming
technique is to build unevaluated expressions or function calls as you
would build a list and then use eval to evaluate the expression or call.
The following subsections give an introduction to this technique.

As we have seen, the substitute function is one way of building an
unevaluated expression. The expression function is another. You can
use expression as a way to protect input from evaluation:

> fexpr <- expression(3 * corn.rain)

> fexpr

expression(3 * corn.rain)

> eval(fexpr)

1890: 28.8 38.7 29.7 26.1 20.4 37.5 39.0 30.3 30.3 30.3
1900: 32.4 23.4 48.6 42.3 31.8 30.0 34.5 40.8 36.3 36.0
1910: 27.9 23.1 33.0 20.7 28.5 49.5 27.9 28.2 26.1 28.5
1920: 34.8 36.3 24.0 32.1 41.7 33.9 34.8 31.2

The expression function can be useful in building user interfaces
such as menus. For example, here is a function that generates a
random number from a user-selected distribution:

RandomNumber <-
function()
{
rand.choice <- expression(Gaussian = rnorm(1l),
Uniform = runif(l), Exponential = rexp(1),
Cauchy = rcauchy(1))
pick <- menu(names(rand.choice))
if(pick)
eval(rand.choice[pick])
}

The expression function returns an object of class expression. Such
objects are recursive, like lists, and can be manipulated just like lists.
The RandomNumber function creates the expression object
rand.choice, with the named components Gaussian, Uniform,

Building Expressions and Function Calls

Exponential, and Cauchy. The menu function uses these names to
provide a choice of options to the user, and the user’s selection is
stored as pick. If pick is nonzero, the selected component of
rand.choice is evaluated.

A similar approach can be used to give the user a choice of graphical
views of a data set:

Visualize <-
function(x)

{
view <- expression(Scatterplot = plot(x),

Histogram = hist(x),
Density = plot(density(x, width = 2 * (summary(x)[5] -

summary(x)[2]1)), xlab = "x", ylab = "", type = "1"),
QQplot = ggnorm(x);qqline(x) })
repeat

{ pick <- menu(names(view))
if(pick) eval(view[pick])
else break

Manipulating Function definitions are also recursive objects, and like expression
Function objects, they can be manipulated just like lists. A function definition is
Definiti essentially a list with one component corresponding to each formal

efinitions argument and one component representing the body of the function.
Thus, for example, you can see the formal names of arguments to any
function using the names function:

> names(hist)

[1] "x" "nclass"™ "breaks™ "plot"
[5]1 "probability" "include.lowest"™ "™..." "xlab"
[9] wn

The empty string at the end of the return value corresponds to the
function body; if you are writing a function to return only the
argument names, you can use a subscript to omit this element:

argnames <- function(funcname)

{
names (funcname)[- Tength(funcname)]

53

Chapter 3 Computing on the Language

54

Thus, for example:

> argnames(hist)
[17 "x" "nclass™ "breaks plot"
[5]1 "probability" "include.lowest"™ "™..." "xlab"

You can use the list-like structure of the function definition to replace
the body of a function with another function body that uses the same
argument list. For example, when debugging your functions, you may
want to trace their evaluation with the browser function or some other
tracing function. The trace function creates a copy of the traced
function with the body modified to include a call to the tracing
function. (See Chapter 11, Debugging Your Functions, for more
information on the trace function.)

For example, if we trace the argnames function (and specify browser
as the tracing function) and then look at the definition of argnames,
we see the call to browser embedded:

> trace(argnames,browser)

> argnames

function(funcname)

{

if(.Traceon) {

assign(".Traceon", F, frame = 0)
on.exit(assign(".Traceon", T, frame = 0))
cat("On entry: ™)
browser()
assign(".Traceon”™, T, frame = 0)

names (funcname)[- Tength(funcname)]

}

Here is a simplified version of trace, called simp.trace, that shows
how the temporary version of the traced function is created. The
material to be added to the body of the traced function is created as
an expression. In our simplified version, we have hard-coded the call

Building Expressions and Function Calls

to browser as well as the message cat("On entry: "). The subscript
on the expression object indicates that only the first component is
desired:

texpr <- expression(if(.Traceon)

{
assign(".Traceon", F, frame = 0)
on.exit(assign(".Traceon", T, frame = 0))
cat("On entry: ")
browser()
assign(".Traceon", T, frame = 0)

}
[[1]1]

The actual substitution is performed as follows:

for(i in seq(along = what))

{

}

name <- what[i]

fun <- get(name, mode = "function")

n <- length(fun)

body <- fun[[nl]

e.expr <- expression({ NULL NULL })
[[1]1]

e.expr[[1]1] <- texpr

e.expr[[2]] <- body

fun[[n]] <- e.expr

assign(name, fun, where = 0)

The complete simp.trace function is shown below:

simp.trace <-
function(what = character())

{

temp <- .Options

temp$warn <- -1

assign(".Options"™, temp, frame = 1)
assign(".Traceon", F, where = 0)

55

Chapter 3 Computing on the Language

if(lis.character(what))
{ fun <- substitute(what)
if(lis.name(fun))
stop("what must be character or name")
what <- as.character(fun)
}
texpr <- expression(if(.Traceon){
assign(".Traceon", F, frame = 0)
on.exit(assign(".Traceon", T, frame = 0))
cat("On entry: ")
browser()
assign(".Traceon", T, frame = 0)
}
YLL11]
tracefuns <- if(exists(".Tracelist™))
get(".Tracelist", where = 0)
else
character()
for(i in seq(along = what))
{ name <- what[i]
if(exists(name, where = 0))
{ remove(name, where = 0)
if(lexists(name, mode = "function™))
stop(paste("no permanent definition of", name))
}
fun <- get(name, mode = "function"){
n <- length(fun)
body <- fun[[nl]
e.expr <- expression({ NULL NULL })
[[1]1]
e.expr[[1]1] <- texpr
e.expr[[2]] <- body
fun[[n]] <- e.expr
assign(name, fun, where = 0)
}
tracefuns <- unique(c(what, tracefuns)){
assign(".Tracelist"™, tracefuns, where = 0)
assign(".Traceon", T, where = 0)
invisible(what)

56

Building
Function Calls

Building Expressions and Function Calls

A function call object is a recursive object for which the first
component is a function name and the remaining components are the
arguments to the function. You can create an unevaluated function
call in many ways. We have seen one simple way: wrap an ordinary
function call inside the expression function and extract the first
component:

> expression(hist(corn.rain))[[1]]
hist(corn.rain)

Analogous to the expression function, but specific to function calls, is
the call function, which takes a character string giving the function
name as its first argument and then accepts arbitrary arguments as
arguments to the function:

> call("hist", corn.rain)

hist(structure(.Data = ¢(9.6, 12.9, 9.9, 8.7, 6.8, 12.5,
13, 10.1, 10.1, 10.1, 10.8, 7.8, 16.2, 14.1, 10.6, 10,
11.5, 13.6, 12.1, 12, 9.3, 7.7, 11, 6.9, 9.5, 16.5, 9.3,
9.4, 8.7, 9.5, 11.6, 12.1, 8, 10.7, 13.9, 11.3, 11.6,
10.4), .Tsp = c(1890, 1927, 1)))

To prevent Spotfire S+ from reading the arguments into memory until
evaluation, the idiom as.name("argument™) can be useful:

> call("hist",
hist(corn.rain)

as.name("corn.rain"))

A typical use of call is inside a function that offers the user a range of
functionality and calls different functions depending upon the options
specified by the user. For example, here is a version of the ar function
that uses call:

my.ar <-
function(x, aic
{
if(Imissing(order.max))
arglist$order.max <- order.max
imeth <- charmatch(method, c("yule-walker", "burg"),
nomatch = 0)
method.name <- switch(imeth + 1,
stop("method should be either yule-walker or burg"),
"ar.yw",
"ar.burg")

= T, order.max, method = "yule-walker")

57

Chapter 3 Computing on the Language

58

z <- call(method.name, x = x, aic = aic)
ar <- eval(z, local = sys.parent(l))
ar$series <- deparse(substitute(x))
return(ar)

}

A more common idiom in Spotfire S+ programming, however, is to
create an ordinary /list of the appropriate form and then change the
mode of the list to cal1. This idiom, in fact, is used by the actual ar
function distributed with Spotfire S+:

> ar
function(x, aic = T, order.max, method = "yule-walker")
{
arglist <- list(x = x, aic = as.logical(aic))
if(Imissing(order.max))
arglist$order.max <- order.max
imeth <- charmatch(method, c("yule-walker", "burg"),
nomatch = 0)
method.name <- switch(imeth + 1,
stop("method should be either yule-walker or burg"),
as.name("ar.yw"),
as.name("ar.burg"))
z <- c(method.name, arglist)
mode(z) <- "call"
ar <- eval(z, local = sys.parent(1l))
ar$series <- deparse(substitute(x))
return(ar)
}

The call list is created by combining the argument list arglist
(created with the 1ist function in the first line of the function body)
and the name of the appropriate method. Since arglist is of mode
1ist, the value of the ¢ function is also of mode 1ist.

Changing the class of an object can also be used to construct function
calls as follows. Suppose you have a character string representing the
name of a function. You can coerce the string to a name using
as.name and then evaluate the function with a call of the following
form:

> eval(function)(args)

Building Expressions and Function Calls

Note the parenthesization: the function name is an argument to eval,
but the argument list is an argument to the function to which the name
evaluates. Thus, for example, we have the following:

>my.list <- as.name("1ist")

> eval(my.Tist)

function(...)

.Internal(list(...), "S_1list", T, 1)
> eval(my.list)(stuff="stuff")
$stuff:

[1] "stuff"

The method can be used to revise ar again as follows:

my.ar2 <-
function(x, aic = T, order.max, method = "yule-walker")
{
arglist <- list(x = x, aic = as.logical(aic))
if(Imissing(order.max))
arglist$order.max <- order.max
imeth <- charmatch(method, c("yule-walker", "burg"),
nomatch = 0)
method.name <- switch(imeth + 1,
stop("method should be either yule-walker or burg"),
as.name("ar.yw"),
as.name(™ar.burg"))
ar <- eval(method.name,
local = sys.parent(1))(unlist(arglist))
ar$series <- deparse(substitute(x))
return(ar)
}

In the ar example, the unevaluated function call was needed so that
eval could choose the appropriate frame for evaluation (see Chapter
2, Data Management, for more details). If you don’t need to exercise
such control over the evaluation, you can build the argument list of
evaluated arguments and then construct and evaluate the function call
using a single call to the do.call function. The do.call function is
convenient when a function’s arguments can be generated
computationally.

59

Chapter 3 Computing on the Language

60

As a trivial example, consider the following function, which generates
several graphical parameters randomly and then calls do.call to
construct and evaluate a call to plot:

Sample.plot <-
function(x)
{
cex <- sample(seq(0.1, 3, by =0.1), 1)
pch <- sample(1:20, 1)
type <- sample(c("p", "1", "b", "o", "n", "s", "h"),
1)
main <- "A random plot"
do.call("plot", 1list(x = x, cex = cex, pch = pch,
type = type, main = main))
}

One other method of constructing function calls, used frequently in
statistical modeling functions such as 1m, uses the match.call
function, which returns a call in which all the arguments are specified
by name. Typically, the returned call is the call to the function that
calls match.call, although you can specify any call. The 1m function
uses match.call to return the call to 1m; then it changes the first
component of the returned call (that is, the function name) to create a
new function call to model.frame with the same arguments as the
original call to Tm:

> Im

function(formula, data, weights, subset, na.action, method
= "gr", model = F, x =F, y = F, contrasts = NULL, ...)

{

call <- match.call()

m <- match.call(expand = F)

m$method <- m$model <- m$x <- m$y <- m$contrasts <-
m$... <- NULL

m[[1]] <- as.name("model.frame")

m <- eval(m, sys.parent())

}

We discuss match.call further in the following section.

Argument Matching and Recovering Actual Arguments

ARGUMENT MATCHING AND RECOVERING ACTUAL
ARGUMENTS

We have met two functions, substitute and missing, that take a
formal argument of the calling function and return, respectively, the
unevaluated actual argument and a logical value stating whether the
argument is missing. If you want to manipulate all the arguments of
the calling function, use the function match.call.

As we saw in the previous section, the match.call function returns
the call to the function calling match.cal1 with all arguments named.
For example, suppose we define the following simple function:

fcn.F <-
function(x, y, z)
{
match.call()
}
Calling the function with arbitrary values for x, y, and z yields the
following:

> fcen.F(7,11,13)
fecn.F(x =7, y =11, z = 13)

If a function has the ... formal argument, an optional argument to
match.call can be used to specify whether the ... arguments are
shown like the named arguments, separated by commas (the default),
or are grouped together in a list:

> fen.G
function(x, y, z, ...)
{
match.call()
}
> fen.G(7, 11, 13, "paris", "new york")
fen.G(x =7, y =11, z = 13, "paris", "new york")
> fen.H
function(x, vy, z, ...)
{
match.call(expand.dots = F)
}

61

Chapter 3 Computing on the Language

> fen H(7, 11, 13, "paris™, "new york™)
fcn.H(x =7, y =11, z =13, ... = list("paris”,"new york"))

The match.call function returns unevaluated arguments and is easy to
use for routine manipulations. Subscripting is identical to that for any
named list, as we saw in the Tm example:

> Im

function(formula, data, weights, subset, na.action,

method = "qr", model = F, x = F, y = F, contrasts = NULL,
.)

call <- match.call()

m <- match.call(expand = F)

m$method <- m$model <- m$x <- m$y <- m$contrasts <-
m$... <- NULL

m[[1]] <- as.name("model.frame")

m <- eval(m, sys.parent())

62

DATA OBJECTS

Introduction

Vectors
Coercion of Values
Creating Vectors
Naming Vector Elements

Structures
Matrices
Arrays

Lists
Creating Lists
Naming Components

Factors and Ordered Factors
Creating Factors
Creating Ordered Factors
Creating Factors From Continuous Data

64

66
66
67
69
71
71
74

77
78
79

80
81
83
84

63

Chapter 4 Data Objects

INTRODUCTION

64

When using Spotfire S+, you should think of your data sets as data
objects belonging to a certain class. Each class has a particular
representation, often defined as a named list of slo#s. Each slot, in turn,
contains an object of some other class.

To inspect an object, you can use one of two functions:

getSlots
slotNames

These functions return information about the slots. For example:

> slotNames(djia)

[1] "data" "positions™ "start.position"”
[4] "end.position" "future.positions” "units"
[7] "title" "documentation" "attributes"

[10] "fiscal.year.start" "type"

The class of an object defines how the object is represented and
determines what actions may be performed on the object and how
those actions are performed. Among the most common classes of data
objects are numeric, character, factor, 1ist, and data.frame.

The simplest type of data object in Spotfire S+ is the atomic vector, a
one-way array of z elements of a single mode (for example, numbers)
that can be indexed numerically. Atomic vectors are so called to
indicate that in Spotfire S+ they are indeed fundamental objects. All
of Spotfire S+’s basic mathematical operations and data manipulation
functions are designed to work on the vector as a whole, although
individual elements of the vector can be extracted using their
numerical indices.

More complicated data objects can be constructed from atomic
vectors in one of two basic ways:

1. By allowing complete S objects as elements, or
2. By building new data classes from old using slots

Objects that contain other S objects as elements are called recursive
objects and include such common Spotfire S+ objects as lists and data
frames. A listis a vector for which each element is a distinct S object,
of any type. A data frame is essentially a list in which each of the

Introduction

elements is an atomic vector, and all of the elements have the same
length. With slots, you can uniquely define a new class of data object
by storing the defining information (that is, the object’s attributes) in
one or more slots.

Data objects can contain not only logical, numeric, complex, and
character values, but also functions, operators, function calls, and
evaluations. All the different types (classes) of Spotfire S+ objects can
be manipulated in the same way: saved, assigned, edited, combined,
or passed as arguments to functions. This general definition of data
objects, coupled with class-specific methods, forms the backbone of
object-oriented programming and provides exceptional flexibility in
extending the capabilities of Spotfire S+.

65

Chapter 4 Data Objects

VECTORS

Coercion of
Values

66

The simplest type of data object in Spotfire S+ is a vector. A vector is
simply an ordered set of values. The order of the values is emphasized
because ordering provides a convenient way of extracting the parts of
a vector. To extract individual elements, use their numerical indices
with the subscript operator [:

> car.gals[c(1,3,5)]
[17] 13.3 11.5 14.3

All elements within an atomic vector must be from only one of seven
atomic modes—1o0gical, numeric, single, integer, complex, raw, or
character. (An eighth atomic mode, NULL, applies only to the NULL
vector.) The number of elements and their mode completely define
the data object as a vector. The class of any vector is the mode of its
elements:

> class(c(T,T,F,T))

[1] "Togical"

> class(c(1,2,3,4))

[1] "integer"

> class(c(1.24,3.45, pi))
[11 "numeric"

The number of elements in a vector is called the 1ength of the vector
and can be obtained for any vector using the Tength function:

> Tength(1:10)
[1] 10

When values of different modes are combined into a single atomic
object, Spotfire S+ converts, or coerces, all values to a single mode in a
way that preserves as much information as possible. The basic modes
can be arranged in order of increasing information—1ogical, integer,
numeric, complex, and character. Thus, mixed values are all
converted to the mode of the value with the most informative mode.

For example, suppose we combine a logical value, a numeric value,
and a character value, as follows:

> c(T, 2, "seven")
[1] HTRUE" "2" "Seven"

Creating
Vectors

Vectors

Spotfire S+ coerces all three values to mode character because this is
the most informative mode represented. Similarly, in the following
example, all the values are coerced to mode numeric:

> c(T, F, pi, 7)
[1] 1.000000 0.000000 3.141593 7.000000

When logical values are coerced to integers, TRUE values become the
integer 1 and FALSE values become the integer 0.

The same kind of coercion occurs when values of different modes are
combined in computations. For example, Togical values are coerced
to zeros and ones in integer or numeric computations.

If you want to create a vector, you can do so in a number of ways.
You have seen that you can combine arbitrary values to create a
vector with the ¢ function and type in data from the keyboard or a
data file with the scan function.

Other functions are useful for repeating values or generating
sequences of numeric values. The rep function repeats a value by
specifying either a times argument or a Tength argument. If times is
specified, the value is repeated the number of times specified (the
value may be a vector):

> rep(NA,5)

[11 NA NA NA NA NA
> rep(c(T,T,F),2)
[1IJTTFTTFE

If times is a vector with the same length as the vector of values being
repeated, each value is repeated the corresponding number of times.

> rep(c("yes","no"),c(4,2))
[1] Ilyesll Ilyesll llyesll llyes

nOll llno

The sequence operator generates sequences of integer values spaced
one unit apart.

> 1:5
[111 2
> 1.2:4
[1] 1.2
> 1:-1
[1110 -1

345

2.2 3.2

67

Chapter 4 Data Objects

68

More generally, the seq function generates sequences of numeric
values with an arbitrary increment. For example:

> seq(-pi,pi,.5)

[1] -3.1415927 -2.6415927 -2.1415927 -1.6415927 -1.1415927
[6] -0.6415927 -0.1415927 0.3584073 0.8584073 1.3584073
[11] 1.8584073 2.3584073 2.8584073

You can specify the length of the vector and seq computes the
increment:

> seq(-pi,pi,length=10)
[1] -3.1415927 -2.4434610 -1.7453293 -1.0471976 -0.3490659
[6]1 0.3490659 1.0471976 1.7453293 2.4434610 3.1415927

Or, you can specify the beginning, the increment, and the length with
either the Tength argument or the along argument:

> seq(1l,by=.05,1ength=10)

[1] 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
> seq(l,by=.05,along=1:5)

[1] 1.00 1.05 1.10 1.15 1.20

See the help file for seq for more information on the 1ength and
along arguments.

To “initialize” a vector of a certain mode and length before you know
the actual values, use the vector function. This function takes two
arguments: the first specifies the mode and the second specifies the
length:

> vector("logical",3)
[1] FFF

The functions Togical, integer, numeric, complex, and character
generate vectors of the named mode. Each of these functions takes a
single argument that specifies the length of the vector. Thus,
Togical(3) generates the same initialized vector as above.

Table 4.1: Useful functions for creating vectors.

Vectors

Function Description Examples

scan Reads values, any mode scan(), scan("data")

c Combines values, any mode c(1,3,2,6), c("yes","no")

rep Repeats values, any mode rep(NA,5), rep(c(1,2),3)
numeric sequences 1:5, 1:-1

seq numeric sequences seq(-pi,pi,.5)

vector Initializes vectors vector('complex',5)

logical Initializes 1ogical vectors logical(3)

integer Initializes integer vectors integer(4)

numeric Initializes numeric vectors numeric(5)

complex Initializes complex vectors complex(6)

character Initializes character vectors character(7)

Naming Vector You can assign names to vector elements to associate specific

Elements information, such as case labels or value identifiers, with each value of
the vector. To create a vector with named values, you assign the
names with the names function:

> numbered.letters <- Tletters

> names(numbered.letters) <- paste("obs",1:26,sep="")

> numbered.letters

obsl obs2 obs3 obs4 obs5 obs6 obs7 obs8 obs9 obsl0 obsll

lla" Nb'l "C" lldll Neu "f" llgll Nh'l "_i" lljll llkll
obsl2 obsl3 obsl4 obsl5 obsl6 obsl7 obsl8 obsl9 obs20 obs?21
ll'l L1 llmll "n" "OH "p" llqll llr,ll "S" "t" "U"

69

Chapter 4 Data Objects

70

obs22 obs23 obs24 obs25 obs26

v W X y z

In the above example, the first 26 integers are converted to character
strings by the paste function and then attached to each value. The
quotes around the numbers are suppressed in the printing. The actual
values of the vector numbered.letters are character strings, each
containing one letter.

If you specify too many or too few names for the values, Spotfire S+
gives an error message.

STRUCTURES

Matrices

Creating Matrices

Structures

Next in complexity after the atomic vectors are the structures, which,
as the name implies, extend vectors by imposing a structure, typically
a multi-dimensional array, upon the data.

The simplest structure is the two-dimensional matrix. A matrix starts
with a vector and then adds the information about how many rows
and columns the matrix contains. This information, the dimension, or
dim, of the matrix, is stored in a slot in the representation of the
matrix class. All structure classes have at least one slot, .Data, which
must contain a vector. The classes matrix and array have one
additional required slot, . Dim, to hold the dimension and one optional
slot, .Dimnames, to hold the names for the rows and columns of a
matrix and their analogues for higher dimensional arrays. Like simple
vectors, structure objects are atomic, that is, all of their values must be
of a single mode.

Matrices are used to arrange values by rows and columns in a
rectangular table. For data analysis, different variables are usually
represented by different columns, and different cases or subjects are
represented by different rows. Thus, matrices are convenient for
grouping together observations that have been measured on the same
set of subjects and variables.

Matrices differ from vectors by having a .Dim slot, which specifies the
dimension of the matrix, that is, the number of rows and columns. Any
vector can be turned into a matrix simply by specifying its .Dim slot,

as we see in the examples below.

To create a matrix from an existing vector, use the dim function to set
the .Dim slot. To use dim, you assign a vector of two integers
specifying the number of rows and columns. For example:

> mat <- rep(l:4,rep(3,4))
> mat
[111 112223334414
> dim(mat) <- c(3,4)
> mat

[,110,210,31L,.4]
[1,] 1 2 3 4

71

Chapter 4 Data Objects

72

[2,] 1 2 3 4
[3.] 1 2 3 4

More often, you need to combine several vectors or matrices into a
single matrix. To combine vectors (and matrices) into matrices, use
the functions cbind and rbind. The cbind function combines vectors
column by column, and rbind combines vectors row by row. You can
easily combine counts for a 2x 3 contingency table using rbind:

> rbind(c(200688,24,33),c(201083,27,115))
C,110,21C,3]

[1,] 200688 24 33

[2,] 201083 27 115

Use the cbind function similarly for columns. When vectors of
different lengths are combined using cbind or rbind, the shorter ones
are replicated cyclically so that the matrix is “filled in.” If matrices are
combined, they must have matching numbers of rows when using
cbind and matching numbers of columns when using rbind.
Otherwise, Spotfire S+ prints an error message and the objects are
not combined.

Use the function matrix to convert objects to matrices. Combine the
values into a single vector using c and then group them by specifying
the number of columns or rows. To create a matrix from two vectors,
grp and thw, use matrix as follows:

> heart <- matrix(c(grp,thw),ncol=2)

If you provide fewer values as arguments to matrix than are required
to complete the matrix, the values are replicated cyclically until the
matrix is filled in. If you provide more data than necessary to
complete the matrix, excess values are discarded.

If either of ncol or nrow is provided but not both, the missing argument
is computed using the following relations:

* nrow = The smallest integer equal to or greater than the
number of values divided by the number of columns

* ncol = The smallest integer equal to or greater than the
number of values divided by the number of rows

Thus, nrow and ncol are computed to create the smallest matrix from
all the values when ncol or nrow is given individually.

Naming Rows
and Columns

Structures

By default, the values are placed in the matrix column by column.
That is, all the rows of the first column are filled, then the rows of the
second column are filled, etc. To fill the matrix row by row, set the
byrow argument to T. For example:

> matrix(1l:12,ncol1=3,byrow=T)
(.11 [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

The byrow argument is especially useful when reading in data from a
text file that is arranged in a table. The data are read in (with scan)
row by row in this case, so the byrow argument is used to place the
values in a matrix correctly.

For a vector you saw that you could assign names to each value with
the names function. For matrices, you can assign names to the rows
and columns with the dimnames function. To create a matrix with row
and column names of your own, create a list with two components,
one for rows and one for columns, and assign them using the
dimnames function.

> dimnames(mat) <- list(paste("row",letters[1:3]),
+ paste("col",LETTERS[1:41))

> mat

col A col B col C col D
row a 1 2 3 4
row b 1 2 3 4
row c 1 2 3 4

In the example above, Tetters and LETTERS are character vectors
with values the letters of the alphabet in lowercase and uppercase,
respectively. The character strings "row" and "co1" are replicated to
match the length of vectors containing the letters for labeling. The
paste function binds values into a single character string.

To suppress either row or column labels, use the NULL value for the
corresponding component of the list. For example, to suppress the
row labels and number the columns:

> dimnames(mat) <- Tist(NULL, paste("col",1:4))
> mat

73

Chapter 4 Data Objects

Arrays

74

col 1 col 2 col 3 col 4

[1,] 1 2 3 4
[2,] 1 2 3 4
(3.1 1 2 3 4

To specify the row and column labels when defining a matrix with
matrix, use the optional argument dimnames as follows:

> mat2 <- matrix(1l:12, ncol=4,
+ dimnames=T1ist(NULL,paste("col",1:4)))

Arrays generalize matrices by extending the .Dim slot to more than
two dimensions. If the rows and columns of a matrix are the length
and width of a rectangular arrangement of equal-sized cubes, then
length, width, and height represent the dimensions of a three-way
array. You can visualize a series of equal-sized rectangles or cubes
stacked one on top of the other to form a three-dimensional box. The
box is composed of cells (the individual cubes) and each cell is
specified by its position along the length, width, and height of the
box.

An example of a three-dimensional array is the iris data set in
Spotfire S+. The first two cases are presented here:

> iris[l:2,,]

, Setosa
Sepal L. Sepal W. Petal L. Petal W.
[1,1] 5.1 3.5 1.4 0.2
[2,] 4.9 3.0 1.4 0.2
, Versicolor
Sepal L. Sepal W. Petal L. Petal W.
[1,] 7.0 3.2 4.7 1.4
2,] 6.4 3.2 4.5 1.5
, Virginica
Sepal L. Sepal W. Petal L. Petal W.
[1,] 6.3 3.3 6.0 2.5
[2,] 5.8 2.7 5.1 1.9

The data present 50 observations of sepal length and width and petal
length and width for each of three species of iris (Setosa, Versicolor,
and Virginica). The .Dim slot of iris represents the length, width, and
height in the box analogy:

Creating Arrays

Structures

> dim(iris)
[1] 50 4 3

There is no limit to the number of dimensions of an array. Additional
dimensions are represented in the .Dim slot as additional values in the
vector; the number of values is the number of dimensions. From this,
we can think of a matrix as a two-dimensional array and a vector as a
one-dimensional array.

To create an array in Spotfire S+, use the array function. The array
function is analogous to matrix. It takes data and the appropriate
dimensions as arguments to produce the array. If no data are
supplied, the array is filled with NAs.

When passing values to array, combine them in a vector so that the
first dimension varies fastest, the second dimension the next fastest,
and so on. The following example shows how this works:

> array(c(1:8,11:18,111:118),dim=c(2,4,3))
, 1
C,110,210,31L0,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

C.110.210,31L.4]
[1,1 11 13 15 17
[2,] 12 14 16 18
s . 3

[,110,210,31L,4]
[1I,] 111 113 115 117
[2,] 112 114 116 118

The first dimension (the rows) is incremented first. This is equivalent
to placing the values column by column. The second dimension (the
columns) is incremented second. The third dimension is incremented
by filling a matrix for each level of the third dimension.

For creating arrays from existing vectors, the dim function works for
arrays in the same way it works for matrices. The dim function lets
you set the .Dim slot as you can for a matrix. For example, if the data
above were stored in the vector vec, you could create the above array
by defining the .Dim slot with the vector c(2,4,3):

> vec

75

Chapter 4 Data Objects

[111 234567811 12 13

[12] 14 15 16 17 18 111 112 113 114 115 116
[23] 117 118

> dim(vec) <- c(2,4,3)

To name each level of each dimension, use the dimnames argument to
array. This passes a list of names in the same way as is done for
matrices. For more information on dimnames, see Naming Rows and

Columns on page 73.

76

LISTS

Lists

A list is a completely flexible means for representing data. In earlier
versions of S, it was the standard means of combining arbitrary
objects into a single data object. Much the same effect can be created,
however, using the notion of slots.

Up to this point, all the data objects described have been atomic,
meaning they contain data of only one mode. Often, however, you
need to create objects that not only contain data of mixed modes but
also preserve the mode of each value.

For example, the slots of an array may contain both the dimension (a
numeric vector) and the .Dimnames slot (a character vector), and it is
important to preserve those modes:

> attributes(iris)
$dim:
[1] 50 4 3

$dimnames:
$dimnames[[1]1]:
character(0)

$dimnames[[2]]:
[1] "Sepal L.™ "Sepal W."™ "Petal L."™ "Petal W."

$dimnames[[3]1]:
[1] "Setosa" "Versicolor"™ "Virginica"

The value returned by attributes is a simple example of a Spotfire
S+ list. Lists are a very general data type. They are made up of
components, where each component consists of one data object of any
type, that is, from component to component, the mode and #ype of the
object can change.

For example, the attributes list for the iris data set consists of two
components, a dim component and a dimnames component. The dim
component, the value of the .Dim slot, is a numeric vector of length
three. The dimnames component, the value of the .Dimnames slot, is
another list with three components. The first component is an empty
character vector (character(0)), the second component is a vector

77

Chapter 4 Data Objects

Creating Lists

78

of four character strings indicating whether the measurement is sepal
length or width or petal length or width, and the third component is a
vector of three character strings specifying the species of iris.

To create a list, use the 11ist function. Each argument to 1ist defines
a component of the list. Naming an argument, using the form
name=component, creates a name for the corresponding component.

For example, you can create a list from the two vectors grp and thw as

follows:

> grp <- c(rep(1,11),rep(2,10))

> thw <- c(450,760,325,495,285,450,460,375,310,615,425,245,
+ 350,340,300,310,270,300,360,405,290)

> heart.list <- list(group=grp, thw=thw,

+ descrip="heart data")

> heart.list

$group:

[I1]111111111112222222222

$thw:
[1] 450 760 325 495 285 450 460 375 310 615 425 245 350
[14] 340 300 310 270 300 360 405 290

$descrip:
[11 "heart data”

The first component of the list contains a numeric vector with
grouping information for the data, so it is named group. The second
component is the total heart weight (thw) in grams. The name of the
component is the same as the name of the object stored in that
component. The thw on the left of the equal sign is the component
name, and the thw on the right of the equal sign is the object stored
there. The third component contains a character vector, which briefly
describes the data.

To access a list component, specify the name of the list and the name
of the component, separated by a dollar sign ($).

For example, to display the grouping data:

> heart.list$group
[I]11111111111222222222?2

Naming
Components

Lists

More generally, you can access list components by an index number
enclosed in double brackets ([[11). For example, the grouping
information can also be accessed by:

> heart.list[[1]]
[1]11111111111222222222?2

Once you’ve accessed a component, you can specify particular values
of the component in the usual way, using the single bracket ([1)
notation. For example, since the group component is a vector, you
can obtain the 11th and 12th elements with:

> heart.list[[1]11[11:12]
[1]11 2

or

> heart.list$group[1l1:12]
[1112

If you define a list without naming the components, components can
be accessed only using the double bracket notation. When the
components are named, you can use either the double bracket
notation or the names convention with a $ separating the list name
and the component name.

The names of a list’s components can be changed by assigning them
with the names function:

> names(heart.list) <- c("group","total heart weight",
+ "descrip")

> names(heart.list)

[1]1 "group" "total heart weight™ "descrip"

79

Chapter 4 Data Objects

FACTORS AND ORDERED FACTORS

80

In data analysis, many kinds of data are qualitative rather than
quantitative or numeric. If observations can be assigned only to a
category, rather than given a specific numeric value, they are termed
qualitative or categorical. The values assigned to these variables are
typically short character descriptions of the category to which the
observation belongs. The following lists some examples of categorical
variables:

* Gender, where the values are male and female.

* Marital status, where the values might be single, married,
separated, and divorced.

» Experimental status, where the values might be treatment and
control.

Categorical data in Spotfire S+ is represented with a data type called
a factor. The built-in data frame fuel.frame has a variable named
Type that classifies each automobile as one of Sma11, Sporty, Compact,
Medium, Large, or Van.

> fuel.frame$Type

[1] Small Small Small Small Small Small Small

[8] Small Small Small Small Small Small Sporty

[15] Sporty Sporty Sporty Sporty Sporty Sporty Sporty

[22] Sporty Compact Compact Compact Compact Compact Compact
[29] Compact Compact Compact Compact Compact Compact Compact
[36] Compact Compact Medium Medium Medium Medium Medium

[43] Medium Medium Medium Medium Medium Medium Medium

[50] Medium Large Large Large Van Van Van

[57]1 Van Van Van Van

When you print a factor, the values correspond to the level of the
factor for each data point or observation. Internally, a factor keeps
track of the levels or different categorical values contained in the data
and indices that point to the appropriate level for each data point.
The different levels of a factor are stored in an attribute called TeveTs.

Factor objects are a natural form for categorical data in an object-
oriented programming environment because they have a class
attribute that allows specific method functions to be developed for

Factors and Ordered Factors

them. For example, the generic print function uses the print.factor
method to print factors. If you override print.factor by calling
print.default, you can see how a factor is stored internally.

> print.default(fuel.frame$Type

[1]1 4 4444444444144
[26] 1111111111113
[611 22266660666
attr(, "levels™):

[1] "Compact™ "Large"™ "Medium™ "Small™ "Sporty" "Van"
attr(, "class™):

[1] "factor"

)
555555555111
333333333333

The integers serve as indices to the values in the 1evels attribute. You
can return the integer indices directly with the codes function.

> codes(fuel.frame$Type)

[11 44 444444444144
[26] 1111111111113
[511 2226666666

555555555111
333333333333
Or, you can examine the levels of a factor with the Tevels function.

> levels(fuel.frame$Type)
[1] "Compact™ "Large™ "Medium" "Small" "Sporty" "Van"

The print.factor function is roughly equivalent to

> levels(fuel.frame$Type)[codes(fuel.frame$Type)]

except that the quotes are dropped. To get the number of cases of
each level in a factor, call summary:

> summary(fuel.frame$Type)
Compact Large Medium Small Sporty Van
15 3 13 13 9 7

Creating To create a factor, use the factor function. The factor function takes

Factors data with categorical values and creates a data object of class factor.
For example, you can categorize a group of 10 students by gender as
follows:

> classlist <- c("male", "female"™, "male", "male", "male",
+ "female", "female", "male", "female", "male")

81

Chapter 4 Data Objects

> factor(classlist)
[1] male female male male male female female male
[9] female male

Spotfire S+ creates two levels with labels female and male,
respectively.

Table 4.2: Arguments to factor.

Argument Description

X Data, to be thought of as taking values on the
finite set of levels.

Tevels Optional vector of Tevels for the factor. The
default value of Tevels is the sorted list of distinct
values of x.

Tabels Optional vector of values to use as labels for the

Tevels of the factor. The default is
as.character(levels).

excludes A vector of values to be excluded from forming
Tevels.

The 1evels argument allows you to specify the levels you want to use
or to order them the way you want. For example, if you want to
include certain categories in an analysis, you can specify them with
the Tevels argument. Any values omitted from the Tevels argument
are considered missing.

> intensity <- factor(c("Hi","Med","Lo"™,"Hi","Hi","Lo"),
+ levels = c("Lo","Hi"))

> intensity

[11 Hi NA Lo Hi Hi Lo

> levels(intensity)

[1] "Lo"™ "Hi"

If you had left the 1evels argument off, the levels would have been
ordered alphabetically as Hi, Low, Medium. You use the Tabels
argument if you want the levels to be something other than the
original data.

82

Factors and Ordered Factors

> factor(c(llH.i","Lo"’"Med"’"Hi"’"H.i",IILO"),
+ levels=c("Lo","Hi"), Tabels = c("LowDose","HighDose"))
[1] HighDose LowDose NA HighDose HighDose LowDose

Warning

If you provide the Tevels and Tabels arguments, then you must order them in the same way. If
you don’t provide the 1evels argument but do provide the 1abels argument, then you must
order the labels the same way Spotfire S+ orders the levels of the factor, which is alphabetically
for character strings and numerically for a numeric vector that is converted to a factor.

Use the exclude argument to indicate which values to exclude from
the levels of the resulting factor. Any value that appears in both x and
exclude will be NA in the result and will not appear in the Tevels
attribute. The intensity factor could alternatively have been
produced with:

> factor‘(c("H‘i","Med""'I_O""'HT","H-i""'LO")’
+ exclude =c("Med"))
[17 Hi NA Lo Hi Hi Lo

Creating If the order of the levels of a factor is important, you can represent the
Ordered data as a special type of factor called an ordered factor. Use the ordered
Fact function to create ordered factors. The arguments to ordered are the
actors same as those to factor. To create an ordered version of the intensity
factor, do:
> Or‘der‘ed(C("H1 w , "Med" , "LOII , HH.i " , "Hi "w , "LOII) ,
+ levels=c("Lo","Med","Hi"))
[1] Hi Med Lo Hi Hi Lo
Lo < Med < Hi
The order relationship between the different levels is printed for an
ordered factor along with the values. The order of the values used in
the Tevels argument determines the order placed on the levels.
Warning

If you don’t provide a Tevels argument, an ordering will be placed on the levels corresponding
to the default ordering of the levels by Spotfire S+.

83

Chapter 4 Data Objects

Creating
Factors From
Continuous
Data

84

To create categorical data out of numerical or continuous data, use
the cut function. You provide either a vector of specific breakpoints
or an integer specifying how many groups to divide the numerical
data into; cut then creates levels corresponding to the specified
ranges. All the values falling in any particular range are assigned the
same level. For example, the murder rates in the 50 states can be
grouped into High and Low values using cut:

> cut(state.x77[,"Murder"],breaks=c(0,8,16))
[t12212211122112111221212122
[26] 1 1211222111111212¢21121111

attr(, "Tevels™):
[1] ™ O+ thru 8" "8+ thru 16"

The breakpoints must completely enclose the values you want
included in the factors. Data less than or equal to the first breakpoint or
greater than the last breakpoint are returned as NA.

To create a specific number of groups, by partitioning the range of the
data into equal-sized intervals, use an integer value for the breaks
argument:

> cut(state.x77[,"Murder"], breaks=2)
[1]221221112211211122
[26] 11 211222111111212°2
attr(, "levels"):

[1] "1.263+ thru 8.250" "8.250+ thru 15.237"

1212122
1121111

By default, cut creates labels of the form first breakpoint thru
second breakpoint, etc., using either the breakpoints you provide or
the ones it creates. However, you can assign different labels to the
levels with the Tabels argument.

> cut(state.x77[,"Murder"],c(0,8,16),
+ labels=c("Low","High"))
[1122122111221
[26] 11211222111
attr(, "levels"):
[1] "Low"™ "High"

12111221212122
11121221121111

Factors and Ordered Factors

Note

As you may notice from the style of printing in the above examples, cut does not produce factors
directly. Rather, the value returned by cut is a category object.

To create a factor from the output of cut, just call factor with the call
to cut as its only argument:

> factor(cut(state.x77[,"Murder"], c(0,8,16),
+ labels=c("Low","High")))

[1] High High Low High High Low Low Low High High
[11] Low Low High Low Low Low High High Low High
[21] Low High Low High High Low Low High Low Low
[31] High High High Low Low Low Low Low Low High
[41] Low High High Low Low High Low Low Low Low

85

Chapter 4 Data Objects

86

TIME SERIES AND SIGNAL
BASICS

Introduction

Creating Time Series and Signals
Creating Calendar-Based Time Series
Creating Non-Calendar-Based Signals

Subsetting and Basic Manipulation of Series
Interpolation and Alignment of Series
Merging Series
Aggregating and Coarsening Series
Plotting Time Series

High/Low/Open/Close Plot

Moving Average Plot

Intraday Trading Data Plot

Plots Containing Multiple Time Series

Time Series Trellis Plots

Customizing Time Series and Signal Plots
Plotting Signals

Basic Signal Plotting

Trellis Plots of Signals

88

89
89
91

94
96
98
100

102
102
103
105
106
108
111

113
113
115

87

Chapter 5 Time Series and Signal Basics

INTRODUCTION

88

Time series and signal data sets have single or multivariate data
columns that are associated with a time-, space-, or frequency-domain
set of ordered positions, where the positions are an important feature
of the values and their analysis. This type of data can arise in many
contexts. For example, in the financial marketplace, trading tickers
record the price and quantity of each trade, and each takes place at a
particular time; these data can be analyzed for use in making market
predictions. Weekly or monthly measurements of sunspot activity can
be used to study cycles in sunspot activity. Electrical real-time digital
signal data (or its Fourier transform, frequency-ordered data) can be
used to study the properties of waveguides.

This chapter describes how to create, manipulate, and plot time series
and signals in Spotfire S+. Chapter 27 of the Guide to Statistics,
Volume 2, Analyzing Time Series and Signals, covers time series and
signal analysis, and Chapter 6, Dates, Times, Time Intervals, and
Sequences, contains more information specific to manipulating times
and dates and creating time and numeric sequences.

Creating Time Series and Signals

CREATING TIME SERIES AND SIGNALS

Creating
Calendar-
Based Time
Series

A series, as we will use the word in this chapter, is a collection of data
observations associated with ordered positions, which can be in the
time, space, or frequency domain, but must be monotonic (though
not strictly monotonic). If the positions of the series correspond to the
calendar dates or the time of day of the data observations, then we
refer to it as a calendar-based series, or time series. If the positions of
the series correspond to elapsed time, frequency, or spatial
measurement, but not a particular time of day or calendar date, then
we refer to it as a non-calendar-based series, or signal. The following
two sections show how to create the two types of series in Spotfire S+.

Calendar-based time series are stored in Spotfire S+ in objects of class
"timeSeries”, and created with the timeSeries function. In its
simplest form, the timeSeries function takes a time/date or time
sequence object as its positions argument, and any rectangular data
object (for example, vector, matrix, or data frame) as its data
argument:

> x <- timeSeries(pos = timeCalendar(d = 1:10, m =1,
+ y = 1998, format = "%02m/%02d/%Y"),
+ data = data.frame(x = 11:20, y = 21:30))

> X

Positions Xy
01/01/1998 11 21
01/02/1998 12 22
01/03/1998 13 23
01/04/1998 14 24
01/05/1998 15 25
01/06/1998 16 26
01/07/1998 17 27
01/08/1998 18 28
01/09/1998 19 29
01/10/1998 20 30

See Chapter 6, Dates, Times, Time Intervals, and Sequences, for
more information on time/date and time sequence objects.

89

Chapter 5 Time Series and Signal Basics

90

The timeSeries function can also generate a time sequence for the
positions automatically. By default, the positions will be a daily
sequence starting on January 1, 1960, but you can also specify
different starting dates and sequence increments. For example, the
following command generates a bimonthly sequence starting on

January 1, 1998:

> timeSeries(data = 1:12, from = "1/1/1998", by = "months",
+ k.by = 2)

Positions
01/01/1998 00:00:00.000
03/01/1998 00:00:00.000
05/01/1998 00:00:00.000
07/01/1998 00:00:00.000
09/01/1998 00:00:00.000
11/01/1998 00:00:00.000
01/01/1999 00:00:00.000
03/01/1999 00:00:00.000
05/01/1999 00:00:00.000 9
07/01/1999 00:00:00.000 10
09/01/1999 00:00:00.000 11
11/01/1999 00:00:00.000 12

O N O OB W NN

Besides the data and positions, time series objects also have slots for a
title, documentation, units, and other information that you might
want to store with the data. This information can be added to a time
series (and displayed) by accessing the slots directly:

x@title <- "My Time Series"

x@documentation <- c("This is the documentation",
"for this time series")

X@units <- c("unitl™, "unit2")

x@title

vV Vv 4+ VvV

[1] "My Time Series"

You can convert an old-style calendar-based time series (class "cts",
or "its" with dates-based times) to a new time series object by calling
ts.update.

Creating Non-
Calendar-
Based Signals

Creating Time Series and Signals

> ts.update(cts(1:10, start = dates("1/15/1993"),
+ units = "weeks",

01/15/1993
01/29/1993
02/12/1993
02/26/1993
03/12/1993
03/26/1993
04/09/1993
04/23/1993
05/07/1993
05/21/1993

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

Positions

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00.
00.
00.
00.
00.
00.
00.
00.
00.
00.

000
000
000
000
000
000
000
000
000

k.units

Non-calendar-based series, or signals, are stored in Spotfire S+ in
objects of class
signalSeries function. In its simplest form, the signalSeries
function takes a numeric vector or sequence as its positions
argument, and any rectangular object (for example, a vector, matrix,

or data frame) as its data argument:

> signalSeries(pos

+y =21:3
Positions
1
2
3
4
5
6
7
8
9
10

0))

X
11
12
13
14
15
16
17
18
19
20

Y
21

22
23
24
25
26
27
28
29
30

"signalSeries",

and are created with the

1:10, data = data.frame(x = 11:20,

The signalSeries function also allows you to create regularly-spaced

numeric positions automatically:

> x <- signalSeries(data = data.frame(x

+ by = 1)

=11:20), from =1,

91

Chapter 5 Time Series and Signal Basics

92

> X

Positions x
1 11
12
13
14
15
16
17
18
19
20

O W 00 N Oy O B W N

—_

Besides the data and positions, signal objects also have slots for a title,
documentation, units, and other information that you might want to
store with the data. This information can be added to a signal (and
displayed) by accessing the slots directly:

x@title <- "My Signal"”

x@documentation <- c("This is the documentation",
"for this signal™)

X@units <- c("unitl", "unit2")

Xx@units.position <- "seconds"

x@title

vV VvV VvV + VvV

[1I] "My Signal"

You can convert an old-style non-calendar-based time series (class
"rts", or "its" with numeric times) to a new signal object by calling
ts.update:

> ts.update(rts(l:12, start = c(1953, 4), frequency = 12))

Positions 1
1953.250 1
1953.333 2
1953.417 3
1953.500 4
1953.583 5
1953.667 6
1953.750 7

1953.833
1953.917
1954.000
1954.083
1954.167

8
9
10
11
12

Creating Time Series and Signals

93

Chapter 5 Time Series and Signal Basics

SUBSETTING AND BASIC MANIPULATION OF SERIES

94

Time series and signals can be manipulated in Spotfire S+ in the same
way as most other Spotfire S+ objects. Subscripting a series object
always results in the same type of series object, and row and column
subscripting works the same way as for matrices and data frames (a
series containing only one vector column behaves like a 1-column
matrix for subscripting).

You can use the standard Spotfire S+ mathematical and summary
functions, and arithmetic and comparison operators on series as well.
If you operate on a series with a non-series object, the operation will
be applied to the data in the series, and the return value will generally
be a series. If you operate on two series objects, both will first be
expanded, if necessary inserting NA values, so that they have the same
positions, and then the operation will be performed, so that the
operation always acts on data with the same positions.

There are also functions for extracting or replacing the positions and
data of series: positions and seriesData, respectively, which you
can use to extract the data first if you want to perform an operation on
two series without first aligning positions, or if you want to pass series
data into a function without a series method. The positions and
seriesData replacement functions always maintain the validity of the
series objects, and are therefore safer to use than accessing the data or
positions slots directly.

Some examples of basic series manipulation:

> x <- signalSeries(pos = 1:10, data = 11:20)
> x[3:6,]

Positions 1

3 13
4 14
5 15
6 16

> X

>

15

Positions

1

O W 00 N Oy O B W N

—_

> positions(x)

(1]

1

2

1
F
F
F
F
I
T
T
I
T
T

3

4

5

6

7

Subsetting and Basic Manipulation of Series

8

9

10

95

Chapter 5 Time Series and Signal Basics

INTERPOLATION AND ALIGNMENT OF SERIES

96

The align function can be used to interpolate or align a series to new
positions. In its simplest form, it takes two arguments: a series and a
vector of new positions. The new positions must be compatible with
the series (i.e., calendar or non-calendar), or be convertible to a
compatible class. The default output of align is a new series whose
positions are the new positions vector, and whose data are the rows
from the input series corresponding to the new positions (or NA if the
positions do not exist). For example,

> x <- signalSeries(pos = 1:10, data = data.frame(a = 11:20,
+ b = 21:30))
> align(x, c(3, 5.5, 8))

Positions a b

3.0 13 23
5.5 NA NA
8.0 18 28

The how argument to the align function allows you to specify a
different action to take when the new positions do not exist in the
input series. The options are to drop the position entirely, take the
data from the position before or after the missing position, take the
data from the nearest position, or to interpolate linearly:

> align(x, c(3, 5.5, 8), how

"interp")

Positions a b
3.0 13.0 23.0
5.5 15.5 25.5
8.0 18.0 28.0

> align(x, c(3, 5.5, 8), how = "before")

Positions a b

3.0 13 23
5.5 15 25
8.0 18 28

Interpolation and Alignment of Series

By default, the align function only considers positions “matched” if
they match exactly. However, using the matchtol argument, you can
allow positions that match within a tolerance value to be treated as if
they matched. For example:

> align(x, c(3, 5.1, 5.5, 8), matchtol = 0.2)

Positions a b

3.0 13 23
5.1 15 25
5.5 NA NA
8.0 18 28

If more than one matches within tolerance, the closest-matching
position will be used.

When aligning a calendar-based time series to positions with a
different time zone, normally the times and dates are compared by
comparing their absolute GMT times. However, you also have the
option of aligning or interpolating by comparing the displayed local
clock time by setting the Tocalzone argument to TRUE. See the section
Times and Dates in Spotfire S+ in Chapter 6, Dates, Times, Time
Intervals, and Sequences, for more information about time zones.

The align function also has special arguments that allow a calendar-
based time series to be aligned to a regular time sequence generated
from the argument list, instead of to a specified vector of positions:

> a <- timeSeries(pos = timeCalendar(d = 1:10, h = 1:10),
+ data = data.frame(a 11:20, b =5 * (1:10)))
> align(a, matchtol = 1, by = "days", k.by = 2)

Positions a b
01/01/1960 00:00:00.000 11 5
01/03/1960 00:00:00.000 13 15
01/05/1960 00:00:00.000 15 25
01/07/1960 00:00:00.000 17 35
01/09/1960 00:00:00.000 19 45
01/11/1960 00:00:00.000 20 50

97

Chapter 5 Time Series and Signal Basics

MERGING SERIES

98

The seriesMerge function can be used to take the union or
intersection of two or more series of the same class (calendar or non-
calendar). By default, seriesMerge takes the intersection of the input
series, keeping positions only if all of the input series have them, and
including data from all of the input series’ columns in the order of the
arguments:

> x <- timeSeries(pos = timeCalendar(d = 1:10, y = 1998,
+ format = "%m/%02d/%Y"), data = data.frame(a = 1:10))

>y <- timeSeries(pos = timeCalendar(d = 7:12, y = 1998,
+ format = "%m/%02d/%Y"), data = data.frame(b = 11:16))

> seriesMerge(x, y)

Positions a b
1/07/1998 7 11
1/08/1998 8 12
1/09/1998 9 13
1/10/1998 10 14

The seriesMerge function can also be used to take the union of two
or more series, including positions if any of the input series have
them, and putting NA in missing data cells. To do this, specify "union™
as the pos argument to seriesMerge:

> seriesMerge(x, y, pos = "union™)
Positions a b
1/01/1998 1 NA
1/02/1998 2 NA
1/03/1998 3 NA
1/04/1998 4 NA
1/05/1998 5 NA
1/06/1998 6 NA
1/07/1998 7 11
1/08/1998 8 12

1/09/1998 9 13
1/10/1998 10 14
1/11/1998 NA 15
1/12/1998 NA 16

Merging Series

The seriesMerge function takes the same how, matchtol, and
Tocalzone arguments as the align function (see the previous section).
These arguments govern how position matching is determined and
what data to include if positions do not match. Also, instead of using
the intersection or union of the input series’ positions, you can merge
series by passing in specific positions in the pos argument and these
will be used as the output positions. All of this facilitates very flexible
series merging. For example, here is a command that merges two
series, using the positions of the second for the output, and using the
value before when those positions do not exist in the first series:

> seriesMerge(x, y, pos = positions(y), how = "before")
Positions a b
1/07/1998 7 11
1/08/1998 8 12

1/09/1998 9 13
1/10/1998 10 14
1/11/1998 10 15
1/12/1998 10 16

99

Chapter 5 Time Series and Signal Basics

AGGREGATING AND COARSENING SERIES

100

Aggregation is a series summarization technique that allows you to
take a series with a small position increment and turn it into a coarser
series. For example, if you have a daily series giving production
output, you might want to use that series to calculate monthly
production numbers by summing the daily numbers for each month.
This can be done using the aggregate function:

> x <- timeSeries(data = abs(rnorm(365)),
+ from = timeDate("1/1/1998", format = "%02m/%d/%Y"))

> aggregate(x, by = "months"™, FUN = sum)

Positions 1
01/1/1998 25.96189
02/1/1998 22.42384
03/1/1998 32.35661
04/1/1998 20.46768
05/1/1998 25.89401
06/1/1998 28.85333
07/1/1998 22.12951
08/1/1998 26.86349
09/1/1998 28.09069
10/1/1998 26.93640
11/1/1998 18.17815
12/1/1998 31.58526

The aggregate method for time series, aggregateSeries, can also be
called directly. The arguments that we discuss in this section are
documented in the online help for aggregateSeries.

The series aggregate function takes any summarizing function as its
FUN argument; besides the sum function, other common choices are
mean, median, and a special function hloc that finds the high, low,
open, and close values for financial data. The intervals for
aggregation can be specified using the by argument (for calendar-
based time series only) as in the example above. Alternatively, the
intervals can be specified by giving the break positions directly, as
illustrated in the example below.

Aggregating and Coarsening Series

> aggregate(x, pos = timeCalendar(m = 1:12, y = 1998,
+ format = positions(x)@format), FUN = hloc,

+ colnames = c("high", "low", "open", "close"))
Positions high Tow open close
01/1/1998 2.311537 0.003693723 1.59952744 (0.9121383
02/1/1998 1.845184 0.052118065 1.56433635 0.2658049
03/1/1998 3.167683 0.025329661 0.03012198 0.1842446
04/1/1998 2.016290 0.027755647 1.83146372 0.2721489
05/1/1998 3.074278 0.060317966 0.71533852 0.5911421
06/1/1998 3.314549 0.055421084 1.32587865 0.8268578
07/1/1998 1.883933 0.039954801 0.08814959 0.2040930
08/1/1998 2.388555 0.112880242 1.39607369 0.8352501
09/1/1998 2.922205 0.052163112 0.29260770 0.7463595
10/1/1998 2.310027 0.031709100 0.03170910 2.3100267
11/1/1998 1.831786 0.006232657 1.30919193 0.3495212
12/1/1998 2.166783 0.079449340 1.81978978 0.2861171

The series aggregate function can also use moving sample windows
instead of disjoint sets of observations; this is commonly used to
calculate moving averages with the mean function. Another useful
feature, especially in the case of moving averages, is that the positions
of the output series can be adjusted to anywhere within the sample
window, by specifying a value for the adj argument between 0 and 1.
For example, to take a financial time series and calculate the moving
average over the previous twenty trading days, you might want to
output positions at the end, rather than the beginning, of the sampling
window:

> aggregate(x[1:30,], moving = 20, adj = 1, FUN = mean)

Positions 1
01/20/1998 0.8427219
01/21/1998 0.7775997
01/22/1998 0.6933231
01/23/1998 0.7256408
01/24/1998 0.7149336
01/25/1998 0.7968545
01/26/1998 0.7806625
01/27/1998 0.8288284
01/28/1998 0.7302111
01/29/1998 0.7309572
01/30/1998 0.8124860

101

Chapter 5 Time Series and Signal Basics

PLOTTING TIME SERIES

Calendar-based time series can be plotted using the plot function.
The plot method for time series is called plot.timeSeries, and can
also be called directly with the plotting arguments documented in its
help file. The plot.timeSeries function is flexible enough to create
presentation-quality plots for most time series data, including those
with observation times separated by fractions of a second or multiple
years, regularly or irregularly spaced.

For a simple line plot of a single time series x, just call pTot(x). For
more complicated plots, you can use the examples in this section as a
guide. The examples include:

* Daily high/low/open/close plot of financial data;

* Moving average plot;

+ Plot of intraday trading data spanning several days;
* Multiple related time series on the same plot;

* Plots using Trellis graphics.

Note

For best results, you should use the trellis.device command to set up your plotting device
before calling plot. This ensures that you get the trellis style and color maps, which produce
better-looking plots without further specifying plot parameters such as line style and colors.

High/Low/
Open/Close
Plot

102

One application of the plot function is to make daily high/low/open/
close plots of financial data. For example, we can look at the stock
market correction of October, 1987 by plotting a portion of the djia
data set:

> dow <- djia[positions(djia) >= timeDate("09/01/87") &
+ positions(djia) <= timeDate("11/01/87"), 1:4]
> plot(dow, plot.type = "hloc™)

The plot is shown in Figure 5.1. If you prefer candlestick-style to line-
style indicators for high/low/open/close plots, you can use the
following call instead.

>

Plotting Time Series

plot(dow, plot.type = "hloc™, plot.args = Tist(

+ style = "c"))

Dow Jones Industrial Average

51

g1 HhL ety i

8 # f

i I L "y

¢ {

g 1, 4

o 1

| o
PSRRI AR AR BARAE AR

1987

Figure 5.1: Daily high/low/open/close plot of the Dow jJones Industrial Average during the period surrounding
the stock market crash of 1987.

Moving
Average Plot

Another common financial time series plotting application is to create
a moving average plot. To illustrate this, we first use the aggregate
function (see the section Aggregating and Coarsening Series) to create
a daily high/low/open/close series from the intraday trading data in
the tbond data set:

+ + + + Vv

tb.hloc <- aggregate(tbond,

pos = timeSeq(from = timeDate("1/7/1994™),

to = timeDate("2/4/1995"), by = "days"),
colnames = c("high™, "low™, "open™, "close"),
FUN = hloc, together = T)

103

Chapter 5 Time Series and Signal Basics

98 100 102 104 106 108 110 112 114 116

96

Then we use the aggregate function again to create a 20-business-day
moving average of the closing prices:

> tb.avg <- aggregate(tb.hloc[,"close"], moving = 20,
+ FUN = mean, adj = 1)

We then plot the high/low/open/close series by calling the plot
function, and then add the moving average line to the plot by calling
the Tines.render function with the scale calculated by plot:

> plot.out <- plot(tb.hloc, plot.type = "hloc",

+ main = "T-Bonds")

> lines.render(positions(tb.avg), seriesData(tb.avg),
+ x.scale = plot.out$scale)

This plot is shown in Figure 5.2.

T-Bonds

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb
1994 1995

Figure 5.2: Treasury bill futures, daily high, low, open, and close, with 20-day moving average superimposed.

104

Plotting Time Series

Intraday Another application of the plot function is to plot intraday trading
Trading Data data that spans a few days. For example, the tbond data set used in the
Plot last example has high and low prices every twenty minutes over its

o time span for treasury bond futures trading. We can look at two
weeks of this trading data by calling:

> tb <- tbond[positions(tbond) >= timeDate(™02/01/94™) &
+ positions(tbond) <= timeDate("02/13/94"),]

> plot(tb, plot.type = "hloc")

This plot is shown in Figure 5.3. We use the "hloc" plot type, even
though there are only high and low price values, to draw a line from
the low to high values for each time. The plot function automatically
puts in an axis break for each night when the market is closed.

Treasury Bond Futures Trading Data

116.5
L1

116.0

115.5

115.0

114.5

114.0

11348

12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00
Feb 11394 Feb 319594 Feb 719594 Feb 91394 Feb 111994

Figure 5.3: Two wecks of trading data for treasury bond futures, showing the high and low trading prices
every twenty minutes during trading hours.

105

Chapter 5 Time Series and Signal Basics

Plots
Containing
Multiple Time
Series

106

Another application of the plot function is to plot multiple related
curves on the same plot. For example, the tbauc data sets contain
interest rates for auctions of treasury bills of various maturities. We
can compare them by plotting:

> tb3m <- tbauc.3m[positions(tbauc.3m) >=
+ timeDate("01/01/96") & positions(tbauc.3m) <=
+ timeDate("07/01/97"),]

> tbém <- tbauc.6m[positions(tbauc.6m) >=
+ timeDate("01/01/96") & positions(tbauc.ém) <=
+ timeDate("07/01/97"),]

> tbly <- tbauc.ly[positions(tbauc.ly) >=
+ timeDate("01/01/96™) & positions(tbauc.ly) <=
+ timeDate("07/01/97™),]

> plot(th3m, tbém, tbly)

The plotting function calls seriesMerge (see the section Merging
Series) to merge the three passed-in time series. By default,
seriesMerge would create the intersection of the three time series, but
the plotting function passes in additional arguments from its
merge.args argument. The defaults in merge.args create a union of
the passed-in series, and interpolate each series for times they do not
share, which makes nice-looking line plots for series that do not share
times, as seen in the output in Figure 5.4.

It is also possible to merge the series in different ways to produce
different plots of the three series, by putting different arguments for
seriesMerge in the plot function call. For example, if you want to
avoid interpolating and just view the raw data, you could take the
union of the series but insert NA for times the series do not share, and
then plot with points instead of lines:

> plot(tb3m, tbé6m, tbly, merge.args = list(pos = "union"),
+ plot.args = list(type = "p"))

The output of this plot is shown in Figure 5.5.

Plotting Time Series

3-konth Treasury Bill Auction, average rate

/N

56

5.4
<]

|
1

.
\
=

Yo

L

VL

.
)
L |

4.5 5.0
[|
|
=
-:::\4
Kt
<

Jan Feb Mar mepr M3y Jw Jn AN Sep oot WU Dec Jan Feb Mar spr M3y Jn
1996 1997

Figure 5.4: Treasury bond auction rates for three different maturities of treasury bonds, using the default
plotting arguments.

107

Chapter 5 Time Series and Signal Basics

3-Maonth Treasury Bill Auction, average rate

@
@
o
l.l'._ - o
@
a o
a @
=+ a o
ul o
_ @ o 9 oo o
@ @ @ o o
- @
o L] o oo L] L]
° oo o
T @
- [} o o
== [Te)]] Ty o -
- @ L] &l
a o
o o o] =] o
_ oo o o o o
L] o @ Joo o o
- o o po o L]
o P T aod af= o
= 2 =] oo o “ (=1} o oo o &
=1 oo L] o o d oee | ™ o L
u] L] o o °
T a
o -3
- o
@
- R o o
L]
T]
o
= o
- o a
i a
rrrrrrrryrrryrrrqgrrrrpr e rrrprrrer T rrryrrrrprrrp rrrprrrfrrTrrprTeT

Jax Feb Mar Apr M3y Ju el gag Ssp 0ot Mo Dec Jaw Feb Mar oppr May Jn
1896 1897

Figure 5.5: Treasury bond auction rates for three different maturities of treasury bonds, plotting raw data
without interpolation.

Time Series While the pTot function used in the previous examples is sufficient for
Trellis Plots many purposes, Trellis graphics offers two main advantages over
basic Spotfire S+ plotting:

* The production of split-panel plots with header bars on each
panel;

*+ The ability to create output objects on one plotting device and
print them on another, resulting in attractive plots on both
devices that have sensible default colors, shading, and line

types.
In this section, we demonstrate how to make Trellis plots of time
series.

The basic Trellis plotting function for time series is the trellisPlot
function. The trellisPlot method for time series is called
trellisPlot.timeSeries, and can also be called directly with the

108

Plotting Time Series

plotting arguments documented in its help file. Here is an example
that shows how to create a Trellis plot of part of the djia data set,
view it on the screen in color, and then send the same output to a
postscript file:

> djial <-djia[positions(djia) >= timeDate("09/01/87") &
+ positions(djia) <= timeDate("11/01/87"), 1:4]

trellis.device()

plot.obj <- trellisPlot(djial)
print(plot.obj)

trellis.device("postscript™, file = "out.ps™)
print(plot.obj)

> dev.off()

VvV VvV VvV VvV

The output is shown in Figure 5.6.

| djiat 7
& HL t iF M 114 i f HH*I Lwiﬁ
g 1 1 i
' T
: i
" T
»MH

Sep 7 Sep14 Sep21 Sep 28 Oct 5 Oct 12 Oct 19 Oct 26

1987

Figure 5.6: Tiellis plot of the Dow Jones Industrial Average.

109

Chapter 5 Time Series and Signal Basics

110

The djia data set also contains trading volume information. One way
to look at the price along with the trading volume is to use a split-
panel Trellis plot with different-scaled y-axes for the price and volume
panels. Here is how to create such a plot:

+ Vv Vv + Vv

+

dow <-djia[positions(djia) >= timeDate("09/01/87") &
positions(djia) <= timeDate("11/01/87"),]
trellis.device()

trellisPlot(dow[,5], dow[,1:4],

plot.type = list("stackbar™,"hloc™), layout = c(1,2),
scales = Tist(y = list(relation = "free")))

The output of this plot is shown in Figure 5.7. Note that trellisPlot
plots each series argument on a separate panel, unlike plot. If you
want to plot multiple series on the same panel, you must merge them
first; see the section Merging Series for more details.

| I

Plotting Time Series

P R T BT Y
dow[, 1:4]

1800 2000 2200 2400 2600
|

200000 300000 400000 500000 600000
1

! bt fppdtt
WH,T++ 1{111{+¢+ ty 1*11 f
t
|
f }
H
1!
dow], 5]
AL B L A B L L L B B L BN B
Sep 7 Sep 14 Sep 21 Sep 28 Oct 5 Oct 12 Oct 19 Oct 26

1987

Figure 5.7: Split-panel Trellis plot of the Dow Jones Industrial Average and its trading volume.

Customizing
Time Series
and Signal
Plots

There are several ways that time series and signal plots can be
customized. The basic (non-Trellis) time series plots can be
customized by passing additional arguments to the plot function; see
the help files for plot.timeSeries and plot.signalSeries for more
information. The most common arguments are main, x1lab, and ylab
to change the main plot title and axis labels, and plot.type to change
how the plotted points are rendered (lines, stacked bars, etc.). The
Trellis plotting function trel1isP1ot has similar arguments that allow
you to customize the look of the plot, and in addition you can pass in
the regular Trellis arguments such as scales, main and ylab; see the
help files for trellisPlot.timeSeries, trellisPlot.signalSeries,

111

Chapter 5 Time Series and Signal Basics

112

and trellis.args for more information. The sample plots in the
previous sections show several examples of these types of
customization.

In addition, parameters such as colors, line widths, line types, and
styles can be customized in the Trellis settings data sets. See Chapter
3, Traditional Trellis Graphics, in the Guide to Graphics, and the help
files for trellis.settings and trellis.par.set for more
information. Parameters specific to time series plotting include
parameters for the tick marks (small.tick, medium.tick, and
big.tick), parameters for the tick labels (main.label and
outer.label), parameters for breaks in the time axis (breaks),
parameters for reference grids in the plot region (minor.grid and
major.grid), and data plotting style parameters (style.type,
hloc.line, hloc.candle, and stackbar).

Plotting Signals

PLOTTING SIGNALS

Like calendar-based time series, signals and non-calendar-based time
series can be plotted using the plot function. The plot method for
signals is called plot.signalSeries, and can also be called directly
with the plotting arguments documented in its help file. In this
section, we show how to create plots of signals with regular and
Trellis graphics. Most of the suggestions in the section Plotting Time
Series also apply to signals, and this information is not repeated here.

Note

For best results, you should use the trellis.device command to set up your plotting device
before calling plot. This ensures that you get the trellis style and color maps, which produce
better-looking plots without further specifying plot parameters such as line style and colors.

Basic Signal
Plotting

Simple signal plots can be generated by calling the plot function,
which plots the signal’s y-values against its positions. For example,
plot the say.wavelet speech signal data set by calling:

> plot(say.wavelet)

The plot function also allows you to specify logarithmic axes (which
would not be very appropriate here), labels for the axes, a main title,
and other options. By default, the labels are taken from the series; see
the section Customizing Time Series and Signal Plots. For instance,
we can add labels to the simple plot:

> plot(say.wavelet, main = "Speech Signal",
+ ylab = "Amplitude")

The output is shown in Figure 5.8.

113

Chapter 5 Time Series and Signal Basics

Amplitude

Figure 5.8:

114

Speech Signal

100

50

-50

-100

I

0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7

seconds

Signal plot of a voice saying “wavelet.”

Signals with complex values must be converted to real numbers
before plotting. By default, the p1ot function uses the Mod function to
take the modulus of complex numbers. However, you can supply a
different function if you wish by using the complex.convert argument
to plot. Also, you can make a dB plot of a signal representing a
spectrum by setting the dB argument to True, and semi-log or log-log

plots by setting the Tog.axes argument to "x", "xy", or "y".

Multiple signals and multivariate signals can also be plotted using the
plot function, just as for time series. See the section Plots Containing
Multiple Time Series.

Plotting Signals

Trellis Plots of While the p1ot function used in the signal plotting example above is
Signa|s sufficient for many purposes, Trellis graphics offers two main
advantages over basic Spotfire S+ plotting:

* The production of split-panel plots with header bars on each
panel, including separate panels for real and imaginary parts
or phase and magnitude, if desired;

+ The ability to create a plotting output object on one device
and print it on another, resulting in attractive plots on both
devices that have sensible default colors, shading, and line

types.

In this section, we demonstrate how to make Trellis plots of signals.

The basic Trellis plotting function for signals is the trellisPlot
function. The trellisPlot method for signals is called
trellisPlot.signalSeries, and can also be called directly with the
plotting arguments documented in its help file. For instance, to make
a Trellis plot of the say.wavelet speech signal:

> trellisPlot(say.wavelet)

This plot is very similar to the basic non-Trellis plots we saw in the
last section, and like the non-Trellis plots, you can use the 1o0g.axes
and dB arguments to make semi-log, log-log, or dB plots.

For complex signals, Trellis plotting provides much more flexibility
than the basic plotting function. To explore this, we add an imaginary
component to the say.wavelet speech signal:

> cplx.spch <- say.wavelet * exp(-360i * pi *
+ positions(say.wavelet))

The basic plotting function allows us to plot either the modulus, real
part, imaginary plot, or phase of this signal; using Trellis graphics, we
can plot all four in separate panels with separate y-axis scales. The
following command produces the Trellis graph shown in Figure 5.9.
We plot the phase portion of the new signal with a small plotting
symbol so that we can see patterns. We plot the other components of
the signal using lines by default demodulation at 180 Hz.

> trellisPlot(cplx.spch, polar = T, real.im =T,
+ scales = 1ist(y = Tist(relation = "free")), pch =".")

115

Chapter 5 Time Series and Signal Basics

0.0 041 02 03 04 05 06 0.7

c v b b b b Lo b by c v b b b b b b L

cplx.spch Real cplx.spch Im
g | g |
8 8
o A o
] i I
] 1 \‘ |
3] 3] |
g 1 g 1
cplx.spch Magnitude cplx.spch Phase
] ‘5
g8 4 o
] s |
4 o
7
1 5 |
] o
s 4

LA L B L L e B B E S

0.0 0.1 02 03 04 05 06 07

Figure 5.9: Complex signal Trellis plot.

116

DATES, TIMES, TIME
INTERVALS, AND SEQUENCES

Introduction 118
Times and Dates in Spotfire S+ 119
Creating Time/Date Objects from Character Data 119
Displaying Time/Date Objects 121
Creating Time/Date Objects from Numeric Data 124
Basic Operations on Time/Date Objects 125
Calculating Holiday Dates 125
Using Time Zones 127
Time Intervals in Spotfire S+ 133
Creating Time Span Objects from Character Data 133
Displaying Time Span Objects 135
Creating Time Span Objects from Numeric Data 136
Basic Operations on Time Span Objects 137
Relative Time Objects 137
Time Sequences in Spotfire S+ 141
Numeric Sequences in Spotfire S+ 144
Representing Events in Spotfire S+ 146

117

Chapter 6 Dates, Times, Time Intervals, and Sequences

INTRODUCTION

118

In many data analysis applications, some aspect of the data is related
to dates and/or times of the day. For instance, most economic data are
related to the calendar, and analysis involving multiple economic
data sets usually involves combining data pertaining to the same
period. Financial trading data typically match a traded price and
quantity with the time of day of the trade, and the calculation of
investment returns and other analyses depend on the time or date of
the trade. In these and countless other examples, numeric or
categorical data correspond to particular dates or times of day; this
type of data is known as time series data, and its analysis is discussed in
detail in Chapter 5, Time Series and Signal Basics, and Chapter 27 of
the Guide to Statistics, Volume 2, Analyzing Time Series and Signals.
Separate from the analysis of time series, in this chapter we discuss
the underlying date and time data itself and related issues, such as
representing time intervals, regular sequences, and one-time or
recurring events in Spotfire S+.

Times and Dates in Spotfire S+

TIMES AND DATES IN SPOTFIRE S+

Creating Time/
Date Objects
from Character
Data

Times and dates in Spotfire S+ are stored in objects of class
"timeDate", which, besides storing the date and time of day to the
nearest millisecond, also store a display format and time zone. The
following sections show how to use time/date objects in Spotfire S+,
including how to create time/date objects from character data, display
times and dates, create time/date objects from numeric data, use time
zones, calculate holiday dates, and perform basic subsetting and
manipulation of time/date objects.

The timeDate and as functions can be used to read times and/or
dates from character strings using the default input format:

> as(c("1/1/97™, "2/1/97", "mar 1, 1997",
+ "April 1, 1997 3PM™), "timeDate")

[1] 01/01/1997 00:00:00.000 02/01/1997 00:00:00.000
[3] 03/01/1997 00:00:00.000 04/01/1997 15:00:00.000

> timeDate(c("1/1/97", "2/1/97", "mar 1, 1997",
+ "April 1, 1997 3PM™))

[1] 01/01/1997 00:00:00.000 02/01/1997 00:00:00.000
[3] 03/01/1997 00:00:00.000 04/01/1997 15:00:00.000

As you can see, when x is a character vector, timeDate(x) and
as(x,"timeDate") produce the same output, and the default input
format is somewhat flexible. The timeDate function also allows you to
specify your own input format using the in.format argument:

> timeDate(c("1 Jan 1992 skip 2", "1 Jan 1992 skip 3",
+ "1 Jan 1992 skip 4"), in.format = "%d %m %y %w %H")

[1] 01/01/1992 02:00:00.000 01/01/1992 03:00:00.000
[3] 01/01/1992 04:00:00.000

> timeDate(c("1 PM™, "2 PM", "3 AM"), in.format = "%H %p")

[1] 01/01/1960 13:00:00.000 01/01/1960 14:00:00.000
[3] 01/01/1960 03:00:00.000

119

Chapter 6 Dates, Times, Time Intervals, and Sequences

120

> timeDate(c("3/1/1992"™, "15/5/1998™),
+ in.format = "%d/%m/%y", format = "%d/%m/%y")

[1]1 3/1/92 15/5/98

Input formats are single-element character vectors consisting of input
fields (which start with “%” and end with a letter) and other characters

W.” «w”»

(such as letters, “:”, €.”, “/”) that must be matched exactly. Commonly
used input specifications include:

%d | Input day of month as integer (1-31)

%m | Input month as integer (1-12) or character string

%y Input year as integer; add current century if 2-digit

%H Input hour of day as integer (0-23)

M Input minute of day as integer (0-59)

%S | Input second of day as integer (0-59)

AN Input tenths, hundredths, or thousandths of a second as if following
decimal point

A Input time zone name

%fc | Skip # characters

%$c | Skip rest of input string

BW

Skip one word

Times and Dates in Spotfire S+

Notes

The current century for the %y specification is controlled by options("time.century"). The
default setting is 1930, which causes 30-99 to be interpreted as 1930-1999 and 00-29 as 2000-
2029.

The month names and abbreviations are controlled by options("time.month.name") and
options("time.month.abb"). They can be changed to use languages other than English for dates.

The default input format is stored in options("time.in.format"). In Microsoft Windows®, this
is set according to Windows Regional Settings. To set the option so that it is equivalent to the

default values in Spotfire S+ for UNIX®, add the following expression to your S.init file:

options(time.in.format = "[%m[/1[.1%d[/1[, 1%y [%HL:%M[:%SL.%N111[%p1LCC1%3Z[)111",
time.out.format = "%02m/%02d/%Y %02H:%02M:%02S.%03N",
time.out.format.notime = "%02m/%02d/%Y")

There is also a list of sample formats in format.timeDate.

See the help document on the timeDate class for a complete description of time input formats.

Displaying Time/date objects have a default display and printing format, as seen
Time/Date in the previous section, that displays both the date and time of day in

. a standard, fixed-width format. You can change the output display
ObleCts format of a time/date object, for instance, to display just the time,
display just the date, print the day of the week, or use different
separation characters. One way to do this is to include a format
argument in the timeDate function when you create the time/date
object:

> timeDate(c("1 PM™, "2 PM", "3 AM"), in.format = "%H %Zp",
+ format = "%02H:%02M")

[1] 13:00 14:00 03:00

You can also change (or view) the format on an existing time/date
object by accessing the format slot:

> x <- timeDate(c("1/3/1998", "2/5/2014"™, "10/17/1857"))
> x@format = "%2m/%02d/%y"
> x@format

121

Chapter 6 Dates, Times, Time Intervals, and Sequences

[1] "%2m/%02d/%y"

> X

[1] 1/03/98 2/05/14 10/17/1857
> x@format = "%2d/%02m/%y"

> X

[1] 3/01/98 5/02/14 17/10/1857

Output formats are single-element character vectors consisting of
output fields (which start with “%” and end with a letter) and other
@.»” W »

characters (such as letters, “:”, “”, “/”) that are simply printed.
Commonly used output specifications are listed in the table below.

%d Print day of month as integer (1-31)

%a Print weekday abbreviation

%A Print weekday full name

%m Print month as integer (1-12)

%b Print month abbreviation

%B Print month name

%Y Print 4-digit year

%C Print 2-digit year, subtracting off the century

%y Print 2-digit year if within current century, otherwise 4-digit year
%H Print hour of day as integer (0-23)

%1 Print hour in 12-hour clock format as integer (1-12)
%p Print AM or PM string

%M Print minute of day as integer (0-59)

122

Times and Dates in Spotfire S+

%S Print second of day as integer (0-59)

%03N | Print decimal fraction of second, using 3 decimal places (decimal
point not included)

%z Print time zone name

Notes

To make an integer field print with a fixed width, put a number representing your desired width
between the % and the output code. For example, if the day of the month is 7 and it is printed
with %d, it will appear as “7”; if it is printed with %2d, it will appear as “ 7” with a space before the
number. You can also pad with zeros instead of spaces, by putting a zero before the field width,
for example, %02d to print as “07”. The field width must be large enough to hold the entire
number, or “*” asterisk characters will be inserted in the field to indicate overflow. Character
fields can also be made fixed-width in the same way: the leftmost characters are printed if the
field is too short, and extra spaces are added if it’s too long. Padding with zeros is not allowed for
character fields, and the field width can be shorter than the character string to make
abbreviations.

The current century for the %y specification is controlled by options("time.century™). The
default setting is 1930, which causes 1930-2029 to be printed in two digits, and everything else in
four digits.

The day and month names and abbreviations are controlled by options("time.day.name"),
options("time.day.abb"), options("time.month.name"), and options("time.month.abb™).

The default output format is stored in options("time.out.format"). In Microsoft Windows, this
is set according to Windows Regional Settings. To set the option so that it is equivalent to the
default values in Spotfire S+ for UNIX, add the following expression to your S.init file:

options(time.in.format = "[%m[/1[.1%d[/10,1%y][%HL: %ML :%SC.%N1110%pILCC1%3Z2[)111",
time.out.format = "%02m/%02d/%Y %02H:%02M:%02S.%03N",
time.out.format.notime = "%02m/%02d/%Y")

There is also a list of sample formats in format.timeDate. The output format in
options("time.out.format.notime") is used for time/date objects with date information only; if
this option is not defined, the default format is used instead.

See the help document on the timeDate class for a complete description of time output formats.

123

Chapter 6 Dates, Times, Time Intervals, and Sequences

Creating Time/ There are several types of numeric data that can be converted to

Date Objects
from Numeric
Data

124

time/date objects. One possible scenario is that you know the month,
day, year, hour of the day, minute, and/or second, and you want to
convert that information into a time/date object. This is done using
the timeCalendar function, as illustrated in the following commands:

> timeCalendar(m=3, d=1:10, y=1998, format="%d/%m/%y")

[1]1 1/3/98 2/3/98 3/3/98 4/3/98 5/3/98 6/3/98
[6]1 7/3/98 8/3/98 9/3/98 10/3/98

> timeCalendar(h=0:23, format="%02H:%02M")

[1] 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00
[9] 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00
[17] 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Another type of numeric data that can easily be converted to a time/
date object is numeric data representing the number of days since
some date origin or representing the time of day as an elapsed time.
The easiest data to convert represent the date and time as the number
of days (possibly including fractional days) since the standard Spotfire
S+ date origin of January 1, 1960. This type of data can be converted
to a time/date object using the as function:

> as(c(-1, 0, 1, 1.5), "timeDate™)

[1] 12/31/1959 00:00:00.000 01/01/1960 00:00:00.000
[3] 01/02/1960 00:00:00.000 01/02/1960 12:00:00.000

If you have numeric data representing the number of days since a
different date origin, you can either first subtract off the number of
days between your date origin and January 1, 1960 or use the
timeDate function’s julian and in.origin arguments:

> timeDate(julian = 1:10, in.origin = c(month=1, day=1,
+ year=1998))

[1] 01/02/1998 01/03/1998 01/04/1998 01/05/1998 01/06/1998
[6] 01/07/1998 01/08/1998 01/09/1998 01/10/1998 01/11/1998

Basic
Operations on
Time/Date
Objects

Calculating
Holiday Dates

Times and Dates in Spotfire S+

Time/date objects can, in most cases, be manipulated like most other
Spotfire S+ objects. For instance, subscripting works the same as for
other vectors, and you can use the Tength function to count or set the
number of elements. You can concatenate time/date objects using the
concat function, and you can convert them to character, numeric,
and integer vectors using the as function.

Various mathematical operations are also defined for time/date
objects. Numbers can be added to or subtracted from time/date
objects: The integer part is added to or subtracted from the date and
the fractional part to the time of day, carrying over into the date as
necessary. Subtraction of two time/date objects (or using the diff
function) results in a time span object; see section Time Intervals in
Spotfire S+. Time spans and other time interval objects can be added
to or subtracted from time/date objects. Time/date objects can be
compared with each other and with numbers using the usual
comparison operators. Some examples:

> x <- timeDate(c("1/1/1998 2:00", "1/5/1998 15:00"))
>y <- timeDate(c("1/1/1998 3:00", "1/5/1998 12:00"))
> x + 1.5

[1] 01/02/1998 14:00:00.000 01/07/1998 03:00:00.000
> x <y

[I1] TF

Many other basic Spotfire S+ vector manipulation functions also
work on time/date objects; mean, quantile, max, floor, sort, rev,
match, unique, and cut are some examples. There are also some
special functions that operate only on time/date objects, such as days,
months, hours, and mdy. Operations which do not make sense for
times and dates cannot be performed (for example, adding two time/
date objects, taking the logarithm, or multiplying or dividing a time/
date object by a number).

There are several ways to calculate the dates of holidays in Spotfire
S+. First, many holidays, including New Year’s Day, Christmas, and
Australia Day, have built-in functions to calculate them. For the
complete list, see the help document for hoTiday.Christmas. You can
either call these functions directly or use the holidays function to
calculate a sorted vector of multiple holidays.

125

Chapter 6 Dates, Times, Time Intervals, and Sequences

For example:
> holiday.NewYears(1998:2001)
[1] 01/01/1998 01/01/1999 01/01/2000 01/01/2001
> holidays(1998:2001, c("Christmas", "NewYears"))

[1] 01/01/1998 12/25/1998 01/01/1999 12/25/1999 01/01/2000
[6] 12/25/2000 01/01/2001 12/25/2001

There are also several Spotfire S+ functions you can use to calculate
dates of holidays that are not built in or to write your own holiday
functions. The holiday.fixed function calculates the date of a
holiday that falls on the same date every year. The
holiday.weekday.number function calculates the date for a holiday
that falls, for example, on the third Monday in May or the last
Thursday in October every year. The holiday.nearest.weekday
function moves a holiday that falls on a weekend to the nearest
weekday. Here are some examples:

Christmas
> holiday.fixed(1998:2001, 12, 25)

[1] 12/25/1998 12/25/1999 12/25/2000 12/25/2001

Memorial Day (last Monday in May)
> holiday.weekday.number(1998:2001, 5, 1, -1)

[1] 05/25/1998 05/31/1999 05/29/2000 05/28/2001

Weekday nearest to Christmas
> holiday.nearest.weekday(holiday.fixed(1998:2001, 12, 25))

[1]1 12/25/1998 12/24/1999 12/25/2000 12/25/2001

Tip

If you define a new holiday-calculating function that takes a vector of years as its one argument
and you name it, for example, holiday.MyNewDay, then you will be able to access it through the
holidays function by calling holidays(years, c("Christmas", "MyNewDay")), just like the built-
in holidays.

126

Using Time
Zones

Built-in and
Customized Time
Zones

Times and Dates in Spotfire S+

Many users will be able to completely ignore time zones in their data
analysis involving times and dates, as we have done up to this point in
the chapter. However, time zones do play a role in some tasks. For
example, in analyzing how world financial markets react to various
types of events, it is important to know when the news of each event
reached each market, in each market’s local time zone. In addition, in
an analysis involving calculations of time intervals, you should take
into consideration whether the time changes to or from daylight
savings (summer) time within the data set in order to calculate the
correct intervals.

Spotfire S+ provides extensive support for time zones in order to
facilitate such analysis. In this section, we discuss how to define time
zones and names for time zones, create time/date objects with time
zones, convert times to different time zones, and perform various
mathematical operations using time zones.

Internally, all times and dates in Spotfire S+ are stored in Greenwich
Mean Time (GMT, more correctly, but perhaps less commonly,
known as Universal Coordinated Time or UTC). GMT has no
daylight savings time and is used as the reference for all other time
zones. Spotfire S+ also has built-in support for all 24 hourly standard
time zones around the planet, as well as many time zones that change
to daylight savings time in the summer. Each of the built-in time
zones has a fixed name; the zones and their names can be found in
the help document on the timeZone class.

Different users around the world will want to refer to the same time
zones using different names and abbreviations. At the same time, the
fixed names of the built-in time zones need to be unambiguous and
not customizable. To provide flexibility to the user, the following
scheme is used. The user begins by defining the alias names he or she
wants to use for each built-in time zone by using the timeZonelList
function. This can include adding new alias names or redefining
existing names, though it is not advisable to redefine the GMT alias.
Spotfire S+ then uses the alias names for all time zone operations,
finding the translation to built-in names from the time zone list. For
instance, a user in the United States would probably want to have EST
refer to the U.S. Eastern time zone, which is the default entry in the
time zone list. However, a user in Canada would probably prefer to
have EST refer to the Eastern time zone for Canada. The two are
almost the same, but Canada and the U.S. had different daylight

127

Chapter 6 Dates, Times, Time Intervals, and Sequences

128

savings time changes during some years during the oil crisis in the
1970s, and the two built-in time zones reflect this. The Canadian user
can set up this behavior by calling:

> old.list <- timeZonelList(EST = timeZoneC("can/eastern"))

You can see all the current time zone names in the time zone list by
calling the timeZonelList function with no arguments, and the
previous version of the time zone list is returned from a call, like the
example above, that modifies the list.

Another customization that is useful for time zone names comes into
play because in some countries, the names of time zones change
depending on whether it is daylight savings time or not. For instance,
the U.S. Eastern time zone is called “Eastern Daylight Time” or EDT
when it is on daylight savings time and “Eastern Standard Time” or
EST when it is not. Spotfire S+ has automatic support for printing
changing time zone names such as these if a time zone alias of the
form “XXX/YYY” is defined, where XXX is the name of the time
zone in standard time and YYY is the name of the zone in daylight
savings time. For example, here is an entry from the default time zone
list for the U.S. Eastern time zone:

> timeZonelList()[["EST/EDT"]]

timeZoneC("us/eastern™)

Finally, users can also customize time zones by creating their own
zones with or without daylight savings time, instead of using the built-
in time zones. User-defined time zones are stored in class
"timeZoneS" and created with the timeZone$S function; like new alias
names, they must also be added to the time zone list. For instance, to
use a time zone for a hypothetical Island Nation offset 30 minutes
(1800 seconds) from GMT year-round, with abbreviation INT, call:

> old.list <- timeZonelList(INT = timeZoneS(offset=1800))

The following command creates a time zone for another Hypothetical
Country whose time is normally offset one hour from GMT. The
country had (one hour changing) daylight savings time that started on
the last Sunday in April and ended on the last Sunday in September
through 1989, and then on the first Sundays in May and October
thereafter. We abbreviate this time zone as HCT.

> old.list <- timeZoneList(HCT = timeZoneS(offset = 3600,

Daylight Savings
and Built-In Time
Zones

Creating and
Displaying Time/
Date Objects
With Time Zones

Times and Dates in Spotfire S+

yearfrom = c(-1, 1990), yearto = c(1989, -1),
hasdaylight = c(T, T), dsextra = c(3600, 3600),
monthstart = c(4, 5), codestart = c(2, 3),

daystart = c(0, 0), xdaystart = c(0, 1),

timestart = c(7200, 7200), monthend = c(9, 10),

codeend = c(2, 3), dayend = c(0, 0), xdayend = c(0, 1),
timeend c(7200, 7200)))

+ 4+ + + + + +

See the documentation for the timeZoneS function and the timeZone
class for more information.

With the exception of GMT, the time zones built into Spotfire S+
automatically correct for summer time, also known as daylight savings
time. Thus, for example, the default US Pacific time zones PST
(Pacific Standard Time) and PDT (Pacific Daylight Time) refer to
GMT minus 8 hours in the winter and GMT minus 7 hours in the
summer, respectively. Despite the time difference, Spotfire S+ treats
the two time zones identically.

A time that occurs within the one-hour time change period and which
includes a summer time zone is poorly-defined: an hour is skipped in
the spring and an hour is repeated in the autumn. Spotfire S+ accepts
such times without warning, interpreting “illegal” times as summer
time during the spring changeover and winter time during the
autumn change. If your data include such times, you should use a
time zone such as GMT that does not correct for summer time.
Alternatively, you can redefine the summer and winter time zones to
be fixed offsets from GMT. For example:

> timeZonelist(PDT = timeZoneS(offset = -25200), # GMT-7
+ PST = timeZoneS(offset = -28800)) # GMT-8

If you choose to redefine time zones in this way, you should ensure
that all times are correctly assigned to the summer and winter time
zones as appropriate; Spotfire S+ will no longer make automatic
corrections.

Once the desired time zone names are defined as the names of the
time zone list (see previous sections), you can create time/date objects
with time zones by using one of the names as the zone argument in
the timeDate or timeCalendar function. You can see the time zone by
accessing the time.zone slot of the time/date object.

For example:

129

Chapter 6 Dates, Times, Time Intervals, and Sequences

130

> x <- timeDate("Jan 1, 1998 2:04 PM", zone = "PST")
> X

[17 01/01/1998 14:04:00.000
> x@time.zone
[1] IIPSTII

> x <- timeCalendar(m=1, d=1:10, y=1998, zone="PST")

Character strings containing times and dates with time zones can be
converted to time/date objects using the timeDate function, in the
same way as character strings without time zones. Since each element
of a character vector potentially has a different time zone, if you do
not supply a zone argument, the result will be converted to GMT:

> x <- timeDate(c("Jan 1, 1998 2:04 PM (PST)",
+ "July 1, 1998 10:54 AM (PDT)"))

> X

[1] 01/01/1998 22:04:00.000 07/01/1998 17:54:00.000
> x@time.zone

[1]1 “GMT"

By supplying a zone argument, you can display the result in the
desired time zone:

> x <- timeDate(c("Jan 1, 1998 2:04 PM (PST)",
+ "July 1, 1998 10:54 AM (PDT)"), zone = "PST/PDT™)

> X

[1] 01/01/1998 14:04:00.000 07/01/1998 10:54:00.000

You may also wish to change the output format of the time/date
object, using the format argument, so that the time zone is displayed.
The %z format specification inserts the time zone name. If the name
contains a “/” character, it uses the part before the first “/” as the
name for standard time and the part after for daylight time. The
command below illustrates this.

> timeDate(c("Jan 1, 1998 2:04 PM (PST)",
+ "July 1, 1998 10:54 AM (PDT)"), zone = "PST/PDT",

Changing and
Converting
Between Time
Zones

Times and Dates in Spotfire S+

+ format = "%02m/%02d/%Y %02H:%02M (%z)")

[1] 01/01/1998 14:04 (PST) 07/01/1998 10:54 (PDT)

Internally, as mentioned previously, all times in Spotfire S+ are
stored in GMT, and the time zone slot of a time/date object is an
overlay for display and other calculations. Because of this storage
architecture, time zone conversions in Spotfire S+ only require
changing the character string in the time zone slot of your time/date
object to a new valid time zone name. For example:

> x <- timeDate(c("Jdan 1, 1998 2:04 PM (PST)",

+ "July 1, 1998 10:54 AM (PDT)"), zone = "PST/PDT",
+ format = "%02m/%02d/%Y %02H:%02M (%z)")

> X

[1] 01/01/1998 14:04 (PST) 07/01/1998 10:54 (PDT)

> x@time.zone <- "EST/EDT"
> X

[1] 01/01/1998 17:04 (EST) 07/01/1998 13:54 (EDT)

Spotfire S+ also supports another kind of time zone conversion that
does change the internal time storage. This is useful if you have
created a time/date object in the default GMT time zone that really
should have the same displayed time of day but in a different time
zone. For example, if your time/date object has a time of 2 PM GMT
and you change the time zone slot to EST, the time would become 9
AM EST, but you really want it to be 2 PM EST. This situation
typically arises when you create a time/date object from data that
actually refers to a time zone other than GMT without using the zone
argument or other time zone indicators in character data, when using
the holiday generating functions, or when you have been using time/
date objects without considering time zones and then realize they are
important to your analysis. To make this type of time zone
conversion, use the timeZoneConvert function:

> x <- timeDate(c("Jan 1, 1998 2:04 PM",
+ "July 1, 1998 10:54 AM"))
> X

[1] 01/01/1998 14:04:00.000 07/01/1998 10:54:00.000

131

Chapter 6 Dates, Times, Time Intervals, and Sequences

Mathematical
Operations and
Alignment With
Time Zones

132

> x@time.zone
[1] uGMTu

> x <- timeZoneConvert(x, "PST/PDT")
> X
[17 01/01/1998 14:04:00.000 07/01/1998 10:54:00.000

> x@time.zone
[1] "PST/PDT"

Every time/date object (except those whose time zone is GMT) has two
different times associated with each element of the vector: the time in
the local time zone and the absolute GMT time. Most mathematical
operations operate on the GMT time. For instance, if you compare
two time/date objects using the standard Spotfire S+ comparison
operators, their GMT times will be compared. If you perform defined
arithmetic operations on time/date objects, these operations will also
operate on the GMT time, but if the result is still a time/date object, it
will not lose its time zone. For the most part, combining numbers and
time interval objects with time/date objects will look as though it is
done in the local time zone. The only exception is if the operation
crosses a daylight savings time change, where if you add, for example,
3 hours, you might see an apparent 2-hour or 4-hour local zone time
change. In addition, coercion using the as function to and from
numeric objects is always done in GMT.

There are several operations that do consider the local time zone;
display operations and conversion to and from character data are the
main examples. In addition, the special functions that extract portions
of the time/date object, such as days, months, hours, and mdy, extract
them in the local time zone. It is also possible to align and merge time
series objects using each object’s local time zone (for example,
treating 2 PM Pacific Standard Time, 2 PM GMT, and 2 PM Japan
Standard Time as the same absolute time, instead of converting them
all to GMT). This is done by setting the 1ocalzone argument to the
align and seriesMerge functions to TRUE. For more information
about aligning and merging, see section Interpolation and Alignment
of Series and section Merging Series in Chapter 5, Time Series and
Signal Basics.

Time Intervals in Spotfire S+

TIME INTERVALS IN SPOTFIRE S+

Creating Time
Span Objects
from Character
Data

Time intervals are another type of time-related data in Spotfire S+.
Because they are not associated with a particular calendar date or
time of day, they are different from the time/date objects we have
been discussing so far in this chapter. There are two types of time
interval objects in Spotfire S+. The first is represented by the
timeSpan class, which stores time intervals as an absolute number of
days and milliseconds; when you subtract two timeDate objects in
Spotfire S+, you get a timeSpan object. The second type of time
interval is represented by the timeRelative class, which stores time
intervals in terms of less absolute units, such as business days, partial
months, and years. The following sections show how to use these two
types of time interval objects in Spotfire S+, including how to create
them from character data, display them, create time span objects from
numeric data, perform basic subsetting and manipulation, and
combine them with time/date objects.

One way to create a time span object is to subtract two time/date
objects:

> timeDate(c("Jan 1 1998 3:05PM", "Jan 5 1998 4:10PM")) -
+ timeDate("Jan 1 1998 1AM™)

[1] 0d 14h 5m Os OMS 4d 15h 10m Os OMS

In some cases, you may also want to create a time span object by
converting a character string. This can be done using the as function
or the timeSpan function:

> as(c("34 days 3 hours 1 min", "-18d -2h -5s"),
+ "timeSpan")

[1] 34d 3h 1m O0s OMS -18d -2h Om -5s OMS
> timeSpan(c("34 days 3 hours 1 min"™, "-18d -2h -5s"))

[1] 34d 3h Im Os OMS -18d -2h Om -5s OMS

133

Chapter 6 Dates, Times, Time Intervals, and Sequences

As you can see, timeSpan(x) and as(x,"timeSpan") produce the
same output when x is a character vector. The timeSpan function is
more flexible than the as function because it also allows you to
specify a different input format using the in.format argument:

> timeSpan(c("3:04:02", "5:23:45"), in.format = "%H:%M:%S")

[1] 0d 3h 4m 2s OMS 0d 5h 23m 45s OMS

Input formats are single-element character vectors consisting of input
fields (which start with “%” and end with a letter) and other characters
“W.»” W »

(such as “?, ., “/”) that must be matched exactly. Commonly used
input specifications include:

%d Input number of days as integer

%y | Input number of years (always 365 days) as integer

%H Input number of hours as integer

M Input number of minutes as integer

%S Input number of seconds as integer

%N Input number of milliseconds as integer

%fc | Skip # characters

%$c | Skip rest of input string

%w | Skip one word

Notes

The default input format is stored in options("tspan.in.format"). There is also a list of sample
formats in format.timeSpan.

Input specifications can be duplicated, since each one encountered simply adds the given time
quantity to the time span being read.

See the help document on the timeSpan class for a complete description of time span input
formats.

134

Displaying
Time Span
Objects

Time Intervals in Spotfire S+

Time span objects have a default display and printing format, as seen
in the previous section, that displays the number of days, hours,
minutes, seconds, and milliseconds in the time span. You can also
change the display format of a timeSpan object, for instance, to
display weeks or years instead of a large number of days or to change
the order of output. One way to do this is to include a format
argument in the timeSpan function when you create the time span
object:

> timeSpan(c("3:04:02", "5:23:45"), in.format = "%H:%M:%S",
+ format = "%02H:%02M:%02S™)

[1] 03:04:02 05:23:45

You can also change the format on an existing time span object by
accessing the format slot:

> x <- timeSpan(c("3:04:02", "5:23:45"),

+ in.format = "%H:%M:%S")

> x@format="%H hours %M minutes %S seconds"
> X

[11 3 hours 4 minutes 2 seconds
[2] 5 hours 23 minutes 45 seconds

Output formats are single-element character vectors consisting of
output fields (which start with “%” and end with a letter) and other
[{(3%2] “w

characters (such as letters, “:”, “.”, “/”) that are simply printed.
Commonly used output specifications include:

%d | Print total number of days as integer

%D | Print number of days subtracting off full 365-day years as integer

%t | Print number of days subtracting off full 7-day weeks as integer

%W Print number of full weeks as integer

ky Print number of full 365-day years as integer

%H Print number of hours subtracting off full days as integer

%M | Print number of minutes subtracting off full hours as integer

135

Chapter 6 Dates, Times, Time Intervals, and Sequences

%S Print number of seconds subtracting off full minutes as integer

%s Print number of seconds subtracting off full days as integer

AN Print number of milliseconds subtracting off full seconds as integer

Notes

To make an integer field print with a fixed width (padded with zeros if necessary), put 0#, where
is your desired width between the % and the output code. For example, if the number of days is
7 and it is printed with %d, it will appear as “7”; if it is printed with %02d, it will appear as “07”. If
you prefer spaces instead of Os, use, for example, %2d. Be sure to leave room for a “-” sign if it is
possible that the number could be negative.

The default input format is stored in options("tspan.out.format"). There is also a list of sample
formats in format.timeSpan.

See the help document on the timeSpan class for a complete description of time span output
formats.

Creating Time There are two ways to convert numeric data into time span objects.
Span Objects First, you can use the as function to convert numbers representing

. days and fractions of days directly to time spans:
from Numeric 4 y Y P

Data > as(c(-1.2, 3.4, 5.6), "timeSpan")

[1] -1d -4h -48m 0s OMS 3d 9h 36m 0s OMS
[3] 5d 14h 24m 0s OMS

Second, you can use the timeSpan function’s julian and ms
arguments to convert integer vectors of days and milliseconds into
time spans:

> timeSpan(julian = 1:4, ms = (5:8) * 1000)

[1] 1d Oh Om 5s OMS 2d Oh Om 6s OMS
[3]1 3d Oh Om 7s OMS 4d Oh Om 8s OMS

136

Basic
Operations on
Time Span
Objects

Relative Time
Objects

Time Intervals in Spotfire S+

Time span objects can, in most cases, be manipulated like most other
Spotfire S+ objects. For instance, subscripting works the same as for
other vectors, and you can use the Tength function to count or set the
number of elements. You can concatenate time span objects using the
concat function, and you can convert them to character, numeric,
and integer vectors using the as function.

Various mathematical operations are also defined for time span
objects. You can perform addition, subtraction, multiplication, and
division between time spans and numbers, addition and subtraction
between time spans, and addition and subtraction between time spans
and time/date objects. Time span objects can also be compared using
the usual comparison operators. Many other basic Spotfire S+ vector
manipulation functions also work on time span objects; mean,
quantile, max, floor, sort, rev, match, unique, and cut are some
examples. Operations that do not make sense for time spans cannot
be performed (for example, taking the logarithm or the cosine).

A few examples:

> x <- as(c(-1.2, 3.4, 5.6), "timeSpan™)
>y <- timeSpan(julian = 1:4, ms = (5:8) * 1000)
> x[1:2] - y[3:4]

[1] -4d -4h -48m -7s OMS 0d -14h -24m -8s OMS
> x * 5

[11 -6 17 28

> floor(x)

[1] -2d Oh Om Os OMS 3d Oh Om Os OMS 5d Oh Om 0s OMS

Notice that the operation x*5 returns a numeric vector, while
floor(x) returns an object of class "timeSpan". When working with
timeSpan objects, basic arithmetic operations such as multiplication
return numeric objects. This allows you to pass the results into other
functions that may not have timeSeries methods, without requiring
you to perform additional conversions.

Unlike time span objects, which store absolute time differences (for
example, numbers of milliseconds), relative time objects store time
intervals in units such as weekdays, months, and business days, whose

137

Chapter 6 Dates, Times, Time Intervals, and Sequences

absolute number of days and milliseconds depends on what time/date
objects they are combined with. Relative time is stored in Spotfire S+
in the timeRelative class, which stores a vector of character strings
encoding the time intervals and a (possibly empty) vector of holidays
for business day calculations. Each element of the encoding vector is
a character string consisting of space-separated fields in the form
"{+-}[al#abb" (for example, "+a3day", "-5hr", "+aOmth") containing
a required sign, either "+" or "-", followed by an optional "a" that, if
present, means to align the result; see the table below for an exact
meaning. The optional "a" is followed by a positive integer,
represented here by "#". It is also possible to specify O for the integer
if aligning; see the table below. The integer is followed by one of the
relative time field abbreviations from the following table:

ms Add/subtract milliseconds; a aligns to nearest # milliseconds
within the second, where # must be a divisor of 1000 and less
than 1000 (for example, 500 aligns to seconds or 1/2 seconds); 0
is not allowed.

sec Add/subtract seconds; a aligns to nearest # seconds within the
minute, where # must be a divisor of 60 and less than 60 (for
example, 15 aligns to 0, 15, 30, or 45 seconds past the minute); 0
goes to the beginning of the current second, independent of sign.

min Add/subtract minutes; @ aligns to nearest # minutes within the
hour, where # must be a divisor of 60 and less than 60 (for
example, 15 aligns to 0, 15, 30, or 45 minutes after the hour); 0
goes to the beginning of the current minute, independent of sign.

hr Add/subtract hours; a aligns to nearest # hours within the day,
where # must be a divisor of 24 and less than 24 (for example, 6
aligns to midnight, 6AM, noon, or 6PM); 0 goes to the beginning
of the current hour, independent of sign.

day Add/subtract days; a aligns to nearest # days within the month,
starting with the first, where # must be a less than the number of
days in the month (for example, 2 aligns to the 1st, 3rd, 5th, etc.,
with the time midnight); 0 goes to the beginning of the current
day, independent of sign.

138

Time Intervals in Spotfire S+

wkd

Add/subtract weekdays; a causes the first added or subtracted
weekday to possibly be a fraction of a day to move to the next or
previous midnight on a weekday morning, and then whole
additional days are added or subtracted to make up # weekdays;
0 goes to the beginning of the day, or the closest weekday before
if it is not a weekday, independent of sign.

biz

Add/subtract business days (weekdays that are not holidays); a
causes the first added or subtracted business day to possibly be a
fraction of a day to move the next or previous midnight on a
business day morning, and then whole additional days are added
or subtracted to make up # business days; 0 goes to the beginning
of the day, or the closest business day before if it is not a business
day, independent of sign.

sun
mon
tue
wed
thu
fri
sat

Add/subtract Sundays, Mondays, Tuesdays, Wednesdays,
Thursdays, Fridays, or Saturdays; a causes the first added or
subtracted day to possibly be a fraction of a day or week to move
the next or previous midnight on the selected day’s morning, and
then whole additional weeks are added or subtracted to make up
of the selected day; 0 goes to the beginning of the day, or the
closest selected day before if it is not the right day, independent of

sign.

wk

Add/subtract weeks; ais not allowed. Use the specific weekday or
just "day", "wkd" or "biz" to align.

tdy

Add/subtract ten-day periods of months (ten-day periods begin
on the first, 11th, and 21st of the month but not the 31st). Without
a, the day number of the result will be 1, 11, or 21, adding #
partial or entire ten-day periods to get there. If ais used, # must
be either 1 (any), 2 (11th only), or 3 (21st only), and the time will
be midnight; 0 goes to the beginning of the current ten-day
period, independent of sign.

mth

Add/subtract months; a aligns to nearest # months within the
year, starting with January, and # must be a divisor of 12 and less
than 12 (for example, 3 aligns to January 1, April 1, July 1,
October 1 at midnight); 0 goes to the beginning of the current
month, independent of sign.

139

Chapter 6 Dates, Times, Time Intervals, and Sequences

140

qtr Add/subtract quarters; a aligns to nearest # quarters within the
year, and # must be either 1 or 2 (for example, 2 aligns to Jan 1 or
Jul 1 at midnight); 0 goes to the beginning of the current quarter,
independent of sign.

yr Add/subtract years; a aligns to nearest # years (for example, 5
aligns to Jan 1 at midnight in 1995, 2000, 2005, etc.); 0 goes to the
beginning of the current year, independent of sign.

For example, to create a relative time object that you could add to a
time/date object (or vector of them) to take each element to the third
Friday of the month, you would first get to the beginning of the
month by aligning, and then subtract 1 Friday to go to the last Friday
of the previous month, and then add 3 Fridays:

> rt <- timeRelative("-aOmth -1fri +3fri")
> timeDate(c(™1/5/1998"™, "2/26/1998"),
+ format = "%a %»m/%d/%Y") + rt

[1] Fri 1/16/1998 Fri 2/20/1998

As you can see, relative time objects are created by the timeRelative
function; for business day relative times, it also takes a holiday
argument giving a vector of dates that are to be considered holidays
when combining the relative time with a time/date object. You can
also create relative time objects by coercing character data directly
(using the as function), but you will not be able to provide holidays.

Once they are created, relative time objects can be subscripted like
other Spotfire S+ objects, and they can be added to and subtracted
from time/date objects. If either the relative time or time/date object
is shorter than the other, the shorter one will be reused cyclically in
the normal Spotfire S+ manner. Relative time objects can also be
added to or subtracted from each other or multiplied by integers.
Since combination of relative time and time/date objects goes from
left to right in the string, adding two relative times together is the
same as pasting their strings together. It should also be noted that
because relative time objects do not represent absolute quantities of
time, generally if x and y are two relative time objects, x+y is not the
same as y+x.

Time Sequences in Spotfire S+

TIME SEQUENCES IN SPOTFIRE S+

There are two ways to create and store regular sequences of times and
dates in Spotfire S+. First, the timeSeq function can be used to create
a regular sequence and store it in a time/date object. This is similar to
the seq function, which creates sequences of numbers, and it defaults
to a one day increment:

> timeSeq(from="1/1/1992", to="1/10/1992")

[1] 01/01/1992 01/02/1992 01/03/1992 01/04/1992
[5] 01/05/1992 01/06/1992 01/07/1992 01/08/1992
[9] 01/09/1992 01/10/1992

> timeSeq(from = "1/6/1992", to = "12/6/1992",
+ by = "months"™)

[1] 01/06/1992 02/06/1992 03/06/1992 04/06/1992
[5] 05/06/1992 06/06/1992 07/06/1992 08/06/1992
[9] 09/06/1992 10/06/1992 11/06/1992 12/06/1992

As you can see, the default behavior of the timeSeq function is to add
the by argument’s time units to the start of the sequence, until the end
is reached. The align.by argument allows you to create a sequence
that is aligned to the by units, in this case always landing on the
beginning of months. The extend argument is used to control
whether the sequence extends outward (T) or inward (F, the default)
from the from and to arguments if they are not aligned to the by units:

> timeSeq("1/3/1992", "12/5/1992", by = "months",
+ align.by = T)

[1] 02/01/1992 03/01/1992 04/01/1992 05/01/1992
[5] 06/01/1992 07/01/1992 08/01/1992 09/01/1992
[9] 10/01/1992 11/01/1992 12/01/1992

> timeSeq("1/3/1992", "12/5/1992", by = "months",
+ align.by = T, extend = T)

[1] 01/01/1992 02/01/1992 03/01/1992 04/01/1992

[5] 05/01/1992 06/01/1992 07/01/1992 08/01/1992

[9] 09/01/1992 10/01/1992 11/01/1992 12/01/1992
[13] 01/01/1993

141

Chapter 6 Dates, Times, Time Intervals, and Sequences

142

The timeSeq function also allows you to use a relative time or time
span object as the by argument, which is especially useful when the
desired increment is not a whole number of days, months, etc.

In addition, you can use the timeSeq function to generate sequences
with exceptions and additions. Exceptions are periods when the
generated times and dates should be dropped, represented by an
event object; event objects are described in section Representing
Events in Spotfire S+. Additions are times and dates that should be
added to the sequence. For instance, to generate a monthly sequence
on the 25th of each month in the last quarter of 1998 and the first
quarter of 1999, with the exception of December, when you want to
use the 24th:

> timeSeq("10/25/1998™, "3/25/1999", by = "months",
+ exceptions = timeDate("12/25/1998™),
+ additions = timeDate("12/24/1998"))

[1] 10/25/1998 11/25/1998 12/24/1998 01/25/1999
[5] 02/25/1999 03/25/1999

Since the additions and the starting/ending times of the exceptions
can also be time sequences, the timeSeq function can be used to
generate very complicated sequences.

Besides generating time/date objects in regular or semi-regular
sequences using the timeSeq function, you can also store regular time
sequences in a compact object of class "timeSequence”. These objects
are generated with the timeSequence function, which takes exactly
the same arguments as timeSeq. Instead of returning a vector
containing every time and date in the sequence, however, it returns
an object that stores only the starting and ending times, length and/or
increment (as a time interval object), exceptions, and additions for the
sequence. Subsequently, a time and date vector is generated from a
timeSequence object whenever it is needed for a calculation; for
efficiency you may find it better to convert to class "timeDate" using
the as function for repeated calculations. Here is what the previous
sequence looks like as a time sequence object:

> x <- timeSequence("10/25/1998™, "3/25/1999",
+ by = "months", exceptions = timeDate("12/25/1998"),
+ additions = timeDate("12/24/1998"))

> X

Time Sequences in Spotfire S+

from: 10/25/1998

to: 03/25/1999

by: +Imth

exceptions: 1

additions: 1

[1] 10/25/1998 11/25/1998 12/24/1998 ... 03/25/1999

> as(x, "timeDate")

[1] 10/25/1998 11/25/1998 12/24/1998 01/25/1999
[5] 02/25/1999 03/25/1999

143

Chapter 6 Dates, Times, Time Intervals, and Sequences

NUMERIC SEQUENCES IN SPOTFIRE S+

144

There are two ways to create and store regular sequences of numbers
in Spotfire S+. First, the seq function or its compact ":" operator
form can be used to create a regular sequence of numbers and store it
in a numeric vector:

> seq(from=1, to=10, by=1)

[1] 1 2 3 4 5 6 7 8 9 10

For storage efficiency, regular sequences of numbers can also be
stored in an object of class "numericSequence”, which stores the
information needed to reconstruct the sequence instead of storing all
of the numbers in the sequence. You can create a numeric sequence
object with the numericSequence function:

> numericSequence(from=1, to=10, by=1)

from: 1

to: 10

by: 1

[1] 1 2 3 ... 10

> numericSequence(to=10, by=1, Tlength=10)

to: 10

by: 1

lTength: 10

[1] 1 2 3 ... 10

You can convert a numeric sequence object into a numeric vector
using the as function. Some arithmetic operations can also be
performed directly on numeric sequence objects, with automatic
coercion to numeric vectors. However, you may find it more efficient
to convert to numeric for long sequences of calculations. Some
examples:

> x <- numericSequence(from=1, to=10, by=1)
> as(x, "numeric")

[1] 1 2 3 4 5 6 7 8 910

> x + c(l:5, 5:1)

Numeric Sequences in Spotfire S+

[11] 2 4 6 8 10 11 11 11 11 11
> X ==

[FFTFFFFFFF

You can also use the Tength function to calculate the length of a
numeric sequence object; if you subscript a numeric sequence object,
you will end up with an ordinary numeric vector. However, subscript
and length replacement operations must be done by first coercing the
object to an ordinary numeric vector.

145

Chapter 6 Dates, Times, Time Intervals, and Sequences

REPRESENTING EVENTS IN SPOTFIRE S+

146

There are several types of data, broadly classified as events, that can
play an important role in data analysis, especially in the analysis of
financial data. For example, the first Gulf War was an one-time event
that had large effects on the oil markets, so if you were studying oil
prices, you might want to analyze the effects of that war, and if so you
would need to keep track of its starting and ending dates. Continuing
with the oil price example, another analysis might consider the effects
of OPEC meetings, for which you would need to keep track of the
starting and ending times of each meeting. A shorter-term analysis of
the price volatility of oil futures might take into account the opening
and closing times of the futures exchange each day and the holidays
and weekends when the exchange is closed.

In each of these examples, a single or recurring “event” is associated
with a starting and ending time and date for each occurrence, along
with some identifying information in some cases. To store and
represent such data, Spotfire S+ has the timeEvent class, which stores
a starting time, ending time, and optional ID string for each
occurrence of the event; the starting and ending times/dates can be
either a time/date or time sequence object. To create an event object,
use the timeEvent function:

> timeEvent(start = holiday.Christmas(1995:2000),
+ ID = 1995:2000)

1D start end
1995 12/25/1995 00:00:00.000 12/25/1995 23:59:59.999
1996 12/25/1996 00:00:00.000 12/25/1996 23:59:59.999
1997 12/25/1997 00:00:00.000 12/25/1997 23:59:59.999
1998 12/25/1998 00:00:00.000 12/25/1998 23:59:59.999
1999 12/25/1999 00:00:00.000 12/25/1999 23:59:59.999
2000 12/25/2000 00:00:00.000 12/25/2000 23:59:59.999

Representing Events in Spotfire S+

> timeEvent(start = timeCalendar(m=5, d=4:8, y=1998, h=8),
+ end = timeCalendar(m=5, d=4:8, y=1998, h=17),
+ ID = day.name[2:6])

1D start end
Monday 05/04/1998 08:00:00.000 05/04/1998 17:00:00.000
Tuesday 05/05/1998 08:00:00.000 05/05/1998 17:00:00.000
Wednesday 05/06/1998 08:00:00.000 05/06/1998 17:00:00.000
Thursday 05/07/1998 08:00:00.000 05/07/1998 17:00:00.000
Friday 05/08/1998 08:00:00.000 05/08/1998 17:00:00.000

Event objects can be subscripted in the normal way, and they support
a few standard Spotfire S+ functions such as match, is.na,
duplicated, and concat, but they cannot be used directly in
mathematical operations. You can use the Tength function to calculate
or change the length of an event object. One of their primary uses is
to specify exceptions in time sequence generation; see the section
Time Sequences in Spotfire S+ for more details.

147

Chapter 6 Dates, Times, Time Intervals, and Sequences

148

DATA FRAMES

Introduction 150
The Benefits of Data Frames 151
Creating Data Frames 152
Rectangular Data Functions 156
Combining Data Frames 158
Combining Data Frames by Column 158
Combining Data Frames by Row 160
Merging Data Frames 162
Converting Data Frames 164
Applying Functions to Subsets of a Data Frame 165
Adding New Classes of Variables to Data Frames 171
Data Frame Attributes 174

149

Chapter 7 Data Frames

INTRODUCTION

150

Data frames are data objects designed primarily for data analysis and
modeling. You can think of them as generalized matrices—generalized
in a way different from the way arrays generalize matrices. Arrays
generalize the dimensional aspect of a matrix; data frames generalize
the mode aspect of a matrix. Matrices can be of only one mode (for
example, "Togical”, "numeric", "complex”, "character"). Data
frames, however, allow you to mix modes from column to column.
For example, you could have a column of "character" values, a
column of "numeric" values, a column of categorical values, and a
column of "Togical" values. Each column of a data frame
corresponds to a particular variable; each row corresponds to a single
“case” or set of observations.

The Benefits of Data Frames

THE BENEFITS OF DATA FRAMES

The main benefit of a data frame is that it allows you to mix data of
different types into a single object in preparation for analysis and
modeling. The idea of a data frame is to group data by variables
(columns) regardless of their type. Then all the observations on a
particular set of variables can be grouped into a single data frame.
This is particularly useful in data analysis where it is typical to have a
"character" variable labeling each observation, one or more
"numeric" variables of observations, and one or more categorical
variables for grouping observations. An example is a built-in data set,
solder, with information on a welding experiment conducted by
AT&T at their Dallas factory.

> sampleruns <- sample(row.names(kyphosis),10)
> kyphosis[sampleruns,]
Kyphosis Age Number Start

63 present 130 4 1
4 absent 2 5 1
39 absent 1 3 9
55 present 139 10 6
21 absent 27 4 9
46 absent 61 4 1
23 present 105 6 5
68 absent 17 4 10
18 absent 78 6 15
36 absent 112 3 16

A sample of 10 of the 83 observations is presented for all four
variables. The variable Kyphosis is the outcome which indicates
whether the post-operative deformity is present or absent. The row
names on the left are the run numbers for the experiment. Combined
in kyphosis are character data (the row names), categorical data
(Kyphosis), and numeric data (Number and Start).

151

Chapter 7 Data Frames

CREATING DATA FRAMES

152

You can create data frames in several ways.
* read.table reads in data from an external file.

* data.frame binds together Spotfire S+ objects of various
kinds.

* as.data.frame coerces objects of a particular type to objects
of class data.frame.

You can also combine existing data frames in several ways, using the
cbind, rbind, and merge functions.

The read.table function reads data stored in a text file in table
format directly into Spotfire S+. It is discussed in detail in Data Input
on page 236. The as.data.frame function is primarily a support
function for the top-level data. frame function—it provides a
mechanism for defining how new variable classes should be included
in newly-constructed data frames. This mechanism is discussed
further in the section Adding New Classes of Variables to Data
Frames (page 171).

For most purposes, when you want to create or modify data frames
within Spotfire S+, you use the data.frame function or one of the
combining functions cbind, rbind or merge. This section focuses
specifically on the data. frame function for combining Spotfire S+
objects into data frames. The following section discusses the functions
for combining existing data frames.

The data.frame function is used for creating data frames from
existing Spotfire S+ data objects rather than from data in an external
text file. The only required argument to data.frame is one or more
data objects. All of the objects must produce columns of the same
length. Vectors must have the same number of observations as the
number of rows of the data frame, matrices must have the same
number of rows as the data frame, and lists must have components
that match in lengths for vectors or rows for matrices. If the objects
don’t match appropriately, you get an error message saying the
"arguments imply differing number of rows".For example,
suppose we have vectors of various modes, each having length 20,

Creating Data Frames

along with a matrix with two columns and 20 rows, and a data frame
with 20 observations for each of three variables. We can combine
these into a data frame as follows:

> my.logical <- sample(c(T,F), size=20, replace=T)

> my.complex <- rnorm(20) + runif(20)*1i
> my.numeric <- rnorm(20)
> my.matrix <- matrix(rnorm(40), ncol=2)
> my.df <- kyphosis[1:20, 1:3]
> my.df2 <- data.frame(my.logical, my.complex, my.numeric,
+ my.matrix, my.df)
> my.df?2
my.logical my.complex my.numeric my.matrix
1 F 0.6089225+0.92259258401 -3.10164384 0.88012586
2 F -2.0819531+0.03367289021 -0.55111325 0.27279513
3 T 0.8878321+0.97718893831 -0.72223763 0.84707218
4 F 0.7471270+0.54872243487 -0.27917610 2.00179088
5 T 1.1005395+0.06316344027 0.15104893 -0.68347069
6 T 0.3485193+0.18481955727 -0.44838152 -0.47493315
7 F 1.6454204+0.69088406771 0.44405148 1.18727220
8 F1.4330907+0.00048982581 0.04847902 -2.17772281
9 F -0.8531461+0.94809141571 0.14967287 -2.25494105
10 T 0.8741626+0.18231043227 -1.39863545 -3.22639704
11 F -0.2090367+0.00661579571 -0.23842813 -0.36280708
12 F1.1757802+0.67624678141 0.32989672 -0.86669093
13 F -0.3004673+0.31703903621 -1.68374843 0.01818504
14 T -1.4100635+0.38895514791 -1.27312064 0.35701916
16 F 0.6641272+0.21916917621 -0.60716481 -0.40695505
17 T -0.1866811+0.8029941772i -1.01767418 -1.53522281
18 F 0.8642104+0.61142651601 -0.07657414 0.23754561
19 F -0.4507343+0.60505218061 -0.38748806 0.25455890
20 F -1.8629536+0.75811595611 -1.07376663 -0.16346027
T 0

nNo
—_

-1.0725881+0.59731168447 1.91706202 .42669240
my.matrix Kyphosis Age Number
-0.023943300 absent 71
-1.301475283 absent 158
-1.396698458 present 128
.384949812 absent 2
-0.639857710 absent 1
1.134441750 absent 1
-1.902422316 absent 61

~N o o w N
o
DN oW W

153

Chapter 7 Data Frames

8 -0.058446250 absent 37 3
9 0.126896172 absent 113 2
10 0.795556284 present 59 6
11 0.593684564 present 82 5
12 0.291224646 absent 148 3
13 -0.162832145 absent 18 5
14 0.248051730 absent 1 4
16 -0.957828145 absent 168 3
17 0.051553058 absent 1 3
18 -0.294367576 absent 78 6
19 -0.001231745 absent 175 5
20 -0.225155320 absent 80 5
21 -0.192293286 absent 27 4

The names of the objects are used for the variable names in the data
frame. Row names for the data frame are obtained from the first
object with a names, dimnames, or row.names attribute having unigue
values. In the above example, the object was my . df:

> my.df
Kyphosis Age Number
absent 71
absent 158
present 128
absent 2
absent 1
absent 1
absent 61
absent 37
absent 113
present 59
11 present 82
12 absent 148
13 absent 18
14 absent 1
16 absent 168
17 absent 1
18 absent 78
19 absent 175
20 absent 80
21 absent 27

0 N O O &~ W N

—
[e>lNe]
S OO0 oW wWw s oT W oo W NN DWW

154

Creating Data Frames

The row names are not just the row numbers—in our subset, the
number 15 is missing. The fifteenth row of kyphosis, and hence
my .df, has the row name "16".

The attributes of special types of vectors (such as factors) are not lost
when they are combined in a data frame. They can be retrieved by
asking for the attributes of the particular variable of interest. More
detail is given in the section Data Frame Attributes (page 174).

Each vector adds one variable to the data frame. Matrices and data
frames provide as many variables to the new data frame as they have
columns or variables, respectively. Lists, because they can be built
from virtually any data object, are more complicated—they provide as
many variables as all of their components taken together.

When combining objects of different types into a data frame, some
objects may be altered somewhat to be more suitable for further
analysis. For example, numeric vectors and factors remain unchanged
in the data frame. Character vectors, however, are converted to
factors before being included in the data frame (assuming
options("stringsAsFactors™") is set to true). The conversion is done
because Spotfire S+ assumes that character data will most commonly
be taken to be a categorical variable in any modeling that is to follow.
If you want to keep a character or logical vector “as is” in the data
frame, pass the vector to data.frame wrapped in a call to the I
function, which returns the vector unchanged but with the added class
"AsIs".

For example, consider the following logical vector, my.logical:

> my.logical
[TTTTTFTTFTTFEFTFTTTTTT

We can combine it as is with a numeric vector rnorm(20) in a data
frame as follows:

> my.df <- data.frame(a=rnorm(20), b=my.logical)
> my.df
a
-0.6960192
0.4342069
0.4512564
.8785964
0.8857739
-0.2865727

o E WM
.
(e}

o = - - T

155

Chapter 7 Data Frames

Rectangular
Data Functions

156

7 -1.0415919 T
8 -2.2958470 T
9 0.7277701 F
10 -0.6382045 T
11 -0.9127547 T
12 0.1771526 F
13 0.5361920 T
14 0.3633339 F
15 0.5164660 T
16 0.4362987 T
17 -1.2920592 T
18 0.8314435 T
19 -0.6188006 T
20 1.4910625 T

> mode(my.df$b)
[1] "logical"

You can provide a character vector as the row.names argument to
data.frame. Just make sure it is the same length as the data objects

you are combining into the data frame.

> data.frame(price,country,reliab,mileage,type,
+ row.names=c("Acura","Audi","BMW","Chev","Ford",
+ "Mazda","MazdaMX","Nissan","01ds","Toyota"))

price country reliab mileage type
Acura 11950 Japan 5 NA Small
Audi 26900 Germany NA NA Medium

Rectangular data functions allow you to access all rectangular data
objects in the same way. Rectangular data objects include matrices,
data frames, and atomic vectors which have the form of rows

(observations) and one or more columns (variables).

There are eight rectangular data functions you can use:

* as.rectangular converts any object to a rectangular data

object (generally a data frame).

* as.char.rect takes a rectangular object and returns a
rectangular object consisting of character strings, suitable for

printing (but not formatted to fixed width).

Creating Data Frames

* is.rectangular tests whether an object is rectangular.
* sub is used for subscripting.

* numRows and numCols count the number of rows and columns,
respectively.

* rowlds and collds return the row and column names,
respectively.

numRows, numCols, rowlds, and colIds can also be used on the left
side of assignments. For more information on any of these functions,

type
help(function)

where function is one of the rectangular data functions listed above.

157

Chapter 7 Data Frames

COMBINING DATA FRAMES

We have already seen one way to combine data frames—since data
frames are legal inputs to the data.frame function, you can use
data.frame directly to combine one or more data frames. This
section discusses three general cases:

1. Combining data frames by column. This is useful when you
have new variables to add to an existing data frame, or have
two or more data frames having observations of different
variables for identical subjects. The principal tool in this case
is the cbind function.

2. Combining data frames by row. This is used when you have
multiple studies providing observations of the same variables
for different sets of subjects. For this task, use the rbind
function.

3. Merging (or joining) data frames. This is useful when you have
two data frames containing information in common, and you
want to get as much information as possible from both data
frames about the overlapping cases. For this case, use the
merge function.

All three of the functions mentioned above (cbind, rbind, and merge)
have methods for data frames, but in the usual cases, you can simply
call the generic function and obtain the correct result.

Combining Suppose you have a data frame consisting of factor variables defining
Data Frames an experimental design. When the experiment is complete, you can
add the vector of observed responses as another variable in the data
frame; you are simply adding another column to the existing data
frame, and the natural tool for this in Spotfire S+ is the cbind
function. For example, consider the simple built-in design matrix
0a.4.2p3, representing a half-fraction of a 2”4 design.

by Column

> 0a.4.2p3

A B C
1 Al B1 C1
2 Al B2 C2
3 A2 B1 C2
4 A2 B2 C1

158

Combining Data Frames

If we run an experiment with this design, we obtain a vector of length
four, one observation for each row of the design data frame. We can
combine the observations with the design using cbind as follows.

> runl <- chind(oa.4.2p3, resp=c(46, 34, 44, 30))
> runl
A B C resp
1 A1 B1 C1 46
2 Al B2 C2 34
3 A2 B1 C2 44
4 A2 B2 C1 30

Another use of cbind is to bind a constant vector to a data frame, as in
the following example.

> fuell <- cbind(1, fuel.frame)

> fuell

X1 Weight Disp. Mileage FuelType
Eagle Summit 4 1 2560 97 33 3.030303 Small
Ford Escort 4 1 2345 114 33 3.030303 Small
Ford Festiva 4 1 1845 81 37 2.702703 Small
Honda Civic 4 1 2260 91 32 3.125000 Small
Mazda Protege 4 1 2440 113 32 3.125000 Small

As a more substantial example, consider the built-in data sets
cu.summary, cu.specs, and cu.dimensions. Each of these data sets
contains observations about a number of car models, but the list of
car models is slightly different in each. All, however, contain data for
the cars listed in the data set common.names.

> common.names

[11 "Acura Integra" "Acura Legend"
[3] "Audi 100" "Audi 80"
[5] "BMW 325i" "BMW 535i"
[71 "Buick Century" "Buick Electra"”

The data sets match.summary, match.specs, and match.dims contain
the row subscripts to obtain observations about the models listed in
common.names from, respectively, cu.summary, cu.specs, and
cu.dimensions. We can use these data sets and the cbind function to
compile a general car information data set.

159

Chapter 7 Data Frames

Combining
Data Frames
by Row

160

> car.mine <- cbind(cu.dimensions[match.dims,],
+ cu.specs[match.specs,], cu.summary[match.summary,],
+ row.names=common.names)

Compare car.mine to the built-in data set car.al1, constructed in a
similar fashion.

You can get statistics on individual columns by running any of the
four following functions in Spotfire S+:

colMeans

colSums

colVars

colStdevs

which returns the mean, sum, variance, and standard deviation,
respectively, for the specified column or columns.

Suppose you are pooling the data from several research studies. You
have data frames with observations of equivalent, or roughly
equivalent, variables for several sets of subjects. Renaming variables
as necessary, you can subscript the data sets to obtain new data sets
having a common set of variables. You can then use rbind to obtain a
new data frame containing all the observations from the studies.

For example, consider the following data frames.

> rand.dfl <-
data.frame(norm=rnorm(20),unif=runif(20),binom=rbinom(20,10
,0.5))
> rand.dfl

norm unif binom
1 1.64542042 0.45375156 41
2 1.64542042 0.83783769 44
3 -0.13593118 0.31408490 53
4 0.26271524 0.57312325 34
5 -0.01900051 0.25753044 47
6 0.14986005 0.35389326 41
7 0.07429523 0.53649764 43
8 -0.80310861 0.06334192 38
9 0.47110022 0.24843933 44
10 -1.70465453 0.78770638 45

Combining Data Frames

> rand.df2 <-
data.frame(norm=rnorm(20),binom=rbinom(20,10,0.5),
chisq=rchisq(20,10))

> rand.df2

norm binom chisq
1 0.3485193 50 19.359238
2 1.6454204 41 13.547288
3 1.4330907 53 4.968438
4 -0.8531461 55 4.458559

5 0.8741626 47 2.589351

These data frames have the common variables norm and binom; we
subscript and combine the resulting data frames as follows.

> rbind(rand.df1[,c("norm","binom")],
+ rand.df2[,c("norm"™, "binom")])
norm binom

1 1.64542042 41
2 1.64542042 44
3 -0.13593118 53
4 0.26271524 34
5 -0.01900051 47
6 0.14986005 41
7 0.07429523 43
8 -0.80310861 38
9 0.47110022 44
10 -1.70465453 45
11 0.34851926 50
12 1.64542042 41
13 1.43309068 53
14 -0.85314606 55
15 0.87416262 47

Warning

Use rbind (and, in particular, rbind.data.frame) are used only when you have complete data
frames, as above. Do not use it in a loop to add one row at a time to an existing data frame (very
inefficient). To build a data frame, write all the observations to a data file and use read.table to
read it.

You can get basic statistics on individual rows by running any of the
four following functions in Spotfire S+:

161

Chapter 7 Data Frames

rowMeans
rowSums
rowVars
rowStdevs

which return the mean, sum, variance, and standard deviation,
respectively, for the specified row or rows.

Merging Data In many situations, you may have data from multiple sources with

Frames some duplicated data. To get the cleanest possible data set for
analysis, you want to merge or join the data before proceeding with the
analysis. For example, player statistics extracted from Zotal Baseball
overlap somewhat with player statistics extracted from 7he Baseball
Encyclopedia. You can use the merge function to join two data frames
by their common data. For example, consider the following made-up
data sets.

> baseball.off
player years.ML BA HR

1 Whitehead 4 0.308 10
2 Jones 3 0.235 11
3 Smith 50.207 4
4 Russell NA 0.270 19
5 Ayer 7 0.283 5
> baseball.def

player years.ML A FA
1 Smith 5 300 0.974
2 Jones 3 7 0.990
3 Whitehead 4 9 0.980
4 Russell NA 55 0.963
5 Ayer 7 532 0.955

These can be merged by the two columns they have in common using
merge:

> merge(baseball.off, baseball.def)
player years.ML BA HR A FA

1 Ayer 7 0.283 5 532 0.955
2 Jones 3 0.235 11 7 0.990
3 Russell NA 0.270 19 55 0.963
4 Smith 5 0.207 4 300 0.974
5 Whitehead 4 0.308 10 9 0.980

162

Combining Data Frames

By default, merge joins by the columns having common names in the
two data frames. You can specify different combinations using the by,
by.x, and by .y arguments. For example, consider the data sets
authors and books.

> authors

FirstName LastName Age Income Home
1 Lorne Green 82 1200000 California
2 Loren Blye 40 40000 Washington
3 Robin Green 45 25000 Washington
4 Robin Howe 2 0 Alberta
5 Billy Jaye 40 27500 Washington
> books

AuthorFirstName AuthorLastName Book
1 Lorne Green Bonanza
2 Loren Blye Midwifery
3 Loren Blye Gardening
4 Loren Blye Perennials
5 Robin Green Who_dun_it?
6 Rich Calaway Splus

The data sets have different variable names, but overlapping
information. Using the by.x and by.y arguments to merge, we can
join the data sets by the first and last names:

> merge(authors, books, by.x=c("FirstName", "LastName"),
+ by.y=c("AuthorFirstName", "AuthorLastName"))

FirstName LastName Age Income Home Book
1 Loren Blye 40 40000 Washington Midwifery
2 Loren Blye 40 40000 Washington Gardening
3 Loren Blye 40 40000 Washington Perennials
4 Lorne Green 82 1200000 California Bonanza
5 Robin Green 45 25000 Washington Who_dun_it?

Because the desired “by” columns are in the same position in both
books and authors, we can accomplish the same result more simply
as follows.

> merge(authors, books, by=1:2)

More examples can be found in the merge help file.

163

Chapter 7 Data Frames

Converting You may want to convert a Spotfire S+ data frame to a matrix. If so,
Data Frames there are three different functions which take a data frame as an
argument and return a matrix whose elements correspond to the
elements of the data frame:
as.matrix.data.frame
numerical.matrix
data.matrix

164

Applying Functions to Subsets of a Data Frame

APPLYING FUNCTIONS TO SUBSETS OF A DATA FRAME

A common operation on data with factor variables is to repeat an
analysis for each level of a single factor, or for all combinations of
levels of several factors. SAS users are familiar with this operation as
the BY statement. In Spotfire S+, you can perform these operations
using the by or aggregate function. Use aggregate when you want
numeric summaries of each variable computed for each level; use by
when you want to use all the data to construct a model for each level.

The aggregate function allows you to partition a data frame or a
matrix by one or more grouping vectors, and then apply a function to
the resulting columns. The function must be one that returns a single
value, such as mean or sum. You can also use aggregate to partition a
time series (univariate or multivariate) by frequency and apply a
summary function to the resulting time series.

For data frames, aggregate returns a data frame with a factor variable
column for each group or level in the index vector, and a column of
numeric values resulting from applying the specified function to the
subgroups for each variable in the original data frame.

> aggregate(state.x77[,c("Population™, "Area™)],

+ by=state.division, FUN = sum)
Group Population Area
1 New England 12187 62951
2 Middle Atlantic 37269 100318
3 South Atlantic 32946 266909
4 East South Central 13516 178982
5 West South Central 20868 427791
6 East North Central 40945 244101
7 West North Central 16691 507723
8 Mountain 9625 856047
9 Pacific 28274 891972

165

Chapter 7 Data Frames

Warning

For most numeric summaries, @/l variables in the data frame must be numeric. Thus, if we
attempt to repeat the above example with the kyphosis data, using kyphosis as the by variable,
we get an error:

> aggregate(kyphosis, by=kyphosis$Kyphosis, FUN=sum)
Error in Summary.factor(structure(.Data = c(1, 1,

A factor is not a numeric object

Dumped

For time series, aggregate returns a new, shorter time series that
summarizes the values in the time interval given by a new frequency.
For instance you can quickly extract the yearly maximum, minimum,
and average from the monthly housing start data in the time series
hstart:

> aggregate(hstart, nf = 1, fun=max)
1966: 143.0 137.0 164.9 159.9 143.8 205.9 231.0 234.2 160.9
start deltat frequency
1966 1 1
> aggregate(hstart, nf = 1, fun=min)
1966: 62.3 61.7 82.7 85.3 69.2 104.6 150.9 90.6 54.9
start deltat frequency
1966 1 1
> aggregate(hstart, nf = 1, fun=mean)
1966: 99.6 110.2 128.8 125.0 122.4 173.7 198.2 171.5 112.6
start deltat frequency
1966 1 1

The by function allows you to partition a data frame according to one
or more categorical indices (conditioning variables) and then apply a
function to the resulting subsets of the data frame. Each subset is
considered a separate data frame, hence, unlike the FUN argument to
aggregate, the function passed to by does nofneed to have a numeric
result. Thus, by is useful for functions that work on data frames by
fitting models, for example.

166

Applying Functions to Subsets of a Data Frame

> by(kyphosis, INDICES=kyphosis$Kyphosis, FUN=summary)
kyphosis$Kyphosis:absent
Kyphosis Age Number Start
absent:64 Min.: 1.00 Min.:2.00 Min.: 1.00
present: 0 1st Qu.: 18.00 1st Qu.:3.00 1st Qu.:11.00
Median: 79.00 Median:4.00 Median:14.00

Mean: 79.89 Mean:3.75 Mean:12.61
3rd Qu.:131.00 3rd Qu.:5.00 3rd Qu.:16.00
Max.:206.00 Max.:9.00 Max.:18.00

kyphosis$Kyphosis:present
Kyphosis Age Number Start
absent: OMin.: 15.00 Min.: 3.000 Min.: 1.000
present:171st Qu.: 73.001st Qu.: 4.000 1st Qu.: 5.000
Median:105.00 Median: 5.000 Median: 6.000

Mean: 97.82 Mean: 5.176 Mean: 7.294
3rd Qu.:128.00 3rd Qu.: 6.000 3rd Qu.:12.000
Max.:157.00 Max.:10.000 Max.:14.000

The applied function supplied as the FUN argument must accept a data
frame as its first argument; if you want to apply a function that does
not naturally accept a data frame as its first argument, you must
define a function that does so on the fly. For example, one common
application of the by function is to repeat model fitting for each level
or combination of levels; the modeling functions, however, generally
have a formula as their first argument. The following call to by shows
how to define the FUN argument to fit a linear model to each level:

> by(kyphosis, Tist(Kyphosis=kyphosis$Kyphosis,
+ 0lder=kyphosis$Age>105),

+ function(data)Im(Number~Start,data=data))
Kyphosis:absent

OTder:FALSE

Call:

Im(formula = Number~Start, data = data)

Coefficients:
(Intercept) Start
4.885736 -0.08764492
Degrees of freedom: 39 total; 37 residual
Residual standard error: 1.261852

167

Chapter 7 Data Frames

Kyphosis:present

0lder:FALSE

Call:

Im(formula = Number~Start, data = data)

Coefficients:
(Intercept) Start
6.371257 -0.1191617
Degrees of freedom: 9 total; 7 residual
Residual standard error: 1.170313

Kyphosis:absent
O0Tder:TRUE

As in the above example, you should define your FUN argument
simply. If you need additional parameters for the modeling function,
specify them fully in the call to the modeling function, rather than
attempting to pass them in through a “...” argument.

Warning

Again, as with aggregate, you need to be careful that the function you are applying by to works
with data frames, and often you need to be careful that it works with factors as well. For example,
consider the following two examples.

168

> by(kyphosis, kyphosis$Kyphosis, function(data)
+ sapply(data,mean))
Warning messages:

1: A factor is not numeric. Returning NA for the mean. in:
FUN(C...X.sub.i....)

2: A factor is not numeric. Returning NA for the mean. in:
FUN(C...X.sub.i....)

kyphosis$Kyphosis:absent
Kyphosis Age Number Start
NA 79.89063 3.75 12.60938

kyphosis$Kyphosis:present
Kyphosis Age Number Start
NA 97.82353 5.176471 7.294118

Applying Functions to Subsets of a Data Frame

> by(kyphosis, kyphosis$Kyphosis, function(data)
+ sapply(data,max))

Problem in Summary.factor(...X.sub.i....): A factor is not
a numeric object

Use traceback() to see the call stack

The functions mean and max are not very different, conceptually. Both
return a single number summary of their input, both are only
meaningful for numeric data. Because of implementation differences,
however, the first example returns appropriate values and the second
example dumps. However, when all the variables in your data frame
are numeric, or when you want to use by with a matrix, you should
encounter few difficulties.

> dimnames(state.x77)[[2]11[4] <- "Life.Exp"
> by(state.x77[,c("Murder", "Population", "Life.Exp")1,
+ state.region, summary)
INDICES:Northeast
Murder Population Life.Exp
Min. : 2.400 Min. : 472 Min. :70.39
1st Qu.: 3.100 1st Qu.: 931 1st Qu.:70.55
Median : 3.300 Median : 3100 Median :71.23

Mean : 4.722 Mean : 5495 Mean :71.26
3rd Qu.: 5.500 3rd Qu.: 7333 3rd Qu.:71.83
Max. :10.900 Max. :18080 Max. :72.48

INDICES:South

Murder Population Life.Exp
Min. 1 6.20 Min. : 579 Min. :67.96
1st Qu.: 9.256 1st Qu.: 2622 1st Qu.:68.98
Median :10.85 Median : 3710 Median :70.07

Mean :10.58 Mean . 4208 Mean :69.71
3rd Qu.:12.27 3rd Qu.: 4944 3rd Qu.:70.33
Max. :15.10 Max. 212240 Max. :71.42

Closely related to the by and aggregate functions is the tapply
function, which allows you to partition a vector according to one or
more categorical indices. Each index is a vector of logical or factor
values the same length as the data vector; to use more than one index
create a list of index vectors.

169

Chapter 7 Data Frames

For example, suppose you want to compute a mean murder rate by
region. You can use tapply as follows.

> tapply(state.x77[,"Murder"], state.region, mean)
Northeast South North Central West
4.722222 10.58125 5.275 7.215385

To compute the mean murder rate by region and income, use tapply
as follows.

> income.lev <- cut(state.x77[,"Income"],
+ summary(state.x77[,"Income"]1)[-41])
> income.lev

(1] 1 4 3 1 4 4 4 3 4 2 4 2 4 2 3 3 1
(18] 1 1 4 3 3 3NA 2 2 2 4 2 4 1 4 1 4
[360 3 1 3 2 3 1 2 1 2 2 1 3 4 1 2 3

attr(, "levels™):
[1] "3098+ thru 3993"™ "3993+ thru 4519"
[3] "4519+ thru 4814™ "4814+ thru 6315"

> tapply(state.x77[,"Murder"],list(state.region,
+ income.lev),mean)

3098+ thru 3993 3993+ thru 4519

Northeast 4.10000 4.700000
South 10.64444 13.050000

North Central NA 4.800000
West 9.70000 4.933333

4519+ thru 4814 4814+ thru 6315

Northeast 2.85 6.40
South 7.85 9.60

North Central 5.52 5.85
West 6.30 8.40

170

Adding New Classes of Variables to Data Frames

ADDING NEW CLASSES OF VARIABLES TO DATA FRAMES

The manner in which objects of a particular data type are included in
a data frame is determined by that type’s method for the generic
function as.data.frame. The default method for this generic function
uses the data.class function to determine an object’s #ype. Thus, even
data types without formal class attributes, such as vectors, or
character vectors, can have specific methods. The behavior for most
built-in types is derived from one of the six basic cases shown in the
table below.

Table 7.1: Rules for combining objects into data frames.

Data Types Sub-types Rules
vector numeric 1. contribute a single variable as is
complex
factor
ordered
rts
its
cts
character character 1. converted to a factor data type
logical . . .
category 2. contribute a single variable
matrix matrix 1. each column creates a separate variable.
2. column names used for variable names
Tist Tist 1. each component creates one or more separate

variables

2. variable names assigned as appropriate for
individual components (column names for
matrices, etc.)

171

Chapter 7 Data Frames

Table 7.1: Rules for combining objects into data frames. (Continued)

Data Types Sub-types Rules

model.matrix model.matrix 1. object becomes a single variable in result

data.frame data.frame 1. each variable becomes a variable in result
design design.

2. variable names used for variable names

172

As you add new classes, you can ensure that they are properly
behaved in data frames by defining your own as.data.frame method
for each new class. In most cases, you can use one of the six paradigm
cases, either as is or with slight modifications. For example, the
character method is a straightforward modification of the vector
method:

> as.data.frame.character

function(x, row.names = NULL, optional = F,
na.strings = "NA", ...)
as.data.frame.vector(factor(x,exclude =na.strings),
row.names,optional)

This method converts its input to a factor, then calls the function
as.data.frame.vector.

You can create new methods from scratch, provided they have the
same arguments as as.data.frame.

> as.data.frame
function(x, row.names = NULL, optional = F, ...)
UseMethod("as.data.frame")

The argument “..." allows the generic function to pass any method-
specific arguments to the appropriate method.

If you've already built a function to construct data frames from a
certain class of data, you can use it in defining your as.data.frame
method. Your method just needs to account for all the formal
arguments of as.data.frame. For example, suppose you have a class
Toops and a function make.df.loops for creating data frames from
objects of that class. You can define a method as.data.frame.loops
as follows.

Adding New Classes of Variables to Data Frames

> as.data.frame.loops
function(x, row.names = NULL, optional = F, ...)

{
x <- make.df.loops(x, ...)
if(lis.null(row.names))
{ row.names <- as.character(row.names)
if(length(row.names) != nrow(x))
stop(paste("Provided”, length(row.names),

"names for", nrow(x), "rows"))
attr(x, "row.names") <- row.names

}

This method takes account of user-supplied row names, but ignores
the argument optional, a flag that is TRUE when the method is not

expected to generate non-trivial row names or variable names for a
calling function.

173

Chapter 7 Data Frames

DATA FRAME ATTRIBUTES

174

Data frames, like all data objects, have the implicit attributes "Tength"
and "mode". Because data frames are represented internally as lists,
they have mode "1ist" and length equal to their number of variables,
which is the number of components of their list representation.

Additional attributes of a data frame can be examined by calling the
attributes function:

> attributes(auto)
$names:
[1] "Price"™ ™"Country" ™"Reliab™ "Mileage"™ "Type"

$row.names:

[1] "Acuralntegra4" "Audil005" "BMW325i6"
[4] "ChevLumina4" "FordFestivad" "Mazda929Vve"
[7] "MazdaMX-5Miata" "Nissan300ZXV6" "0ldsCalais4™

[10] "ToyotaCressidab"

$class:
[1] "data.frame"

The variable names are stored in the names attribute and the row
names are stored in the rownames attribute. There is also a class
attribute with value data.frame. All data frames have class attribute
data.frame.

Data frames preserve most attributes of special types of vectors, and
these attributes may be accessed after the original objects have been
combined into data frames. For example, categorical data have class
and Tevels attributes preserved in data frames. You can access the
defining attributes of a particular variable by specifying the variable
in the data frame and passing it to the attributes function. Many of
the variables in the cu.summary data frame are categorical—for
example, the country of manufacture.

> attributes(cu.summary[,"Country"])

$Tevels:

[1] "Brazil"™ "England" "France" "Germany"
[5]1 "Jdapan" "Japan/USA" "Korea" "Mexico"
[9]1 "Sweden" "USA"

Data Frame Attributes

$class:
[1] "factor"

The Tevels attribute is as you would expect for a categorical variable.
Additionally, there is a cTass attribute with a value of factor. Objects
of class factor are discussed in the section Factors and Ordered
Factors (page 80). One attribute that is nof preserved is the names
attribute; the names for each variable are taken to be the row names
of the data frame.

The attributes of a data frame are summarized in the table below. For
attributes associated with a particular variable in a data frame, see the
attribute section for the corresponding object type.

Table 7.2: Attributes of Data Frames.

Attribute Description

"length" The number of variables in the data frame.

"mode" All data frames are of mode "1ist"

"names" The names of the variables (columns) in the
data frame.

"row.names" The names of the rows in the data frame.

"class" All data frames are of class "data.frame".

175

Chapter 7 Data Frames

176

WRITING FUNCTIONS IN
Spotfire S+

Introduction
Windows Users
UNIX Users

The Structure of Functions
Function Names and Operators
Arguments
The Function Body
Return Values and Side Effects
Elementary Functions
Operations on Complex Numbers
Summary Functions
Comparison and Logical Operators
Assignments
Testing and Coercing Data

Operating on Subsets of Data
Subscripting Vectors
Subscripting Matrices and Arrays
Subscripting Lists
Subscripting Data Frames

Organizing Computations
Programming Style
Flow of Control
Notes Regarding Commented Code

Specifying Argument Lists
Formal and Actual Names
Specifying Default Arguments
Handling Missing Arguments
Lazy Evaluation
Variable Numbers of Arguments

179
179
180

181
181
184
184
184
186
190
191
193
195
197

200
200
204
208
211

213
213
214
226

227
227
228
228
229
230

177

Chapter 8 Writing Functions in Spotfire S+

Required and Optional Arguments
Error Handling

Input and Output
Data Input
Data Output
Connections

Raw Data Objects
Wrap-Up Actions

Writing Special Functions
Operators
Extraction and Replacement Functions

References

178

231
233

236
236
236
250
261
265

269
269
270

276

Introduction

INTRODUCTION

Windows Users

Programming in Spotfire S+ consists largely of writing functions. The
simplest functions arise naturally as shorthand for frequently-used
combinations of Spotfire S+ expressions.

For example, consider the interquartile range, or IQR, of a data set.
Given a collection of data points, the IQR is the difference between
the upper and lower (or third and first) quartiles of the data. Although
Spotfire S+ has no built-in function for calculating the IQR, it does
have functions for computing quantiles and differences of numeric
vectors. The following two commands define and test a function that
returns the IQR of a numeric vector.

> igr <- function(x) { diff(quantile(x, c(0.25, 0.75))) }
> iqr(lottery.payoff)

75%
169.75

You can build more complicated functions either by adding new
features incrementally to simpler functions, or by designing whole
programs from scratch. As your functions grow more complex,
proper use of programming features becomes more important.

This chapter describes the basic techniques for writing functions in
Spotfire S+. It first outlines the structure underlying all Spotfire S+
functions, and then describes some of the most useful functions for
manipulating data. A section on organizing computations gives tips
on designing functions that take advantage of the strengths of Spotfire
S+. Later sections introduce techniques for argument handling, error
handling, input and output, and wrap-up actions. From these few
simple tools and techniques, you can build many useful functions.

To run the examples in this chapter, you will need to create functions
with an editor. There are many different approaches to editing
functions in Spotfire S+, but the simplest way to get started is with the
Edit function. The built-in function Edit creates a function template
with the proper structure when called with a name that does not
correspond to an existing Spotfire S+ object. Thus, to create a new
function called newfunc, call Edit as follows:

179

Chapter 8 Writing Functions in Spotfire S+

UNIX Users

180

> Edit(newfunc)

Edit the template as desired in the Script window that appears. To
source in the modified function, select Script » Run from the menu,
press the F10 key, or use the Run button on the Script toolbar.

To edit an existing function, call Edit using the function’s name.
Alternatively, right-click on the function’s name in the Object
Explorer and select Edit from the context-sensitive menu. Refer to
the section Editing Objects (page 14) for more details.

To run the examples in this chapter, you will need to create functions
with an editor. There are many different approaches to editing
functions in Spotfire S+, but the simplest way to get started is with the
fix function. You can use fix to either create a new function or
modify an existing one, using an external editor such as vi. Refer to
the section Editing Objects (page 14) for more details.

The Structure of Functions

THE STRUCTURE OF FUNCTIONS

Function
Names and
Operators

All Spotfire S+ functions have the same structure: they consist of the
reserved word function, an argument list which may be empty, and a
body. In this section, we discuss these components in detail. In
addition, we discuss programming concepts such as return values,
side effects, and coercion. For completeness, we also include sections
on elementary functions, complex operations, and logical operators.

Most functions are associated with names when they are defined. The
form of the name conveys some important information about the
nature of the function. Most functions have simple, relatively short,
alphanumeric names that begin with a letter, such as p1ot,
na.exclude, or anova. These functions are always used in the form
function.name(arglist).

Operators are special functions for performing mathematical or logical
operations on one or two arguments. They are most convenient to use
in infix form, in which they appear between two arguments. Familiar
examples of operators are +, -, and *. The names of such functions
consist of the symbol used to represent them enclosed by double
quotes. Thus, "+" is the function name corresponding to the addition
operator +. You can use names to call operators as functions in the
ordinary way. For example, the call "+"(2,3) is represented by 2+3 in
infix form; both commands return the number 5.

A complete list of built-in operators is provided in Table 8.1. In
addition to the predefined operators in the table, Spotfire S+ allows
you to write your own infix operators. For more details, see the
section Operators (page 269).

Operators listed higher in Table 8.1 have higher precedence than
those listed below. Operators on the same line in the table have equal
precedence, and evaluation proceeds from left to right when more
than one of these operators appear in an expression. For example,
consider the command:

>7 +5 -8"2 /19 * 2
[1] 5.263158

181

Chapter 8 Writing Functions in Spotfire S+

182

Here, the exponentiation is done first, 822=64. Division has the same
precedence as multiplication, but appears to the left of the
multiplication in the expression. Therefore, it is performed first: 64/
19=3.368421. Next comes the multiplication: 3.368421*2=6.736842.
Finally, Spotfire S+ performs the addition and subtraction: 7+5-
6.736842=5.263158.

You can override the normal precedence of operators by grouping
with parentheses or curly braces:

> (7 +5 - 8%2) / (19 * 2)

[1] -1.368421
The integer divide operator in Spotfire S+, %/%, produces an integral
quotient. For two numbers a and b, the Spotfire S+ expression a%/%b
computes (in Euclid’s algorithm: a = qb + r where 0 <r<b . The
modulus operator %% computes the remainder r.

Table 8.1: Precedence of operators. Operators listed higher in the table have higher
precedence than those listed below, and operators on the same line have equal
precedence.

Operator Use
$ component selection
@ slot selection
[[subscripts, elements
A exponentiation

- unary minus

sequence operator

%% Bl% B*% modulus, integer divide, matrix multiply
* multiply, divide
+ -2 add, subtract, help

The Structure of Functions

Table 8.1: Precedence of operators. Operators listed higher in the table have higher
precedence than those listed below, and operators on the same line have equal
precedence.

Operator Use
< > K= >= == I= comparison
! not
& | && || logical and, logical or
~ formulas
<<= permanent assignment
- -> = assignments

Note

When using the * operator, the exponent must be an integer if the base is a negative number. If
you require a complex result when the base is negative, be sure to coerce it to mode "complex”.
See the section Operations on Complex Numbers (page 190) for more details.

Another special type of function is the replacement or lefi-side function.
It has the appearance of an ordinary function on the left side of an
assignment. For example, the expression dim(x) <- c(3,4) uses the
replacement function "dim<-". Spotfire S+ interprets this expression
as the ordinary assignment x <- "dim<-"(x,c(3,4)). The function
"dim<-" is the replacement function corresponding to the ordinary
function dim.

Replacement functions can be defined for extraction functions, which
are functions designed to return some specific portion or attribute of a
data object. Common extraction functions are the subscript operator
[1, the dim function, and the names function. For details, see the
online help files for these functions and the section Extraction and
Replacement Functions (page 270).

183

Chapter 8 Writing Functions in Spotfire S+

Arguments

The Function
Body

Return Values
and Side
Effects

184

Arguments to a function specify the data to be operated on, and also
pass processing parameters to the function. Not all functions accept
arguments. For example, the date function can only be called with
the syntax date():

> args(date)
function()

In contrast, the 1m function accepts many arguments:

> args(1m)
function(formula, data, weights, subset, na.action,
method = "qr", model = F, x = F, y = F, contrasts = NULL,
)

Functions without arguments are, by design, rigid and single-purpose.
Their behavior can be modified only by editing the function.
Arguments allow you to build multi-purpose functions with behavior
that can be easily modified whenever a function is called. For a
complete discussion of allowable argument lists, see the section
Specifying Argument Lists (page 227)

The body of a function is the part that actually does the work. It
consists of a sequence of Spotfire S+ statements and expressions. If
there is more than one expression, the entire body must be enclosed
in braces. Whether braces should always be included is a matter of
programming style; we recommend including them in all of your
functions because it makes maintenance less accident-prone. By
adding braces when you define a single-line function, you ensure they
won’t be forgotten when you add functionality to it.

Most of this chapter (and, in fact, most of this book) is devoted to
showing you how to write the most effective function body possible.
This involves organizing the computations efficiently and naturally,
expressing them with suitable Spotfire S+ expressions, and returning
the appropriate information.

Functions are designed to accomplish something, and if everything
goes as planned, a function accomplishes something every time it is
called. Most functions do one thing: return a value. A return value can
be any valid Spotfire S+ expression, although it is usually a

The Structure of Functions

transformed version of the input data. In general, values returned
from functions are not automatically saved. Therefore, most calls to
functions also involve an assignment:

>y <- f(x)

In this expression, the return value from the function f on the input x
is preserved in the object y for further analysis.

Note

In compiled languages such as C and Fortran, you can pass arguments directly to a function that
modifies the argument values in memory. In Spotfire S+ however, all arguments are passed by
value. This means that only copies of the arguments are modified throughout the body of a

function.

Sometimes, you may want a function to do something besides return
a Spotfire S+ expression. For instance, you may want to print
something, draw a graph, or change some Spotfire S+ session options.
Because the main goal of functions is to return values, these other
actions are collectively called side effects. The section Data Output
(page 236) discusses return values and side effects in more detail.

The combination of a function’s side effects and its return value can
be used to good advantage in some situations. For example, the
options function has the side effect of changing the current Spotfire
S+ session options. It also returns a value that consists of the options
in effect before the current call. Thus, you can use options within a
function not only to change the options in effect, but also to save the
old options for restoration when the function exits. The following
commands illustrate this:

options.old <- options(width=55)
on.exit(options(options.old))

By assigning the return value of options to options.old, we save the
old width setting. The side effect of the first command changes
options to use awidth of 55 characters; this takes place whether or
not we assign the return value. The on.exit function performs a
given set of actions when the calling function exits. In this example,
on.exit restores the old width value at the end of the calling function.

185

Chapter 8 Writing Functions in Spotfire S+

Elementary
Functions

186

In addition to the infix operators introduced in the section Function
Names and Operators (page 181), Spotfire S+ includes a variety of
elementary mathematical functions that act in a vectorized way on
numeric data sets. That is, the functions manipulate numeric vectors
the same way as single numeric elements. The elementary functions
include the familiar trigonometric and exponential functions, as well
as several functions for computing numerical results.

The functions listed in Table 8.2 are the vectorized math functions
implemented internally as part of the Spotfire S+ language. Spotfire
S+ has many other built-in mathematical functions, some of which
are written wholly in the Spotfire S+ language and some of which are
written to take advantage of existing algorithms in Fortran or C. See
Chapter 36, Mathematical Computing in Spotfire S+, in the Guide to
Statistics, Volume 2 for more information.

Table 8.2: Common elementary mathematical functions.

Name Operation

sort, rev the input sorted in ascending or reverse
order

sqrt square root

abs absolute value

sin, cos, tan trigonometric functions

asin, acos, atan inverse trigonometric functions

sinh, cosh, tanh hyperbolic trigonometric functions

asinh, acosh, atanh inverse hyperbolic trigonometric functions

exp, log exponential and natural logarithm (base ¢)
10g10 common logarithm (base 10)
Togb logarithm for bases other than ¢and 10

The Structure of Functions

Table 8.2: Common elementary mathematical functions. (Continued)

Name Operation

gamma, lgamma gamma function and its natural logarithm

ceiling closest integer not less than the input

floor closest integer not greater than the input

trunc closest integer between the input and zero

round closest integer to the input

signif the input rounded to a specified number of

significant digits

cummax, cummin cumulative maximum and minimum

cumsum, cumprod cumulative sum and product

pmax, pmin parallel maximum and minimum
Examples Each function in Table 8.2 acts element-by-element on its argument.

For example:

> M <- matrix(c(12,2,19,15,9,14,6,2,11,10,7,19), nrow=3)
> M

(.11 [,2]1 [,31 [.4]
[1,1] 1215 6 10
[2,1] 2 9 2 7
[3.] 19 14 11 19

> sqrt(M)

[.1] [.2] [,3] [.4]
[1,] 3.464102 3.872983 2.449490 3.162278
[2,] 1.414214 3.000000 1.414214 2.645751
[3,] 4.358899 3.741657 3.316625 4.358899

187

Chapter 8 Writing Functions in Spotfire S+

188

> tan(M)

[,1] [.2] [,3] [.4]
[1,] -0.6358599 -0.8559934 -0.2910062 0.6483608
[2,] -2.1850399 -0.4523157 -2.1850399 0.8714480
[3,] 0.1515895 7.2446066 -225.9508465 0.1515895

Note that both sqrt (M) and tan(M) return objects that are the same
shape as M. The element in the ith row and jth column of the matrix
returned by sqrt (M) is the square root of the corresponding element
in M. Likewise, the element in the ith row and the jth column of
tan(M) is the tangent of the corresponding element (assumed to be in
radians).

The trunc function acts like f1oor for elements greater than 0 and
like ceiling for elements less than O:

>y <-c(-2.6, 1.5, 9.7, -1.0, 25.7, -4.6, -7.5, -2.7, -0.6,
+ -0.3, 2.8, 2.8)

>y

[1] -2.6 1.5 9.7 -1.0 25.7 -4.6 -7.5 -2.7 -0.6
[10] -0.3 2.8 2.8
> trunc(y)

(11 -2 1 9 -125-4-7-2 0 0 2 2

> ceiling(y)
[1] -2 210 -126 -4 -7 -2 0 0 3 3

> floor(y)
3] -3 1 9-125-5-8-3-1-1 2 2

The round function accepts an optional argument digits that allows
you to specify how many digits to include after the decimal point:

> round(sqrt(M), digits=3)

(.11 [,21 [.,31 [.4]
[1,] 3.464 3.873 2.449 3.162
[2,] 1.414 3.000 1.414 2.646
[3,] 4.359 3.742 3.317 4.359

The section Formatting Output (page 237) provides examples that
further illustrate the round function.

Integer
Arithmetic

The Structure of Functions

By default, Spotfire S+ performs integer arithmetic if all arguments
are integers, and real arithmetic if any arguments are real. In
particular, if you pass an integer argument to a built-in function,
Spotfire S+ attempts to return a integer value. If an integer value
cannot be computed for the expression, Spotfire S+ returns NA.
Earlier versions of Spotfire S+ automatically coerced integers to real
numbers for storage purposes and performed real arithmetic by
default. This changed in Spotfire S+ 5.x, however, and now the
coercion must be done explicitly.

For example, here is the code for a Spotfire S+ function that
computes the factorial of a number. We discuss this function in more
detail in the section Wrap-Up Actions (page 265):

facl024 <- function(n)
{
old <- options(expressions = 1024)
on.exit(options(old))
if(n <= 1) { return(l) }
else { n * Recall(n-1) }
}

If we call fac1024 with n=12 it works fine, but n=13 causes it to return
NA:

> facl024(12)
[1] 479001600

> facl024(13)
[11 NA

This is because Spotfire S+ attempts to compute an integer value for
13! and overflows in the process. To force Spotfire S+ to compute
real solutions, you must coerce the argument to a real number as
follows:

> facl024(13.0)
[1] 6227020800

Alternatively, we can replace the third line in the body of fac1024 so
that it always performs real arithmetic:

if(n <= 1) { return(1.0) }

189

Chapter 8 Writing Functions in Spotfire S+

Operations on
Complex
Numbers

With the function defined like this, the call fac1024(13) finishes
without overflowing.

You represent complex literals in Spotfire S+ as a sum of the form
a+ bi, where a and b are real numbers. In general, arithmetic
operations on complex numbers work as you would expect. Because
the addition and subtraction operators have lower precedence than
the *, /, and ~ operators, though, you must use parentheses to group
complex arguments in most cases:

> (2-31)*(4+61)
[1] 26+0i

> (2+3i)7(3+21)
[1] 4.714144-4.569828i

Warning

Do not leave any space between the real number 4 and the symbol i when defining complex
numbers. If space is included between 4 and 1, the following syntax error is returned:

Problem: Syntax error: illegal name ("i")

190

By default, Spotfire S+ performs real arithmetic if all arguments are
real, and complex arithmetic if any arguments are complex. In
particular, if you pass a real argument to a built-in function, Spotfire
S+ attempts to return a real value. If a real value cannot be computed
for the expression, Spotfire S+ returns NA and issues a domain error
message. For example, here is the result when we pass the real
number -1 to the built-in square root function sqrt:

> sqrt(-1)
[1I]1 NA

To force Spotfire S+ to consider complex solutions, you must coerce
the arguments to mode "complex”, typically by using the function as:

> sqrt(as(-1, "complex"))
[1] 6.123032e-017+11

Summary
Functions

The Structure of Functions

Note that the real part of the result, 6.123032e-017, is essentially
equal to zero. Thus, (to machine precision) Spotfire S+ returns 11 as
the square root of —1, which is what we expect. Alternatively, you

can include a zero-valued imaginary part to coerce real numbers to
mode "complex":

> sqrt(-1+01)
[1] 6.123032e-017+11

In addition to the ordinary operators and elementary mathematical
functions, Spotfire S+ provides five special operators for
manipulating complex numbers: Re, Im, Mod, Arg, and Conj. The Re
and Im functions extract the real and imaginary parts, respectively,
from a complex number. For example:

> x <- as(-3, "complex")
> xM(1/3)
[1] 0.7211248+1.2490251

> Re(x"(1/3))
[1] 0.7211248

> Im(x~(1/3))
[1] 1.249025

The Conj function returns the conjugate of a complex number:

> Conj(x~(1/3))
[1] 0.7211248-1.2490251

The Mod and Arg functions return the modulus and argument,
respectively, for the polar representation of a complex number:

> Mod(2 + 21)
[1] 2.828427

> Arg(2 + 21)
[1] 0.7853982

The mathematical operators and functions introduced so far act
element-by-element, generally returning a value the same length and
mode as the input data. Spotfire S+ also includes a number of
functions for summarizing data. Summary functions accept an input
vector or matrix and return a single value that summarizes the data in

191

Chapter 8 Writing Functions in Spotfire S+

some way. For example, the sum and prod functions return the sum
and product, respectively, of their arguments. Other useful summary
functions are listed in Table 8.3. For details on any of the functions
listed in the table, see the online help or Chapter 4, Descriptive
Statistics, in the Guide to Statistics, Volume 1.

Table 8.3: Common functions for summarizing data.

Name Operation
min, max Return the smallest and largest values of the input arguments.
range Returns a vector of length two containing the minimum and maximum

of all the elements in all the input arguments.

mean, median Return the arithmetic mean and median of the input arguments. The
optional trim argument to mean allows you to discard a specified
fraction of the largest and smallest values.

var Returns the variance of a vector, the variance-covariance of a matrix,
or covariances between matrices or vectors.

stdev Returns the standard deviation of a numeric vector.
quantile Returns user-requested sample quantiles for a given data set. For
example,

> quantile(corn.rain, c(0.25, 0.75))
25% 75%

9.425 12.075
mad Returns the median absolute deviation of a numeric vector.
cor Returns the correlation matrix of a data matrix, or correlations

between matrices or vectors.

skewness, Return the skewness and kurtosis of a numeric vector.
kurtosis
summary Returns the minimum, maximum, first and third quartiles, mean, and

median of a numeric vector.

192

Comparison
and Logical
Operators

The Structure of Functions

Table 8.4 lists the Spotfire S+ operators for comparison and logic.
Comparisons and logical operations are frequently convenient for
such tasks as extracting subsets of data. In addition, conditionals using
logical comparisons play an important role in the flow of control in
functions, as we discuss in the section Organizing Computations
(page 213).

Table 8.4: Logical and comparison operators.

Operator | Explanation Operator | Explanation
== equal to 1= not equal to
> greater than < less than
>= greater than or equal to <= less than or equal to
& vectorized AND | vectorized OR
&& control AND || control OR
! not

Notice that Spotfire S+ has two types of logical operators for AND
and OR operations. Table 8.4 refers to the two types as “vectorized”
and “control.” The vectorized operators evaluate AND and OR
expressions element-by-element, returning a logical vector containing
TRUE and FALSE as appropriate. For example:

> x <- c¢(l.9, 3.0, 4.1, 2.6, 3.6, 2.3, 2.8, 3.2, 6.6,
+ 7.6, 7.4, 1.0)

> X

[1] 1.9 3.04.1 2.6 3.62.32.83.26.67.67.41.0

> x<2 | x>4
[LITFTFFFFFTTTT

> x>2 & x<4
[I1FTFTTTTTFFFF

193

Chapter 8 Writing Functions in Spotfire S+

194

In contrast, the control operators are used to construct conditional
statements in if or else statements. The expressions in such
statements are expected to have a single logical value, rather than a
vector of logical values.

The control operators have the additional property that they are
evaluated only as far as necessary to return a correct value. For
example, consider the following expression for some numeric vector
y:

> any(x > 1) && all(y < 0)

The any function evaluates to TRUE if any of the elements in any of its
arguments are true; it returns FALSE if all of the elements are false.
Likewise, the a11 function evaluates to TRUE if all of the elements in all
of its arguments are true; it returns FALSE if there are any false
elements. Spotfire S+ initially evaluates only the first condition in the
above expression, any(x > 1). After determining that x > 1 for some
element in x, only then does Spotfire S+ proceed to evaluate the
second condition, al1(y < 0).

Similarly, consider the following command:

>all(x >=1) || 2> 7
[11 T

Spotfire S+ stops evaluation with a11(x >= 1) and returns TRUE, even
though the statement 2 > 7 is false. Because the first condition is true,
so is the entire expression.

Logical comparisons involving the symbolic constants NA and NULL
always return NA, regardless of the type of operator used. For
example:

>y <- c(3, NA, 4)

>y

[1] 3 NA 4
>y >0
[1] TNA T
>all(y > 0)
[1I]1 NA

To test whether a value is missing, use the function is.na:

Assignments

The Structure of Functions

> is.na(y)
[1TFTF

To test whether a component of a list or an attribute of an object is
null, use the is.nul11 function:

> is.null(names(kyphosis))
[1]1 F

> is.null(names(letters))
(11T

For more details on functions such as is.na and is.null, see the
section Testing and Coercing Data (page 197).

As we have mentioned, data objects are created in Spotfire S+ by
assigning values to names. We saw in the section Syntax of Spotfire
S+ Expressions (page 7) that legal names consist of letters, numbers,
and periods, and cannot begin with a number. The most common
form of assignment in Spotfire S+ uses the left assignment operator <-,
which may also be written as the equals sign = or a single underscore
_ to save typing. The standard syntax is one of three forms:

name <- expression
name = expression
name _ expression

Spotfire S+ interprets the expression on the right side of the
assignment operator and returns a value. The value is then assigned
to the name on the left side of the operator.

Because the underscore is a Spotfire S+ assignment operator, it is
extremely important to remember that it cannot be used in function
and object names, unlike in many other languages. In addition, it is
deprecated as an assignment operator, so it may not be supported in
future releases of Spotfire S+. See the section Syntax of Spotfire S+
Expressions (page 7) for more details.

195

Chapter 8 Writing Functions in Spotfire S+

Warning

In addition to object assignments, the equals sign is used for argument assignments within a
function definition. Because of this, there are some ambiguities that you must be aware of when
using the equals sign as an assignment operator. For example, the command

> print(x <- myfunc(y))
assigns the value from myfunc(y) to the object x and then prints x. Conversely, the command
> print(x = myfunc(y))

simply prints the value of myfunc(y) and does not perform an assignment. This is because the
print function has an argument named x, and argument assignment takes precedence over
object assignment with the equals sign. Because of these ambiguities, we discourage the use of the
equals sign for left assignment.

Assignments made at the Spotfire S+ prompt are performed in the
current working directory. Assignments within functions are local,
and are performed in the frame in which the function is evaluated.
This means that you can freely assign values to names within
functions without overwriting existing objects that might share the
same name. Frames are discussed in full in Chapter 2, Data
Management.

Equivalent to the left assignment operator is right assignment operator,
which appears in the form expression -> name. Right assignment is
convenient when you type a complicated expression at the Spotfire
S+ prompt and then realize you’ve forgotten to assign a name to the
return value. Spotfire S+ also protects you from such forgetfulness by
storing the last unassigned value in the .Last.value object in your
working data directory. For consistency, we recommend that you
always use left assignment within functions. If you use right
assignment in a function definition and then view the code later, you
will see that Spotfire S+ automatically reformats the function to use
left assignment.

The permanent assignment operator <<- operator is like <-, except that it
always writes to the working directory. Thus, it allows you to make

permanent assignments from within functions. However, permanent
assignment inside a function produces a side effect, in that objects in

196

Testing and
Coercing Data

The Structure of Functions

your working data directory are overwritten if they exist. This can
lead to lost data. For this reason, we discourage the use of <<- within
functions.

A more general form of assignment uses the assign function. The
assign function allows you to choose where the assignment takes
place. You can assign an object to either a position in the search list or
a particular frame. For example, the following command assigns the
value 3 to the name boo on the session frame 0:

> assign("boo"™, 3, frame=0)

The assign function can be used to write to permanent directories. As
with <<-, we discourage such use within functions because permanent
assignments have potentially dangerous side effects.

Most functions expect input data of a particular type. For example,
mathematical functions expect numeric input while text processing
functions expect character input. Other functions are designed to
work with a wide variety of input data and have internal branches
that use the data type of the input to determine what to do.

Unexpected data types can often cause a function to stop and return
error messages. To protect against this behavior, many functions
include expressions that test whether the input data is of the right type
and coerce the data if necessary. For example, mathematical
functions frequently have conditionals of the following form:

if(lis(x, "numeric")) x <- as(x, "numeric")

This statement tests the input data x with the is function. If x is not
numeric, it is coerced to a numeric object with the as function.

As we discuss in Chapter 1, The Spotfire S+ Language, older versions
of Spotfire S+ (Spotfire S+ 3.x, 4.x, and 2000) were based on version
3 of the S language (SV3). Most testing of SV3 objects is done with
functions having names of the form is. type, where typeisa
recognized data type. For example, the functions is.vector and
is.matrix test whether the data type of an object is a vector and a
matrix, respectively. Functions also exist to test for special values such
as NULL and NA; see the section Comparison and Logical Operators
(page 193) for more information.

197

Chapter 8 Writing Functions in Spotfire S+

198

Coercion of SV3 objects can be performed using functions with
names of the form as. type, such as as.vector and as.matrix.
Coercion using the as. type functions is very strong, however, and
can lead to loss of information; see the section Coercion of Values on
page 66 for a full discussion. If all you need is to ensure that atomic
data is of the proper mode, you can do this explicitly as follows:

> mode(x) <- "type"
For a list of atomic modes, see the help file for the mode function.

Newer versions of Spotfire S+ (Spotfire S+ 5.x and later) are based on
version 4 of the S language (SV4), which implements a vastly
different approach to classes. In SV4, the is. type and as. type
functions are collapsed into the simpler is and as functions. For
example, to test whether an object x is numeric, type:

> is(x, "numeric")

Similarly, to coerce x to have a character data type, use the following
command:

> as(x, "character")

The is and as functions are backwards compatible and can be used
with data objects created in earlier versions of Spotfire S+.

Objects can be tested in a more general way using the inherits
function. For example, if you have a class called myclass, you can test
an object x for membership in the class using inherits as follows:

> inherits(x, "myclass")

For information on classes and inheritance, see Chapter 12, Object-
Oriented Programming in Spotfire S+.

Table 8.5 lists the most common testing and coercing functions. The
first column gives the data type and the next two columns list the SV4
testing and coercing functions for the data type. The functions relating
to the three data types single, double, and integer are used to
modify the storage mode of numeric data. The storage mode of data is
important if you need to interface with C or Fortran routines, but can
safely be ignored otherwise.

The Structure of Functions

Table 8.5: Common functions for testing and coercing data objects.

Type Testing Coercion

array is(x, "array™) as(x, "array")
character is(x, "character") as(x, "character")
complex is(x, "complex") as(x, "complex")
data frame is(x, "data.frame") as(x, "data.frame")
double is(x, "double™) as(x, "double")
factor is(x, "factor™) as(x, "factor™)
integer is(x, "integer™) as(x, "integer™)
list is(x, "list™) as(x, "Tist™)
logical is(x, "logical™) as(x, "logical™)
matrix is(x, "matrix™) as(x, "matrix")
numeric is(x, "numeric") as(x, "numeric")
single is(x, "single") as(x, "single™)
vector is(x, "vector™) as(x, "vector")

199

Chapter 8 Writing Functions in Spotfire S+

OPERATING ON SUBSETS OF DATA

Subscripting
Vectors

200

Often, we want to perform calculations on only a subset of a data set.
The most useful method in Spotfire S+ for acting on a subset of data is
called subscripting. In general, subscripting is good Spotfire S+
programming because it treats a data object as a whole rather than as
a collection of elements. In fact, subscripting is much more powerful
in Spotfire S+ than in other languages, and therefore should be
mastered. For a collection of good Spotfire S+ programming
techniques, see the section Organizing Computations (page 213).

In the following sections, we illustrate subscripting on a number of
common data structures. For vectors, matrices, and arrays, we use
square brackets [] to subset certain elements; for lists and data
frames, we also use the dollar sign $.

A vector is a set of values that can be thought of as a one-dimensional
array. (Note that this is simply a description, however; a Spotfire S+
vector is not equivalent to a Spotfire S+ one-dimensional array.) A
vector subscript corresponds to an element’s position, or index, in the
vector. For example, the sixth element in a vector x has a subscript
(or index) of 6. You can subscript a data vector by providing a set of
indices that correspond to the elements you wish to keep. If y is a
vector of indices, x[y] returns the elements in x that correspond to
the indices.

In Spotfire S+, appropriate indices for subscripting vectors are
constructed automatically from information supplied in one of the
four following forms: a vector of positive integers, a vector of negative
integers, a logical vector, and a vector of character strings. We discuss
each of these in detail below. It is important to note that any Spotfire
S+ expression that evaluates to an appropriate subscript value can be
included in the square brackets. This flexibility makes subscripting a
very powerful programming tool in Spotfire S+.

Subscripting with positive integers

If you supply a set of positive integers to subscript a vector, Spotfire
S+ interprets the integers as the indices of the elements that you want
to keep. To illustrate this, suppose we have a vector x:

> x <- c¢(l.9, 3.0, 4.1, 2.6, 3.6, 2.3, 2.8, 3.2, 6.6,

Operating on Subsets of Data

+ 7.6, 7.4, 1.0)
> X
[1] 1.9 3.04.1 2.6 3.62.32.83.26.67.67.41.0

The following command returns the third element of x:

> x[3]
[1] 4.1

The next command returns the third, fifth, and ninth elements:

> x[c(3,5,9)]
[1] 4.1 3.6 6.6

Note that the indices do not need to be unique:

> x[c(5,5,8)]
[1] 3.6 3.6 3.2

In addition, the indices do not need to be given in increasing order.
Since x has twelve elements, the following returns x in reverse order:

> x[12:11]
[1] 1.07.47.6 6.6 3.22.82.33.62.64.13.01.9

To determine the total number of elements in a vector, use the
function 1ength. This function returns the number of elements in
atomic objects such as vectors and matrices, and it returns the
number of components in recursive objects such as lists. If the
requested index for a vector x is greater than Tength(x), Spotfire S+
returns NA to indicate a missing value.

Subscripting with negative integers

If you supply a set of negative integers to subscript a vector, Spotfire
S+ interprets them as the indices of the elements that you want to
exclude from the result. All elements in the original vector are
returned in order, with the exception of those corresponding to the
indices you specify. For example, the following command returns all
elements in x except for the third, fourth, and fifth:

> x[-(3:5)]
[1] 1.9 3.0 2.3 2.83.26.67.67.41.0

Specifying an index greater than Tength(x) has no effect:

> x[-13]

201

Chapter 8 Writing Functions in Spotfire S+

202

[1] 1.9 3.0 4.1 2.6 3.62.3 2.83.26.67.67.41.0

The entire vector x is returned by this command, since x has only 12
elements.

Note that you cannot combine positive and negative integers to
subscript a vector. For example, the command x[c(3,-5,9)] returns
an error.

Subscripting with logical values

If you supply a set of logical values to subscript a vector, Spotfire S+
interprets the TRUE values as the indices of the elements that you want
to keep. All elements in the original vector are returned in order, with
the exception of those corresponding to the FALSE indices. For
example, the commands below returns all elements in x that are
greater than 2. Equivalently, they return all elements in x for which
the vector x > 2 is TRUE:

> X > 2
[1J FTTTTTTTTTTF

> x[x > 2]
[1] 3.0 4.1 2.6 3.6 2.3 2.8 3.2 6.6 7.6 7.4

The next command returns the elements in x that are between 2 and
4:

> x[x>2 & x<4]
[1] 3.0 2.6 3.6 2.3 2.8 3.2

Logical index vectors are generally the same length as the vectors to
be subscripted. However, this is not a strict requirement, as Spotfire
S+ recycles the values in a short logical vector so that its length
matches a longer vector. Thus, you can use the following command to
extract every third element from x:

> x[c(F,F,T)]
[1]1 4.1 2.3 6.6 1.0

The index vector c(F,F,T) is repeated four times so that its length
matches the length of x. Likewise, the following command extracts
every fifth element from x:

> x[c(F,F,F,F,T)]
[1] 3.6 7.6

Operating on Subsets of Data

In this case, the index vector is repeated three times, and no values
are returned for indices greater than Tength(x).

Subscripting with character values

When you supply a set of character values to subscript a vector, the
values must be from the vector’s names attribute. Thus, this
subscripting technique requires the vector to have a non-null names
attribute. Spotfire S+ matches the names you specify with those in the
names attribute, and returns the corresponding elements of the vector.

For example, consider the built-in vector state.abb, which contains
the postal abbreviations for all fifty states in the USA. Note that
state.abb has no names by default:

> Tength(state.abb)
[1] 50

> names(state.abb)
NULL

We can use the "names<-" replacement function to assign names to
state.abb. The names we choose are located in the vector
state.name, which contains the full names of all fifty states:

> length(state.name)
[1] 50

> state.name

[1] "Alabama" "Alaska" "Arizona"
[4] "Arkansas™ "California™ "Colorado™
[7]1 "Connecticut" "Delaware™ "Florida"
[10]

Before modifying a built-in data object, we must create a local copy of
it in our working directory:

> state.abb <- state.abb
> names(state.abb) <- state.name

Finally, we can subscript state.abb directly with character vectors.
The following command returns the postal abbreviations of Alaska
and Hawaii:

> state.abb[c("Alaska™, "Hawaii")]

203

Chapter 8 Writing Functions in Spotfire S+

Subscripting
Matrices and
Arrays

204

Alaska Hawaii
IIAKH llHIll

Subscripting data sets that are matrices or arrays is very similar to
subscripting vectors. In fact, you can subscript them exactly like
vectors if you keep in mind that arrays are stored in column-major
order. You can think of the data values in an array as being stored in
one long vector that has a dim attribute to specify the array’s shape.
Column-major order states that the data values fill the array so that
the first index changes the fastest and the last index changes the
slowest. For matrices, this means that data values are filled in column-
by-column.

For example, suppose we have the following matrix M:

> M <- matrix(c(12,1,19,15,9,14,6,2,11,10,7,19), nrow=3)
>M

[(,11 [,21 [,3]1 [,4]
[1,] 12 15 6 10
(2,1 1 9 2 7
[3,] 19 14 11 19

We can extract the eighth element of M as follows:

> M[8]
[1] 2

This corresponds to the element in the second row and third column
of M. When a matrix is subscripted in this way, the element returned is
a single number without dimension attributes. Thus, Spotfire S+ does
not recognize it as matrix.

Spotfire S+ also lets you use the structure of arrays to your advantage
by allowing you to specify one subscript for each dimension. Since
matrices have two dimensions, you can specify two subscripts inside
the square brackets. The matrix subscripts correspond to the row and
column indices, respectively:

> M[2,3]
[1] 2

Operating on Subsets of Data

As with vectors, array subscripts can be positive integers, negative
integers, logical vectors, or character vectors if appropriate. The
following command returns a 2 X 2 submatrix of M, consisting of the
first and third rows and the second and fourth columns:

> M[c(1,3), c(2,4)]

(.11 [.2]
[1,1] 15 10
[2,1] 14 19

The next command returns values from the same two columns,
including all rows except the first:

> M[-1, c(2,4)]

(.11 [,2]
[1,1 9 7
[2.] 14 19

The next example illustrates how you can use a logical vector to
subscript a matrix or array. We use the built-in data matrix
state.x77, which contains demographic information on all fifty states
in the USA. The third column of the matrix, I11iteracy, gives the
percent of the population in a given state that was illiterate at the time
of the 1970 census. We first copy this column into an object named
il11it:

> dim(state.x77)
[1] 50 8

> 1111t <- state.x77[1:50, 3]

Next, we subscript state.x77 on the 1111t values that are greater
than two:

> state.x77[i11it > 2, 3:5]

IT1iteracy Life Exp Murder

Alabama 2.1 69.05 15.1
Louisiana 2. 68.76 13.2
Mississippi 2.4 68.09 12.5
New Mexico 2.2 70.32 9.7
South Carolina 2.3 67.96 11.6
Texas 2.2 70.90 12.2

205

Chapter 8 Writing Functions in Spotfire S+

Dropping Indices
from Arrays

206

In the above command, the subscript i11it > 2 results in a logical
value of length 50. The returned values are in rows for which

i11it > 21is TRUE, and are from the third, fourth, and fifth columns of
state.x77.

It is also possible to subscript matrices and arrays by supplying
character values that specify indices. The supplied values must be
from the array’s dimnames attribute. Spotfire S+ matches the names
you specify with those in the dimnames attribute and returns the
corresponding elements of the array. For example, the command
below returns the element of state.x77 in the row named Arizona
and the column named Area:

> dimnames(state.x77)

[[1]1]:
[1] "Alabama" "Alaska" "Arizona"
[4] "Arkansas" "California" "Colorado"
[7]1 "Connecticut" "Delaware" "Florida"
[10]
[[2]1]:
[1] "Population™ "Income™ "ITliteracy™ "Life.Exp"
[5] "Murder" "HS.Grad" "Frost" "Area"
> state.x77["Arizona", "Area"]
[1] 113417

Note that if the subscript for a given dimension is omitted, all
subscripts are assumed. Thus, we can construct the 1111t object with
the simpler command:

> il11it <- state.x77[, 3]

As with vectors, array subscripts can be any expression that evaluates
to an appropriate set of index values.

By default, Spotfire S+ drops array dimensions whenever
subscripting results in a lower-dimensional object. Thus, if you
subscript a single column or a single value from a matrix, the returned
object is a vector instead of a matrix. You can see this with the matrix
M that we defined above:

> M[1,3]

Subscripting
Arrays with
Matrices

Operating on Subsets of Data

[11 6

To override this behavior, use the drop argument to the subscripting
functions. By default, drop=TRUE and dimensions are dropped
whenever possible. The command below sets drop=FALSE and thus
keeps the matrix dimensions:

> K <- M[1, 3, drop=FALSE]
> K

> is(K, "matrix"™)
[11 T

> dim(K)
(1111

In general, operating on arrays of data is more complicated than
operating on simple vectors. One problem, as we discuss above, is
that subscripting can sometimes collapse your data. Another problem
is that subscripting an n-dimensional array with 7 subscripts yields
only rectangular data sets. Often, you need to extract more irregular
subsets of arrays. You can do this by supplying a subscript matrix that
represents the positions of the individual elements you wish to keep.

For example, suppose we want to extract two elements of M: the
element in row 1 and column 2, and the element in row 3 and column
3. We can do this directly with the following command:

> ¢c(M[1,2], ML[3,31)
[1] 15 11

More generally, we do this by subscripting with the following matrix:

> subscr.mat <- matrix(c(1,2,3,3), ncol=2, byrow=T)
> subscr.mat

(.11 [,2]
[1.] 1 2
[2,] 3 3

> M[subscr.mat]
[1] 15 11

207

Chapter 8 Writing Functions in Spotfire S+

Subscripting
Lists

208

Subscript matrices such as subscr.mat have as many columns as
there are dimensions in the array. Each element you want to extract
from the array corresponds to a row in the subscript matrix, and the
entries in each row are the indices of the element.

Lists are vectors of class "1ist" that can hold arbitrary Spotfire S+
objects as individual elements. For example:

> x <- ¢c("Tom"™, "Dick", "Harry™)
> mode(x)
[1] "character"

> mylist <- Tist(x = x)
> mylist[1]

$x:

[1] "Tom™ "Dick™ "Harry"

> mode(mylist[1])
[17 "Tist"

When it acts on vectors, the subscript operator [] returns a subvector
that has the same mode as the original vector. Thus, mylist[1]isa
list, just like the original object my1ist. Yet the element x that we use
to build my1ist is of mode "character". To extract the original
structure of a list element, use the operator [[1]:

> mylist[[1]1]
[11 "Tom™ "Dick™ "Harry"

> mode(mylist[[1]])
[1] "character"

The subscript operator [[]] returns a single element of a vector; the
mode of the element may be different than the mode of the original
vector. Although it works on ordinary numeric and character vectors,
the operator [[]] is most useful on lists. For this reason, we refer to it
as the list subscript operator.

If the subscript for a list is itself a vector or a list, Spotfire S+ uses it
recursively. That is, the first element of the subscript extracts an
element from the top-level list in the object, the next subscript
element extracts from the first, and so on. For example, consider the
object biglist below:

Operating on Subsets of Data

> biglist <- Tist(
+ Tista = Tist(
+ Tistl = list(x=1:10, y=10:20),
+ list2 = letters),
+ listb = Tist("a", "r", "e"))
> biglist
$1ista:
$T1istaslistl:
$Tlistaslistléx:
[11 1 2 3 4 5 6 7 8 910
$Tistaslistlsy:
[1] 10 11 12 13 14 15 16 17 18 19 20
$T1ista$list2:
[1] llall llbll "C" lldll "e" "_r_‘" llgll llhll ll.ill

[14] unu uou "p" nqn uru uSu utu uuu uvu

$1isth:
$1istb[[11]:
[1] "a”

$1istb[[2]]:
[1] "r"

$11stb[[31]:
[1] "e”

"j" "k" n'ln umu

w"oUx" My z

Suppose we want to extract the element y from biglist. The 1ista
element is the first in biglist, the 1ist1 element is the first in Tista,
and y is the second element in 1ist1. Thus, the following expression

returns the contents of y:

> biglist[[111C[111[[2]]
[1] 10 11 12 13 14 15 16 17 18 19 20

We can accomplish the same thing more compactly with the

following shorthand:

> biglist[[c(1,1,2)]]

209

Chapter 8 Writing Functions in Spotfire S+

210

[1] 10 11 12 13 14 15 16 17 18 19 20

If the elements of a list are named, the named elements are called
components and can be extracted by either the list subscript operator or
the component operator $. For example:

> mylistéx
[1] "Tom"™ "Dick" "Harry"

Note that the component operator returns the original structure of a
list element, just like the list subscript operator:

> mode(mylist$x)
[1] "character"

You can extract components of embedded lists with nested use of the
component operator:

> biglist$listaslist2

[1] llall llbll "Cll lld" nen "f" llgll llhll ll.ill ll‘]'ll nkn n'ln llmll
[14] llnll llOll llpll llq" nrn nsn lltll llull llvll IIWII "X" llyll IIZII

You can also supply a vector of component names to the list subscript
operator. The effect is the same as supplying a vector of component
numbers, as in the biglist[[c(1,1,2)]] command above. For
example, the following extracts the 1ist2 component of 1ista in
biglist:

> biglist[[c("Tista","Tist2")]1]

[1] uau ubu uCu udu ueu u_Fu ugu uhu u_iu ll‘]'ll "k" n'ln umu
[14:] unu uou "p" nqn uru uSu utu uuu uvu "W" "X" |vy|v uzu

The component operator and the list subscript operator are
equivalent. You can use them interchangeably, and you can use both
operators in a single command:

> biglist[["Tista"]l$1istl

$x:

[1]1 2345678910

$y:

[1] 10 11 12 13 14 15 16 17 18 19 20

Subscripting
Data Frames

Operating on Subsets of Data

Data frames share characteristics of both matrices and lists. Thus,
subscripting data frames shares characteristics of subscripting both
matrices and lists. In the examples below, we illustrate the possible
ways that you can use to subscript data frames.

First, we form a data frame from numerous built-in data sets that
contain information on the 50 states in the USA:

> state.data <- data.frame(state.abb, state.center,
+ state.region, state.division, state.x77,
+ row.names = state.name)

The data frame state.data is a matrix with 50 rows and 14 columns,
but Spotfire S+ also recognizes it as a list. For most subscripting
purposes, it is easiest to treat data frames as matrices and extract
elements with the matrix subscript notation. For example, the
following command returns a 3 X 3 data frame using matrix
subscripts:

> state.data[b:7, 6:8]

Population Income IlTiteracy

California 21198 5114 1.1
Colorado 2541 4884 0.7
Connecticut 3100 5348 1.1

Like lists, data frames also have components that you can access with
the component operator. Data frame components are the named
columns and can be accessed just like list components. For example,
the following command returns the Population column of
state.data:

> state.data$Population

[1] 3615 365 2212 2110 21198 2541 3100 579

[91 8277 4931 868 813 11197 5313 2861 2280
[17] 3387 3806 1058 4122 5814 9111 3921 2341
[25] 4767 746 1544 590 812 7333 1144 18076
[33] 5441 637 10735 2715 2284 11860 931 2816
[41] 681 4173 12237 1203 472 4981 3559 1799
[49] 4589 376

211

Chapter 8 Writing Functions in Spotfire S+

You can also supply a vector of component names to subscript
particular columns from a data frame. The following command
returns a data frame containing both the Population and Area
columns from state.data

> state.datal, c("Population™, "Area")]

Population Area

Alabama 3615 50708
Alaska 365 566432
Arizona 2212 113417
Arkansas 2110 51945
California 21198 156361
Colorado 2541 103766
Connecticut 3100 4862

212

Organizing Computations

ORGANIZING COMPUTATIONS

Programming
Style

As with any programming task, the key to successful Spotfire S+
programming is to organize your computations before you start.
Break the problem into pieces and use the appropriate tools to
complete each piece. Be sure to take advantage of existing functions
rather than writing new code to perform routine tasks.

Spotfire S+ programming in particular requires one additional bit of
wisdom that is crucial: treat every object as a whole. Treating objects as
whole entities is the basis for vectorized computation. You should
avoid operating on individual observations, as such computations in
Spotfire S+ carry a high premium in both memory use and
processing time. Operating on whole objects is made simpler by a
very flexible subscripting capability, as we discuss in the previous
section. In most cases where for loops (or other loop constructs) seem
the most natural way to access individual data elements, you will gain
significantly in performance by using some form of subscripting.

In this section, we provide some high-level suggestions for good
Spotfire S+ programming style. In addition, we discuss common
control functions such as if, ifelse, and return.

Most programmers have been exposed to some general rules of
programming style before they attempt to write functions in the
Spotfire S+ language. “Avoid Goto’s,” “Use top-down design,” and
“Keep it modular” are some catch-phrases that embody style
guidelines. Most of the style guidelines you’ve come to swear by are
also applicable to Spotfire S+, including:

* Modularize your code. If you need to design a large function, see
if you can use smaller functions to do most of the work. This
reduces the size of the larger function, which makes it easier
to understand and debug. This approach also allows each of
the smaller functions to be reused for other purposes.

* Comment your code. Comments are useful guides to the design
of a function, particularly when you use an unusual or
unfamiliar construction. Without comments, you may not be
able to decipher your own code in six months, and it may be
completely opaque to anyone else who tries to read it.

213

Chapter 8 Writing Functions in Spotfire S+

Flow of
Control

214

The Spotfire S+ language designates comments with the
pound sign #. Be sure to read the section Notes Regarding
Commented Code (page 226) before including comments in
your Spotfire S+ functions.

* Document your code. If you distribute your functions to other
users, include help files describing them that contain
complete descriptions of arguments and return values. The
prompt function can be used to create a skeletal help file for
any Spotfire S+ object.

* Use existing functions. If you already know of a function that
performs a certain task, use it instead of rewriting it. Spotfire
S+ includes over four thousand built-in functions, most of
which can be used to good effect in your own functions.

* Use parentheses to make groupings explicit. If you’re a
sophisticated user, you can use the precedence of operations
to your advantage in writing quick functions. If you plan to
maintain such functions, however, it is clearer to have the
precedence explicit with parentheses. For details, see the
section Function Names and Operators (page 181).

* Avoid unnecessary looping. As we mention above, a key point in
Spotfire S+ programming is to treat data objects as whole
objects. When you begin to use a for loop, ask yourself if the
loop can be eliminated in favor of a single expression that
operates on the whole object. For atomic objects such as
vectors and matrices, this is almost always possible. Lists,
however, sometimes require for loops to access the individual
list elements. The 1app1ly function performs this looping for
you; you should use it instead of explicitly constructing your
own loops. Chapter 14, Using Less Time and Memory, in the
Application Developer’s Guide, discusses several techniques for
avoiding loops in Spotfire S+ code, including the use of
lapply.

Many other useful programming rules can be found in introductory
programming texts.

Normally, Spotfire S+ expressions are evaluated sequentially. Groups
of expressions can be collected within curly braces {}. Such groups
are treated as a single Spotfire S+ expression, but within the

Organizing Computations

expression evaluation again proceeds sequentially. You can override
the normal flow of control with the constructions presented in Table
8.6. In the subsections that follow, we discuss each of these in detail.

Table 8.6: Spotfire S+ constructions that allow you to override the normal flow of control.

Construction

Description

if(condition) {expression}

Evaluates condition. If true, evaluates expression.

if(condition) {expressionl}
else {expression2}

Evaluates condition. If true, evaluates expressionl. If false,
evaluates expression?2.

ifelse(condition,
expressionl, expressionZ)

Vectorized version of the if statement. Evaluates condition
and returns elements of expressionl for true values and
elements of expression2 for false values.

switch(expression, ...) Evaluates expression, which must return either a character or
numeric value. The value of expressionis compared to the
remaining arguments: if it matches one exactly, the value of the
evaluated argument is returned.

break Terminates the current loop and passes control out of the loop.

next Terminates the current iteration of the loop and immediately

starts the next iteration.

return(expression)

Terminates the current function and immediately returns the
value of expression.

stop(message)

Signals an error by terminating evaluation of the current
function, printing the character string contained in message,
and returning to the Spotfire S+ prompt.

215

Chapter 8 Writing Functions in Spotfire S+

Table 8.6: Spotfire S+ constructions that allow you to override the normal flow of control. (Continued)

Construction Description

while(condition) Evaluates condition. If true, evaluates expression then repeats
{expression)} the loop, evaluating condition again.

repeat {expression} Simpler version of the while statement. No tests are performed

and expression is evaluated indefinitely. Because repeat
statements have no natural termination, they should contain
break, return and/or stop statements.

for(name in expressionl) Evaluates expression2 once for each name in expressionl.

{expression2} Although for loops are widely used in most programming
languages, they are generally less efficient in Spotfire S+ than
vectorized calculations.

The if and stop The if statement is the most common branching construction in
Statements Spotfire S+. The syntax is simple:

if(condition) { expression }

Here, condition is any Spotfire S+ expression that evaluates to a
logical value, and expressionis the expression that is evaluated if
condition is true. As with function bodies, expression needs to be
braced only if it contains multiple statements. We suggest, however,
that you include braces at all times for consistency and
maintainability.

You can use if statements to screen input data for suitability. For
example, the following issues an error if the input data x is not
numeric:

if (lis(x,"numeric™))
stop("Data must be of mode numeric")

The stop function stops evaluation of the calling function at the point
where stop occurs. It takes a single argument that should evaluate to
a character string. If such an argument is supplied, the string is
printed to the screen as the text of an error message. For example,
under normal error handling, the above example yields the following
output if x is not numeric:

Error: Data must be of mode numeric

216

Organizing Computations

Dumped

We discuss the stop function more in the section Error Handling
(page 233).

Another common use of if statements is in missing-argument
handling within function definitions:

if(missing(y)) y <- sqrt(x)

This statement uses the missing function to check whether the
argument y is missing; if it is, the value sqrt(x) is assigned to y.

When constructing conditions within if statements, you may want to
test multiple conditions at once. You can use the two conditional
operators, && and | |, for logical AND and OR statements,
respectively. The syntax is:

if(conditionl && condition2) { expression }
if(conditionl || condition2) { expression }

These operators evaluate only as far as necessary to return a value.
For example, the && operator first evaluates conditionl. If it is true,
then conditionZ2is evaluated and the result is returned as the value of
the condition statement. If conditionl is false, however, condition2
is not evaluated and Spotfire S+ returns FALSE for the entire
statement. Similarly, the | | operator evaluates only until it encounters
a true statement and then returns TRUE. It returns FALSE only if every
condition is false.

Do not confuse the vectorized AND and OR operators (& and |) with
the conditional operators discussed here. The vectorized operators
return vectors of logical values, while conditionals return a single
logical value. For more details, see the section Comparison and
Logical Operators (page 193).

Note

Spotfire S+ recognizes NA as a logical value, giving three possibilities for logical data: TRUE, FALSE,
and NA. If an i f statement encounters NA, the calling function terminates and returns a message of
the following form:

Missing value where logical needed

217

Chapter 8 Writing Functions in Spotfire S+

Multiple Cases:
The if and switch
Statements

218

One of the most common uses of the if statement is to provide
branching for multiple cases. Spotfire S+ has no formal “case”
statement, so you often implement cases using the following general
form:

if(casel) { expressionl }
else if(case2) { expression2 }
else if(case3) { expression3 }

else Tastexpression

The idea is to identify each case in your function and have it
correspond to exactly one if or else statement. Such a construction
makes it easy to follow the cases and serves as a check that all cases
are covered. As an example, the simple function below generates a
set of random numbers from one of three distributions:

my.ran <- function(n, distribution, shape)
{
i
A function to generate n random numbers.
If distribution="gamma", shape must be given.
3
if(distribution == "gamma") return(rgamma(n,shape))
else if(distribution == "exp") return(rexp(n))
else if(distribution == "norm™) return(rnorm(n))
else stop("distribution must be \"gamma\"™, \"exp\", or
\"norm\"")

}

We must use the escape character \ in the stop message so that the
double quotes are recognized.

The switch function handles multiple cases in a slightly different way
than the if statement. The switch function accepts as its first
argument a Spotfire S+ expression that should evaluate to a character
string or numeric value. If the first argument is a character string, it is
compared to the remaining arguments and the value of the matched
argument is returned. If the first argument is an integer in the range
l:nargs - 1, the integer i corresponds to the 7+1st argument in the
list. Integers tends to hide the nature of the individual cases, however;
character values require that you label each individual case.

For example, we can rewrite my . ran using switch as follows:

Organizing Computations

my.ran2 <- function(n, distribution, shape)
{
switch(distribution,
gamma = rgamma(n,shape),
exp = rexp(n),
norm = rnorm(n),
stop("distribution must be either \"gamma\",
\"exp\", or \"norm\""))
}

When the my.ran2 function is called, the interpreter evaluates the
distribution argument. If it is one of the three character strings
"gamma", "exp", or "norm", the corresponding expression is evaluated.
Otherwise, the stop expression is evaluated.

The ifelse The ifelse statement is a vectorized version of the i f statement. The
Statement syntax is:

ifelse(condition, expressionl, expressionZ)

The ifelse function evaluates both expressionl and expression2
and then returns the appropriate values from each based on the value
of condition. If an element of conditionis true, 7 felse returns the
corresponding value of expressionl; otherwise, it returns the
corresponding value of expression2.

The condition in an if statement must evaluate to a single logical
value, either TRUE or FALSE. Thus, to carry out operations that involve
multiple comparisons, the if statement needs to take place inside a
loop. For example, here is one implementation of the built-in sign
function, which accepts a numeric object and returns +1 depending
on the sign of the elements:

my.sign <- function(x)
{
for(i in 1:length(x)) {
if(x[il] > 0) { x[i] <- 1}
else if(x[i] < 0) { x[i] <- -1}
}
return(x)

219

Chapter 8 Writing Functions in Spotfire S+

The ifelse function provides a method for evaluating a condition
over an entire vector or array of values without resorting to a for
loop. Here is a rewritten version of the my.sign function that uses
ifelse twice:

my.sign2 <- function(x)
{

ifelse(x > 0, 1, ifelse(x < 0, -1, 0))
}

Not only is the version using ifelse much quicker, but it also handles
missing values:

> my.sign(c(l, 3, NA, -2))

ProbTem in my.sign: Missing value where Togical needed:
if(x[i1 > 0) { x[i] <- 1}
else if(x[i] < 0) { x[i] <- -1}

> my.sign2(c(l, 3, NA, -2))

[11 1 1NA -1

The 1ifelse function essentially uses subscripting, but includes some
extra steps so that it behaves correctly with NA values:

> ifelse

function(test, yes, no)
{
answer <- test
test <- as.logical(test)
n <- length(answer)
if(length(na <- which.na(test)))
test[na] <- F

answer[test] <- rep(yes, length.out = n)[test]
if(length(na))

test[nal] <- T
answer[!test] <- rep(no, Tength.out = n)[!test]

answer
}

The idea is to perform a test on an object and replace those elements
for which the test is true with one value, while replacing the elements
for which the test is false with another value. The ifelse function sets

220

Organizing Computations

the subscripts corresponding to missing values to FALSE before
replacing the true elements, thus avoiding the error about missing
values that my.sign reports. It then resets those subscripts to TRUE
before replacing the false elements. The net result is that missing
values remain missing.

Warning

Note from the code above that ifelse subscripts using single numeric indices. Thus, it designed
to work primarily with vectors and, as an extension, matrices. If you subscript a data frame with
a single index, Spotfire S+ treats the data frame as a list and returns an entire column; for this
reason, you should exercise care when using ifelse with data frames. For details on subscripting,
see the section Operating on Subsets of Data (page 200).

If our original data have no missing values, we can improve the

my . s1gn2 function further, using the original for loop in my.sign as a
hint. The telltale construction x[i] <- indicates that we can try
subscripting directly:

my.sign3 <- function(x)
{
x[x > 0] <-1
x[x < 0] <- -1
return(x)
}

For more hints on replacing for loops, see Chapter 14, Using Less
Time and Memory, in the Application Developer’s Guide.

The break, next It is often either necessary or prudent to leave a loop before it reaches

and return its natural end. This is imperative in the case of a repeat statement,

Statements which has no natural end. In Spotfire S+, you exit loops using one of
three statements: break, next, and return. Of these, return exits not
only from the current loop, but also from the current function. The
break and next statements allow you to exit from loops in the
following ways:

* The break statement tells Spotfire S+ to exit from the current
loop and continue processing with the first expression
following the loop.

221

Chapter 8 Writing Functions in Spotfire S+

The repeat
Statement

222

* The next statement tells Spotfire S+ to exit from the current
iteration of the loop and continue processing with the next
iteration.

For example, the function below simulates drawing a card from a
standard deck of 52 cards. If the card is not an ace, it is replaced and
another card is drawn. If the card is an ace, its suit is noted, it is
replaced, and another card is drawn. The process continues until all
four aces are drawn, at which time the function returns a statement of
how many draws it took to return all the aces.

draw.aces <- function()
{
ndraws <- 0
aces.drawn <- rep(F,4)
repeat {
draw <- sample(1:52, 1, replace=T)
ndraws <- ndraws + 1
if(draw %% 13 1= 1)
next
aces.drawn[draw %/% 13 + 1] <- T
if(all(aces.drawn))
break
}
cat("It took", ndraws,
"draws to draw all four of the aces!\n")
}

The repeat statement is the simplest looping construction in Spotfire
S+. It performs no tests, but simply repeats a given expression
indefinitely. Because of this, the repeated expression should include a
way out, typically using either a break or return statement. The
syntax for repeat is:

repeat { expression }

For example, the function below uses Newton’s method to find the
positive, real jth roots of a number. A test for convergence is included
inside the loop and a break statement is used to exit from the loop.

newton <- function(n, j=2, x=1)
{
f

Organizing Computations

Use Newton’s method to find the positive, real
jth root of n starting at old.x == x.

The default is to find the square root of n

from old.x ==

#

old.x <- x

repeat

{
new.x <- old.x-((old.x*j-n) / (j * old.x"(j-1)))
Compute relative error as a 2-norm.
conv <- sum((new.x - old.x)?2 / old.x"2)
if(conv < le-10)

break

old.x <- new.x

}

return(old.x)

}

The following command finds the square roots of the integers 4
through 9:

> newton(4:9)
[1] 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000

To condense the code, we can replace the break statement inside the
loop with a return statement. This makes it clear what the returned
value is and avoids the need for any statements outside the loop:

newton2 <- function(n, j=2, x=1)

{
old.x <- x
repeat
{
new.x <- old.x-((old.x*j-n) / (j * old.x"(j-1)))
conv <- sum((new.x - old.x)*2 / old.x"2)
if(conv < 1le-10)
return(old.x)
old.x <- new.x
}
}

223

Chapter 8 Writing Functions in Spotfire S+

Of course, such an abrupt departure from the function is undesirable
if additional calculations remain after the loop.

Note

The newton function is vectorized, as most Spotfire S+ functions should be. Thus, the
convergence criteria given above is not ideal for Newton’s method, since it does not check the
convergence of individual values. The code is provided here to illustrate the repeat and break
statements; if you wish to use the code in your work, you may want to experiment with different
convergence conditions.

The while
Statement

224

You use the while statement to loop over an expression until a true
condition becomes false. The syntax is simple:

while(condition) { expression }

For example, the function below returns a vector that corresponds to
the binary representation of an integer.

bitstring <- function(n)
{
tmp.string <- numeric(32)
i<-0
while(n > 0) {
tmp.string[32-i] <- n %% 2
n<-n%'% 2
i<-i+1
}
firstone <- match(l, tmp.string)
return(tmp.string[firstone:32])
}

In the bitstring code, n is made smaller in each iteration and
eventually becomes zero. We have no way of knowing beforehand
exactly how many times we need to execute the loop, so we use
while. Here is the result of calling bitstring with n=13:

> bitstring(13)
[1]1 101

Note that the bitstring function is not vectorized. It accepts a single
integer value and does not work when the argument n is a numeric
vector.

The for
Statement

Organizing Computations

Like the for statement, while is familiar to most programmers with
experience in other languages. And, like the for statement, it can
often be avoided in Spotfire S+ programming. You may need to use
while or for as a last resort in Spotfire S+, but you should always try
a vectorized approach first.

Using for loops is a traditional programming technique that is fully
supported in Spotfire S+. Thus, you can translate most Fortran-like
DO loops directly into Spotfire S+ for loops and expect them to
work. However, as we have stated, using for loops in Spotfire S+ is
usually not a good technique because loops do not treat data objects
as whole objects. Instead, they attack the individual elements of data
objects, which is often a less efficient approach in Spotfire S+. You
should always be suspicious of lines in Spotfire S+ functions that have
the following form:

x[i] <- expression

Code with this structure can usually be implemented more efficiently
with subscripting.

The syntax of Spotfire S+ for loops is:

for(name in expressionl) { expressionZ }

Spotfire S+ evaluates expression2 once for each name in
expressionl, where expressionl evaluates to a vector. For example:

for(i in 1:10) print(i)

The index variable (i in the above example) has scope only within
the body of the for loop.

Note that there are certain situations in which for loops may be
necessary in Spotfire S+:

* when the calculation on the 7+1st element in a vector or array
depends on the result of the same calculation on the ith
element.

+ for some operations on lists. The Tapply and sapply functions
perform some looping implicitly and may be more efficient
than loops you code yourself.

225

Chapter 8 Writing Functions in Spotfire S+

Notes
Regarding
Commented
Code

226

Comments within Spotfire S+ functions are sometimes roughly
handled by the interpreter. This is because Spotfire S+ attaches
comments to the beginning of the expressions that follow them. If no
expression follows a comment, it is not attached and will not be
printed when you view the function. For example, suppose we define
a function primes as follows:

primes <- function(n = 100)
{
n <- as(abs(n), "integer")
if(n < 2) return(integer(0))
p <- 2:n
smallp <- integer(0)
the sieve
repeat {
i <- pll]
smallp <- c(smallp, i)
p <- plp %% i !'= 0]
if(i > sqrt(n)) break
}
return(c(smallp, p))
}

If we type primes at the Spotfire S+ prompt, all of the function code is
printed, including the comment. However, suppose we add another
comment after the last return statement when we define the function:

return(c(smallp, p)) # return the prime values

No expression follows this comment, so it is not printed when we
view the code of primes at the Spotfire S+ prompt.

Specifying Argument Lists

SPECIFYING ARGUMENT LISTS

Formal and
Actual Names

A well-chosen argument list can add considerable flexibility to most
functions. Some languages, notably C, make a distinction between a
function’s parameter list and a function call’s argument list. Spotfire S+
maintains this distinction by speaking of an argument’s formal name,
which corresponds to the name specified in a parameter list, and its
actual name, which is used when actually calling the function. In this
section, we present many examples of argument lists in Spotfire S+
functions and give suggestions for constructing your own.

When you define a Spotfire S+ function, you specify the arguments
the function accepts by means of formal names. Formal names can be
any combination of letters, numbers, and periods, as long as they are
syntactically valid and do not begin with a number. The formal name
... (three dots) is used to pass arbitrary arguments to a function; we
discuss this in the section Variable Numbers of Arguments (page 230).

For example, consider the argument list of the hist function:
> args(hist)

function(x, nclass = "Sturges™, breaks, plot = TRUE,
probability = FALSE, include.lowest =T,
xlab = deparse(substitute(x)))

The formal names for this argument list are x, nclass, breaks, plot,
probability, include.lowest, ..., and x1ab.

When you call a function, you specify actual names for each argument.
Unlike formal names, an actual name can be any valid Spotfire S+
expression that makes sense to the function. You can thus provide a
function call such as Tength(x) as an argument. For example,
suppose we want to create a histogram of the Mileage column in the
fuel.frame data set:

> hist(fuel.frame$Mileage)

The expression fuel.frame$Mileage is the actual name that
corresponds to the formal argument x.

227

Chapter 8 Writing Functions in Spotfire S+

Specifying In general, there are two ways to specify default values for arguments
Default in a Spotfire S+ function:
Arguments * The simplest way is to use the structure formalname=value

when defining a formal argument. For example, consider
again the argument list for the hist function.

> args(hist)

function(x, nclass = "Sturges", breaks, plot = TRUE,
probability = FALSE, include.lowest =T,
xlab = deparse(substitute(x)))

Default values are supplied for the nclass, plot, probability,
include.lowest, and x1ab arguments.

You can also specify defaults by providing code in the body
of a function that handles missing arguments. This technique
is useful if the code for computing a default value is too
complicated to include in the formal argument list. We
discuss this more in the next section.

Handling To test whether a given argument is supplied in the current function
Missing call, use the construction if(missing(formalname)). For example,

Arguments

the following code sample from hist shows how it handles a missing
breaks argument:

if(missing(breaks)) {
if(is.character(nclass))

nclass <- switch(casefold(nclass),
sturges = nclass.sturges(x),
fd = nclass.fd(x),
scott = nclass.scott(x),
stop("Nclass method not recognized"))

else if(is.function(nclass)) nclass <- nclass(x)
breaks <- pretty(x, nclass)
if(length(breaks) == 1) {

228

if(abs(breaks) < .Machine$single.xmin * 100)
breaks <- c(-1, -0.5, 0.5, 1)
else if(breaks < 0)
breaks <- breaks * c(1.3, 1.1, 0.9, 0.7)
else
breaks <- breaks * ¢(0.7, 0.9, 1.1, 1.3)

Lazy
Evaluation

Specifying Argument Lists

if((!include.lowest && any(
x <= breaks[1])) || any(x < breaks[1]))
breaks <- c(breaks[1l] - diff(breaks)[1], breaks)
x[x > max(breaks)] <- max(breaks)
}

The construction if(missing(formalname)) is useful for specifying a
default value if the code for computing the default is too complicated
to include in the formal argument list. Otherwise, the construction
formalname=value is usually simpler.

Many programmers with experience in other programming
languages make too much use of missing-argument handling in
Spotfire S+. This is because Spotfire S+ uses lazy evaluation, which
means that arguments are evaluated only as needed.

For example, consider the following simple plotting function:

plotsqrt <- function(x,y)

{
z1 <- seq(l,x)
if(missing(y)) plot(zl, sqrt(zl))
else plot(zl,y)

}

In this function, the missing-argument construction supplies the
default value sqrt(z1) for the argument y. The default depends on
the value z1, which is unknown until the completion of the first line in
the body of the function. Because of this, many programmers avoid
defining the default in the formal argument list. However, lazy
evaluation allows us to do this in Spotfire S+ without receiving an
error. Thus, we can rewrite plotsqrt as follows:

plotsqrt2 <- function(x, y=sqrt(zl))
{

z1 <- seq(1,x)

plot(zl,y)
}

Spotfire S+ doesn’t need the value for y until the final expression, at
which time it can be successfully evaluated. In many programming
languages, such a function definition causes errors similar to
Undefined variable sqrt(zl).In Spotfire S+, however, arguments
aren’t evaluated until the function body requires them.

229

Chapter 8 Writing Functions in Spotfire S+

Variable
Numbers of
Arguments

230

When you write functions for custom graphics or statistical
procedures, you often build on existing functions that have large
numbers of arguments. Frequently, you need only a few new
arguments for your particular purpose. You can define only the
arguments you need, but this reduces flexibility by limiting your
access to the underlying function. You can specify defaults in the new
function that cover every argument of the underlying function, but
this is a burden during programming. Instead, you can use the special
formal name . .. (three dots) to specify an arbitrary number of
arguments.

In the section Specifying Default Arguments (page 228), we saw one
example of the ... argument in the hist function. The hist function
is a special-purpose variant of the general function barplot, which
accepts a large number of arguments. Rather than duplicate all of the
barplot arguments, hist uses ... to pass any the user specifies
directly to barpTot.

Within the body of a function, the only valid use of ... is as an
argument inside a function call. In the following code fragment from
hist, the ... argument passes all unmatched arguments from hist
directly to barplot:

if(plot)
invisible(barplot(counts, width = breaks,
histo =T, ..., xlab = xlab))

The counts, breaks, and x1ab objects are generated in the hist code
and passed to the formal arguments in barplot. In addition, anything
the user specifies that is not an element of the hist argument list is
given to barplot through the ... argument.

In general, arbitrary arguments can be passed to any function. You
can, for example, create a function that computes the mean of an
arbitrary number of data sets using the mean and c functions as
follows:

my.mean <- function(...) { mean(c(...)) }

As a variation, you can use the 1ist function to loop over arguments
and compute the individual means of an arbitrary number of data
sets:

all.means <- function(...)

{

Required and
Optional
Arguments

Specifying Argument Lists

dsets <- Tist(...)
n <- length(dsets)
means <- numeric(n)
for(i in 1:n) means[i] <- mean(dsets[[i]])
return(means)
}

Note that formal arguments can follow ... in function definitions.
This construction is useful for functions such as my.mean and
all.means, which compute a return value from an arbitrary number
of data sets. To distinguish them from the data used to compute
return values, arguments that follow ... must be supplied by name
when included in a function call and they cannot be abbreviated. For
example, suppose we want to include the trim argument to mean in
the my .mean function. We can do this with the following function
definition:

my.mean <- function(..., trim=0.0)
{
mean(c(...), trim=trim)

}

When calling my .mean, we can use the trim argument only by
explicitly naming it:

> my.mean(corn.rain, corn.yield, trim=0.5)
[1] 17.95

When an argument list includes . . ., actual arguments that cannot be
matched to a formal argument are simply ignored. If the argument list
does not include . . ., unmatched arguments generate an error of the
form:

Error in call to function: argument name not matched
Required arguments are those for which a function definition provides
neither a default value nor missing-argument instructions. All other

arguments are optional. For example, consider again the argument list
for hist:

> args(hist)

function(x, nclass = "Sturges", breaks, plot = TRUE,
probability = FALSE, include.lowest =T,

231

Chapter 8 Writing Functions in Spotfire S+

232

xTab = deparse(substitute(x)))

Here, x is a required argument. The breaks argument is optional
because code is included in the body of hist to handle the case when
breaks is missing. The nclass, plot, probability, include.lowest,
and x1ab arguments are optional with defaults defined in the
argument list. The ... argument allows you to pass other arguments
directly to the barplot function. For information on defining defaults,
see the section Specifying Default Arguments (page 228).

To see a function’s required and optional arguments without viewing
Spotfire S+ code, see the on-line help. The hist help file, for
example, lists x as the only required argument; the remaining
arguments are all listed as optional.

Error Handling

ERROR HANDLING

An often neglected aspect of function writing is error-handling, in
which you specify what to do if something goes wrong. When writing
quick functions for your own use, it doesn’t make sense to invest
much time in “bullet-proofing” your functions: that is, in testing the
data for suitability at each stage of the calculation and providing
informative error messages and graceful exits from the function if the
data proves unsuitable. However, good error handling becomes
crucial when you broaden the intended audience of your function.

In the section Flow of Control (page 214), we saw one mechanism in
stop for implementing graceful exits from functions. The stop
function immediately stops evaluation of the current function, issues
an error message, and then dumps debugging information to a data
object named 1ast.dump. The Tast.dump object is a list that can either
be printed directly or reformatted using the traceback function. For
example, here is the error message and debugging information
returned by the my.ran function from page 218:

Call my.ran with an unrecognized distribution.
> my.ran(10, distribution="unif")

Problem in my.ran(10, distribution = "unif"): distribution
must be "gamma", "exp", or "norm"
Use traceback() to see the call stack

> traceback()

6: eval(action, sys.parent())
5: doErrorAction("Problem in my.ran(10, distribution =
\"unif\"): distribution must be \"gamma\"™, \"exp\", or

\"norm\"",

4. stop("distribution must be \"gamma\", \"exp\", or
\"norm\"")

3: my.ran(10, distribution = "unif")

2: eval(expression(my.ran(10, distribution = "unif™)))
1:

Message: Problem in my.ran(10, distribution = "unif"):

distribution must be "gamma"™, "exp", or "norm"

233

Chapter 8 Writing Functions in Spotfire S+

234

The amount of information stored in Tast.dump is controlled by the
error argument to the options function. The default value is
dump.calls:

> options()$error
expression(dump.calls())

The dump.calls function stores a list of function calls, starting with
the top-level call and including all calls within the function up to and
including the one that produced the error. Another option, the
dump.frames function, provides more information because it includes
the complete set of frames created during the evaluation. However,
dump.frames can generate a very large 1ast.dump object; it should
therefore be used only for debugging purposes and not for general
error-handling. Other possibilities for the error argument to options
are discussed in Chapter 11, Debugging Your Functions.

It is good programming practice to place stop statements within
functions to mark the limits of the function’s capability. For example,
we can rewrite our newton? function so that it stops evaluation if there
are no real roots to compute:

newton3 <- function(n, j=2, x=1)
{
if(n <0 && J %% 2 == 0)
stop("No real roots")
old.x <- x
repeat
{
new.x <- old.x-((old.x*j-n) / (j * old.x*(j-1)))
conv <- sum((new.x - old.x)"2 / old.x"2)
if(conv < 1le-10)
return(old.x)
old.x <- new.x

}

The warning function is similar to stop, but does not cause Spotfire
S+ to stop evaluation. Instead, Spotfire S+ continues evaluating after
the warning message is printed to the screen. This is a useful
technique for warning users about potentially hazardous conditions
such as data coercion:

if (!is(x, "numeric")) {

Error Handling

warning("Coercing to mode numeric")
x <- as(x, "numeric")

}

As with most matters of programming style, the degree to which you
incorporate stops and warnings depends on the level of finish you
intend for your functions. Functions for distribution to others should
be held to a higher standard than functions for your own use.

235

Chapter 8 Writing Functions in Spotfire S+

INPUT AND OUTPUT

Data Input

Data Output

236

Most data input to Spotfire S+ functions is in the form of named
objects passed as required arguments to the functions. For example:

> mean(corn.rain)
[1] 10.78421

Data can also be generated “on-the-fly” by passing Spotfire S+
expressions as arguments, such as calls to the ¢ function:

> mean(c(5,9,23,42))
[1] 19.75

However, if you build turnkey systems or other applications in which
you want to hide as much of the Spotfire S+ machinery as possible,
your needs may go beyond this. Instead, you might want to build
functions that read data from an existing file, create a Spotfire S+
object from the data, perform some analysis, and then return a value.
Such functions conceal much of the structure of Spotfire S+ objects
from users who may not know (or care to know) such details.

The principal tools for reading data from files are scan, read.table,
and importData. The scan function reads ordinary sequential text
files, the read.table function imports tabular text data into Spotfire
S+ data frames, and importData reads data from a number of
different file formats. Chapter 9, Importing and Exporting, discusses
the three functions in detail.

Spotfire S+ is an interactive system, so virtually anything you type
prompts a response from Spotfire S+. In general, this response is the
value of the evaluated expression, which Spotfire S+ prints
automatically. If the value is assigned, however, automatic printing is
not performed:

>7+3
[1] 10

>a<-7+3

Formatting
Output

Input and Output

Other responses from Spotfire S+ range from error messages to
interactive prompts within a function call. We discuss error messages
in the section Error Handling (page 233). The following subsections
discuss four direct forms of creating output: return values, side effects,
permanent data files, and temporary files.

The format of printed return values in Spotfire S+ is determined
partially by the mode of a returned object and partially by various
session options. The examples below discuss different session options
you can use to format output from your functions.

The width and length options

The width argument to the options function specifies the number of
characters that fit on a line of output. By default, width=80:

> options()$width
[1] 80

The 1ength argument to the options function specifies the number of
lines that fit on a page of output. The Tength option also indicates
where Spotfire S+ places dimnames attributes when a large matrix is
printed; Spotfire S+ prints dimnames once on each page of output, and
the Tength option governs how much information fits on a page. By
default, 1ength=48:

> options()$Tength
[1] 48

For example, if you use Spotfire S+ in a standard 80 x 24 terminal on

a UNIX® system, the following call to options sets up your session so
that long data sets can be viewed conveniently with the page function:

> options(length=23)

The digits option

The digits argument to the options function specifies the number of
significant digits to print. By default, digits=7. To see full double
precision output, set digits=17 as follows:

> options(digits=17)
> pi
[1] 3.1415926535897931

237

Chapter 8 Writing Functions in Spotfire S+

238

Most print methods include a digits argument that can be used to
override the value of options()$digits. Thus, you can call print
explicitly with the desired number of significant digits. For example:

Reset the digits option to its default.
> options(digits=7)

> print(pi, digits=17)
[1] 3.1415926535897931

On Windows®, you can also change the digits value through the
General Settings dialog; select Options P General Settings and
click on the Computations tab to see this. It is important to note that
any option changed through the GUI persists from session to session.
In contrast, options changed via the options function are restored to
their default values when you restart Spotfire S+. For more details,
see the help files for the options function and the Command Line
Options dialog.

The format, round, and signif functions

To print numeric data as a formatted character string, use the format
function. This function returns a character vector the same length as
the input in which all elements have the same length. The length of
each element in the output is usually determined by the digits
option. For example, the following command uses the default digits
value of 7 to format and print the vector sqrt(1:10):

> format(sqrt(1:10))

[1] "1.000000" "1.414214™ "1.732051" "2.000000™ "2.236068"
[6] "2.449490" "2.645751™ "2.828427" "3.000000™ "3.162278"

Alternatively, we can set digits=3 as follows:

> options(digits=3)
> format(sqrt(1:10))

[1] "1.00™ ™1.41™ "1.73™ "2.00" "2.24" "2.45" "2.65"
[8] "2.83™ "3.00" "3.16"

The format function also includes a digits argument that can be
used to override the value of options()$digits. The format function
interprets digits as the number of significant digits retained, but it
replaces trailing zeros with blanks:

Input and Output

Reset the digits option to its default.
> options(digits=7)

> format(sqrt(1:10), digits=3)

[1] ul " 111.4]_" "1.73" "2 " ||2.24u u2.45u "2.65"
[8] "2.83" 113 " "3.16"

To include trailing zeros, you can use the nsmal1l argument to format,
which sets the minimum number of digits to include after the decimal
point:

> format(sqrt(1:10), digits=3, nsmall=2)

(1] "1.00™ "1.40™ "1.73™ "2.00™ ™2.24™ "2.45™ "2.64"
[8] "2.83™ "3.00™ "3.16"

The nsma11l argument is discussed in the help file for format.default.

You can use the round and signif functions to further control the
action of the digits argument to format. The round function uses
digits to specify the number of decimal places, while signif uses it
to specify the number of significant digits retained. For example, note
the difference in the output from the following two commands:

> format(round(sqrt(1:10), digits=5))

[1] "1.00000™ "1.41421" "1.73205™ "2.00000™ "2.23607"
[6] "2.44949" "2.64575" "2.82843" "3.00000" "3.16228"

> format(signif(sqrt(1:10), digits=5))

[1I] "1.0000™ "1.4142™ "1.7321™ "2.0000™ "2.2361™ "2.4495"
[7] "2.6458™ "2.8284" "3.0000" "3.1623"

239

Chapter 8 Writing Functions in Spotfire S+

Warning

If you want to print numeric values to a certain number of digits, do not use print followed by
round. Instead, use format to convert the values to character vectors and then specify a certain
number of entries. Printing numbers with print involves rounding, and rounding an
already-rounded number can lead to anomalies. To see this, compare the output from the
following two commands, for x <- runif(10):

> round(print(x), digits = 5)
> as.numeric(format(x, digits = 5))
Note that the second command prints the correct number of digits but the first one doesn’t.

This warning applies to all functions that use print, such as var and cor, and not just to the print
function itself.

Constructing When the body of a function is an expression enclosed in braces, the

Return Values value of the function is the value of the last expression inside the
braces. This fits well with the usual top-down design paradigm, where
the goal is to start with some input, proceed through a set of
operations, and return the finished output. For most simple functions,
you need to verify only that the final value is what you actually want
returned. Thus, if the body of a function carries out a series of
replacements, the final line might be the name of the object in which
the replacements were done. For example, the following function
returns a modified version of the input object x:

bigger <- function(x,y)

{
y.is.bigger <- y > x
x[y.is.bigger] <- y[y.is.bigger]
X

}

Even in simple functions like this, however, we recommend that you
explicitly use a return statement to clearly identify the returned
value:

bigger <- function(x,y)

{
y.is.bigger <- y > x
x[y.is.bigger] <- y[y.is.bigger]

240

Input and Output

return(x)

}

Often, you need to return a set of values that are generated
throughout a function. To do this, assign the intermediate calculations
to temporary objects within the function and then gather the objects
into a return list. For example, suppose you have a data file
containing daily sales for each of ten department stores over a span of
one month. Each month, you want to compute a summary of that
month’s sales using the daily sales information as the input data. Here
is a function named month1ly.summary that reads in such a data file,
creates a matrix of the input data, and then performs the desired
analysis:

monthly.summary <- function(datafile)

{
x <- matrix(scan(datafile), nrow=10, byrow=T)
store.totals <- rowSums(x)
mean.sales <- mean(store.totals)
attr(mean.sales, "dev") <- stdev(store.totals)
best.performer <- match(max(store.totals), store.totals)

return(list("Total Sales" = store.totals,
"Average Sales" = mean.sales,
"Best Store™ = best.performer))

}

Notice that the function has no side effects. All calculations are
assigned to objects in the function’s frame, which are then combined
into a list and returned as the value of the function. This is the
preferred method for returning a number of different results in a
Spotfire S+ function.

Suppose we have data files named april.sales and may.sales
containing daily sales information for April and May, respectively.
The following commands show how monthly.summary can be used to
compare the data:

> Apr92 <- monthly.summary("april.sales")
> May92 <- monthly.summary("may.sales")
> Apr92

$"Total Sales™":
[1] 55 59 91 87 101 183 116 119 78 166

241

Chapter 8 Writing Functions in Spotfire S+

Side Effects

242

$"Average Sales":

[1] 105.5

attr($"Average Sales", "dev"):
[1] 42.16436

$"Best Store":
[1] 6

> May92

$"Total Sales™":
[1] 65 49 71 91 105 163 126 129 81 116

$"Average Sales":

[11 99.6

attr($"Average Sales", "dev"):
[1] 34.76013

$"Best Store":
[1] 6

As we discuss in the section Assignments (page 195), creating
permanent objects from within functions is a dangerous practice
because it can overwrite existing objects in your working directory.
Thus, if our monthly.summary function creates permanent objects
named store.totals, mean.sales, and best.performer instead of
returning them as a list, we would lose the objects every time we ran
the function. Instead, we recommend the list paradigm discussed
above for returning a number of different results in a Spotfire S+
function.

A side effect of a function is any result that is not part of the returned
value. Examples include graphics plots, printed values, permanent
data objects, and modified session options or graphical parameters.
Not all side effects are bad; graphics functions are written to produce
side effects in the form of plots, while their return values are usually of
no interest. In such cases, you can suppress automatic printing with
the invisible function, which invisibly returns the value of a
function. Most of the printing functions, such as print.atomic, do
exactly this:

> print.atomic

Writing to Files

Input and Output

function(x, quote =T, ...)
(
if(length(x) == 0.)
cat(mode(x), "(0)\n", sep ="")
else .Call("s_pratom", x, TRUE, quote)
invisible(x)
}

You should consciously try to avoid hidden side effects because they
can wreak havoc with your data. Permanent assignment from within
functions is the cause of most bad side effects. Many Spotfire S+
programmers are tempted to use permanent assignment because it
allows expressions inside functions to work exactly as they do at the
Spotfire S+ prompt. The difference is that if you type

myobj <<- expression

at the Spotfire S+ prompt, you are likely to be aware that myobj is
about to be overwritten if it exists. In contrast, if you call a function
that contains the same expression, you may have no idea that myobj is
about to be destroyed.

In general, writing data to files from within functions can be as
dangerous a practice as permanent assignment. Instead, it is safer to
create special functions that generate output files. Such functions
should include arguments for specifying the output file name and the
format of the included data. The actual writing can be done by a
number of Spotfire S+ functions, the simplest of which are write,
write.table, cat, sink, and exportData. The write and write.table
functions are useful for retaining the structure of matrices and data
frames, while cat and sink can be used to create free-format data
files. The exportData function creates files in a wide variety of
formats. See Chapter 9, Importing and Exporting, for details.

Functions such as write, cat, and exportData all generate files
containing data; no Spotfire S+ structure is written to the files. If you
wish to write the actual structure of your Spotfire S+ data objects to
text files, use the dump, data.dump, or dput functions. We discuss each
of these below.

243

Chapter 8 Writing Functions in Spotfire S+

244

The write and write.table functions

The write function writes Spotfire S+ vectors and matrices to
specified files. It writes matrices column by column and includes five
values in each line of the output file. For example, consider the
following matrix, which we write to the output file matl.txt:

> mat <- matrix(1:12, ncol=4)
> mat

(.11 [,21 [,31 [,4]
[1,] 1 4 7 10
(2,1 2 5 8 11
[3,] 3 6 9 12

> write(mat, file="matl.txt")

Spotfire S+ stores matl.txt in your working directory. You can view
it in the text editor or pager of your choice. It contains the following
three lines:

12 45
6 7 9 10
1

N 0w

11

If you want to write a matrix to an output file in the same form as it
appears in Spotfire S+, transform the matrix first with the t function
and specify the number of columns with the ncolumns argument. For
example:

> write(t(mat), file="mat2.txt", ncolumns=4)

The mat2.txt file looks similar to the object mat, and contains the
following lines:

1
2
3

oS o B
O 0

1
1
1

N — O

Alternatively, you can use the write.table function to write a vector,
matrix, or data frame to a specified file. With write.table, you do
not need to transpose the data object, and you can include row and
column names in the output. For example, the following command
creates a tab-delimited text file fuel.txt that contains the fuel.frame
data set:

Input and Output

> write.table(fuel.frame, file = "fuel.txt"™, sep = "\t")

The cat and sink functions

The cat function is a general-purpose writing tool that can be used to
write to the screen as well to files. The cat function is helpful for
creating free-format data files, particularly when it is used with the
format function. For example:

Set the seed for reproducibility.
> set.seed(21)

> x <- runif(10)

> cat(format(x), fill=T)

0.8854639 0.3739834 0.4220316 0.2441107 0.6033186
0.5787458 0.3944685 0.5834372 0.1457345 0.4555785

The argument fi11=T limits the width of each line in the output file to
the width value specified in the options list. For more details on the
format function and the width option, see the section Formatting
Output (page 237).

To write to a file with cat, simply specify a file name with the file
argument:

> cat(format(x), file="mydatal.txt")

Spotfire S+ stores mydatal.txt in your working directory. It
overwrites any existing file named mydatal.txt unless you set the
argument append=TRUE in the call to cat.

The sink function directs Spotfire S+ output into a file rather than to
the screen. It can be used as an alternative to multiple

cat(..., append=T) statements. For example, the following
commands open a sink to a file named mydata2.txt, write x to the file
in three different ways, and then close the sink so that Spotfire S+
writes future output to the screen:

> sink(file = "mydata2.txt")
> X

> format(x)

> format(x, digits=3)

> sink()

For more examples using sink, see the section Standard Connections
(page 252).

245

Chapter 8 Writing Functions in Spotfire S+

The dump, data.dump, and dput functions

Files written by cat and write do not contain information regarding
the structure of Spotfire S+ objects. To read the files back into Spotfire
S+ objects, you must reconstruct this information. To write ASCII
versions of Spotfire S+ objects that contain complete structural
information, use the dump, data.dump, and dput functions.

The dump function is primarily a programmer’s tool. It allows you to
create editable, sourceable versions of Spotfire S+ functions. You can
use dump, for example, to distribute a collection of functions via
electronic mail. Alternatively, you can use dump to create a text file of
a function, edit it outside of Spotfire S+, and then send the modified
version to another user. To read your dumped functions back into
Spotfire S+, use the source function.

The data.dump function writes Spotfire S+ data objects to files. It uses
a text-based format so that the objects can be restored on any
machine. Because of the special text format, you should not edit the
files generated by data.dump. Instead, the primary uses of data.dump
include transferring objects between versions of Spotfire S+, between
machines, or between users. To read your dumped objects back into
Spotfire S+, use the data.restore function.

Note

In earlier versions of Spotfire S+, the dump function could be used to transfer data objects such as
matrices and lists between machines. This behavior is no longer supported in SV4 versions of
Spotfire S+. Currently, dump is used only for creating editable text files of Spotfire S+ functions;
use data.dump to transfer your data objects between machines. For more details, see the help files
for these two functions.

246

The dput function can be thought of as a companion to assign.
Where assign creates Spotfire S+ objects in binary form, dput creates
them in ASCII text. The output from dput can be read back into
Spotfire S+ with the dget function.

Like data.dump, you can use the dput function to transfer objects
between machines. However, the formats used by the two functions
are slightly different. To see this, note the differences in the two files
generated by the following commands:

Set the seed for reproducibility.

Input and Output

> set.seed(49)

> tmp.df <- data.frame(x=1:10, y=runif(10))
> dput(tmp.df, file="mydatal.txt")

> data.dump("tmp.df", file="mydata2.txt")

The files mydatal.txt and mydata2.txt are stored in your working
directory.

Files created by data.dump include the names of the dumped objects.
Thus, you can read mydata2.txt into Spotfire S+ with data.restore
and the object tmp.df becomes available in your working directory.
In contrast, files created by dput include the contents of objects, but
not the object names. The following commands illustrate this:

Remove tmp.df and restore the contents
of the file created by data.dump.

> rm(tmp.df)

> data.restore("mydata2.txt")

[1] "mydata2.txt"

> tmp.df

Y
.54033146
.27868110
.31963785
.26984466
.75784146
.32501004
.90018579
.04155586
.28102661
.09519871

O W 0O NOY OB~ W MN -
O W 00O N O O & W NN — X
O O O O O O o o o o

—
—_

Remove tmp.df and restore the contents
of the file created by dput.

> rm(tmp.df)

> dget("mydatal.txt"™)

X Y
1 0.54033146
2 0.27868110
3 0.31963785
4 0.26984466

B w -

247

Chapter 8 Writing Functions in Spotfire S+

.75784146
.32501004
.90018579
.04155586
.28102661
.09519871

O W O N o o
O W 00 N O o1
O O O O o o

10 1

> tmp.df
Problem: 0Object "tmp.df" not found

You must assign the output from dget to access its contents in your
working directory:

> tmp.df <- dget("mydatal.txt")

Creating You can use cat, write, and dput together with the tempfile function

Temporary Files to create temporary files that have unique names. Such files are
convenient to use for a variety of purposes, including text processing
tools. For example, the built-in ed function creates a temporary file
that holds the object being edited on a Windows system:

> ed

function(data, file = tempfile("ed."),
editor = "notepad"”, error.expr)

drop <- missing(file)
if(missing(data)) {
if(lexists(".Last.file"))
stop("Nothing available for re-editing")
file <- .Last.file
data <- .lLast.ed
}
else if(mode(data) == "character"” &&
length(attributes(data)) == 0)
cat(data, file = file, sep = "\n")
else if(is.atomic(data) &&
length(attributes(data)) == 0)
cat(data, file = file, fill =T)
else dput(data, file = file)

248

Input and Output

If you are on a UNIX system, the syntax is slightly different:
> ed

function(data, file = tempfile("ed."),

editor = "ed", error.expr)
{
if(editor == "vi" && GUI.interactive()) {
editor.ux = paste("xterm -e", editor)
}

else editor.ux = editor
drop <- missing(file)
if(missing(data)) {
if(lexists(".Last.file"))
stop("Nothing available for re-editing")
file <- .Last.file
data <- .lLast.ed
}
else if(mode(data) == "character" &&
length(attributes(data)) == 0)
cat(data, file = file, sep = "\n")
else if(is.atomic(data) && length(attributes(data)) == 0)
cat(data, file = file, fil1l =T)
else dput(data, file = file)

The tempfile function creates a unique name for a temporary file. In
the ed function above, the unique name is composed of the character
string ed. and a unique ID number. Note that tempfile generates
only a name for a temporary file and not the file itself. You must use
cat, write, or dput to actually create and write to the file.

The temporary files created with tempfile are ordinary files written
to the directory specified by the S_TMP environment variable.
Customarily, this directory is a temporary storage location that is
wiped clean frequently. To prevent overloading this directory, it is
best if you incorporate file cleanup into your functions that utilize
tempfile. This is discussed in the section Wrap-Up Actions (page
265). For more information on Spotfire S+ environment variables
such as S_TMP, see Chapter 13, The Spotfire S+ Command Line and
System Interface, in the Application Developer’s Guide.

249

Chapter 8 Writing Functions in Spotfire S+

Connections

250

Connections are mechanisms for connecting Spotfire S+ to other
processes in the computing environment. With connections, Spotfire
S+ can efficiently and easily read or write streams of data. The most
common example of a connection is a physical file; other examples
include external processes that read or write data, and Spotfire S+
character vectors.

In general, connections provide several facilities for the Spotfire S+
programmer:

1. They provide a uniform mechanism for functions that need to
read or write data.

2. They allow mixed reading and writing during a single Spotfire
S+ session. Because Spotfire S+ manages all active
connections, operations that are difficult or error-prone at a
lower level are tractable with connections.

3. They hide many of the low-level programming details needed
for doing input and output.

If you can express input and output computations in terms of
connections, the result is usually convenient, reliable, and efficient
code. In this section, we give a brief overview of Spotfire S+
connections; for further details and additional topics not discussed
here, see Chapter 10 in Chambers (1998).

Input and Output

Connection Table 8.7 lists the connection classes available in Spotfire S+. Each of
Classes these classes extend the virtual class "connection".

Table 8.7: Classes of Spotfire S+ connections.

Connection
Class

Description

file

File connection. This is represented by a character
vector naming the path of the file. If no path is
supplied when the connection is opened, a temporary
one is created.

pipe

System command, with standard input that Spotfire S+
can write to and standard output that Spotfire S+ can
read from. This is represented by a character vector
naming the command. Spotfire S+ opens the
connection by executing the command; data written to
the pipe then becomes its standard input.

fifo

First-in first-out connection. This is represented like a
file, by a character vector naming a path. Unlike a
file, a fifo holds on to data only until it is read, at
which point the data effectively disappears. For this
reason, a fifo is sometime referred to as a named pipe.

textConnection

Text connection. This is represented by a Spotfire S+
character vector. This class is provided mainly as a
convenience, so that you can use objects containing
character vectors in computations that expect to read
from connections. By design, text connections are
read-only in Spotfire S+.

All four classes listed in the table are functions that can be used to
(optionally) open the described connections and return Spotfire S+
connection objects. Connection objects are one of the primary tools for
managing connections in Spotfire S+. For example, the following
command opens a file connection to myfile.dat and assigns the value
to the connection object filecon.

> filecon <- file("myfile.dat")

251

Chapter 8 Writing Functions in Spotfire S+

Standard
Connections

252

The side effect of the call to fi1e opens the connection, so you may
be tempted to think that the returned object is of little interest.
However, conscientious use of connection objects results in cleaner
and more flexible code. For example, you can use these objects to
delay opening particular connections. Each connection class has an
optional argument open that can be used to suppress opening a
connection. With the returned connection object, you can use the
open function to explicitly open the connection when you need it:

Create a file connection object but do not open it.
> textfile <- file("myfile.dat", open=F)

After some time, open the connection.
> filecon <- open(textfile)

After reading from or writing to the connection, close it.
> close(filecon)

Most Spotfire S+ connection functions abide by the following simple
rules:

+ If a connection is not currently open, open it and ensure the
connection is closed at the end of the function call.

» Ifa connection is already open, leave it open at the end of the
function call.

Thus, if you use one of the functions listed in Table 8.7 to open a
connection, you do not need to explicitly close it. However, if you use
the open function, you should ensure that the connection is properly
closed by using the close function. Organizing your computations in
this way prevents forgotten connections from consuming machine
resources. See the section Support Functions for Connections (page
256) for additional tips on managing connections.

Table 8.8 lists a number of predefined connections available in
Spotfire S+. The stdin, stdout, and stderr functions organize user
interactions into three traditional streams of data: input from the user,
printed output, and errors or messages for the user. The function calls
stdin(), stdout(), and stderr() return the current connections
associated with standard input, standard output, and standard error,

Input and Output

respectively. When Spotfire S+ is running as an interactive session,
standard input is your keyboard and both standard output and
standard error are your display.

Table 8.8: Spotfire S+ functions associated with standard connections.

Standard

Connection Description

stdin Standard input.

stdout Standard output.

stderr Standard error. Spotfire S+ writes messages to
this connection.

auditConnection Connection to which Spotfire S+ writes

auditing information about the session. See
Chapter 13, The Spotfire S+ Command Line
and the System Interface, in the Application
Developer’s Guide for information on the session
audit file.

clipboardConnection | System clipboard for the Spotfire S+ session.

sink Function that redirects the output associated
with standard connections

You can redirect the output connection to another connection
(usually a file) with the sink function. The sink command exists
primarily for its side effect: sinked output remains redirected until
another call to sink explicitly alters it. For example, the following
commands redirect the standard output connection to the file x.out.

Open the sink.
> sink("x.out™)

Generate 50 random numbers and print out
their mean and variance.

> x <- runif(50)

> mean(x)

> var(x)

253

Chapter 8 Writing Functions in Spotfire S+

Connection
Modes

Close the sink.
> sink()

By default, file, fifo, and pipe connections are opened for both
reading and writing, appending data to the end of the connection if it
already exists. While this behavior is suitable for most applications,
you may require different modes for certain connections. Example
situations include:

* Opening a file connection as read-only so that it is not
accidentally overwritten.

* Opening a file connection so that any existing data on it is
overwritten, rather than appended to the end of it.

You can change the default mode of most connections through the
mode argument of the open function. For example, the following
commands open a file connection as write-only. If we try to read from
the connection, Spotfire S+ returns an error:

Create a file connection object but do not open it.
> textfile <- file("myfile.dat"™, open=F)

Open the connection as write-only.
> filecon <- open(textfile, mode = "w")

> scan(filecon)
Problem in scanDefault(file, what, n): "myfile.dat" already
opened for "write only": use reopen() to change it

Close the connection.
> close(filecon)
[11 7T

As the error message suggests, you can use the reopen function to
close the connection and reopen it with a different value for mode.

Note

The mode of a textConnection cannot be changed. By design, text connections are read-only.

254

Input and Output

Instead of explicitly calling open, you can supply the desired mode
string to the open argument of one of the connection classes. Thus, the
following command illustrates a different way of opening a file as

write-only:

> filecon <- file("myfile.dat™, open = "w")

Table 8.9 lists the most common mode strings used to open
connections in Spotfire S+.

Table 8.9: Common modes for Spotfire S+ connections.

Mode String

Description

"rw"

Open for reading and writing, overwriting current
data on the connection if it already exists.

ra

Open for reading and writing, appending data to
the current version of the connection if it already
exists. Writing is allowed only at the end of the
connection.

Open for reading only.

Open for writing only, overwriting current data on
the connection if it already exists.

Open for writing only, appending data to the
current version of the connection if it already
exists. Writing is allowed only at the end of the
connection.

wan

Open for writing only, appending data to the
current version of the connection if it already
exists. Writing is allowed anywhere in the
connection; the initial write position is at the end.

Do not open the connection. Unopened
connection objects can be opened explicitly at a
later time using the open command.

255

Chapter 8 Writing Functions in Spotfire S+

Support
Functions for
Connections

256

The functions listed in the two tables below provide support for
managing connections in your Spotfire S+ session: Table 8.10
describes functions that allow you to see any active connections and
Table 8.11 describes functions that prepare connections for reading or
writing. We have already seen the open and close functions in
previous sections. In the text below, we describe each of the
remaining support functions.

Table 8.10: Spotfire S+ functions for managing active connections.

Management Function | Description

getConnection Returns the connection corresponding to the
input argument.

getAl1Connections Returns a list of all open connections.

showConnections Prints a table of all open connections.

Table 8.11: Support functions that prepare connections for reading or writing.

Support Function Description

open Open a connection explicitly for reading or
writing.

isOpen Check whether a connection is open.

close Close a connection after reading from or
writing to it.

seek Position a file connection for reading or writing.

The getConnection and showConnections functions

You can view all active connections in your Spotfire S+ session by
using the functions getA11Connections and showConnections. The
getAl1Connections function returns a list of all open connections that
includes information on the class and mode of each. The

Input and Output

showConnections function displays this information in a convenient
tabular format. For example, suppose we open two connections to
text files:

> filecon <- open("mydata.txt™)
> filecon2 <- open("mydata2.txt", mode="w")

The showConnections function returns the following:
> showConnections()

Class Mode State Description
52 "file™ "*" "Read" "mydata.txt"
56 "file™ "w" "Write" "mydata2.txt"

The number at the beginning of each row in the table is a unique
descriptor for the corresponding connection. We can use these
numbers with the getConnection function to access individual
connection objects. For example, the following command closes the
connection to mydata.txt:

> close(getConnection(52))
(11T

For file connections, we can also supply getConnection with a
character string naming the file:

> close(getConnection("mydata2.txt"))
[11 T

The seek function

Spotfire S+ maintains separate positions on connections for reading
and writing. Thus, you can write to a connection starting from a
different location than the one used to read from the connection.
Because the positions are separate, you may need explicit control
over positioning in a connection object. The seek function allows you
to do this with file connections. It accepts the following arguments:

* A file connection.

* The argument where, which is a position measured in bytes
from the start of the file.

* The argument rw, which determines whether the "read" or
"write" position is modified.

257

Chapter 8 Writing Functions in Spotfire S+

Reading from and
Writing to
Connections

258

If where is given, seek moves the rw position to the specified value;
otherwise, it returns the current rw position.

The following example from Chambers (1998) illustrates this
function. Suppose an open file connection named f exists. We read
one expression from it and then leave the connection so that reading
begins again with the same expression.

f# Return the reading position in the file.
> pos <- seek(f, rw = "read")

Parse one expression.
> myexpr <- parse(f, n = 1)

Reset the reading position.
> seek(f, where = pos, rw = "read")

For pipe and fifo connections, data is read in the same order in
which it is written. Thus, there is no concept of a "read" position for
these connections. Likewise, data is always written to the end of pipes
and fifos, so there is also no concept of a "write" position. For
textConnection objects, only "read" positions are defined.

Table 8.12 lists the main Spotfire S+ functions for reading from and
writing to connections. Wherever possible, we pair functions in the
table so that relationships between the reading and writing functions
are clear. For details on the scan, cat, data.restore, data.dump,
source, dump, dget, and dput functions, see the section Writing to

Input and Output

Files (page 243). For details on readRaw and writeRaw, see the section
Raw Data Objects (page 261). For examples using any of these
functions, see the on-line help files.

Table 8.12: Spotfire S+ functions for reading from and writing to connections. The first column in the table
lists functions for reading; the second column lists the corresponding writing functions (if any).

Reading Writing
Function Function Description
parse Read n Spotfire S+ expressions.
parseSome Read 7 lines or 1 Spotfire S+ expression.
scan cat Read 7 data items.
Write any number of data items.
readlLines writeLines Read 7 lines and return one character vector per line.
Write # lines, consisting of one character vector per line.
read.table write.table Read a two-dimensional table of data.
Write a two-dimensional table of data.
readRaw writeRaw Read raw data objects.
Write raw data objects.
data.restore | data.dump Read dumped data objects.
Write Spotfire S+ data objects to their dumped forms.
source dump Parse and evaluate n Spotfire S+ expressions.
Write text representations of Spotfire S+ objects.
dget dput Read expressions that represent Spotfire S+ objects.
Write expressions that represent Spotfire S+ objects.
dataGet dataPut Read the Spotfire S+ symbolic dump format.
Write objects in the Spotfire S+ symbolic dump format.

Examples of Pipe The examples throughout most of this section deal mainly with file
connections. This is because files are often the easiest of the
connection classes to visualize applications for, while pipes and fifos

Connections

259

Chapter 8 Writing Functions in Spotfire S+

260

tend to have more specialized applications. Here, we present three
examples that illustrate how you might use pipe connections in your
work.

Reading files compressed by gzip

The gzip program is a popular compression program that is
distributed under the GNU public license. Binary versions of gzip are
available from the Web site http://www.gzip.org for most flavors of

UN IX®, Linux®, and Windows".

Suppose you have a space-delimited collection of numbers stored in
the file primes.txt:

235711

13 17 19 23 29
31 37 41 43 47
53 59 61 67 71
73 79 83 89 97

To compress the file and write the results in primes.gz, issue the
following system command:
gzip -c primes.txt > primes.gz

The following commands read the compressed file in Spotfire S+:

> pl <- pipe("gzip -d -c primes.gz")
> scan(pl, sep="")

(1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61
[19] 67 71 73 79 83 89 97

Using Perl to remove trailing commas

Perl is powerful scripting language that is very good at manipulating
text files. Binaries of Perl are freely available for nearly every
operating system; you can find out more at http://www.perl.com.

The ability to write quick, one-line scripts in Per] makes it ideal for
preprocessing data files through Spotfire S+ pipes. For example,
suppose you have a comma-delimited data file named comma.txt:

8.4,2.8,2.0,4.2,
4.5,0.3,
8.1,7.3,0.4,

Raw Data
Objects

Input and Output

6.1,7.2,8.3,0.6,0.7,
3.7,

The process that generated the file placed a comma at the end of each
line. If you use the scan function to read this file, Spotfire S+ includes
an extra NA after each trailing comma. Instead, you can remove the
trailing commas and read the data into Spotfire S+ as follows:

> p2 <- pipe('perl -p -e "s/,$//" comma.txt")
> scan(p2, sep=",")

[1] 8.4 2.82.04.24.50.38.17.30.46.17.28.30.6
[14] 0.7 3.7

Using Perl to filter white space

Suppose you have a file named white.txt that contains white-space
delimited numbers. Some of the white space may be tabs, some may
be single spaces, and some might be multiple spaces:

4.02 4 2.03 1.62 4.67
2.15 2 4.83 4.87 2

4 4.38 1.83 4.38 4.73
4 4.28 5.45 1.77 4.22

Using Perl, you can replace the tabs and spaces between each pair of
numbers with a single space. You can then read the file into Spotfire

S+ by specifying a single white space as the delimiter. The following

commands show how to do this:

> p3 <- pipe('perl -p -e "s/[\\ \\t]l+/ /g™ white.txt")
> scan(p3, sep="")

[1] 4.02 4.00 2.03 1.62 4.67 2.15 2.00 4.83 4.87 2.00
[11] 4.00 4.38 1.83 4.38 4.73 4.00 4.28 5.45 1.77 4.22

Raw data objects are structures that consist of undigested bytes of data.
They can be thought of naturally as vectors of byte data. You can
manipulate these objects in Spotfire S+ with the usual vector
functions to extract subsets, replace subsets, compute lengths and
define lengths. In addition, raw data can be passed as arguments to
functions, included as slots or components in other objects, and
assigned to any database. However, raw data objects are not are not
numeric and cannot be interpreted as ordinary, built-in vectors.

261

Chapter 8 Writing Functions in Spotfire S+

262

Spotfire S+ provides no interpretation for the contents of the
individual bytes: they don’t have an intrinsic order, NAs are not
defined, and coercion to numbers or integers is not defined. The only
comparison operators that make sense in this setting are equality and
inequality, interpreted as comparing two objects overall.

In Spotfire S+, raw data is usually generated in four basic ways:

1. Read the data from a file or other connection using the
functions readMapped or readRaw. Conversely, you can write
raw data to a file or connection using writeRaw.

2. Use character strings that code bytes in either hex or ascii
coding. The character strings can then be given to the
functions rawFromHex and rawFromAscii to generate the raw
data.

3. Allocate space for a raw object and then fill it through a call to
C code via the .C interface.

4. Call a Spotfire S+-dependent C routine through the .Ca11
interface.

See Chapter 5, Interfacing with C and FORTRAN Code, in the
Application Developer’s Guide for details on .C and .Cal1 interfaces. For
details on additional topics not discussed here, see Chambers (1998).

The primary Spotfire S+ constructors for raw data are the rawData
and raw functions. The four approaches mentioned above usually
arise more often in practice, however. All raw data objects in Spotfire
S+ have class "raw", regardless of how they are generated.

Examples

Generate raw data from an ascii character vector.
> rawFromAscii(letters[1:6])
rawData(6,c("64636261","6665"))

Generate raw data from a hex-coded vector.
> rawFromHex(rep("3af", 4))
rawData(6,c("3aaff33a","aff3"))

Input and Output

Raw Data on Files The readMapped function reads binary data of numeric or integer

and Connections

modes from a file. Typical applications include reading data written
by another system or by a C or Fortran program. The function also
provides a way to share data with other systems, assuming you know
where the systems write data.

As its name suggests, readMapped uses memory mapping to associate
the input file with a Spotfire S+ object, so the data is not physically
copied. Therefore, the function is suitable for reading in large objects.
The connection may be open in advance or not; in either case,
readMapped never closes it since that invalidates the mapping. Note
that you can open a file, position it with the seek function, and map
the data starting from a position other than the beginning of the file.
See the section Support Functions for Connections (page 256) for
details on seek.

The readRaw function is like readMapped, but physically reads the
data. Thus, it is suitable for connections that are not ordinary files and
cannot be memory mapped. The writeRaw function is the counterpart
to readRaw; it writes the contents of a Spotfire S+ object in raw form
to either a file or a text connection. Only the data values are written,
however. The resulting file does not include structural information,
and any software that reads the values needs to know the type of data
on the file.

Examples

The following example writes twenty integers to a raw data file
named x.raw, and then reads the values back in using the readRaw
function.

> x <- c(rep(5,5), rep(10,5), rep(15,5), rep(20,5))

> X

[1] 5 5 5 5 510 10 10 10 10 15 15 15 15 15 20 20
[18] 20 20 20

> writeRaw(x, "x.raw")
NULL

To ensure the data are read into Spotfire S+ as integers, set the
argument what to integer() in the call to readRaw:

> x1 <- readRaw("x.raw", integer())
> x1

263

Chapter 8 Writing Functions in Spotfire S+

264

(1] 5 5 5 5 510 10 10 10 10 15 15 15 15 15 20 20
[18] 20 20 20

The next command reads only the first 10 integers into Spotfire S+:

> x2 <- readRaw("x.raw", integer(10))
> x2
[1] 5 5 5 5 510 10 10 10 10

You can determine the amount of data that is read into Spotfire S+ in
one of two ways: the Tength argument to readRaw or the length of the
what argument. If Tength is given and positive, Spotfire S+ uses it to
define the size of the resulting Spotfire S+ object. Otherwise, the
length of what (if positive) defines the size. If Tength is not given and
what has a length of zero, all of the data on the file or connection is
read.

The following example writes twenty double-precision numbers to a
raw data file named y.raw, and then reads the values back in using
readRaw. Note that the values in the vector y must be explicitly
coerced to doubles using the as.double function, so that Spotfire S+
does not interpret them as integers.

>y <- rep(as.double(1l:5), times=4)
> writeRaw(y, "y.raw")
NULL

To ensure the data are read into Spotfire S+ as double precision
numbers, set the argument what=double() in the call to readRaw:

> yl <- readRaw("y.raw", double())
>yl
[1112345123451234512345%5

In contrast to many Spotfire S+ functions, it is the mode of the what
argument that matters, not the class. Classes other than "numeric"
(integer and double) might have a numeric prototype but readRaw
works the same for all of them, reading in numeric values.

Wrap-Up Actions

WRAP-UP ACTIONS

The more complicated your function, the more likely it is to complete
with some loose ends dangling. For example, the function may create
temporary files, or alter Spotfire S+ session options and graphics
parameters. It is good programming style to write functions that run
cleanly without permanently changing the environment. Wrap-up
actions allow you to clean up loose ends in your functions.

The most important wrap-up action is to ensure that a function
returns the appropriate value or generates the desired side effect.
Thus, the final line of a function is often the name of the object to be
returned or an expression that constructs the object. See the section
Constructing Return Values (page 240) for examples.

To restore session options or specify arbitrary wrap-up actions, use
the on.exit function. With on.exit, you ensure the desired actions
are carried out whether or not the function completes successfully.
For example, highly recursive functions often overrun the default
limit for nested expressions. The expressions argument to the
options function governs this and is set to 256 by default. Here is a
version of the factorial function that raises the limit from 256 to 1024
and then cleans up:

facl024 <- function(n)
{
old <- options(expressions = 1024)
on.exit(options(old))
if(n <= 1) { return(l) }
else { n * Recall(n-1) }
}

The first line of fac1024 assigns the old session options to the object
old, and then sets expressions=1024. The call to on.exit resets the
old options when the function finishes. The Recal1 function is used to
make recursive calls in Spotfire S+.

Compare fac1024 with a function that uses the default limit on nested
expressions:

fac256 <- function(n)
{
if(n <= 1) { return(l) }

265

Chapter 8 Writing Functions in Spotfire S+

else { n * Recall(n-1) }
}

Here is the response from Spotfire S+ when each function is called
with n=80.0:

> facl024(80.0)
[1] 7.156946e+118

> fac256(80.0)

Error: Expressions nested beyond 1imit (256)
only 30 of 110 frames dumped
only the first of 10 elements used for string value

Note

As defined, the fac1024 function must be called with a real argument such as 80.0. If you call it
with an integer such as 80, Spotfire S+ overflows and returns NA. See the section Integer
Arithmetic (page 189) for a full discussion of this behavior.

To remove temporary files, you can use on.exit together with the
unlink function. For example:

fcn.A <- function(data, file=tempfile("fcn"))
{

on.exit(unlink(file))

dput(data, file=file)

#

additional commands

#
}

The un1ink function permanently deletes external files from inside of
Spotfire S+.

Wrap-up actions specified by multiple calls to on.exit can be
executed sequentially. Alternatively, later actions can replace earlier
ones. The behavior that occurs is determined by the add argument to
on.exit; by default, add=T and actions are executed sequentially. For
example, the following function uses on.exit to both unlink a file and
restore graphics parameters:

fcn.B <- function(data, file=tempfile("fcn"))

266

Wrap-Up Actions

on.exit(unlink(file)

oldpar <- par()

on.exit(par(oldpar))

par(mfrow = c(3,4))

#

make some plots and edit some data
it

dput(data, file=file)

}

If add=F, the new action replaces any pending wrap-up actions. For
example, suppose your function performs a long, iterative
computation and you want to write the last computed value to disk in
case of an error. You can use on.exit to accomplish this as follows:

fcn.C <- function()
{
for(i in 1:10000) {
result <- 72
on.exit(assign("intermediate.result", result,
where=1), add=F)
}
on.exit(add=F)
return(result)
}

If we call this function and then interrupt the computation with ESC
(Windows) or CTRL-C (UNIX), we see that the object
intermediate.result is created. If we let the function complete, it is
not the following on Windows:

> fen.C()
User interrupt requested
Use traceback() to see the call stack

The output message is similar on UNIX:

> fcn.C()
Interrupt
Use traceback() to see the call stack

267

Chapter 8 Writing Functions in Spotfire S+

> intermediate.result
[1] 665856

> rm(intermediate.result)
> fcn.C()
[1] 1e+08

> intermediate.result
ProbTem: Object "intermediate.result”™ not found

268

Writing Special Functions

WRITING SPECIAL FUNCTIONS

Operators

In addition to the built-in operators discussed in the section Function
Names and Operators (page 181), Spotfire S+ allows you to define
your own infix operators. Such operators must have names of the
form "%anything%", like the built-in operator "%*%". These operators
are ordinary functions, but because the string "%anything%" is not
syntactically a name, you can print them only by using the get
function:

> get("%*%")

function(x, vy, ...)
UseMethod ("%*%")

Here is the code for an operator that raises a matrix to a power:

"%"%" <- function(matrix, power)
{
matrix <- as(matrix, "matrix™)
if(ncol(matrix) != nrow(matrix))
stop("matrix must be square")
if(length(power) != 1)
stop("power must be a single number™)
if(all.equal(t(matrix), matrix)) {
this is a symmetric matrix
e <- eigen(matrix)
m <- e$vectors %*% diag(e$values”power) %*%
t(e$vectors)

}
else {
this is an asymmetric matrix
if(trunc(power) != power)
stop("integer power required for matrix")
m <- diag(ncol(matrix))
if(power !=0)
for(i in l:abs(power))
m<-m %*% matrix
if(power < 0)
m <- solve(m)
}
return(m)

269

Chapter 8 Writing Functions in Spotfire S+

Extraction and
Replacement
Functions

270

}

Once defined, this operator can be used exactly as any other infix
operator:

> x <- matrix(c(2,1,1,1), ncol=2)

> X
[.11 [.2]
[1,] 2 1
1 1

> X %% 3

(.11 [,2]
[1,1] 13 8
[2,1 8 5

You can also use this operator to find the inverse of a matrix:
> X %% -1

(.11 [,2]
[1,] 1 -1
[2,] -1 2

User-defined operators have precedence equivalent to the built-in
operators %%, %/%, and %*%. See Table 8.1 (page 182) for a complete list
of built-in operators and their precedence.

As we mention in the section Function Names and Operators (page
181), Spotfire S+ handles assignments in which the left side is a
function call differently from those in which the left side is a name.
An expression of the form f(x) <- value is evaluated as the
following assignment:

x <- "f<-"(x, value)

This requires a function named "f<-" that corresponds to f. In this
example, f is called an extraction function: it accepts a data object and
returns either a portion of the data or some attribute of it. The
function "f<-" is the corresponding replacement function: it replaces
the object extracted by f with a user-supplied value.

For example, the dim function returns the dim attribute of a matrix,
data frame, or array:

Writing Special Functions

> x <- matrix(1:10, nrow=b)

> X

[,11 [.2]
[1,] 1 6
[2,1] 2 7
[3,1] 3 8
[4,1 4 9
[5,1] 5 10
> dim(x)
[1] 5 2

The result from dim states that the matrix x has 5 rows and 2 columns.
The corresponding function "dim<-" replaces the dim attribute with a
user-specified value:

> dim(x) <- c¢(2,5)
> X

(.11 [,2]1 [,31 [,4]1 [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

Spotfire S+ includes many replacement functions. Most notably,
functions associated with subscripting often have corresponding
replacements; examples include "[<-" and "[[<-". In addition,
functions associated with attribute extraction have replacement
functions; "dim<-", "names<-", and "class<-" are examples. Because
the names of replacement functions are not syntactic names, you must
use the get function to examine their definitions:

> get("dim<-")

function(x, value)
.Internal("dim<-"(x, value), "S_replace", T, 10)

In general, you should define replacement functions whenever you
write new extraction functions. New extraction functions are
generally associated with newly-created attributes. As a simple
example, suppose we want a new attribute named doc that holds a
brief description of an object. The corresponding extraction function,
doc, starts naturally enough with the attr function. A simple version
of doc is the following one-liner:

271

Chapter 8 Writing Functions in Spotfire S+

272

doc <- function(x) { attr(x, "doc") }

The replacement function "doc<-" looks like:

"doc<-" <- function(x, value)
{
attr(x, "doc") <- value
return(x)

}

Two things are worth noting about the definition of "doc<-". First, it
returns the complete, modified object and not just the modified
attribute. Second, it performs no assignment; the Spotfire S+
evaluator performs the actual assignment. These characteristics are
essential for writing clean replacement functions.

The following commands use the "doc<-" function to add a doc
attribute to the built-in data set geyser. The attribute is then printed
with the doc function:

Assign geyser to your working directory.
> geyser <- geyser

> doc(geyser) <- "Waiting time between eruptions and the
Continue string: duration of the eruption for the 01d
Continue string: Faithful geyser in Yellowstone."

> doc(geyser)

[1] "Waiting time between eruptions and the\nduration of
the eruption for the 0ld\nFaithful geyser in Yellowstone."

Because of the newline characters, this is not the most readable form.
However, if we modify the doc function slightly to use cat instead, we
obtain output that is easier to read:

> doc <- function(x) { cat(attr(x, "doc"), sep="\n ") }
> doc(geyser)

Waiting time between eruptions and the
duration of the eruption for the 01d
Faithful geyser in Yellowstone.

Writing Special Functions

You can build extraction functions to extract almost any piece of data
that you are interested in. Such functions typically use other
extraction functions as their starting points. For example, the
following functions use subscripting to find the elements of an input
vector that have even and odd indices:

evens <- function(x)

{
indices <- seq(along = x)
return(x[indices %% 2 == 01)
}
odds <- function(x)
{
indices <- seq(along = x)
return(x[indices %% 2 == 11)
}

The following examples illustrate these functions:

> evens(1:10)
[1]12 46 810

> odds(1:10)
[11]1 3579

In evens and odds, we build on the subscripting function "[" to
extract particular subsets of the input data. Thus, the subscripting
replacement function "[<-" is the logical place to start in writing the
corresponding replacements "evens<-" and "odds<-":

"evens<-" <- function(x, value)

{
indices <- seq(along = x)
x[indices %% 2 == 0] <- value
return(x)

}

"odds<-" <- function(x, value)

{
indices <- seq(along = x)
x[indices %% 2 == 1] <- value
return(x)

}

273

Chapter 8 Writing Functions in Spotfire S+

274

The following examples illustrate replacement using these two
functions:

> xx <- 1:10
> XX
[11 1 2 3 4 5 6 7 8 910

> odds(xx) <- ¢(10,20,30,40,50)
> evens(xx) <- ¢(11,21,31,41,51)
> XX

[1] 10 11 20 21 30 31 40 41 50 51

As a final example of extraction and replacement, consider the
problem of extracting and replacing row names in a matrix.
Normally, you extract the names using the dimnames function and
replace them using "dimnames<-". However, it would be convenient
to simply type rownames(x) and see the row names of a matrix x.
Here is a simple function that does this:

rownames <- function(x)
{
if(lis.null(dimnames(x)[[111))
return(dimnames(x)[[11])
else
return(character(dim(x)[1]))
}

If the first element of dimnames (x) is NULL, the rownames function
returns a vector of empty character strings that has length equal to the
number or rows in x.

The corresponding replacement function inserts new row names
while preserving any existing column names:

"rownames<-" <- function(x, value)
{
if(lis.null(dimnames(x)[[2]11))
colnames <- dimnames(x)[[2]]
else
colnames <- NULL
dimnames(x) <- Tist(value, colnames)
return(x)

Writing Special Functions

The following commands illustrate the rownames and "rownames<-"
functions using the built-in data set state.x77:

> rownames(state.x77)

[1] "Alabama" "Alaska" "Arizona"

[4] "Arkansas" "California" "Colorado"

[7] "Connecticut" "Delaware” "Florida"
[10] "Georgia™ "Hawaii" "Idaho"
[13] "IT1inois" "Indiana" "Towa"
[16] "Kansas" "Kentucky" "Louisiana"
[19] "Maine" "Maryland" "Massachusetts"
[22] "Michigan" "Minnesota" "Mississippi”
[25] "Missouri" "Montana" "Nebraska"
[28] "Nevada" "New Hampshire™ "New Jersey"
[31] "New Mexico" "New York" "North Carolina"
[34] "North Dakota" "Ohio" "Oklahoma™"
[37]1 "Oregon" "Pennsylvania” "Rhode IsTand"
[40] "South Carolina™ "South Dakota" "Tennessee"
[43] "Texas" "Utah" "Vermont"
[46] "Virginia" "Washington" "West Virginia"
[49] "Wisconsin" "Wyoming"

Assign state.x77 to your working directory.
> state.x77 <- state.x77

> rownames(state.x77) <- c(LETTERS[1:25], letters[1:25])
> rownames(state.x77)

[1J] "A™ "B™ "C"™ "D" "E" "F" "G" "H"™ "I" "J" "K" "L"
[13] ™M™ "™N"™ "™Q"™ "P™ "Q"™ "R™ "S™ "T™ "u™ "y" "W" "X"
[25] "Yy"™ "a"™ "b" "c" "d" "e" "f" "g" "h"™ "i"™ "j" "k"
[377 "1" "m™ "n" "o™ "p" "g" "r" “"s"™ "t "u" "v" "w"
[49] "x" "y"

275

Chapter 8 Writing Functions in Spotfire S+
REFERENCES

Chambers,].M. (1998). Programming with Data: A Guide to the S
Language. New York: Springer-Verlag.

Venables, W.N. and Ripley, B.D. (2000). S Programming. New York:
Springer-Verlag.

276

IMPORTING AND
EXPORTING

Supported File Types for Importing and Exporting 278

Importing Data 283
Using the importData Function 283
Other Data Import Functions 299

Using Direct Database Drivers 303
Spotfire S+ Commands for Importing and Exporting 304
Dialogs for Importing and Exporting 306

Installing and Configur-ing Database Clients on UNIX 316
Installing and Configur-ing Database Clients on

Windows 315
Exporting Data 324
Using the exportData Function 324
Other Data Export Functions 326
Exporting Graphs 328
Specifying the ExportType Argument 329
Specifying the QFactor Argument 331
Specifying the ColorBits Argument 331
Creating HTML Output 335
Tables 335
Text 336

277

Chapter 9 Importing and Exporting

SUPPORTED FILE TYPES FOR IMPORTING AND
EXPORTING

Table 9.1 lists all the supported file formats for importing and
exporting data. Note that Spotfire S+ both imports from and exports
to all the listed types with two exceptions: SigmaPlot (.jnb) files are
import only and HTML (htm*) tables are export only.

Table 9.1: Supported file types for importing and exporting data.

Default

Format Type Extension Notes

ASCII File "ASCII" .CSV Comma delimited.
.asc, .csv, .txt, Delimited.
o Whitespace delimited; space delimited;
.asc, .dat, .txt, tab delimited; user-defined delimiter.
.prn

dBASE File "DBASE" .dbf I, II+, II1, IV files.

DIRECT-DB2 | DB2 database No file argument should be specified.
connection.

DIRECT- Oracle No file argument should be specified.

ORACLE database
connection.

DIRECT-SQL | Microsoft No file argument should be specified.
SQL Server Available on Windows" only.
database
connection.

DIRECT- Sybase No file argument should be specified

SYBASE database
connection.

Epi Info File "EPI" .rec

278

Supported File Types for Importing and Exporting

Table 9.1: Supported file types for importing and exporting data. (Continued)

Default
Format Type Extension Notes
Fixed Format "FASCII" fix,
ASCII File fsc (Windows)
FoxPro File "FOXPRO" .dbf (Windows) Uses same import filter as dBASE files.
Gauss Data File | "GAUSS", .dat Automatically reads the related DHT
"GAUSS96™ file, if any, as GAUSS 89. If no DHT file
is found, reads the .DAT file as
GAUSS96.
HTML Table "HTML" htm* Export only.
Lotus 1-2-3 "LOTUS" wk* wr*
Worksheet
MATLAB "MATLAB" .mat File must contain a single matrix.
Matrix Spotfire S+ recognizes the file's
“MATLAB7” platform of origin on import. On
(export export, specify type="MATLAB" to create
only) a pre-MATLAB 7 version file;
otherwise, specify type="MATLAB7" to
export the MATLAB 7 file format.
Minitab "MINITAB" mtw Versions 8 through 12.
Workbook
Microsoft "ACCESS" .mdb (Windows)
Access File
Microsoft Excel | "EXCEL" x1? Versions 2.1 through 2007. Note that
Worksheet "EXCELX™ Xlsx "EXCELX" and the new file extension,

".x1sx" are for files imported from or
exported to Excel 2007.

279

Chapter 9 Importing and Exporting

Table 9.1: Supported file types for importing and exporting data. (Continued)

Default
Format Type Extension Notes
Microsoft SQL "MS-SQL" sql
Server
ODBC "0DBC" Not applicable For Oracle (.ora) and SYBASE (.syb)
Database databases (Windows only).
Oracle "ORACLE" .ora Oracle database connection. No file
argument should be specified
(UNIX™).
Paradox Data "PARADOX" .db (Windows)
File
QuattroPro "QUATTRO" wq?, wb?
Worksheet
Spotfire S+ File | "spLus” .sdd Windows, DEC UNIX. Uses
data.restore() to import file.
STATA “STATA” .dta Portable across platforms (UNIX,
Windows, and Mac). Can import
“STATASE” STATA files and export STATA or
(e>]<P()> rt STATASE.
only

When exporting a STATA dataset, you
are limited to 2,047 characters. For
larger STATA datasets (up to 32,767
variables), specify type="STATASE" .

280

Supported File Types for Importing and Exporting

Table 9.1: Supported file types for importing and exporting data. (Continued)

Default
Format Type Extension Notes
SAS File "SAS", .sd2 SAS version 6 files, Windows.
"SASVE"
"SAS1", .ssd01 SAS version 6 files, HP, IBM, Sun
"SAS6UX32" UNIX.
"SAS4", .ssd04 SAS version 6 files, Digital UNIX.
"SAS6UX64"
"SAS7" .sas7bdat, .sd7 SAS version 7 or 8 files, current
platform.
"SASTWIN" .sas7bdat, .sd7 SAS version 7 or later data files
(Windows).
"SAS7UX32" .sas7bdat, .sd7 SAS version 7 or later data files, Solaris
(SPARC), HP-UX, IBM AIX.
"SAS7UX64" .sas7bdat, .sd7 SAS version 7 or later data files,
Digital/Compaq UNIX.
SAS Transport | "SAS_TPT" Xpt, .tpt Version 6.x. Some special export
File options may need to be specified in
your SAS program. We suggest using
the SAS Xport engine (not PROC
CPORT) to read and write these files.
SigmaPlot File "SIGMAPLOT" jnb Import only. Available on Windows
only.
SPSS Data File | "spss” sav 0S/2; Windows; HP, IBM, Sun, DEC
UNIX.
SPSS Portable "SPSSP" .por
File

281

Chapter 9 Importing and Exporting

Table 9.1: Supported file types for importing and exporting data. (Continued)

Default
Format Type Extension Notes
Stata Data File | "STATA" dta Versions 2.0 and higher.
SYBASE "SYBASE" syb SSYBASE database connection. No
Server file argument should be specified.
SYSTAT File "SYSTAT" .syd, .sys Double- or single-precision .sys files.

282

Importing Data

IMPORTING DATA

Using the
importData
Function

The principal tool for importing data is the importData function,
which can be invoked from either the Spotfire S+ prompt or the File
» Import Data menu option.

In most cases, all you need to do to import a data file is to call
importData with the name of the file to be imported as the only
argument. As long as the specified file has one of the default
extensions listed in Table 9.1, you need not specify a type nor, in
most cases, any other information.

For example, suppose you have a SAS data file named rain.sd2 in
your start-up folder (Windows) or directory (UNIX). You can read
this file into Spotfire S+ using importData as follows:

> myRain <- importData("rain.sd2")

If you have trouble reading the data, most likely you just need to
supply additional arguments to importData to specify extra
information required by the data importer to read the data correctly.
Table 9.2 lists the arguments to the importData function.

Table 9.2: Arguments to importData.

Required or

Argument Optional Description
file Required A character string specifying the name of the file
(except for and directory path.
database reads)
type Optional A character string specifying the file type of the file
to be imported. See the “Type” column of Table 9.1
for a list of possible values.
keep Optional A character vector of variable names, or a numeric

vector of column numbers, specifying which
variables are to be imported. Only one of keep or
drop may be specified.

283

Chapter 9 Importing and Exporting

Table 9.2: Arguments to importData. (Continued)

Argument

Required or
Optional

Description

drop

Optional

A character vector of variable names, or a numeric
vector of column numbers, specifying which
variables are 7ot to be imported. Only one of keep
or drop may be specified.

colNames

Optional

A character vector of names to use for the imported
columns. See the importData help file for more
detailed information on this argument.

rowNamesCol

Optional

An integer specifying the column that contains the
row names. If specified, the column of row names is
dropped from the resulting data frame.

filter

Optional

A character string containing a logical expression
for selecting the rows to be imported. For details,
see Filter Expressions on page 289.

format

Optional

A single character string specifying the format for
each field when importing from a formatted ASCII
(FASCII) text file. For details, see Notes on
Importing Files of Certain Types on page 291.

delimiter

Optional

A character string specifying the delimiter to use.
This argument is used only when importing ASCII
text files.

startCol

Optional

An integer specifying the starting column in the
source. For example, if you specify 5, Spotfire S+
begins reading the data at column 5.

endCol

Optional

An integer specifying the ending column in the
source. The default of -1 means to read to the last
column.

284

Importing Data

Table 9.2: Arguments to importData. (Continued)

Argument

Required or
Optional

Description

drop

Optional

A character vector of variable names, or a numeric
vector of column numbers, specifying which
variables are 7ot to be imported. Only one of keep
or drop may be specified.

colNames

Optional

A character vector of names to use for the imported
columns. See the importData help file for more
detailed information on this argument.

rowNamesCol

Optional

An integer specifying the column that contains the
row names. If specified, the column of row names is
dropped from the resulting data frame.

filter

Optional

A character string containing a logical expression
for selecting the rows to be imported. For details,
see Filter Expressions on page 289.

format

Optional

A single character string specifying the format for
each field when importing from a formatted ASCII
(FASCII) text file. For details, see Notes on
Importing Files of Certain Types on page 291.

delimiter

Optional

A character string specifying the delimiter to use.
This argument is used only when importing ASCII
text files.

startCol

Optional

An integer specifying the starting column in the
source. For example, if you specify 5, Spotfire S+
begins reading the data at column 5.

endCol

Optional

An integer specifying the ending column in the
source. The default of -1 means to read to the last
column.

285

Chapter 9 Importing and Exporting

Table 9.2: Arguments to importData. (Continued)

Argument

Required or
Optional

Description

startRow

Optional

An integer specifying the starting row in the source.
For example, if you specify 10, Spotfire S+ begins
reading the data at row 10.

endRow

Optional

An integer specifying the ending row in the source.
The default of -1 means to read to the last row.

pageNumber

Optional

The page number of the spreadsheet (used only for
spreadsheets).

colNameRow

Optional

An integer specifying the row that contains the
column names (used only for spreadsheets). If you
do not specify a row, Spotfire S+ attempts to locate
column names in the first row of the file. Specify 0
to tell Spotfire S+ not to search for a column names
row. In a delimited ASCII file, the column names
row must come before the first data row (startRow)
to be read.

server

Optional

When importing from a relational database, a
character string specifying the database server.

user

Optional

When importing from a relational database, a
character string specifying the user name.

password

Optional

A character string specifying the password for the
database user.

database

Optional

A character string specifying the name of the
database to use when importing from a relational
database. This should be set to "" if type="0RACLE".

table

Optional

A character string specifying the name of the table
in database to import.

286

Importing Data

Table 9.2: Arguments to importData. (Continued)

Required or
Argument Optional Description

stringsAsFactors Optional A logical flag. If TRUE, strings are converted to
factors when imported.

sortFactorLevels Optional If sortFactorLevels=TRUE, the levels for all factors
created from character strings are sorted. Otherwise,
the order of the levels is not specified. In previous
versions of Spotfire S+, there were situations where
importing with sortFactorLevels=FALSE was
significantly faster, but this is no longer true. This
argument is not supported when reading a big data
object (bigdata=T).

valuelLabelAsNumber Optional A logical flag. If TRUE, SAS and SPSS variables
(numeric or character) with labels are imported as
data values. If FALSE, the variables are imported as
value labels.

centuryCutoff Optional A numeric value specifying the origin for two-digit
dates. Dates with two-digit years are assigned to the
100-year span beginning with this value. The default
value of 1930 means that the date 6/15/30 will be
read as June 15, 1930 and 12/29/29 will be read as
December 29, 2029. This argument is used only
when importing from an ASCII file.

separateDelimiters Optional A logical flag. If TRUE, the separator is strictly a
single character; otherwise, repeated consecutive
separator characters are treated as one separator.

odbcConnection Required if An encrypted character string containing the
type="0DBC" ODBC connection string. Not currently supported on
UNIX platforms.
odbcSqlQuery Optional Contains an optional SQL query. If no query is

specified, the first table of the data source is used.
Meaningful only if type="0DBC". Not currently
supported on UNIX platforms.

287

Chapter 9 Importing and Exporting

Table 9.2: Arguments to importData. (Continued)

Argument

Required or
Optional

Description

readAsTable

Optional

A logical flag. If TRUE, Spotfire S+ reads the entire
file as a single table.

colNamesUpperCase

Optional

A logical flag. If TRUE, column names are imported
in all uppercase.

time.in.format

Optional

A character string specifying the format to use to
interpret date/time data when importing from an
ASCII or FASCII text file.

decimal.point

Optional

A single character specifying the decimal point
character for ASCII data files. By default, this is the
period (.).

thousands.separator

Optional

A single character specifying the thousands
separator character for ASCII data files. By default,
this is the comma (,).

time.zone

Optional

A string naming the time zone any dates in the input
are assumed to be in. Currently, time zone
information in the data file is ignored. This
argument is not supported when reading a big data
object (bigdata=T).

use.locale

Optional

A logical value. If use.1ocale=TRUE, the default
values of decimal.point and thousands.separator
come from the current locale set by Sys.setlocale,
and the default value of time.zone is
options()$time.zone. Otherwise, the default values
are as described above.

sqlReturnData

Optional

A logical value. If sq1ReturnData=TRUE (the default),
any SQL query expression is evaluated and the
resulting data is returned. If sq1ReturnData=FALSE,
the SQL query is executed for effect only and NULL
is returned. See the importData help file for details.

288

Importing Data

Table 9.2: Arguments to importData. (Continued)

Required or
Argument Optional Description

scanlines Optional An integer giving the number of lines that will be
scanned from an ASCII input file before performing
the import to determine the column name and types
and widths. Specifying a negative value such as
scanlLines=-1 means to scan the entire file, which
may take a long time for large files, but is the safest
option. See the importData help file for details.

maxLineWidth Optional An integer giving the maximum line width expected
when reading ASCII text files. If a line is read that is
longer than this value, an error is signaled. The
default of 0, or any number less than 32768 is
treated as 32768.

na.string Optional A character string that will be read as a missing
value when reading an ASCII text file. No matter
what value is specified for this argument, an empty
string value will always be read as a missing value.

colTypes Optional A character vector of column types to use for the
imported columns. This can contain values from
"numeric", "character", "factor"”, and "timeDate".

sasFormats Optional Specifies the SAS formats file. See the NOTE
section in the importData help file for more
detail.

bigdata Optional A logical value. If TRUE, the data is read into a big

data object or type bdFrame. Otherwise, it is read
into a data. frame object. This argument can be used
only if the bigdata library section has been loaded.

289

Chapter 9 Importing and Exporting

Filter Expressions The filter argumentto importData allows you to subset the data you
import. By specifying a query, or filter, you gain additional
functionality, such as taking a random sampling of the data. Use the
following examples and explanation of the filter syntax to create your
statement. A blank filter is the default and results in all data being
imported.

Note

The filter argument is ignored if the type argument (or, equivalently, file extension specified in
the file argument) is set to "ASCII" or "FASCII".

Case selection

You select cases by using a case-selection statement in the filter
argument. The case-selection or where statement has the following
form:

"variable expression relational operator condition"

Warning

The syntax used in the filter argument to importData and exportData is not standard Spotfire
S+ syntax, and the expressions described are not standard Spotfire S+ expressions. Do not use
the syntax described in this section for any purpose other than passing a filter argument to
importData or exportData.

Variable expressions

You can specify a single variable or an expression involving several
variables. All of the usual arithmetic operators (+ - * / ()) are
available for use in variable expressions, as well as the relational
operators listed in Table 9.3.

Table 9.3: Relational operators.

Operator Description

— Equal to

1= Not equal to

290

Importing Data

Table 9.3: Relational operators. (Continued)

Operator Description
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
& And
| Or
! Not
Examples

Examples of selection conditions given by filter expressions are:

"sex =1 & age < 50"

"(income + benefits) / famsize < 4500"
"incomel >=20000 | income2 >= 20000"
"incomel >=20000 & income2 >= 20000"
"dept = ’auto loan’"

Note that strings used in case-selection expressions must be enclosed
in single quotes if they have special characters or embedded blanks:

"'Disp." > 300"

Wildcards * or ? are available to select subgroups of string variables.
For example:

"account = ?77722"
llid j— 3*"

The first statement will select any accounts that have 2s as the 5th and
6th characters in the string, while the second statement will select
strings of any length that begin with 3.

201

Chapter 9 Importing and Exporting

Notes on
Importing Files of
Certain Types

292

The comma operator is used to list different values of the same
variable name that will be used as selection criteria. It allows you to
bypass lengthy OR expressions when giving lists of conditional
values. For example:

"state = CA,WA,OR,AZ,NV"
"caseid != 22*,307?7,4200"

Missing variables

You can test to see that any variable is missing by comparing it to the
special internal variable, NA. For example:

"income != NA & age != NA"

ASCIl (delimited ASCII) files

When importing ASCII files, you have the option of specifying
column names and data types for imported columns. This can be
useful if you want to name columns or to skip over one or more
columns when importing.

Use the format argument to importData to specify the data types of
the imported columns. (Note that field-width specifications are
irrelevant for ASCII files and are ignored.) For each column, you
need to specify a percent sign (%) and then the data type. Dates may
be imported automatically as numbers. After importing, you can
change the column format type to a dates format.

Here is an example format string:

%s, %f, %k*, %f

The s denotes a string data type, the f denotes a float data type
(actually, numeric), and the asterisk (*) denotes a “skipped” column.
These are the only allowable format types.

If you do not specify the data type of each column, Spotfire S+ looks
at the first row of data to be read and uses the contents of this row to
determine the data type of each column. A row of data must always
end with a new line.

Spotfire S+ auto-detects the file delimiter from a preset list that
includes commas, spaces, and tabs. All cells must be separated by the
same delimiter (that is, each file must be comma-separated, space-
separated, or tab-separated.) Multiple delimiter characters are not

Importing Data

grouped and treated the same as a single delimiter. For example, if
the comma is a delimiter, two commas are interpreted as a missing

field.

Double quotes (") are treated specially. They are always treated as
an “enclosure” marker and must always come in pairs. Any data
contained between double quotes are read as a single unit of
character data. Thus, spaces and commas can be used as delimiters,
and spaces and commas can still be used within a character field as
long as that field is enclosed within double quotes. Double quotes
cannot be used as standard delimiters.

If a variable is specified to be numeric, and if the value of any cell
cannot be interpreted as a number, that cell is filled with a missing
value. Incomplete rows are also filled with missing values.

FASCII (formatted ASCII) files

You can use FASCII import to specify how each character in your
imported file should be treated. For example, you must use FASCII
for fixed-width columns not separated by delimiters if the rows in
your file are not separated by line feeds or if your file splits each row
of data into two or more lines.

For FASCII import, you need to specify the file name and the file
type. In addition, because FASCII files are assumed to be non-
delimited (for example, there are no commas or spaces separating
fields), you also need to specify each column’s field width and data
type in the format string. This tells Spotfire S+ where to separate the
columns. Each column must be listed along with its data type
(character or numeric) and its field width. If you want to name the
columns, specify a list of names in the colNames argument (column
names cannot be read from a FASCII data file).

When importing a FASCII file, you need to specify a value for the
colNames argument to importData. Enter a character vector of
column names for the imported data columns (separated by spaces or
commas). Specify one column name for each imported column (for
example, Apples, Oranges, Pears). You can use an asterisk (*) to
denote a missing name (for example, Apples, *, Pears).

When importing a FASCII file, you also need to specify the data
types and field widths of the imported columns by entering a value
for the format argument to importData. For each column, you need
to specify a percent sign (%), then the field width, and then the data

293

Chapter 9 Importing and Exporting

294

type. Commas or spaces must separate each specification in the
string. The format string is necessary because formatted ASCII files
do not have delimiters (such as commas or spaces) separating each
column of data.

Here is an example format string:

%10s, %12f, %5*, %10f

The numbers denote the column widths, s denotes a string data type,
f denotes a float data type, and the asterisk (*) denotes a “skip.” You
may need to skip characters when you want to avoid importing some
characters in the file. For example, you may want to skip blank
characters or even certain parts of the data.

If you want to import only some of the rows, specify a starting and
ending row.

If each row ends with a new line, Spotfire S+ treats the newline
character as a single character-wide variable that is to be skipped.

Microsoft Excel files

If your Excel worksheet contains numeric data only in a rectangular
block, starting in the first row and column of the worksheet, then all
you need to specify is the file name and file type. If a row contains
names, specify the number of that row in the colNameRow argument (it
does not have to be the first row). You can select a rectangular subset
of your worksheet by specifying starting and ending columns and
rows.

Lotus files

If your Lotus-type worksheet contains numeric data only in a
rectangular block, starting in the first row and column of the
worksheet, then all you need to specify is the file name and file type.
If a row contains names, specify the number of that row in the
colNameRow argument (it does not have to be the first row). You can
select a rectangular subset of your worksheet by specifying starting
and ending columns and rows.

The row specified as the starting row is always read first to determine
the data types of the columns. Therefore, there cannot be any blank
cells in this row. In other rows, blank cells are filled with missing
values.

Importing Data

dBASE files

Spotfire S+ imports dBASE and dBASE-compatible files. The file
name and file type are often the only things you need specify for
dBASE-type files. Column names and data types are obtained from
the dBASE file. However, you can select a rectangular subset of your
data by specifying starting and ending columns and rows.

Data from ODBC data sources (Windows only)

To access a database on a remote server, Spotfire S+ must establish a
communication link to the server across the network. The
information required to create this link is contained in an ODBC
connection string. This string consists of one or more attributes that
specify how a driver connects to a data source. An attribute identifies
a specific piece of information that the driver needs to know before it
can make the appropriate data source connection. Each driver may
have a different set of attributes, but the connection string is always of
the form:

DSN=dataSourceName [;SERVER=value] [;PWD=value]
[;UID= value] [;<Attribute>=<value>]

You must specify the data source name if you do not specify the user
ID, password, server, and driver attributes. However, all other

attributes are optional. If you do not specify an attribute, that attribute
defaults to the value specified in the relevant DSN tab of the ODBC

Data Source Administrator.

Note

For some drivers, attribute values are case-sensitive.

For example, a connection string that connects to the Employees data
source using the hr.db server and user joesmith’s account
information would be:

"DSN=Employees;UID=joesmith;PWD=secret;SERVER=hr.db"

The Spotfire S+ GUI encrypts ODBC connection strings to protect
sensitive information such as user IDs and passwords. To connect to
your database from the command line with an encrypted connection
string, first establish connectivity from the GUI and then examine

295

Chapter 9 Importing and Exporting

your history log by choosing Windows » History » Display from

the main menu or clicking the History Log button B on the
Standard toolbar. Simply copy the encrypted connection string into
your script or to the Commands window.

Note

ODBC import and export facilities do not support "nchar" or "nvarchar” data types. The
"varchar" type is supported.

296

To import data from a database via ODBC, use the standard
importData function with the type=0DBC argument. Three additional
parameters control the call to the ODBC interface:

+ file supplies the name of the data source;
+ odbcConnection supplies the ODBC connection string;

* odbcSqlQuery supplies an optional SQL query. For example,
this query would specify the table you want to import. If no
query is specified, the first table of the data source is used.

For example, this command creates a new data frame called
myDataSet and fills it with the contents of Tab1e23 from data source
testSQLServer:

> myDataSet <-importData(
file = "testSQLServer",
type = "0DBC",
odbcConnection =
"DSN=testSQLServer;UID=joesmith;PWD=secret; APP=S-
PLUS;WSID=joesComputer;DATABASE=testdba",
odbcSqlQuery="Select * from testdba.dbo.Table23"

)

You can use the filter argument in the importData function to filter
data, as described on page 289.

To export data from Spotfire S+ via ODBC, use the standard
exportData function with the type=0DBC argument. Four additional
parameters control the call to the ODBC interface:

* data supplies the data frame to be exported;

* file supplies the name of the data source;

Importing Data

* odbcConnection supplies the ODBC connection string;
* odbcTable supplies the name of the table to be created.

For example, this command exports the data frame myDataSet to
Table23 of data source testSQLServer:

exportData(data="myDataSet™, file="testSQLServer",
type="0DBC", odbcConnection =

"DSN=testSQLServer;UID=joesmith;PWD=secret; APP=S-
PLUS;WSID=joesComputer;DATABASE=testdba",
odbcSqlQuery="Select * from testdba.dbo.Table23"

)

Beware that if you export data to an existing table name, it is possible
to change the schema for that table. This is because Spotfire S+
essentially replaces the existing tables with a new table containing the
exported data. Also note that it is not possible to append data to a
table. If you wish to append data to an existing table, export the data
to a dummy table and then use SQL commands on the database side
to join the two tables.

A new function since Spotfire S+ 6.0 is executeSq1, which sends
arbitrary SQL statements to a database via ODBC. The function has
the following form:

executeSql(odbcConnection = character(0), odbcSqlQuery =
character(0), returnData)

where
odbcConnection is the connection string to the database
odbcSq1Query is the statement passed to the database
returnData is the flag to return the data (default=F)

The following is an example of adding a record to an existing table:

executeSql("DSN=mydatabase","INSERT into mytable values
('"Hello")"™)

Note that if returnData is set to T, the SQL will be evaluated twice.

297

Chapter 9 Importing and Exporting

Data from enterprise databases (UNIX only)

The importData function supports importing data from Oracle and
SYBASE databases by making Spotfire S+ a client that connects to
the databases. The database must be properly configured for network
client access, and appropriate environment variables must be set for
the import to work.

The environment variables needed for Oracle are shown in Table 9.4.

Table 9.4: Environment variables for Oracle.

$ORACLE_HOME/lib

Variable Value Example

ORACLE_HOME The location where ORACLE /optl/oracle7
was installed

LD_LIBRARY_PATH | Need to include /optl/oracle7/lib

For SYBASE, you need to have the CT-library installed. The
environment variable needed for SYBASE is shown in Table 9.5.

Table 9.5: Environment variable for SYBASE.

Variable

Value

Example

LD_LIBRARY_PATH

Need to include the lib directory
where CT-library was installed

/homes/sybase/lib

The arguments to importData that are required when importing from

these databases are listed in Table 9.7.

Table 9.6: Required UNIX arguments for importing data from enterprise databases.

Argument Description

type A character string specifying either "oracle" or "sybase" as the
database type.

server The name of the database server. This is site-specific.

user The name of the user who is allowed to connect to the database.

298

Importing Data

Table 9.6: Required UNIX arguments for importing data from enterprise databases.

Argument Description

password The password for user to connect to the database.

database The name of the database to import from. For Oracle, this should be

the empty string ("").

table The table in database to import.
Other Data While importData is the recommended method for reading data files
Import into Spotfire S+, there are several other functions that you can use to
Functi read ASCII data. These functions are commonly used by other

unctions functions in Spotfire S+ so it is a good idea to familiarize yourself with

them.

The scan The scan function, which can read either from standard input or from
Function a file, is commonly used to read data from keyboard input. By default,

scan expects numeric data separated by white space, although there
are options that let you specify the type of data being read and the
separator. When using scan to read data files, it is helpful to think of
each line of the data file as a record, or case, with individual
observations as fields. For example, the following expression creates a
matrix named x from a data file specified by the user:

x <- matrix(scan("filename"), ncol = 10, byrow = T)

Here the data file is assumed to have 10 columns of numeric data; the
matrix contains a number of observations for each of these ten
variables. To read in a file of character data, use scan with the what
argument:

x <- matrix(scan("filename", what = ""), ncol=10, byrow=T)

Any character vector can be used in place of "". For most efficient
memory allocation, what should be the same size as the object to be
read in. For example, to read in a character vector of length 1000, use

> scan(what=character(1000))

299

Chapter 9 Importing and Exporting

The what argument to scan can also be used to read in data files of
mixed type, for example, a file containing both numeric and
character data, as in the following sample file, table.dat:

Tom 93 37
Joe 47 42
Dave 18 43

In this case, you provide a list as the value for what, with each list
component corresponding to a particular field:

> z <- scan("table.dat",what=Tist("",0,0))
> z
[[11]:

[1] nTomn IlJoell llDavell

[[2]17]:
[11 93 47 18

[[3]1]:
[1] 37 42 43

Spotfire S+ creates a list with separate components for each field
specified in the what list. You can turn this into a matrix, with the
subject names as column names, as follows:

> matz <- rbind(z[[2]1]1,z[[311)
> dimnames(matz) <- Tist(NULL, z[[111)
> matz
Tom Joe Dave
[1,] 93 47 18
[2,]1 37 42 43

You can scan files containing multiple line records by using the
argument multi.11ine=T. For example, suppose you have a file
heart.all containing information in the following form:

johns 1
450 54.6
marks 1 760 73.5

You can read it in with scan as follows:

> scan('heart.all',what=Tist("",0,0,0),multi.line=T)

300

Importing Data

[[1]1]:
[1] "johns™ "marks™ "avery™ "able"™ "simpson"
[[41]:
[1] 54.6 73.5 50.3 44.6 58.1 61.3 75.3 41.1 51.5 41.7 59.7
[12] 40.8 67.4 53.3 62.2 65.5 47.5 51.2 74.9 59.0 40.5

If your data file is in fixed format, with fixed-width fields, you can use
scan to read it in using the widths argument. For example, suppose
you have a data file dfi1e with the following contents:

Olgiraffe.9346H01-04
88donkey .1220M00-15
77ant L04-04
20gerbil .1220L01-12
22swallow.2333L01-03
121emming L01-23

You identify the fields as numeric data of width 2, character data of
width 7, numeric data of width 5, character data of width 1, numeric
data of width 2, a hyphen or minus sign that you don’t want to read
into Spotfire S+, and numeric data of width 2. You specify these types
using the what argument to scan. To simplify the call to scan, you
define the list of what arguments separately:

> dfile.what <- 1list(code=0, name="", x=0, s="", nl=0,
+ NULL, n2=0)

(NULL indicates suppress scanning of the specified field.) You specify
the widths as the widths argument to scan. Again, it simplifies the call
to scan to define the widths vector separately:

> dfile.widths <- c(2, 7, 5, 1, 2, 1, 2)

You can now read the data in dfile into Spotfire S+ calling scan as
follows:

> dfile <- scan("dfile", what=dfile.what,
+ widths=dfile.widths)

If some of your fixed-format character fields contain leading or
trailing white space, you can use the strip.white argument to strip it
away. (The scan function always strips white space from numeric
fields.) See the scan help file for more details.

301

Chapter 9 Importing and Exporting

The read.table Data frames in Spotfire S+ were designed to resemble tables. They

Function must have a rectangular arrangement of values and typically have
row and column labels. Data frames arise frequently in designed
experiments and other situations. If you have a text file with data
arranged in the form of a table, you can read it into Spotfire S+ using
the read.table function. For example, consider a data file named
auto.dat that contains the records listed below.

Model Price Country Reliab Mileage Type

Acuralntegra4 11950 Japan 5 NA Small

Audil005 26900 Germany NA NA Medium
BMW325176 24650 Germany 94 NA Compact
ChevLumina4 12140 USA NA NA Medium
FordFestiva4 6319 Korea 4 37 Small

Mazda929Ve6 23300 Japan 5 21 Medium
MazdaMX-5Miata 13800 Japan NA NA Sporty
Nissan300ZXV6 27900 Japan NA NA Sporty
O0TdsCalais4 9995 USA 2 23 Compact
ToyotaCressida6 21498 Japan 3 23 Medium

All fields are separated by spaces, and the first line is a header line.
To create a data frame from this data file, use read.table as follows:

> auto <- read.table('auto.dat',header=T)

> auto
Price Country Reliab Mileage Type
Acuralntegrad4 11950 Japan 5 NA Small
Audil005 26900 Germany NA NA Medium
BMW325i6 24650 Germany 94 NA Compact
ChevLumina4 12140 USA NA NA Medium
FordFestiva4 6319 Korea 4 37 Small
Mazda929Vé6 23300 Japan 5 21 Medium
MazdaMX-5Miata 13800 Japan NA NA Sporty
Nissan300ZXV6 27900 Japan NA NA Sporty
OldsCalais4 9995 USA 2 23 Compact
ToyotaCressida6 21498 Japan 3 23 Medium

As with scan, you can use read.table within functions to hide the
mechanics of Spotfire S+ from the users of your functions.

302

Using Direct Database Drivers

USING DIRECT DATABASE DRIVERS

Spotfire S+ includes access to the following databases via direct
database drivers:
®

(

* Microsoft SQL Server Windows® only)

- 1BM DB2® (Windows, Solaris ®32 and 64, Linux"32 and 64,
Compaq Tru64*, HP®, AIX)®

- Sybase”™ (Windows, Solaris 32 and 64, Linux 32, HP, AIX)

« Oracle”® (Windows, Solaris 32 and 64, Linux 32 and 64, HP,
AIX)

This functionality is in addition to ODBC access on Windows, and it
replaces the RogueWave® database interface on Solaris and other

UNIX® platforms in previous versions of Spotfire S+.

You can use the importData and exportData commands to access the
above databases using the new direct drivers.

Exporting to databases now allows existing tables to be either
replaced or appended to.

In addition, in Spotfire S+ for Windows, you can use the Import
From Database and Export to Database dialogs to access these
databases as data sources, just like accessing ODBC data sources. The
previous versions of Spotfire S+ had menu items such as Import
Data » From ODBC Connection and Export Data » To ODBC
Connection, and these have been replaced with Import From
Database and Export to Database, respectively. The dialogs
presented now allow you to select either ODBC or direct database
sources from the same list.

Direct database access is accomplished by using driver components
which must be separately installed on the system that is running
Spotfire S+. These driver components are provided by the database
vendor and usually consist of components that can be called directly
by Spotfire S+ to send and receive database information in the native
format that the database supports. In many cases, direct database

303

Chapter 9 Importing and Exporting

SPOTFIRE
S+
COMMANDS
FOR
IMPORTING
AND
EXPORTING

304

drivers provide faster connectivity and data transfer than ODBC
because there are fewer layers of data translation and interpretation of

the request than with ODBC.

Before you can use the importData or exportData commands to
access database via the direct drivers, you must install database client
software on your system. Please refer to the sections below on
installing database clients for your system type.

There are four new database type keywords that can be used in the
type parameter of the importData or exportData commands:

* DIRECT-DB2
* DIRECT-ORACLE

DIRECT-SQL
DIRECT-SYBASE

As an example, consider the following Spotfire S+ commands to send
data to a Sybase database:

mydata <- data.frame(COLl=c(1.2,1.3,1.51,2.1,3.9),
COL2=c("a", "b", "c", "d", "e™),
COL3=timeDate(c("1/1/2003", "2/1/2003",
"3/15/2005", "10/24/2003", "11/11/2004"),
format="%02m/%02d/%Y %02H:%02M:%02S.%03N"))

exportData(mydata, type="DIRECT-SYBASE",
user="testqga", password="testqga",
server="qaimage.tibco.com", database="testdb",
table="testDirectSybase", appendToTable=F)

In this example, the data frame mydata is exported to the table
testDirectSybase into the database testdb on the server
gaimage.tibco.com. The database client software validates the user
and password parameter values prior to exporting the data, and if
they are incorrect, an error is reported in Spotfire S+. The server
name you specify here should be the one you specified during
installation of the Sybase client software. See Step 6 in the Windows
Sybase client installation instructions below for further information
on this.

Using Direct Database Drivers

Notice that the string DIRECT-SYBASE was used in the type parameter
of the exportData command to specify connection to a Sybase
database. Also note that the user name, password, server name,
database and table name are specified. For each of the four databases
supported by direct drivers in Spotfire S+, slightly different
combinations of these parameters must be specified. See the table
below for a list of the differences.

Table 9.7: Table of parameters required for various direct database types in importData and exportData.

Required parameters for

Database type importData and exportData Comments
DIRECT-DB2 user, password, database, Server parameter should
table not be specified for DB2.
DIRECT-ORACLE user, password, server, table Database parameter
should not be specified
for Oracle.

Server parameter should
be the network service
name you specified when
installing the Oracle
client software. See Step
5. in the section Oracle

Client.
DIRECT-SQL user, password, server, Server parameter should
database, table be the server name you
specified in the SQL

Server Enterprise
Manager program. See
Step 11. in the section
SQL Server 2000 Client.

DIRECT-SYBASE

user, password, server, Server parameter should
database, table be the server name you
specified in the Sybase
installation. See Step 6. in
the section Sybase Client.

305

Chapter 9 Importing and Exporting

DIALOGS
FOR
IMPORTING
AND
EXPORTING

306

Notice the existence of the appendToTable parameter, which controls
whether or not to append the data you are exporting to the specified
table. If this parameter is false, the data overwrites the table specified;
if true, the data is appended.

An error occurs if the data types of the data you are sending and those
already present in the table do not match. For example, if you export
strings to a table that currently has columns of numeric values, you
receive an error and the export fails.

Here is an example of using the importData command to read data
into Spotfire S+ from an Oracle database table via the direct drivers:

mynewdata <- importData(type="direct-oracle",
user="testqa", password="testqga",
server="0RACLE.TESTDB",
table="testDirectOracle™)

In this example, the table testDirectOracle is used. Since no specific
SQL query is specified (normally specified with the sq1Query
parameter), all data from the table is imported. The database client
software validates the user and password parameter values prior to
importing the data and if they are incorrect, an error is reported in
Spotfire S+. The server name you specify here should be the one you
specified as the network service name during installation of the
Oracle client software. See Step 5. in the section Oracle Client
installation instructions below for further information on this.

For more information on using the importData and exportData
commands as well as additional information on using the sq1Query
parameter in importData, please see the online help.

In Spotfire S+ for Windows, you can use the Import From
Database and Export to Database dialogs to access databases as
data sources, just like accessing ODBC data sources. The previous
versions of Spotfire S+ had menu items such as Import Data »
From ODBC Connection and Export Data » To ODBC
Connection, and these have been replaced with Import From
Database and Export to Database, respectively. The dialogs
presented now allow you to select either ODBC or direct database
sources from the same list.

Import From
Database

Using Direct Database Drivers

You can use the Spotfire S+ Import From Database dialog to
import table data from direct database sources available on your
system. Only those sources for which you have installed database
clients are supported. For more information on installing database
client software, see the section Installing and Configur-ing Database
Clients on UNIX and the section Installing and Configur-ing
Database Clients on Windows later in this document.

Spotfire S+ lists all data sources it supports in the Import From
Database dialog. However, only those sources which have database
clients installed on your system work. The others report errors until
you install and configure the appropriate database clients.

When you first run Spotfire S+, four direct data sources are listed in
the Import From Database dialog, one for each type supported on
Windows:

* Direct DB2

* Direct Oracle

* Direct SQL Server
* Direct Sybase

You can modify these data sources to configure them for your
particular database setup, such as setting the correct server, database,
username, password, and other information appropriate for how the
database is set up on your network.

You can also add new direct sources (based on one of the four types
listed above) to the list of data sources. This allows you to have one or
more data sources for the same database type, thus enabling you to
specify different database names or usernames and passwords to
access other sets of tables on the same database server.

You can also remove direct data sources from the Data Source list.
To import data from a direct database source:

1. From the File menu, select Import Data » From Database.

307

Chapter 9 Importing and Exporting

2. The Import From Database dialog appears, as shown in

Figure 9.1.
Import From Database = E
Database | Filter |

- From

Data Source

Add Sources... | Modify Source... |

Table Mame I j

SOL Query ;I
[

~To

D ata frame ISDF‘I j

Start col |<EMD> =l

& Inzert at start col

= Owenarite target

U pdate Freyiew |
Preview Rows: |1 0

K —— _'ILI
QK I Eancell Applyl I<| >| curent Help |

Figure 9.1: The Import From Database dialog.

3. Select a direct data source from the Data Source list.

You can customize these or create new direct sources by
clicking the Add Sources button. See below for further
information on creating direct data sources.

Choose one of these or select another one you have created.

If you have not completely configured the source, the Modify
Data Source dialog appears. Fill in all the fields with valid
information for the data source chosen to continue.

4. Once a direct data source has been selected, the Tables list
changes to contain all the tables in that source. Select a table
from the list.

308

5.

6.

Using Direct Database Drivers

Specify any other options, including a valid SQL query in the
SQL Query field. If you leave the SQL Query field blank, a
default query of all columns and rows from the selected table
is performed.

Click the OK button to start the import.

You can add new direct data sources that are based on one of the four
supplied direct database types. You can add as many data sources as
you wish. To add a direct data source, do the following:

1.
2.

From the File menu, select Import Data » From Database.

Click the Add Sources button, and from the context menu,
select Add Direct Source.

The Add Direct Source dialog appears (Figure 9.2).

Add Direct Source x|

Specify the source for thiz direct databaze connection:

M ame: I

Type: I Direct Oracle = l
Uszername: I
Password: I

Server I

D atabase: I

()3 I Cancel | Hemove

Figure 9.2: The Add Direct Source dialog.

4.

Enter the name for the new direct data source in the Name
field. The name you enter is used to display this data source in
the list of data sources in the Import From Database and
Export To Database dialogs. Choose a name that is different
from other entries in the data sources list.

Select the type of database from the drop list of database
choices in the Type field.

Depending on the type you select, specify the username,
password, server and database name using the fields
provided. Some database types do not require a server or
database name, and so those fields may be unavailable.

309

Chapter 9 Importing and Exporting

7.

Click OK to add the source to the data sources list. When you
add a source, it is also selected as the current source to import
from.

You can modify each of these with the appropriate information for
your database configurations. To modify a direct data source:

L.
2.

From the File menu, select Import Data » From Database.

Select the direct data source from the Data Sources list you
want to modify.

If the data source has invalid or incomplete information or
you are using the data source for the first time, the Modify
Data Source dialog appears, as shown in Figure 9.3.

Modify Direct Source x|
Specify the source for thiz direct databaze connection:
M ame: IDirect COracle

Type: I Direct Oracle = l
Username: ltestqa—
Password: I “““““““

Server IDHAELE.TESTDB

D atabase: I

()3 I Cancel | Remove

Figure 9.3: The Modify Direct Source dialog.

4. 1If the Modify Data Source dialog does not appear, it

310

indicates that the information for this data source is valid.
Click the Modify Source button below the list to display the
Modify Data Source dialog.

In the Modify Data Source dialog, specify your user name
and password along with the server name and database name
for the source as appropriate for the database type. See Table
9.7 in the section Spotfire S+ Commands for Importing and
Exporting for help identifying which fields need to be filled
out for a given database type. The fields not required for a
given type are greyed out in the dialog.

Export to
Database

Using Direct Database Drivers

6. You can also change the data source name shown in the
Name field and the database type shown in the Type drop
list. Changing the data source name changes how it is listed in
the Data Sources list in the dialog for both the Import and
Export dialogs. Changing the database type changes which
fields are available and may require you to specify different
information depending on the database type chosen. If you
change the database type, it is a good idea to change the name
to identify it as a different data source in the list.

7. Click the OK button to accept your changes.

You can also remove direct data sources. Be careful using this dialog,
as you can remove the four direct data sources that are provided with
Spotfire S+. If you do, you can add them again following the
procedures above to add a data source. To remove a data source:

1. From the File menu, select Import Data » From Database.

2. Select the direct data source from the Data Sources list you
want to modify.

3. Click the Modify Source button. The Modify Direct Source
dialog appears.

4. Click the Remove button in this dialog to remove the data
source.

You can use the Spotfire S+ Export to Database dialog to export
data frame objects from Spotfire S+ to direct database sources
available on your system. Only those sources that you have installed
database clients for are supported. For more information on installing
database client software, see the Installing and Configuring sections
later in this document.

Spotfire S+ lists all data sources it supports in the Export to
Database dialog. However, only those sources which have database
clients installed on your system work. The others sources report
errors until you install and configure the appropriate database clients.

When you first run Spotfire S+, four direct data sources are listed in
the Export To Database dialog, one for each type supported on
Windows. These are listed as follows:

e Direct DB2
e Direct Oracle

311

Chapter 9 Importing and Exporting

312

* Direct SQL Server
* Direct Sybase

You can modify these data sources to configure them for your
particular database setup, such as setting the correct server, database,
username, password, and other information appropriate for how the
database is setup on your network.

You can also add new direct sources (based on one of the four types
listed above) to the list of data sources. This allows you to have one or
more data sources for the same database type, thus enabling you to
specify different database names or usernames and passwords to
access other sets of tables on the same database server. You can also
remove direct data sources from the data sources list.

To export data to a direct database source:

1. From the File menu, select the Export Data » To
Database.

2. The Export to Database dialog appears (Figure 9.4).

Export to Databasze]
Database | Filter |
From
’7Data frame || j
To
Data Target [<SELECT TARGET> =l

Add Targets... | Modity T arget...

Table Mame I

™ Append to table

QK I Eancell Applyl I<| >| curent Help |

Figure 9.4: The Export to Database dialog.

3. Select a data frame object to export from the Data frame list.
4. Select a direct data source from the Data Target list.

You can customize these or create new direct sources by
clicking the Add Targets button. See below for further
information on creating direct data sources.

Choose one of these or select another one you have created.

6.

Using Direct Database Drivers

If you have not completely configured the source, the Modify
Data Source dialog appears. Fill in all the fields with valid
information for the data source chosen to continue.

Specify the table name you want to export to. Follow the
syntax rules for table names that the target database imposes.
Check your database documentation for more information on
this topic. By default, the table name shown is based on the
name of the data frame name specified in the dialog.

You can append data to the table you specify if it already
exists in the database. To do this, check the Append to table
checkbox.

Note

If you try to append data that does not have columns which match the data types of columns that
already exist in the table, you will receive error messages and the export fails.

7.

Click the OK button to perform the export.

You can add new direct data sources that are based on one of the four
supplied direct database types, and you can add as many data sources
as you wish. To add a direct data source:

L.

From the File menu, select the Export Data P To
Database.

Click the Add Targets button and from the context menu
which appears, choose Add Direct Source, and a new dialog
appears.

Enter the name for the new direct data source in the Name
field. The name you enter is used to display this data source in
the list of data sources in the Import From Database and
Export to Database dialogs. Choose a name that is different
from other entries in the data sources list.

Select the type of database from the drop list of database
choices in the field called Type.

313

Chapter 9 Importing and Exporting

314

5.

Depending on the type you select, specify the username,
password, server and database name using the fields
provided. Some database types do not require server or
database names and so that fields, so those fields may be
unavailable for those types.

Click OK to add the source to the data sources list. When you
add a source it is also selected as the current source to export
to.

You can modify each of these with the appropriate information for
your database configurations. To modify a direct data source:

L.

From the File menu, select the Export Data P To
Database.

Select the direct data source from the Data Target list you
wish to modify.

If the data source has invalid or incomplete information or
you are using the data source for the first time, the Modify
Data Source dialog appears.

If the Modify Data Source dialog does not appear, it means
that the information for this data source is valid. Click the
Modify Target button below the list to display the Modify
Data Source dialog.

In the Modify Data Source dialog, specify your user name

and password along with the server name and database name
for the source as appropriate for the database type. The fields
not required for a given type are unavailable (“grayed out”) in

the dialog.

You can also change the data source name shown in the
Name field and the database type shown in the Type drop-
down list. Changing the data source name changes how it is
listed in the lists in the dialog for both the Import From
Database and Export to Database. Changing which fields
are available may require you to specify different information
depending on the database type chosen. If you change the
database type, it is a good idea to change the name to identify
it as a different data source in the list.

Click the OK button to accept your changes.

How Direct
Data Sources
are Stored

Using Direct Database Drivers

You can also remove direct data sources. Use caution, as you can
remove the four direct data sources that are provided with Spotfire
S+. If you do, you can add them again following the procedures
above to add a data source. To remove a data source:

1. From the File menu, select the Export Data » To
Database.

2. Select the direct data source from the Data Target list you
wish to modify.

3. Click the Modify Target button, and the Modify Direct
Source dialog appears.

4. Click the Remove button in this dialog to remove the data
source.

The entries in the data sources drop lists appearing in the Import
From Database and Export to Database dialogs are actually stored
in a special text file located in the .Prefs subfolder of your project
folder [S_PROJ]\.Prefs. The file is called datasources.ini, and can
be edited with any text editor.

Each line of the file is a comma-delimited specification of the
necessary information for the data source, as in the following
example:

DIRECTDB:Direct DB2,direct-db2,,testdb,testqa,testqa
DIRECTDB:Direct Oracle,direct-oracle,ORACLE.TESTDB, ,testqa,
DIRECTDB:Direct SQL Server,direct-sql,,,,

DIRECTDB:Direct Sybase,direct-sybase,qa.insightgul.com,,,

Each line must begin with the string DIRECTDB: This allows Spotfire
S+ to distinguish the information as pertaining to direct data sources.
Following this string, each field which appears in the dialog is entered
in the following order, with commas separating the fields:

[name], [typel, [server name], [database name], [usernamel],
[password]

where [name] is the data source name that appears in the drop-down
lists in the dialogs. The [type] field must be one of the following
(matching the type field in the importData and exportData
commands):

* direct-db2

* direct-oracle

315

Chapter 9 Importing and Exporting

INSTALLING
AND
CONFIGUR-
ING
DATABASE
CLIENTS ON
UNIX

INSTALLING
AND
CONFIGUR-
ING
DATABASE
CLIENTS ON
WINDOWS

316

e direct-sql
* direct-sybase
The [password] field must be specified as clear text.

Unspecified or blank field values must be separated by commas, as in
the example below where the database name and password fields are
left unspecified:

DIRECTDB:Direct Oracle,direct-oracle,ORACLE.TESTDB, ,testqa,

As an alternative to managing direct database sources in the dialogs,
you can simply edit this file after closing Spotfire S+. Restart Spotfire
S+ so that the changes you made to the data sources in this file are
used in Spotfire S+.

In testing direct driver support on Linux® and UNIX® platforms, we
have found that the database vendors provide fairly complete
installation instructions regarding database clients on supported
platforms.

Please refer to the installation instructions that came with the database
software to install database clients on your system.

In order to use direct database driver support in Spotfire S+ for
Windows, you must install database client software on the same
system where Spotfire S+ is installed. Currently, Spotfire S+ supports
32-bit versions of the following database clients:

» SQL Server 2000
Sybase 12.5

* Oracle 9i
DB2 7.2

SQL Server
2000 Client

Using Direct Database Drivers

The SQL Server 2000 client supports access to a variety of SQL
Server versions, including SQL Server 6.5. The Oracle 9i client
supports access to most previous versions of Oracle, including 8i.

Other versions of the database clients may work but have not been
tested by TIBCO Software Inc..

You can follow the instructions provided by a database vendor to
install a database client. Alternatively, you can follow the steps below
for the appropriate client. These instructions are provided to help get
you started quickly installing and using a particular database client.
For more in-depth information, consult the instructions provided with
the database client software.

1. Insert the Microsoft SQL Server 2000 Enterprise Edition CD
in your CD-ROM drive and run English » Ent »
autorun.exe.

2. In the dialog that appears, select SQL Server 2000
Components from the available setup options.

In the next screen, select to install the Database Server.

4. In the next screen, select local computer, and select a
destination on your system.

5. In the next screen, select Create a new installation of SQL
Server, or Install Client Tools from the available options.

6. In the next screen, choose Client Tools Only from the
available options

7. In the feature installation screen, accept all the selected
features — do not remove any!

8. Once installed, run the Enterprise Manager from the Start
menu using the icon at Programs » Microsoft SQL Server
» Enterprise Manager.

9. Inthe SQL Server Enterprise Manager window, there is a
sub-window called Console Root P Microsoft SQL
Servers. In the left pane of this window, expand the tree view
to Console Root » Microsoft SQL Servers » SQL

Server Group.

10. Right-click this expanded node and select New SQL Server
Registration from the menu.

317

Chapter 9 Importing and Exporting

Sybase Client

11.

12.

13.

14.

In the Select a SQL Server dialog which appears, choose
the name of the server system you installed SQL Server on
from the list on the left, and click the Add button to add it to
the right.

In the dialog Select an Authentication Mode, choose the
radio button for SQL Server Authentication.

Next, specify the appropriate login name and password when

prompted.

Finally, choose to add the SQL server to the existing group
called SQL Server Group.

After you have successfully setup the client following the steps above,
ensure that the paths below are in your PATH environment variable:

[install path]\80\Tools\BINN

where [install path] is the path you chose to install the client tools
in step 4 above.

Insert the Sybase 12.5 Adaptive Enterprise client CD into your CD-
ROM drive. The installation program should automatically start.

Note

If the Sybase installer crashes or locks up during startup in java.exe, then you may need to
disable Java “just-in-time” compiling on your system. See Sybase technical article
www.sybase.com/detail/1,6904,1013241,00.html on the Sybase Web site for more information
about this problem.

318

Carry out the following steps to install a Sybase client on your system:

L.
2.

Choose the Standard install.

Accept the default location or specify another location. Make
sure that the install directory you choose does not contain any
spaces.

Ensure that the following paths are in your PATH environment
value:

[install path]\CFG-1_0\bin;[install path]\OCS-
12_5\d11;[install path]\OCS-12_5\1ib3p;[install
path]\0CS-12_5\bin

Using Direct Database Drivers

where [install path] is the path you chose in step 2 above.

After installation, select Programs P Sybase P> dsedit from the Start
menu to start this utility program. Then do the following steps:

L.

Click OK on the first screen to open the Interfaces Driver
screen.

From the Server Object menu, select Add.

In the Input Server Name box, enter the network internet
protocol name of the server running Sybase, and click OK
(e.g., qaimage.tibco.com).

In the attributes column of the Interfaces Driver dialog,
double-click the server address row.

In the Network Address Attribute window, click the Add
button.

Select TCP as the network connection protocol from the
drop-down list and enter

[server ip name], 2048

in the Edit field. [server ip name] is the internet protocol name of
the server that has Sybase installed, and should be the same as
specified in step 3 above, as in qaimage.tibco.com. 2048 is the port
number it receives on, and you may have to change the port number,
depending on the server. Click OK to accept the changes.

The [server ip name] you specify here is used in Spotfire S+ to
connect to the server and use Sybase.

7.

10.
11.

Click OK to accept the Network Address Attribute
window.

Test the connection to the new server by selecting Ping from
the Server Object menu.

In the Ping dialog, click the Ping button. You should see
another dialog appear, indicating that the connection was
successful.

Close the dsedit utility program.
Test the connection using the Sybase ISQL utility:
* Open a DOS Command window and type the following:

319

Chapter 9 Importing and Exporting

Oracle Client

320

isql ~Utestqa -Ptestqa — S[server ip name]
+ At the isql program prompt, enter the following:

select * from pubs2.dbo.sales

go
After you type go, you should get an output table printed in
the window.

Insert the Oracle 9i Client for Win32 CD in your CD-ROM drive.
The setup starts automatically, and you can follow these steps:

1.

In the Oracle Universal Installer: File Locations dialog,
enter the path to install the Oracle client software on your
system in the Destination path field.

For the type of installation, select Administrator.
Use the default port number of 2030.

After installation, the Oracle Net Configuration Assistant
automatically appears. If it does not automatically appear,
you can manually start it from the Start menu at Programs »
Oracle - OraHome90 » Configuration and Migration
Tools P Net Configuration Assistant.

In the Net Configuration Assistant Wizard, enter the
values specified in the appropriate wizard steps indicated
below:

* Select Perform typical configuration in the Welcome
step. Click Next.

* Select No, I will create net service names myself....
Click Next.

e Select Oracle8i or later database or service. Click
Next.

* Specify an appropriate network service name. It is
suggested that you specify a name that contains the name
of the database and your network domain, as in
testdb.tibco.com for the service name. Click Next.

* Select TCP as the protocol. Click Next.

DB2 Client

Using Direct Database Drivers

* Specify the name of the server which is running Oracle on
your network. Specify only the system name (and not an
IP address), such as qadb-s2k for the host name, and
specify an appropriate port number. You can accept 1521
as the default port or change it, depending on how your
server is configured. Click Next.

* Select Yes, perform a test to test the connection. Click
Next. You should get an unsuccessful connection screen
with a Change Login button on it.

* Click the Change Login button, and specify the
appropriate username and password in the dialog. Click
OK and then Next.

Now, the test connection should report success. Click Next.

Accept or change the network service name shown. This is
the name you specify in Spotfire S+ to access the ORACLE
server. Click Next.

When asked whether you want to configure another net
service name, choose No. Click Next.

After a successful installation, ensure that the following paths are in
your PATH environment value:

[install path]\ora90\bin

where [install path] is the path you chose during setup in step 1

above.

Insert the DB2 Universal Database Enterprise Edition Version 7.2
CD into your CD-ROM drive. The installer should start

automatically.
1. Choose Install from the list of setup options.
2. In the Select Products dialog, choose DB2 Administration
Client.
Select Typical setup type.
4. Select a destination for the installation or accept the default

path.

321

Chapter 9 Importing and Exporting

322

5.

10.
11.

12.

13.

14.

15.

16.

In the Enter Username and Password for Control Center
Server dialog, enter your network login name and password.
Note that you can enter another username and password, but
using your network login and password make it easy to
remember.

You may receive a dialog telling you that you don’t have
privileges to do certain things with DB2 on your system. Click
the OK button in this dialog to continue with the setup.

If you are prompted to restart your system, make sure you do
this. Some services that are installed as part of the DB2
installation need to be installed and mounted.

After your system is restarted or after the end of a successful
setup, the First Steps dialog appears. In this dialog, select
Catalog Sample Databases from the list on the left.

The Client Configuration Assistant is started.
In the Welcome dialog, click the Add Database button.

A “wizard” dialog appears. In the Source page, click the
Search the network radio button, and switch to the
Database name page.

In the Tree view, expand the Other Systems node and wait
until the program has scanned all network systems for DB2
servers. The list it finds appears below this node.

Look for the name of the server that has DB2 installed on it in
this tree. If you don’t see it, check the server, and make sure
DB2 has been properly started. Once it is located, expand the
server name node in the tree to see a list of databases.

Select the database you want to use from the Local
databases node. The name appears in the Target Database
field at the bottom of the dialog. Click Next.

In the Alias page, verify that the alias for this database is
listed as the database name you chose. Click Next.

In the ODBC page, accept the defaults for registering the
database as a system source. Click Finish.

17.

18.

19.
20.

21.

22.

23.
24.
25.

Using Direct Database Drivers

Click the Close button when a confirmation dialog appears.
Do not attempt to test the connection at this time as the
settings are not correct yet. You are then returned to the
Client Configuration Assistant main window.

You can see that the database you selected was added as a
database. Select this database, then click the Properties
button. This opens another dialog called Database
Properties — [database name].

Click the Properties button. This opens another dialog called
Update Connection Wizard - [database name].

Protocol should be set to TCP/IP. Click Next.

Correct the host name by changing it to the IP name of the
database server, such as gadb-snt.tibco.com. Click the
Finish button. You are returned to the Database Properties
- [database name] dialog. Click OK.

In the main Client Configuration Assistant window, select
the database you selected from the list and click the Test
button.

In the Connect to DB2 Database, enter the appropriate
username and password in the fields and leave other default
settings. Click the OK button. You should receive a
“connection successful” dialog.

Close the Client Configuration Assistant.
Close the First Steps dialog.

Ensure that the path [install pathJ\BIN is in your PATH
environment value. [install path] is the path you selected
in step 4 above.

323

Chapter 9 Importing and Exporting

EXPORTING DATA

Using the
exportData
Function

You use the exportData function to export Spotfire S+ data objects to
formats for applications other than Spotfire S+. (To export data for
use by Spotfire S+, use the data.dump function—see page 325.) You
can invoke exportData from either the Spotfire S+ prompt or the File
» Export Data menu option.

When exporting to most file types with exportData, you typically
need to specify only the data set, file name, and (depending on the file
name you specified) the file type, and the data is exported into a new
data file using default settings. For greater control, you can specify
your own settings by using additional arguments to exportData.
Table 9.8 lists the arguments to the exportData function.

Table 9.8: Arguments to exportData.

Required or

Argument Optional Description

data Required The data frame or matrix to be exported.

file Required A character string specifying the name of the export
file to create.

type Optional A character string specifying the file type of the
export file. See the “Type” column of Table 9.1 for a
list of possible values.

keep Optional A character vector of variable names, or a numeric
vector of column numbers, specifying which
variables are to be exported. Only one of keep or
drop may be specified.

drop Optional A character vector of variable names, or a numeric
vector of column numbers, specifying which
variables are not to be exported. Only one of keep
or drop may be specified.

324

Exporting Data

Table 9.8: Arguments to exportData. (Continued)

Required or
Argument Optional Description

filter Optional A character string containing a logical expression
for selecting the rows to be exported. For details, see
Filter Expressions on page 289.

format Optional A single character string specifying the format for
each field when exporting to a formatted ASCII
(FASCII) text file. For details, see Notes on
Importing Files of Certain Types on page 291.

delimiter Optional A character string specifying the delimiter to use.
The default is a blank space (" "). This argument is
used only when exporting to ASCII text files.

colNames Optional A logical flag. If TRUE, column names are also
exported.

rowNames Optional A logical flag. If TRUE, row names are also exported.

quote Optional A logical flag. If TRUE, quotes are placed around

character strings. The default is TRUE.

odbcConnection Required if An encrypted character string containing the
type="0DBC" ODBC connection string.
odbcTable Required if The name of the ODBC table to be created.
type="0DBC"
time.out.format Optional A character string specifying the format to use when
exporting date/time data to ASCII or FASCII text
files.

325

Chapter 9 Importing and Exporting

Other Data
Export
Functions

The data.dump
Function

In addition to the exportData function, Spotfire S+ provides several
other functions for exporting data, discussed below.

When you want to share your data with another Spotfire S+ user, you
can export your data to a Spotfire S+ file format by using the
data.dump function:

> data.dump("matz")

By default, the data object matz is exported to the file dumpdata in
your Spotfire S+ start-up folder (Windows) or directory (UNIX). You
can specify a different output file with the connection argument to
data.dump:

> data.dump("matz", connection="matz.dmp")

Hint

The connection argument needn’t specify a file; it can specify any valid Spotfire S+ connection

object.
If the data object you want to share is not in your working data, you
must specify the object’s location in the search path with the where
argument:
> data.dump("halibut", where="data")
The cat and The inverse operation to the scan function is provided by the cat and

write Functions

326

write functions. The result of either cat or write is just an ASCII file
with data in it; there is no Spotfire S+ structure written to the file. Of
the two commands, write has an argument for specifying the number
of columns and thus is more useful for retaining the format of a
matrix.

The cat function is a general-purpose writing tool in Spotfire S+, used
for writing to the screen as well as writing to files. It can be useful in
creating free-format data files for use with other software, particularly
when used with the format function:

> cat(format(runif(100)), fill=T)
0.261401257 0.556708986 0.184055283 0.760029093

Exporting Data

The argument i11=T limits line length in the output file to the width
specified in your options object. To use cat to write to a file, simply
specify a file name with the file argument:

> x <- 1:1000
> cat(x,file="mydata",fil1=T)

Note

The files written by cat and write do not contain Spotfire S+ structure information. To read
them back into Spotfire S+, you must reconstruct this information.

The write.table
Function

By default, write writes matrices column by column, five values per
line. If you want the matrix represented in the ASCII file in the same
form it is represented in Spotfire S+, first transform the matrix with
the t function and specify the number of columns in your original
matrix:

> mat
(.11 [.,21 [,31 [.4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3.,] 3 6 9 12
> write(t(mat), "mat", ncol=4)

You can view the resulting file with a text editor or UNIX pager; it
contains the following three lines:

14710
25811
36912

The inverse operation to read.table is provided by write.table.

The write.table function can be used to export a data frame into an
ASCII text file:

> write.table(fuel.frame, "fuel.txt")

327

Chapter 9 Importing and Exporting

EXPORTING GRAPHS

The export.graph function is only available on Windows, and is used
to export a graph named Name to the file FileName using the file
format specified by ExportType. Table 9.9 lists the arguments to the
export.graph function.

Table 9.9: Arguments to export.graph.

Required or

Argument Optional Description

FileName Required A character string specifying the name of the file to
be created. If a file by this name already exists, it is
overwritten.

Name Optional A character string specifying the object path name

for a graphsheet. The default uses the graphsheet
that is currently active. If no graphsheet is active,
then Name is required.

ExportType Optional A character string specifying the file type of the
exported graph. For a complete discussion of this
argument, see page 328.

Qfactor Optional An integer value that determines the degree of loss
in the compression process. For a complete
discussion of this argument, see page 330.

ColorBits Optional An integer value that specifies the color bits value
used when saving an image. For a complete
discussion of this argument, see page 330.

Height Optional A numeric value that specifies the height of the
output image. This argument accepts any floating
point value. The default of -1 causes the graph page
height to be used.

328

Exporting Graphs

Table 9.9: Arguments to export.graph. (Continued)

Required or

Argument Optional Description

Width Optional A numeric value that specifies the width of the
output image. This argument accepts any floating
point value. The default of -1 causes the graph page
width to be used.

Units Optional A character string that specifies the units of the

Height and Width arguments. Recognized values are
"inch" and "cm"; any other input is interpreted as
"inch", the default value.

Specifying the
ExportType
Argument

Some of the most common values for the ExportType argument
include "BMP", "WMF", "EPS", "EPS TIFF", "TIF", "GIF", "JPG", "PNG",
"IMG", "EXIF", "PCT", "TGA", and "WPG". If this argument is not
specified, the file type is inferred from the extension used in the

FileName argument.

Table 9.10 describes the map between file extensions and file types. If
FileName does not include an extension from Table 9.10, one is
added based on the value of this argument. To export a graph to a file
that does not have an extension, specify the appropriate ExportType
format and end the FileName character string with a period.

Table 9.10: Map between file extensions and file types for the ExportType argument.

Extension ExportType Setting | File Format

.bmp BMP Windows Bitmap, with no compression
.cal CAL CALS Raster file

.cmp cMp LEAD Compression Format

.emf EMF Windows Enhanced MetaFile

.eps EPS Encapsulated PostScript

329

Chapter 9 Importing and Exporting

Table 9.10: Map between file extensions and file types for the ExportType argument. (Continued)

Extension ExportType Setting | File Format

fax FAX Raw FAX, compressed using CCITT group 3, 1
dimension

.gif GIF CompuServe GIF (requires that LZW compression be
enabled)

dca ICA IOCA, compressed using CCITT group 3, 1
dimension

img IMG GEM Image

Jjpg JPG JPEG File Interchange Format with YUV 4:4:4 color
space

.mac MAC MacPaint

.msp MSP Microsoft Paint

-pct PCT MacPic

pcx PCX ZSoft PCX

.png PNG Portable Network Graphics

psd PSD Adobe Photoshop 3.0

ras RAS Sun Raster file

tga TGA TrueVision TARGA

tif TIF Tagged Image File Format, with no compression and
with RGB color space

wix WFX Winfax, compressed using CCITT group 3, 1
dimension

330

Exporting Graphs

Table 9.10: Map between file extensions and file types for the ExportType argument. (Continued)

Extension ExportType Setting | File Format
wmf WMF Windows MetaFile
wpg WPG Word Perfect
Specifying the The aFactor argument is a number that determines the degree of loss
QFactor in the compression process when saving an image file to the following
A t ExportType formats: "CMP", "JPG", "JPG YUV4", "JPG YUV2", "JPG
rgumen YUV1", "TIF JPG"™, "TIF JPG YUV4","TIF JPG YUV2","TIF JPG YUV1",
and "EXIF JPG". The valid range is from 2 to 255, with 2 resulting in
perfect quality and 255 resulting in maximum compression. The
default value is 2.
Note

The effect of this argument is identical to the “quality” parameter (0-100%) used in most
applications that view and convert JPEG graphics.

Specifying the
ColorBits
Argument

Valid options for each format are listed in Table 9.11. The default is
to use the maximum value supported by the requested format. This
argument is ignored for the following ExportType formats: "EMF",
"EPS"™, "EPS TIFF", "EPS WMF", and "WMF".

Table 9.11: Valid options for the ColorBits argument.

ExportType Setting Format Description ColorBits Setting
JPEG and LEAD Compressed
"CMP" LEAD Compression Format 8, 24
"JPG" or "JPG YUV4" JPEG File Interchange Format with YUV 8, 24
4:4:4 color space
"JPG YUV2" JPEG File Interchange Format with YUV 8, 24
4:2:2 color space
" " JPEG File Interchange Format with YUV
JPG YUVL 4:1:1 color space 8, 24

331

Chapter 9 Importing and Exporting

Table 9.11: Valid options for the ColorBits argument. (Continued)

ExportType Setting Format Description ColorBits Setting

Compressed TIFF

"TIF JPG" or "TIF JPG YUV4" Tagged Image File with JPEG compression 8, 24
and YUV 4:4:4 color space

"TIF JPG YUV2" Tagged Image File with JPEG compression 8, 24
and YUV 4:2:2 color space

“TIF JPG YUVI" Tagged Image File with JPEG compression 8. 24

and YUV 4:1:1 color space
Tagged Image File with PackBits

"TIF PACK" compression and RGB color space 1,2,3,4,5,6,7,8,
Tagged Image File with PackBits 16, 24, 32
"TIF PACK CMYK" compression and CMYK color space 24, 32
Tagged Image File with PackBits
"TIF PACK YCC" compression and YCbCr color space 24
TIFF, compressed using CCITT
"CCITT" TIFF, compressed using CCITT, group 3, 1
dimension

"CCITT G3 1D"
TIFF, compressed using CCITT, group 3, 2
dimensions

"CCITT @3 20" TIFF, compressed using CCITT, group 4

"CCITT G4"

TIFF Without Compression

"TIF" Tagged Image File Format, with no 1, 2, 3, 4,5,6, 7,8,
compression and with RGB color space 16, 24, 32

"TIF CMYK" Tagged Image File Format, with no 24, 32
compression and with CMYK color space

“TIF YCC" Tagged Image File Format, with no 24

compression and with YCbCr color space

BMP Formats

"BMP Windows BMP, with no compression 1, 4, 8, 16, 24, 32

"BMP RLE" Windows BMP, with RLE compression 4, 8

"os2" 0S/2 BMP version 1.x 1, 4, 8, 24

"0s2 2" 0S/2 BMP version 2.x 1, 4, 8, 24

Exif Formats

"EXIF" Exif file containing a TIFF image, no 24
compression with RGB color space

"EXIF YCC" Exif file containing a TIFF image, no 24
compression with YCbCr color space

"EXTF JPG" Exif file containing a JPEG compressed 24
image

. N Exif 2.0 file containing a JPEG

EXIF 411 compressed image 24

332

Table 9.11: Valid options for the ColorBits argument. (Continued)

Exporting Graphs

ExportType Setting

Format Description

ColorBits Setting

Other Color Formats
"PCX"
"WMF"
"EMF"
"PSD"
"PNG"
"TGA"
"EPS"

"EPS TIFF"
"EPS WMF"
"RAS"
"WPG"
"PCT"

ZSoft PCX

Windows MetaFile

Windows Enhanced MetaFile

Adobe Photoshop 3.0

Portable Network Graphics

TrueVision TARGA

Encapsulated PostScript

Encapsulated PostScript with TIFF header
Encapsulated PostScript with WMF header
Sun Raster

Word Perfect (raster only)

MacPict

1, 4, 8, 24
24

24

1, 8, 24

1, 4, 8, 24
8, 16, 24, 32
24

24

24

1, 4, 8, 24, 32
1, 4, 8

1, 4, 8, 24

Formats requiring LZW
compression to be enabled

"TIF LZW"

"TIF LZW CMYK"

"TIF LZW YCC"

"GIF"

Tagged Image File Format with LZW
compression and RGB color space

Tagged Image File Format with LZW
compression and RGB color space

Tagged Image File Format with LZW
compression and RGB color space

CompuServe GIF

1,2,3,4,5,6,7,38,
16, 24, 32

24, 32

24

1, 2,3,4,5,6,7,8

1-Bit FAX Formats
"FAX" or "FAX G3 1D"

"FAX G3 2D"

"FAX 64"
"WFX" or "WFX G3"

"WFX G4"
"ICA"™ or "ICA G3 1D"

"ICA G3 2D"

"ICA G4"

"ICA RAW"™ or "ICA RAW G3 1D"

"ICA RAW G3 2D"

"ICA RAW G4"

"CAL"

Raw FAX, compressed using CCITT group 3,
1 dimension

Raw FAX, compressed using CCITT group 3,
2 dimensions

Raw FAX, compressed using CCITT group 4

Winfax, compressed using CCITT group 3,
1 dimension

Winfax, compressed using CCITT group 4

I0CA, compressed using CCITT group 3, 1
dimension

I0CA, compressed using CCITT group 3, 2
dimensions

I0CA, compressed using CCITT group 4

I0CA, compressed using CCITT group 3, 1
dimension, without the MO:DCA wrapper

I0CA, compressed using CCITT group 3, 2
dimensions, without the MO:DCA wrapper

I0CA, compressed using CCITT group 4,
without the MO:DCA wrapper

CALS Raster file

333

Chapter 9 Importing and Exporting

Table 9.11: Valid options for the ColorBits argument. (Continued)

ExportType Setting

Format Description

ColorBits Setting

Other 1-Bit Formats
"MAC"
"MSP"
"IMG"

MacPaint
Microsoft Paint
GEM Image

334

Creating HTML Output

CREATING HTML OUTPUT

Tables

Spotfire S+ provides a variety of tools for generating HTML output.
In this section, we discuss how to generate HTML tables, save
preformatted text output, and save graphs with HTML references.

The htm1.table function may be used to generate a vector of
character strings representing a vector, matrix, or data frame as an
HTML table. The vector contains one string for each line of HTML.
This may be written to a file by specifying the fi1e argument or may
be manipulated and later written to a file using the write function.

For example, we can create a file catalyst.htm containing the
catalyst data frame using:

> html.table(catalyst, file="catalyst.htm")

In addition to accepting a vector, matrix, or data frame, the
html.table function will accept a simple list with such structures as
components of the list. It will then produce a sequence of tables with
the list component names encoded as table captions. For example:

> my.results<-Tist("Regression Coefficients" =
+ coef(Im(Mileage~Weight, fuel.frame)),
+ "Correlations"=cor(fuel.frame[,1:31))
> html.table(my.results, file="my.htm")

The htm1.table function accepts any of the arguments to format,
allowing specification of formatting details such as the number of
digits displayed. In addition, append controls whether output is
appended to the specified file or the file is overwritten. The append
argument is also available in the write function, which is useful for
interspersing htm1.table output and descriptive text:

> write("<H3> Spotfire S+ Code for the above </H3>
Continue string: <P> Put code here </P>",
+ file="my.htm", append=T)

Additional arguments to htm1.table are described in the function’s

help file.

335

Chapter 9 Importing and Exporting

Text

336

Note that htm1.table is designed to work with the previously
mentioned data structures. For other structures such as functions,
calls, and objects with specific print methods, the results of
html.table may not be satisfactory. Instead, the object may be
printed as preformatted text and embedded in the HTML page.

The sink function may be used to direct Spotfire S+ text output to an
HTML file. The preformatted output may be interspersed with the
HTML markup tag <PRE> to denote that it is preformatted output.
Additional textual description and HTML markup tags may be
interspersed with the Spotfire S+ output using cat.

sink("my.htm")

cat("<H3> Linear Model Results </H3> \n")
cat("<PRE>™)

summary(Im(Mileage~Weight, fuel.frame))
cat("</PRE>")

> sink()

VvV VvV VvV VvV

The paste and deparse functions are useful for constructing strings to
display with cat. See their help files for details.

USING DIRECT DATABASE
DRIVERS

Overview 338

Spotfire S+ Commands for Importing and Exporting 339

Dialogs for Importing and Exporting 342
Import From Database 342
Export to Database 346
How Direct Data Sources are Stored 351

Install and Configure Database Clients (UNIX) 352

Install and ConfigurE Database Clients (Windows) 353
SQL Server 2000 Client 353
Sybase Client 355
Oracle Client 356
DB2 Client 358

337

Chapter 10 Using Direct Database Drivers

OVERVIEW

338

Spotfire S+ now includes access to the following databases via direct
database drivers:
®

(

* Microsoft SQL Server Windows® only)

- 1BM DB2® (Windows, Solaris® 32, Linux®, Compaq
Tru64®, HP®, ATX®)

. Sybase® (Windows, Solaris 32, HP, AIX)

« Oracle”® (Windows, Solaris 32, Linux, HP, AIX)

This functionality is in addition to ODBC access on Windows, and it
replaces the RogueWave database interface on Solaris and other

UN IX® platforms in previous versions of Spotfire S+.

You can use the importData and exportData commands to access the
above databases using the new direct drivers.

Exporting to databases now allows existing tables to be either
replaced or appended to.

In addition, in Spotfire S+ for Windows, you can use the Import
From Database and Export to Database dialogs to access these
databases as data sources, just like accessing ODBC data sources. The
previous versions of Spotfire S+ had menu items such as Import
Data » From ODBC Connection and Export Data » To ODBC
Connection, and these have been replaced with Import From
Database and Export to Database, respectively. The dialogs
presented now allow you to select either ODBC or direct database
sources from the same list.

Direct database access is accomplished by using driver components
which must be separately installed on the system that is running
Spotfire S+. These driver components are provided by the database
vendor and usually consist of components that can be called directly
by Spotfire S+ to send and receive database information in the native
format that the database supports. In many cases, direct database
drivers provide faster connectivity and data transfer than ODBC

because there are fewer layers of data translation and interpretation of
the request than with ODBC.

Spotfire S+ Commands for Importing and Exporting

SPOTFIRE S+ COMMANDS FOR IMPORTING AND
EXPORTING

Before you can use the importData or exportData commands to
access database via the direct drivers, you must install database client
software on your system. Please refer to the sections below on
installing database clients for your system type.

There are four new database type keywords that can be used in the
type parameter of the importData or exportData commands:

* DIRECT-DB2
* DIRECT-ORACLE

DIRECT-SQL
DIRECT-SYBASE

As an example, consider the following Spotfire S+ commands to send
data to a Sybase database:

mydata <- data.frame(COLl=c(1.2,1.3,1.51,2.1,3.9),
COL2=c("a", "b", "c", "d", "e™),
COL3=timeDate(c(™"1/1/2003", "2/1/2003",
"3/15/2005", "10/24/2003", "11/11/2004"),
format="%02m/%02d/%Y %02H:%02M:%02S.%03N"))

exportData(mydata, type="DIRECT-SYBASE",
user="testqa", password="testqga",
server="qgaimage.tibco.com", database="testdb",
table="testDirectSybase", appendToTable=F)

In this example, the data frame mydata is exported to the table
testDirectSybase into the database testdb on the server
gaimage.tibco.com. The database client software validates the user
and password parameter values prior to exporting the data, and if
they are incorrect, an error is reported in Spotfire S+. The server
name you specify here should be the one you specified during
installation of the Sybase client software. See Step 6 in the Windows
Sybase client installation instructions below for further information on
this.

339

Chapter 10 Using Direct Database Drivers

Notice that the string DIRECT-SYBASE was used in the type parameter
of the exportData command to specify connection to a Sybase
database. Also note that the user name, password, server name,
database and table name are specified. For each of the four databases
supported by direct drivers in Spotfire S+, slightly different
combinations of these parameters must be specified. See the table
below for a list of the differences.

Table 10.1: Zable of parameters required for various direct database types in importData and exportData.

Required parameters for

Database type importData and exportData Comments
DIRECT-DB2 user, password, database, Server parameter should
table not be specified for DB2.
DIRECT-ORACLE user, password, server, table Database parameter
should not be specified
for Oracle.

Server parameter should
be the network service
name you specified when
installing the Oracle
client software. See Step
5. in the section Oracle

Client.
DIRECT-SQL user, password, server, Server parameter should
database, table be the server name you
specified in the SQL

Server Enterprise
Manager program. See
Step 11. in the section
SQL Server 2000 Client.

DIRECT-SYBASE user, password, server, Server parameter should
database, table be the server name you
specified in the Sybase
installation. See Step 6. in
the section Sybase Client.

340

Spotfire S+ Commands for Importing and Exporting

Notice the existence of the appendToTable parameter, which controls
whether or not to append the data you are exporting to the specified
table. If this parameter is false, the data overwrites the table specified;
if true, the data is appended.

An error occurs if the data types of the data you are sending and those
already present in the table do not match. For example, if you export
strings to a table that currently has columns of numeric values, you
receive an error and the export fails.

Here is an example of using the importData command to read data
into Spotfire S+ from an Oracle database table via the direct drivers:

mynewdata <- importData(type="direct-oracle",
user="testqa", password="testqga",
server="0RACLE.TESTDB",
table="testDirectOracle™)

In this example, the table testDirectOracle is used. Since no specific
SQL query is specified (normally specified with the sq1Query
parameter), all data from the table is imported. The database client
software validates the user and password parameter values prior to
importing the data and if they are incorrect, an error is reported in
Spotfire S+. The server name you specify here should be the one you
specified as the network service name during installation of the
Oracle client software. See Step 5. in the section Oracle Client
installation instructions below for further information on this.

For more information on using the importData and exportData
commands as well as additional information on using the sq1Query
parameter in importData, please see the online help.

341

Chapter 10 Using Direct Database Drivers

DIALOGS FOR IMPORTING AND EXPORTING

Import From
Database

342

In Spotfire S+ for Windows, you can use the Import From Database
and Export to Database dialogs to access databases as data sources,
just like accessing ODBC data sources. The previous versions of
Spotfire S+ had menu items such as Import Data » From ODBC
Connection and Export Data » To ODBC Connection, and these
have been replaced with Import From Database and Export to
Database, respectively. The dialogs presented now allow you to
select either ODBC or direct database sources from the same list.

You can use the Spotfire S+ Import From Database dialog to import
table data from direct database sources available on your system.
Only those sources for which you have installed database clients are
supported. For more information on installing database client
software, see the section Install and Configure Database Clients
(UNIX) and the section Install and ConfigurE Database Clients
(Windows) later in this document.

Spotfire S+ lists all data sources it supports in the Import From
Database dialog. However, only those sources which have database
clients installed on your system work. The others report errors until
you install and configure the appropriate database clients.

When you first run Spotfire S+, four direct data sources are listed in
the Import From Database dialog, one for each type supported on
Windows:

* Direct DB2

* Direct Oracle

* Direct SQL Server
* Direct Sybase

You can modify these data sources to configure them for your
particular database setup, such as setting the correct server, database,
username, password, and other information appropriate for how the
database is set up on your network.

Dialogs for Importing and Exporting

You can also add new direct sources (based on one of the four types
listed above) to the list of data sources. This allows you to have one or
more data sources for the same database type, thus enabling you to
specify different database names or usernames and passwords to
access other sets of tables on the same database server.

You can also remove direct data sources from the Data Source list.
To import data from a direct database source:
1. From the File menu, select Import Data » From Database.
2. The Import From Database dialog appears, as shown in

Figure 10.1.
Import From Database = E
Database | Filter |

- From

Data Source

Add Sources... | Modify Source... |

Table Mame I j

SOL Query ;I
[

~To

D ata frame ISDF‘I j

Start col |<EMD> =l

& Inzert at start col

= Owenarite target

U pdate Freyiew |
Preview Rows: |1 0

K —— _'ILI
QK I Eancell Applyl I<| >| curent Help |

Figure 10.1: The Import From Database dialog.

3. Select a direct data source from the Data Source list.

You can customize these or create new direct sources by
clicking the Add Sources button. See below for further
information on creating direct data sources.

343

Chapter 10 Using Direct Database Drivers

6.

Choose one of these or select another one you have created.

If you have not completely configured the source, the Modify
Data Source dialog appears. Fill in all the fields with valid
information for the data source chosen to continue.

Once a direct data source has been selected, the Tables list
changes to contain all the tables in that source. Select a table
from the list.

Specify any other options, including a valid SQL query in the
SQL Query field. If you leave the SQL Query field blank, a
default query of all columns and rows from the selected table
is performed.

Click the OK button to start the import.

You can add new direct data sources that are based on one of the four
supplied direct database types. You can add as many data sources as
you wish. To add a direct data source, do the following:

L.
2.

From the File menu, select Import Data » From Database.

Click the Add Sources button, and from the context menu,
select Add Direct Source.

The Add Direct Source dialog appears (Figure 10.2).

Add Direct Source x|

Specify the source for thiz direct databaze connection:

M ame: I

Type: I Direct Oracle = l
Uszername: I
Password: I

Server I

D atabase: I

()3 I Cancel | Hemove

Figure 10.2: The Add Direct Source dialog.

344

Dialogs for Importing and Exporting

Enter the name for the new direct data source in the Name
field. The name you enter is used to display this data source in
the list of data sources in the Import From Database and
Export To Database dialogs. Choose a name that is different
from other entries in the data sources list.

Select the type of database from the drop list of database
choices in the Type field.

Depending on the type you select, specify the username,
password, server and database name using the fields
provided. Some database types do not require a server or
database name, and so those fields may be unavailable.

Click OK to add the source to the data sources list. When you
add a source, it is also selected as the current source to import
from.

You can modify each of these with the appropriate information for
your database configurations. To modify a direct data source:

L.
2.

From the File menu, select Import Data » From Database.

Select the direct data source from the Data Sources list you
want to modify.

If the data source has invalid or incomplete information or
you are using the data source for the first time, the Modify
Data Source dialog appears, as shown in Figure 10.3.

Modify Direct Source x|
Specify the source for thiz direct databaze connection:
M ame: IDirect COracle

Type: I Direct Oracle = l
Username: ltestqa—
Password: I “““““““

Server IDHAELE.TESTDB

D atabase: I

()3 I Cancel | Remove

Figure 10.3: The Modify Direct Source dialog.

345

Chapter 10 Using Direct Database Drivers

4. 1If the Modify Data Source dialog does not appear, it
indicates that the information for this data source is valid.
Click the Modify Source button below the list to display the
Modify Data Source dialog.

5. In the Modify Data Source dialog, specify your user name
and password along with the server name and database name
for the source as appropriate for the database type. See Table
10.1 in the section Spotfire S+ Commands for Importing and
Exporting for help identifying which fields need to be filled
out for a given database type. The fields not required for a
given type are greyed out in the dialog.

6. You can also change the data source name shown in the
Name field and the database type shown in the Type drop
list. Changing the data source name changes how it is listed in
the Data Sources list in the dialog for both the Import and
Export dialogs. Changing the database type changes which
fields are available and may require you to specify different
information depending on the database type chosen. If you
change the database type, it is a good idea to change the name
to identify it as a different data source in the list.

7. Click the OK button to accept your changes.

You can also remove direct data sources. Be careful using this dialog,
as you can remove the four direct data sources that are provided with
Spotfire S+. If you do, you can add them again following the
procedures above to add a data source. To remove a data source:

1. From the File menu, select Import Data » From Database.

2. Select the direct data source from the Data Sources list you
want to modify.

3. Click the Modify Source button. The Modify Direct Source

dialog appears.
4. Click the Remove button in this dialog to remove the data
source.
Export to You can use the Spotfire S+ Export to Database dialog to export
Database data frame objects from Spotfire S+ to direct database sources

available on your system. Only those sources that you have installed

346

Dialogs for Importing and Exporting

database clients for are supported. For more information on installing
database client software, see the Installing and Configuring sections
later in this document.

Spotfire S+ lists all data sources it supports in the Export to
Database dialog. However, only those sources which have database
clients installed on your system work. The others sources report
errors until you install and configure the appropriate database clients.

When you first run Spotfire S+, four direct data sources are listed in
the Export To Database dialog, one for each type supported on
Windows. These are listed as follows:

* Direct DB2

* Direct Oracle

* Direct SQL Server
* Direct Sybase

You can modify these data sources to configure them for your
particular database setup, such as setting the correct server, database,
username, password, and other information appropriate for how the
database is setup on your network.

You can also add new direct sources (based on one of the four types
listed above) to the list of data sources. This allows you to have one or
more data sources for the same database type, thus enabling you to
specify different database names or usernames and passwords to
access other sets of tables on the same database server. You can also
remove direct data sources from the data sources list.

To export data to a direct database source:

1. From the File menu, select the Export Data » To Database.

347

Chapter 10 Using Direct Database Drivers

2. The Export to Database dialog appears (Figure 10.4).

Export to Databasze = E
Database | Filter |
From
’7Data frame || j
To
Data Target [<SELECT TARGET> =l

Add Targets... | Modity T arget...

Table Mame I

™ Append to table

QK I Eancell Applyl I<| >| curent Help |

Figure 10.4: The Export to Database dialog.

3. Select a data frame object to export from the Data frame list.
4. Select a direct data source from the Data Target list.

You can customize these or create new direct sources by
clicking the Add Targets button. See below for further
information on creating direct data sources.

Choose one of these or select another one you have created.

If you have not completely configured the source, the Modify
Data Source dialog appears. Fill in all the fields with valid
information for the data source chosen to continue.

5. Specify the table name you want to export to. Follow the
syntax rules for table names that the target database imposes.
Check your database documentation for more information on
this topic. By default, the table name shown is based on the
name of the data frame name specified in the dialog.

6.

Dialogs for Importing and Exporting

You can append data to the table you specify if it already
exists in the database. To do this, check the Append to table
checkbox.

Note

If you try to append data that does not have columns which match the data types of columns that
already exist in the table, you will receive error messages and the export fails.

7.

Click the OK button to perform the export.

You can add new direct data sources that are based on one of the four
supplied direct database types, and you can add as many data sources
as you wish. To add a direct data source:

L.
2.

From the File menu, select the Export Data » To Database.

Click the Add Targets button and from the context menu
which appears, choose Add Direct Source, and a new dialog
appears.

Enter the name for the new direct data source in the Name
field. The name you enter is used to display this data source in
the list of data sources in the Import From Database and
Export to Database dialogs. Choose a name that is different
from other entries in the data sources list.

Select the type of database from the drop list of database
choices in the field called Type.

Depending on the type you select, specify the username,
password, server and database name using the fields
provided. Some database types do not require server or
database names and so that fields, so those fields may be
unavailable for those types.

Click OK to add the source to the data sources list. When you
add a source it is also selected as the current source to export
to.

You can modify each of these with the appropriate information for
your database configurations. To modify a direct data source:

1.

From the File menu, select the Export Data » To Database.

349

Chapter 10 Using Direct Database Drivers

350

2.

7.

Select the direct data source from the Data Target list you
wish to modify.

If the data source has invalid or incomplete information or
you are using the data source for the first time, the Modify
Data Source dialog appears.

If the Modify Data Source dialog does not appear, it means
that the information for this data source is valid. Click the
Modify Target button below the list to display the Modify
Data Source dialog.

In the Modify Data Source dialog, specify your user name

and password along with the server name and database name
for the source as appropriate for the database type. The fields
not required for a given type are unavailable (“grayed out”) in

the dialog.

You can also change the data source name shown in the
Name field and the database type shown in the Type drop-
down list. Changing the data source name changes how it is
listed in the lists in the dialog for both the Import From
Database and Export to Database. Changing which fields
are available may require you to specify different information
depending on the database type chosen. If you change the
database type, it is a good idea to change the name to identify
it as a different data source in the list.

Click the OK button to accept your changes.

You can also remove direct data sources. Use caution, as you can
remove the four direct data sources that are provided with Spotfire
S+. If you do, you can add them again following the procedures
above to add a data source. To remove a data source:

L.
2.

From the File menu, select the Export Data » To Database.

Select the direct data source from the Data Target list you
wish to modify.

Click the Modify Target button, and the Modify Direct
Source dialog appears.

Click the Remove button in this dialog to remove the data
source.

How Direct
Data Sources
are Stored

Dialogs for Importing and Exporting

The entries in the data sources drop lists appearing in the Import
From Database and Export to Database dialogs are actually stored
in a special text file located in the .Prefs subfolder of your project
folder [S_PROJ|\.Prefs. The file is called datasources.ini, and can
be edited with any text editor.

Each line of the file is a comma-delimited specification of the
necessary information for the data source, as in the following
example:

DIRECTDB:Direct DB2,direct-db2,,testdb,testqa,testqa
DIRECTDB:Direct Oracle,direct-oracle,ORACLE.TESTDB, ,testqa,
DIRECTDB:Direct SQL Server,direct-sql,,,,

DIRECTDB:Direct Sybase,direct-sybase,qa.insightgul.com,,,

Each line must begin with the string DIRECTDB: This allows Spotfire
S+ to distinguish the information as pertaining to direct data sources.
Following this string, each field which appears in the dialog is entered
in the following order, with commas separating the fields:

[name], [typel, [server name], [database name], [usernamel],
[password]

where [name] is the data source name that appears in the drop-down
lists in the dialogs. The [type] field must be one of the following
(matching the type field in the importData and exportData
commands):

* direct-db2
* direct-oracle
* direct-sql
* direct-sybase
The [password] field must be specified as clear text.

Unspecified or blank field values must be separated by commas, as in
the example below where the database name and password fields are
left unspecified:

DIRECTDB:Direct Oracle,direct-oracle,ORACLE.TESTDB, ,testqa,

As an alternative to managing direct database sources in the dialogs,
you can simply edit this file after closing Spotfire S+. Restart Spotfire
S+ so that the changes you made to the data sources in this file are
used in Spotfire S+.

351

Chapter 10 Using Direct Database Drivers

INSTALL AND CONFIGURE DATABASE CLIENTS (UNIX)

352

In testing direct driver support on Linux® and UNIX® platforms, we
have found that the database vendors provide fairly complete
installation instructions regarding database clients on supported
platforms.

Please refer to the installation instructions that came with the database
software to install database clients on your system.

Install and ConfigurE Database Clients (Windows)

INSTALL AND CONFIGURE DATABASE CLIENTS

(WINDOWS)

SQL Server
2000 Client

In order to use direct database driver support in Spotfire S+ for
Windows, you must install database client software on the same
system where Spotfire S+ is installed. Currently, Spotfire S+ supports
32-bit versions of the following database clients:

* SQL Server 2000
* Sybase 12.5

* Oracle 9i

« DB272

The SQL Server 2000 client supports access to a variety of SQL
Server versions, including SQL Server 6.5. The Oracle 9i client
supports access to most previous versions of Oracle, including 8i.

Other versions of the database clients may work but have not been
tested by TIBCO Software Inc..

You can follow the instructions provided by a database vendor to
install a database client. Alternatively, you can follow the steps below
for the appropriate client. These instructions are provided to help get
you started quickly installing and using a particular database client.
For more in-depth information, consult the instructions provided with
the database client software.

1. Insert the Microsoft SQL Server 2000 Enterprise Edition CD
in your CD-ROM drive and run English » Ent »
autorun.exe.

2. In the dialog that appears, select SQL Server 2000
Components from the available setup options.

3. In the next screen, select to install the Database Server.

4. In the next screen, select local computer, and select a
destination on your system.

5. In the next screen, select Create a new installation of SQL
Server, or Install Client Tools from the available options.

353

Chapter 10 Using Direct Database Drivers

354

6.

10.

11.

12.

13.

14.

In the next screen, choose Client Tools Only from the
available options

In the feature installation screen, accept all the selected
features — do not remove any!

Once installed, run the Enterprise Manager from the Start
menu using the icon at Programs » Microsoft SQL Server
» Enterprise Manager.

In the SQL Server Enterprise Manager window, there is a
sub-window called Console Root » Microsoft SQL
Servers. In the left pane of this window, expand the tree view
to Console Root » Microsoft SQL Servers » SQL Server
Group.

Right-click this expanded node and select New SQL Server
Registration from the menu.

In the Select a SQL Server dialog which appears, choose
the name of the server system you installed SQL Server on
from the list on the left, and click the Add button to add it to
the right.

In the dialog Select an Authentication Mode, choose the
radio button for SQL Server Authentication.

Next, specify the appropriate login name and password when
prompted.

Finally, choose to add the SQL server to the existing group
called SQL Server Group.

After you have successfully setup the client following the steps above,
ensure that the paths below are in your PATH environment variable:

[install path]\80\Tools\BINN

where [install path] is the path you chose to install the client tools
in step 4 above.

Install and ConfigurE Database Clients (Windows)

Sybase Client Insert the Sybase 12.5 Adaptive Enterprise client CD into your CD-
ROM drive. The installation program should automatically start.

Note

If the Sybase installer crashes or locks up during startup in java.exe, then you may need to
disable Java “just-in-time” compiling on your system. See Sybase technical article
www.sybase.com/detail/1,6904,1013241,00.html on the Sybase Web site for more information

about this problem.

Carry out the following steps to install a Sybase client on your system:

L.
2.

Choose the Standard install.

Accept the default location or specify another location. Make
sure that the install directory you choose does not contain any
spaces.

Ensure that the following paths are in your PATH environment
value:

[install path]\CFG-1_0\bin;[install path]\0CS-
12_5\d11;[install path]\0CS-12_5\Tib3p;[install
path]\0CS-12_5\bin

where [install path] is the path you chose in step 2 above.

After installation, select Programs P Sybase P> dsedit from the Start
menu to start this utility program. Then do the following steps:

L.

Click OK on the first screen to open the Interfaces Driver
screen.

From the Server Object menu, select Add.

In the Input Server Name box, enter the network internet
protocol name of the server running Sybase, and click OK
(e.g., qaimage.tibco.com).

In the attributes column of the Interfaces Driver dialog,
double-click the server address row.

In the Network Address Attribute window, click the Add
button.

Select TCP as the network connection protocol from the
drop-down list and enter

355

Chapter 10 Using Direct Database Drivers

[server ip name], 2048

in the Edit field. [server ip name] is the internet protocol name of
the server that has Sybase installed, and should be the same as
specified in step 3 above, as in qaimage.tibco.com. 2048 is the port
number it receives on, and you may have to change the port number,
depending on the server. Click OK to accept the changes.

The [server ip name] you specify here is used in Spotfire S+ to
connect to the server and use Sybase.

7. Click OK to accept the Network Address Attribute

window.

8. Test the connection to the new server by selecting Ping from
the Server Object menu.

9. In the Ping dialog, click the Ping button. You should see
another dialog appear, indicating that the connection was
successful.

10. Close the dsedit utility program.
11. Test the connection using the Sybase ISQL utility:
* Open a DOS Command window and type the following:
isql ~Utestqa -Ptestqa — S[server ip name]
+ At the isql program prompt, enter the following:

select * from pubs2.dbo.sales

go
After you type go, you should get an output table printed in
the window.

Oracle Client Insert the Oracle 9i Client for Win32 CD in your CD-ROM drive.
The setup starts automatically, and you can follow these steps:

1. Inthe Oracle Universal Installer: File Locations dialog,
enter the path to install the Oracle client software on your
system in the Destination path field.

2. TFor the type of installation, select Administrator.
3. Use the default port number of 2030.

356

Install and ConfigurE Database Clients (Windows)

After installation, the Oracle Net Configuration Assistant
automatically appears. If it does not automatically appear,
you can manually start it from the Start menu at Programs »
Oracle - OraHome90 » Configuration and Migration
Tools » Net Configuration Assistant.

In the Net Configuration Assistant Wizard, enter the
values specified in the appropriate wizard steps indicated
below:

* Select Perform typical configuration in the Welcome
step. Click Next.

* Select No, I will create net service names myself....
Click Next.

* Select Oracle8i or later database or service. Click
Next.

* Specify an appropriate network service name. It is
suggested that you specify a name that contains the name
of the database and your network domain, as in
testdb.tibco.com for the service name. Click Next.

* Select TCP as the protocol. Click Next.

* Specify the name of the server which is running Oracle on
your network. Specify only the system name (and not an
IP address), such as qadb-s2k for the host name, and
specify an appropriate port number. You can accept 1521
as the default port or change it, depending on how your
server is configured. Click Next.

* Select Yes, perform a test to test the connection. Click
Next. You should get an unsuccessful connection screen
with a Change Login button on it.

* Click the Change Login button, and specify the
appropriate username and password in the dialog. Click
OK and then Next.

Now, the test connection should report success. Click Next.

Accept or change the network service name shown. This is the
name you specify in Spotfire S+ to access the ORACLE
server. Click Next.

357

Chapter 10 Using Direct Database Drivers

DB2 Client

358

8. When asked whether you want to configure another net
service name, choose No. Click Next.

After a successful installation, ensure that the following paths are in
your PATH environment value:

[install path]\ora90\bin

where [install path] is the path you chose during setup in step 1
above.

Insert the DB2 Universal Database Enterprise Edition Version 7.2 CD
into your CD-ROM drive. The installer should start automatically.

1. Choose Install from the list of setup options.

2. In the Select Products dialog, choose DB2 Administration
Client.

3. Select Typical setup type.

4. Select a destination for the installation or accept the default

path.

5. In the Enter Username and Password for Control Center

Server dialog, enter your network login name and password.

Note that you can enter another username and password, but

using your network login and password make it easy to
remember.

6. You may receive a dialog telling you that you don’t have

privileges to do certain things with DB2 on your system. Click

the OK button in this dialog to continue with the setup.

7. If you are prompted to restart your system, make sure you do
this. Some services that are installed as part of the DB2
installation need to be installed and mounted.

8. After your system is restarted or after the end of a successful
setup, the First Steps dialog appears. In this dialog, select
Catalog Sample Databases from the list on the left.

9. The Client Configuration Assistant is started.
10. In the Welcome dialog, click the Add Database button.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

Install and ConfigurE Database Clients (Windows)

A “wizard” dialog appears. In the Source page, click the
Search the network radio button, and switch to the
Database name page.

In the Tree view, expand the Other Systems node and wait
until the program has scanned all network systems for DB2
servers. The list it finds appears below this node.

Look for the name of the server that has DB2 installed on it in
this tree. If you don’t see it, check the server, and make sure
DB2 has been properly started. Once it is located, expand the
server name node in the tree to see a list of databases.

Select the database you want to use from the Local
databases node. The name appears in the Target Database
field at the bottom of the dialog. Click Next.

In the Alias page, verify that the alias for this database is
listed as the database name you chose. Click Next.

In the ODBC page, accept the defaults for registering the
database as a system source. Click Finish.

Click the Close button when a confirmation dialog appears.
Do not attempt to test the connection at this time as the
settings are not correct yet. You are then returned to the
Client Configuration Assistant main window.

You can see that the database you selected was added as a
database. Select this database, then click the Properties
button. This opens another dialog called Database
Properties - [database name].

Click the Properties button. This opens another dialog called
Update Connection Wizard - [database name].

Protocol should be set to TCP/IP. Click Next.

Correct the host name by changing it to the IP name of the
database server, such as gadb-snt.tibco.com. Click the
Finish button. You are returned to the Database Properties
- [database name] dialog. Click OK.

In the main Client Configuration Assistant window, select
the database you selected from the list and click the Test
button.

359

Chapter 10 Using Direct Database Drivers

22. In the Connect to DB2 Database, enter the appropriate
username and password in the fields and leave other default
settings. Click the OK button. You should receive a
“connection successful” dialog.

23. Close the Client Configuration Assistant.
24. Close the First Steps dialog.

25. Ensure that the path [install path]\BIN is in your PATH
environment value. [install path] is the path you selected
in step 4 above.

360

DEBUGGING YOUR

FUNCTIONS

Introduction

Basic Spotfire S+ Debugging

Printing Intermediate Results
Using recover

Interactive Debugging

Starting the Inspector
Examining Variables
Controlling Evaluation
Entering, Marking, and Tracking Functions
Entering Functions

Marking Functions

Marking the Current Expression
Viewing and Removing Marks
Tracking Functions

Modifying the Evaluation Frame
Error Actions in the Inspector

Other Debugging Tools

Using the Spotfire S+ Browser Function
Using the Spotfire S+ Debugger
Tracing Function Evaluation

362

363
364
366

368
369
370
374
376
376
377
378
379
380
382
383

387
387
388
389

361

Chapter 11 Debugging Your Functions

INTRODUCTION

362

Debugging your functions generally takes much longer than writing
them because relatively few functions work exactly as you want them
to the first time you use them. You can (and should) design large
functions before writing a line of code, but because of the interactive
nature of Spotfire S+, it is often more efficient to simply type in a
smaller function, then test it and see what improvements it might
need.

Spotfire S+ provides several built-in tools for debugging your
functions. In general, these tools make use of the techniques
described in Chapter 8, Writing Functions in Spotfire S+, to provide
you with as much information as possible about the state of the
evaluation.

In this chapter, we describe several techniques for debugging Spotfire
S+ functions using these built-in tools as well as the techniques of
Chapter 3, Computing on the Language, to extend these tools even
further. For a discussion of debugging loaded code, see Chapter 8,
Interfacing with C and FORTRAN Code, in the Application Developer’s
Guide. Refer also to Chapter 2, Data Management, for a detailed
discussion of frames.

Basic Spotfire S+ Debugging

BASIC SPOTFIRE S+ DEBUGGING

When an error occurs in a Spotfire S+ expression, Spotfire S+
generally returns an error message and the word Dumped:

> acf(corn.rain,type="normal™)

Problem in switch(itype + 1,: desired type of ACF is
unknown

Use traceback() to see the call stack

Dumped

With existing functions such as acf, most errors occur because of
incorrectly specified arguments, such as nonexistent (or currently
unattached) data objects, invalid choices of values (as in our choice of
"normal" in the call to acf), or omitted required arguments. When
you encounter a problem with a built-in function, then, your first
debugging tool is probably the function’s help file. Use the help file to
be sure you have the correct calling syntax and have supplied the
correct arguments.

Similarly, when you encounter a problem in a function you have
newly written, the first debugging tool is the function’s definition.
Looking at the definition carefully can often reveal a variety of
problems:

* Misused functions. If your function definition includes calls to
unfamiliar functions, check the help files to be sure you are
using those functions correctly.

* Uninitialized variables (often the culprit in messages such as
Cannot find object "object"). Look for these particularly in
looping constructions, because loops frequently contain
assignments such as a[i] <- value. If a is initially empty you
may well have forgotten to create it.

* Inadequate input filtering. You may have intended to allow
vectors, matrices, and lists as input, but neglected to put in the
code required to differentiate among the various cases.
Similarly, you may have neglected to include if and stop
statements to explicitly exclude certain cases.

363

Chapter 11 Debugging Your Functions

Printing
Intermediate
Results

364

* Environmental dependencies. Many functions implicitly use
various settings of the Spotfire S+ environment. For example,
graphics functions require active graphics devices and
recursive functions often require deeper nesting than the
default value of options("expression™).

A useful aid in examining your function is the traceback function,
which lists the nested function calls currently being evaluated, starting
with the function from which the error was returned and working
outward to the original calling function. For the example above,
traceback gives the following information:

> traceback()

6: eval(action, sys.parent())

5: doErrorAction("Problem in switch(itype + 1,: desired
type of ACF is unknown™,

4: stop("desired type of ACF is unknown")

3: acf(corn.rain, type = "normal")
2: eval(expression(acf(corn.rain, type = "normal")))
1:

Message: Problem in switch(itype + 1,: desired type of
ACF is unknown

Using traceback is a good way to focus your initial examination. You
should get in the habit of typing traceback() whenever a function
call returns an error and the Dumped message.

One of the oldest techniques for debugging, and still widely used, is to
print intermediate results of computations directly to the screen. By
examining intermediate results in this way, you can see if correct
values are used as arguments to functions called within the top-level
function.

This can be particularly useful when, for example, you are using
paste to construct a set of elements. Suppose that you have written a
function to make some data sets, with names of the form datan, where
each data set contains some random numbers:

make.data.sets <-

function(n) {
names <- paste("data™, 1:n)
for (i in 1:n)
{

Basic Spotfire S+ Debugging
assign(names[i], runif(100), where = 1)

}
After writing this function, you try it:

> make.data.sets(5)

Spotfire S+ reports no errors, so you look for your newly created data
set, data4:

> data4d
Error: Object "data4" not found

To find out what names the function actually was creating, put a cat
statement into make.data.sets after assigning names:

> make.data.sets

function(n)

{
names <- paste("data™, 1:n)
cat(names, "\n ")
for(i in 1:n)
{ assign(names[i], runif(100), where = 1)
}

}

> make.data.sets(5)

data 1 data 2 data 3 data 4 data 5

The cat function prints the output in the simplest form possible; you
can get more usual-looking Spotfire S+ output by using print or show
instead (the show function was introduced in Spotfire S+ 5.0 as a more
object-oriented version of print):

> make.data.sets
function(n)
{
names <- paste("data™, 1:n)
print(names)
for(i in 1:n)
{ assign(names[i], runif(100), where = 1)
}
}
> make.data.sets(5)
[1] "data 1" "data 2" "data 3" "data 4" "data 5"

365

Chapter 11 Debugging Your Functions

Using recover

366

The form of these names is not quite what we wanted, so we look at
the paste help file, and discover that we need to specify the sep
argument as "". We fix make.data.sets, but retain the call to print as
a check:

> make.data.sets

function(n)

{ names <- paste("data"™, 1l:n, sep ="")
print(names)
for(i in 1:n)
{ assign(names[i], runif(100), where = 1)
}

}

> make.data.sets(5)

"datal™ "data2" "data3" "data4" "datab"

> data4

[1] 0.784289481 0.138882026 0.656852996 0.443559750

[5] 0.651548887

Now that make.data.sets works as we’d hoped it would, we can
remove the print statement. (Of course, if you’d always like to see the
exact names of the data sets created, you might want to leave it in.)

The recover function can be used to provide interactive debugging as
an error action. To use recover, set your error action as follows:

options(error=expression(if(interactive())
recover() else dump.calls()))

Then, for those type of errors which would normally result in the
message “Problem in ... Dumped,” you are instead asked “Debug? Y/
N”; if you answer “Y”, you are put into recover’s interactive debugger,
with a R> prompt. Type ? at the R> prompt to see the available
commands. Use up to move up the frame list, down to move down the
list. As you move to each frame, recover provides you with a list of
local variables. Just type the local variable name to see its current
value. For example, here is a brief session that follows a faulty call to
the sqrt function:

> sqrt(exp)

ProbTem in x*0.5: needed atomic data, got an object of class
"function"

Basic Spotfire S+ Debugging

Debug ? (y[n): vy
Browsing in frame of x70.5
Local Variables: .Generic, .Signature, el, e2

R> ?

Type any expression. Special commands:

‘up', “down' for navigation between frames.
‘where' # where are we in the function calls?
“dump' # dump frames, end this task

'q' # end this task, no dump

“go # retry the expression, with corrections made
Browsing in frame of x*0.5

Local Variables: .Generic, .Signature, el, e2
R> up

Browsing in frame of sqrt(exp)

Local Variables: x

R(sqrt)> x

function(x)

.Internal(exp(x), "do_math", T, 108)

R(sqrt)> x<-exp(l)

R(sqrt)> go

[1] 1.648721

In the example session, we accidentally gave a function as the
argument to sqrt, rather than the needed atomic data object. Inside
recover, we move up to sqrt’s frame, change the argument x to the
result of a function call, then use recover’s go command to complete
the expression.

367

Chapter 11 Debugging Your Functions

INTERACTIVE DEBUGGING

368

Although print, show, and cat statements can help you find many
bugs, they aren’t a particularly efficient way to debug functions,
because you need to make your modifications in a text editor, run the
function, examine the output, then return to the text editor to make
further modifications. If you are examining a large number of
assignments, the simple act of adding the print statements can
become wearisome.

Using recover provides interactive debugging, but it has no real
debugging facilities—the ability to step through code a line at a time,
set breakpoints, track functions, and so on.

With the interactive debugging function inspect you can follow the
evaluation of your function as closely as you want, from stepping
through the evaluation expression-by-expression to running the
function to completion, and almost any level of detail in between.
While inspecting you can do any of the following tasks:

e examine variables in the function’s evaluation frame. Thus,
print and cat statements are unnecessary. You can also look
at function definitions.

* track functions called by the current function. You can request
that a message be printed on entry or exit, and that your own
expressions be installed at those locations.

* mark the current expression. If the marked expression occurs
again during the inspection session, evaluation halts at that
point. Functions can be marked as well; evaluation will halt at
the top of a marked function whenever it is called. Marking an
expression or function corresponds to setting a breakpoint.

* enter a function; this allows you to step through a single
function call, without stopping in subsequent calls to the same
function.

* examine the current expression, together with the current
calling stack. The calling stack lets you know how deeply
nested the current expression is, and how you got there.

Starting the
Inspector

Interactive Debugging

* step through n expressions or subexpressions. By default, the
inspector automatically stops before each new expression or
function call. You can also do groups of expressions, such as a
braced set of expressions, or a complete conditional
expression.

* evaluate arbitrary Spotfire S+ expressions. These expressions
are evaluated in the local evaluation frame, so, for example,
you can assign new values to objects in the local frame. In
many cases, this lets you experiment with fixes to your code
during the evaluation.

* keep track of expressions and functions that are marked or
tracked, as well as expressions scheduled for evaluation on
exit. You can also monitor the current function’s return value.

* complete evaluation of the current loop or function, or resume
evaluation, stopping only for marked functions or
expressions.

* look at objects and evaluate expressions in any frame.

The following subsections describe these tasks in detail, and show
how to perform them within inspect.

To start a session with the inspector, call inspect with a specific
function call as an argument. For example, the call to make.data.sets
with n=5 resulted in a problem, so we can try to track it down by
starting inspect as follows:

> inspect(make.data.sets(5))

entering function make.data.sets

stopped in make.data.sets (frame 3), at:
names <- paste("data", 1l:n)

d>

For simplicity, we call the function appearing in the argument to
inspect as the function being inspected. The d> prompt indicates that
you are in the inspector environment. The inspector environment has
a limited instruction set; the instructions are shown in Table 11.1. If
you type anything at the inspector prompt other than those
instructions, you get a syntax error message.

369

Chapter 11 Debugging Your Functions

Examining
Variables

370

Inspector instructions are not Spotfire S+ function calls; do not use
parentheses when issuing them. Use the help instruction to see a list
of instructions; type help instruction for help on a particular
instruction.

To leave the inspector and return to the Spotfire S+ prompt, use the
instruction quit.

You can obtain a listing of objects in the current evaluation frame with
the inspector instruction objects. For example, in our call to
make.data.frames, we obtain the following listing from objects:

d> objects
[1] ".Auto.print™ ".entered.”" ".name." "n"

To examine the contents of these objects, use the inspector instruction
eval followed by the object’s name:

d> eval n
[1] 5

To examine a function definition, rather than a data variable, use the
instruction fundef:

d> fundef make.data.sets

make.data.sets
function(n)
{ names <- paste("data", 1:n)
{ for(i in 1:n)
{ assign(names[i], runif(100), where =1)
}

}

When you use eval or fundef to look at Spotfire S+ objects, you can
in general just type the name of the object after the instruction, as in
the examples above. Names in Spotfire S+ that correspond to the
inspect function’s keywords must be quoted when used as names.
Thus, if you want to look at the definition of the objects function,
you must quote the name "objects", because objects is an inspect
keyword. For a complete description of the quoting rules, type help
name within an inspection session. For a complete list of the keywords,
type help keywords.

Interactive Debugging

One important question that arises in the search for bugs is “Which
version of that variable is being used here?” You can answer that
question using the find instruction. For example, consider the
examples fcn.C and fen.D given in Matching Names and Values on
page 39 of the Application Developer’s Guide. We can use find inside the
inspector to demonstrate that the value of x used by fcn.D is not the
value defined in fcn.C:

> inspect(fcn.C())

entering function fcn.C
stopped in fcn.C (frame.3), at:
x <- 3

d> track fcn.D
entry and exit tracking enabled for fcn.D
d> mark fcn.D

entry mark set for fcn.D
exit mark(s) set for fcn.D (some or all were already set)

d> resume

entering function fcn.D

call was: fcn.D() from fcn.C (frame 3)

stopped in fcn.D (frame 4), at:
return(x”2)

d> objects
[1] ".Auto.print" ".entered.”™ ".name."
d> find x

.Data

See Entering, Marking, and Tracking Functions on page 376 for
complete details on using the track and mark instructions.

You can inspect the value of variables in different frames by using the
up or down instructions to change the frame in which objects looks
for objects and eval evaluates them. For example, we could find the
value 3 in fcn.C’s frame while in fcn. D as follows:

371

Chapter 11 Debugging Your Functions

stopped in fcn.D , at:
return(x”2)

d> objects

[1]1 ".Auto.print™ ".entered.” ".name."

d> up

fcn.C (frame 3)

d> objects

[1] ".Auto.print”™ ".entered.”™ ".name." "x"

d> eval x

(1]

Table 11.1: Instructions for the interactive inspector.

Keyword Help given

help [instruction | Provides help on imstruction, names, or keywords. With no
names | keywords] arguments, he1p gives a summary of the available instructions.
complete [Toop | Evaluates to the end of the next for/while/repeat loop, or to the point
function] of function return.

debug.options [echo = With echo=T, expressions are printed before they are evaluated. With
T|F1 [marks = marks=hard, evaluation always halts at a marked expression. With
hard|soft] marks=soft it halts only during a resume. Setting marks=soft is

a way of temporarily hiding marks for do, complete, etc. The
defaults are: echo=F, marks=hard. With no arguments,
debug.options displays the current settings.

do [n] Evaluates the next 7 expressions which are at the same level as the
current one. The default is 1. Thus if evaluation is stopped directly
ahead of a braced group, do does the entire group.

down [n] Changes the local frame for instructions such as objects and eval
to be 7 frames deeper than the current one. The default is 1. After any
movement of the evaluator (step, resume, etc.), the local frame at
the next stop is that of the function stopped in.

enter Enters the function called in the next expression.

372

Interactive Debugging

Table 11.1: Instructions for the interactive inspector.

Keyword Help given
eval expr Evaluates the Spotfire S+ expression expr.
find name Reports where name would be found by the evaluator.

fundef [name]

Prints the original function definition for zame. Default is the current
function. Tracked and marked functions will have modified function
definitions temporarily installed; fundef is used to view the original.
The modified and original versions will behave the same; the
modified copy just incorporates tracing code.

[at entry|exit]

mark Remembers the current expression; evaluation will halt here from
now on.
mark namel [name? ...] Arranges to stop in the named functions. The default is to stop at

both entry and exit.

objects Names of objects in this function’s frame.

on.exit Displays the current on-exit expressions for this function.
quit Abandons evaluation, return to top-level prompt.
resume Resumes evaluation.

return.value

Displays the return value, if known.

show [tracks | marks |
alll

Displays installed tracks and marks. Default all.

step [n]

Evaluates the next 7 expressions. Default 1.

track namel/ [nameZ2/
... 1 [at entry|exit]
[print = T|F] [with
expr]

Enables or modifies entry and/or exit tracking for the named
functions. The default for print is T. You can use any Spotfire S+
expression as expr.

unmark namel/ [nameZ
...] [at entry]|exit]

Deletes mark points at the named locations in the named functions.

unmark nl [n2 ...]

Deletes mark points 71, 72, See mark and show.

unmark all

Deletes all mark points.

373

Chapter 11 Debugging Your Functions

Table 11.1: Instructions for the interactive inspector.

Keyword Help given
untrack namel/ [name2/ Disables tracking for the named functions.
]
up [n] Changes the local frame for instructions such as objects and eval
to be 7 frames higher than the current one. The default is 1. After any
movement of the evaluator (step, resume, etc.), the local frame at
the next stop is that of the function stopped in.
where Displays stack of function calls, and current expression in current
function.
Controlling Within the inspector, you can control the granularity at which
Evaluation expressions are evaluated. For the finest control, use the step

374

instruction, which by default, evaluates the next expression or sub-
expression. The inspector automatically determines stopping points
before each expression. Issuing the step instruction once takes you to
the next stopping point. To clarify these concepts, consider again our
call to make.data.sets. You can see the current position using the
where instruction:

d> where

Frame numbers and calls:

4: debug.tracer(what = TR.GENERIC, index = c(2, 1)) from 3
3: make.data.sets(5) from 1
2: inspect(make.data.sets(5)) from 1
1: from 1
stopped in make.data.sets (frame 3), at:

names <- paste("data™, 1l:n

The numbered lines in the output from where represent the call stack;
they outline the frame hierarchy. The position is shown by the lines
stopped in make.data.sets (frame 3), at:

names <- paste("data™, 1l:n

If we issue the step instruction, we move to the next stopping point,
which is right before the function call to paste:

Interactive Debugging

d> step

stopped in make.data.sets (frame 3) , at:
paste("data"”, 1:n)

Another step instruction completes the evaluation of the call to
paste, and takes us to the beginning of the next expression:

d> step

stopped in make.data.sets (frame 3), at:
return(for(i in 1:n)
{ assign(names[i], runif(100), where =1)
}

You can step over several stopping points by typing an integer after
the step instruction. For example, you could step over the complete
expression

names <- paste("data”, 1:n) with the instruction step 2.

You should distinguish between these automatically determined
stopping points and breakpoints, which you insert using the mark
instruction. Breakpoints allow you to stop evaluation at particular
expressions or functions, and either step through from that point or
resume evaluation until the next breakpoint is encountered.
Breakpoints and marks are discussed in detail in Entering, Marking,
and Tracking Functions on page 376. Another way to execute a
complete expression is to use the do instruction. The do instruction
has the advantage that you do not need to know how many stopping
points the expression contains; do evaluates the entire current
expression. For example, you can do the following complete
expression with a single do instruction:

return(for(i in 1l:n)
{ assign(names[i], runif(100), where =1)
}

The do instruction is particularly helpful when, as in this example, the
current expression includes a loop or conditional expression. Using
step causes the loop or conditional to be entered, and each
subexpression evaluated in turn. Using do evaluates the entire
expression atomically.

375

Chapter 11 Debugging Your Functions

To evaluate larger pieces of the function, use the compTete and resume
instructions. Use complete to complete the current loop, if within a
loop, or, if not, complete the current function. You can specify
complete Toop or complete function to override the default
behavior. Thus, if you are within a for loop and type complete
function, evaluation proceeds to the end of the current function. The
inspector stops at the point after the function’s last expression, before
the on-exit expressions are executed. You can look at the return value
and the on-exit expressions before exiting. Use the instruction
return.value to see the return value; use the instruction on.exit to
see the on-exit expressions.

Use resume to resume evaluation and proceed to the next breakpoint.
If there are no further breakpoints, resume completes the call given to
the inspector. Evaluation always stops at a breakpoint, unless you use
the debug.options instruction to set marks=soft. If you specify the
marks as “soft,” the do, step and complete instructions ignore
breakpoints, while resume stops at them as usual.

Entering, By default, inspect lets you step through the expressions in the

Marking, and function being inspected. Function calls within the function begin

debugged are evaluated atomically. However, you can extend the

step-through capability to such functions using the enter and mark

Functions instructions. You can also monitor calls to a function, without stepping
through them, with the track instruction.

Tracking

Limitations on marking and tracking

You cannot enter, mark, or track functions that are defined completely by a call to .Internal.
Also, for technical reasons, you cannot enter, mark, or track any of the seven functions listed
below:

assign invisible assign.default on.exit exists remove exists.default

Entering If you want to step through a function in the current expression, and

Functions don’t plan to step through it if it is called again, use the enter
instruction. For example, while inspecting the call Tm(stack.loss
stack.x), you might want to step through the function
model.extract. After stepping to the call to mode1.extract, you issue
the enter instruction:

376

Marking
Functions

Interactive Debugging

d> step

stopped in 1m (frame 3), at:
model.extract(m, weights)

d> enter

entering function model.extract
stopped in model.extract (frame 4), at:
what <- substitute(component)

To stop in a function each time it is called, use the mark instruction.
For example, the ar.burg function makes several calls to array. If we
want to stop in array while inspecting ar.burg, we issue the mark
instruction and type the name of the function to be marked. By
default, a breakpoint is inserted at the beginning and end of the
function:

d> mark array

entry mark set for array exit mark(s) set for array

By default, each time the evaluator encounters a marked function, it
stops once just after entering the function, and once just before
exiting. If you want to stop only at entry or only at exit, you can use
the optional at parameter to specify entry or exit as the desired
breakpoint. For example, to stop each time array is entered, use mark
as follows:

d> mark array at entry

entry mark set for array

To stop at the end of function evaluation for a function marked at
entry, use complete function to complete the function evaluation:

d> where

Frame numbers and calls:
5: debug.tracer(what = TR.GENERIC, index = c(4, 1)) from 4

4. array(0, dim = c(nser, nser, order.max + 1)) from 3
3: ar.burg(lynx) from 1

377

Chapter 11 Debugging Your Functions

Marking the
Current
Expression

378

2: inspect(ar.burg(lynx)) from 1

1: from 1

stopped in array (frame 4), at:
data <- as.vector(data)

d> complete function stopped in array (frame 4), at end;

return value from: return(data) d>

To continue evaluation of the function being inspected, use resume:
d> resume

entering function array
stopped in array (frame 4), at:
data <- as.vector(data)

You can mark the current expression by giving the mark instruction
with no arguments. This sets a breakpoint at the current expression.
This can be useful, for example, if you are inspecting a function with
an extensive loop inside it. If you want to stop at some expression in
the loop each time the loop is evaluated, you can mark the expression.
For example, consider again the bitstring function, defined in
Chapter 8, Writing Functions in Spotfire S+. To check the value of n
in each iteration, you could use mark and eval together as follows.
First, start the inspection by calling bitstring, then step to the first
occurrence of the expression i <- i + 1. Issue the mark instruction,
use eval to look at n, then use resume to resume evaluation of the
loop. Each time the breakpoint is reached, evaluation stops. You can
then use eval to check n again:

> inspect(bitstring(107))

entering function bitstring
stopped in bitstring (frame 3), at:
string <- numeric(32)

d>

d> step

stopped in bitstring (frame 3), at:

Interactive Debugging
i<+

d> mark
d> eval n

[1] 53
d> resume

stopped in bitstring (frame 3), at:

i<-1i+1
Viewing and Once you mark an expression, evaluation always stops at that
Removing expression, until you unmark it. The inspector maintains a list of
M marks, which you can view with the show instruction:
arks
d> show marks
Marks: 1
in array:

data <- as.vector(data)
2 : in aperm:
return(UseMethod("aperm"))

You can remove items from the list using the unmark instruction. With
no arguments, unmark unmarks the current expression. If the current
expression is not marked, you get a warning message. With one or
more integer arguments, unmark unmarks the expressions associated
with the given numbers:

d> show marks

Marks: 1
in array:
data <- as.vector(data)

2 : in aperm:
return(UseMethod("aperm"))

d> unmark 2

With one or more name arguments, unmark unmarks the named
functions:

d> unmark array

entry mark unset for array

379

Chapter 11 Debugging Your Functions

Tracking
Functions

380

The instruction unmark a1l unmarks all expressions.

If you want to monitor the evaluation of a certain function, without
stopping inside the function, use the track instruction to ¢rack the
function. By default, a tracked function prints a message when it starts
and just before it completes. As with marked functions, however, you
can use the at parameter to specify entry or exit. You can perform
more sophisticated tracking by specifying an arbitrary Spotfire S+
expression using the with parameter. For example, suppose you
simply want to monitor calls to array inside ar.burg, and view the
value returned by each call to array. You could do this by calling
track as follows:

> inspect(ar.burg(lynx))

entering function ar.burg stopped
in ar.burg (frame 3), at:
if(is.factor(x) || (is.data.frame(x) && any(
sapply(x, "is.factor™))))
stop("cannot calculate the acf of factors"”

d> track array at exit with cat("array returning”,
.ret.val., "\n ")

d> exit tracking enabled for array
d> resume

array returning 269 321 585 .

leaving function array

array returning 0 0 O

leaving function array

array returning 0 0 0 .

leaving function array

array returning 0

leaving function array

array returning 1.0877 -0.597623 0.251923

leaving function array
array returning 0 0 0 .
leaving function array
lTeaving function ar.burg

Interactive Debugging

The value .ret.val. is one of a number of values stored internally by
inspect; these are named with leading periods (most have trailing
periods, as well) to avoid conflicts with your own objects and standard
Spotfire S+ objects. You can track a function giving different actions
for entry and exit; this can be useful, for example, if you want to
calculate the elapsed time of evaluation. To do so, you could define a
function func.entry.time as follows:

func.entry.time <-
function(fun)
{
assign("StartTime", proc.time(), frame=1)
cat(deparse(substitute(fun)), "entered at time",
get("StartTime"™, frame=1), "\n ")
}

Then define the exit function, func.exit.time as follows:

func.exit.time <-
function(fun)
{
assign("StopTime", proc.time(), frame=1)
assign("E1Time"™, get("StopTime"™, frame=1l) -
get("StartTime", frame=1), frame=1)
cat(deparse(substitute(fun)), "took time",
get("E1Time", frame=1), "\n ")
}

You can then track a function at entry with func.entry.time and
track at exit with func.exit.time:

> inspect(ar.burg(lynx))

entering function ar.burg
stopped in ar.burg (frame 3), at:

if(is.factor(x) || (is.data.frame(x) && any(sapply(x,
"is.factor"))))

stop("cannot calculate the acf of factors" ...
d> track array at entry with func.entry.time(array)

entry tracking enabled for array

d> track array at exit with func.exit.time(array)

381

Chapter 11 Debugging Your Functions

Modifying the
Evaluation
Frame

382

exit expression for array changed to:
func.exit.time(array)

d> resume

entering function array

array entered at time 58.5 26.85 8303 2.64 13.14
array took time 0.5 01 0 0

entering function array

array entered at time 60.59 26.86 8306 2.64 13.14
array took time 0.599998 0.0100002 1 0 O

entering function array

You can suppress the automatic messages entering function fun and
Teaving function fun by issuing the track instruction with the flag
print=F. For example, in our previous example, our initial call to
track specified tracking on entry, so only the entry message was
printed. To suppress that message, simply add the flag print=F after
the specification of entry or exit:

d> track array at entry print=F with func.entry.time(array)

We have already seen one use of the eval instruction, to examine the
objects in the current evaluation frame. More generally, you can use
eval to evaluate any Spotfire S+ expression. In particular, you can
modify values in the current evaluation frame, with those values then
being used in the subsequent evaluation of the function being
debugged. Thus, if you discover where your error occurs, you can
modify the offending expression, evaluate it, and assign the
appropriate value in the current frame. If the fix works, the complete
evaluation should give the correct results. Of course, you still need to
make the change (with the fix function) in the actual function. But
using eval provides a useful testing tool inside the inspector. For
example, once we have identified the problem in make.data.sets as
occurring in the call to paste, we can go to the point at which the
faulty names have been created:

> inspect(make.data.sets(5))

entering function make.data.sets
stopped in make.data.sets (frame 3), at:
names <- paste("data™, 1:n)

Interactive Debugging

d> step 2

stopped in make.data.sets (frame 3), at:
return(for(i in 1:n)
{ assign(names[i], runif(100), where =1)

}

d> objects

[1]1 ".Auto.print™ ".entered.”" ".name." "n"
[5] "names"

d> eval names

[1] "data 1™ "data 2" "data 3" "data 4" "data 5"

Here we see that the names are not what we wanted. To test our
assumption that we need the sep="" argument, use eval as follows:

d> eval names <- paste("data", 1l:n, sep="")
d> eval names

[1] "datal™ "data2™ "data3"™ "data4" "datab"

Our change has given the correct names; now resume evaluation and
see if the data sets are actually created:

d> resume
leaving function make.data.sets
> datal

[1] 0.94305062 0.61680487 0.15296083 0.25405207
[5] 0.81061184 .

Error Actions When an error occurs in the function being inspected, inspect calls

in the the current error.action. By default, this action has three parts, as

follows:
Inspector

1. Produce a traceback of the sequence of function calls at the
time of the error.

2. Dump the frames existing at the time of the error.

383

Chapter 11 Debugging Your Functions

384

3. Start a restricted version of inspect that allows you to
examine frames and evaluate expressions, but not proceed
with further evaluation of the function being inspected.

Thus, you can examine the evaluation frame and the objects within it
at the point the error occurred. You can use the up and down
instructions to change frames, and the objects, find, on.exit, and
return.value instructions to examine the contents of the frames. The
instructions eval, fundef, help, and quit are also available in the
restricted version of inspect. For example, consider the primes
function described in Chapter 8, Writing Functions in Spotfire S+. We
can introduce an error by commenting out the line that defines the
variable smallp:

primes <-
function(n = 100)

{

#
1
1

}

n <- as.integer(abs(n))

if(n < 2)
return(integer(0))

p <- 2:n

smallp <- integer(0)

the sieve
repeat
{ 1 <- p[l]

smallp <- c(smallp, i)
p <- plp %% i != 0]
if(i > sqrt(n))
break
}
c(smallp, p)

Now call inspect with a call to primes:

>

inspect(primes())

entering function primes
stopped in primes (frame 3), at:

n <- as.integer(abs(n))

d> do 2

Interactive Debugging

stopped in primes (frame 3), ahead of loop:
repeat
{ 1 <- pll]
smallp <- c(smallp, 1)

d> do

Error in primes(): Object "smallp" not found
Calls at time of error:

: error = function() from 3
: primes() from 1
inspect(primes()) from 1
: from 1

NN WS

Dumping frames
Dumped

local frame (frame of error) is primes (frame 3)

A quick glance at the frame of primes() with objects shows that
smallp is indeed not defined. Use the quit instruction to end the
inspect session, then start it again. You can then use the eval
instruction to specify an initial value for sma11p, and watch the
function complete successfully:

d> quit
> inspect(primes())

entering function primes
stopped in primes (frame 3), at:
n <- as.integer(abs(n))

d> do 2

stopped in primes (frame 3), ahead of loop:
repeat {
i <- p[l]
smallp <- c(smallp, 1)

d> eval smallp <- numeric(0)
d> resume

385

Chapter 11 Debugging Your Functions

leaving function primes
[1] 2 357 11 13 17 19 23 29 31 37 41 43 47 53 59
[18] 61 67 71 73 79 83 89 97

You can then edit the primes function to fix the error.

Limitations of Inspect

Functions defined within other functions or in function calls or argument default
expressions cannot be tracked. They should work, though. Also, avoid assigning
functions on frame 1, especially if you want to track them.

Complex expressions inside if, while, and other conditions are never tracked. If
you want to track them, assign them to a name outside the test condition and use
the name inside the condition.

Do not use trace if you plan to use inspect. The trace function creates a
modified version of the function being traced, as does inspect. The
modifications may not be completely compatible.

Do not try to edit functions (using Spotfire S+ functions such as fix) while
running inspect. In particular, do not edit functions that you are tracking, have
marked, or have entered and not yet exited.

Avoid using inspect on functions involving calls to Recall.

You will see some extra frames and objects in the inspection mode that are not
there in normal evaluation. These objects have names which are unlikely to
conflict with those of the functions being inspected.

386

Other Debugging Tools

OTHER DEBUGGING TOOLS

Using the
Spotfire S+
Browser
Function

The inspect function provides a complete interactive debugging
environment, and we recommend it for all your normal Spotfire S+
debugging needs. On occasion, however, you may find some of
Spotfire S+’s other debugging tools of some use. This section briefly
describes these other tools—browser, debugger, and trace.

The browser function is useful for debugging functions when you
know an error occurs affer some point in the function. If you insert a
call to browser into your function at that point, you can check all
assignments up to that point, and verify that they are indeed the
correct ones. For example, to return to our make.data.sets example,
we could have replaced our original cat statement with a call to
browser:

make.data.sets <-
function(n)
{
names <- paste("data"™, 1l:n)
browser()
for(i in 1:n)
{ assign(names[i], runif(100), where = 1)
}
}

When we call make.data.sets, we get a new prompt
b(make.data.sets)> to indicate we are in the browser, and a message
telling us which function the browser was called from:

> make.data.sets(5)
Called from: make.data.sets(5)
b(make.data.sets)>

Type ? at the prompt to get brief help on the browser, plus a listing of
the variables in the local frame:

b(make.data.sets)> ?

Type any expression. Special commands:
“up', “down' for navigation between frames.
¢! # exit from the browser & continue
“stop' # stop this whole task

387

Chapter 11 Debugging Your Functions

Using the
Spotfire S+
Debugger

388

“where' # where are we in the function calls?
Browsing in frame of make.data.sets(5)

Local Variables: n, names

b(make.data.sets)> names

[1] "data 1" "data 2" "data 3" "data 4" "data 5"

To leave the browser, type either c or q at the prompt:

b(make.data.sets)> ¢
>

You can type arbitrary Spotfire S+ expressions at the browser
prompt. These expressions are evaluated in the chosen frame, which
is indicated by the function name within the prompt—thus,
b(make.data.sets)> indicates that you are in browser in the frame of
the function make.data.sets. Thus, you can type alternative
expressions and see if a possible fix will actually work.

If a function is broken, so that it returns an error reliably when called,
there is an alternative to all those cat and browser statements: the
debugger function. To use debugger on a function, you must have the
function’s list of frames dumped to disk. You can do this in several
ways:

» Call dump.frames() from within the function.
* Call dump.frames() from the browser.

* Setoptions(error=expression(dump.frames())) If you use
this option, you should reset it to the default
(expression(dump.calls())) when you are finished
debugging, because dumped frames can be quite large.

Then, when an error occurs, you can call the debugger function with
no arguments, which in turn uses the browser function to let you
browse through the dumped frames of the broken function. Use the
usual browser commands (?, up, down, and frame numbers) to move
through the dumped frames.

For example, consider the following simple function:

debug.test <-
function()
{

x <- 1:10

Other Debugging Tools

sin(z)

}

This has an obvious error in the second line of the body, so it will fail
if run. To use debugger on this function, do the following:

> options(error=expression(dump.frames()))

> debug.test()

Problem in debug.test(): Object "z" not found
Evaluation frames saved in object "last.dump", use
debugger() to examine them

> debugger()

Message: Problem in debug.test(): Object "z" not found
browser: Frame 11

b(sin)>

You are now in the browser, and can view the information in the
dumped frames as described above.

Tracing Another way to use the browser function is with the trace function,
Function which modifies a specified function so that some tracing action is
taken whenever that function is called. You can specify that the action
be to call the browser function (with the statement tracer = browser)
providing yet another way to track down bugs.

Evaluation

Warning: trace and inspect clash

Do notuse trace on any function if you intend to do your debugging with inspect.

For example, suppose we wanted to trace our make.data.sets
function:

> trace(make.data.sets,browser)
> make.data.sets
function(n) {
if(.Traceon)
{ .Internal(assign(".Traceon", F, where = 0),

"S_put™)

cat("On entry: ")

browser()

.Internal(assign(".Traceon”™, T, where = 0),
"S_put™)

389

Chapter 11 Debugging Your Functions

390

} else

{ names <- paste("data", 1l:n)
for(i in 1:n)
{ assign(names[i], runif(100), where = 1)
}

}

The trace function copies an edited version of the traced function
into the session frame, and maintains a list of all functions which are
currently being traced. Since Spotfire S+ finds objects in the session
frame before looking in directories, do not try to edit a function that is
currently being traced. If, for instance, you call fix(make.data.sets)
while make.data.sets is being traced, you overwrite the copy of
make.data.frames in your working directory with the edited version,
which contains several calls to .Internal. The additions include the
call to the Zracer, in this case browser. The object . Traceon specifies
whether tracing is enabled; you can change this value with the
trace.on function.

If we now call make.data.sets, we find ourselves in the browser, in
the make.data.sets frame:

> make.data.sets(3)

On entry: Called from: make.data.sets(3)
b(2)> ?

1: n

b(2)>

However, trace, by default, puts the call to browser at the beginning of
the function, so that we actually see less information in the browser
than we hoped; in particular, we don’t see the value of names. We can,
however, run the expression to create the names:

b(2)> names <- paste("data", 1:n)
b(2)> names
[1] "data 1" "data 2" "data 3"

From this, we discover, as before, that our paste expression needs
modification, and as before we can test our proposed change before
implementing it. After leaving browser, type
untrace(make.data.sets) to remove the traced function from the
list.

Other Debugging Tools

If we had wanted the call to browser after the names assignment, we
could have used the at argument to trace:

> trace(make.data.sets,browser,at=2)
> make.data.sets
function(n) {
names <- paste("data™, 1:n)
{ 1if(.Traceon)
{ .Internal(assign(".Traceon", F,
where = 0), "S_put")
cat("At 2: ")
browser()
.Internal(assign(".Traceon", T,
where = 0), "S_put™)
}
for(i in 1:n)
{ assign(names[i], runif(100), where = 1)
}

}

Now if we call make.data.sets, our browser session looks much like
the one in the previous section:

> make.data.sets(3)

At 2: Called from: make.data.sets(3)
b(2)> 2

1: names

2:n

b(2)>

391

Chapter 11 Debugging Your Functions

392

OBJECT-ORIENTED

PROGRAMMING IN SPOTFIRE
S+

Introduction 394
Fundamentals of Object-Oriented Programming 396
Classes and Methods in Spotfire S+ 397
Public and Private Views of Methods 397
Prototype and Representation 398
Inheritance and Extension; Is Relations 398
Metadata 398
Defining New Classes in Spotfire S+ 400
Defining Generator Functions 401
Defining Methods 403
Defining Generic Functions 404
Editing Methods 406
Group Methods 407
Extraction and Replacement Methods 414

393

Chapter 12 Object-Oriented Programming in Spotfire S+

INTRODUCTION

394

Throughout the first chapters, almost no mention has been made of
object-oriented programming. Yet one of the very first statements in
this book was that Spotfire S+ is an object-oriented programming
language, and that it takes full advantage of the powerful concepts of
classes and methods.

The advantages of object-oriented programming do not evidence
themselves when you are writing a single function for a particular
purpose. Instead, the advantages arise when you are designing a large
system that will do similar, but not identical, things to a variety of data
objects. By specifying classes of data objects for which identical effects
will occur, you can define a single generic function that embraces the
similarities across object types, but permits individual
implementations or methods for each defined class. For example, if
you type an expression of the form show(object), you expect Spotfire
S+ to print the object in a suitable format. All the various predefined
printing routines could be combined into a single function; in such a
case the show function would need to be modified every time a new
class of objects was created. In object-oriented programming,
however, the show function is truly generic; it should not have to be
modified to accommodate new classes of objects. Instead, the objects
carry their own methods with them. Thus, when you create a class of
objects, you can also create a set of methods to specify how those
objects will behave with respect to certain generic operations.

As a concrete example, consider the way Spotfire S+ prints character
vectors and factors. Both are created originally from vectors of
character strings, and when printed, both give essentially the same
information:

> xxx <- c("White","Black","Gray","Gray","White","White")
> yyy <- factor(xxx)

> show(xxx)

[1] "White™ "Black™ "Gray" "Gray" "White" "White"

> show(yyy)

[1] White Black Gray Gray White White

Introduction

The distinct look of the printed factor arises because factors are a
distinct class of object, with their own show method.

This chapter describes the essentials of the Spotfire S+ object-oriented
language.

395

Chapter 12 Object-Oriented Programming in Spotfire S+

FUNDAMENTALS OF OBJECT-ORIENTED PROGRAMMING

396

Object-oriented programming uses the data being acted upon to
determine what actions take place. Thus, a common synonym for
object-oriented is data-driven. Because the actual actions are determined
by the data, the commands or function calls are, in effect, simply
messages or requests from the user to the data: print yourself, summarize

yourself.

The requests are generally expressed as calls to generic functions. A
generic function, such as show or plot, takes an arbitrary object as its
argument. The nature of the object then determines how the action
specified by the generic function is carried out. The actual actions are
performed by methods which implement the action called for by the
generic function for a particular type of data. Most generic functions
have default methods which are used if no more specific method can
be found. For example, if you type the expression show(myobject) with
myobject a matrix, Spotfire S+ will print myobject using the matrix
method for show. If myobject is a numeric vector, the printing is
performed by show’s default method.

As a Spotfire S+ user, you should never need to explicitly call a
method; generic functions provide all the interface you need for most
purposes. The importance of the object-oriented programming
paradigm is in extending Spotfire S+’s capabilities. To see why this is
so, imagine you are writing a program to draw various shapes. You
envision a hierarchy of shapes, some open, some closed, some with
straight sides, some with curved sides. You want the user interface to
be simple, so that a call such as draw(circle) will draw a circle. In
traditional programming, the complexity will be built into the draw
function, which would likely be driven by a large switch-type
statement, or series of if-else statements. How each shape is to be
drawn is specified by one case of the switch or one clause in the if-
else. But what happens when you define a new shape? You must
modify the draw function to define a new case. (If draw were written
completely using Spotfire S+ expressions, this would not be an
impossible task. But suppose draw was implemented as a piece of C
code, and you don’t have the source!)

If draw is generic, however, you need not modify it when you want to
add new cases. You simply write a method specific to the new case.

Classes and
Methods in
SPOTFIRE S+

Public and
Private Views
of Methods

Fundamentals of Object-Oriented Programming

Spotfire S+ looks for methods according to signatures, which can be
either a single character string specifying the name of a class or a
named list matching the classes to the formal arguments of the
function. If Spotfire S+ finds no method for the most specific
signature for the given arguments, it looks in turn at each of the
signatures which might apply. As soon as Spotfire S+ finds an
appropriate method, it uses it. Every class inherits from class default,
so the default method is used if no more specific method exists.

To build objects of a specific class, you generally define a constructor,
or generator, function. Typically, generator functions have the name of
the object they create—matrix, numeric, and so on.

Generator functions are not strictly necessary; Spotfire S+ includes
the function new to allow you to generate new objects of any class.
Typically, however, you will embed a call to new within your
generator function.

You can view the class of any object with the class function:

> class(state.x77)
[1] "matrix"

An important distinction is often made in object-oriented
programming between the public (or external) view and the private (or
internal) view of the implementation of a class. The private view is the
view of the implementor and the Spotfire S+ software; any time you
use the Spotfire S+ structure of an object in defining a method, you
are using this private view. The public view is the conceptual view of
the object and the functions that operate on it—a matrix is an mxn
array, created by a function matrix. Ideally, the casual user of a
function should not be concerned with the private view—the public
view should be adequate for most situations.

When you are developing new methods, you must be clear at all
times about which view you are using, because the private view,
unlike the public view, is implementation dependent. If the
implementation of a class changes, methods defined using the private
view need to be examined to see if they are still valid. Using the
private view of objects in defining new methods is generally more
efficient, particularly for the most commonly used methods. Public
methods, on the other hand, are easier to maintain.

397

Chapter 12 Object-Oriented Programming in Spotfire S+

Prototype and
Representation

Inheritance
and Extension;
Is Relations

Metadata

398

A prototype, in the context of this chapter, is the basic template used to
create an instance of a classed object. For objects with slots, the
default prototype is normally specified by the class’s representation,
which assigns each named slot to a particular class. If the slot is
assigned a virtual class, such as "vector", you must also provide a
prototype for that slot, because you can not instantiate an object with
a virtual class. You may also want to provide a prototype for a slot
with a regular class if you’d like the default object to be something
other than the default object of the corresponding class. For example,
the .Dim slot of the matrix class needs to have length 2, instead of the
length O of the default integer object. This can be specified by
providing a prototype.

Whenever a class is created from an existing class in such a way that
all existing methods for the existing class continue to work for objects
of the new class, we say that the new class extends the existing class,
and that the new class inherits the methods of the existing class, or
simply, that the new class inherits from the existing class. In Spotfire
S+ 5.0 and later, inheritance is much more rigorous than it was in
earlier versions of Spotfire S+; you can no longer define arbitrary
inheritance structures and expect them to work.

Is relations allow you to test and specify inheritance relations. For
example, some arrays are matrices, but only those which have a
length 2 .Dim slot. We can formalize this by defining an Is
relationship using setIs as follows:

setIs("array", "matrix",
test = function(object)length(dim(object))==2)

Generic functions, methods, and class definitions are all stored in
ordinary Spotfire S+ objects, but these objects are not stored on
ordinary databases. Instead, they are stored, with mangled names, in
meta databases that accompany each Spotfire S+ chapter. The idea is
that information about the class system and its operation is not really
data, it is information about the data, and thus it makes sense to
separate it from the actual data stored in the ordinary databases.

You can view and manipulate objects in meta databases using the
standard functions objects, get, exists, and so, by specifying meta=1
as one of the arguments. For example, we can list the objects in the
working database’s meta database as follows:

Fundamentals of Object-Oriented Programming

> objects(meta=1)

[1] "Cicircle” "Ci#point” "Cf#frectangle”
[4] "Cizseven" "Classes" "Generics"
[7]1 "Groups" "M#Ops" "ML

[10] "MfH[<-<-" "Mffcoerce" "Mfdraw”

[13] "Mftjitter” "Mifshow"

For most purposes, however, you will want to manipulate these
objects using special functions written to manage the metadata.
Throughout this chapter we will use these special functions, such as
setMethod, setClass, etc.

399

Chapter 12 Object-Oriented Programming in Spotfire S+

DEFINING NEW CLASSES IN SPOTFIRE S+

400

Defining new classes in Spotfire S+ involves specifying precisely what
information defines the class, sharply contrasting objects within the
class from those outside the class. For example, a matrix is defined to
be a structure with an integer vector of length 2 specifying the
number of rows and columns, with an optional set of row and column
names. Objects that don’t satisfy the defining requirements are not
members of the class.

As an example of new classes in Spotfire S+, we will define a class of
graphical shapes. In our simple model, shapes will be specified as a
sequence of points. Open shapes, such as line segments and arcs, are
specified by their endpoints. Closed shapes, such as circles and
squares, are specified by starting points and points that uniquely
determine the shape. For example, a circle is specified as a center (the
anchor for the figure) and a point on the circle. A square is specified by
one anchor corner and a side length, while a rectangle is specified by
one anchor corner and its opposite diagonal corner. These
specifications provide the necessary information for defining our new
classes.

To actually define the class, we can use the function setClass with
either a representation defining named slots or a prototype that specifies
what default objects can be combined to create a default object of the
new class. For our purposes, named slots seem useful, so we want to
specify a representation, as in the definition of the class "point":

> setClass("point", representation(x="numeric",
y="numeric"))

We then use this fundamental point class as a central part of our
representation of our shapes:

> setClass("circle"”, representation(center="point",
radius="numeric"))

> setClass("rectangle™, representation(anchor="point",
diagonal="point"))

Whenever you specify a class definition with setClass, Spotfire S+
creates an object of class classRepresentation in the corresponding
meta database. This object, which can be viewed by calling the
function getClass, contains the information specified by the call to

Defining
Generator
Functions

Defining New Classes in Spotfire S+

setClass as well as information about the class that might be
provided after its original definition by calls to functions such as
setls.

We can view the information about our circle class as follows:

> getClass("circle™, complete=F)

Slots:
center radius
"point"™ "numeric"

We also need the following utility function, as.point, in the examples
which follow:

as.point <-
function(p)
{
if(is.numeric(p) && length(p)==2)
list(x=p[1l], y=p[21)
else if(is.list(p) && !is.null(p$x) && !is.null(p$y))
p
else if(is.matrix(p))
list(x=p[,1], y=p[.2]1)
else stop(“Cannot interpret input as point”)
}

Our motivation for defining these shapes is to create a rudimentary
drawing tool using a graphics windows. For this reason, we define our
classes so that objects can be created easily using a sequence of mouse
clicks via the Tocator function. For example, here is a generator (or
constructor) function for circles:

circle <-

function(center, radius, point.on.edge)
{
center <- as.point(center)
val <- NULL
if(length(center@x) == 2) {
val <- new("circle™, center = new("point",
x = center@x[1], y = center@y[1]),
radius = sqrt(diff(center@x)"2 +
diff(center@y)~2))

401

Chapter 12 Object-Oriented Programming in Spotfire S+

else if(length(center@x) == 1) {
if(missing(radius)) {
point.on.edge <- as.point(point.on.edge)
}
else if(is.atomic(radius)) {
val <- new("circle", center = center,
radius = abs(radius))

}
else {

point.on.edge <- as.point(radius)
}

if(is.null(val)) {
val <- new("circle", center = new("point"™,
x = center@x[1], y = center@y[1]),
radius = sqrt((point.on.edge@x -
center@x)”2 + (point.on.edge@y -
center@y)"2))

}
val

}

The circle function lets you express the circle in several natural
ways. You can give the center as either a list containing x,y
components, as you might get from the Tocator function, or you can
give it as an xy-vector. You can give the radius as a scalar, or a second
point from which the radius can be calculated. For example, here is
how you might define a simple circle from the Spotfire S+ command
line:

> simple.circle <- circle(center = c(0.5, 0.5),radius=0.25)
> simple.circle
An object of class "circle"

STot "center":
An object of class "point"

Slot "x™:
[1] 0.5

Slot "y™:
[1]1 0.5

Slot "radius":

402

Defining
Methods

Defining New Classes in Spotfire S+

[1] 0.25

Note the recursive nature of our representation for circles. Objects of
class circle have two slots, one of which is occupied by a point
object which also contains two slots.

The default printing for circles seems rather too formal and
unnecessarily tied to the formal representation of the object, when all
we really need to see is a center and radius. Thus, it makes sense to
define a method for use with the show generic function. To define a
method, you use the setMethod function, which in its simplest form
takes three arguments: a character string specifying the generic
function to which the method applies, a character string specifying the
signature (typically, just the class) for which the method applies, and
the actual method definition.

Here is our definition:

> setMethod("show", "circle",

function(object)

{
cat(" Center: x =", object@center@x, "\n ",
"y =", object@center@y, "\n ",

"Radius:", object@radius, "\n ")
}
)

This is a simple method, but it provides the result we desire:

> simple.circle

Center: x = 0.5
y = 0.5

Radius: 0.25

When defining a method, you must ensure that its arguments match
those of the generic.

You can specify the function definition in either of two ways. The first,
which we used in the definition of our show method for circles, puts a
function definition (or, equivalently, the name of an ordinary function
object) in the method; this definition is then stored in the meta
database as the definition for the method. The second, which you
may find preferable if you’ve worked with SPOTFIRE S+ for a long
time, puts a function call in as the definition of the method. This

403

Chapter 12 Object-Oriented Programming in Spotfire S+

allows you to define an ordinary function on an ordinary database as
your basic method definition, and then have the actual Spotfire S+
method stored on the meta data call this function. There are,
however, some drawbacks to this second approach. In particular, if
your function needs to use substitute, sys.parent, or similar
functions, the function call method will not work because the function
call is evaluated in frame 2, not the top-level frame 1.

Defining You create generic functions with the function setGeneric. Generic
Generic functions in Spotfire S+ tend to be extremely simple, thanks to the
utility function standardGeneric. The standardGeneric is the
standard body of a generic function, which simply indicates that the
generic just dispatches a method to do the real work. The typical
generic function consists of a single call to standardGeneric. For
example, we define the draw function as a generic function; we can
draw shapes with draw, and so long as we define appropriate methods
for all classes of shapes, we can expect it to do the right thing:

Functions

> setGeneric("draw", function(x, ...)
standardGeneric("draw"))

This standard definition signals the evaluator that draw is a generic
function, and thus the evaluator should first look for a specific method
based on the class of the object, starting with the most specific class,
and moving up through less specific classes until the most general
class is reached. All Spotfire S+ objects share the same general class,
class default. In our case, there is no default method for draw. Here,
for example, is a circle method for the generic function draw:

> setMethod("draw", "circle",
function(x, ...)
{

center <- x$center
radius <- x$radius

symbols(center, circles = radius, add = T, inches = F,
)

If you call draw with an object of class circle as its argument, the
Spotfire S+ evaluator finds the appropriate method and draws a circle
on the current graphics device.

404

Defining New Classes in Spotfire S+

For ordinary functions that you would like to make generic, you need
not create the generic explicitly. Simply define a method for a non-
default class, and Spotfire S+ automatically creates a generic function
and takes the existing ordinary function and turns it into the new
generic’s default method.

As an illustrative example, consider the jitter function, used to
separate points for plotting. What jitter does is add a small amount
of noise to each observation, which enables points to be distinguished
without altering the actual shape of the data very much. You can
make jitter generic in your home directory by defining a character
method for it; the character method pastes together the original
character vector and a random number printed to factor significant

digits:

> isGeneric("jitter")

[11 F

> setMethod("jitter", "character", function(x, factor=1){
paste(x, format(runif(length(x)), digits=factor),
sep=".")
}

)

redefining function "jitter" to be a generic function on

database ".Data"

Warning messages:

Conflicting definitions of "jitter" on databases ".Data"
and "splus™ in: assign(f, what@genericDef, where = where)

> jitter(state.name)

[1] "Alabama.0.8 " "Alaska.0.9 "

[3] "Arizona.l " "Arkansas.0.2 "
[5] "California.0.3 " "Colorado.0.3 "
[7] "Connecticut.0.4 " "Delaware.0.4 "

> isGeneric(jitter)
(11T

Warning

Note that although the jitter function is now generic, it is generic only on the working data, not
in the system databases. In particular, if you are interested in defining a system function as
generic for everyone at your site, you will need to modify your site’s .S.init file to include a
system-wide directory in which the function has been defined to be generic.

405

Chapter 12 Object-Oriented Programming in Spotfire S+

EDITING METHODS

406

Because methods aren’t stored on ordinary databases with ordinary
names, you can’t simply edit them with fix as you would ordinary
functions. Instead, you must dump them, using the dumpMethod
function, edit them with your favorite text editor, such as the Spotfire

S+ Script window in Microsoft Windows®, then source the file back
in to SPOTFIRE S+.

To dump a method with dumpMethod, you need to specify the generic
function name and the appropriate signature for the method you want
to edit. For example, if we want to edit our character method for
jitter, we can use dumpMethod as follows:

> dumpMethod("jitter™, "character™)

The file jitter.character.q is created when dumpMethod is called.
Opening the file with a text editor or Script window (in Windows)
shows the following:

setMethod("jitter", "character",
function(x, factor = 1)
{
paste(x, format(runif(length(x)), digits =
factor), sep =".")
}
)

Note that the output is in standard dump format, suitable for use by
source.

If you want to edit all the methods for a given generic, you can dump
all the methods at once using the dumpMethods function. This can
sometimes be dangerous, however, particularly if you have methods
spread over several libraries. In general, it is safest to edit just one
method at a time.

Group Methods

GROUP METHODS

Four groups of Spotfire S+ functions, all defined as calls to . Internal
or .Call, are treated specially by the methods mechanism: the Ops
group, containing standard operators for arithmetic, comparison, and
logic; the Math group, containing the elementary vectorized
mathematics functions (for example, sin, exp); the Math2 group,
containing just two functions, round and signif, that are like the
functions in the Math group but take an additional argument; and the
Summary group, containing functions (such as max and sum) that take a
vector and return a single summary value. The table below lists the
functions in each of the three groups; note that Arith, Compare, and
Logic are all groups as well as Ops..

Table 12.1: Functions affected by group methods

Group Functions in Group
Ops Arith: "+" (unary and infix), "-" (unary
and .inf.ix), ll*ll’ ll/\ll, ll%%"’ ll%/%ll’
ll/ll
Compare: ||=="’ n>n’ n<n, n!=n, ||<="’ ||>="’
compare
Logic: "!"(unary not), "&", "|"
Math abs, acos, acosh, asin, asinh, atan, atanh,

ceiling, cos, cosh, cumsum, cumprod, exp,
floor, gamma, lgamma, log, 1ogl0, sin,
sinh, sqrt, tan, tanh, trunc

Math2 round, signif

Summary all, any, max, min, prod, range, sum

Rather than writing individual methods for each function in a group,
you can define a single method for the group as a whole. There are 17
functions in the Ops group (19 if you count both the unary and infix
forms of "+ and "-") and 24 in the Math group, so the savings in
programming can be significant. Of course, in writing a group
method, you are responsible for ensuring that it gives the appropriate
answer for all functions in the group.

407

Chapter 12 Object-Oriented Programming in Spotfire S+

Group methods are defined in the same way as ordinary methods,
using setMethod. If the method handles all the functions in the group
in the same way, it can be quite simple, as for example in the Summary
method for class numericSequence:

> getMethod("Summary", "numericSequence")
function(x, ..., na.rm = F)
callGeneric(as(x, "numeric"), ..., na.rm = na.rm)

Caution

One caution about the Summary group—it does not include either mean or median, both
of which are implemented as Spotfire S+ code.

408

However, the economy of the group method is still significant even if
a few of the functions need to be handled separately. As an example
of a nontrivial group method, we will define a group of operators for
the finite field Z7. This field consists of the elements {a7=0, 7= 1, ¢7
=2,d7=3, ¢7=4, f7=5, g7= 6} (usually just called 0 to 6) with the
usual operations defined so that any operation on two elements of the
set yields an element of the set. Thus, for example, c7 * e7 = b7 =1,
d7 / f7 = c7 = 2, and so on. Addition, subtraction, and
multiplication are simply the usual arithmetic operations performed
modulo 7, but division requires some extra work to determine each
element’s multiplicative inverse. Also, while elements of the field can be
meaningfully combined with integers, they cannot be meaningfully
combined with other real numbers or complex numbers.

We define a new class, zseven, to represent the finite field Z7 as
follows:

> setClass("zseven", prototype=integer(0))

The generator function is simple:

zseven <-
function(x) {
if(any(x %% 1 !=0))
{ x <- as.integer(x)
warning("Non-integral values coerced to int")
}
X <- X %% 7
x <- new("zseven", x)

Group Methods

}

The following example shows the value returned by a typical input
vector:

> zseven(c(5,10,15))
An object of class "zseven"
[11 531

We can suppress the printing of the class information by defining a
method for show:

> setMethod("show™, "zseven", function(object)
{

object <- unclass(object)

print(object)
}

But the significant part of our work is to define a group method
Ops.zseven that will behave correctly for all 17 functions in the Ops
group. Most of these are binary operations, so we begin by defining
our method to have two arguments, el and e2, with e2 defaulting to
NULL to match the generic:

> setMethod("Ops", "zseven", function(el,e2=NULL) {})

While performing calculations, we want to ignore the class of our
operands, so we begin with the following assignment:

el <- unclass(el)

We do not unclass e2 immediately, because we have to allow for the
possibility that the operation is one of the unary operators ("+", "-",
and "!"). We also want to test that el is a value that makes sense in Z.7

arithmetic:

Test that el is a whole number
if(is.complex(el) || any(el %% 1 !=0))
stop("Operation not defined for el")
Allow for unary operators
if(missing(e2))
{ if(.Generic == "+")
value <- el
else if(.Generic == "-")

409

Chapter 12 Object-Oriented Programming in Spotfire S+

value <- - el
else if (.Generic == "sign")
value <- sign(el)
else value <- lel
}

(The object .Generic is created in the evaluation frame, and contains
the name of the function actually being called.)

Now we are ready to include e2 in our calculations; we need to treat
division specially, but everything else passes on to the generic
methods incorporated in Spotfire S+’s internal code. This passing is
accomplished via the function callGeneric, which determines the
name of the currently called function and constructs a call to it with
the arguments provided (we’ll define the inverse function later in the
chapter):

else e2 <- unclass(e?2)
Test that e2 is a whole number
if(is.complex(e2) || any(e2 %% 1 !=0))
stop("Operation not defined for e2")
Treat division as special case
if(.Generic == "/")
value <- el * inverse(e2, base = 7)
else value <- callGeneric(el, e2)

Finally, we need to insure that numeric results are of class zseven,
while logical results are passed back unchanged:

switch(class(value),
integer = zseven(value),
logical = value)

Put together, the complete method looks like this:

> setMethod("Ops", "zseven",
function(el, e2=NULL) {
el <- unclass(el)
Test that el is a whole number
if(is.complex(el) || any(el %% 1 != 0))
stop("Operation not defined for el")
Allow for unary operators
if(missing(e2))
{ 1if(.Generic == "+")

410

Group Methods

value <- el

else if(.Generic = "-")
value <- - el
else if (.Generic == "sign")

value <- sign(el)
else value <- lel
} else
{ e2 <- unclass(e?2)
Test that e2 is a whole number
if(is.complex(e2) || any(e2 %% 1 !=0))
stop("Operation not defined for e2")
Treat division as special case
if(.Generic == "/")
value <- el * inverse(e2, base = 7)
else value <- callGeneric(el, e2)
}
switch(class(value), numeric = zseven(value),
logical = value)
}

An alternative approach, which also works, is to ignore the special
case of division in the group method, and write an individual method
for division:

setMethod("/", "zseven",
function(el, e2)
{
el <- unclass(el)
e2 <- unclass(e?2)
Test that el is a whole number
if(is.complex(el) || any(el %% 1 !=0))
stop("Operation not defined for el")
Test that e2 is a whole number
if(is.complex(e2) || any(e2 %% 1 !=10))
stop("Operation not defined for e2")
zseven(el * inverse(e2, base = 7))

411

Chapter 12 Object-Oriented Programming in Spotfire S+

Individual methods, if they exist, override group methods. In this
example, the overhead of testing makes it simpler to incorporate the
special case within the group method.

Note on Inherited Classes

S searches for a matching method for a generic function using the following algorithm:
First, it looks for a method that has an exact match of the signature.

Second, it looks for a group generic method with an exact match of the signature.
Third, it searches for methods that match using inherited classes.

It searches for inherited-class methods starting with the last argument, and stops as soon as it
finds a method for the function or group generic that matches a set of actual and inherited
classes. Therefore, it will preferentially match a signature with the exact class for the first
argument, and an inherited class for the second argument, over another method that might have
an exact match for the second argument, and inherited class for the first argument.

The special case of division required us to specify an inverse function
to find multiplicative inverses. A working version can be defined as
follows:

inverse <-
function(x, base = 7)
{
set <- 1l:base
Find the element e2 of the set such that e2*x=1
n <- length(x)
set <- outer(x, set) %% base
return.val <- integer(n)
for(i in 1:n)
{ return.val[i] <- min(match(1l, set[i, 1))
}

return.val

412

Group Methods

Now that we’ve done all the work, let’s try a few examples:

> x7 <- zseven(c(3,4,5))
> y7 <- zseven(c(2,5,6))
> x7 * y7

[11 6 62

> x7 [/ y7

[1] 552

> X7 + y7

[11 52 4

> x7 - y7

[11 166

> x7 = y7

[1] F FF

> X7 >=y7

[1]TFF

> -x7

[1] 4 3 2

Just to be sure our last answer is what we expect it to be, we try one
final example:

> -x7 + x7
[11000

We get the expected answer.

413

Chapter 12 Object-Oriented Programming in Spotfire S+

EXTRACTION AND REPLACEMENT METHODS

414

Extraction functions are functions that extract subsets of objects to
create new objects. The most common extraction function in
SPOTFIRE S+ is "[", the subset operator. If your new class extends an
old class in a natural way (as our zseven class extends the integers),
you may not need to define extraction methods. If your new class is
built from components of different classes with competing extraction
methods, you will probably want to create extraction methods to
make subset operations well-defined.

Suppose, for example, that we define a class of ordered pairs with a
representation as two numeric vectors. We can do this as follows:

> setClass("opair™, representation(x="numeric",
y="numeric"))

We can create a generator function for this class as follows:

> opair <- function(x,y){ new("opair"™, x=x, y=y) }

If we then create an instance of an ordered pair object and try to
extract its first element, we get an error:

mypair <- opair(x=1:10,y=(1:10)"2)

mypair[1l]

Problem in mypair[1l]: function "[" not defined for
non-vector class "opair"

Use traceback() to see the call stack

To remedy this, we need to define an extraction method. A simple
one is easily defined—it takes advantage of each of the slots being a
numeric vector and uses the existing vector methods within the slots:

> setMethod("[", "opair", function(x,..., drop=F)
opair(x@x[...], x@y[...1))

> mypair[l]

An object of class "opair"

STot "x":
[1] 1

Slot "y":
[1]11

Extraction and Replacement Methods

When you define a method, you must be careful to make sure the
method’s arguments are the same as the generic’s. You can use the
function functionArgNames to quickly verify the generic’s argument
names:

> functionArgNames("[")
[1] uXu u‘.‘u udr\opu

Replacement functions are functions that can appear on the left side of
an assignment arrow, typically replacing either an element or
attribute of their arguments. All replacement functions act
generically, that is, methods can be written for them.

As an example, consider again our class zseven. We want to define
replacement to ensure that any new value remains in the class—that is,
we want to ensure that all the elements in an object of class zseven are
from the set {0, 1, 2, 3, 4, 5, 6}. To do this, we write the following
method:

setReplaceMethod("[", "zseven",
function(x, ..., value)
{

if (is.complex(value) || value %% 1 != 0)

stop("Replacement not meaningful for this value")
X <- unclass(x)
x[...] <- value %% 7
zseven(x)
}
)

This method is an example of a public method; it does not use any
special knowledge of the implementation of the class zseven, but
simply the public view that zseven is essentially just the integers mod
seven.

415

Chapter 12 Object-Oriented Programming in Spotfire S+

416

PROGRAMMING THE USER
INTERFACE USING SPOTFIRE

S+
The GUI Toolkit 419
GUI Objects 421
GUI Toolkit Functions 421
General Object Manipulation 422
guiCreate 422
guiCopy 425
guiModify 426
guiMove 427
guiOpen 428
guiOpenView(docClassname, Name ,...) 429
guiRemove 430
guiSave 431
guiRemoveContents 431
guiSetRedraw(Name, Redraw) 432
Information On Classes 434
guiGetClassNames 434
guiPrintClass 434
guiGetArgumentNames 435
Information on Properties 437
guiGetProperty Value 437
guiGetPropertyOptions 438
guiGetPropertyPrompt 438
Object Dialogs 440
guiDisplayDialog 440
guiModifyDialog 442
Selections 445
guiGetSelectionNames 445
guiSetRowSelection 446

417

Chapter 13 Programming the User Interface Using Spotfire S+

418

guiGetRowSelection
guiGetRowSelectionExpr

Options
guiSetOption
guiGetOption
Graphics Functions
guiPlot
Identifying Specific Graphics Objects
guiGetPlotClass
guiUpdatePlots
Utilities
guiRefreshMemory
guiExecuteBuiltIn

Summary of GUI Toolkit Functions

447
447

448
448
448

449
449
449
450
451

452
452
452

453

The GUI Toolkit

THE GUI TOOLKIT

Spotfire S+ is equipped with a graphical user interface (GUI) toolkit

for programmers to create and manipulate GUI components: menus,
toolbars, dialogs and graphics. The Spotfire S+ GUI toolkit is a set of
Spotfire S+ functions that enables communications between Spotfire

S+ applications and Windows. It provides facilities for the following

applications:

1. Automating an interactive Spotfire S+ session.
2. Extending or customizing the existing Spotfire S+ GUI.
3. Developing a new GUI on top of Spotfire S+.

This toolkit is object-oriented and can operate on virtually any
Spotfire S+ GUI object. The functionality of the GUI toolkit is also
available using the point-and-click operations in dialogs. The toolkit
approach is for Spotfire S+ programmers who deal with GUI
applications that are too complex for simple point-and-click
operations. The general user may find it more convenient to use the
dialog based tools.

GUI programs, called scripts, can either be run in the Commands
window, just like any other Spotfire S+ program, or from Script
windows, which open when a script file is opened.

A set of sample script files, shipped with Spotfire S+, illustrate various
uses of the toolkit (these are located in the splus/samples/dialogs
directory). An example showing how to create and display a simple
function dialog is listed in Table 13.1.

Note

This chapter applies to Windows users only. The guiCreate and guiModify functions (and

. . . . ® .
associated functions) are not available in the UNIX version.

419

Chapter 13 Programming the User Interface Using Spotfire S+

Table 13.1: This script to display a dialog is in the file simplel.ssc.

simplel.ssc: creates and displays a simple function dialog.
This is the simplest function dialog for a function with one argument.

f-------

Step 1: define the function to be executed

when the OK or Apply button is pushed
fk-------

guiCreate("Property”™, Name = "simplelProp0"™, DialogControl = "String",
DialogPrompt = "MyReturn", DefaultValue = "w");

guiCreate("Property", Name = "simplelPropl™, DialogControl = "String",
DialogPrompt = "&Y Value", DefaultValue = "30");

AREEPED

Step 3: create the function info object

e

guiCreate("FunctionInfo", Function = "simplel",
PropertylList = c("simplelProp0", "simplelPropl™))

fomn -

Step 4: display the dialog

This step must be preceded by all previous steps that created

all required GUI objects. The statement below is equivalent to

double click on the function name in the object explorer.

It can be embedded in an S function to display the dialog from anywhere.

guiDisplayDialog("Function™, Name= "simplel™);

Running this script file displays the dialog in Figure 13.1. There are
two ways to run a script, either from the menus by opening the script
file, then clicking the Run toolbar button, or from entering the
following command to the Commands window:

> source("simplel.ssc™)

420

simplel

kyReturn

The GUI Toolkit

==
Iﬂ ¥ Walue IEEI

o]

Eancell Apply | I<| >| CLirrehk Help |

Figure 13.1: The dialog created by simplel.ssc.

GUI Objects

GUI Toolkit
Functions

GUI objects are the building blocks of the graphical user interface
subsystem of Spotfire S+. They are created, modified, and
manipulated according to the events driven by user-interaction with
the GUI These events are recorded in the History log as sequences of
Spotfire S+ commands. Note that actions from scripts loaded or
created, and run, in the Script window are not then stored in the
History log. To get a complete list of all these building blocks type:

> guiGetClassNames()

GUI objects created are listed in the Object Explorer, but are not
stored in the standard Spotfire S+ databases. Instead they are kept in
special binary files, which are loaded on start-up and saved on exit.

Spotfire S+ functions in the GUI toolkit operate on GUI objects and
generally have gui as prefix, for example: guiCreate, guiModify.

The history log records all GUI operations in a session, using these
Spotfire S+ functions. The user is encouraged to look at the History
log for examples of how these functions are used.

Individual Spotfire S+ functions in the GUI toolkit are described
below. The functions do not return anything, unless a return value is

described.

421

Chapter 13 Programming the User Interface Using Spotfire S+

GENERAL OBJECT MANIPULATION

The Spotfire S+ graphical user interface is an object-oriented system.
Graph elements, menus, and dialog components are all objects which
may be manipulated.

The two most common actions to perform on an object are creating
the object and modifying the object. Objects may also be copied,
moved, and removed.

Documents such as graph sheets and scripts may be created, opened,
viewed, saved, and removed.

Graphical user interface objects persist in memory for the duration of
a Spotfire S+ session. Interface elements such as menus and dialogs
are automatically saved to disk at the end of a session. The user is
prompted as to whether graph objects are to be saved as the end of a
session.

guiCreate The function guiCreate creates a new GUI object of the type
specified by its first argument. The object name is actually specified
by an optional argument, although to be useful this is in practice a
required argument. In most cases this is Name, but in some cases it is
different, such as NewName .

This function is referred to as a property command, which means that
the arguments are the properties of the object or class that the
function is working on. Because this function works on objects or
classes, the number of arguments depends on the number of
properties for the object or class. Use
guiGetArgumentNames(classname) to return a list containing the valid
argument names for the class in question.

Note

In the current version of guiCreate, creating an object with the same class and object name as an
existing one would modify the existing object. You must use guiRemove before guiCreate to
ensure the clean creation of a new object.

422

Table 13.2: Arguments to guiCreate.

General Object Manipulation

Argument

Required

Description

classname

Required

A character string specifying the
class of the object to be created.
Use guiGetClassNames() to geta
list of all class names which can be
used here. There are many
options, including "Property",
"BoxPlot", "XAxisTitle", and so
on.

Name

Usually required

A character string specifying the
name attached to the created
argument. See the discussion on
Object Name below.

There is a whole range of optional
arguments, which vary depending
on which classname is specified.

Optional

Use
guiGetArgumentNames(classname)
to get a list of all the argument

names which can be used here.

Object Name

For most of the functions in the GUI Toolkit the name of the object
must be specified. This argument (usually called Name) is a character
string containing the object path name. The syntax for this object path
name is the same as the file path name but the delimiter is “$” rather
than “\” or “/”, and the leading “$$” is used to specify the root object.
For example, if a box plot name “B0X1” is created in a graphsheet
name “GS1”, then the function to create this box plot would be

> guiCreate("Box", Name="$$GS1$BOX1")

All objects can have names assigned to them through scripts. Objects
can also have a number assigned to them, but in all cases the Name is
passed as a character string. The number indicates the object’s
position in the list of objects of that type for the document the object
is located in. For example, if you want to refer to the name of the
main title that is in the first plot of the graph called GS1, you would
specify:

423

Chapter 13 Programming the User Interface Using Spotfire S+

424

> guiModify("MainTitle",Name = "$$GS1$1$1", Title ="Title")

The first part of the name path “$$GS1” represents the name of the
graph sheet that the title is in. The next part “$1” represents the first
graph in the graph sheet that the title is in. The third and last “$1” is
the number of the title you want to modify, in this case the first main
title in the graph.

The name immediately following a double delimiter “$$” is always
treated as the name of a graph sheet or other document that the
object is in. Names immediately following a single delimiter “$” can
be either the name of the graph or other container for the object or
the object name itself.

For commands that work with objects, it is not necessary to specify
the complete path to the object name. You can specify just the name
of the object and the path will be determined based on which
document is current. For example,

> guiCreate("Arrow", Name = "ARROW1")

ARROW1 will be searched for in the current graph sheet and in the
current graph in that graph sheet document. If not found, it will be
created along with the necessary container objects. In this case a
graph sheet would be created to contain the arrow.

If the path has only two parts, you can use “$$” and “$” to distinguish
between graphs and graph sheets. For example,

> guiCreate("Arrow", Name = "$$GRAPH1$ARROW1")
This command will create the arrow named ARROW1 in the graph GS1
in the current graph sheet.

> guiCreate("Arrow"”, Name = "$$GSI$ARROWL")

This command will create the arrow ARROW1 in the graph sheet GS1.
This implies that the arrow is not inside a graph but inside the graph
sheet.

Example

> guiCreate ("Property", Name = "simplelPropl",
+ DialogControl = "Integer")

This will create a property object called simpTlelPropl. The Object
Explorer can be used to examine the contents of this object.

guiCopy

See Also

General Object Manipulation

guiCopy, guiModify, guiOpen, guiOpenView, guiSave,
guiGetArgumentNames, guiGetClassNames, guiGetPropertyValue,

guiDisplayDialog

This function copies the object identified by Name and classname to a
new object called NewName. The list of other arguments varies by
classname, and can be used to change any properties of the copied

object.

This function is also a property command; see guiCreate for more

details on the implications of this.

Table 13.3: Arguments to guiCopy.

Argument

Required

Description

classname

Required

A character string
specifying the class of the
object to be copied.

Name

Required

A character string
specifying the source object
path name.

NewName

Required

A character string
specifying the destination
object path name.

Examples

> guiCopy ("Property"™, Name="simplelPropl",

+ NewName="simplelProp2")

> guiCopy ("Property™, Name="simplelPropl”,
+ NewName="simplelProp2", DialogControl="Float",

+ DefaultValue="2.2")

425

Chapter 13 Programming the User Interface Using Spotfire S+

The first example just copies an object, the second modifies two
properties in the copied object only. Source objects are not modified.

The Object Explorer can be used to examine the contents of new
objects, or use the guiGetPropertyValue function.
See Also

guiCreate, guiModify, guiOpen, guiOpenView, guiSave,
guiGetArgumentNames, guiGetClassNames, guiGetPropertyValue,
guiDisplayDialog

guiModify

This function modifies a GUI object of the type identified by Name
and classname. This function is a property command, see guiCreate
for more details. The optional arguments are used to modify the
object properties.

Table 13.4: Arguments to guiModify.

Argument Required Description

classname Required A character string
specifying the class of the
object to be modified.

Name Required A character string
specifying the object path
name.

Optional arguments are used to modify the objects properties.

Example

> guiModify("Property"™, Name = "simplelPropl"”,
+ DialogControl = "String", DefaultValue = "0K")

This will modify the simplelPropl property object to use String as its
dialog control type, with the value “0K”.

426

General Object Manipulation

See Also

guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiSave, guiGetArgumentNames, guiGetClassNames,
guiGetPropertyValue, guiDisplayDialog

guiMove

This function moves the object to a new location, with the option of a
new name specified by NewName. The list of other arguments varies by
classname, and is used to change any properties of the moved object.

This function is a property command; see guiCreate for more details.

Table 13.5: Arguments to guiMove.

Argument Required Description

classname Required A character string
specifying the class of an
object to be moved.

Name Required A character string
specifying the object path
name.

NewName Required A character string

specifying the destination
object path name.

Optional arguments allow an object to be modified while being moved.

Example
> guiMove ("Property"™, Name="simplelPropl",
+ NewName="simplelProp3", DefaultValue = "good")

This will move the simplelPropl property object to simpTlelProp3.
Also, the DefaultValue property is modified to “good.” The Object
Explorer can be used to examine the contents of this object.

427

Chapter 13 Programming the User Interface Using Spotfire S+

See Also

guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiSave, guiGetArgumentNames, guiGetClassNames,
guiGetPropertyValue, guiDisplayDialog

guiOpen

Opens a document identified by FileName and docClassname. Using
the optional arguments: Hide, Show, Top, Left, Width, and Height, you
can control the display location and size of the document window.

You can open a graph into a full screen by specifying Show =
FullScreen. This function is a property command, see guiCreate for
more details.

Table 13.6: Arguments to guiOpen.

Argument Required Description

docClassname Required A character string
specifying the class of a
document object to be
opened: Script,
GraphSheet, Report, or
ObjectBrowser.

FileName Required A character string giving
the name of the file
including the file’s title plus
the entire directory path.

Hide Optional FALSE will open and display
the object, TRUE will open
the window but it will not
become the active window.

Show Optional One of: “Norma1l”,
“Minimized”, “Maximized”,
“FullScreen”. FullScreen

only applies to GraphSheet.

428

Table 13.6: Arguments to guiopen.

General Object Manipulation

Argument

Required

Description

Duration

Optional

Amount of time in seconds
that a graphsheet is
displayed on a full screen.
If set to O, the graph is
displayed until a key or
mouse button is clicked.

Top
Left

Optional

“Auto” lets the system
decide on the window size,
or specific coordinates can
be specified for the top-left
corner of the window.

Width

Optional

“Auto” or a specific width

Height

Optional

“Auto” or a specific height

Example

> guiOpen("Script",
Files\\TIBCO\\splus8l\samples\\dialogs\\simplel.ssc")

FileName = "C:\\Program

This will open the script file specified by FileName and display it in a

script window.

See Also

guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiSave, guiGetArgumentNames, guiGetClassNames,
guiGetPropertyValue, guiDisplayDialog

guiOpenView(docClassname, Name ,...)

Opens a new view on a document identified by Name and
docClassname. The document class is one of Script, GraphSheet,
Report, ObjectBrowser, data.frame, vector, and matrix. The objects
must exist and be seen within the Object Browser.

429

Chapter 13 Programming the User Interface Using Spotfire S+

The required arguments, and optional arguments: Hide, Show, Top,
Left, Width, and Height are identical to those described for guiOpen.

Example

> guiOpenView("data.frame™, Name = "car.all™)

This will open a grid view for a data frame called car.all.

See Also

guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiSave, guiGetArgumentNames, guiGetClassNames,
guiGetPropertyValue, guiDisplayDialog

guiRemove

Remove the object identified by Name and classname.

Table 13.7: Arguments to guiRemove.

Argument Required Description

classname Required A character string
specifying the class of an
object to be removed.

Name Required A character string
specifying the object path

name.

Example

> guiRemove("Property"™, Name = "simplelProp3")

This will delete the property object simpTelProp3. This object should
disappear from the Object Explorer listing.

See Also

guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiSave, guiGetArgumentNames, guiGetClassNames,
guiGetPropertyValue, guiDisplayDialog

430

guiSave

General Object Manipulation

Saves the document identified by Name and docClassname to the file

specified by FileName.

Table 13.8: Arguments to guiSave.

Argument Required Description

docClassname Required A character string
specifying the class of an
document object to be
saved, from the same range
of options as guiOpen.

Name Required A character string
specifying the source object
path name.

FileName Required A character string giving
the name of the destination
path and file.

Example
> guiSave("Script", Name = "$$simplel™,
+ FileName = "C:\\work\\examples\\dialogs\\simplel.ssc")

This will save the script document simpTlel as:

"C:\\work\\guilocal\\examples\\dialogs\\simplel.ssc"

on your hard drive.

See Also
guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiGetArgumentNames, guiGetClassNames, guiGetPropertyValue,
guiDisplayDialog

guiRemoveContents

Use guiRemoveContents to remove the objects contained by the

specified container.

431

Chapter 13 Programming the User Interface Using Spotfire S+

For example,
> guiRemoveContents("GraphSheet", Name=guiGetGSName)

will clear the contents of the current graph sheet, leaving it blank.

guiSetRedraw(Name, Redraw)

This function allows you to control when a Graph Sheet is redrawn after
modifications are made to it by calls to guiModify ().

Table 13.9: Arguments to guiSetRedraw

Argument Required Description
Name Required A character string specifying
the Graph Sheet name.
Redraw Not required Determines whether Graph

Sheet automatically redraws
whenever there are
modifications made to it.
Default = T.

Example

Create a new Graph Sheet with a line plot:

> guiCreate("GraphSheet", Name="GS1")

> guiCreate("LinePlot"™, Name = "GS1$1$1",
DataSet = "fuel.frame",
xColumn = "Weight",
yColumn = "Disp.",
LineStyle = "Solid")

Turn off automatic updating of the Graph Sheet while we change the
attributes of the line plot:

> oldRedraw <- guiSetRedraw(Name="GS1", Redraw=F)
Modify the line plot; the Graph Sheet will not redraw:

> guiModify("LinePlot™, Name="GS1$1$1", LineColor="Lt
Green")

432

General Object Manipulation

Restore the previous redraw setting; the Graph Sheet now redraws:
> guiSetRedraw(Name="GS1", Redraw=oldRedraw)
See Also

guiModify

433

Chapter 13 Programming the User Interface Using Spotfire S+

INFORMATION ON CLASSES

The GUI contains a wide variety of object classes. Functions are
available which provide information on the classes available, and the
properties of each class.

guiGetClassNames

guiPrintClass

434

This function provides information about GUI classes of objects. It
lists all the possible GUI class names. There are no required or
optional arguments.

Return Value

It returns a list of all GUI class names, in ascending alphabetical
order.

Example
guiGetClassNames()

See Also

guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiSave, guiGetArgumentNames, guiGetClassNames,
guiGetPropertyValue, guiDisplayDialog

Use the guiPrintClass function to obtain a list of properties for any
GUI class, and for each property, a list of acceptable values. You can
use the results of this function to help construct calls to guiCreate and
guiModify. For example, suppose you wanted to make a line plot.
You could call guiPrintClass on the class "LineP1ot" and see what
properties such a plot contains, then construct a call to guiCreate to
build the plot you wanted, as follows:

> guiPrintClass("LinePlot™)
CLASS: LinePlot
ARGUMENTS:
Name
Prompt: Name
Default: "
DataSet

Prompt:
Default:
xColumn
Prompt:
Default:
yCoTumn
Prompt:
Default:
zColumn
Prompt:
Default:
wCoTumn
Prompt:
Default:

Data Set

x Columns

y Columns

z Columns

w Columns

PlotConditionType

Prompt:
Default:
Option List:

Type
UlAutOll

Information On Classes

[Auto, None, Specified Columns]

Spotfire S+ provides default values for most unspecified properties;
thus, the plot produced by the above command shows cyan open
circles at each data point. The default values for plot colors, line
styles, and other basic characteristics are set in Options » Graph
Styles. Other defaults can be modified by saving the object as a

default.

guiGetArgumentNames

This function returns a character string vector containing the
argument names relevant to the classname in the same order as the

argument names would appear using

guiGetPropertyValue(classname).

Table 13.10: Arguments to guiGetArgumentNames.

Argument

Required

Description

classname

Required

A character string
specifying the class of the
object in question.

435

Chapter 13 Programming the User Interface Using Spotfire S+

Return Value

A character string vector containing the list of all argument names for
the specified classname.

Example

> guiGetArgumentNames("Property")

[1] "Name" "Type"
[3] "DefaultValue" "ParentProperty"
[5] "DialogPrompt" "DialogControl"
[7] "ControlProgId" "ControlServerPathName"
[9] "Range™" "OptionList"
[11] "PropertyList" "CopyFrom"
[13] "OptionListDelimiter" "HelpString"”
[15] "SavePathName" "IsRequired"”
[17] "UseQuotes" "NoQuotes™
[19] "IsList" "NoFunctionArg"
[21] "Disable" "IsReadOnly"

[23] "NoStripSpaces"”

See Also

guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiSave, guiGetArgumentNames, guiGetClassNames,
guiGetPropertyValue, guiDisplayDialog

436

Information on Properties

INFORMATION ON PROPERTIES

When working with a GUI object, you may be interested in
information regarding the properties for that object or object class.
Functions are available which provide property names for a class,
acceptable values for a property, prompts for a property, and values
for a particular object.

guiGetPropertyValue

This function will return a character vector with the values of all the
properties of the identified object, in the same order as the argument
names listed by guiGetArgumentNames(cl assname).

Table 13.11: Arguments to guiGetPropertyValue.

Argument Required Description

classname Required A character string
specifying the class of the
object in question.

Name Required A character string
specifying the object path
name.

PropName Optional See Return Value below.

Return Value

If PropName is specified, the return value is a character string
containing the value of just that specified property. Otherwise, the
return value is a character string vector containing the property
values of all the properties of the object.

437

Chapter 13 Programming the User Interface Using Spotfire S+

Examples

> guiGetPropertyValue("Property™, "simplelPropl™)

[y "~ "Normal™ "" " " "Integer”
tzy " " " " " "

[13] "" " " "F" "E "F"

[191 "F" " "F" "F" "E"

> guiGetPropertyValue("Property", "simplelPropl",
PropName="Type")
[1]1 "Normal"

See Also

guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiSave, guiGetArgumentNames, guiGetClassNames,
guiGetPropertyValue, guiDisplayDialog

guiGetPropertyOptions

Use the guiGetPropertyOptions function to see a list of acceptable
values for a given GUI property. For example, you can determine the
available border styles for objects of GUI class "Box" as follows:

> guiGetPropertyOptions("Box"™, "BorderStyle™)

[1] "None™ "Solid" "Dots" "Dot Dash"
[5] "Short Dash" "Long Dash™ "Dot Dot Dash™ "Alt Dash"
[9] "Med Dash" "Tiny Dash"

guiGetPropertyPrompt

Use the guiGetPropertyPrompt to see basic information about the
property, such as its GUI prompt, its default value, and whether it is a
required property. For example, for the GUI class "Box", the Border
Style property information is as follows:

> guiGetPropertyPrompt("Box", "BorderStyle")
$PropName:
[1] "BorderStyle"

$prompt:
[1] "Style"

438

Information on Properties

$default:
[1] "Solid"

$optional:
[11 7T

$data.mode:
[1] "character"

439

Chapter 13 Programming the User Interface Using Spotfire S+

OBJECT DIALOGS

Every GUI object has a corresponding dialog. This dialog may be
displayed and its control values modified.

guiDisplayDialog

This function displays a dialog associated with a GUI object. The
dialog can be optionally displayed as modal or modeless, using the
bModal argument.

Table 13.12: Arguments to guiDisplayDialog.

Argument Required Description

classname Required A character string
specifying the class of the
object in question.

Name Required A character string
specifying the object path
name.

bModal Optional Set to TRUE for a modal

dialog, otherwise the dialog
will be modeless.

Example

> guiDisplayDialog("Property”™, "simplelPropl™)

440

This will result in the dialog shown in Figure 13.2.

Property Object [1956]

Mame: zimple1 Propl
Tope: INu:urmaI 'I
Default Y alue: I

Barent Fraperti I

Dialog Prompt; I
Dialog Contral: IInteger "I
[Eartne] Erogld: I

[Eartra] Eattif Emmes I

Hatge: I
[ptier et I
Braperty st I

I B3

I—

Option Ligt Delim: I
I—

I—

LCopy Fram:

Help String:
Save In Eile:
™ Iz Requied
™ Use Quates
™ NoGuates
™ 1= List

™ Mo Function g
™ Disable

I |z Read Only
I~ MaStip Spaces

OF. I Cancell Applyl I<| >l cLent

Help |

Object Dialogs

See Also

Figure 13.2: The simplelPropl property object is created afier running the simplel.ssc script.

guiCreate, guiCopy, guiModify, guiOpen, guiOpenView,
guiSave, guiGetArgumentNames, guiGetClassNames,

guiGetPropertyValue

441

Chapter 13 Programming the User Interface Using Spotfire S+
guiModifyDialog

This function is used to modify the current value of a live active
dialog. It enables communications between two or more active
dialogs.

Table 13.13: Arguments to guiModifyDialog.

Argument Required Description

wndID Required The Window (Dialog) ID of
a live active dialog,
obtained through a Spotfire
S+ callback function.

propName Required The name of the property
object.

propValue Required The new value to place in
the property specified by
propName.

442

Object Dialogs

Example

The file dlgcomm.ssc in the samples\dialogs directory contains a
complete script for creating and displaying two dialogs that can
communicate with each other through the function guiModifyDialog.

Table 13.14: The opening comments to the script file digcomm.ssc.

This file contains an example of a dialog (parentDlg) that can spawn
another dialog (childD1g). The childDlg can then modify a current property
value of the parentDlg.

#

1. Run this script to define all components for the two dialogs,

and to display parentDlg.

i

2. Click on the "Spawn a child" button in parentDlg, so the dialog

i childD1g appears.

#

3. In childDlg dialog, select an item in the "Child List"™ 1ist box.
i

4. Look in the "Child Choice" string box in the parentDlg dialog,

i it should now have changed.

Following the four steps in Table 13.14 dialogs should be displayed as
shown in Figure 13.3.

parentDlg | _] %] |

Child Choice | I am happy

ok | Cancel | apply | 1] [cument Help |

Figure 13.3: Click on Spawn a child, then select happy, to create the child dialog shown.

443

Chapter 13 Programming the User Interface Using Spotfire S+

childDlgy S B3 |
Child List [

QE. I Eancell [] =i| curent Help |

Figure 13.3: Click on Spawn a child, then select happy, to create the child dialog shown.

See Also

guiDisplayDialog, guiCreate, guiCopy, guiModify, guiOpen,
guiOpenView, guiSave, guiGetArgumentNames,
guiGetClassNames, guiGetPropertyValue

444

Selections

SELECTIONS

The standard approach to working with objects in a graphical user
interface is to select objects and then perform some action based on
the selection. Spotfire S+ provides programmatic access to determine
what objects are selected.

guiGetSelectionNames

This function returns a character string vector containing the names
of objects, in the order in which they have been selected by the user.

Table 13.15: Arguments to guiGetSelectionNames.

Argument Required | Description

classname Required A character string
specifying the class of the
object in question.

ContainerName Optional The container object name,
for example: “$$DS1”
(datasheet 1) or “$$6S1”
(graphsheet 1). If specified,
the selection is restricted to
a specific container in the
object hierarchy. If the
container name is omitted,
the active object for the
default container would be
used. For data objects, such
as data frames, this would
be the current Data
window. For plots, it would
be in the current
graphsheet.

445

Chapter 13 Programming the User Interface Using Spotfire S+

Table 13.15: Arguments to guiGetSelectionNames.

Argument Required Description

StartSelection Optional The first object of those
selected to be included in
the prepared list. The
default, -1, indicates all
relevant object names will
be returned.

EndSelection Optional The last object of those
selected to be included in
the prepared list. If
EndSelection is not
specified, or is -1, then only
one object name is
returned, that specified by
StartSelection.

Examples

> guiGetSelectionNames("factor")
> guiGetSelectionNames("factor", "beer")

The first example will return a character vector containing names for
selected factor data, from the currently active data frame. Note that
objects can be selected and seen in the Object Explorer.

The second will return a character vector containing names for
selected factor data, of the beer data frame.

guiSetRowSelection

Use the guiSetRowSelection one or more rows of a data set as
“selected”; that is, they appear highlighted in a Data window view,
and plotted symbols appear highlighted in a Graph window. This
selection can be done interactively in the GUI; this function permits
the same behavior programmatically. This is useful, for example, if
you want to highlight known outliers in a data set.

446

Selections

guiGetRowSelection

Use the guiGetRowSelection function to obtain a list of rows in the
current data set that are selected.

guiGetRowSelectionExpr

Use the guiGetRowSelectionExpr function to obtain a Spotfire S+
expression for the set of rows currently selected in a GraphSheet or
Data window. For example, consider the Data window shown in
Figure 13.4.

£l fuel frame [_[CT]
1 2 3 3 S 5 7

Mazda 929 Vi 2480 .00
Missan Maxima VB 3200.00
48 Oldsmobile Cutlass Ciera 4 2765 .00 151.00) 21.00
49 |Oldsmobile Cutlass Supremes Vi 3220.00 189.00 21.00
Toyota Cressida &
Buick Le Sabre V6

Chevrolet Caprice W&
532 Ford LTD Crown Yictoria W& 2350.00 202.00 Z20.00
54 Chevrolet Lumina APV VB 2195.00 151.00 18.00
55 Dodge Grand Caravan Wi 2735.00 Z02.00 1&.00)

56 Ford Aerostar VB 3665.00 182.00 18.00

zda WPY WG
Fitsubishi WWagon < 2415.00)
59 MNissan fsccess 4 2185 .00 146 00| 20.00
60 Missan Yan <4 3690.00) 146 .00 19.00

Al

vl

Figure 13.4: Data Window with two rows highlighted in fuel.frame.

Rows 46 and 51 of the fuel.frame data set are selected. To store this
information for future use, you can use guiGetRowSelectionExpr as
follows:

> guiGetRowSelectionExpr("fuel.frame™)
[1] "46,51"

You can select those same rows in a later session using
guiSetRowSelection:

> guiSetRowSelection("fuel.frame", "46,51")

447

Chapter 13 Programming the User Interface Using Spotfire S+

OPTIONS

All elements of the Spotfire S+ interface are under programmatic
control, including options.

guiSetOption Use the guiSetOption function to set options available in the GUI
under the Options menu. For example, to disable Tool Tips in
dialogs, you would use guiSetOption as follows:

> guiSetOption("ToolTipsForDialogs", "F")
guiGetOption Use the guiGetOption function to obtain the current value of any
option available in the GUI under the Options menu. For example,

to get the current Trellis background color, use guiGetOption as
follows:

> guiGetOption("BackColorTrellis™)
[1] "Lt Gray"

448

Graphics Functions

GRAPHICS FUNCTIONS

guiPlot

Identifying
Specific
Graphics
Objects

Graphics objects can be created and manipulated using guiCreate
and guiModify. In addition, functions are available which are
specifically design for use with graphics objects.

Use the guiPlot function as a convenient way to create editable
graphics from Spotfire S+ functions. Unlike guiCreate and
guiModify, which can be used to create graphics but are also used to
create other GUI objects, guiPlot is used exclusively to create
graphics. It therefore has a simpler and more intuitive syntax.

For example, suppose you want to create two line plots on the same
graph in a new graph sheet, and store the data within the graph sheet.
The following calls do exactly that:

> x <- 1:30

> guiPlot("Line", DataSetValues=data.frame(x, cos(x),
sin(x)))

[1] "GS2"

Suppose you want to create a Trellis graph with two conditional
variables. You can do this with guiP1ot as follows:

> guiPlot("Loess™, DataSetValues=environmental,
NumConditioningVars=2)
[1] "GS3"

To modify specific pieces of editable graphics using guiModify, you
must specify the object name, showing its path in the object
hierarchy. You can use the following functions to get the object name
for a specific object type. Most of them take a GraphSheet name and a
GraphNum argument; you can use guiGetGSName to obtain the name of
the current GraphSheet:

* guiGetAxisLabelsName: returns the name of the AxisLabels
for a specified axis (axis 1 by default).

* guiGetAxisName: returns the name of the axis for a specified
axis (axis 1 by default).

* guiGetAxisTitleName: returns the name of the axis title for a
specified axis (axis 1 by default).

449

Chapter 13 Programming the User Interface Using Spotfire S+

* guiGetGSName: returns the name of the current GraphSheet.
(This function takes no arguments.)

* guiGetGraphName: returns the GraphName of the graph with the
specified GraphNum in the specified GraphSheet.

* guiGetPTotName: returns the Name of the plot with the
specified P1otNum in the specified GraphNum in the specified
GraphSheet.

For example,

> guiPlot("Line"DataSetValues=data.frame(1:20, sin(1:20))
> guiModify("YAxisTitle"™, Name=guiGetAxisTitleName(),
Title="sin(x)")

guiGetPlotClass

Use the guiGetPlotClass function to do one of the following:

1. For a specified plot type, return the GUI class to which the
plot type belongs. The class name is a required argument in
guiModify.

2. If no plot type is specified, return a list of valid plot types.
These are the valid plot types for guiPlot.

For example,

> guiGetPlotClass("Scatter")
[1] "LinePlot"™
> guiGetPlotClass()

[1] "Scatter" "Isolated Points"
[3] "Bubble" "Color"
[5] "Bubble Color" "Text as Symbols"
[7] "Line" "Line Scatter"
[9] "Y Series Lines" "X Y Pair Lines"
[111 "Y Zero Density" "Horiz Density"
[13] "Robust LTS" "Loess"
[15] "Spline" "Supersmooth"
[17] "Horiz Step" "Dot"
[19] "Kernel" "Vert Step"
[21] "High Density" "Robust MM"

450

Graphics Functions

> guiPlot("Loess", DataSetValues=environmental[,1:2])
> guiModify(guiGetPlotClass("Loess"), Name=
+ guiGetPTotName(), LineColor="Red")

guiUpdatePIots To update the plots created by guiPlot(DataSetValues=...) with
new data set values, use guiUpdatePlots.

For example,

> gsName <- guiPlot("Scatter™, DataSetValues=fuel.frame
[,1:21)

> guiUpdatePlots(GraphSheet=gsName, DataSetValues=
environmental[,1:2])

The number of columns in the data set used in guiUpdatePlots
should be the same as the number of columns in the original data set
used in guiPlot.

451

Chapter 13 Programming the User Interface Using Spotfire S+

UTILITIES

Utility functions are available to perform GUI actions not related to
specific objects.

guiRefreshMemory

Use the guiRefreshMemory to remove unneeded objects from

memory; you can optionally restore the object’s summary data after
clearing the entire object from memory.

guiExecuteBuiltin

452

Use the guiExecuteBuiltIn function to launch dialogs or perform
other operations that are “built-in” to the GUI. Built-in operations are
stored for each GUI property, and can be viewed for any particular
object using the guiGetPropertyValue function. For example,
suppose we wanted to view the About Spotfire S+ dialog at some
point in our function. Open the Object Explorer and create a new
page containing the Interface Class Menu Item. Expand the
SPlusMenuBar node and highlight the menu of interest in the left
pane. Right-click on the desired menu item in the right pane and
select Command from the right-click menu. The built-in operation is
shown at the top of the page:

> guiExecuteBuiltIn("$$SPTusMenuBar$Object_Browser$Window$
Tile-Vertical")

We can then use this command in a call to guiExecuteBuiltIn:

> guiExecuteBuiltIn(
"$$SPTusMenuBar$0bject_Browser$Help$About_S_PLUS™)

Summary of GUI Toolkit Functions

SUMMARY OF GUI TOOLKIT FUNCTIONS

Table 13.16: Summary of graphics interface functions.

Function Description
guiCreate Creates all interface objects.
guiCopy Copies one object to another,

possibly with modifications.

guiModify Modifies an object.

guiMove Moves an object, possibly with
modifications.

guiOpen Opens an object of type
Script, GraphSheet,

ObjectBrowser or Report.

guiOpenView Opens an object that is
viewable by the Object
Explorer.

guiRemove Deletes an object created by
guiCreate.

guiSave Saves an object to a file.

guiGetClassNames Lists all available object types.

guiGetPropertyValue Lists details of property values

for a given object.

guiGetArgumentNames Lists all relevant arguments for
a given object.

guiDisplayDialog Displays the identified dialog.

453

Chapter 13 Programming the User Interface Using Spotfire S+

Table 13.16: Summary of graphics interface functions.

Function

Description

guiModifyDialog

Modifies a currently active
dialog, and can be used in
conjuction with callback
functions.

guiGetSelectionNames

Reports the objects currently
selected by the user.

454

USING LESS TIME AND
MEMORY

Introduction 456
Time and Memory 457
How Spotfire S+ Allocates Memory 458
Why and When Spotfire S+ Copies Data 459
Writing Good Code 465
Use Vectorized Arithmetic 465
Avoid for Loops 466
Avoid Growing Data Sets 468
Avoid Looping Over Named Objects 469
Keep It Simple! 469
Reuse Computations 470
Reuse Code 471
Avoid Recursion 471
Using Non-Generic Functions 472
Improving Speed 474

455

Chapter 14 Using Less Time and Memory

INTRODUCTION

456

In Chapter 8, Writing Functions in Spotfire S+, we described several
rules of thumb for writing functions that run faster, consume less
memory, or both. We offered those rules with little explanation, just
the assurance that if you followed them, your functions would be
more efficient. In this chapter, we explore some of the justifications
for those rules. We begin with a brief description of what we mean by
time and memory, followed by a brief discussion of how Spotfire S+
allocates and manages memory. This information is important for
understanding why, for example, for loops are less efficient in
Spotfire S+ than vectorized expressions. This information should
help you write functions which minimize the required number of
copies of large data sets.

Time and Memory

TIME AND MEMORY

Time and memory, when used as measures of the efficiency of a
function, can have many meanings. The #ime required by a function
might be any of the following:

* CPU time: the time the computer spends actively processing
the function.

* Elapsed time: the time elapsed on a clock, stopwatch, or other
time-keeping device. Generally, you are most interested in
elapsed time, but unfortunately, elapsed time is not a
particularly reliable measure of efficiency because it can vary
widely from one execution to the next. Disk activity and other
programs on the system can have a profound effect on the
elapsed time. Disk activity in Spotfire S+ functions arises from
the following:

* Reading and writing Spotfire S+ data sets and functions.
* Reading and writing temporary files.

* Paging to swap space when memory usage exceeds main
memory.

* Programmer time: the time it takes the programmer to write and
maintain a function (and, less directly, the time it takes the
programmer to learn to write functions). Often,
“computationally efficient” functions take much longer to
write than simpler alternatives. If the function will not be
called frequently, it may not be worth the extra effort.

Like the word “time,” the word “memory” can have different
meanings depending on the context. Originally, “memory” meant
simply main memory, or RAM, and referred to physical memory built
into the computer and accessible from the CPU during processing.
The advent of virtual memory complicated the issue. With virtual
memory, when a program uses more memory than is physically
available, data that is not actively being processed is swapped to a hard
disk, freeing main memory for further processing. A portion of the
hard disk must generally be committed to supporting swap
operations. This portion is called swap space. Using virtual memory
allows your programs to be larger than they would otherwise be, but

457

Chapter 14 Using Less Time and Memory

How Spotfire
S+ Allocates
Memory

458

incurs a significant time penalty when memory use exceeds main
memory. Operations involving hard disks are significantly slower
than operations in RAM, and each swap involves disk I10O.

Spotfire S+ makes extensive use of virtual memory. To your Spotfire
S+ session, your total memory is the sum of your main memory and
swap space. Spotfire S+ is free to use both, and in fact it doesn’t know
which it is using at any particular time. Functions that seem slow may
actually be fast algorithms that use a lot of memory, causing Spotfire
S+ to swap. Particularly if you need to analyze large data sets, it is
wise to equip your computer or workstation with as much RAM as
you can afford. This will help you avoid the time penalty for
swapping and make your functions more efficient.

To write the most efficient Spotfire S+ functions, you should have
some understanding of how Spotfire S+ allocates and frees memory.
Such understanding takes you a long way toward understanding why
loops and recursion are discouraged in Spotfire S+ programming.

In Chapter 2, Data Management, we described frames as lists
associating names and values. Those lists must be maintained in
memory, and obviously different frames can have different
associations of names and values. Thus, it is not too surprising that, at
a high level, memory allocation in Spotfire S+ corresponds to
memory allocation for the various frames. At a lower level, memory
is allocated by arenas and buckets.

There are two types of arenas, standard and custom. Most data in
Spotfire S+ objects are stored in custom arenas, with the exception of
character data, which may be stored in standard arenas. Data and
headers stored in custom arenas are reference counted, that is, a record is
kept of which frames are using a given object, and the arena cannot
be freed until the reference count reaches zero, that is, when no frame
is using the object. Atomic data objects consist of the data plus a 40
byte vector header. Recursive data objects such as lists also consist of
a vector header plus the data, but recursive data is a combination of
vector headers and atomic data. Some scratch space not in Spotfire
S+ objects may be in standard arenas; such arenas may be shared
with other data.

The vector headers for all objects in a given frame are stored in
buckets. Each bucket can hold up to 75 headers, although most
frames use only a handful of the available vector headers in their

Why and When
Spotfire S+
Copies Data

Time and Memory

associated buckets. A frame is created for every new top-level Spotfire
S+ expression, and for most (though not all) function calls generated
by the top-level expression. Within each frame, arenas and buckets
are allocated as necessary to maintain the frame. When Spotfire S+ is
finished with the frame, values are returned to the parent frame. If the
value occupies a custom arena, the arena is simply reassigned to the
parent frame. Once any necessary values are transferred to the parent
frame, the frame is broken down and all its associated memory is
freed. Any standard arenas associated with the frame are destroyed at
the same time.

Spotfire S+ has many attributes of a functional language: functions
generally look at the data in their arguments and return values, rather
than alter the data given to them as arguments. Contrast this with
typical Fortran code, in which a subroutine is given a pointer to an
array and then modifies parts of that array. If a Spotfire S+ function
alters parts of a vector given to it as an argument, it does so on a
private version of that vector so the calling function does not see the
change. If we want the calling function to get the changed vector, we
have the called function pass it back as a return value. (Replacement
functions such as "[<-" and "names<-" do alter their arguments, but
these are the exception in Spotfire S+.) In order to ensure that a
function cannot alter data in its caller’s frame, Spotfire S+ must
increment reference counts for arguments to functions. It does not
copy arguments. Spotfire S+ copies data only when the objects are
modified. In particular, if a data set is named, its value cannot be
changed by arbitrary functions, so it will be copied. Spotfire S+ may
also copy data when returning the value of a function call, although it
tries to avoid copying, if possible. Since returning a function value
involves moving data from the called frame to the caller’s frame and
the caller’s frame is about to be destroyed, Spotfire S+ usually just
rearranges some internal pointers so the memory in the called frame
is transferred to the caller’s frame and no copies are required.
However, since character data may be stored in a standard arena,
Spotfire S+ does copy content of that memory to an arena of the
caller’s frame. Thus, if your function returns a large object consisting
of character data it may be copied instead of being moved to the
caller’s frame. If you are writing a function to process a very large
data set, it may be worth your time to see how many copies of that
data set will be in memory at once. You may be able to avoid some
copies by rearranging calculations or by not naming temporary

459

Chapter 14 Using Less Time and Memory

460

results. You may also give temporary results the same name as a
previous temporary result or use the remove function to remove a
temporary result from the frame. Spotfire S+ 5.x and later makes
significantly fewer copies of data sets than earlier versions of Spotfire
S+; this is largely a result of fewer copies needing to be made thanks
to the existence of reference counting.

To get a feeling for how many copies are required in various
situations, evaluate your function with a large argument, say 125,000
double precision numbers (1 million bytes), and see how it pushes up
the amount of memory used. It is best to do this as the first function
called in a Spotfire S+ session, so the results are not confounded by
memory fragmentation caused by previous function calls. The
function mem.tally.report can help you view the memory used in
evaluating a Spotfire S+ function. It reports the maximum amount of
memory used in Spotfire S+ evaluation frames since the last call to
another function, mem.tally.reset. Thus, to get baseline memory
usage, call mem.tally.reset followed by an expression combining
the function you want to measure and a call to mem.tally.report. To
get a baseline memory usage, call memory.size() as the first function
in a session, then quit Spotfire S+, start it up again, and call your
function followed by memory.size() in the same top-level expression.

Here is a simple example. We want to calculate the sum of a vector of
many random numbers plus 1. One function to calculate this is as
follows:

f <- function(n=125000) {x <- runif(n); sum(x + 1)}
To estimate the amount of space required, do the following:
* Start a new Spotfire S+ session. When you get the Spotfire S+

prompt, call memory.size and quit:

> memory.size()
[1] 536576
> q()

* Note the baseline memory returned by memory.size.

+ Start a second Spotfire S+ session. When you get the Spotfire
S+ prompt, create a braced expression containing your
function call and a call to memory.size:

Time and Memory

> {f(); memory.size()}
[1] 2543616

> q()
e Callmem.tally.reset():

> mem.tally.reset()

* When the Spotfire S+ prompt returns, create a braced
expression containing your function call and a call to
mem.tally.report:

> {f();mem.tally.report()[2]}
evaluation
2004460

So you can see that evaluating f required approximately 2 million
bytes, or space for two copies of x. The first copy was required to
generate the random numbers, the second was needed to store the
value of x+1.

When temporary variables are needed, using the same name for ones
of the same size that are not required simultaneously can avoid an
unneeded copy as well. For example, consider the following function:

g <- function(n = 125000)
{
tmp <- runif(n)
tmpl <- 2 * tmp
tmp2 <- trunc(tmpl)
mean(tmp2 > 0.5)
}

This requires 4.5 million bytes to complete, while the following
slightly modified version needs only 2.5 million:

gl <- function(n = 125000)
{
tmp <- runif(n)
tmp <- 2 * tmp
tmp <-trunc(tmp)
mean(tmp > 0.5)

461

Chapter 14 Using Less Time and Memory

462

(The 0.5 million byte chunks come from the logical vectors such as
tmp>0.5 and is.na(x) in the call to mean.)

Some memory that cannot be accounted for is due to memory
fragmentation. If a block of n bytes between two other memory
blocks is freed and then we need a block of n+1 bytes, we cannot get
that space from the space just freed. This fragmentation depends on
the exact sequence of function calls and you may find that adding an
innocuous looking function call may actually decrease the memory
requirements. One kind of memory fragmentation that you can often
avoid is due to growing a vector in a loop. Each time a bit is added to
the end Spotfire S+ must find a new location for the data vector
because it no longer fits in its original space. If you preallocate the
vector to the length you expect it to get, or even a bit bigger, you will
often save some space.

Analyzing these functions to determine exactly where the copies are
being made can quickly get confusing, so measuring simple examples
of proposed constructs can be very instructive.

Another way to measure where memory is going is to call the
function storageSummary:

storageSummary <- function(frame = sys.parent(),
print.zeros = F)

{
if(is.loaded("S_table_header_types"))
.C("S_table_header_types",
frame,
print.zeros)
s <- storage()
headers <- sum((s$headers - s$freed)[s$
"frame (h)" == frame])
arenaBytes <- sum(s$used[s$frame == frame])
cat(headers, "headers in use and"™, arenaBytes,
" bytes of arena storage in use in frame",
frame, "\n")
invisible(list(headers = headers, arenaBytes
= arenaBytes))
}

Time and Memory

The storageSummary function is normally called with no arguments.
It provides statistics on the frame from which it is called without
affecting that frame. (It may affect the total memory used, by causing
some fragmentation, but should not cause the frame being analyzed
to change.)

For instance, we can put a call to storage.summary before and after
every line of g and g1 and see how reusing the tmp in g1 slows the
growth of the frame. Also note how adding the calls to
storage.summary decreases the ultimate memory size reported by g1:

> g0)
2 headers 1in use and 192 bytes of arena storage in use in
frame 2

7 headers in use and 1000244 bytes of arena storage in use
in frame 2

424 headers in use and 2005112 bytes of arena storage in use
in frame 2

502 headers in use and 3006028 bytes of arena storage in use
in frame 2

934 headers in use and 3010388 bytes of arena storage in use
in frame 2

$headers:
[1] 934

$arenaBytes:
[1] 3010388

> gl()
2 headers 1in use and 192 bytes of arena storage in use in
frame 2

7 headers in use and 1000208 bytes of arena storage in use
in frame 2

8 headers in use and 1000208 bytes of arena storage in use
in frame 2

9 headers in use and 1000208 bytes of arena storage in use
in frame 2

10 headers in use and 1000208 bytes of arena storage in use
in frame 2

$headers:
[1] 10

$arenaBytes:
[1] 1000208

463

Chapter 14 Using Less Time and Memory

Start Spotfire S+:

> g0)

nframe=2 bytes=20064 frame size=154 memory.size=536576
nframe=2 bytes=1020064 frame size=1000240
memory.size=1540096

nframe=2 bytes=2020064 frame size=2000281
memory.size=3547136

nframe=2 bytes=3020064 frame size=3000322
memory.size=5554176

nframe=2 bytes=4020064 frame size=3000322
memory.size=6557696

NULL

> q0)
Start Spotfire S+ again:

> gl0)

nframe=2 bytes=20064 frame size=154 memory.size=536576
nframe=2 bytes=1020064 frame size=1000240
memory.size=1540096

nframe=2 bytes=1020064 frame size=1000240
memory.size=3547136

nframe=2 bytes=1020064 frame size=1000240
memory.size=3547136

nframe=2 bytes=2020064 frame size=1000240
memory.size=4550656

NULL

> q()

464

Writing Good Code

WRITING GOOD CODE

Use Vectorized
Arithmetic

Spotfire S+ is set up to operate on whole vectors quickly and
efficiently. If possible, you should always set up your calculations to
act on whole vectors or subsets of whole vectors, rather than looping
over individual elements. Your principal tools should be subscripts
and built-in vectorized functions. For example, suppose you have a
set x of thirty observations collected over time, and you want to
calculate a weighted average, with the weights given simply by the
observation index. This is a straightforward calculation in Spotfire
S+:

> wt.ave <- sum(x*1:30)/sum(1:30)

Because you may want to repeat this calculation often on data sets of
varying lengths, you can easily write it as a function:

wt.ave <-
function(x) { wt <- seqg(along=x); sum(x * wt)/sum(wt) }

Here we created weights for each element of x simply by creating a
weights vector having the same length as x. Spotfire S+ performs its
mathematics vectorially, so the proper factor is automatically
matched to the appropriate element of x.

Even if you only want to calculate with a portion of the data, you
should still think in terms of the data object, rather than the elements
that make it up. For example, in diving competitions, there are
usually six judges, each of whom assigns a score to each dive. To
compute the diver’s score, the highest and lowest scores are thrown
out, and the remaining scores are summed and multiplied by the
degree of difficulty:

diving.score <-

function(scores, deg.of.diff = 1)

{
scores <- sort(scores)[- c(1, length(scores))]
sum(scores) * deg.of.diff

}

We use sort to order the scores, then use a negative subscript to
return all the scores except the highest and lowest.

465

Chapter 14 Using Less Time and Memory

Avoid for
Loops

466

By now, these examples should be obvious. Yet seeing that these are
indeed obvious solutions is a crucial step in becoming proficient at
vectorized arithmetic. Less obvious, but of major importance, is to use
logical subscripts instead of for loops and if statements. For
example, here is a straightforward function for replacing elements of
a vector that fall below a certain user-specified threshold with 0:

over.thresh <-
function(x, threshold)
{
for (i in 1:Tength(x))
if (x[i] < threshold)
x[1] <- 0

}

The “vectorized” way to write this uses the ifelse function:

over.thresh2 <-
function(x, threshold)
{
ifelse(x < threshold, 0, x)
}

But the fastest, most efficient way is to simply use a logical subscript:

over.thresh3 <-
function(x, threshold)
{
x[x < threshold] <- 0
X

}

(This is essentially what ifelse does, except that ifelse includes
protection against NA’s in the data. If your data have no missing
values, you can safely use logical subscripts.)

In Chapter 8, Writing Functions in Spotfire S+, we offered the
following rule:

* Avoid for, while, and repeat loops.

Writing Good Code

We provided several examples, with timings, to demonstrate that
looping was generally much slower and used much more memory
than equivalent constructions performed in a “vectorized” way.

Loops are primarily expensive because of the memory they use; time
efficiency is lost mainly when the number of iterations becomes
extremely high (on the order of 10,000 or so). Unlike function calls,
which generally create a new frame, loops are analyzed within the
current frame. After each function call completes, its associated frame
disappears and its memory is freed.

Because of compaction, though, loops are more efficient than simply
rewriting the loop as the equivalent series of “unrolled” expressions.
That is, writing for (i in 1:100) x= is more efficient
computationally than simply typing x=a hundred times. In a function,
so that x is in a frame, not a database, a body consisting of the line x
repeated n times executes faster than a body containing the
expression for (i in 1:n) x for small n. As soon as the memory
used by the former grows above memory size, however so that paging
begins, the former becomes very slow.

It is not always possible to avoid loops in Spotfire S+. Two common
situations in which loops are required are the following:

* Operations on individual elements of a list. The app1y family
is recommended for this purpose, but all of these functions are
implemented (in Spotfire S+ code) as for loops. These
functions, are however, implemented as efficiently as possible.

* Operations on vectors that contain dependencies, so that
resull]i] depends on resulffi-1]. For example, the cummax
function calculates the cumulative maximum vector, so that

> cummax(c(1,3,2,4,7,5,6,9))
[1113347779

The ith term cannot be calculated until the i 1st term is known. In
these situations, loops are unavoidable. When you must use loops,
following a few rules will greatly improve the efficiency of your
functions:

467

Chapter 14 Using Less Time and Memory

Avoid Growing
Data Sets

468

* Avoid growing a data set within a loop. Always create a data
set of the desired size before entering the loop; this greatly
improves the memory allocation. If you don’t know the exact
size, overestimate it and then shorten the vector at the end of
the loop.

* Avoid looping over a named data set. If necessary, save any
names and then remove them by assigning NULL to them,
perform the loop, then reassign the names.

These rules, and the rationale behind them, are discussed in the
following sections.

Avoid “growing” atomic data sets, either in loops or in recursive
function calls. Spotfire S+ maintains each atomic data object in a
contiguous portion of memory. If the data object grows, it may
outgrow the available contiguous memory allotted to it, requiring
Spotfire S+ to allocate a new, different contiguous portion of memory
to accommodate it. This is both computationally inefficient (because
of the copying of data involved) and memory wasteful (because while
the copying is taking place approximately twice as much memory is
being used as is needed by the data set). If you know a value can be
no larger than a certain size (and that size is not so enormous as to be
a memory drag by its very allocation), you will do better to simply
create the appropriate sized data object, then fill it using replacement.

For example, consider the following simple function:

grow <-
function()
{ x <- NULL
for(i in 1:100)
{ x <= rbind(x, i:(i +9))
}
X

}

The “no grow” version allocates memory for the full 1000 element
matrix at the beginning:

no.grow <-

function()

{ x <- matrix(0, nrow = 100, ncol = 10)
for(i in 1:100)

Avoid Looping
Over Named
Objects

Keep It Simple!

Writing Good Code
x[i, 1< 1:(0 +9)

}

The detrimental effect of growing data sets will become very
pronounced as the size of the data object increases.

If you are creating a list in a loop, add component names after the
loop, rather than before:

for (i in seq(along=z))
z[[1]1] <- Tist(letters[1:1])
names(z) <- Tetters[seq(along=z)]

instead of

names(z) <- Tetters[seq(along=z)]
for (i in seq(along=z))
z[[i]] <- Tist(letters[1:1])

Spotfire S+ stores the data separately from the names, so extracting
data from named data sets takes longer than extracting data from
unnamed data sets. Since replacement uses much of the same code as
extraction, it too takes significantly longer for named data sets than
unnamed. The effect is noticeable even on small examples; on large
examples it can be dramatic.

If you are an experienced programmer, you probably already know
that the simpler you can make your program, the better. If you’re just
beginning, it is tempting to get carried away with bells and whistles,
endless bullet-proofing, complicated new features, and on and on.
Most Spotfire S+ functions don’t need such elaboration. If you can get
a function that does what you want, or most of what you want,
reliably and easily, consider your work on the function done. Often,
new features are more easily implemented as new functions that call
old functions.

469

Chapter 14 Using Less Time and Memory

Reuse
Computations

470

Also, because Spotfire S+ evaluates functions in frames, it is more
efficient (in memory usage, not necessarily run time) to write a set of
small functions, all of which are called from a top-level function, than
to write a single large function. For example, suppose you wanted to
write a function to perform a statistical analysis and provide a
production-quality graphic of the result. Write one function to do the
analysis, another to do the graphics, then call these functions from a
third. Such an approach is more efficient, and yields functions which
are easier to debug.

Use the simplest data representation possible. Operating on vectors
and matrices is much simpler and more efficient than operations on
lists. As we have seen, you must use loops if you want to replace list
elements. Thus, even simple operations become complicated for lists.
The 1apply and sapply functions hide the loops, but do not reduce
the computational complexity.

Use matrix multiplication instead of apply for simple summaries
(sums and means). Matrix multiplication can be 4 to 10 times as fast
(see Constructing Return Values on page 240 in Chapter 8, Writing
Functions in Spotfire S+.

If you need the result of a calculation more than once, store the value
the first time you calculate it, rather than recalculating it as needed.
For most explicit numeric calculations, such as x + 2, assigning the
result is probably second nature. But the same principle applies to all
calculations, including logical operations, subscripting, and so on.

Conversely, if you know a calculation will not be reused, you save
memory by not assigning the intermediate value. Once named, an
object must be copied before being modified. If you name all
temporary results, you can essentially replicate your data many times
over. Avoiding such replication is often the point of using a Spotfire
S+ expression as an argument to a function. For example, consider the
following fragment:

y <- Tog(x)
z<-y+1

Here y is used only once, but creates an object as large as the original
x. It is better to replace the two line fragment above with the
following single line:

Reuse Code

Avoid
Recursion

Writing Good Code

z <- log(x) + 1

Some times, you may need a result several times during one portion
of the calculation, but not subsequently. In such cases, you can name
the object as usual, with the result being written to the appropriate
frame. At the point where the result is no longer needed, you can use
remove to delete the object from the frame:

y <- log(x)
numerous calculations involving y
remove(y, frame=2)

The efficiency of a piece of software needs to be measured not only
by the memory it uses and the speed with which it executes, but also
by the time and effort required to develop and maintain the code.
Spotfire S+ is an excellent prototyping language precisely because
changes to code are so easily implemented. One important way you
can simplify development and maintenance is to reuse code, by
packaging frequently used combinations of expressions into new
functions. For example, many of the functions in Chapter 12, Object-
Oriented Programming in Spotfire S+, allow the user a broad choice
of formats for input data (vectors, lists, or matrices). Each function
checks the form of the input data and converts it to the format used by
the function.

If you take care to write these “building block” functions as efficiently
as possible, larger functions constructed from them will tend to be
more efficient, as well.

One common programming technique is even more inefficient in
Spotfire S+ than looping—recursion. Recursion is memory inefficient
because each recursive call generates a new frame, with new data,
and all these frames must be maintained by Spotfire S+ until a return
value is obtained. For example, our original Fibonacci sequence
function used recursion:

fib <-

function(n)

{ old.opts <- options(expressions = 512 + 512 * sqrt(n))
on.exit(options(old.opts))
fibiter <- function(a, b, count)
{ if(count == 0) b else Recall(a + b, a,

471

Chapter 14 Using Less Time and Memory

Using Non-
Generic
Functions

472

count - 1)
}
fibiter(1, 0, n)
}

It can be more efficiently coded as a while loop:

fib.loop <-
function(n)
{a<-1
b <-0
while(n > 0)
{ tmp <- a
a<-a+b
b <- tmp
n<-n-1
}
b
}

If you know ahead of time which method you are going to be using,
call that function in your loop instead of the generic. The overhead of
generic dispatch to select the appropriate method for a given object
will cause the call to the generic to run hundreds of times slower.

You can significantly increase the speed in a loop such as apply, for,
or while by using a non-generic function. The following shows the
dramatic improvement in performance between the use of a generic
and non-generic method for the function max:

> unlist(lapply(c("max"™,"min"), isGeneric))

[11TTT

>unlist(lapply(c(™all™, "any", "max","min", "prod"”,"sum"),
isGeneric))

[TTTTTT

> showMethods("max")

Database X
[1,] llSp'lusll IIANYII
[2,] "splus"™ "positionsCalendar"

[3,1 "splus™ "timeSpan"
> sys.time({for(i in 1:10000)max(1,2)})
[1] 54.609 55.049

Writing Good Code
Get a function from the method max:

> maxDefault <- selectMethod("max") #get the default method
> maxDefault
function(x, ., ha.rm = F)

.Internal(max(x, ..., na.rm = na.rm), "do_summary", T, 114)
> sys.time({for(i in 1:10000)maxDefault(1,2)})

[1] 0.230 0.231

Comparing the two methods in sys.time, we get

> 54/.23
[1] 234.7826

In this case, using a non-generic method for max is almost 235 times
faster!

473

Chapter 14 Using Less Time and Memory

IMPROVING SPEED

474

By default, Spotfire S+ now checks to see whether your system is an
Intel Pentium processor, and if so, uses Intel's Math Kernel Library
BLAS routines. These routines are optimized for Intel Pentiums
and thus significant speed-up should be observed in certain Spotfire
S+ operations (such as matrix multiplication) that call BLAS routines.
Significant speed-up of certain operations can be obtained when using
a Pentium multi-processor machine. The operations for which
Spotfire S+ can take advantage of the additional processors are those
(such as matrix multiplication) in which the BLAS routines of the
Intel Math Kernel Library are used. See intelmkl.use for more
information.

Using these routines on a non-Intel Pentium processor may cause
some problems. It is also possible that the check Spotfire S+ performs
to detect an Intel processor may currently be detecting a Pentium
in all cases, even when your system has a non-Intel processor.
Spotfire S+ includes a few S language functions to allow you to
control whether Intel's BLAS routines or Spotfire S+'s BLAS routines
are used:

* is.intelmkl.inuse() returns a logical indicating whether the
BLAS routines used are from Intel's Math Kernel Library (if

FALSE, the BLAS routines used are from the Spotfire S+
engine).

* intelmkl.use(set = T, number.of.processors = 1) allows
you to change which set of BLAS routines are used. (To use
the Spotfire S+ engine BLAS, use set=F.) If Intel's Math
Kernel Library BLAS routines are to be used (set=T),
number.of.processors allows you to specify how many
processors of a multi-processor machine should be used (if not
specified, any previous specification remains in effect; the
default is 1).

Improving Speed

* intelmkl.processor.count() returns an integer specifying
how many processors of a multi-processor machine are used
when Intel's Math Kernel Library BLAS routines are to be
used. This number should never be larger than the number of
processors on the machine being used.

Warning

If you are using a non-Intel processor, Windows may erroneously report to Spotfire S+
that you are using a Pentium processor and cause Spotfire S+ to use the Intel Math

Kernel Library BLAS routines.

If you are using a non-Intel processor and you encounter problems
with any Spotfire S+ operations, try setting the environment variable

S_USE_INTELMKL=no

on the Spotfire S+ start-up command line.

475

Chapter 14 Using Less Time and Memory

476

SIMULATIONS IN SPOTFIRE

Introduction 478
Working with Many Data Sets 479
Working with Many Iterations 480
The Advantages of lapply 480
Using the For Function 483
Monitoring Progress 485
Recording the Status of a Simulation 485
Recovery After Errors 486
Example: A Simple Bootstrap Function 487
Summary of Programming Tips 489

477

Chapter 15 Simulations in Spotfire S+

INTRODUCTION

478

In Chapter 14, Using Less Time and Memory, we describe how you
can employ knowledge of Spotfire S+ computations to write functions
that use time and memory more efficiently than those you might
otherwise write. The main message of Chapter 14 is to use vectorized
Spotfire S+ functions to do as much as possible with each function
call.

In this chapter, we consider some special problems that arise in
writing large simulations with Spotfire S+. Here, we are interested in
cases where calculations cannot be vectorized, either because of their
complexity or because the vectors are too large to fit into virtual
memory. Specifically, we show different approaches to dealing with
the following problems:

1. Working with many data sets in a loop.
2. Tterating a large number of times (>50,000) in a loop.

3. Predicting the amount of time required for a simulation and
monitoring its progress.

4. Recovering after errors.

Working with Many Data Sets

WORKING WITH MANY DATA SETS

Spotfire S+ uses a caching technique to increase the speed of most
ordinary computations:

* When Spotfire S+ reads a new (permanent) data set, it reads
the data from disk and stores it until the end of the top-level
expression. The next time Spotfire S+ sees a reference to the
data set, it uses the stored version so that it does not waste
time reading the disk again.

* When asked to save a permanent data set, Spotfire S+ stores
the data until the end of the top-level expression before
writing it to disk. Although Spotfire S+ may alter the data
many times while evaluating the expression, it takes the time
to write it to disk only once. Typically, writing to disk is about
1,000 times slower than writing to main memory.

While this caching is a good trade-off between memory and speed for
most Spotfire S+ purposes, it can use excessive memory when
reading or writing many large permanent data sets in a loop. Each of
the data sets is stored in main memory until the end of the current
top-level expression, which consumes memory that can otherwise be
dedicated to computations.

You can prevent the caching by using the argument immediate=TRUE
in the assign function. For example, create a number of large
permanent data sets with the following loop:

make.data <- function(n=10)

{
for (i in 1l:n)
assign(paste("x", i, sep = "."), rnorm(100000),
where = 1, immediate = T)
}

For n=10, the make.data function requires 1.6 megabytes of virtual
memory to execute with immediate=TRUE; this is enough space for two
copies of one data set. In contrast, it requires 10.4 megabytes with
immediate=FALSE, which is enough space for thirteen copies of one
data set. As you increase the number of data sets, the space required
does not rise when you use immediate=TRUE.

479

Chapter 15 Simulations in Spotfire S+

WORKING WITH MANY ITERATIONS

The
Advantages of

lapply

480

A loop in the Spotfire S+ language tends to slow after many
iterations. This is not usually noticeable until about 10,000 iterations,
and not terribly important until about 50,000 iterations. The
slowdown occurs because functions invoked by “quick calls,” such as
arithmetic, comparison, and subscripting functions, leave behind a
32-byte chunk of memory with each call. The memory is not freed
until the top-level function completes. The Spotfire S+ memory
compaction mechanism spends time testing to see if it can free the
chunks; as they build up, the mechanism spends most of its time
dealing with those chunks that will never be freed. Thus,
asymptotically, the time it takes to evaluate a for loop is quadratic in
the number of iterations, where the quadratic factor has a small
coefficient that you cannot detect until about 10,000 iterations. In this
section, we discuss two functions that delay the inherent slowdown in
large loops: Tapply and For.

As we mention in the section Avoid for Loops (page 466), loops are
more efficient if they simply call a function, rather than calling each
line of the function individually. Thus, you can delay the slowdown
inherent in large loops by replacing the body of a loop with a function
that accomplishes the same thing. For example, replace the lines of
code

for(i in 1:n)

{
i
some lines of code
#
results[i] <- final.result
}
with:

f <- function(<arguments>)
{

#

some lines of code

#

return(final.result)

Working with Many Iterations

}
for(i in 1:n)
results[i] <- f(<argument values>)

If you cannot do this, however, use 1apply instead of an explicit for
loop. The 1apply function is currently the most efficient way to do
looping in Spotfire S+. It applies a specified function FUN to all
components of a list X:

> args(lapply)
function(X, FUN, ...)

The 1apply function performs looping for you by calling for, but it
makes some special memory considerations based on the results of
FUN.

Because lists are generalized vectors, Tapply also works on vectors of
numeric values or character strings. In particular, it works when the
argument X is a vector of indices; this is the key to replacing loops
with Tapply statements in Spotfire S+. When X is a vector of indices,
the function FUN must accept an index such as i as its first argument.
For example, the following code shows a for-loop approach to
adding the elements in two vectors.

> x <-1:10
>y <- 11:20

Initialize z as an empty vector the same length as x & y.
> z <- vector("numeric", length(x))
> for (i in 1:1ength(x))

+ z[1] <- x[i] + y[i]

>z

[1] 12 14 16 18 20 22 24 26 28 30

The following call to Tapply accomplishes the same task:

> z <- Tapply(l:length(x), function(i) x[i] + y[il)
>z

L1110
[1] 12

[[2]1]:
[1] 14

481

Chapter 15 Simulations in Spotfire S+

482

[[3]1]:
[1]1 16

[[4]1]:
[1] 18

[[5]1]:
[11 20

[[6]1]:
[1] 22

[[711:
[1]1 24

[r811l:
[1] 26

[[9]1]:
[1] 28

[[101]:
[11 30

As you see from the output, 1apply is designed to return a list. You
can use the unlist function to return a simple vector instead:

> unlist(z)
[1] 12 14 16 18 20 22 24 26 28 30

More generally, the code below transforms the for loop in the case
where x and y are not stored in a permanent database such as the
working directory. When x and y are local variables, you must specify
arguments for them in the definition of FUN, and then explicitly pass
them in:

n <- length(x)

lapply(l:n, function(i, 1istl, 1ist2)
TistI[[i]] + Tist2[[i1],
Tistl = x, Tist2 =y)

Using the For
Function

Working with Many Iterations

The For function creates a file consisting of the contents of a for loop.
In the file, each iteration is evaluated as a separate top-level
expression. This avoids both the overhead of long-running for loops,
as well as the memory overhead that results from caching data for the
duration of a top-level expression (see the section Working with Many
Data Sets (page 479)). In general, the top-level for loop

for(i in 1:n)
results[i] <- func(i)

gives the same results as

For(i=l:n, results[i] <- func(i))
However, the latter does not slow down as n becomes very large.

The For function evaluates its expressions in a separate Spotfire S+
session. Because of this, all data sets that For refers to must be
permanent data sets. If you run For from within a function, be sure to
assign the data it needs to your working directory. The For function
also creates a permanent data set containing the current value of the
index variable; in the above example, this is i. This permanent
variable overwrites any other by the same name in your working
directory.

Running each iteration in a loop as a top-level expression may save
memory, but it is much slower than running a group of iterations as a
single top-level expression. This is because each top-level expression
spends time initializing and writing results to disk; by doing more in
each expression, we can avoid some of this overhead. Thus, the For
function has a grain.size argument that controls the number of
iterations included in each top-level expression. If grain.size is too
large, memory requirements increase, and if it is too small, you waste
time reading and writing disk files.

A good setting for grain.size is such that each top-level expression
takes a few minutes to evaluate. The overhead required by a top-level
expression ranges from a fraction of a second to a few seconds,
depending on how much data you access from disk. You can predict
how long your simulation will take by running grain.size iterations
and linearly scaling. Note that since results are saved to disk every
grain.size iterations, you lose only the last grain.size results if
Spotfire S+ or the computer crashes.

483

Chapter 15 Simulations in Spotfire S+

The For function also has an optional argument first that is useful in
certain situations. The first argument allows you to specify an
expression for Spotfire S+ to evaluate before any of the iterations.
Recall that For evaluates its expressions in a new session of Spotfire
S+. Therefore, you may need to attach databases or start a graphics
device before For executes; the first argument allows you to do this.

Hint

If the expression given to For is large or the number of iterations is very large, For itself may run
out of memory while creating the command file. In addition, the command file may be too large
to fit on your disk. If this is a problem, define a function from your expression or save it with
mode "expression". You can then use For to call the function or evaluate the saved expression.

484

Monitoring Progress

MONITORING PROGRESS

Recording the
Status of a
Simulation

After your simulation has been running for a while, you may want to
know how far it has gotten. However, you cannot safely interrupt its
progress, examine the status, and resume execution. Instead, you
should include code that periodically records the status of the
simulation in a file. By writing to a file rather than a Spotfire S+ data
set, the information is written to disk immediately and you can view
the simulation’s progress without using Spotfire S+. In addition,
appending text to a large file is quicker than reading a large Spotfire
S+ data set, adding to it, and then writing it to disk again.

The status information you choose to record should include the
iteration number, a summary of results for each iteration, and enough
information to restart the simulation if Spotfire S+ or the computer
should crash while it is running (see the section Recovery After Errors
(page 486)). You can use options("error") or on.exit to write a
message in the status file when something goes wrong. For example:

analyze.data <- function(n = 10, logfile)
{
result <- matrix(NA, nrow = n, ncol = 2,
dimnames = Tist(NULL, c("Mean"™, "Spread")))
dimnames(result) <- 1ist(NULL, c("Mean", "Spread"))
if (Imissing(logfile))
on.exit(cat("Error in iteration", i, "\n ",
file = logfile, append = T))
for (i in 1:n)

{
x.i <- get(paste("x"™, i, sep = "."), where = 1)
result[i, "Mean"] <- mean(x.1i)
result[i, "Spread"] <- diff(range(x.i))
if (Imissing(logfile))
cat("resultl"™, i, ",] =", result[i,], "\n ",
file = logfile, append = T)
}

if (!Imissing(logfile))
Cancel the error report.
on.exit()

return(result)

485

Chapter 15 Simulations in Spotfire S+

Recovery After
Errors

486

The analyze.data function is the counterpart to the make.data
function that we define in the section Working with Many Data Sets
(page 479). If we run analyze.data with the default value n=10 in a
directory that contains only x.1 and x.2, we receive the following
error:

> analyze.data(logfile = "datalog.txt")

Error in get.default(where = 1, immediate = T, pas..:
Object "x.3" not found

The function expects to find 10 data sets in the working directory and
returns an error when it encounters only two. In this example, the log
file datalog.txt contains the following text:

resultl 1 ,] 0.672007595235482 0.916557230986655
resultl 2 ,] 0.509014049381949 0.945636332035065
Error in iteration 3

For a variety of reasons, a simulation may crash after running through
many iterations. For example, a rare sequence of random variables
may trigger a bug in the function, the function may run out of
memory, or the computer may have to be rebooted for unrelated
reasons. Because of this possibility, you should write your simulation
function so that it can be restarted at a point near where it crashed.
This requires you to ensure that the current state of the simulation is
saved to disk periodically, and that you can use the recorded
information to restart the function. Often, the required state
information is simply the iteration number. If you are using random
number generators, however, the current seed of the generator
.Random.seed must be saved as well. The value of .Random.seed is
updated every time a random number is generated; like any other
data set, the updated value is not committed to disk until the
successful completion of a top-level expression.

Example: A Simple Bootstrap Function

EXAMPLE: A SIMPLE BOOTSTRAP FUNCTION

In this section, we develop a simple bootstrap function to
demonstrate some of the ideas for efficient simulations that we discuss
in this chapter. The basic purpose of the looping procedures in the
simple.bootstrap function below is to do blocks of bootstrap
samples within a for loop. The size of the blocks involves the
following trade-off:

* Small block sizes require Spotfire S+ to save .Random.seed
many times. Because .Random.seed is stored on a permanent
database, each call to a sampling function uses 81 bytes of
memory that are not reclaimed until all functions and loops
have finished.

» Large block sizes require Spotfire S+ to store a large matrix of
indices.

The speed of simple.bootstrap is not very sensitive to the block size
except at the extremes. Very small block sizes cause Spotfire S+ to
call the samp1e function too often, while very large n and block values
may require more memory than is available in RAM. When this
occurs, the computations are forced to use virtual memory (or swap
space). This phenomenon, called paging, significantly slows the
progress of the computations.

In addition to generating blocks of bootstrap samples, there are a
number of subtle points in simple.bootstrap that affect memory
usage. We note these in the code’s comments below. The function is
written so that a user interrupt saves as many blocks of bootstrap
results as have been completed. It also saves results after exits due to
the particular memory problem of allocating too large a data set for
the indices.

Note

The default block size in the code below may need to be reduced if n is large. For example, if
n*block*6+32 is greater than options(“"object.size"), you should consider changing the default
value for the block argument.

487

Chapter 15 Simulations in Spotfire S+

simple.bootstrap <- function(X, FUN, ..., B = 1000, seed = 0, block = 50)
{
Demonstration program for nonparametric bootstrapping.
X is a matrix or data frame, rows are observations.
FUNCX, ...)
This version of bootstrap assumes that FUN() returns a scalar and
that B is a multiple of block.
B bootstrap replications.
seed is an integer between 0 and 1000.
block is the block size, number of bootstrap values computed simultaneously
set.seed(seed) # So results are reproducible
if(is.null(dim(X))) X <- as.matrix(X)
n <- nrow(X)
call.stat <- function(i, X, FUN, indices, ...)
FUN(X[indices[,i], 1, ...)
The call.stat() function is called by Tapply() to
do the actual bootstrapping.
nblocks <- ceiling(B/block) # Number of blocks
result <- numeric(B) # Create space for results
indices <- matrix(integer(n*block), nrow = n)
temp <- 1:block

on.exit({ # In case function is interrupted
cat("Saving replications 1:™, (i-1)*block, ™ to .bootstrap.results\n™)
assign(".bootstrap.results"”, replicates,where = 1, immediate = T)

b

for(i in 1l:nblocks){ # Do block samples simultaneously
indices[] <- sample(l:n, n*block, T) # Sample the indices
result[temp+block*(i-1)] <-

unlist(lapply(temp, call.stat, X, FUN, indices, ...))

}

on.exit()

return(result)

}
Figure 15.1: A simple, interruptible bootstrap function.

488

Summary of Programming Tips

SUMMARY OF PROGRAMMING TIPS

Some of the key points from this chapter are:

When working with large numbers of data sets in a loop, use
the immediate=TRUE argument to the assign function. This
option prevents Spotfire S+ from caching the data, so that
more memory can be dedicated to the computations in your
simulation.

When working with large numbers of iterations in a for loop,
replace the body of the loop with a function that accomplishes
the same thing. This delays the slowdown that occurs when

the number of iterations becomes larger than approximately
10,000.

The 1apply function is currently the most efficient way to do
looping in Spotfire S+.

The For function can be used to avoid both the overhead of
long-running for loops, as well as the memory overhead that
results from caching data.

Be sure to include code in your simulation that writes and
appends status information to an external file. You should
include enough information so that you can restart the
simulation if Spotfire S+ or the computer should crash while it
is running.

It is best to reduce the number of calls to sampling functions
like runif, because repeatedly changing .Random.seed is very
inefficient.

A hybrid of for and Tapply can be more efficient than using
either one alone in simulations like bootstrapping, where
accomplishing everything in a single 1apply requires storage
of huge matrices of random indices.

Finally, listen to your hard disk. If it is running a lot, you are
probably paging and computations will become very slow. In
such cases, it is better to do the simulation in smaller parts
using For, for example, to prevent memory requirements
from growing to the point that paging occurs.

489

Chapter 15 Simulations in Spotfire S+

490

EVALUATION OF
EXPRESSIONS

Introduction 492
Spotfire S+ Syntax and Grammar 493
Literals 494
Calls 496
Assignments 500
Conditionals 501
Loops and Flow of Control 501
Grouping 503

491

Chapter 16 Evaluation of Expressions

INTRODUCTION

492

To this point, we have for the most part simply assumed that Spotfire
S+ knows how to translate what you type into something it can
understand and then knows what to do with that something to
produce values and side effects. In this chapter, we describe precisely
how Spotfire S+ works, from parsing input to printing values.
Together with the information in Chapter 2, Data Management, this
chapter provides you with a full account of the machinery that runs
the Spotfire S+ environment.

Spotfire S+ Syntax and Grammar

SPOTFIRE S+ SYNTAX AND GRAMMAR

When you are using the Spotfire S+ Commands window, your
keyboard’s standard input is directed immediately to the Spotfire S+
parser, which converts the characters you type into expressions that
can be evaluated by the Spotfire S+ evaluator. (If you start in batch
mode, the parser’s input is provided by the file.) When you press
ENTER (or the parser encounters the next line of a file), the parser
checks to see if the parsed text constitutes a complete expression, in
which case the expression is passed to the evaluator. If not, the parser
prompts you for further input with a continuation prompt, usually a
plus sign (+). A semicolon (;) can also be used to terminate an
expression, but if the expression is incomplete, Spotfire S+ issues an
error message. A complete expression is any typed expression that
falls into one of the seven broad classifications shown in Table 16.1.

Table 16.1: Classifications of expressions.

Class Expression

Literals Literals are the simplest objects known to Spotfire S+.
Any individual number, character string, or name is a
literal.

Calls Perhaps the most common Spotfire S+ expression, a call is
any actual use of a function or operator.

Assignments Assignments associate names and values.

Conditionals Conditionals allow branching, depending upon the logical
value of a user-defined condition.

Loops Loops allow iterative calculations.

Flow-of-control statements Flow-of-control statements direct evaluation out of a loop
or the current iteration of a loop.

Grouping statements Grouping allows you to control evaluation by overriding
the default precedence of operations or by modifying the
expected end-of-expression signal.

493

Chapter 16 Evaluation of Expressions

Literals

Numbers

494

A complete expression may contain many expressions as
subexpressions. For example, assignments often involve function
calls, and function calls usually involve literals. In the following
sections, we describe the complete syntactic, lexical, and semantic
rules for each of the seven classifications.

All literals fall into one of the following six categories:

L.

S s WD

Numbers
Strings
Names
Comments
Functions

Symbolic constants

Numbers are further subdivided into numeric and complex values.
Numeric values represent real numbers and can be expressed in any
of the following forms:

As ordinary decimal numbers, such as -2.3, or 14.943.

As Spotfire S+ expressions that generate real values, such as
pi, exp(l), or 14/3.

In scientific notation (exponential form), which represents
numbers as powers of 10. For example, 100 is represented as
le2 in scientific notation, and 0.002 is 2e-3.

As the missing value NA (which can be logical or numeric).

As the IEEE special value Inf. This value may be either
assigned to objects or returned from computations. Inf
represents infinity and results from, for example, division by
Zero.

As the IEEE special value NaN that results from Inf/Inf, 0/0,
Inf-Inf, and other indeterminate expressions. NaN generally
prints as NA, although you can use is.nan() to distinguish it
from a missing value.

Spotfire S+ Syntax and Grammar

Note

Numeric data are stored internally in one of three storage modes: "integer", "single", or
"double". These storage modes are important when declaring variables in C and Fortran code.
Use the storage.mode function to view the storage mode of a numeric data object.

Complex values are similar to numeric values except that they
represent complex numbers. Complex values are specified in the
form a+bi (or simply bi), where a is the real part and b is the
imaginary part. The imaginary part b must be expressed in decimal
form, and there must be no spaces or other symbols between b and i.
In particular, there is no * between b and i.

Strings Strings consist of zero or more characters typed between two
apostrophes (') or double quotes (""). Table 16.2 lists some special
characters for use in string literals. These special characters are for
carriage control, obtaining characters that are not represented on the
keyboard, or delimiting character strings.

Table 16.2: Special characters.

Character Description

\t Tab

\b Backspace

\\ Backslash

\n New line

\r Carriage return (in general, not needed)

\" Double quotes (")

\! Apostrophe (*)

\iHH# ASCII character as an octal number (where # is in
the range 0 to 7)

495

Chapter 16 Evaluation of Expressions

Names

Syntactic names are unquoted strings that (1) do not start with a
number and (2) consist of alphanumeric characters and periods (.). As
described in Chapter 2, Data Management, objects can be named
using virtually any quoted string. Only syntactic names, however, are
directly recognized by the parser (thus the need for the more general
functions get, assign, etc.).

Note

Attempts to associate objects with the following reserved names will result in an error:

if else

The names of the built-in symbolic constants are also reserved:

TRUE T

for

FALSE

wh

F

ile repeat next break in function return

NULL NA Inf NaN

Comments

Functions

Symbolic
Constants

Calls

496

Anything typed between a # character and the end of a line is a
comment. Comments are attached to the Spotfire S+ object created
by the parser, but not all objects can have comments attached, so that
comments in functions may not be printed in the position in which
they were originally inserted.

A function consists of the word function, a parenthesized set of
formal arguments (which may be empty), and a complete expression.
Function literals, in general, appear only during function assignment,
on the right side of the assignment arrow.

Spotfire S+ reserves the following symbolic constants:
TRUE T FALSE F NULL NA Inf NaN

Although these constants are names syntactically, Spotfire S+
prevents assignment to them.

Most complete expressions involve at least one call. Calls are the
expressions that do most of the work in Spotfire S+. They fall into
three basic categories:

1. Simple calls are calls of the form

function-name(arglist)

Spotfire S+
Evaluation

Spotfire S+ Syntax and Grammar

2. Operations are calls using infix or unary operators. Examples
include 2*3 and -5. The parser interprets operations as simple
calls of the form

"op"(args)

Thus, for example, the expression
5 + 4

is interpreted by the parser as the simple call
" (5,4)

3. Subscripting extracts elements from atomic and recursive data
and also extracts named components from recursive data.
The parser interprets subscript expressions as simple calls,
converting expressions such as

object[1] object$i object[[71]]
into the equivalent function calls
"["(object, 1) "$"(object, i) "[["(object, 1)

Thus, all calls have essentially the same evaluation process.

Evaluation of calls is the principal activity of the Spotfire S+
evaluator. Most calls generate at least two frames—the top-level
expression frame and the function’s evaluation frame. Functions that
consist solely of calls to .Internal, however, may not generate an
evaluation frame. Calls to these functions are called quick calls because
they avoid the overhead of creating an evaluation frame (which is not
needed because there are no Spotfire S+ assignments in the function
body and the arguments are matched in the top-level expression
frame). However, memory allocated in them may accumulate in the
caller’s frame.

To evaluate the call, Spotfire S+ first finds the definition of the
function. The formal arguments in the function definition are
matched against the actual arguments in the function call, and
Spotfire S+ creates a new frame containing the argument expressions
(unevaluated) and information on which formal arguments were not
specified in the actual call.

When a new frame is created, the following internal lists are updated:

497

Chapter 16 Evaluation of Expressions

Internal Function
Calls

* The frames list. The new frame is appended at the end of the
existing frames list, which is accessible via the sys.frames
function. The new frame is frame number sys.nframe().

* The system calls list. The current call is appended at the end of
the system calls list, which is accessible via the sys.calls
function.

* The list of parent frames. The number of the parent frame of the
new frame is appended at the end of the list of parent frames,
which is accessible via the sys.parents function.

As previously mentioned, the value of the function call is simply the
value of the last expression in the function body, unless the body
includes a return expression. If the body includes a return expression,
that expression stores a return value in the internal return list, and this
value is returned as the value of the function call. The value is
returned to the parent frame, and the evaluation frame is freed.

Functions defined as calls to .Internal are evaluated somewhat
differently from calls to functions written wholly in Spotfire S+ or to
functions using the interfaces to C, Fortran, or the operating system.
In most cases, the evaluator evaluates the arguments to the call and
passes these to the internal C code, which performs the computations
and returns a pointer to a Spotfire S+ object that is the value of the
call.

A few internal functions (for example, substitute) do not evaluate
their arguments. These functions pass the entire unevaluated
expression to the internal C code, which then performs the
computations. Most of these functions, which are listed in Table 16.3,
use the form of the expression itself to determine how the evaluation
is to proceed.

Table 16.3: Internal functions.

Function

Description

8, ||

The Control And (&&) and Control Or (||) operators evaluate their
first argument as a logical condition. If the first argument is TRUE,
Control And proceeds to evaluate its second argument, while
Control Or immediately returns TRUE. If the first argument is FALSE,
Control And immediately returns FALSE, while Control Or proceeds
to evaluate its second argument.

498

Spotfire S+ Syntax and Grammar

Table 16.3: Internal functions. (Continued)

Function

Description

switch

When the evaluator encounters a call to switch, it evaluates the first
argument. If the value is of mode character, the evaluator matches it
against the names of the remaining arguments and, if a match is
found, evaluates the first non-missing argument that follows the
match. If no match is found, the first unnamed argument is evaluated.
If there is no match and there are no unnamed arguments, switch
returns NULL. If the value of the first argument is of mode numeric, the
value is matched against the sequence 1:nargs()-1 corresponding to
the remaining arguments. If a match is found, the evaluator evaluates
the first non-missing argument that follows the match. Otherwise,
switch returns NULL.

missing

The missing function takes a formal argument to the current function
and returns FALSE or TRUE depending on whether there was an actual
argument corresponding to that formal argument.

expression, substitute

Both expression and substitute return unevaluated expressions,
suitable for passing to the evaluator. The substitute function takes
its unevaluated first argument and tries to replace any name within it
with the value of an object with the same name in a specified list or
frame, by default, the local frame. Unlike most functions that use a
frame to match names and objects, substitute searches the frame list
back to front, so that arguments are matched in their unevaluated
form. Names that are not matched are left alone. The mode of the
returned expression is the mode of the unsubstituted expression. By
contrast, expression always returns an object of mode expression,
which is a list of one or more expressions.

Recall

Recall makes recursion independent of the function’s name and
permits recursive function definitions inside other functions. The
evaluator finds the definition of the function calling Recall, creates a
new frame by matching the arguments to Recall, and then evaluates
the recalled definition in the new frame.

499

Chapter 16 Evaluation of Expressions

Assignments

Syntactical assignments are expressions of mode <- or <<-. Simple
assignments are assignments with a name or string on the left-hand
side of the assignment arrow. Replacements are assignments with a
function call on the left-hand side, where the function call may be a
subscripting operation.

Nested replacements, in which several function calls are nested on the
left-hand side, are common. For example, consider the following
expression:

dimnames(state.x77)[[2]11[8] <- "Land Area"

This expression extracts the eighth element of the second list element
in the dimnames attribute of the state.x77 data set and replaces it with
the value on the right-hand side.

If the mode of the assignment is <<- or the assignment is in frame 1,
the name or string on the left-hand side is associated with the value on
the right-hand side in the working data; otherwise, the association is
added to the current frame. If the assignment is to the working data,
the dictionary is updated to reflect the new association.

Simple replacements of the form
f(x) <- value

are somewhat more complicated. The extraction function f is
replaced by the corresponding replacement function "f<-" to create a
function call of the form

"f<-"(x,value)

Note

You cannot do

x <-

for most replacement operations; the above is just a schematic view.

"EC-T(X,

value=value)

500

This function call is evaluated; then the name x is associated with the
function call’s return value. The frame in which the replacement is
performed is determined as for simple assignments: in the working
directory if the replacement is evaluated in frame 1; in the local frame
otherwise. Note that the data to be altered must already be in that
frame.

Conditionals

Loops and
Flow of
Control

Spotfire S+ Syntax and Grammar

Nested replacements are expanded internally into an equivalent
series of simple replacements. For example, the expression

dimnames(state.x77)[[2]11[8] <- "Land Area"
might be expanded as follows:

assign("..a", dimnames(state.x77)[[2]], frame=Nframe)
..a[8] <- "Land Area"

assign("..b", dimnames(state.x77), frame=Nframe)
..b[[2]] <- ..a

dimnames(state.x77) <- ..b

Conditionals are expressions of the form
if (cond) exprl else expr2

The else exprz may be omitted. The condition cond may be any
expression that evaluates to a single logical value TRUE or FALSE.
Common test conditions include tests on the mode of an object and
simple comparison tests using the operators >, >=, ==, <, and <=

The evaluation of conditionals begins with the evaluation of cond. If
the evaluation does not yield a logical value or yields multiple values,
an error message is returned. If cond is true, exprl is evaluated. If
cond is false and the else has not been omitted, expr? is evaluated.
Otherwise, Spotfire S+ returns NULL.

Spotfire S+ supports three types of loops: repeat, while, and for. The
three loops are evaluated similarly, primarily differing in how they
are exited. The while and for loops have specific completion tests
but may also be interrupted by flow-of-control instructions. Loops
involving repeat, however, have no specific completion test so in
general must be exited using flow-of-control instructions.

Because Spotfire S+ has no explicit jumps or G0TO0s, flow of control is
handled by flags that are checked by the evaluator each time it is
recursively called. There are three flags—Break.flag, Next.flag, and
Return.flag—that correspond to the three flow-of-control instructions
break, next, and return.

As we saw on page 496, when a return expression is evaluated,
Return.flag is set to TRUE, and the return value is stored in the Return
list. Similarly, within a loop, when a next or break flag is evaluated,
the corresponding flag is set to TRUE. On the next recursive call to the

501

Chapter 16 Evaluation of Expressions

502

evaluator, it checks the three flags and breaks out of the loop if either
Break.flag or Return.flag is TRUE. If Next.flag is TRUE, the
evaluator skips to the next iteration of the loop.

This flag-checking essentially defines the evaluation of repeat loops.
The repeat loop simply evaluates its body, checks the three flags, and
continues until one of Break.flag or Return.flag is TRUE.

The value of a loop expression is the value of the last completed
iteration, that is, an iteration not interrupted by break or next.
Iterations interrupted by return, of course, have the value specified
by the return expression.

Evaluation of a while loop corresponds to evaluation of a repeat loop
with a conditional corresponding to the while condition at the top of
the loop. For example, the while loop

while(n < 3)
{ cat("hello\n ™)
n <-n+1

}
is interpreted by the evaluator as the following repeat loop:

repeat

{ if (n >= 3) break
cat("hello\n ")
n<-n+1

}

Unlike repeat and while loops, for loops introduce the notion of a
looping variable that takes on a new value during each iteration of the
loop. To maintain the looping variable correctly, and also to permit
arbitrary names for the looping variable, evaluation of for loops is
somewhat more complicated than that of the other loops.

First, the name of the looping variable is extracted, and the current
value associated with that name is stored. A vector of values that the
looping variable will take on is created, and then the looping begins.
When the loop is completed, the name of the looping variable is
reassigned to the stored value, if any. Loops are evaluated in the local
frame—no special loop frame is created.

Spotfire S+ Syntax and Grammar

Grouping Two types of grouping affect Spotfire S+ evaluation:

L.

Braces group sets of expressions separated by semicolons or
newlines into a single expression of mode {. Braced
expressions make up the body of most function definitions
and iterative loops. The braced expression is evaluated by
evaluating each subexpression in turn, with the usual checks
for return, break, and next. The value of the braced
expression is the value of the last evaluated subexpression or
the value stored in the Return vector if the braced expression
includes an evaluated return.

Parentheses are used to group subexpressions to control the
order of evaluation of a given expression. Syntactically, they
differ from braces in that they can surround only one
complete expression (that is, an expression terminated by a
semicolon or newline). For grouping purposes, braces may be
used anywhere parentheses are.

503

Chapter 16 Evaluation of Expressions

504

THE VALIDATION SUITE

Introduction 506
Outline of the Validation Routines 507
Running the Tests 511
Creating Your Own Tests 514

505

Chapter 17 The Validation Suite

INTRODUCTION

506

You can check the accuracy of Spotfire S+ algorithms and routines as
they run on your system by using the validate function. The
validate function draws upon a suite of validation tests that refer to
published examples of both typical and extreme data sets in a variety
of statistical routines and distribution lookups. You can also create
your own validation tests and call them with validate, using the
supplied test files as templates.

This chapter details the coverage of the supplied routines, describes
the syntax of validate, and gives examples of its output. The last
section of the chapter shows how to create your own tests.

Outline of the Validation Routines

OUTLINE OF THE VALIDATION ROUTINES

Table 17.1 describes the coverage of the built-in validation tests. In the
left column of the table, tests are grouped into functional areas. The
middle column lists the high-level Spotfire S+ functions tested, and
the right column contains brief descriptions of the different cases
covered by the tests, when relevant. It is possible to expand the scope
of the tests provided, and you can also write routines for other

Spotfire S+ functions (including your own functions).

Table 17.1: Built-in validation tests.

Functional ngh-.Level Test Cases
Area Functions
ANOVA aov 1-way balanced layout with replicates.
2-way layout without replication.
2-way layout with replicates.
Complete balanced block design, with and without 2-
way interaction term.
Complete unbalanced block design, no interaction
term.
9° design.
Split-plot design.
Repeated measures.
manova Simple.
Repeated measures.
Descriptive mean Descriptive statistics for various numeric vectors,
Statistics median including very large and very small values.
var

standard dev.

cor

Simple correlation coefficient between two vectors.

507

Chapter 17 The Validation Suite

Table 17.1: Built-in validation tests.

Hypothesis
Tests

binom.test

2-sided alternative.

Both 1-sided alternatives.

prop.test 2-sample test, 2-sided alternative.

chisqg.test 2x2 contingency table, with and without continuity
correction.
4x5 contingency table, with and without continuity
correction.

t.test 1-sample, 2-tailed and both 1-sided alternatives.

2-sample, 2-tailed and 1-tailed (“less”) alternative.

Paired test.

wilcox.test

1-sample signed rank test, 1-sided (greater) alternative.

2-sample rank sum test, using large sample
approximation with no continuity correction.

Paired-sample signed rank test, 2-sided alternative.

cor.test

Pearson’s product moment correlation coefficient, t-
test for significance, 2-sided alternative.

Spearman’s rank correlation.

Kendall’s tau statistic.

fisher.test

Exact test for 2x2 contingency table, 2-sided
alternative.

mantelhaen.test

2x2x3 contingency table with continuity correction.

mcnemar.test

2x2 table.

kruskal.test

1-way layout with 3 groups, 2-sided alternative.

friedman.test

2-way unreplicated layout.

508

Table 17.1: Built-in validation tests.

Outline of the Validation Routines

var.test 2-tailed variance ratio test, 2-tailed and 1-tailed (less)
alternatives.

ks.gof 1-sample test, 2-sided and both 1-sided alternatives.

chisq.gof Testing continuous data from a normal distribution
with given U and g where expected values are the
same in each of the specified number of classes.
Testing discrete data from a normal distribution, where
expected values are calculated from specified class
endpoints.

Multivariate princomp Components based on both correlations and

covariances.

factanal Principal component extraction with varimax rotation.
Maximum likelihood factor solutions with varimax
rotation.

Regression Tm Simple linear regression, including hypothesis testing.

Multiple regression including hypothesis testing.
Polynomial regression.
Multiple regression with no intercept, including
hypothesis testing.

glm Logistic regression, including chi-square goodness of
fit.
Log-linear regression.
Gaussian linear model.

nls Michaelis-Menten model with 4 parameters.

509

Chapter 17 The Validation Suite

Table 17.1: Built-in validation tests.

Tme

Random intercept.
Random intercept with AR(1) errors.
Random factors.

Random factors with AR(1) errors.

Statistical pnorm, gnorm z-values between -3.0902 and 3.0902.
Distributions
pchisq Probabilities from 0.001 to 0.995; degrees of freedom
from 1 to 25 by 5, and 30 to 100 by 10.
Survival survfit Kaplan-Meier estimator with 2 groups.
Analysis
survdiff Log-rank test.
coxph Simple survival data set, modeled by group.
Multivariate failure time data with repeated failures
modeled as strata.
Andersen-Gill fit on multivariate failure time data.
survreg Gaussian, Weibull, and exponential models.

510

Running the Tests
RUNNING THE TESTS

To run validation tests using the validate function, no more is
required than the simple call

> validate()

which runs all tests available in /splus/lib/validate under your
Spotfire S+ home directory. The validate function invisibly returns
TRUE when all tests run successfully and FALSE otherwise. Assuming
all tests run successfully, output ends with the following summary.

VALIDATION TEST SUMMARY:

A11 tests PASSED

To run specific built-in tests, indicate a selection with the file
argument. The choices correspond to the functional areas in Table
17.1: anova, descstat, hypotest, multivar, regress, sdistrib, and
survival. For example, the following command runs the analysis of
variance and regression tests. The argument verbose is set to TRUE, so
the details of each test are returned by validate.

> validate(file = c("anova", "hypotest™), verbose = T)

--------------- Analysis of Variance ---------------

#fFunctions: aov, summary.aov
ffData: Sokal and Roh1f, Box 9.4 p. 220
fiReference: Sokal, R. and F. J. Roh1f. 1981.
#Biometry, 2nd edition.
fiW. H. Freeman and Company
f#fiDescription: 1-way balanced layout with 5 treatments,
#10 replicates/trtm;
ficheck df's, sum of squares and mean squares; check F value
ffand p-value using a different tolerance

toll <- 0.005

tol2 <- 0.04

511

Chapter 17 The Validation Suite

512

y <- c(75, 67, 70, 75, 65, 71, 67, 67, 76, 68,
57, 58, 60, 59, 62, 60, 60, 57, 59,
61, 58, 61, 56, 58, 57, 56, 61, 60,
57, 58, 58, 59, 58, 61, 57, 56, 58,
57, 57, 59, 62, 66, 65, 63, 64, 62,
65, 65, 62, 67)
y.treat <- factor(rep(l:5,
c(10, 10, 10, 10, 10)))
y.df <- data.frame(y, y.treat)
y.aov <- aov(y ~ y.treat, data = y.df)
a.tab <- summary(y.aov)
all(c(a.tab$Df == c(4, 45), abs(a.tab$
"Sum of Sq" - c(1077.32, 245.5)) <
toll, abs(a.tab$"Mean Sq" - c(269.33,
5.46)) < toll, abs(a.tab$"F Value"[1] -
49.33) < tol2, a.tab$"Pr(F)"[1] <
0.001))
}

AT1 tests PASSED

VALIDATION TEST SUMMARY:
in Windows

Test Directory:C:\splus8\splus\lib\validate
File splus8\splus\lib\validate\anova: AT1 tests PASSED

File splus8\splus\lib\validate\hypotest: A11 tests PASSED

To run customized tests, you must first write a test file: for information
on creating test files, see the section Creating Your Own Tests (page
514). To use validate with your test files, specify the name of your
files with the file argument and the directory containing them with
the test.loc argument. For example, suppose you create tests named

anoval and hypotestl in the Windows® directory
C:\Spluswork\valdir. Your call to validate would look like the
following:

> validate(file = c("anoval”, "hypotestl"),
+ test.loc = "C:\\Spluswork\\valdir")

Running the Tests

Should any of the validation tests fail, the details of the failed tests are
returned, followed by a notification such as the following:

[1] "**%k% Test FAILED *kxkx"
1 test(s) FAILED

VALIDATION TEST SUMMARY:

in Windows:

Test Directory:C:\Spluswork\valdir

File Spluswork\valdir\anoval: A11 tests PASSED
File Spluswork\valdir\hypotestl: 1 test(s) FAILED

513

Chapter 17 The Validation Suite

CREATING YOUR OWN TESTS

514

The built-in validation tests are set up as loop tests. A loop test consists
of a set of Spotfire S+ commands that are grouped as a braced
expression; the test returns either TRUE or FALSE depending on the
outcome. A validation test file contains one or more of these loop-
style expressions. For example, the code for the first loop test in the
built-in validation test for descriptive statistics is below. The code tests
the Spotfire S+ function mean:

{
Function: mean
J# Data: test.mat; a test data set suggested by Leland
Wilkinson in Statistic's Statistics Quiz (1985).
Reference(s): Sawitzki, G. 1993. Numerical Reliability of
Data Analysis Systems. submitted for publication in
Computational Statistics and Data Analysis.
Description: test mean for numeric data
tol <- le-6
test.mat <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, O,
o0, 0, 0, 0, O,
99999991, 99999992, 99999993, 99999994, 99999995, 99999996,
99999997, 99999998, 99999999,
0.99999991, 0.99999992, 0.99999993, 0.99999994, 0.99999995,
0.99999996, 0.99999997, 0.99999998, 0.99999999,
le+12, 2e+12, 3e+l2, 4e+l2, 5e+l2, 6e+l2, 7e+l12, 8e+l2,
9e+12, le-12, 2e-12, 3e-12, 4e-12, 5e-12, 6e-12, 7e-12,
8e-12, 9e-12,
0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5),
ncol=7, dimnames = Tist(NULL, c(

"X", "Zero"™, "Big", "Little", "Huge", "Tiny", "Round")))
test.mean <- matrix(0,1,7)
test.mean[1] <- mean(test.mat[,1])
test.mean[2] <- mean(test.mat[,2])
test.mean[3] <- mean(test.mat[,3])
test.mean[4] <- mean(test.mat[,4])
test.mean[5] <- mean(test.mat[,5])
test.mean[6] <- mean(test.mat[,6])
test.mean[7] <- mean(test.mat[,7])
all(c(test.mean[l] == 5,

test.mean[2] == 0,

Creating Your Own Tests

test.mean[3] == 99999995,
test.mean[4] == 0.99999995,
test.mean[5] == 5.0e+12,
test.mean[6] == 5.0e-12,
test.mean[7] == 4.5))

}

Custom test files can be created either from scratch or by using an
existing file as a template. The test files included as part of Spotfire S+
can be found in SHOME/splus/lib/validate; the code above is the
first braced expression of the file descstat in this directory. If the
variable SHOME is not set in your environment, use the path
returned by calling getenv("SHOME") within Spotfire S+.

The basic construct of a test file includes an expression, which is
defined by a set of commands enclosed in curly brackets {}. The
validate function expects the first expression to be a comment; if the
first expression is a test, it is not accounted for in the summary. Each
expression is self-contained and evaluates to either TRUE or FALSE.
Commonly, a validation test sets up some data and calls one or more
Spotfire S+ functions. Results of the function calls are then compared
to accepted results, within some tolerance. The Spotfire S+ functions
all and any are often used to set up the comparison expression that
evaluates to TRUE or FALSE.

515

Chapter 17 The Validation Suite

516

INDEX

Symbols

...argument 172

.Call function 262

.C function 262

.Data directories 51
Internal functions 497
Internal functions 407
.Last.value object 196
.Random.seed 486

A

acf function 363
addition operator 182
aggregate function 100
aggregate fz 165

aggregateSeries method 100

align function 96

all function 194

any function 194

apply fz 467, 470

ar.burg function 377

ar function 57

Arg function 191

argument ... 172

arguments 184
actual name 227

arbitrary numbers 230

argument list 227
default values 228
formal name 227
lazy evaluation 229
missing 228, 229

optional 231
parameter list 227
required 231
arithmetic
complex 190
integer 189, 198, 266
real 189, 190, 198, 266
array function 75
arrays 74, 204
column-major order 204
losing dimensions when
subscripting 204, 206
subscripting 204
subscripting with matrices 207
as.data.frame fz 152
as.matrix function 198
as.vector function 198
ASCII files 291
as function 190, 197, 198
assign function 197, 246
frame argument 197
assign fz 33, 41, 479
assignments 195
left 196
local 196
permanent 196, 243
right 196
using the arrow 195
using the equals sign 195, 196
using the underscore 195
within functions 196
attr function 271
attributes

517

Index

518

defining new 271
dim 204, 270
dimnames 206, 237
names 203
null 194
attributes fz 174
attributes of Spotfire S+ 459
auditConnection function 253
auto.dat data set 301

B

barplot function

related to hist 230
BLAS routines 474
Break.flag 501
break function 221, 222, 501
breaks argument 84
browser function 54
browser function 387
building block functions 471
built-in vectorized functions 465
by fz 165, 168

C

calendar-based series 89
call function 57
calls 496
categorical variables 80
cat function 243, 245, 248, 258, 272,
325
append argument 245
file argument 245
fill argument 245
cat function 365
cbind function 72
cbind fz 152, 158
ceiling function 188
¢ function 230
character data type 171
character function 68
character mode 208
character values 66
circle fz 402

class attribute 80
class attribute 171, 174
clear.frame fz 29
clipboardConnection function 253
close function 252, 256
codes function 81
coercing functions 197
as 190, 197, 198
loss of information 198
ColorBits argument 330
column-major order 204
combining data frames 158
by column 158
by row 160
merging 162
rules 171
commands
object name 423
comments 213, 226, 496
comparison functions 192
complete function instruction 376
complete instruction 376
complete loop instruction 376
complex arithmetic 190
complex class 183
complex function 68, 190
complex numbers 190
converting real to complex 190
precedence of operators 190
complex values 66, 495
conditionals 501
Conj function 191
connection class 251
connection object 251
connections 250
auditConnection 253
checking whether one is open
256
clipboardConnection 253
closing 256
delay opening 252
fifo 251, 254
file 251, 254
list of open connections 256
modes 254

opening 256
pipe 251, 254
positioning 256, 257, 263
raw data 262, 263
reading from 258
read-only 254
standard error 252
standard input 252
standard output 252
textConnection 251, 254
write-only 254
writing to 258
constants, symbolic 496
constructor functions 397, 401
Control And function 498
control functions 213, 215
break 221, 222
for 225
if 189, 197, 213, 216, 217
ifelse 213, 219, 221
multiple cases 218
next 221
repeat 222
return 213, 221, 222
stop 216, 233, 234
switch 218
while 224
Control Or function 498
cor function
rounding 240
CPU time 457
creating a list in a loop 469
cummax fz 467

D

data
exporting 323
importing 283
data.class fz 171
data.dump function 243, 246, 258,
325
restoring with the data.restore
function 246
data.frame data type 172

Index

data.frame fz 152
data.restore function 246, 258
databases 30
data frames 150
adding new classes of variables
171
applying functions to subsets
165
attributes 174
combining objects 155
dimnames attribute 154
row names 154
rules for combining objects 171
subscripting 211
using ifelse 221
dataGet function 259
data objects 150
raw 261
dataPut function 259
data sets
growing 468
state.abb 203, 211
state.center 211
state.division 211
state.name 203, 211
state.region 211
state.x77 205, 211
date function 184
dates and times 118
date sequences 141
dBase files 294
debugger function 388
debugging 368
deparse function 45, 48
deparsing expressions 48, 49
D function 46
dget function 246, 258
dictionaries 35
diff function 179
dim attribute 71, 204, 270
dim function 75, 183, 205
dimnames attribute 206, 237
dimnames function 73, 274
disk activity 457
division operator 182

519

Index

520

do.call function 59
do instruction 375
double backslash 424
double precision 198
in printing 237
down instruction 371
dput function 243, 246, 248, 258
restoring with the dget function
246
draw fz 404
dump.frames function 388
dump function 243, 246, 258
restoring with the source
function 246

E

ed function 248

efficient programming 469

elapsed time 457

enter instruction 376

environment variables
S_TMP 249

error.action function 383

error handling in functions 233
error option 234
last.dump object 233
stop function 233, 234
traceback function 233
warning function 234

Euclid’s algorithm 182

eval function 45, 52

eval function 370, 378

eval instruction 382

events 146

Excel files 293

exclude argument 83

exponentiation operator 182, 183
for matrices 269

export.graph function 327
arguments to 327

exportData function 323

exporting data 323

ExportType argument 328

expression frame 23

expression function 44, 52, 57, 499
expressions

deparsing 48, 49

unevaluated 46, 52
extraction functions 183

writing 270

F

factor class 81
factor function 81
factors 80, 394
FASCII files 292
Fibonacci sequence function 471
fifo function 251
open argument 252, 255
file function 251
open argument 252, 255
positioning 257, 263
files
connections 250
positioning 257, 263
temporary 248, 266
writing 243
writing structural information of
Spotfire S+ objects 246
find instruction 371
fix function 51
floor function 188
For fz 483
for loops 213, 214, 225, 501
over lists 225
replacing with subscripting 225
for loops 480
format function 238, 240, 245, 325
digits argument 238
nsmall argument 239
frame 1 23
frame 2 23
frame argument 39
frames 23, 25, 458
and assignments 196
FUN argument 167
func.entry.time function 381
func.exit.time function 381

functions 496

arbitrary number of arguments
230

arguments of 184, 227

assignments 195

body of 184

coercing 197

comments 213, 226

comparison 192

connections 250

control 213, 215

creating temporary files 248

default values for arguments
228

extraction 183, 270

handling errors 233

input 236

lazy evaluation 229

logical 192

mathematical 186, 197

missing arguments 228

operators 181

optional arguments 231

output 236

overriding normal flow of
control 215

raw data objects 261

recursive 265

replacement 183, 270

required arguments 231

return values 184, 240, 265

side effects 185, 241, 242, 265

summary 191

suppressing printed output 242

testing 197

wrap up actions 265

writing to files 243

fundef function 370

G

generator functions 397, 401
getAllConnections function 256
getConnection function 256

Index

get function 269, 271
get fz 27
getSlots 64
grain.size argument 483
grouping
braces 503
parentheses 503
guiCopy fz 425
guiCreate fz 422
guiDisplayDialog fz 440
guiExecuteBuiltIn function 452
guiGetArgumentNames fz 435
guiGetAxisLabelsName function
449
guiGetAxisName function 449
guiGetAxisTitleName function 449
guiGetClassNames fz 421, 434
guiGetGraphName function 450
guiGetGSName function 450
guiGetOption function 448
guiGetPlotClass function 450
guiGetPropertyOptions function
438
guiGetPropertyValue fz 437
guiGetRowSelectionExpr function
447
guiGetRowSelections function 447
guiGetSelectionNames fz 445
guiModifyDialog fz 442
guiModify fz 426
guiMove fz 427
GUI objects 421
guiOpen fz 428
guiOpenView fz 430
guiPlot function 449
guiPrintClass function 434
guiRemoveContents function 431
guiRemove fz 430
guiSave fz 431
guiSetOption function 448
guiSetRedraw 432
guiSetRowSelections function 446
GUI toolkit 421

521

Index

522

H

help files
user written 214
help instruction 370
high/low/open/close plots 102
hist function 227, 228, 231
breaks argument 227, 228, 230,
231
include.lowest argument 227,
228, 231
nclass argument 227, 228, 231
plot argument 227, 228, 231
probability argument 227, 228,
231
related to barplot 230
x argument 227, 231
xlab argument 227, 228, 230,
231
History log
recorded scripts 421
holidays, functions for calculating
the dates of
holiday.Christmas 125
holiday.nearest.weekday 126
holiday.weekday.number 126
holidays 125
holidays.fixed 126
user-defined 126
hstart time series 166
html.table function 334

HTML output
tables 334
text 335

I

ifelse statement 213, 219
with vectors, matrices, and data
frames 221
ifelse statement 466
if statement 189, 193, 197, 213
and logical AND 217
and logical OR 217

handling missing arguments
217
multiple cases 218
screening data 216
syntax 216, 217
Im function 191
immediate argument 41, 479
importData function 236, 283
importing data 236, 283
importData function 236
raw data objects 261
read.table function 236
scan function 236
via connections 250, 258
inherits function 198
inspect function 368, 369
integer arithmetic 189, 198, 266
integer divide operator 182
integer function 68
intelmkl.use 474
interquartile range (IQR) 179
intraday trading data plot 105
invisible function 242
iris data set 74, 77
is.intelmkl.inuse 474
is.matrix function 197
is.na function 194
is.null function 194
is.vector function 197
is function 197, 198, 216
isOpen function 256

K
kyphosis data frame 38, 166

L

labels argument 83, 84
lapply function 214, 225
lapply fz 470
last.dump object 233
controlling amount of
information in 234
lazy evaulation 229

left assignment 196
length attribute 66
length function 201, 203
levels argument 82, 83
levels attribute 80
levels attribute 174
list class 208
list component operator 210
list data type 171
list function 58, 78, 230
lists 77
components of 210
creating in loops 469
looping over 225
subscripting 208
list subscript operator 208
literals 494
Im function 60, 184
local argument 28
locator fz 401, 402
logical AND operator 193
logical function 68
logical functions 192
all 194
AND 193, 217
any 194
NA or NULL values 194
OR 193, 217
logical OR operator 193
logical values 66
and NAs 217
recycling 202
loops 501
break function 221, 222
for 213, 214, 225
for, while and repeat loops 467
next function 221
over lists 214
repeat statement 222
replacing with subscripting 221,
225
return function 221, 222
while statement 224
Lotus files 293

Index

M

make.data.frames function 370
mark instruction 371, 377, 378
match.call function 60, 61
mathematical functions 186
Arg 191
ceiling 188
coercing data to numeric 197
Conj 191
floor 188
Im 191
Mod 191
Re 191
round 188
sqrt 187, 190, 217, 238
tan 187
trunc 188
matrices 71
column-major order 204
extracting row names 274
losing dimensions when
subscripting 204, 206
replacing row names 274
subscripting 204
using ifelse 221
matrix data type 171
matrix exponentiation 269
matrix function 72, 187
matrix fz 397
matrix multiplication 470
max fz 169
mean function 230, 236
trim argument 231
mean fz 169
memory.size fz 460
memory allocation 458
arenas 458
buckets 458
memory fragmentation 462
memory mapping 263
memory requirements 462
menu function 53
merge fz 152, 162
by.x argument 163

523

Index

524

by.y argument 163
Meta databases 34
missing function 217, 499
mode function 198, 208, 210
model. matrix data type 172
Mod function 191
moving average plots 103
multiplication operator 182

N

names, syntactic 496
names attribute 203
names function 53, 69, 73, 183, 203
Next.flag 501
next function 221, 501
non-calendar-based signals 89
number sequences
creating
using colon operator 144
using numericSequence
function 144

using seq function 144
numeric class 264
numeric function 68
numericSequence function 144
numericSequence objects 144
numeric summaries 166
numeric values 66, 494

0]

object-oriented programming 3, 65,
394
objects fz 36
on.exit function 185, 189, 265
add argument 266
on.exit fz 485
on.exit instruction 376
open function 252, 256
mode argument 254
operators 181
addition 182
AND 217

component 210
division 182
exponentiation 182, 183
infix form 181
in representing complex
numbers 190
integer divide 182
listed 182
list subscript 208
logical AND 193
logical OR 193
matrix exponentiation 269
multiplication 182
OR 217
precedence 182, 270
subtraction 182
writing your own 269
optional arguments 231
options function 185, 189
digits setting 237, 238
error setting 234
expressions setting 189, 265
length setting 237
width setting 185, 237, 245
ordered function 83
output 236
as character vectors 238
connections 250
creating temporary files 248
formatting 237
raw data objects 261
return values 240
rounding 239
setting the length of 237
setting the number of printed
digits 237
setting the width of 237
side effects 241, 242
structural information of
Spotfire S+ objects 246
suppressing printed output 242
writing to connections 258
writing to files 243

P

page function 237
parent frame 28
parse function 44, 259
parseSome function 259
paste function 73
paste function 364
permanent assignment 196, 243
pipe function 251
open argument 252, 255
plot.signalSeries method 111, 113
plot.timeSeries method 102, 111
plot function 48, 102, 113
plots
high/low/open/close 102
intraday trading data 105
moving average 103
signals Trellis 115
time series Trellis 108
plotting
signals 113
time series 102
positions function 94
primes function 386
print.atomic function 242
print function 81
print function 365
print method
digits argument 238
with the round function 240
problems 363
prod function 191
programmer time 457
prompt function 214

Q

QFactor argument 330
quantile function 179
quartiles

of a sample 179
Quote function 44

Index

R

RandomNumber function 52
raw class 262
raw data 261
ascii coding 262
constructors for 262
hex coding 262
positioning 263
reading 263
reading data of a certain length
264
reading integers 263
reading real values 264
via connections 262, 263
writing 263
rawData function 262
rawFromAscii function 262
rawFromHex function 262
raw function 262
rbind function 72
rbind fz 152, 160, 161
read.table function 236, 259, 301
read.table fz 152
readLines function 259
readMapped function 262, 263
readRaw function 259, 262, 263
length argument 264
what argument 263
real arithmetic 189, 190, 198, 266
Recall function 189, 265, 499
recursion
avoiding 471
Re function 191
relative time objects
creating
using as function 140
using timeRelative function
140
field abbreviations for 138
overview of 133, 138
remove fz 33, 36
remove fz 471
reopen function 254
repeat loops 501

525

Index

526

repeat statement 222

rep function 67

replacement functions 183
for class function 271
for dim function 271
for names function 203, 271
writing 270

required arguments 231

resume instruction 376

Return.flag 501

return expression 498

return function 189, 213, 221, 222,

240, 501

return value 184, 240, 265

Reuse Computations 470

reusing code 471

right assignment 196

rm fz 36

round function 188, 239
digits argument 188
with print 240

S

S_TMP environment variable 249
sapply function 225
sapply fz 470
scan function 236, 258, 298, 299,
300
Scoping rules 28, 39
scripts 15
function dialog example 419
running 420
search fz 30
seek function 256, 257, 263
rw argument 257
where argument 257
sep argument 366
seq function 68, 141
sequences
date 141
number
creating
using colon operator
144

using
numericSequence
function 144
using seq function 144
time 141
seriesData function 94
seriesMerge function 98
showConnections function 256
show function 366, 394
show instruction 379
side effects 185, 241, 242, 265
of permanent assignment 196
signals
aggregating and coarsening 100
aligning 96
as non-calendar-based series 89
converting old-style time series
to 92
creating with signalSeries
function 91
extracting positions and data of
94
interpolating 96
merging 98
overview of 88
plot.signalSeries method for
111,113
plots for
customizing 111
Trellis 115
plotting 113
replacing positions and data of
94
subscripting 94
trellisPlot.signalSeries method
for 111, 115
signalSeries function 91
signatures 397
signif function 239
significant digits 239
single backslash 424
single precision 198
sink function 243, 245
with connections 253
slotNames 64

slots 64
solder data set 151
source function 246, 258
sqrt function 187, 217, 238
negative arguments 190
standard error 252
standard input 252
standard output 252
state.abb data set 203, 211
state.center data set 211
state.division data set 211
state.name data set 203, 211
state.region data set 211
state.x77 data set 205, 211
stderr function 252
stdin function 252
stdout function 252
step instruction 374
stop function 216, 233, 234
storage.summary fz 462
storage mode 198
strings 495
strip.white argument 300
subscripting 200, 220, 273
arrays 204, 207
component operator 210
data frames 211
drop argument 207
list operator 208
lists 208
losing dimensions 204, 206
matrices 204
replacing loops 221, 225
to extract irregularly shaped
data 207
vectors 200
with character vectors 203, 205
with logical values 202, 205
with negative integers 201, 205
with positive integers 200, 205
subscripts
efficiency considerations 465
logical 466
subsetting data
see subscripting

Index

substitute function 44, 46, 48, 52,
499
subtraction operator 182
sum function 191
summary function 81
summary functions 191
prod 191
sum 191
swap space 457
switch function 499
switch statement 218
symbolic constants 496
syntactic names 496
sys.call function 49
sys.calls 498
sys.frames 498
sys.frames fz 26
sys.parents 498

T

tan function 187
tapply fz 169
task frame 23
tempfile function 248
temporary files 248
location of 249
removing 266
testing functions 197
inherits 198
is 197, 198, 216
is.na 194
is.null 194
textConnection function 251, 254
open argument 252
t function 244, 326
time/date objects
basic operations on 125
creating
from character data
using as function 119
using timeDate
function 119
from numeric data
using as function 124

527

Index

using timeCalendar
function 124
using timeSeq function 141
with time zones 129
displaying 121
overview of 119
printing 121
timeCalendar function 124
zone argument to 129
timeDate function 119, 121, 124,
130
format argument to 121, 130
common specifications for
122
in.format argument to 119
common specifications for
120
in.origin argument to 124
julian argument to 124
zone argument to 129, 130
timeDate objects
basic operations on 125
creating
from character data
using as function 119
using timeDate
function 119
from numeric data
using as function 124
using timeCalendar
function 124
using timeSeq function 141
with time zones 129
displaying 121
overview of 119
printing 121
timeEvent function 146
timeEvent objects 146
time interval objects, types of 133
time intervals 133
timeRelative function 140
holiday argument to 140
timeRelative objects
creating
using as function 140

528

using timeRelative function
140
field abbreviations for 138
overview of 133, 138
times and dates 118
timeSeq function 141, 142
arguments to 141
timeSequence objects
creating with timeSequence
function 142
time sequence objects
creating with timeSequence
function 142
overview of 141
time sequences 141
time series
aggregateSeries method for 100
aggregating and coarsening 100
aligning 96
as calendar-based series 89
converting old-style time series
to 90
creating with timeSeries
function 89
extracting positions and data of
94
interpolating 96
merging 98
plot.timeSeries method for 102,
111
plots for
customizing 111
high/low/open/close 102
intraday trading data 105
moving average 103
multiple time series 106
Trellis 108
plotting 102
replacing positions and data of
94
subscripting 94
trellisPlot.timeSeries method for
108, 111
timeSeries function 89

timeSpan function 133, 134, 135,
136
format argument to 135
common specifications for
135
in.format argument to 134
common specifications for
134
julian argument to 136
ms argument to 136
timeSpan objects
basic operations on 137
creating
by subtracting two time/
date objects 133
from character data
using as function 133
using timeSpan
function 133
from numeric data
using as function 136
using timeSpan
function 136
displaying 135
overview of 133
printing 135
time span objects
basic operations on 137
creating
by subtracting two time/
date objects 133
from character data
using as function 133
using timeSpan
function 133
from numeric data
using as function 136
using timeSpan
function 136
displaying 135
overview of 133
printing 135
timeZoneConvert function 131
timeZoneList function 127, 128
time zones

Index

alias names for 127
built-in 127
changing and converting
between 131
creating timeDate objects with
129
daylight savings time for 128
mathematical operations and
alignment with 132
overview of 127
user-defined 128
timeZoneS function 128
top-level frame 23
traceback function 233
traceback function 364
trace function 54
trace function 389
track instruction 371, 380
trellisPlot.signalSeries method 111,
115
trellisPlot.timeSeries method 108,
111
trellisPlot function 108, 115
Trellis plots
for signals 115
for time series 108
trunc function 188

U

unevaluated expressions 46, 52
unlink function 266

unmark instruction 379

up instruction 371

\'%

validate fz 506
coverage areas 511
examples 511
running a test 511

validation test files 515

Validation Tests 507

var function
rounding 240

529

Index

530

vector data type 171
vector function 68
vectorize
computations 213
definition 186
if statements 219
vectors 67, 394
subscripting 200
using ifelse 221
virtual memory 457

W

warning function 234
where argument 39
where instruction 374
while loop

replacement for recursion 472
while loops 501
while statement 224
wrap up actions
removing temporary files 266
write.table function 243, 244, 259,
326
write function 243, 244, 248, 325,
326
ncolumns argument 244
writeLines function 259
writeRaw function 259, 262, 263

Z
zseven class 408, 415

	Important Information
	TIBCO Spotfire S+ Books
	The Spotfire S+ Language
	Introduction to Spotfire S+
	Interpreted vs. Compiled Languages
	Object- Oriented Programming
	Versions of the S Language
	Programming Tools in Spotfire S+

	Syntax of Spotfire S+ Expressions
	Names and Assignment
	Subscripting

	Data Classes
	The Spotfire S+ Programming Environment
	Editing Objects
	Functions and Scripts
	Transferring Data Objects

	Graphics Paradigms
	Editable Graphics
	Traditional Graphics
	Traditional Trellis Graphics
	(Windows) Converting Non-editable Graphics to Editable Graphics
	When to Use Each Graphics System

	Data Management
	Introduction
	Frames, Names and Values
	Frames and Argument Evaluation
	Creating and Moving Frames

	Databases in Spotfire S+
	Meta Databases
	Database Dictionaries
	Directory Databases and Object Storage
	Recursive Objects as Databases

	Matching Names and Values
	Commitment of Assignments

	Computing on the Language
	Introduction
	Symbolic Computations
	Making Labels From Your Expressions
	Creating File Names and Object Names
	Building Expressions and Function Calls
	Building Unevaluated Expressions
	Manipulating Function Definitions
	Building Function Calls

	Argument Matching and Recovering Actual Arguments

	Data Objects
	Introduction
	Vectors
	Coercion of Values
	Creating Vectors
	Naming Vector Elements

	Structures
	Matrices
	Arrays

	Lists
	Creating Lists
	Naming Components

	Factors and Ordered Factors
	Creating Factors
	Creating Ordered Factors
	Creating Factors From Continuous Data

	Time Series and Signal Basics
	Introduction
	Creating Time Series and Signals
	Creating Calendar- Based Time Series
	Creating Non- Calendar- Based Signals

	Subsetting and Basic Manipulation of Series
	Interpolation and Alignment of Series
	Merging Series
	Aggregating and Coarsening Series
	Plotting Time Series
	High/Low/ Open/Close Plot
	Moving Average Plot
	Intraday Trading Data Plot
	Plots Containing Multiple Time Series
	Time Series Trellis Plots
	Customizing Time Series and Signal Plots

	Plotting Signals
	Basic Signal Plotting
	Trellis Plots of Signals

	Dates, Times, Time Intervals, and Sequences
	Introduction
	Times and Dates in Spotfire S+
	Creating Time/ Date Objects from Character Data
	Displaying Time/Date Objects
	Creating Time/ Date Objects from Numeric Data
	Basic Operations on Time/Date Objects
	Calculating Holiday Dates
	Using Time Zones

	Time Intervals in Spotfire S+
	Creating Time Span Objects from Character Data
	Displaying Time Span Objects
	Creating Time Span Objects from Numeric Data
	Basic Operations on Time Span Objects
	Relative Time Objects

	Time Sequences in Spotfire S+
	Numeric Sequences in Spotfire S+
	Representing Events in Spotfire S+

	Data Frames
	Introduction
	The Benefits of Data Frames
	Creating Data Frames
	Rectangular Data Functions

	Combining Data Frames
	Combining Data Frames by Column
	Combining Data Frames by Row
	Merging Data Frames
	Converting Data Frames

	Applying Functions to Subsets of a Data Frame
	Adding New Classes of Variables to Data Frames
	Data Frame Attributes

	Writing Functions in Spotfire S+
	Introduction
	Windows Users
	UNIX Users

	The Structure of Functions
	Function Names and Operators
	Arguments
	The Function Body
	Return Values and Side Effects
	Elementary Functions
	Operations on Complex Numbers
	Summary Functions
	Comparison and Logical Operators
	Assignments
	Testing and Coercing Data

	Operating on Subsets of Data
	Subscripting Vectors
	Subscripting Matrices and Arrays
	Subscripting Lists
	Subscripting Data Frames

	Organizing Computations
	Programming Style
	Flow of Control
	Notes Regarding Commented Code

	Specifying Argument Lists
	Formal and Actual Names
	Specifying Default Arguments
	Handling Missing Arguments
	Lazy Evaluation
	Variable Numbers of Arguments
	Required and Optional Arguments

	Error Handling
	Input and Output
	Data Input
	Data Output
	Connections
	Raw Data Objects

	Wrap-Up Actions
	Writing Special Functions
	Operators
	Extraction and Replacement Functions

	References

	Importing and Exporting
	Supported File Types for Importing and Exporting
	Importing Data
	Using the importData Function
	Other Data Import Functions

	Using Direct Database Drivers
	Spotfire S+ Commands for Importing and Exporting
	Dialogs for Importing and Exporting
	Installing and Configur- ing Database Clients on UNIX
	Installing and Configur- ing Database Clients on Windows

	Exporting Data
	Using the exportData Function
	Other Data Export Functions

	Exporting Graphs
	Specifying the ExportType Argument
	Specifying the QFactor Argument
	Specifying the ColorBits Argument

	Creating HTML Output
	Tables
	Text

	Using Direct Database Drivers
	Overview
	Spotfire S+ Commands for Importing and Exporting
	Dialogs for Importing and Exporting
	Import From Database
	Export to Database
	How Direct Data Sources are Stored

	Install and Configure Database Clients (UNIX)
	Install and ConfigurE Database Clients (Windows)
	SQL Server 2000 Client
	Sybase Client
	Oracle Client
	DB2 Client

	Debugging Your Functions
	Introduction
	Basic Spotfire S+ Debugging
	Printing Intermediate Results
	Using recover

	Interactive Debugging
	Starting the Inspector
	Examining Variables
	Controlling Evaluation
	Entering, Marking, and Tracking Functions
	Entering Functions
	Marking Functions
	Marking the Current Expression
	Viewing and Removing Marks
	Tracking Functions
	Modifying the Evaluation Frame
	Error Actions in the Inspector

	Other Debugging Tools
	Using the Spotfire S+ Browser Function
	Using the Spotfire S+ Debugger
	Tracing Function Evaluation

	Object-Oriented Programming in Spotfire S+
	Introduction
	Fundamentals of Object-Oriented Programming
	Classes and Methods in Spotfire S+
	Public and Private Views of Methods
	Prototype and Representation
	Inheritance and Extension; Is Relations
	Metadata

	Defining New Classes in Spotfire S+
	Defining Generator Functions
	Defining Methods
	Defining Generic Functions

	Editing Methods
	Group Methods
	Extraction and Replacement Methods

	Programming the User Interface Using Spotfire S+
	The GUI Toolkit
	GUI Objects
	GUI Toolkit Functions

	General Object Manipulation
	guiCreate
	guiCopy
	guiModify
	guiMove
	guiOpen
	guiOpenView(docClassname, Name ,…)
	guiRemove
	guiSave
	guiRemoveContents
	guiSetRedraw(Name, Redraw)

	Information On Classes
	guiGetClassNames
	guiPrintClass
	guiGetArgumentNames

	Information on Properties
	guiGetPropertyValue
	guiGetPropertyOptions
	guiGetPropertyPrompt

	Object Dialogs
	guiDisplayDialog
	guiModifyDialog

	Selections
	guiGetSelectionNames
	guiSetRowSelection
	guiGetRowSelection
	guiGetRowSelectionExpr

	Options
	guiSetOption
	guiGetOption

	Graphics Functions
	guiPlot
	Identifying Specific Graphics Objects
	guiGetPlotClass
	guiUpdatePlots

	Utilities
	guiRefreshMemory
	guiExecuteBuiltIn

	Summary of GUI Toolkit Functions

	Using Less Time and Memory
	Introduction
	Time and Memory
	How Spotfire S+ Allocates Memory
	Why and When Spotfire S+ Copies Data

	Writing Good Code
	Use Vectorized Arithmetic
	Avoid for Loops
	Avoid Growing Data Sets
	Avoid Looping Over Named Objects
	Keep It Simple!
	Reuse Computations
	Reuse Code
	Avoid Recursion
	Using Non- Generic Functions

	Improving Speed

	Simulations in Spotfire S+
	Introduction
	Working with Many Data Sets
	Working with Many Iterations
	The Advantages of lapply
	Using the For Function

	Monitoring Progress
	Recording the Status of a Simulation
	Recovery After Errors

	Example: A Simple Bootstrap Function
	Summary of Programming Tips

	Evaluation of Expressions
	Introduction
	Spotfire S+ Syntax and Grammar
	Literals
	Calls
	Assignments
	Conditionals
	Loops and Flow of Control
	Grouping

	The Validation Suite
	Introduction
	Outline of the Validation Routines
	Running the Tests
	Creating Your Own Tests

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

