
TIBCO Spotfire S+®
 8.1

Guide to Graphics

November 2008

TIBCO Software Inc.

IMPORTANT INFORMATION

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER
TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON
FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT
LICENSED TO BE USED OR ACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS
SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE
AGREEMENT FOUND IN EITHER A SEPARATELY
EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF
THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS
DISPLAYED DURING DOWNLOAD OR INSTALLATION OF
THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SPOTFIRE S+® INSTALLATION AND ADMINISTRATION
GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO THOSE
TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to
U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO Software Inc., TIBCO, Spotfire, TIBCO Spotfire S+,
Insightful, the Insightful logo, the tagline "the Knowledge to Act,"
Insightful Miner, S+, S-PLUS, TIBCO Spotfire Axum,
S+ArrayAnalyzer, S+EnvironmentalStats, S+FinMetrics, S+NuOpt,
S+SeqTrial, S+SpatialStats, S+Wavelets, S-PLUS Graphlets,
Graphlet, Spotfire S+ FlexBayes, Spotfire S+ Resample, TIBCO
Spotfire Miner, TIBCO Spotfire S+ Server, and TIBCO Spotfire
Clinical Graphics are either registered trademarks or trademarks of
TIBCO Software Inc. and/or subsidiaries of TIBCO Software Inc. in
the United States and/or other countries. All other product and
company names and marks mentioned in this document are the
property of their respective owners and are mentioned for
ii

identification purposes only. This software may be available on
multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time.
Please see the readme.txt file for the availability of this software
version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
DOCUMENT COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION
HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE
INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

Copyright © 1996-2008 TIBCO Software Inc. ALL RIGHTS
RESERVED. THE CONTENTS OF THIS DOCUMENT MAY BE
MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH
ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT
LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

TIBCO Software Inc. Confidential Information

Reference The correct bibliographic reference for this document is as follows:

TIBCO Spotfire S+® 8.1Guide to Graphics TIBCO Software Inc.

Technical
Support

For technical support, please visit http://spotfire.tibco.com/support
and register for a support account.
iii

TIBCO SPOTFIRE S+ BOOKS

The TIBCO Spotfire S+® documentation includes books to address
your focus and knowledge level. Review the following table to help
you choose the Spotfire S+ book that meets your needs. These books
are available in PDF format in the following locations:

• In your Spotfire S+ installation directory (SHOME\help on
Windows, SHOME/doc on UNIX/Linux).

• In the Spotfire S+ Workbench, from the Help � Spotfire S+
Manuals menu item.

• In Microsoft® Windows®, in the Spotfire S+ GUI, from the
Help � Online Manuals menu item.

Spotfire S+ documentation.

Information you need if you... See the...

Are new to the S language and the Spotfire S+
GUI, and you want an introduction to importing
data, producing simple graphs, applying statistical

models, and viewing data in Microsoft Excel
®

.

Getting Started
 Guide

Are a new Spotfire S+ user and need how to use
Spotfire S+, primarily through the GUI.

User’s Guide

Are familiar with the S language and Spotfire S+,
and you want to use the Spotfire S+ plug-in, or
customization, of the Eclipse Integrated
Development Environment (IDE).

Spotfire S+ Workbench
User’s Guide

Have used the S language and Spotfire S+, and
you want to know how to write, debug, and
program functions from the Commands window.

Programmer’s Guide

Are familiar with the S language and Spotfire S+,
and you want to extend its functionality in your
own application or within Spotfire S+.

Application
Developer’s Guide
iv

Are familiar with the S language and Spotfire S+,
and you are looking for information about creating
or editing graphics, either from a Commands
window or the Windows GUI, or using Spotfire
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+,
and you want to use the Big Data library to import
and manipulate very large data sets.

Big Data
User’s Guide

Want to download or create Spotfire S+ packages
for submission to the Comprehensive S-PLUS
Archive Network (CSAN) site, and need to know
the steps.

Guide to Packages

Are looking for categorized information about
individual Spotfire S+ functions.

Function Guide

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 1 includes
information on specifying models in Spotfire S+,
on probability, on estimation and inference, on
regression and smoothing, and on analysis of
variance.

Guide to Statistics,
Vol. 1

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 2 includes
information on multivariate techniques, time series
analysis, survival analysis, resampling techniques,
and mathematical computing in Spotfire S+.

Guide to Statistics,
Vol. 2

Spotfire S+ documentation. (Continued)

Information you need if you... See the...
v

vi

Chapter 1 Graphics Enhancements 1

Overview 2

Color Specification 3

Additional Graphics Arguments 17

Vectorized Graphics Parameters 21

Backward Compatibility 24

Chapter 2 Traditional Graphics 27

Introduction 29

Getting Started with Simple Plots 30

Frequently Used Plotting Options 33

Visualizing One-Dimensional Data 43

Visualizing the Distribution of Data 49

Visualizing Three-Dimensional Data 57

Visualizing Multidimensional Data 62

Interactively Adding Information to Your Plot 66

Customizing Your Graphics 72

Controlling Graphics Regions 79

Controlling Text and Symbols 83

Controlling Axes 89

Controlling Multiple Plots 95

CONTENTS
vii

Contents
Adding Special Symbols to Plots 102

Traditional Graphics Summary 108

References 113

Chapter 3 Traditional Trellis Graphics 115

A Roadmap of Trellis Graphics 117

Giving Data to Trellis Functions 120

General Display Functions 124

Arranging Several Graphs on One Page 146

Multipanel Conditioning 148

General Options for Multipanel Displays 162

Scales and Labels 166

Panel Functions 171

Panel Functions and the Trellis Settings 175

Superposing Multiple Value Groups on a Panel 179

Aspect Ratio 189

Data Structures 194

Summary of Trellis Functions and Arguments 198

Chapter 4 Editing Graphics in UNIX 205

Introduction 206

Using motif Graphics Windows 207

Using java.graph Windows 221

Printing Your Graphics 233

Chapter 5 Editing Graphics in Windows 251

Graphs 252

Formatting a Graph 266

Working With Graph Objects 288

Plot Types 290
viii

Contents
Using Graph Styles and Customizing Colors 293

Embedding and Extracting Data in Graph Sheets 295

Linking and Embedding Objects 296

Printing a Graph 299

Exporting a Graph to a File 300

Chapter 6 Windows Editable Graphics Commands 303

Introduction 305

Getting Started 307

Graphics Objects 310

Graphics Commands 315

Plot Types 324

Titles and Annotations 347

Formatting Axes 352

Formatting Text 354

Layouts for Multiple Plots 359

Specialized Graphs Using Your Own Computations 361

Chapter 7 Working With Graphics Devices 363

Introduction 364

The graphsheet Device 365

The motif Device 366

The java.graph Device 367

The pdf.graph Device 375

The wmf.graph and emf.graph Devices 384

The postscript Device 391

Device-Specific Color Specification 398

Chapter 8 Spotfire S+ Graphlets® 415

Introduction 416
ix

Contents
Creating a Graphlet Data File 420

Embedding the Graphlet in a Web Page 432

Using the Graphlet 438

Index 443
x

Overview 2
R Graphics Compatibility 2

Color Specification 3
Color Names 5
Global Color Palette 9
Other Color Spaces 14
Summary of Color Specification Functions 15

Additional Graphics Arguments 17
Additional Color Arguments 17
Additional Text-Related Arguments 19

Vectorized Graphics Parameters 21

Backward Compatibility 24
Using Legacy Graphics 24
Using Device-Specific Palettes 24

GRAPHICS ENHANCEMENTS 1
1

Chapter 1 Graphics Enhancements
OVERVIEW

S-PLUS 8.0 introduced a variety of graphics enhancements related
to:

• Color specification

• Additional color arguments for plot elements such as titles,
axes, and points

• Additional vectorized parameters

The primary emphasis was on enhanced color handling, with some
additions to other graphics arguments.

R Graphics
Compatibility

The graphics enhancements are largely inspired by features of the R
system for statistical computation and graphics. In general, the
changes introduced here are intended to improve compatibility
between Spotfire S+ and R.

Areas where Spotfire S+ and R differ are addressed in this chapter.

Note

The enhancements described in this chapter apply only to Spotfire S+ command line graphics;
they do not apply to graphics produced in the Windows graphical user interface.
2

Color Specification
COLOR SPECIFICATION

Devices and
Palettes

When S and Spotfire S+ were initially developed, color support
varied among graphics devices. For example, the number of available
colors and the way colors were specified differed between a Hewlett-
Packard HP-GL plotter and a Hewlett-Packard 2623 graphics
terminal.

The HP pen plotter supported 8 colors, corresponding to the pens in
stables 1 through 8. The software using the plotter had no knowledge
of the actual color of each pen. Spotfire S+ would specify the number
of the pen to use.

As UNIX matured, the motif graphics device supported a larger
number of colors. However, the system as a whole was often limited
to a total of 256 colors. These were shared among Spotfire S+ and
other applications such as Netscape. Spotfire S+ specified a color that
was mapped to an available system color through a resource file.

The mapping of a color index to an actual value was done through a
color palette, which is simply a lookup table that determines the color
to use for each index value.

In early versions of Windows, 16 colors were typically available.
Higher color resolution often required more RAM, video RAM, or
processing time than was available. As of Windows 95, the
recommendation was VGA or higher, with 256-color SVGA
recommended. A palette of 256 colors could be defined at the
operating-system level, and these were the only colors available.

Because of these platform and device specific aspects of color
specification, the Spotfire S+ graphics system left the mapping of
color indexes to color values to the device. Spotfire S+ graphics
commands referred to colors only as color 0, 1, 2, 3, etc., and the
mapping of these indexes to actual color values was performed by the
device.

Under this approach, different color specification systems evolved for
the various devices.

Widespread
Truecolor
Availability

As computing power has increased, most displays and file formats can
support at least 24-bit Truecolor, in which a color is specified as a
triplet of red, green, and blue (RGB) values, each between 0 and 255.
3

Chapter 1 Graphics Enhancements
Because this wide variety of colors is readily available, it is no longer
necessary for Spotfire S+ to refer to a color as an index that gets
mapped to a value by the device. Spotfire S+ can refer to the color by
its RGB value.

Colors may now be specified using either a numeric index into a
palette as before, or through a string specifying a color name.

RGB Values By convention, an RGB triplet is represented by a string in the form
"#FF0000", where "#" indicates that the subsequent character pairs
are hexadecimal encodings of the 256 potential values for red, green,
and blue respectively.

For example, "#483D8B" represents dark slate blue. This corresponds
to the RGB triplet {72, 61, 139}.

• The red value is obtained as: 48 (base 16) = 72 (base 10).

• The green value is obtained as: 3D (base 16) = 61 (base 10).

• The blue value is obtained as: 8B (base 16) = 139 (base 10).

The term RGB value refers to a string RGB specification in this format.

Transparency Some devices can support 32-bit color, in which an alpha channel
value is added to specify transparency. On a scale of 0 to 255, an
alpha of 0 is fully transparent while 255 is fully opaque. Other alpha
values specify a translucent color, sometimes referred to as semi-
transparent or semi-opaque.

When a translucent color is drawn, items beneath it are not
completely obscured. For example, a Venn diagram can be created
by overlapping three translucent circles. The colors of the
overlapping areas are a composite of the translucent colors, rather
than the color of the topmost circle.

Transparency support refers to the ability to specify transparency and
translucency via an alpha channel.
4

Color Specification
RGBA Values

When transparency is specified, the hex string describing the color
has two additional characters that represent the alpha value. So, a
semi-transparent red can be specified as "#FF000080". The alpha
value is typically not specified when the color is fully opaque (i.e., has
an alpha of "FF").

A color description in this format is called an RGBA value.

In the discussion that follows, RGB refers to either the three-element
RGB specification or the four-element RGBA specification. When
specified with the three-element RGB specification the color is fully
opaque.

Device Support for Transparency

The java.graph and pdf.graph devices support alpha channel
transparency. When creating files, the java.graph device provides
alpha channel support for PNG and TIFF files only. The JPEG, PNM,
and BMP formats do not support transparency.

The motif, wmf.graph, emf.graph, and graphsheet devices do not
support transparency as transparency is not available in the
windowing libraries they use (Xlib and Windows GDI respectively).
The postscript device does not support transparency as it is not
available in the Postscript format.

Devices that do not support transparency do not draw items that are
fully transparent (i.e., have an alpha of "00"), and treat all other alpha
values as fully opaque.

Color Names Colors can be represented as strings in the following formats:

• A color name, such as "red" or "darkslateblue"

• An RGB value, such as "#FF0000" for red or "#483D8B" for
dark slate blue

The CSS3 Color Module specification is used to convert color names
to RGB values. This is the color naming system used in HTML 4.01
and SVG 1.0. It provides a set of 147 named colors, and is described
at:

http://www.w3.org/TR/css3-color/

These are referred to as the CSS color names.
5

Chapter 1 Graphics Enhancements
Using Named
Colors

Here is a plot that specifies a color by name:

> plot(corn.rain, corn.yield, col="maroon")

And here is the same plot using a different color specified by a hex
RGB value:

> plot(corn.rain, corn.yield, col="#00FA9A")

Color String
Format

Color names must start with a letter. All operations with color names
are case-insensitive, so "red", "Red", and "RED" are treated as
identical names. When storing and returning color names, lowercase
is used and spaces are removed, so "Dark Slate Blue" is converted
to "darkslateblue".

The RGB values "#483D8B" and "#483d8b" are both valid formats for
specifying a color. RGB values are returned in uppercase (e.g.,
"#483D8B").

Getting Color
Information

The colors function returns the names of the colors. The
color.values function returns the RGB values, with the
corresponding color names as the vector element names.

To get the color names:

> colors()

To get the color RGB values for all named colors:

> color.values()

To get the RGB values for specific colors:

> color.values(c("red", "teal"))

The RGB value is a seven-character string in the form "#FF0000" if
the color is fully opaque (i.e., if the alpha is "FF" or unspecified). If the
color is semi-transparent, it is specified as a nine-character string in
the form "#FF000080". Because transparency is not supported by all
graphics devices, seven-character representation is more common.
The named colors do not include alpha specification in their mapped
values.

CSS and X11
Colors

An alternative mapping of color names to values is the X11 color
specification, as defined in the <X11root>/lib/rgb.txt file in an X
Window System installation.
6

Color Specification
X11 color mapping includes 752 color names, of which there are 95
pairs with and without embedded spaces that map to the same value.
For example, the second and third colors listed are "ghost white"
and "GhostWhite". R uses the X11 color specification with names
normalized to lowercase with no embedded spaces. This yields 657
colors.

The CSS and X11 specifications differ in their RGB values for four
colors: "Gray", "Green", "Maroon", and "Purple". The CSS versions
are darker. Table 1.1 specifies the differences.

The 657 X11 colors include gradations for several of the named
colors. For example, the five shades of maroon are: "maroon",
"maroon1", "maroon2", "maroon3", and "maroon4". Shades of gray
range from "gray0" through "gray100". Because color shades can be
specified using their hex representation, the CSS specification does
not include this type of gradation naming.

In addition to the various shades, X11 includes the colors
"lightgoldenrod" and "violetred", which are not in the CSS table.
It also includes "navyblue" as another name for "navy".

The CSS table includes eight color names not available in the X11
table: "aqua", "crimson", "fuchsia", "indigo", "lime", "olive",
"silver", and "teal".

Setting the Color
Names

By default Spotfire S+ uses the CSS color names, however, color
name mapping can be customized. For example, you can specify a
different set of color names to be used, such as the X11 color names.
You can also add your own custom color names, such as the
corporate color "upsbrown" or "rojo", the Spanish name for red.

Table 1.1: CSS and X11 RGB Value Conflicts

Color Name CSS RGB Value X11 RGB Value

"Gray" "#808080" "#BEBEBE"

"Green" "#008000" "#00FF00"

"Maroon" "#800000" "#B03060"

"Purple" "#800080" "#A020F0"
7

Chapter 1 Graphics Enhancements
The add.color.values function modifies the color name mapping. It
takes a named character vector of RGB values in the form "#FF0000"
or "#FF000080". The names are used as the color names, and the
values as the RGB values.

Additional arguments determine whether to discard the current table
of names, and whether the old or new color definition should be used
when a specified name is already in the table.

To add "upsbrown" and "rojo" as new colors:

> add.color.values(c(upsbrown="#964B00", rojo="#FF0000"))

Preconstructed
Color Sets

Spotfire S+ includes preconstructed color sets that can be used with
the add.color.values function to access common color mappings:

• css.colors: named character vector of the 147 CSS colors

• x11.colors: named vector of the 657 X11 colors, with names
normalized to lowercase and no embedded spaces

In the following examples, the assumption is that the default CSS
colors are in place before each expression is executed. The examples
are not cumulative.

To use the X11 color definitions to resolve names such as "gray87"
that are not included in the CSS color set:

> add.color.values(x11.colors)

The above command generates warnings to indicate which colors in
the new set will be ignored because there are already colors of the
specified names with different values. To prevent these warnings,
include the warn=F argument:

> add.color.values(x11.colors, warn=F)

To give priority to the X11 definitions where they differ from CSS,
include the overwrite=T argument:

> add.color.values(x11.colors, overwrite=T)

To discard the CSS colors altogether and use only the X11
definitions, include the new=T argument:

> add.color.values(x11.colors, new=T)
8

Color Specification
Color Name
Resolution

When a color is specified as a string, the following rules are used to
convert it to an RGB value:

1. If the string begins with "#" and includes six subsequent
characters, it is interpreted as a hex representation of an RGB
value specifying a fully opaque color (equivalent to specifying
an alpha value of "FF").

2. If the string begins with "#" and includes eight subsequent
characters, it is interpreted as a hex representation of an
RGBA value.

3. If the string begins with a letter, the color names map is
searched for the name, and the RGB value for the first match
is used.

4. If the string is "transparent", "NA", or the empty string "" it is
interpreted as representing a fully transparent point. The fully
transparent pure white color "#FFFFFF00" is used.

5. If the string can be converted to an integer, such as 2, it is
converted to an integer and used to look up a color in the
global color palette described in the next section.

If no match is found, a warning is generated and the fully opaque
pure black color "#000000FF" is used. The warning message specifies
the name that could not be found.

Global Color
Palette

As discussed above, prior to Spotfire S+ 8 the mapping of color
indexes to specific colors was left to individual devices. Due to
differences in the ways various devices specified colors, it could be
complex to map indexes to identical colors in all devices.

With the addition of RGB color specification to all devices, it is now
possible to use a global color palette rather than device-specific palettes.

The global color palette is simply a vector of RGB values. Whenever
a color is specified by a numeric index, Spotfire S+ uses the global
color palette as the lookup table for mapping indexes to specific
colors. For example:

> plot(corn.rain, corn.yield, col=2)
9

Chapter 1 Graphics Enhancements
The palette is set and retrieved using the palette function. To get the
character vector giving the current palette, call this function with no
arguments:

> palette()
[1] "#EDF8E9" "#C7E9C0" "#A1D99B" "#74C476" "#41AB5D"
[6] "#238B45" "#005A32"

To set the palette, specify a character string of palette values:

> palette(mypalette)

In this case, the vector element names are ignored and the values are
used to set the color mapping between integers 1, 2, 3, etc., and RGB
values. The palette vector can be of any length. If the index is greater
than the number of colors in the palette, the palette colors are
replicated to the necessary length.

Color values are usually specified as RGB values, but may be
specified as names or indexes. In all cases, the value is immediately
converted to the RGB value and stored in that form. This rule also
applies for the values provided to the add.color.values function.

Image Color
Palette

A separate image color palette is used for situations in which a larger
number of colors is required to indicate a gradation of values. These
are used for image plot, hexagonal binning, level plots, and draped
wireframes.

The image.palette function sets and retrieves the image color
palette. It is used in the same manner as the palette function.

To get the image palette, use the function with no arguments:

> image.palette()

To set the image palette, provide a character vector specifying colors
in hex RGB format:

> image.palette(topo.colors(10))

For information about topo.colors see the section Creating Color
Sets on page 13.

The number of image colors may vary. Unlike the standard palette,
image colors are not replicated to match a set of indexes. Instead, the
values to plot are grouped by intervals and all values in an interval
are assigned one of the image colors.
10

Color Specification
Conceptually, the range of values is mapped to the interval 0 to 1.
This is divided by the number of image colors, and each segment of
the range is assigned a color. For example, if there are 5 image colors,
data that are mapped to values between 0.2 and 0.4 are displayed in
the second image color.

R does not have an image color palette. In R, functions such as image
have a col argument with a hardcoded default set of colors, and a
different set of colors is set by explicitly providing a different set of
values in the call to image.

For compatibility with R, a col argument has been added to the
Spotfire S+ image function.

Trellis functions such as contourplot, levelplot, and wireframe use
the trellis.par.get("regions") command to get image colors.
When the global image palette is used, the trellis.par.get function
will use this palette to get the region colors, rather than the
trellis.settings object.

Background
Color

The background color for the current graphics device can be set with
the bg parameter:

> par(bg="red")

The background color is used when a color index of 0 is specified.
For example, if you want to set every third point to match the
background color, you could plot a graph as follows:

> plot(1:10, type="n", bg="white")
> points(1:10, col=c(1,2,0))

Default Palettes The default palette colors evolved from the Trellis color scheme
initially defined by Bill Cleveland for color printing. The darkness of
these colors was adjusted for better display on a computer screen
using a white background.

The default image colors are a range of 256 navy blue values selected
to provide good contrast between low and high values, while allowing
perception of differences between midrange values.
11

Chapter 1 Graphics Enhancements
Spotfire S+ includes vectors corresponding to these sets of colors:

• splus.default.colors is a named vector of 16 palette colors:
"sblack", "sdarkblue", "sdarkred", "sgreen", "sorange",
"sblue", "sbrown", "sbrick", "slightcyan",
"slightmagenta", "slightgreen", "slightorange",
"slightblue", "slightyellow", "slightcoral", "sgray".

• splus.default.image.colors is an unnamed vector of 256
shades of navy used as the default image colors.

To reset the palette and image palette to their defaults:

> palette(splus.default.colors)
> image.palette(splus.default.image.colors)

A shorthand method for restoring the defaults is to specify the value
"default" with these functions:

> palette("default")
> image.palette("default")

This special treatment of the value "default" is also present in R.

The splus.default.colors vector has names to provide a consistent
way to refer to the default colors, however, they are not automatically
set as known color names. To use the default color names, first add
them to the set of known named colors:

> add.color.values(splus.default.colors)

Palettes
Matching R

The default R palette colors are the following eight colors from the
X11 color scheme: "black", "red", "green3", "blue", "cyan",
"magenta", "yellow", and "gray".

The default R image colors are generated with heat.colors(12). For
information about heat.colors see the section Creating Color Sets
on page 13.

The following commands set the palette and image palette to match
the palettes in R:

> rcolors <- x11.colors[c("black", "red", "green3",
+ "blue", "cyan", "magenta", "yellow", "gray")]
> palette(rcolors)
> image.palette(heat.colors(12))
12

Color Specification
To use the X11 names first when resolving names, with the CSS
names only used for names not in the X11 names:

> add.color.values(x11.colors, replace=T)

You can use the following to set the Spotfire S+ palette and image
palette to use the R default colors:

• r.default.colors: a named character vector that contains
the RGB hex string values for the 8 colors in the default R
global color palette.

• r.default.image.colors: a named character vector that
contains the RGB hex string values for the 12 colors R uses by
default in its image function.

To set the palette and image palette to use the R defaults:

> palette(r.default.colors)
> image.palette(r.default.image.colors)

Creating Color
Sets

The following functions are useful for generating sets of image colors:

• rainbow

• heat.colors

• terrain.colors

• topo.colors

• cm.colors

• gray

• grey

• gray.colors

• grey.colors

These functions are also available in R. For compatibility, the Spotfire
S+ functions return the same values as their R counterparts.

The rainbow function creates colors from across the spectrum. By
default, the hue is varied while the saturation and value remain
constant. These colors are well suited for points, lines, and bars. They
can be used to create an image palette, but that is not their primary
purpose.
13

Chapter 1 Graphics Enhancements
The cm.colors, heat.colors, terrain.colors, and topo.colors
functions generate color sets typically used for image colors:

• cm.colors: cyan to magenta with a middle value of white

• heat.colors: red to white through orange and yellow

• terrain.colors: green to white through peach earth-tones

• topo.colors: the first third of the range is medium to light
blue; the middle third is medium-green to yellow-green; the
last third is pure yellow to navajo white

The gray, grey, gray.colors, and grey.colors functions create a
sequence of gray values in which the red, green, and blue values are
all equal.

Other Color
Spaces

Computer monitors typically display color by mixing various
intensities of red, green, and blue pixels. Therefore, computer colors
are typically described in the red, green, and blue (RGB) color space.
However, color spaces can be parameterized in other ways.

HSV The hue, saturation, and value (HSV) color space defines a color in
terms of the following properties:

• Hue is the color type, such as red, blue or yellow. Varying
hue from 0 to 100% creates a full color wheel.

• Saturation is the vibrancy of the color, referred to as the
purity. The lower the saturation, the more grayness is present
and the more faded the color appears.

• Value is the brightness of the color.

HSV is a nonlinear transformation of the RGB color space that is
useful for creating sequences of values. For example, if you want to
create a sequence of various shades of the same color, you can specify
a range of values with the same hue and vary the saturation and/or
brightness.

HSV is also known as the hue, saturation, and brightness (HSB) color
space.

The hsv function creates a set of RGB colors based on a hue,
saturation, and value description. The rgb2hsv function converts
RGB values to the corresponding HSV triplets. These functions are
also available in R.
14

Color Specification
HSL The hue, saturation, and lightness (HSL) color space defines the
ranges for saturation and brightness differently:

• In HSL, saturation runs from fully saturated to the equivalent
gray. In HSV, saturation runs from saturated color to white.

• In HSL, lightness runs from black through the chosen hue to
white. In HSV, the value only runs from black to the chosen
hue.

The hsl function creates a set of RGB colors based on a hue,
saturation, and lightness description. The rgb2hsl function converts
RGB values to the corresponding HSL triplets. These functions are
not available in R.

Summary of
Color
Specification
Functions

The following functions are available for creating, setting, and
retrieving the color specifications.

Set and retrieve color maps and palettes:

• colors returns a character vector of the known color names.

• color.values gets the RGB or RGBA values for the named
colors. (Not available in R.)

• add.color.values modifies the table of named colors. (Not
available in R.)

• palette sets or gets the character vector used to map integer
color indexes to string values.

• image.palette sets or gets the character vector used to map
image index values to string values. (Not available in R.)

Create and convert RGB color descriptions:

• rgb converts vectors of numeric red, green, blue, and
optionally alpha values to RGB values in the form "#FF0000".

• col2rgb converts strings in the form "red" or "#FF0000" to a
matrix of numeric red, green, blue, and optionally alpha
values.

• hsv converts HSV to RGB.

• rgb2hsv converts RGB to HSV.

• hsl converts HSL to RGB. (Not available in R.)

• rgb2hsl converts RGB to HSL. (Not available in R.)
15

Chapter 1 Graphics Enhancements
Create a string for use with palette or image.palette:

• gray

• grey

• gray.colors

• grey.colors

• rainbow

• cm.colors

• heat.colors

• terrain.colors

• topo.colors

For compatibility with R, each of these functions has the same
interface and behavior as its R counterpart if a corresponding R
function exists.

For backward compatibility of the Spotfire S+ graphics system, two
functions are available:

• use.legacy.graphics specifies whether to use the graphics
enhancements introduced in Spotfire S+ 8 (i.e., the features
described in this chapter), or revert to the graphics
functionality of Spotfire S+ 7. For usage details, see the
section Using Legacy Graphics (page 24).

• use.device.palette specifies whether integers for color
values are converted to RGB values globally (i.e., the same
RGB values are used for all devices) or on a device-specific
basis, as in previous versions of Spotfire S+. For usage details,
see the section Using Device-Specific Palettes (page 24).
16

Additional Graphics Arguments
ADDITIONAL GRAPHICS ARGUMENTS

This section describes additional graphics arguments that enable you
to specify characteristics for plot elements on a more granular basis
than was possible in previous Spotfire S+ releases.

Additional
Color
Arguments

In previous Spotfire S+ releases, the col argument to the plot
function specified the color for all elements of the plot. This included
not only the points, but also the axes, labels, ticks, title, and subtitle.
This meant that in order to have red points while using black for the
axes and other elements, it was first necessary to use plot with
type="n" to set up the axis, then call the points function to draw the
points.

Separate color arguments are now available for various plot elements:

• col: color of the plot content, such as points and lines.

• col.axis: color of axis tick labels.

• col.lab: color of x and y labels.

• col.main: color of the main title.

• col.sub: color of the subtitle.

• fg: foreground color for plot elements such as axes, axis tick
marks, and boxes.

• bg: background color to be used next time a page is created.

Table 1.2 lists functions that honor these arguments, along with an
indication of which arguments apply to each function. Note that the
functions listed in this table are not exclusive in that additional
functions may also recognize these arguments.

Note

Using the par function, you can set defaults for all of the arguments described in this
section. See the section Setting and Viewing Graphics Parameters (page 74) and the par
online help for more information.
17

Chapter 1 Graphics Enhancements
Yes = supported
No = not supported

R Compatibility The new color parameters are also available in R, but their use as of R
2.2.0 is inconsistent. For example, the boxplot function honors the
col.axis parameter but ignores the fg parameter.

Table 1.2: Color Argument Availability by Function

Function col.axis col.lab col.main col.sub fg bg

axes Yes Yes Yes Yes Yes No

axis Yes No No No Yes No

barplot Yes Yes Yes Yes Yes Yes

boxplot Yes Yes Yes Yes Yes Yes

contour Yes Yes Yes Yes Yes Yes

dotchart Yes Yes Yes Yes Yes Yes

hist Yes Yes Yes Yes Yes Yes

image Yes Yes Yes Yes Yes Yes

pairs Yes Yes No No Yes Yes

persp Yes Yes Yes Yes Yes Yes

pie No Yes Yes Yes No Yes

plot Yes Yes Yes Yes Yes Yes

qqnorm Yes Yes Yes Yes Yes Yes

qqplot Yes Yes Yes Yes Yes Yes

title No No Yes Yes No No
18

Additional Graphics Arguments
Some R functions use these parameters in different ways within
plotting functions than within the par function. For example, plot has
a bg parameter indicating the background color for filled symbols.

In Spotfire S+, the intent is to use these parameters consistently.
Where R is inconsistent, the behavior of R and Spotfire S+ differs.

Trellis Functions The Trellis functions such as xyplot have always allowed
specification of colors for plot elements by providing a list with a col
element as the xlab, ylab, main, sub, and/or scales argument. For
example:

xyplot(Mileage~Weight, fuel.frame,
main=list("My title", col=3))

In addition, colors may also be set in the relevant trellis.settings
object.

Because Trellis already has a system for setting different colors for
various elements of the plot, the new color parameters are not used
by the Trellis functions.

Note that the Trellis functions support specifying color by name. For
an example, see the section Trellis Functions on page 22.

Additional
Text-Related
Arguments

Separate arguments are available for controlling various additional
characteristics of the text elements of a plot:

• cex.axis: character expansion (size) for axis tick labels

• cex.lab: character expansion for x and y labels

• cex.main: character expansion for the main title

• cex.sub: character expansion for the subtitle

• font.axis: font for axis tick labels

• font.lab: font for x and y labels

• font.main: font for the main title

• font.sub: font for the subtitle
19

Chapter 1 Graphics Enhancements
Table 1.3 lists the additional text-related arguments and identifies the
functions to which they apply.
Table 1.3: Additional text-related Argument Availability by Function

Function
cex.axis
font.axis

cex.lab
font.lab

cex.main
font.main

cex.sub
font.sub

axes Yes Yes Yes Yes

axis Yes No No No

barplot Yes Yes Yes Yes

boxplot Yes Yes Yes Yes

contour Yes Yes Yes Yes

dotchart Yes Yes Yes Yes

hist Yes Yes Yes Yes

image Yes Yes Yes Yes

pairs Yes Yes Yes Yes

persp Yes Yes Yes Yes

pie No Yes Yes Yes

plot Yes Yes Yes Yes

qqnorm Yes Yes Yes Yes

qqplot Yes Yes Yes Yes

title No No Yes Yes
20

Vectorized Graphics Parameters
VECTORIZED GRAPHICS PARAMETERS

In versions prior to Spotfire S+ 8, graphics arguments to plot such as
col, pch, and cex could only take a single value for all points in the
plot. To get different colors for groups of points, it was necessary to
first use plot with type="n" to set up the axis, and then to use points
within a loop to add points of different colors.

The plot function and functions adding individual points to a plot
have been enhanced to accept a vector of values for the col, pch, and
cex parameters.

Functions that add arrows and line segments to plots now accept a
vector of values for the col, lty, and lwd parameters.

Table 1.4 lists functions that honor the vectorized parameters along
with an indication of which parameters apply to each function.

Table 1.4: Vectorized Graphic Parameter Availability by Function

Function col cex pch lty lwd

arrows Yes No No Yes Yes

axes No Yes No Yes Yes

axis Yes Yes No Yes Yes

barplot Yes No No Yes Yes

boxplot Yes No No Yes Yes

contour Yes Yes No Yes Yes

dotchart Yes Yes Yes No No

hist Yes Yes No Yes Yes

legend Yes Yes Yes Yes Yes

lines Yes No No Yes Yes

mtext Yes Yes No No No
21

Chapter 1 Graphics Enhancements
If the length of the vector is less than the number of points, the values
are replicated to the desired length. The length of the vector does not
have to evenly divide the number of values.

Note that the polygon function already supported vectors of color
values for its border and col arguments, and each element in these
vectors corresponds to a polygon. The same rule is used for the lty
and lwd arguments to the polygon function.

Trellis Functions Trellis functions such as xyplot, qqmath, qq, splom, and stripplot use
a panel function that calls points to place the points on the page. The
col, pch, and cex arguments are passed directly on to the panel
function and then on to points.

pairs Yes Yes Yes No No

par No No No No No

pie Yes No No Yes Yes

plot Yes Yes Yes Yes Yes

points Yes Yes Yes No No

polygon Yes No No Yes Yes

qqnorm Yes Yes Yes No No

qqplot Yes Yes Yes No No

segments Yes No No Yes Yes

symbols No No No Yes Yes

text Yes Yes No No No

title Yes Yes Yes No No

Table 1.4: Vectorized Graphic Parameter Availability by Function (Continued)

Function col cex pch lty lwd
22

Vectorized Graphics Parameters
Support for vectorized parameters in points provides this same
support to these Trellis functions, so no changes are needed in Trellis
to support vectorization. If there is no grouping variable, this will
create a correct plot:

> d<-data.frame(x=1:60, y=1:60,
+ group=rep(c("A","B","C"),each=20))
> xyplot(y~x, data=d,
+ col=rep(c("red","green","blue"),each=20),
+ pch=rep(0:2,each=20),
+ cex=rep(1:3,each=20))

These parameters are passed to the panel function unchanged. When
there are multiple panels, the subscripts argument must be used to
extract the elements of the parameter vectors corresponding to the x
and y elements in a specific panel:

> xyplot(y~x|group, data=d,
+ col=rep(c("red","green","blue"),each=20),
+ pch=rep(0:2,each=20),
+ cex=rep(1:3,each=20),
+ panel = function(x, y, subscripts, col, pch, cex) {
+ panel.xyplot(x, y,
+ col=col[subscripts], pch=pch[subscripts],
+ cex=cex[subscripts])
+ }
+)

If the parameters are vectors but are not the same length as x and y,
they should be replicated to the same length before calling the Trellis
function in order for the elements to be matched correctly during the
subscripting.
23

Chapter 1 Graphics Enhancements
BACKWARD COMPATIBILITY

By default, Spotfire S+ 8 uses the graphics functionality described in
this chapter. The functions described below allow you to enable
backward compatibility with the Spotfire S+ 7 graphics system.

Using Legacy
Graphics

To disable all enhanced graphics functionality (including the global
palettes) and revert to Spotfire S+ 7 graphics functionality, set the
use.legacy.graphics function to TRUE as follows:

> use.legacy.graphics(T)

To re-enable the enhanced graphics features:

> use.legacy.graphics(F)

For more information, see the use.legacy.graphics online help.

Using Device-
Specific
Palettes

By default, Spotfire S+ converts integers for color values to RGB
values on a global basis, according to the values returned by the
palette() and image.palette() functions. In this mode, the same
RGB values are used for all devices. For more information, see the
section Global Color Palette (page 9).

The use.device.palette function allows you to disable the global
color palette functionality while running Spotfire S+ in the default
graphics mode. That way, you can continue using the other enhanced
graphics features, but have RGB conversion done on a device-specific
basis.

To switch to device-specific palette mode, set the
use.device.palette function to TRUE as follows:

> use.device.palette(T)

Note

Attempting to change the use.legacy.graphics setting while a device is open causes an error.
First call graphics.off() to close all graphics devices, and then call use.legacy.graphics to
change the setting.

In legacy graphics mode, Spotfire S+ 8 enhanced graphics commands fail with the same error as
would be present in Spotfire S+ 7.
24

Backward Compatibility
To use the palette settings available in Spotfire S+ prior to version
8.0, you must set use.device.palette(T). For example, to produce
black and white graphics as follows:

graphsheet(color.style = "black and white")

you must first set use.device.palette(T).

To re-enable the global color palettes:

> use.device.palette(F)

For more information, see the use.device.palette online help.

Notes

If use.legacy.graphics is TRUE, the global color palettes are unavailable and device-specific
palettes are used regardless of the use.device.palette setting. The use.device.palette setting is
meaningful only while use.legacy.graphics is FALSE.
25

Chapter 1 Graphics Enhancements
26

Introduction 29
Getting Started with Simple Plots 30

Vector Data Objects 30
Mathematical Functions 31
Scatter Plots 32

Frequently Used Plotting Options 33
Plot Shape 33
Multiple Plot Layout 33
Titles 34
Axis Labels 35
Axis Limits 36
Logarithmic Axes 37
Plot Types 37
Line Types 40
Plotting Characters 41
Controlling Plotting Colors 42

Visualizing One-Dimensional Data 43
Bar Plots 43
Pie Charts 45
Dot Charts 46
Notes and Suggestions 48

Visualizing the Distribution of Data 49
Box Plots 49
Histograms 50
Density Plots 52
Quantile-Quantile Plots 54

Visualizing Three-Dimensional Data 57
Contour Plots 57
Perspective Plots 59
Image Plots 60

TRADITIONAL GRAPHICS 2
27

Chapter 2 Traditional Graphics
Visualizing Multidimensional Data 62
Scatterplot Matrices 62
Plotting Matrix Data 63
Star Plots 64
Faces 65

Interactively Adding Information to Your Plot 66
Identifying Plotted Points 66
Adding Straight Line Fits to a Scatter Plot 67
Adding New Data to the Current Plot 68
Adding Text to Your Plot 69

Customizing Your Graphics 72
Low-level Graphics Functions and Parameters 72
Setting and Viewing Graphics Parameters 74

Controlling Graphics Regions 79
The Outer Margin 80
Figure Margins 81
The Plot Region 82

Controlling Text and Symbols 83
Text and Symbol Size 83
Text Placement 84
Text Orientation 85
Text in Figure Margins 86
Plotting Symbols in Margins 88
Line Width 88

Controlling Axes 89
Enabling and Disabling Axes 89
Tick Marks and Axis Labels 89
Axis Style 93
Axis Boxes 94

Controlling Multiple Plots 95
Multiple Figures on One Page 95
Pausing Between Multiple Figures 97
Overlaying Figures 97

Adding Special Symbols to Plots 102
Arrows and Line Segments 102
Stars and Other Symbols 104
Custom Symbols 106

Traditional Graphics Summary 108
References 113
28

Introduction
INTRODUCTION

Visualizing data is a powerful data analysis tool because it allows you
to easily detect interesting features or structure in the data. This may
lead you to immediate conclusions or guide you in building a
statistical model for your data. This chapter shows you how to use
Spotfire S+ to visualize your data.

The first section in this chapter, Getting Started with Simple Plots
(page 30), shows you how to plot vector objects and scatter plots.
Once you have read this first section, you will be ready to use any of
the options described in the section Frequently Used Plotting Options
(page 33). The options, which can be used with many Spotfire S+
graphics functions, control the features in a plot, including plot shape,
multiple plot layout, titles, and axes.

The remaining sections of this chapter cover a range of plotting tasks,
including:

• Creating presentation graphics such as bar plots, pie charts,
and dot plots.

• Visualizing the distribution of your data.

• Interactively adding information to your plot.

• Using multiple active graphics devices.

We recommend that you read the first two sections carefully before
proceeding to any of the other sections.

In addition to the graphics features described in this chapter, Spotfire
S+ includes the Trellis graphics library. Trellis graphics feature
additional functionality such as multipanel layouts and improved 3D
rendering. See Chapter 3, Traditional Trellis Graphics for more
information.
29

Chapter 2 Traditional Graphics
GETTING STARTED WITH SIMPLE PLOTS

This section helps you get started with Spotfire S+ graphics by using
the function plot to make simple plots of your data. You can use the
plot function to create graphs of vector data objects and
mathematical functions. In addition, plot creates scatter plots of two-
dimensional data.

Vector Data
Objects

You can use plot to graphically display the values in a batch of
numbers or observations. For example, you obtain a graph of the
built-in vector object car.gals using plot as follows:

> plot(car.gals)

The data are plotted as a set of isolated points. For each plotted point,
the vertical axis location gives the data value and the horizontal axis
location gives the observation number, or index.

If you have a vector x that is complex, plot plots the real part of x on
the horizontal axis and the imaginary part on the vertical axis.

Figure 2.1: A scatter plot of car.gals, a single numeric vector.
30

Getting Started with Simple Plots
A set of points on the unit circle in the complex plane can be plotted
as follows:

> unit.circle <- complex(argument =
+ seq(from = -pi, to = pi, length = 20))
> plot(unit.circle)

Mathematical
Functions

You can obtain solid line plots of mathematical functions by using the
optional argument type="l" to plot. This option generates a plot
with connected solid line segments rather than isolated points. The
resulting plot is smooth, provided you choose a sufficiently dense set
of plotting points.

For example, to plot the mathematical function in the equation:

for x in the range (0,20) first create a vector x with values ranging
from 0 to 20 at intervals of 0.1. Next, compute the vector y by
evaluating the function at each value in x, and then plot y against x:

> x <- seq(from = 0, to = 20, by = 0.1)
> y <- exp(-x/10) * cos(2*x)
> plot(x, y, type = "l")

Figure 2.2: A scatter plot of a single complex vector.

(2.1)y f x e x– 10 2x cos= =
31

Chapter 2 Traditional Graphics
The result is shown in Figure 2.3. For a rougher plot, use fewer points;
for a smoother plot, use more.

Scatter Plots Scatter plots reveal relationships between pairs of variables. You can
create scatter plots in Spotfire S+ by applying the plot function to a
pair of equal-length vectors, a matrix or data frame with two columns,
or a list with components x and y. For example, to plot the built-in
vectors car.miles versus car.gals, use this Spotfire S+ expression:

> plot(car.miles, car.gals)

When using plot with two vector arguments, the first argument is
plotted along the horizontal axis and the second argument is plotted
along the vertical axis.

If x is a matrix or data frame with two columns, use plot(x) to plot
the second column versus the first. For example, you could combine
the two vectors car.miles and car.gals into a matrix called
miles.gals by using the function cbind:

> miles.gals <- cbind(car.miles, car.gals)

The following command produces the same graph as the command
plot(car.miles, car.gals):

> plot(miles.gals)

Figure 2.3: Plot of the function exp(-x/10)*cos(2x).
32

Frequently Used Plotting Options
FREQUENTLY USED PLOTTING OPTIONS

This section tells you how to make plots in Spotfire S+ with one or
more of a collection of frequently used options. These options
include:

• Controlling plot shape and multiple plot layout

• Adding titles and axis labels

• Setting axis limits and specifying logarithmic axes

• Choosing plotting characters and line types

• Choosing plotting colors

Plot Shape When you use a Spotfire S+ plotting function, the default shape of the
box enclosing the plot is rectangular. Sometimes, you may prefer a
square box around your plot. For example, a scatter plot is usually
displayed as a square plot. You obtain a square box by using the
global graphics parameter function par as follows:

> par(pty = "s")

All subsequent plots are made with a square box around the plot. If
you want to return to making rectangular plots, use

> par(pty = "")

Here, the pty stands for plot type and the "s" is for square. However,
you should think of pty as the plot shape parameter instead, to avoid
confusion with a different parameter for plot type; see the section Plot
Types (page 37) for more details.

Multiple Plot
Layout

You may want to display more than one plot on your screen or on a
single page of paper. To do so, you use the Spotfire S+ function par
with the layout parameter mfrow to control the layout of the plots, as
illustrated by the following example. In this example, you use par to
set up a four-plot layout, with two rows of two plots each. Following
the use of par, we create four simple plots with titles:

> par(mfrow = c(2,2))
> plot(1:10, 1:10, main = "Straight Line")
> hist(rnorm(50), main = "Histogram of Normal")
> qqnorm(rt(100,5), main = "Samples from t(5)")
33

Chapter 2 Traditional Graphics
> plot(density(rnorm(50)), main = "Normal Density")

When you are ready to return to one plot per figure, use

> par(mfrow = c(1,1))

The par function is used to set many general graphics parameters. See
the section Setting and Viewing Graphics Parameters (page 74) and
the par help file for more information. The section Controlling
Multiple Plots (page 95) contains details on using the mfrow
parameter, and describes another method for creating multiple plots.

Titles You can easily add titles to any Spotfire S+ plot. You can add a main
title, which goes at the top of the plot, or a subtitle, which goes at the
bottom of the plot. To place a main title on a plot, use the argument
main to plot. For example:

> plot(car.gals, car.miles, main = "MILEAGE DATA")

To get a subtitle, use the sub argument:

> plot(car.gals, car.miles, sub = "Miles versus Gallons")

To get both a main title and a subtitle, use both arguments:

> plot(car.gals, car.miles, main = "MILEAGE DATA",

Figure 2.4: A four-plot layout using the mfrow parameter.
34

Frequently Used Plotting Options
+ sub = "Miles versus Gallons")

The result is shown in Figure 2.5. Alternatively, you can add titles
after creating the plot using the function title, as follows:

> plot(car.gals, car.miles)
> title(main="MILEAGE DATA", sub="Miles versus Gallons")

Axis Labels Spotfire S+ provides default axis labels that are the names of the data
objects passed as arguments to plot. However, you may want to use
more descriptive axis labels in your graphs. For example, you may
prefer “Gallons per Trip” and “Miles per Trip,” respectively, to
“car.gals” and “car.miles.” To obtain your preferred labels, use the
xlab and ylab arguments as follows:

> plot(car.gals, car.miles,
+ xlab = "Gallons per Trip", ylab = "Miles per Trip")

You can also suppress axis labels by using the arguments xlab and
ylab with "", the empty string value. For example:

> plot(car.gals, car.miles, xlab = "", ylab = "")

This results in a plot with no axis labels. If desired, you can later add
labels using the title function:

Figure 2.5: A plot with main titles and subtitles.
35

Chapter 2 Traditional Graphics
> title(xlab = "Gallons per Trip", ylab = "Miles per Trip")

Axis Limits The limits of the x and y axes are set automatically by the Spotfire S+
plotting functions. However, you may wish to choose your own axis
limits. This allows you to make room for adding text in the body of a
plot, as described in the section Interactively Adding Information to
Your Plot (page 66). For example, the command

> plot(co2)

automatically determines y axis limits of roughly 310 and 360, giving
enough vertical space for the plot to fit in the box. You can include
more vertical or horizontal space by using the optional arguments
ylim and xlim. Spotfire S+ then rounds your specified axis limits to
sensible values. For example, to get y axis limits of 300 and 370, use:

> plot(co2, ylim = c(300,370))

Using the xlim parameter, you can change the x axis limits as well:

> plot(co2, xlim = c(1955,1995))

You can also use both xlim and ylim at the same time:

> plot(co2, xlim = c(1955,1995), ylim = c(300,370))

You may also want to set axis limits when you create multiple plots, as
described in the section Multiple Plot Layout (page 33). For example,
after creating one plot, you may wish to make the x and y axis limits
the same for all of the plots in the set. You can do so by using the par
function as follows:

> par(xaxs = "d", yaxs = "d")

If you want to control the limits of only one of the axes, drop one of
the two arguments as appropriate. Using xaxs="d" and yaxs="d" sets
all axis limits to the values for the most recent plot in a sequence. If
those limits are not wide enough for all plots in the sequence, points
outside the limits are not plotted and you receive the message Points
out of bounds. To avoid this error, first create all plots in the usual
way without specifying axis limits, to find out which plot has the
largest range of values. Then, create your first plot using xlim and
ylim with values determined by the largest range. Next, set the axes
with xaxs="d" and yaxs="d" as described above.
36

Frequently Used Plotting Options
To return to the usual default state, in which each plot determines its
own limits in a multiple plot layout, use

> par(xaxs = "", yaxs = "")

The change takes effect on the next page of figures.

Logarithmic
Axes

Often, a data set you are interested in does not reveal much detail
when graphed on ordinary axes. This is particularly true when many
of the data points bunch up at small values, making it difficult to see
any potentially interesting structure in the data. Such data sets yield
more informative plots if you graph them using a logarithmic scale for
one or both of the axes.

To draw the horizontal axis of a plot on a logarithmic scale, use the
argument log="x" in the call to the graphics function. Similarly for
the vertical axis, use log="y" to draw the vertical axis on a
logarithmic scale. To put both axes on logarithmic scales, use the
option log="xy".

Plot Types In Spotfire S+, you can plot data in any of the following ways:

• As points

• As connected straight line segments

• As both points and lines, where the points are isolated

• As overstruck points and lines, where the points are not
isolated

• With a vertical line for each data point (high-density plot)

• As a stairstep plot

• As an empty plot that has axes and labels, but no data plotted

The method used for plotting data on a graph is called the graph’s plot
type. For example, scatter plots typically use the first plot type
(type="p"), while time series plots typically use the second
(type="l"). In this section, we provide examples of each of these plot
types.

You choose your plot type through the optional argument type. The
possible values for this argument are given in Table 2.1, and
correspond to the choices listed above.
37

Chapter 2 Traditional Graphics
Different graphics functions have different default values for the type
argument. For example, plot and matplot use type="p", while
ts.plot uses type="l". Although you can use any of the plot types
with any plotting function, some combinations of plot functions and
plot types may result in an ineffective display of your data.

The option type="n" is useful for obtaining precise control over axis
limits and box line types. For example, you might want the axes and
labels displayed in one color, and the data plotted in another. The
following commands show how to do this for arbitrary data vectors x
and y.

> plot(x, y, type = "n")
> points(x, y, col = "darkslategray")

Figure 2.6 shows the different plot types for the built-in data set
car.miles, as produced by the following commands:

> plot(car.miles)
> plot(car.miles, type = "l")
> plot(car.miles, type = "b")
> plot(car.miles, type = "o")
> plot(car.miles, type = "h")
> plot(car.miles, type = "s")

Table 2.1: Possible values of the plot type argument.

Setting Plot type

type="p" points

type="l" lines

type="b" both points and lines

type="o" lines with points overstruck

type="h" high-density plot

type="s" stairstep plot

type="n" no data plotted
38

Frequently Used Plotting Options
Figure 2.6: Plot types for the function plot. Top row: points and lines. Second row: both points and lines,
and lines with points overstruck. Third row: high density plot and stairstep plot.

•
•
•

••

•

•

•

•

•

•
••
•
••
••••••

•

•

•
•••

•
•

•
••••••••

•
•

•

•

•

•

••
•

•
••
•
••
•
•
•

•

•
•

•

•
••

•
•••

•

••
•
•

•

•••

•

••

•

•

•

••
••
••

•

••
•

•

•

•
•

•

•

•

•
•
•
•
•

•
•

•••
•

•

••
•
•••

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

•
•
•

••

•

•

•

•

•

•
••
•
••
••••••

•

•

•
•••

•
•

•
••••••••

•
•

•

•

•

•

••
•

•
••
•
••
•
•
•

•

•
•

•

•
••

•
•••

•

••
•
•

•

•••

•

••

•

•

•

••
••
••

•

••
•

•

•

•
•

•

•

•

•
•
•
•
•

•
•

•••
•

•

••
•
•••

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

•
•
•

••

•

•

•

•

•

•
••
•
••
••••••

•

•

•
•••

•
•

•
••••••••

•
•

•

•

•

•

••
•

•
••
•
••
•
•
•

•

•
•

•

•
••

•
•••

•

••
•
•

•

•••

•

••

•

•

•

••
••
••

•

••
•

•

•

•
•

•

•

•

•
•
•
•
•

•
•

•••
•

•

••
•
•••

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

ca
r.

m
ile

s

0 20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

35
0

39

Chapter 2 Traditional Graphics
Line Types When your plot involves multiple lines, you can choose specific line
types to distinguish between them. By default, the first line on a graph
is a solid line. If you prefer, you can use the lty argument to specify a
different line type. On the most commonly used graphics devices,
there are eight distinct line types, as shown in Figure 2.7.

In a device with eight line types, if you specify a value higher than
eight for the lty argument, Spotfire S+ produces the line type
corresponding to the remainder on division by the number of line
types. For example, if you specify lty=26 on the graphsheet device
(Windows) or the motif device (UNIX), Spotfire S+ produces the line
type shown as lty=2.

Figure 2.7: Line types from the lty parameter.

lty= 1
lty= 2
lty= 3
lty= 4
lty= 5
lty= 6
lty= 7
lty= 8

Notes

The value of lty can be an integer or a vector. For example, you can plot the time series
halibut$cpue using a dotted line as follows:

> plot(halibut$cpue, type = "l", lty = 2)

The following example illustrates using vectors of col, lty, and lwd values:

> plot(1:10, type="n")
> lines(1:10, rep(c(1,2),5), col=c("red", "green", "blue"),
+ lty=1:3, lwd=c(1,3,5))

For more information, see the section Vectorized Graphics Parameters (page 21) and the par
online help.
40

Frequently Used Plotting Options
Plotting
Characters

When your plot type involves data points, you can choose the plotting
character for the points. By default, the plotting character is usually an
open circle, depending on your graphics device and the plotting
function you use. For example, the default plotting character for
matplot is the number 1, because matplot is often used to
simultaneously plot more than one time series or vector. In such
cases, a plotting character is needed for each time series or vector to be
plotted, and the default characters are the integers 1,2,3, etc.

You can choose alternative plotting characters for your data points by
using the optional argument pch. Any printing character can be used
as the value of pch, as long as it is enclosed in quotes. For example:

> plot(halibut$biomass, pch = "B")

You can also choose any one of a range of plotting symbols by using
pch=n, where n is an integer. The symbol corresponding to each
integer is shown in Figure 2.8. For example, to plot the series
halibut$biomass using a filled triangle as the plotting character, type
the following command:

> plot(halibut$biomass, pch = 17)

Figure 2.8: Plotting symbols from the pch parameter.

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18
41

Chapter 2 Traditional Graphics
Controlling
Plotting Colors

To specify the color in which your graphics are plotted, use the
optional col parameter. This parameter is useful when you need to
distinguish between sets of overlaid data, as the two commands below
illustrate.

> plot(co2)
> lines(smooth(co2), col = "olive")

Note

The plot function, and functions that add individual points to a plot, can accept a vector
of values for the pch parameter. For example:

plot(halibut$biomass, pch = rep(0:2,each=20))

For more information, see the section Vectorized Graphics Parameters (page 21).

Notes

For information about the colors available through the col parameter, see the section Color
Specification (page 3).

For information about using a vector of values with col and other graphics parameters, see
the section Vectorized Graphics Parameters (page 21).

For information about using separate graphics arguments to control the various individual
elements of a plot (e.g., col.axis, col.lab, col.main, col.sub, fg, and bg) see the section
Additional Graphics Arguments (page 17).

For information about setting graphics color schemes in the Spotfire S+ GUI, refer to the online
help.
42

Visualizing One-Dimensional Data
VISUALIZING ONE-DIMENSIONAL DATA

Bar plots and pie charts are familiar methods of graphically
displaying data for oral presentations, reports, and publications. In
this section, we show you how to use Spotfire S+ to make these plots.
We also show you how to make another type of one-dimensional plot
called a dot chart. Dot charts are less widely known than the more
familiar bar plots and pie charts, but they are often more useful.

We illustrate each of the three plots with the following 5 x 3 matrix
digits:

> digits <- matrix(
+ c(20,15,30,16,17,30,24,16,17,21,24,20,19,13,28),
+ nrow = 5, byrow = T)

> dimnames(digits) <- list(
+ paste("digit", 1:5, sep=" "),
+ paste("sample", 1:3, sep=" "))

> digits

 sample 1 sample 2 sample 3
digit 1 20 15 30
digit 2 16 17 30
digit 3 24 16 17
digit 4 21 24 20
digit 5 19 13 28

For convenience in the examples below, we extract the row and
column labels from the matrix and store them in separate objects:

> digit.names <- dimnames(digits)[[1]]
> sample.names <- dimnames(digits)[[2]]

Bar Plots The function barplot is a flexible function for making bar plots. The
simplest use of barplot is with a vector or a single column from a
matrix. For example, calling barplot with the first column of digits
gives the result shown in Figure 2.9.

> barplot(digits[,1], names = digit.names)
43

Chapter 2 Traditional Graphics

In the figure, the height of each bar is the value in the corresponding
component of the vector or matrix column; in most instances, the
values represent counts of some sort. The barplot function can also
be used in a more powerful way to create a bar plot of an entire data
matrix. In this case, each bar corresponds to a column of the matrix
and represents a sample. Each bar is divided into a number of blocks
representing the values, with different shadings in each of the blocks.
You can see this with the digits data as follows:

> barplot(digits,
+ angle = seq(from = 45, to = 135, length = 5),
+ density = 16, names = sample.names)

Our value for the optional argument angle establishes five angles for
the shading fill for each of the five blocks in each bar, with the angles
equally spaced between 45 degrees and 135 degrees. Setting the
optional argument density to 16 causes the shading fill lines to have a
density of 16 lines per inch. If you want the density of the shading fill
lines to vary cyclically, you need to set density with a vector value;
the vector is of length five for the digits data. For example:

> barplot(digits,
+ angle = seq(from = 45, to = 135, length = 5),
+ density = (1:5)*5, names = sample.names)

Figure 2.9: A bar plot of the digits data.
44

Visualizing One-Dimensional Data
To produce a legend that associates a name to each block of bars, use
the optional legend argument with an appropriate character vector as
its value. For the digits example, use legend=digit.names to
associate a digit name with each of the blocks in the bars:

> barplot(digits, angle = c(45,135), density = (1:5)*5,
+ names = sample.names, legend = digit.names,
+ ylim = c(0,270))

To make room for the legend, you usually need to increase the range
of the vertical axis, so we use ylim=c(0,270). You can obtain greater
flexibility for the positioning of the legend by using the function
legend after you have made your bar plot, rather than relying on the
automatic positioning from the legend argument. See the section
Adding legends (page 70) for more information.

Many other options are available to you as arguments to barplot; see
the help file for complete details.

Pie Charts You can make pie charts with the function pie. For example, you can
display the first sample of the digits data as a pie chart and add the
subtitle “sample 1” by using pie as follows:

> pie(digits[,1], names = digit.names, sub = "sample 1")

The result is shown in Figure 2.10. As an alternative, try replacing
digits[,1] by digits[,2] or digits[,3], and replace "sample 1" by
"sample 2" or "sample 3", respectively.

Several other options are available with the pie function; see the help
file for complete details.
45

Chapter 2 Traditional Graphics
Dot Charts The dot chart was first described by Cleveland (1985) as an
alternative to bar plots and pie charts. The dot chart displays the same
information as a bar plot or pie chart, but in a form that is often easier
to grasp. In particular, the dot chart reduces most data comparisons to
straightforward length comparisons on a common scale.

In Spotfire S+, use the function dotchart to create dot plots of your
data. The simplest use of dotchart is analogous to that of barplot.
You can see this by calling dotchart with the first column of the
digits matrix:

> dotchart(digits[,1], labels = digit.names)

The result is displayed in Figure 2.11.

Figure 2.10: A pie chart of the digits data.
46

Visualizing One-Dimensional Data
To obtain a display of all the data in the digits matrix, use the
following command:

> dotchart(digits, labels = digit.names)

Alternatively, you can also use the following command:

> dotchart(t(digits), labels = sample.names)

The argument t(digits) uses the function t to transpose the digits
matrix (i.e., to interchange the rows and columns of digits).

To obtain a plot of digits with both the sample labels and the digit
labels, you need to create a grouping variable to use as an additional
argument. For example, if you wish to use the sample number as the
grouping variable, use the factor function to create the variable
sample.fac as follows:

> sample.fac <- factor(col(digits), labels = sample.names)

You can then use this factor object as the groups argument to
dotchart:

> dotchart(digits, labels=digit.names, groups=sample.fac)

Figure 2.11: A dot chart of the digits data.

16 18 20 22 24

o

o

o

o

o

digit 1

digit 2

digit 3

digit 4

digit 5
47

Chapter 2 Traditional Graphics
For more information on factor objects, see Chapter 4, Data Objects
in the Programmer’s Guide.

Several other options are available with the dotchart function; see
the help file for complete details.

Notes and
Suggestions

A pie chart shows the share of individual values in a variable, relative
to the sum total of all the values. Pie charts display the same
information as bar plots and dot charts, but can be more difficult to
interpret. This is because the size of a pie wedge is relative to a sum,
and does not directly reflect the magnitude of the data value. Because
of this, pie charts are most useful when the emphasis is on an
individual item’s relation to the whole; in these cases, the sizes of the
pie wedges are naturally interpreted as percentages. When such an
emphasis is not the primary point of the graphic, a bar plot or a dot
chart is preferred.

In some cases, bar plots also introduce perceptual ambiguities; this is
particularly evident in divided bar charts. For these reasons, we
recommend dot charts for general displays of one-dimensional data.
48

Visualizing the Distribution of Data
VISUALIZING THE DISTRIBUTION OF DATA

For any data set you need to analyze, you should try to get a visual
picture of the shape of its distribution. The distribution shape is
readily visualized from such familiar plots as box plots, histograms,
and density plots. Less familiar but equally useful are quantile-quantile
plots, or qqplots. In this section, we show you how to use Spotfire S+
functions to make these kinds of plots.

Box Plots A box plot is a simple graphical representation showing the center
and spread of a distribution, along with a display of unusually deviant
data points called outliers. To create a box plot in Spotfire S+, use the
boxplot function:

> boxplot(corn.rain)

The horizontal line in the interior of the box is located at the median
of the data. This estimates the center of the distribution for the data.

The boxplot function uses hinges, as originally defined by Tukey, for
the lower and upper limits of the box. The hinges are the median
value of each half of the data, where the overall median defines the
halves. Hinges are similar to quartiles. The difference between hinges

Figure 2.12: A box plot of the corn.rain data.
49

Chapter 2 Traditional Graphics
and quartiels is that the depth (that is, the distance from the lower and
upper limits of the data) of the hinges is calculated from the depth of
the median. Hinges often lie slightly closer to the median than do the
quartiles.

Points beyond the whiskers are considered outliers and are drawn
individually, indicated as horizontal lines. Supplying the optional
argument range=0 to boxplot forces the whiskers to span the full data
range; any positive value of range multiplies the standard span by
that amount. The standard span is 1.5 times the upper hinge minus the
lower hinge.

For data having a Gaussian distribution, approximately 99.3% of the
data falls inside the whiskers of a box plot, given the standard span. In
the corn.rain example, the two horizontal lines at the top of the
graph in Figure 2.12 represent outliers.

Box plots provide a very powerful method for visualizing the rough
distributional shape of two or more samples of data. For example, to
compare the distributions of the New Jersey lottery payoffs in each of
three different years, call boxplot with the built-in data vectors
lottery.payoff, lottery2.payoff, and lottery3.payoff as follows:

> boxplot(lottery.payoff, lottery2.payoff, lottery3.payoff)

You can modify the style of your box plots using optional arguments
to the boxplot function; see the help file for complete details.

Histograms A histogram shows the number of data points that fall in each of a
number of intervals. You can create histograms in Spotfire S+ with
the hist function:

> hist(corn.rain)

The simple histogram displayed spans the range of the data; the
smallest data value falls in the leftmost interval and the largest data
point falls in the rightmost interval. Notice that the histogram gives

Note

The difference between hinges and quartiles is usually quite small. If you are interested in
quantiles, you should use the quantile or summary.default functions instead of the stats
component returned by boxplot.
50

Visualizing the Distribution of Data
you an indication of the relative density of the data points along the
horizontal axis. In the corn.rain example, there are 10 data points in
the interval (8,10) and only one data point in the interval (14,16).

The number of intervals produced by hist is determined
automatically to balance the trade-off between obtaining smoothness
and preserving detail. However, no automatic rule is completely
satisfactory. Thus, hist allows you to choose the number of intervals
yourself through the optional argument nclass. Choosing a large
number of intervals produces a rougher histogram with more detail,
and choosing a small number produces a smoother histogram with
less detail. For example, the command

> hist(corn.rain, nclass = 15)

gives a rougher but more detailed histogram than the one produced
by hist(corn.rain).

You can also use hist to specify the number of intervals and their
locations. You do this through the optional argument breaks, by
specifying a numeric vector containing the interval boundary points.
The length of this vector is one greater than the number of intervals
you want. For example, to specify 12 intervals for the corn.rain
histogram with interval boundaries at the integers 6 through 18, use

> hist(corn.rain, breaks = 6:18)
51

Chapter 2 Traditional Graphics
The result is shown in Figure 2.13. Many other options are available
with hist, and they include many of the arguments to barplot. See
the help files for hist and barplot for complete details.

Density Plots A histogram for continuous numeric data is a rough estimate of a
smooth underlying density curve, which gives the relative frequency
with which the data fall in different intervals. The underlying density
curve, formally called a probability density function, allows you to
compute the probability that your data fall in any interval. Thus, you
may prefer a smooth estimate of the density to a rough histogram
estimate.

To obtain smooth density estimates in Spotfire S+, use plot with the
function density. The optional argument width to density controls
the smoothness of the plot. For example, Figure 2.14 shows the plots
displayed by the following two commands:

> plot(density(car.gals), type = "l")
> plot(density(car.gals, width = 1), type = "l")

The default value for width results in a smooth density estimate in the
tails, whereas the choice width=1 produces a rougher estimate. In
general, larger width values result in smoother plots but may obscure

Figure 2.13: A histogram of the corn.rain data with specified break points.
52

Visualizing the Distribution of Data
local details of the density. Smaller width values highlight local details
better, but may also highlight random effects. See Silverman (1986) or
Venables and Ripley (1999) for a discussion of the issues involved in
choosing a width parameter.

Figure 2.14: Probability density plots of the car.gals data.
53

Chapter 2 Traditional Graphics
Quantile-
Quantile Plots

A quantile-quantile plot, or qqplot, is a plot of one set of quantiles
against another. There are two main forms of the qqplot. The most
frequently used form checks whether a data set comes from a
particular hypothesized distribution shape. In this case, one set of
quantiles consists of the ordered set of data values (which are, in fact,
quantiles for the empirical distribution for the data). The other set
consists of quantiles for the hypothesized distribution. If the points in
this plot cluster along a straight line, the data set likely has the
hypothesized distribution.

The second form of qqplot is used when you want to find out whether
two data sets have the same distribution shape. In this case, both sets
of quantiles simply consist of ordered data values. If the points in this
plot cluster along a straight line, the two data sets likely have the same
distribution shape.

QQplots for
Checking
Distribution
Shape

To produce the first type of qqplot when your hypothesized
distribution is normal (Gaussian), use the function qqnorm:

> qqnorm(car.gals)
> qqline(car.gals)

The result is shown in Figure 2.15. The qqline function computes and
draws a robust straight line fit that is not greatly influenced by
outliers.

Figure 2.15: A qqnorm plot of the car.gals data.
54

Visualizing the Distribution of Data
You can create qqplots to check whether your data come from any of
a number of distributions. To do so, you need to write a simple
Spotfire S+ function for your hypothesized distribution; we illustrate
this idea for the uniform distribution.

Create the function qqunif as follows:

> qqunif <- function(x) {
+ plot(qunif(ppoints(x)), sort(x))
+ }

The function qunif computes quantiles for the uniform distribution at
the probability values returned by ppoints, and sort orders the data.
If n is the length of x, the probabilities computed by ppoints satisfy

. We can now call qqunif to check whether the
car.gals data comes from a uniform distribution:

> qqunif(car.gals)

You can create qqplots for other hypothesized distributions by
replacing qunif in the definition of qqunif by one of the functions
from Table 2.2.

p xi i 0.5– n =

Table 2.2: Distributions for qqplots.

Function Distribution
Required
Arguments

Optional
Arguments Defaults

qbeta beta shape1,shape2 none

qcauchy Cauchy none location,scale 0,1

qchisq chi-square df none

qexp exponential none rate 1

qf F df1,df2 none

qgamma Gamma shape none

qlnorm log-normal none mean,sd 0,1
55

Chapter 2 Traditional Graphics
QQplots for
Comparing Two
Sets of Data

When you want to check whether two sets of data have the same
distribution, use the function qqplot. If the data sets have the same
number of observations, qqplot plots the ordered data values of one
versus the ordered data values of the other. If the two data sets do not
have the same number of observations, the ordered data values for
one set are plotted against interpolates of the ordered data values of
the other set.

For example, to compare the distributions of the two New Jersey
lottery data vectors lottery.payoff and lottery3.payoff, use the
following expression:

> qqplot(lottery.payoff, lottery3.payoff)

qnorm normal none mean,sd 0,1

qt Student’s t df none

qunif uniform none min,max 0,1

Table 2.2: Distributions for qqplots.

Function Distribution
Required
Arguments

Optional
Arguments Defaults

Note

For distribution functions requiring a parameter argument, your qqplot function must accept it.
For example, qqchisq must accept the required df argument as follows:

> qqchisq <- function(x,df) { plot(qchisq(ppoints(x), df), sort(x)) }
56

Visualizing Three-Dimensional Data
VISUALIZING THREE-DIMENSIONAL DATA

Many types of data are usefully viewed as surfaces generated by
functions of two variables. Familiar examples are meteorological data,
topographic data, and other data gathered by geographical location.

Spotfire S+ provides three functions for viewing such data. The
simplest, contour, represents the surface as a set of contour plot lines
on a grid representing the other two variables. The perspective plot,
persp, creates a perspective plot with hidden line removal. The image
function plots the surface as a color or grayscale variation on the base
grid.

All three functions require similar input: a vector of x coordinates, a
vector of y coordinates, and a length x by length y matrix of z values.
In many cases, these arguments are all supplied by a single list, such
as the output of the interp function. The interp function interpolates
the value of the third variable onto an evenly spaced grid of the first
two variables. For example, the built-in data set ozone contains two
objects: ozone.xy, a list of latitudes and longitudes for each
observation site, and ozone.median, a vector of the medians of daily
maxima ozone concentrations at all sites. To create a contour or
perspective plot, we can use interp to interpolate the data as follows:

> ozone.fit <- interp(ozone.xy$x, ozone.xy$y, ozone.median)

We use the ozone.fit object in examples throughout this section.

For contour, persp, and image you can also provide a single matrix
argument, which is interpreted as the z matrix. The two functions then
automatically generate the x vector 1:nrow(z) and the y vector
1:ncol(z). See the persp and contour help files for more
information.

Contour Plots To generate a contour plot, use the contour function. For example,
the built-in data set switzerland contains elevation data for
Switzerland. The following command produces the plot shown in
Figure 2.16:

> contour(switzerland)
57

Chapter 2 Traditional Graphics
By default, contour draws contour lines for each of five levels, and
labels each one. You can change the number of levels with either
nlevels or levels. The nlevels argument specifies the approximate
number of contour intervals desired, while the levels argument
specifies a vector of heights for the contour lines.

You control the size of the labels for the contour lines with the labex
argument. Specify the size to labex as a relative value to the current
axis-label font, so that labex=1 (the default) yields labels that are the
same size as the axis labels. Setting labex=0 gives you unlabeled
contour lines.

For example, to view a voice spectrogram for the word “five,” use
contour on the built-in data object voice.five. Because voice.five
generates many contour lines, we suppress the labels with labex=0:

> contour(voice.five, labex = 0)

If you have an equal number of observations for each of three
variables, you can use interp to generate interpolated values for z on
an equally-spaced xy grid. For example, to create a contour plot of the
ozone data, you can use contour with the ozone.fit object as follows:

> contour(ozone.fit)

Figure 2.16: Contour plot of Switzerland.
58

Visualizing Three-Dimensional Data
Perspective
Plots

Perspective plots give a three-dimensional view of data in the form of
a matrix of heights on an evenly spaced grid. The heights are
connected by line segments to produce the familiar mesh appearance
of such plots.

As a simple example, consider the voice spectrogram for the word
“five” stored in the data set voice.five. The contour plot we created
in the previous section is difficult to interpret because the number of
contour lines forced us to omit the height labels. Had we included the
labels, the clutter would have made the graph unreadable.

The perspective plot in Figure 2.17 gives a much clearer view of how
the spectrogram varies. To create the plot, use the following Spotfire
S+ expression:

> persp(voice.five)

You can modify the perspective by choosing a different “eye”
location. You do this with the eye argument to persp. By default, the
eye is located at c(-6,-8,5) times the range of the x, y, and z values.
For example, to look at the voice data from the side opposite of what
is shown in Figure 2.17, we could use the following command:

> persp(voice.five, eye = c(72000,350,30))

Figure 2.17: Perspective plot of a voice spectrogram.
2000

4000
6000

8000
10000

X
10

20

30

40

50

60

Y

 0
1

2
3

4
5

Z

59

Chapter 2 Traditional Graphics
If you have an equal number of observations for each of three
variables, you can use interp to generate interpolated values for z on
an equally-spaced xy grid. For example, to create a perspective plot of
the ozone data, you can use persp with the ozone.fit object as
follows:

> persp(ozone.fit)

Image Plots An image plot is a two-dimensional plot that represents three-
dimensional data as shades of color or grayscale. You can produce
image plots with the image function:

> image(voice.five)

A more conventional use of image is to produce images of topological
data, as in the following example:

> image(pugetN)

Warning

Converting a persp plot to individual objects can take a considerable amount of time. For this
reason, we recommend against converting persp plots to editable graphics.

Figure 2.18: Image plot of the voice spectrogram.
60

Visualizing Three-Dimensional Data
The data set pugetN contains elevations in and around Puget Sound. It
is not part of the standard Spotfire S+ distribution.

If you have an equal number of observations for each of three
variables, you can use interp to generate interpolated values for z on
an equally-spaced xy grid. For example, to create an image plot of the
ozone data, you can use image with the ozone.fit object as follows:

> image(ozone.fit)

Figure 2.19: Image plot of Puget Sound.

-123.0 -122.8 -122.6 -122.4 -122.2 -122.0
4
8
.0

4
8
.4

4
8
.8
61

Chapter 2 Traditional Graphics
VISUALIZING MULTIDIMENSIONAL DATA

For data with three or more variables, many methods of graphical
visualization have been developed. Some of these are highly
interactive and take full advantage of the power of personal
computers. The following sections describe how to use Spotfire S+
functions to analyze multidimensional data. In particular, we describe
several methods for static data visualization that are widely
considered useful: scatterplot matrices, matrix plots, star plots, and
Chernoff’s faces.

Scatterplot
Matrices

A scatterplot matrix is an array of pairwise scatter plots showing the
relationship between any pair of variables in a multivariate data set.
To produce a static scatterplot matrix in Spotfire S+, use the pairs
function with an appropriate data object as its argument. For
example, the following Spotfire S+ expression generates a scatterplot
matrix of the built-in data set longley.x:

> pairs(longley.x)

Figure 2.20: A scatterplot matrix of the longley.x data.

GNP deflator

250 350 450 550

•
•• •

• • •• • •
••

• •• •

•
• ••

••• •••
• ••• ••

150 250 350

•
• ••

• •••••
••••

• •

•
• • •

• • • • • •
• • • • • •

1950 1955 1960

9
0

1
1
0

•
• • •

• • • • • •
• • • • • •

2
5
0

4
0
0

5
5
0

• •••
• •••

• • • •
•••

•

GNP

•• ••
••• •••

• •
••

•
•

•• ••
• •••••••

••
•

•

•• • •
• • • • • • • •

• • •
•

• • • •
• • • • • • • •

• • •
•

• •

•
•

• ••

•
• • •

•

••

•

•

• •

•
•

• • •

•
• • •

•

• •

•

•
Unemployed

••

•
•

• ••

•
•••

•

••

•

•

••

•
•

• • •

•
• • •

•

• •

•

•

2
0
0

3
5
0

• •

•
•

• • •

•
• • •

•

• •

•

•

1
5
0

2
5
0

3
5
0

• •••

•
•••

• • • • •••
•

• •• •

•
• ••

• • •• • ••
•

•• ••

•
•• •

••• ••• •
•

Armed Forces
••• •

•
• • •

• • • • • • •
•

• • • •

•
• • •

• • • • • • •
•

• •••
• ••

••
• • • ••

••

• •• • • • •• • • ••
• •

• •

•• •••••
•••

• •••
••

•• •• • ••
••••

••
•
• •

Population

1
1
0

1
2
0

1
3
0

• • • • • • • • • • • • • •
• •

90 100 110

1
9
5
0

1
9
6
0

• ••
• • ••

••
• • • •••

•

• ••
• • • ••

• • ••
• •• •

200 300 400

••
•••••

•••
• •••

••

•• ••
• ••

••••
••

••
•

110 120 130

••
• • • • • • • • • • • • • •

Year
62

Visualizing Multidimensional Data
Plotting Matrix
Data

For visualizing several vector data objects, or for visualizing some
kinds of multivariate data, you can use the function matplot. This
function plots columns of one matrix against columns of another. For
example, Spotfire S+ contains a multivariate data set named iris.
The iris data is in the form of a data array, which is a generalized
matrix. Let’s extract two particular 50x3 matrices from the iris
array:

> pet.length <- iris[,3,]
> pet.width <- iris[,4,]

The matrix pet.length contains 50 observations of petal lengths for
each of three species of iris: Setosa, Versicolor, and Virginica. The
matrix pet.width contains 50 observations of petal widths for each of
the same three species.

To graphically explore the relationship between petal lengths and
petal widths, use matplot to display widths versus lengths
simultaneously on a single plot:

> matplot(pet.length, pet.width, cex = 1.3)

Figure 2.21: Simultaneous plots of petal lengths versus petal widths for three species
of iris.
63

Chapter 2 Traditional Graphics
If the matrices you plot with matplot do not have the same number of
columns, the columns of the smaller matrix are cycled so that every
column in the larger matrix is plotted. Thus, if x is a vector (i.e., a
matrix with a single column), then matplot(x,y) plots every column
of the matrix y against the vector x.

Star Plots A star plot displays multivariate data as a set of stars in which each star
represents one observation, and each point or radial of a star
represents a particular variable. The length of each radial is
proportional to the data value of the corresponding variable. Thus,
both the size and shape of the stars have meaning: size reflects the
overall magnitude of the data, and shape reveals the relationships
between variables. Comparing two stars gives a quick graphical
picture of similarities and differences between two cases; similarly
shaped stars indicate similar cases.

For example, to create a star plot of the longley.x data, type the
following command:

> stars(longley.x)

Figure 2.22: A star plot of the longley.x data.

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962
64

Visualizing Multidimensional Data
Faces In 1973, Chernoff introduced the idea of using faces to represent
multivariate observations. Each variable in a given observation is
associated to one feature of the face. Two cases can be compared
using a feature-by-feature comparison. You can create Chernoff’s
faces with the Spotfire S+ faces function:

> faces(t(cereal.attitude),
+ labels = dimnames(cereal.attitude)[[2]], ncol = 3)

See the faces help file and Chernoff (1973) for complete details on
interpreting Chernoff faces.

Figure 2.23: A faces plot of the cereal.attitude data.

corn flakes

weet abix

rice krispies

shreaded wheat

sugar puffs

special k

frosties

all bran
65

Chapter 2 Traditional Graphics
INTERACTIVELY ADDING INFORMATION TO YOUR PLOT

The functions described so far in this chapter create complete plots.
Often, however, you want to build on an existing plot in an
interactive way. For example, you may want to identify individual
points in a plot and label them for future reference. Or you may want
to add some text or a legend, or overlay some new data. In this
section, we describe some simple techniques for interactively adding
information to your plots. More involved techniques for producing
customized plots are described in the section Customizing Your
Graphics (page 72).

Identifying
Plotted Points

While examining a plot, you may notice that some of the plotted
points are unusual in some way. To identify the observation numbers
of such points, use the identify function, which lets you “point and
click” with a mouse on the unusual points. For example, consider the
plot of y versus x:

> set.seed(12)
> x <- runif(20)
> y <- 4*x + rnorm(20)
> x <- c(x,2)
> y <- c(y,2)
> plot(x,y)

You immediately notice one point separated from the bulk of the
data. Such a data point is called an outlier. To identify this point by
observation number, use identify as follows:

> identify(x, y, n=1)

After pressing RETURN, you do not get a prompt. Instead, Spotfire S+
waits for you to identify points with the mouse. Move the mouse
cursor into the graphics window so that it is adjacent to the data point
to be identified, and click the left mouse button. The observation
number appears next to the point. If you click when the cursor is
more than 0.5 inches from the nearest point in the plot, a message
appears on your screen to tell you there are no points near the cursor.
66

Interactively Adding Information to Your Plot
After identifying all the points that you requested, Spotfire S+ prints
out the observation numbers of the identified points and returns your
prompt:

> identify(x, y, n=1)
[1] 21

If you omit the optional argument n, you can identify as many points
as you wish. In this case, you must signal Spotfire S+ that you’ve
finished identifying points by taking an appropriate action (i.e.,
pressing the right mouse button, or pressing both the left and right
mouse buttons together, depending on your configuration).

Adding
Straight Line
Fits to a
Scatter Plot

When you create a scatter plot, you may notice a linear association
between the y-axis variable and the x-axis variable. In such cases, you
may find it helpful to display a straight line that has been fit to the
data. You can use the function abline(a,b) to add a straight line with
intercept a and slope b to the plot. The examples below show how to
do this for different types of lines.

Least-squares straight line

The best-known approach to fitting a straight line to a scatter plot is
the method of least squares. The Spotfire S+ function lm fits a linear
model using the method of least squares. The lm function requires a
formula argument, expressing the dependence of the response
variable y on the predictor variable x. See the Guide to Statistics for a
complete description of formulas and statistical modeling.

To draw a least-squares line on a scatter plot, use abline on the results
of lm. The following Spotfire S+ expressions plot a dotted line for the
least-squares fit in a scatter plot of y vs. x:

> plot(x,y)
> abline(lm(y~x), lty = 2)

Robust straight line

While fitting a least-squares line to two-dimensional data is probably
the most common fitting procedure, the least-squares approach has a
fundamental weakness: it lacks robustness, in that it is very sensitive
to outliers. A robust method is one that is not greatly affected by
outliers, providing a good fit to the bulk of the data. Spotfire S+ has
many functions for computing robust regression lines, including:
67

Chapter 2 Traditional Graphics
• Least trimmed squares regression (LTS), available through the
function ltsreg

• Least median squares regression (LMS), available through the
function lmsreg

• Robust MM regression, available through the function
lmRobMM.

Each of these functions can be used with abline to draw a robust
straight line on a scatter plot of data. For example, to draw a robust
MM line, type the following commands:

> plot(x,y)
> abline(lmRobMM(y~x), lty = 2)

See the Guide to Statistics for a detailed discussion of robust regression
techniques.

Adding New
Data to the
Current Plot

Once you have created a plot, you may want to add additional data to
it. For example, you might plot an additional data set with a different
line type or plotting character. Or you might add a statistical function
such as a smooth curve fit to the data already in the plot. To add data
to a plot created by the plot function, use one of the two functions
points or lines. These functions are virtually identical to plot except
that they don’t create a new set of axes. The points function is used to
add data points, while lines is used to add lines.

All of the arguments to plot that we’ve discussed so far in this chapter
(including type, pch, and lty) work with points and lines. This
means that you can choose line types and plotting characters as you
wish. You can even make line-type plots with points and points-type
plots with lines if you choose. For example, suppose you plot the
built-in data set co2, which gives monthly levels of carbon dioxide at
the Mauna Loa volcano from January 1959 to December 1990:

> plot(co2)

By default, plot uses the points function to plot the data. The plot
function recognizes that co2 is a time series data set consisting of
monthly measurements, and provides appropriate labels on the
horizontal axis. The series co2 has an obvious seasonal cycle and an
increasing trend. It is often useful to smooth such data and display the
smoothed version in the same plot. The function smooth produces a
68

Interactively Adding Information to Your Plot
smoothed version of a Spotfire S+ time series, and can be used as an
argument to lines. This adds a plot of the smoothed version of the
time series to the existing plot, as shown in the following command:

> lines(smooth(co2))

If your original plot was created with matplot, you can also add new
data to it with functions analogous to points and lines. To add data
to a plot created with matplot, use matpoints or matlines. See the
corresponding help files for further details.

Adding Text to
Your Plot

Suppose you want to add some text to an existing plot. For example,
consider the automobile mileage data plot in Figure 2.5. To add the
text “Outliers” near the three outlying data points in the upper right
corner of the plot, use the text function. To use text, specify the x
and y coordinates at which you want the text to appear, in the same

Figure 2.24: The co2 data with a smoothed line plot.

Time

1960 1965 1970 1975 1980 1985 1990

32
0

33
0

34
0

35
0

•••
••••••••
•••
••
•••
••••
•••
••
•••••••
•••
•••••
••••
•••
••
•••
••••
•••
••••••
•••
•••
•••••
••••
••
••
••••
••••
•••
••
•••••••
•••
•••••••••

•••
•••••
••••
••
••
••••••••
•••
••••••
•••
••••
••••••••
••
••
•••••••••

••
••••••
•••
•••
••
•••••••
•••
•••••
••••
•••
••
•••
••••
•••
••••••
•••
•••
••••••
•••
•••
•••••
••••
••
••
••••
••••
••
••
••••
••••
••
••
•••••
•••
•••
••
•••
•
••
••
••
•••••••••

•••
••
•••
••••
•••
••
•••••••
••
•••
•••
••••
•••
••
•••
•
•••
••
•••
•••
•
•••
•

Warning

If the data you add with points or lines have a range greater than the axis limits of the original
plot, Spotfire S+ does not add all of the data to the plot. Instead, you receive an “out of bounds”
warning message, and only the data within the axis limits are plotted. You can avoid this with
appropriate use of the optional arguments xlim and ylim in your call to plot.
69

Chapter 2 Traditional Graphics
coordinate system used for the plot itself. More generally, you can
specify vectors of x and y coordinates and a vector of text labels.
Thus, in the mileage example, type:

> plot(car.miles, car.gals)
> text(275, 22, "Outliers")

The text “Outliers” is centered at the xy coordinates 275,22. You can
guess the coordinate values by “eyeballing” the spot on the plot
where you want the text to go. However, this approach to locating
text is not very accurate. Instead, you can specify the coordinates of
the text exactly using the locator function within text. The locator
function allows you to use the mouse cursor to accurately identify the
location of any number of points on your plot. When you use
locator, Spotfire S+ waits for you to position the mouse cursor and
click the left mouse button, and then it calculates the coordinates of
the selected point. The argument to locator specifies the number of
times the text is to be positioned. For example, we can apply text and
locator together on the plot of the mileage data as follows:

> text(locator(1), "Outliers")

Connecting text and data points with straight lines

In the above example, suppose you want to improve the graphical
presentation by drawing a straight line from the text “Outliers” to
each of the three data points that you regard as outliers. You can add
such lines sequentially with the following expression:

> locator(n=2, type="l")

Spotfire S+ awaits your response. To draw a line, locate the mouse
cursor at the desired starting point for the line and click the left
button. Move the mouse cursor to the desired ending point for the
line and click the left button again. Spotfire S+ draws a straight line
between the two points and returns their coordinates at the command
prompt. The argument n=2 tells Spotfire S+ to locate a maximum of
two points; to draw additional lines, you must increase the value of n
appropriately.

Adding legends

Often, you create plots that contain one or more sets of data displayed
with different plotting characters or line types. In such cases, you may
want to provide a legend that identifies each of the plotting characters
70

Interactively Adding Information to Your Plot
or line types. To do this in Spotfire S+, use the legend function. For
example, suppose you use the following commands to plot the data
shown in Figure 2.25:

> plot(smooth(co2), type = "l")
> points(co2, pch = "X")

For clarity, you probably want to add the legend shown in the figure.
First, create a vector leg.names that contains the character strings
"co2" and "smooth of co2". You can then use legend as follows:

> leg.names <- c("co2", "smooth of co2")
> legend(locator(1), leg.names, pch = "X ", lty = c(0,1))

Spotfire S+ waits for you to respond. Move the mouse cursor to the
location on the plot where you want to place the upper left corner of the
legend box, then click the left mouse button.

Figure 2.25: A plot of the co2 data with a legend added.

1960 1965 1970 1975 1980 1985 1990

Time

32
0

33
0

34
0

35
0

sm
oo

th
(c

o2
)

X
XX
X
XX

X

X
X
X

X
X
X
X
X

X
X
X

X

X

XX

X

X
X
X
X
X

X
X

X

X

XX
X
X
X
X

X
X
XX
X

X

X
X

X
X
XX
X

X
X
X

X

X

XX
X

X

X
X
X
X
XX

X

X

XX
X
X
X
X
X

XXX
X

X
X
X

X
X

X
X
X

XXX

X

X

X
X

X

X

XX
X

X
X
X

X

X

XX

X

X
X
X
X

X
XX

X

X

XX
X

X
XX

X
X
X
X
X

X

X
X
X

X
X
X
X

XXX

X

X

XX
X

X
X
X
X
X

XX

X

X

XX

X

X
X
XX

XX
X
X

X

XX

X
X
X
X
X

X
XX

X

X

XX
X
X
X

X
X

X
X
X

X

X

XX

X

X
X
X
X

X
XX

X

X

XX

X

X
X
X
X

XXX

X

X

XX

X

X

X
X

X

X
X
X

X

X

X
X

X

X

XX

X

XXX

X

X

XX

X
X

X
X

X
X
XX

X

X

XX

X

X

XX

X
X
XX

X

X

XX

X

X
X

X
X

XXX

X

X

XX

X

X

X
X

X
X
X
X

X

X

XX

X

X
X

X
X

X
X
X

X

X

XX

X

X
X
X
X

XXX

X

X

XX

X

X
X
X

X
X
X
X

X

X

XX

X

X
X
X
X

X
X
X

X

X
X
X

X

X

X
X
X

X
X
X

X

X

XX

X

X

X

X
X

X
XX

X

X

XX

X

X

XX
X

XXX

X

X

XX

X

X

X
X
X
X
X
X

X

X

XX

X

X

X co2
smooth of co2
71

Chapter 2 Traditional Graphics
CUSTOMIZING YOUR GRAPHICS

For most exploratory data analysis, the complete graphics created by
Spotfire S+ should serve your needs well, with automatically
generated axes, tick marks, and axis labels. Most of the graphics
described in the previous sections are created with one-step functions
such as plot and hist. These one-step functions are called high-level
graphics functions. If you are preparing graphics for publication or a
presentation, you may need more control over the graphics that
Spotfire S+ produces.

This section and the remaining sections in this chapter describe how
to customize and fine-tune your Spotfire S+ graphics with low-level
graphics functions and graphics parameters. Low-level graphics
functions do not generate a complete graphic, but rather one specific
part of it. Graphics parameters control the details of the plots that are
produced by the graphics functions, including where the graphics
appear on the device. In Windows, the customization features
described here refer to traditional command-line graphics; you may
prefer the commands described in the Chapter 6, Windows Editable
Graphics Commands as your customization method.

Many of the remaining examples in this chapter use the following
data:

> set.seed(12)
> x <- runif(12)
> y <- rnorm(12)

We also use the following data from the built-in data set auto.stats:

> price <- auto.stats[, "Price"]
> mileage <- auto.stats[, 2]

Low-level
Graphics
Functions and
Parameters

The section Frequently Used Plotting Options (page 33) introduces
several low-level graphics functions, including points, which adds a
scatter of points to an existing plot, and abline, which adds a
specified line to an existing plot. Low-level graphics functions, unlike
high-level functions, do not automatically generate a new coordinate
system. Thus, you can use several low-level graphics functions in
succession to create a single finished plot. Note that some functions,
72

Customizing Your Graphics
such as the image and contour commands described in the section
Visualizing Three-Dimensional Data (page 57), can be used as either
high- or low-level graphics functions.

Graphics parameters add to the flexibility of graphics by controlling
virtually every detail in a page of graphics. There are about sixty
parameters in total, which fall into four classes:

• High-level graphics parameters can be used only as arguments
to high-level graphics functions. An example is xlim, which
gives the approximate limits for the x axis.

• Layout graphics parameters can be set only with the par
function. These parameters typically affect quantities that
concern the graphics page as a whole. The mfrow parameter,
which determines how many rows and columns of plots are
placed on a single page, is one example.

• General graphics parameters (e.g., col, cex) may be set with
either a call to a graphics function or with the par function.
When used in a graphics function, the change is valid only for
that function call. If you set a parameter with par, the change
lasts until you change it again.

• Information parameters provide information about the state of
the device, but may not be changed directly by the user. An
example is din, which stores the size of the current device in
inches. See the par help file for descriptions of the
information parameters.

Graphics parameters are initialized whenever a graphics device is
started. A change to a parameter via the par function applies only to
the current device. You can write your own Device.Default function
to have one or more parameters set automatically when you start a
graphics device; see the Device.Default help file for more details.

The arguments to title (main, sub, xlab, ylab, axes, ...) are not
technically graphics parameters, though they are quite similar to
them. They are accepted as arguments by several graphics functions
as well as the title function.

Table 2.10 (page 108) summarizes all of the Spotfire S+ graphics
parameters.
73

Chapter 2 Traditional Graphics
Setting and
Viewing
Graphics
Parameters

There are two ways to set graphics parameters:

1. Use the name=value form, either within a graphics function
call or with the par function. For example:

> par(mfrow = c(2,1))
> plot(x, y, pch = 17)
> plot(price, mileage, log = "y")

Note that you can set several graphics parameters
simultaneously in a single call to par.

2. Supply a list to the par function. The names of the list
components are the names of the graphics parameters you
want to set. For example:

> my.list <- list(mfrow = c(2,1))
> par(my.list)

Restoring
Original Values

When you change graphics parameters with par, it returns a list
containing the original values of the graphics parameters that you
changed. This list does not print out on your screen. Instead, you
must assign the result to a variable name if you want to see it:

> par.orig <- par(mfrow = c(2,1))
> par.orig
$mfrow:
[1] 1 1

Warning

Some graphics functions do not recognize certain high-level or general graphics parameters. The
help files for these functions describe which graphics parameters the functions accept.

Note

For more information about setting parameters with the par function, see the sections Additional
Graphics Arguments (page 17), Vectorized Graphics Parameters (page 21), and the par help file.
74

Customizing Your Graphics
You can use the list returned by par to restore parameters after you
have changed them:

> par.orig <- par(mfrow = c(2,1))
> # Now make some plots
> par(par.orig)

When setting multiple parameters with par, check for possible
interactions between parameters. Such interactions are indicated in
Table 2.3 and in the par help file. In a single call to par, general
graphics parameters are set first, then layout graphics parameters. If a
layout graphics parameter affects the value of a general graphics
parameter, what you specify for the general graphics parameter may
be overridden. For example, changing mfrow automatically resets cex;
see the section Controlling Multiple Plots (page 95) for more details.

If you type

> par(mfrow = c(2,1), cex = 0.75)

Spotfire S+ first sets cex=0.75 because cex is a general graphics
parameter, and then sets mfrow=c(2,1) because mfrow is a layout
graphics parameter. However, setting mfrow=c(2,1) automatically
sets cex back to 1. To set both mfrow and cex, you need to call par
twice:

> par(mfrow = c(2,1))
> par(cex = 0.75)

Table 2.3: Interactions between graphics parameters.

Parameters Interaction

cex, mex, mfrow,
mfcol

If mfrow or mfcol specify a layout with more than two rows or
columns, cex and mex are set to 0.5. Otherwise, cex and mex are both
set to 1.

crt, srt When srt is set, crt is set to the same value unless crt appears later in
the command than srt.
75

Chapter 2 Traditional Graphics
You can also use the par function to view the current setting of any
graphics parameter. To view the current values of parameters, call par
with a vector of character strings naming the parameters. For
example:

> par("usr")
> par(c("mfrow","cex"))

To get a list of all of the parameter values, call par with no arguments:

> par()

During an extended Spotfire S+ session, you may make repeated calls
to par to change graphics parameters. Sometimes, you may forget
what you have changed and you may want to restore the device to its
original defaults. It is often a good idea to save the original values of
the graphics parameters as soon as you start a device. You can then
call par to restore the device to its original state. The commands
below show one approach to this.

> par.orig.wg <- par()
> par(mfrow = c(3,1), col = 4, lty = 2)
> # create some plots
> # several more calls to par
> par(par.orig.wg)

Separate sets of graphics parameters are maintained for each active
graphics device. When you change graphics parameters with the par
function, you change the values only for the current graphics device.
For example, if you open both a graphsheet (on Windows) or motif
(on UNIX) and a postscript graphics device and the postscript device
is the current one, then changing graphics parameters via par affects
only the graphics parameters for the postscript device.

Warning

When a device is first started, the graphics parameter new is set equal to TRUE before any plots
are produced. In this case, a call to a high-level graphics function does not clear the device before
displaying a new plot; see the section Overlaying Figures (page 97) for more details. Thus, if you
follow the above commands to restore all graphics parameters to their original state, you need to
call frame before issuing the next plotting command.
76

Customizing Your Graphics
The commands below illustrate this using the dev.list, dev.cur, and
dev.set functions on Windows.

Open two graphics devices and see which one is current.
> graphsheet()
> postscript()

> dev.list()
 graphsheet postscript
 2 3

> dev.cur()
postscript
 3

Change a graphics parameter, which affects
only the postscript device.
> par(mfrow = c(2,2))
> par("mfrow")
[1] 2 2

Change the active graphics device and
check the value of the mfrow parameter.
> dev.set()
 graphsheet
 2
> par("mfrow")
[1] 1 1

The commands below illustrate this using the dev.list, dev.cur, and
dev.set functions on UNIX.

Open two graphics devices and see which one is current.
> motif()
> postscript()

> dev.list()
 motif postscript
 2 3

> dev.cur()
postscript
 3
77

Chapter 2 Traditional Graphics
Change a graphics parameter, which affects
only the postscript device.
> par(mfrow = c(2,2))
> par("mfrow")
[1] 2 2

Change the active graphics device and
check the value of the mfrow parameter.
> dev.set()
 motif
 2
> par("mfrow")
[1] 1 1
78

Controlling Graphics Regions
CONTROLLING GRAPHICS REGIONS

The location and size of a figure are determined by parameters that
control graphics regions. The surface of any graphics device can be
divided into two regions: the outer margin and the figure region. The
figure region contains one or more figures, each of which is composed
of a plot region surrounded by a margin. By default, a device is
initialized with one figure and the outer margin has zero area; that is,
typically there is just a plot region surrounded by a margin.

The plot region is where the data is displayed. In a typical plot, the
axis line is drawn on the boundary between the plot area and the
margin. Each margin, whether the outer margin or a figure margin, is
divided into four parts as shown in Figure 2.26: bottom (side 1), left
(side 2), top (side 3), and right (side 4).

You can change the size of any of the graphics regions. Changing one
area causes Spotfire S+ to automatically resize the regions within and
surrounding the one you have changed. For example, when you
specify the size of a figure, the margin size is subtracted from the
figure size to obtain the size of the plot area. Spotfire S+ does not
allow a plot with a margin to take more room than the figure.

Most often, you change the size of graphics regions with the mfrow or
mfcol layout parameters. When you specify the number of rows and
columns in your page of graphics, Spotfire S+ automatically

Figure 2.26: The four sides of a margin.

Margin 1

M
ar

gi
n

2

Margin 3

M
ar

gi
n

4

79

Chapter 2 Traditional Graphics
determines the appropriate figure size. To control region size
explicitly, you should work your way inward by specifying first the
outer margins, and then the figure margins.

The Outer
Margin

You usually specify an outer margin only when creating multiple
figures per page. You can use the outer margin to hold a title for an
entire page of plots, or to label different pages consistently when
some pages have multiple plots and others have a single plot.

You must specify a size for the outer margin if you want one; the
default size is 0. To specify the size of the outer margin, use any one of
three equivalent layout parameters: oma, omi, or omd. The most useful
of these is oma, which is a numeric vector of length four (one element
for each side of the margin). The values given to oma are expressed in
mex, the size of the font for one line of text in the margins. If you
specify the outer margin with oma, the four values correspond to the
number of lines of text that will fit in each side of the margin. For
example, to leave room for a title at the top of a page of plots, we
could set the outer margin as follows:

> par(oma = c(0,0,5,0))

You can then use mtext as follows to add a title:

> mtext("A Title in the Outer Margin",
+ side = 3, outer = T, cex = 2)
> box()

The result is shown in Figure 2.27. Setting the parameter oma
automatically changes both omi (the outer margin in inches) and omd
(the outer margin as a fraction of the device surface). In general, the
oma parameter is more useful than omi because it can be used to
specify relative margin sizes. Conversely, the omi parameter measures
the size of each side of the margin in inches, and is thus useful for
specifying absolute margin sizes. See the par help file for more
information on omi and omd.
80

Controlling Graphics Regions

Figure Margins To specify the size of the figure margins, use one of two equivalent
graphics layout parameters: mar or mai. The mar parameter is
specified as a numeric vector of length four (one element for each side
of the margin) with values expressed in mex. It is generally more
useful than mai because it can be used to specify relative margin sizes.
Conversely, the mai parameter measures the size of each side of the
margin in inches, and is thus useful for specifying absolute margin
sizes. For example, if mex is the default value of 1 and mar equals
c(5,5,5,5), there is room for five lines of default-font text (cex=1) in
each margin. If mex is 2 and mar is c(5,5,5,5), there is room for 10
lines of default-font text in each margin.

The mex parameter specifies the size of font that is to be used to
measure the margins. When you change mex, Spotfire S+
automatically resets some margin parameters to decrease the size of

Figure 2.27: A plot with an outer margin to hold a main title.

Warning

If you set oma to something other than the default value c(0,0,0,0) and then later reset all of
the graphics parameters in a call to par, you will see the warning message:

Warning messages:
 Graphics error: Figure specified in inches too large (in zzfigz) in:...

This message can be safely ignored.
81

Chapter 2 Traditional Graphics
the figure margins, but without changing the size of the outer margin.
Table 2.4 shows the effects on the various margin parameters when
mex is changed from 1 to 2.

From the table, we see that an increase in mex leaves mar and omi
unchanged, while mai is increased and oma is decreased. When you
shrink margins with mar, be sure to check the mgp parameter, which
determines where axis and tick labels are placed. If the margins don’t
provide room for those labels, the labels are not printed and you
receive a warning from Spotfire S+.

The Plot
Region

To determine the shape of a plot, use the pty, or “plot type” layout
graphics parameter. The pty parameter has two possible values: "m"
for maximal and "s" for square. By default, pty="m" and a plot fills its
entire allotted space. Another way to control the shape of a plot is
with the pin parameter, which gives the width and height of the plot
in inches.

Table 2.4: Effects of changing the mex parameter.

Parameter mex=1 mex=2

mar 5.1 4.1 4.1 2.1 5.1 4.1 4.1 2.1

mai 0.714 0.574 0.574 0.294 1.428 1.148 1.148 0.588

oma 0 0 5 0 0.0 0.0 2.5 0.0

omi 0.000 0.000 0.699 0.000 0.000 0.000 0.699 0.000
82

Controlling Text and Symbols
CONTROLLING TEXT AND SYMBOLS

The section Interactively Adding Information to Your Plot (page 66)
describes how to add text and legends to existing plots. This section
describes how to control the size of text and plotting symbols, the
placement and orientation of text within the plot region, and the
width of plotted lines.

Text and
Symbol Size

The size of text and most plotting symbols is controlled by the general
“character expansion” parameter cex. The expansion term refers to
expansion with respect to the default font of the graphics device. By
default, cex is set to 1, so graphics text and symbols appear in the
default font size. When cex=2, text appears at twice the default font
size. Some devices, however, have only a few fonts available, so that
all values of cex in a certain range produce the same font.

Many graphics functions and parameters use or modify cex. For
example, main titles are written with a character expansion of 1.5
times the current cex. The mfrow parameter sets cex to 1 for small
numbers of plots (fewer than three per row or column), but sets it to
0.5 for larger numbers of plots.

The cex parameter controls the size of both text and plotting symbols.
Figure 2.28 shows how symbols of different sizes can be used to
highlight groups of data. The figure is produced with the following
expressions:

> plot(x, y, pch = 16)

> points(
+ x[x-y > 2*median(x-y)], y[x-y > 2*median(x-y)],
+ pch = 16, cex = 2)

Note

The plot function, and functions that add individual points to a plot, can accept a vector
of values for the pch, cex, and col parameters. For example:

plot(halibut$biomass, cex = rep(1:3,each=20))

For more information, see the section Vectorized Graphics Parameters (page 21).
83

Chapter 2 Traditional Graphics
> points(x[x-y < median(x-y)], y[x-y < median(x-y)],
+ pch = 18, cex = 2)

A parameter equivalent to cex is csi, which gives the height (interline
space) of text with the current cex measured in inches. Changing one
of cex or csi automatically changes the other. The csi parameter is
useful when creating the same graphics on different devices, since the
absolute size of graphics is device dependent.

Text
Placement

When you add text to the plot region in a figure, you specify its
coordinates in terms of the plotted data. In essence, Spotfire S+ treats
the added text as a data point. If axes have been drawn and labeled,
you can read the desired coordinates off the plot. If not, you can
obtain the coordinates by interpolating from the values in the layout
parameter usr.

For example, Figure 2.28 has an x axis with values from 0 to 1 and a y
axis with values running from approximately -2.5 to 1. To add the
text “Different size symbols” to the plot, we could specify any point
within the grid determined by these x and y limits:

> text(0.4, 0.7, "Different size symbols")

Figure 2.28: Plotting symbols of different sizes.

•
•

•

•

•

•

•

•

•

•

•

•

x

y

0.2 0.4 0.6 0.8

-2
-1

0
1

•

•

84

Controlling Text and Symbols
By default, the text is centered at the specified point. You can left- or
right-justify the text by using the general graphics parameter adj. The
adj parameter determines the fraction of the text string that appears
to the left of the specified coordinate. The default value is 0.5, which
places approximately half of the text string to the left of the
coordinate. Set adj=0 to left-justify, and adj=1 to right-justify.

If no axes have been drawn on your plot and you cannot determine
coordinates by simply looking at your graphic, you can interpolate
from the values in the layout parameter usr. The usr parameter gives
the minimum and maximum of the x and y coordinates in the plot.
Typing par("usr") returns the extremes of the x and y data, from
which you can guess the coordinates of the desired location of your
text.

It is also possible to use the locator function with text to
interactively choose a location in your plot without explicitly knowing
the coordinates. For examples of this technique, see the section
Adding Text to Your Plot (page 69).

Text
Orientation

Two graphics parameters control the orientation of text in the plot
region, the figure, and the outer margins: crt (“character rotation”)
and srt (“string rotation”). Figure 2.29 shows the result of typing the
following commands after starting a postscript device:

> plot(1:10, type = "n")
> text(2, 2, "srt=0, crt=0", srt = 0, crt = 0)
> text(4, 4, "srt=0, crt=90", srt = 0, crt = 90)
> text(6, 6, "srt=90, crt=0", srt = 90, crt = 0)
> text(8, 8, "srt=90, crt=90", srt = 90, crt = 90)
85

Chapter 2 Traditional Graphics
The postscript device is the only graphics device that uses both the
crt and srt graphics parameters. All other graphics devices ignore
crt, so you can rotate only the whole string with srt.

Text in Figure
Margins

To add text in figure margins, use the mtext marginal text function.
You can specify the side of the margin where you want text with the
side argument, which is a number from 1 to 4. The default value is 3,
which places text at the top of the plot. The line argument to mtext
gives the distance in mex between the text and the plot. For example,
Figure 2.30 shows the placement of the following marginal text:

> par(mar = c(5,5,5,5) + 0.1, pty = "s")
> plot(x, y, type = "n", axes = F, xlab = "", ylab = "")
> box()
> mtext("Some text", line = 0)
> mtext("Some more text", side = 2, cex = 1, line = 2)
> mtext("Still more text", side = 4, cex = 0.5, line = 3)

Figure 2.29: Character and string rotation using the crt and srt parameters.

Index

1:
10

2 4 6 8 10
2

4
6

8
10

srt=0, crt=0

s r t = 0 , c r t = 9 0

s
r
t
=
9
0
,

c
r
t
=
0

sr
t=

90
, c

rt
=

90

Warning

If you use both crt and srt in a plotting command while running the postscript device, you
must supply crt after srt; otherwise, it will be ignored.
86

Controlling Text and Symbols
Text is not placed in the margin if there is no room for it. This usually
happens only when the margin sizes or cex have been reset, or when
axis labels are extremely long. For example, suppose mex=1 and you
reset the figure margins with mar=c(1,1,1,1) to allow precisely one
line of text in each margin. If you try to write text in the margins with
the parameter value cex=2, it will not fit because the text is twice as
high as the specified margin line.

To specify the position of the text along the margin, you can use the at
argument to the mtext function. The value of the at argument is in
units of the x or y coordinates, depending on whether you are placing
text on the top or bottom margin (sides 1 and 3), or the left or right
margin (sides 2 and 4). As described in section Text Placement (page
84), if you can’t determine the appropriate value of the at argument,
you can interpolate from the value of usr graphics parameter. For
example, the following command places text in the lower left corner
of the margin in Figure 2.30:

> par("usr")
[1] 0.1758803 0.9420847 -2.2629721 1.5655365

> mtext("A comment", line = 3, side = 1, at = 0.3)

By default, mtext centers text along the margin, or at the at
coordinate if one is supplied. You can also use the adj parameter to
place text along the margin. The default setting is adj=0.5, which
results in centered text. Set adj=0 to place the text flush with the left

Figure 2.30: Placing text in figure margins using the mtext function.

Some text

S
om

e
m

or
e

te
xt

S
til

lm
or

e
te

xt
87

Chapter 2 Traditional Graphics
side of the margin (or with the at coordinate), and set adj=1 to place
the text flush right. Values of adj between 0 and 1 place the text so
that the specified fraction of the string is placed before the given
coordinate.

By default, mtext rotates text to be parallel to the axis. To control the
orientation of text in the margins, use the srt parameter along with
the at argument. For example, the following command displays
upside-down text in the top figure margin:

> mtext("Title with srt=180", line=2, at=0.5, srt=180)

Plotting
Symbols in
Margins

In general, Spotfire S+ clips plotting symbols so that they do not
appear in the margins. You can allow plotting in the margin by setting
the xpd graphics parameter to TRUE. This parameter value expands
the allowable plotting area and results in unclipped symbols.

Line Width The width of lines, both within a plot and on the axes, is controlled by
the general graphics parameter lwd. The default value of lwd is 1;
larger values produce wider lines and smaller values produce
narrower lines. Note that line width is device dependent, and some
graphics devices can produce only one width.

Note

The adj parameter is generally more useful than usr when writing in the outer margin of
multiple figures, because the value of usr is the coordinates from the most recent plot created in
the figure region.

Warning

If you supply mtext with the srt argument, you must also specify the at argument. Otherwise,
srt is ignored.
88

Controlling Axes
CONTROLLING AXES

The high-level graphics commands described in the section Getting
Started with Simple Plots (page 30) create complete graphics,
including labeled axes. However, you may need to create graphics
with axes different from those provided by Spotfire S+. For example,
you may need to specify a different choice of axes, different tick
marks, or different plotting characteristics. This section describes how
to control the look of the axes in your plots.

Enabling and
Disabling Axes

Whether axes appear on a plot is determined by the high-level
graphics parameter axes, which takes a logical value. If axes=FALSE,
no axes are drawn on the plot. If axes are not drawn on the original
plot, they can be added afterward with one or more calls to the axis
function.

You can use plot with axes=F, together with the axis function, to
create plots of mathematical functions on a standard Cartesian
coordinate system. For example, the following simple function plots a
set of points from the domain of a function against the set’s image on
a Cartesian grid:

> mathplot <- function(domain,image) {
+ plot(domain, image, type = "l", axes = F)
+ axis(1, pos = 0)
+ axis(2, pos = 0)
+ }

Tick Marks and
Axis Labels

To control the length of tick marks in a plot, use the tck general
graphics parameter. This parameter is a single number that is
interpreted as a fraction of a plot dimension. If tck is less than 0.5, the
tick marks on each axis have the same length; this length is the
fraction tck of the smaller of the width and height of the plot area.
Otherwise, the length of the tick marks on each axis are a fraction of
the corresponding plot dimension. The default value is tck=-0.02,
resulting in tick marks on each axis that have equal length and are
pointing out from the plot. Use tck=1 to draw grid lines in the plot
region.
89

Chapter 2 Traditional Graphics
To familiarize yourself with the tck parameter, try the following
commands:

> par(mfrow = c(2,2))
> plot(x, y, main = "tck = -0.02")
> plot(x, y, main = "tck = 0.05", tck = 0.05)
> plot(x, y, main = "tck = 1", tck = 1)

It is possible to have tick marks of different lengths and styles on each
axis. The following code first draws a plot with no axes, then adds
each axis individually with different values of the tck and lty
parameters:

> plot(x, y, axes = F, main = "Different tick marks")
> axis(1)
> axis(2, tck = 1, lty = 2)
> box()

To control the number of tick marks on an axis, you can set the lab
parameter. The lab parameter is an integer vector of length three that
gives the approximate number of tick marks on the x axis, the
approximate number of tick marks on the y axis, and the number of
characters for tick labels. The numbers are only approximate because
Spotfire S+ tries to use rounded numbers for tick labels. It may take
some experimentation with the lab parameter to obtain the axis that
you want.

Note

For information about using separate color arguments to control the color of the individual
elements of a plot (col.axis, col.lab, col.main, col.sub, fg, and bg) see the section
Additional Graphics Arguments (page 17).
90

Controlling Axes
To control the format of tick labels in exponential notation, use the
exp graphics parameter. Table 2.5 lists the effects of setting exp=0,
exp=1, and exp=2.

Uses of the lab and exp parameters are illustrated with the code
below.

> par(mfrow = c(2,2))

> plot(price, mileage, main = "lab = c(5,5,7)")

> plot(price, mileage,
+ main = "lab = c(10,3,7)", lab = c(10,3,7))

> plot(price, mileage,
+ main = "lab = c(5,5,4), exp = 2", lab = c(5,5,4))

> plot(price, mileage,
+ main = "lab = c(5,5,4), exp = 1",
+ lab = c(5,5,4), exp = 1)

To control the orientation of the axis labels, use the las graphics
parameter. You can choose between labels that are written parallel to
the axes (las=0), horizontally (las=1), or perpendicular to the axes
(las=2). By default, las=0. To see the effect of this parameter, try the
following commands:

> par(mfrow = c(2,2))
> plot(x, y, main = "Parallel, las=0", las = 0)
> plot(x, y, main = "Horizontal, las=1", las = 1)
> plot(x, y, main = "Perpendicular, las=2", las = 2)

Table 2.5: Controlling the format of tick labels with the exp graphics parameter.

Setting Effect

exp=0 Exponential tick labels are printed on two lines, so that 2e6 is printed
with 2.0 on one line and e6 on the next.

exp=1 Exponential tick labels are printed on a single line, in the form 2.0e6.

exp=2 The default value. Exponential tick labels are printed on a single line,
in the form 2*10^6.
91

Chapter 2 Traditional Graphics
> plot(x, y, main = "Customized", axes = F)
> axis(2)
> axis(1, at = c(0.2, 0.4, 0.6, 0.8),
+ labels = c("2/10", "4/10", "6/10", "8/10"))
> box()

The box function ensures that a complete rectangle is drawn around
the plotted points; see the section Axis Boxes (page 94) for more
details.

The xaxt and yaxt graphics parameters also control axis plotting. If
one of these parameters is equal to "n", the tick marks for the
corresponding axis are not drawn. For example, you could create the
last panel produced by the code above with the following commands:

> plot(x, y, main = "Customized", xaxt = "n")
> axis(1, at = c(0.2, 0.4, 0.6, 0.8),
+ labels = c("2/10", "4/10", "6/10", "8/10"))

To set the distance from the plot to an axis title, use the mgp general
graphics parameter. The mgp parameter is a numeric vector with three
elements in units of mex: the first element gives the location of the axis
title, the second element gives the location of the tick labels, and the
third gives the location of the axis line. The default value is c(3,1,0).
You can use mgp to control how much space the axes consume. For
example, if you have small margins, you might create a plot with:

> plot(x, y, tck = 0.02, mgp = c(2, 0.1, 0))

This draws the tick marks inside the plot and brings the labels closer
to the axis line.
92

Controlling Axes
Axis Style The xaxs and yaxs parameters determine the style of the axes in a
plot. The available styles are listed in Table 2.6.

Axis styles can be illustrated with the following expressions:

> par(mfrow = c(2,2))
> plot(x, y, main = "Rational axes")
> plot(x, y, main = "Internal axes", xaxs = "i", yaxs = "i")
> plot(x, y, main = "Extended axes", xaxs = "e", yaxs = "e")
> plot(x, y, main = "Standard axes", xaxs = "s", yaxs = "s")

Table 2.6: Axis styles governed by the xaxs and yaxs graphics parameters.

Setting Style

"r" The default axis style, also referred to as rational axes. This setting
extends the range of the data by 4% and then labels internally. An
internally labeled axis has labels that are inside the range of the data.

"i" Labels internally without expanding the range of the data. Thus, there
is at least one data point on each boundary of an "i" style axis (if xlim
and ylim are not used).

"e" Labels externally and expands the range of the data by half a character
if necessary, so that no point is precisely on a boundary. An externally
labeled axis includes a “pretty” value beyond the range of the data. The
"e" style axis is also referred to as an extended axis.

"s" Standard axes are similar to extended axes but do not expand the
range of the data. A plot with standard axes is exactly the same as a
plot with extended axes for some data sets, but for others the extended
axes contain a slightly wider range.

"d" Direct axes retain the axes from the previous plot. For example, you
can create several plots that have precisely the same or axis by
setting xaxs="d" or yaxs="d", respectively. You can include the
parameter settings as arguments to the second and subsequent plotting
commands, or you can set them with par. If you define direct axes with
par, you need to remember to release the axes after you are finished.

x y
93

Chapter 2 Traditional Graphics
Axis Boxes You control boxes around the plot region using the bty (“box type”)
graphics parameter. This parameter specifies the type of box to be
drawn around a plot. The available box types are listed in Table 2.7.

The box function draws a box of given thickness around the plot area.
The shape of the box is determined by the bty parameter. You can
use box to draw full boxes on plots with customized axes, as the
commands below illustrate.

> par(mfrow = c(2,2))
> plot(x, y, main = "O Box")
> plot(x, y, main = "C Box", bty = "c")
> plot(x, y, main = "L Box", bty = "l")
> plot(x, y, main = "Heavy Box")
> box(20)

Table 2.7: Specifying the type of box around a plot, using the bty parameter.

Setting Effect

"n" No box is drawn around the plot, although the and
axes are still drawn.

"o" The default box type. This setting draws a four-sided box
around the plot. The box resembles an uppercase “O,”
hence the option name.

"c" Draws a three-sided box around the plot in the shape of
an uppercase “C.”

"l" Draws a two-sided box around the plot in the shape of
an uppercase “L.”

"7" Draws a two-sided box around the plot in the shape of a
square numeral “7.”

x y
94

Controlling Multiple Plots
CONTROLLING MULTIPLE PLOTS

Multiple
Figures on One
Page

As we have seen earlier in this chapter, multiple figures can be
created using par and mfrow. For example, to set a plot layout of three
rows by two columns, use the following command:

> par(mfrow = c(3,2))

In this section, we describe how to control multiple plots in more
detail. In our examples, we use the following data introduced at the
beginning of this chapter:

> x <- seq(from = 0, to = 20, by = 0.1)
> y <- exp(-x/10) * cos(2*x)

When you specify one of the layout parameters mfrow or mfcol,
Spotfire S+ automatically changes several other graphics parameters.
The interactions are listed in Table 2.8. To override the values of mex
and cex chosen by mfrow and mfcol, you must issue separate calls to
par:

> par(mfrow = c(2,2))
> par(mex = 0.6, cex = 0.6)

Table 2.8: Changes in graphics parameters induced by mfrow and mfcol.

Parameter Effects

fty Is set to "c" by mfcol and to "r" by mfrow. This
parameter tells Spotfire S+ whether to place plots along
rows or columns in the figure.

mfg Contains the row and column of the current plot, and the
number of rows and columns in the current array of
figures.

cex
mex

If either the number of rows or the number of columns
in the figure is greater than 2, then both cex and mex are
set to 0.5.
95

Chapter 2 Traditional Graphics
The mfrow and mfcol layout parameters automatically create
multiple-figure layouts in which all figures are the same size. Instead,
you can create multiple-figure layouts in which the figures are
different sizes by using the fig layout parameter. The fig graphics
parameter gives the coordinates of the corners of the current figure as
fractions of the device surface. An example is shown in Figure 2.31, in
which the first plot uses the top third of the device, the second plot
uses the left half of the bottom two-thirds of the device, and the last
plot uses the right half of the bottom two-thirds. The example begins
with the frame function, which tells the graphics device to begin a
new figure. The commands below reproduce Figure 2.31.

> frame()
> par(fig = c(0, 1, 0.66, 1), mar = c(5,4,2,2) + 0.1)
> plot(x)
> par(fig = c(0, 0.5, 0, 0.66))
> plot(x,y)
> par(fig = c(0.5, 1, 0, 0.66))
> plot(y, yaxs = "d")
> par(fig = c(0,1,0,1))

Figure 2.31: Controlling the layout of multiple plots using the fig graphics
parameter.
96

Controlling Multiple Plots
Once you create one figure with fig, you must use it to specify the
layout of the entire page of plots. When you complete your custom
plot, reset fig to c(0,1,0,1).

Pausing
Between
Multiple
Figures

In screen devices such as graphsheet (Windows) or java.graph,
Spotfire S+ sends a multipage display to different pages of the same
window. If a multipage display is sent to a screen device, the default
behavior draws each page in order without pausing between pages.
You can force the device to prompt you before drawing each page by
typing

> par(ask=TRUE)

before issuing your graphics commands.

The ask parameter also forces Spotfire S+ to ask your permission
before erasing the graphics on the current device. For example,
consider the following plotting commands:

> plot(x)
> plot(y)

Normally, the second call to plot overwrites the first graph on the
current device. You can force Spotfire S+ to prompt you before
erasing the first graph by calling par(ask=TRUE):

> par(ask=TRUE)
> plot(x)
> plot(y)

Like all graphics parameters, the ask setting remains until the current
device is closed.

Overlaying
Figures

It is often desirable to include more than one data set on the same
plot. As we have seen in this chapter, simple additions can be made
with the lines and points functions. In addition, the matplot
function plots a number of columns of data at once. These

Hint

If you want to issue a high-level plotting command in a screen that already has a plot in it, but
you don’t want the plots in the other screens to disappear, use the erase.screen function before
calling the high-level plotting command.
97

Chapter 2 Traditional Graphics
approaches all assume, however, that the data are all on the same
scale. In this section, we discuss several ways of overlaying plots when
the data are not necessarily on the same scale.

There are three general ways to overlay figures in Spotfire S+:

1. Call a high-level plotting function, then call one of the high-
level plotting functions that can be used as a low-level plotting
function by specifying the argument add=T.

2. Call a high-level plotting function, set the graphics parameter
new=TRUE, then call another high-level plotting function.

3. Use the subplot function.

We discuss each of these methods below.

High-Level
Functions That
Can Act as Low-
Level Functions

There are currently four plotting functions that can act as either high-
level or low-level graphics functions: usa, symbols, image, and
contour. By default, these functions act like high-level plotting
functions. To make them act like low-level plotting functions instead,
set the optional argument add=TRUE. For example, you can display a
map of the northeastern United States with a call to usa, then overlay
a contour plot of ozone concentrations with a call to contour as
follows:

> usa(xlim = range(ozone.xy$x), ylim = range(ozone.xy$y),
+ lty = 2, col = 2)

> contour(interp(ozone.xy$x, ozone.xy$y, ozone.median),
+ add = T)

> title("Median Ozone Concentrations in the North East")

Setting the
Argument
new=TRUE

Another way to overlay figures is to reset the new graphics parameter.
When a graphics device is initialized, the graphics parameter new is
set to TRUE to indicate that it is a new graphics device. SPOTFIRE S+
therefore assumes there are no plots on the device. In this case, a call
to a high-level plotting function does not erase the canvas before
displaying a new plot. As soon as a high-level graphics function is
called, new is set to FALSE. In this case, high-level graphics functions
such as plot move to the next figure, or erase the current figure if
there is only one, to avoid overwriting a plot.
98

Controlling Multiple Plots
You can take advantage of the new graphics parameter to call two
high-level plotting functions in succession without erasing the first
plot. The code below illustrates how to use the new parameter to
overlay two plots that have the same x axis but different y axes. We
first set mar so there is room for a labeled axis on both the left and
right sides of the figure, then produce the first plot and the legend.

> par(mar = c(5,4,4,5) + 0.1)
> plot(hstart, ylab = "Housing Starts", type = "l")
> legend(1966.3, 220,
+ c("Housing Starts","Manufacturing Shipments"),
+ lty = 1:2)

Now we set new to TRUE so that the first plot is not erased by the
second. We also specify direct axes for the x axis in the second plot:

> par(new = T, xaxs = "d")
> plot(ship, axes = F, lty = 2, type = "l", ylab = "")
> axis(side = 4)
> mtext(side = 4, line = 2.75,
+ "Manufacturing (millions of dollars)")

Release the direct axis.
> par(xaxs="r")

The subplot
Function

The subplot function is another way to overlay plots with different
scales. The subplot function allows you to put any Spotfire S+
graphic (except those created by brush and spin) into another
graphic. To use subplot, specify the graphics function and the
coordinates of the subplot on the current device. As an example, the
code below produces a plot showing selected cities in New England,
as well as New England’s position relative to the rest of the United
States. To achieve this figure, subplot is called several times.

To create the main plot, use the usa function with the arguments xlim
and ylim to restrict attention to New England:

> usa(xlim = c(-72.5, -65), ylim = c(40.4, 47.6))

The coordinates in this command were obtained by trial-and-error,
using the coordinates of New York as a starting point. The coordinates
of New York were obtained from the three built-in data sets city.x,
city.y, and city.name.
99

Chapter 2 Traditional Graphics
Before city.x or city.y can be used as an argument to a replacement
function, it must first be assigned locally:

> city.x <- city.x
> city.y <- city.y
> names(city.x) <- city.name
> names(city.y) <- city.name
> nyc.coord <- c(city.x["New York"], city.y["New York"])
> nyc.coord

New York New York
-73.9667 40.7833

To plot the city names, we first use city.x and city.y to determine
which cities are contained in the plotted area:

> ne.cities <- city.x>-72.5 & city.y>40.4

We then use this criterion to select cities to label:

> text(city.x[ne.cities], city.y[ne.cities],
+ city.name[ne.cities])

For convenience in placing the subplot, retrieve the usr coordinates:

> usr <- par("usr")

Now we create a subplot of the United States and save the value of
this call so that information can be added to it:

> subpars <- subplot(x = c(-69,usr[2]), y = c(usr[3],43),
+ usa(xlim = c(-130,-50)))

The rest of the commands add to the small map of the entire United
States. First, draw a box around the small US map:

> subplot(box(), pars = subpars)

Next, draw a box around New England:

> subplot(polygon(c(usr[1], -65, -65, usr[1]),
+ c(usr[3], usr[3], usr[4], usr[4]), density = 0),
+ pars = subpars)

Finally, add text to indicate that the boxed region just created
corresponds to the enlarged region:

> subplot(text((usr[1] + usr[2])/2, usr[4] + 4,
+ "Enlarged Region"), pars = subpars)
100

Controlling Multiple Plots
The subplot function can also be used to create composite figures. For
example, the code below plots density estimates of the marginal
distributions of mileage and price in the margins of a scatter plot of
the two variables.

First, we set up the coordinate system with par and usr, and create
and store the main plot with subplot:

> frame()
> par(usr = c(0,1,0,1))
> o.par <- subplot(x = c(0, 0.85), y = c(0, 0.85),
+ fun = plot(price, mileage, log = "x"))

Next, we find the usr coordinates from the main plot and calculate
the density estimate for both variables:

> o.usr <- o.par$usr
> den.p <- density(price, width = 3000)
> den.m <- density(mileage, width = 10)

Finally, we plot the two marginal densities with successive calls to
subplot. The first call plots the density estimate for price along the
top of the main plot:

> subplot(x = c(0, 0.85), y = c(0.85, 1),
+ fun = {
+ par(usr = c(o.usr[1:2], 0, 1.04*max(den.p$y)),
+ xaxt = "l")
+ lines(den.p)
+ box()
+ }
+)

The xaxt="l" graphics parameter (or, for R compatibility, xlog=T) is
necessary in the first marginal density plot, since price is plotted with
a logarithmic axis. To plot the density estimate for mileage along the
right side of the main plot, use subplot as follows:

> subplot(x = c(0.85, 1), y = c(0, 0.85),
+ fun = {
+ par(usr = c(0, 1.04*max(den.m$y), o.usr[3:4]))
+ lines(den.m$y,den.m$x)
+ box()
+ }
+)
101

Chapter 2 Traditional Graphics
ADDING SPECIAL SYMBOLS TO PLOTS

In the section Interactively Adding Information to Your Plot (page
66), we saw how to add lines and new data to existing plots. In this
section, we describe how to add arrows, stars, and other special
symbols to plots.

Arrows and
Line Segments

To add one or more arrows to an existing plot, use the arrows
function. To add a line segment, use the segments function. Both
segments and arrows take beginning and ending coordinates, so that
one or more line segments are drawn on the plot. For example, the
following commands plot the corn.rain data and draw arrows from
observation i to observation i+1:

> plot(corn.rain)
> for (i in seq(along = corn.rain))

+ arrows(1889+i, corn.rain[i], 1890+i, corn.rain[i+1],
+ size=0.2)

Figure 2.32: Adding arrows to plots using the arrows function.

•

•

•

•

•

•

•

• • •

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

Time

co
rn

.r
ai

n

1890 1900 1910 1920

8
10

12
14

16
102

Adding Special Symbols to Plots
Use the segments function similarly:

Redefine x and y vectors introduced
earlier in this chapter.
> set.seed(12)
> x <- runif(12)
> y <- rnorm(12)

Plot the data with line segments.
> plot(x,y)
> for (i in seq(along = x))
+ segments(x[i], y[i], x[i+1], y[i+1])

Note

The plot function, and functions that add arrows and line segments to a plot, accept a
vector of values for the col, lty, and lwd parameters. For example:

plot(exch.rate, lwd = 1:4)

For more information, see the section Vectorized Graphics Parameters (page 21) and the par
help file.

Figure 2.33: Adding line segments to plots using the segments function.
103

Chapter 2 Traditional Graphics
Stars and
Other Symbols

You can display a third dimension of data in your plots by using the
symbols function, which encodes data as stars, circles, or other special
symbols. As an example, the steps below describe how to plot cities
on a map of the United States with circles that have areas
representing populations.

First, we create the data by selecting twelve cities from the built-in
data set city.name:

> select <- c("Atlanta", "Atlantic City", "Bismarck",
+ "Boise", "Dallas", "Denver", "Lincoln", "Los Angeles",
+ "Miami", "Milwaukee", "New York", "Seattle")

As described in the section Overlaying Figures (page 97), we use the
names function to assign the city names as vector names for the data
sets city.x, city.y, and city.name. Before city.x, city.y, or
city.name can be used as an argument to a replacement function,
however, it must be assigned to your local working directory:

> city.x <- city.x
> city.y <- city.y
> city.name <- city.name
> names(city.x) <- city.name
> names(city.y) <- city.name
> names(city.name) <- city.name

By assigning names in this way, we can access the information
necessary to plot the cities without learning their vector indices. From
an almanac or similar reference, we look up the populations of the
selected cities and create a vector to hold the information:

> pop <- c(471, 40, 57, 193, 1214, 558, 239, 3845, 386, 579,
+ 8143, 574)

The units of pop are in thousands. Use the usa function to plot a map
of the United States:

> usa()

Next, add the circles representing the cities:

> symbols(city.x[select], city.y[select],
+ circles = sqrt(pop), add = T)
104

Adding Special Symbols to Plots
The next two commands use the ifelse function to create a size
vector for controlling the text size:

> size <- ifelse(pop>1000, 2, 1)
> size <- ifelse(pop<100, 0.5, size)

Taken together, these two lines specify a size of 2 for cities with
populations greater than one million, a size of 1 for cities with
populations between one hundred thousand and one million, and a
size of 0.5 for cities with populations less than one hundred thousand.
Finally, we add the text, using the size vector to specify the text size:

> text(city.x[select], city.y[select], city.name[select],
+ cex = size)

You can use any one of the shapes listed in Table 2.9 as an argument
to symbols, with values as indicated.

Table 2.9: Using shapes as an argument to the function symbols.

Shape Values

circles Vector or matrix with one column containing the radii of the circles.

squares Vector or matrix with one column containing the lengths of the sides of the
squares.

rectangles Matrix with two columns giving widths and heights of rectangles.

stars Matrix with n columns, where n is the number of points in a star. The
matrix must be scaled from 0 to 1.

thermometers Matrix with 3 or 4 columns. The first two columns give the widths and
heights of the rectangular thermometer symbols. If the matrix has 3
columns, the third column gives the fraction of the symbol that is filled
(from the bottom up). If the matrix has 4 columns, the third and fourth
columns give the fractions of the rectangle between which it is filled.

boxplots Matrix with 5 columns of positive numbers, giving the width and height of
the box, the amount to extend on the top and bottom, and the fraction of
the box (from the bottom up) at which to draw the median line.

Missing values are allowed for all of these shapes; points containing missing values are not
plotted. The one exception to this is stars, where missing values are treated as zeros.
105

Chapter 2 Traditional Graphics
Custom
Symbols

The following two functions, make.symbol and draw.symbol, provide
a simple way to add your own symbols to a plot.

The make.symbol function facilitates creating a new symbol:

> make.symbol <- function() {
+ on.exit(par(p))
+ p <- par(pty = "s")
+ plot(0, 0, type = "n", xlim = c(-0.5, 0.5),
+ ylim = c(-0.5, 0.5))
+ cat("Now draw your symbol using the mouse,
+ Continue string: clicking at corners\n ")
+ locator(type = "l")
+ }

SPOTFIRE S+ provides the Continue string: prompt because there is
a new line in the middle of a character string; you do not need to type
the prompt explicitly. The make.symbol function returns a list with
components named x and y. The most important feature of this
function is that it uses pty="s", so the figure is drawn to the proper
scale when used with draw.symbol. The draw.symbol function takes
some locations to plot, and a symbol given in the form of a list with x
and y components:

> draw.symbol <-
+ function(x, y, sym, size = 1, fill = F, ...) {
+ # inches per user unit
+ uin <- par()$uin
+ sym$x <- sym$x/uin[1]*size
+ sym$y <- sym$y/uin[2]*size
+ if (!fill)
+ for(i in 1:length(x))
+ lines(x[i]+sym$x, y[i]+sym$y, ...)
+ else
+ for(i in 1:length(x))
+ polygon(x[i]+sym$x, y[i]+sym$y, ...)
+ }
106

Adding Special Symbols to Plots
The uin graphics parameter is used to scale the symbol into user
units. You can then plot your custom symbol with commands similar
to the following:

> my.symbol <- make.symbol()
Now draw your symbol using the mouse, clicking at corners

> draw.symbol(0, 0, my.symbol)

The make.symbol and draw.symbol functions are examples of how
you can create your own graphics functions using the built-in
functions and parameters.
107

Chapter 2 Traditional Graphics
TRADITIONAL GRAPHICS SUMMARY

Table 2.10: Summary of the most useful graphics parameters.

Name Type Mode Description Example

MULTIPLE FIGURES

fig layout numeric figure location c(0, 0.5, 0.3, 1)

fin layout numeric figure size c(3.5,4)

fty layout character figure type "r"

mfg layout integer location in figure
array

c(1,1,2,3)

mfcol layout integer figure array size c(2,3)

mfrow layout integer figure array size c(2,3)

TEXT

adj general numeric text justification 0.5

cex general numeric,
vector

font height 1.5
rep(1:3,each=20)

cex.axis general numeric font height of axis
annotation

1.5

cex.lab general numeric font height of x and
y labels

1.5

cex.main general numeric font height of main
title

1.5

cex.sub general numeric font height of
subtitle

1.5
108

Traditional Graphics Summary
crt general numeric character rotation 90

csi general numeric height of font 0.11

font general integer,
vector

typeface 2
1:3

font.axis general integer typeface of axis
annotation

2

font.lab general integer typeface of x and y
labels

2

font.main general integer typeface of main title 2

font.sub general integer typeface of subtitle 2

main title character main title "Y versus X"

srt general numeric string rotation 90

sub title character subtitle "Y versus X"

xlab title character axis titles "X (in dollars)"

ylab title character axis title "Y (in size)"

SYMBOLS

lty general integer,
vector

line type 2
1:4

lwd general numeric,
vector

line width 3
1:4

Table 2.10: Summary of the most useful graphics parameters. (Continued)

Name Type Mode Description Example
109

Chapter 2 Traditional Graphics
pch general character,
integer,
vector

plot symbol "*",
4,
rep(0:2,each=20)

smo general integer curve smoothness 1

type general character plot type "h"

xpd general logical symbols in margins TRUE

AXES

axes high-level logical plot axes FALSE

bty general character box type "7", "c", "o" (default)

exp general numeric format for
exponential
numbers

1

lab general integer tick marks and labels c(3,7,4)

las general integer label orientation 1

log high-level character logarithmic axes "xy"

mgp general numeric axis locations c(3,1,0)

tck general numeric tick mark length 0.1

xaxs general character style of limits "i"

yaxs general character style of limits "i"

xaxt general character axis type "n"

Table 2.10: Summary of the most useful graphics parameters. (Continued)

Name Type Mode Description Example
110

Traditional Graphics Summary
yaxt general character axis type "n"

MARGINS

mai layout numeric margin size c(0.4, 0.5, 0.6, 0.2)

mar layout numeric margin size c(3,4,5,1)

mex layout numeric margin units 0.5

oma layout numeric outer margin size c(0,0,5,0)

omd layout numeric outer margin size c(0,.95,0,1)

omi layout numeric outer margin size c(0,0,.5,0)

PLOT REGION

pin layout numeric plot region c(3.5,4)

plt layout numeric plot region c(0.05,0.95,0.1,0.9)

pty layout character plot type "s"

uin informatio
n

numeric inches per usr unit c(0.73, 0.05)

usr layout numeric limits in plot region c(76,87,3,8)

xlim high-level numeric limits in plot region c(3,8)

ylim high-level numeric limits in plot region c(3,8)

Table 2.10: Summary of the most useful graphics parameters. (Continued)

Name Type Mode Description Example
111

Chapter 2 Traditional Graphics
MISCELLANEOUS

col general character,
integer,
vector

color of plot content "red", "blue"
2,
rep(c("red","green",
"blue"),each=20)

col.axis general character,
integer

color of axis labels "red", "blue"
2

col.lab general character,
integer

color of x and y
labels

"red", "blue"
2

col.main general character,
integer

color of main title "red", "blue"
2

col.sub general character,
integer

color of subtitle "red", "blue"
2

fg general character,
integer

foreground color "red", "blue"
2

bg general character,
integer

background color "red", "blue"
2

err general integer print warnings? -1

new layout logical is figure blank? TRUE

Table 2.10: Summary of the most useful graphics parameters. (Continued)

Name Type Mode Description Example
112

References
REFERENCES

Chernoff, H. (1973). The Use of Faces to Represent Points in k-
Dimensional Space Graphically. Journal of American Statistical
Association, 68: 361-368.

Cleveland, W.S. (1985). The Elements of Graphing Data. Wadsworth:
Monterrey, California.

Martin, R.D., Yohai, V.J., and Zamar, R.H. (1989). Min-max bias
robust regression. Annals of Statistics, 17: 1608-30.

Silverman, B.W. (1986). Density Estimation for Statistics and Data
Analysis. London: Chapman and Hall.

Venables, W.N. and Ripley, B.D. (1999). Modern Applied Statistics with
S-PLUS (3rd edition). New York: Springer-Verlag.
113

Chapter 2 Traditional Graphics
114

A Roadmap of Trellis Graphics 117
Getting Started 117
General Display Functions 117
Common Arguments 117
Panel Functions 117
Core Spotfire S+ Graphics 118
Printing, Devices, and Settings 118
Data Structures 119

Giving Data to Trellis Functions 120
The formula and data Arguments 120
The subset Argument 122

General Display Functions 124
Scatter Plots: the xyplot Function 124
Visualizing One-Dimensional Data 125
Visualizing Two-Dimensional Data 133
Visualizing Three-Dimensional Data 136
Visualizing Multi-Dimensional Data 141
Summary: The Display Functions and Their Formulas 144

Arranging Several Graphs on One Page 146

Multipanel Conditioning 148
About Multipanel Display 148
Columns, Rows, and Pages 149
Packet Order and Panel Order 151
Main-Effects Ordering 153
Conditioning on the Values of a Numeric Variable 155
Summary: The Layout of a Multipanel Display 161

General Options for Multipanel Displays 162
Spacing Between Rows and Columns 162
Skipping Panels 164
Multipage Displays 164

TRADITIONAL TRELLIS
GRAPHICS 3
115

Chapter 3 Traditional Trellis Graphics
Scales and Labels 166
Axis Labels and Titles 166
Axis Limits 167
Tick Marks and Labels 167
Changing the Text in Strip Labels 168

Panel Functions 171
Passing Arguments to a Default Panel Function 171
Writing a Custom Panel Function 172
Special Panel Functions 173
Summary: Common Options in Panel Functions 174

Panel Functions and the Trellis Settings 175
The trellis.par.get Function 175
The show.settings Function 177
The trellis.par.set Function 177

Superposing Multiple Value Groups on a Panel 179
Superposing Points 179
Superposing Curves 181
Superposing Other Plots 182
The key Argument 183

Aspect Ratio 189
2D Displays 189
3D Displays 190
Prepanel Functions 191

Data Structures 194
Vectors 194
Arrays 195
Time Series 196

Summary of Trellis Functions and Arguments 198
116

A Roadmap of Trellis Graphics
A ROADMAP OF TRELLIS GRAPHICS

Trellis Graphics provide a comprehensive set of display functions that
are a popular alternative to the functions described in Chapter 2,
Traditional Graphics. The Trellis functions are particularly geared
towards multipanel and multipage plots. This chapter describes the
Trellis system based on traditional Spotfire S+ graphics.

Getting
Started

You can open a Trellis Graphics device with the command
trellis.device:

> trellis.device()

If no device is open, Trellis functions open one by default; however,
explicitly calling trellis.device ensures that the open graphics
device is compatible with Trellis Graphics.

General
Display
Functions

The Trellis library has a collection of general display functions that draw
different types of graphs. For example, xyplot displays xy plots,
dotplot displays dot plots, and wireframe displays three-dimensional
wireframe plots. The functions are general because they have the full
capability of Trellis Graphics, including multipanel conditioning.
These functions are introduced in the section General Display
Functions (page 124).

Common
Arguments

All general display functions share a common set of arguments. The
usage of these arguments varies from function to function, but each
has a common purpose. Many of the general display functions also
have arguments that are specific to the types of graphs that they draw.

The common arguments, which are listed in the section Summary of
Trellis Functions and Arguments (page 198), are discussed in many of
the sections throughout this chapter.

Panel
Functions

Panel functions are a critical aspect of Trellis Graphics. They make it
easy to tailor displays to your data, even when the displays are quite
complicated and have many panels.
117

Chapter 3 Traditional Trellis Graphics
The data region of a panel in a Trellis graph is a rectangle that just
encloses the data. Panel functions have sole responsibility for drawing
in data regions; they are specified by a panel argument to the general
display functions. Panel functions manage the symbols, lines, and so
forth that encode the data in the data regions. The other arguments to
the general display functions manage the superstructure of the graph,
such as scales, labels, boxes around the data region, and keys.

Panel functions are discussed in the section Panel Functions (page
171).

Core Spotfire
S+ Graphics

Trellis Graphics is implemented using the core Spotfire S+ graphics
discussed in Chapter 2, Traditional Graphics. In addition, you use
functions and graphics parameters from the traditional graphics
system when you write custom panel functions. Some of these
graphics features are discussed in the section Summary: Common
Options in Panel Functions (page 174).

Printing,
Devices, and
Settings

To print a Trellis graph, first open a hardcopy device using the
trellis.device function. For example, the following command
opens a pdf.graph device using the default Trellis formats:

> trellis.device(pdf.graph, file = "mygraph.pdf")

To send the graphics to the printer, enter the command dev.off();
this writes the graphics to the file mygraph.pdf, which you can then
view and print with Adobe Acrobat Reader. Alternatively, you can
choose File � Print while the Graph window is active in those
versions of Spotfire S+ that include a graphical user interface.

By default, graphics are printed in black and white. For color printing,
set the flag color=TRUE when you open the graphics device. For
example, the following command opens a color postscript device:

> trellis.device(postscript, file="mycolor.ps", color=TRUE)

The Trellis library has many settings for graph rendering details,
including plotting symbols, colors, and line types. These settings are
automatically chosen depending on the device you select. The section
Panel Functions and the Trellis Settings (page 175) discusses the
Trellis settings in more detail.
118

A Roadmap of Trellis Graphics
Data
Structures

The general display functions accept data just like many of the
Spotfire S+ modeling functions (lm, aov, glm, and loess, for example).
This means that there is a heavy reliance on data frames. You can
keep variables as vectors and draw Trellis displays without using data
frames, but data frames are nevertheless convenient. The Trellis
library contains several functions that change data structures of
certain types to data frames. These functions are discussed in the
section Data Structures (page 194).
119

Chapter 3 Traditional Trellis Graphics
GIVING DATA TO TRELLIS FUNCTIONS

This section describes the arguments to the Trellis Graphics functions
that allow you to specify the data sets and variables to be drawn. In
the examples of this section, we use the built-in data set gas, which
contains two variables from an industrial experiment with twenty-two
runs. In the experiment, the concentrations of oxides of nitrogen (NOx)
in the exhaust of an engine were measured for different settings of
equivalence ratio (E).

> names(gas)
[1] "NOx" "E"

> dim(gas)
[1] 22 2

The formula
and data
Arguments

The function xyplot draws an xy plot, which is a graph of two
numerical variables; the resulting plot might be scattered points,
curves, or both. A full discussion of xyplot is in the section General
Display Functions (page 124), but for now we use it to illustrate how
to specify data.

The plot in Figure 3.1, generated by the following command, is a
scatter plot of gas$NOx against gas$E:

> xyplot(formula = gas$NOx ~ gas$E)

The argument formula specifies the variables to be graphed. For
xyplot, the variable to the left of the tilde (~) is plotted on the vertical
axis and the variable to the right is plotted on the horizontal axis. You
can read the formula gas$NOx~gas$E as “gas$NOx is graphed against
gas$E”.

The use of formula in Trellis display functions is the same as the use
in statistical modeling functions such as lm and aov. To the left or right
of the tilde, you can use any Spotfire S+ expression. For example, if
you want to graph the base 2 logarithm of gas$NOx, you can use the
formula in the following command:

> xyplot(formula = logb(gas$NOx, base=2) ~ gas$E)
120

Giving Data to Trellis Functions
The formula argument is a special one in Trellis Graphics. It is always
the first argument of a general display function such as xyplot. We
can therefore omit typing formula explicitly when we call a general
display function, provided the formula is the first argument. Thus the
expression xyplot(gas$NOx ~ gas$E) also produces Figure 3.1.

Certain operators that perform functions in Spotfire S+ have special
meanings in the formula language (for example, +, *, /, |, and :).
Trellis formulas, as we see throughout in this chapter, use only the *
and | operators. If you want to use a special operators for its
conventional meaning in a formula, wrap the expression in a call to
the identity function I. For example, the following command uses * as
multiplication:

> xyplot(logb(2*gas$NOx, base=2) ~ I(2*gas$E))

We use I on the right side of the formula to protect against the * in
2*gas$E, but we do not need I on the left because 2*gas$NOx sits
inside the function logb.

Figure 3.1: Scatter plot of gas$NOx against gas$E.
121

Chapter 3 Traditional Trellis Graphics
In the above commands, we continually refer to the data frame gas
and subscript the columns explicitly. This is not necessary if we attach
gas to the search list of databases. For example, we can draw Figure
3.1 with the following commands:

> attach(gas)
> xyplot(NOx~E)
> detach("gas")

 Another possibility is to use the argument data:

> xyplot(NOx~E, data = gas)

In this case, the variables in gas are available for use in the formula
argument during the execution of xyplot; the effect is the same as
using attach and detach.

The use of the data argument has another benefit: in the call to
xyplot, we see clearly that the data frame gas is being used. This can
be helpful in understanding how the graph was produced at some
future point in time.

The subset
Argument

Suppose you want to redo Figure 3.1 and omit the observations for
which E is 1.1 or greater. You could accomplish this with the
following command:

> xyplot(NOx[E < 1.1] ~ E[E < 1.1], data = gas)

However, it is a nuisance to repeat the logical subsetting E<1.1, and
the nuisance is much greater when there are many variables in the
formula instead of just two. It is typically easier to use the subset
argument instead:

> xyplot(NOx~E, data = gas, subset = E<1.1)
122

Giving Data to Trellis Functions
The result is shown in Figure 3.2. The subset argument can be a
logical vector as in this example, or it can be numerical vector
specifying the row numbers of data to plot.

Figure 3.2: Using the subset argument on the gas data.
123

Chapter 3 Traditional Trellis Graphics
GENERAL DISPLAY FUNCTIONS

Each general display function in the Trellis library draws a particular type
of graph. For example, dotplot creates dot plots, wireframe creates
three-dimensional wireframe displays, histogram creates histograms,
and xyplot creates xy plots. This section describes a collection of
general display functions. Many of the examples in this section use
the optional aspect argument to set the aspect ratio of the plots; for
more details on the aspect argument, see the section Aspect Ratio
(page 189).

In many of our examples, we use the built-in data set fuel.frame,
which contains five variables that measure characteristics of 60
automobile models:

> names(fuel.frame)
[1] "Weight" "Disp." "Mileage" "Fuel" "Type"

> dim(fuel.frame)
[1] 60 5

The variables are weight, engine displacement, fuel consumption in
miles per gallon, fuel consumption in gallons per mile, and a
classification of the type of vehicle. The first four variables are
numeric and the fifth is a factor:

> table(fuel.frame$Type)

Compact Large Medium Small Sporty Van
 15 3 13 13 9 7

Scatter Plots:
the xyplot
Function

We have already seen the xyplot function in the examples of the
previous section. This function is a basic graphical method, displaying
one set of numerical values on a vertical scale against another set on a
horizontal scale. For example, Figure 3.3 is a scatter plot of mileage
against weight using the fuel.frame data:

> xyplot(Mileage~Weight, data=fuel.frame, aspect=1)

The variable on the left of the ~ goes on the vertical axis and the
variable on the right goes on the horizontal axis.
124

General Display Functions

Visualizing
One-
Dimensional
Data

A one-dimensional data object is sometimes referred to as a (single) data
sample, a set of univariate observations, or simply a batch of data. In this
section, we examine a number of basic plot types useful for exploring
a one-dimensional data object.

• Density Plot: an estimate of the underlying probability
density function for a data set.

• Histogram: a display of the number of data points that fall in
each of a specified number of intervals. A histogram gives an
indication of the relative density of the data points along the
horizontal axis.

• QQ Math Plot: an extremely powerful tool for determining a
good approximation to a data set’s distribution. The most
common is the normal probability plot, or normal qqplot, which is
used to test whether the distribution of a data set is nearly
Gaussian.

Figure 3.3: Scatter plot of the mileage and weight data in fuel.frame using
xyplot.
125

Chapter 3 Traditional Trellis Graphics
• Bar Chart: a display of the relative magnitudes of
observations in a data set.

• Dot Plot: a tool that displays the same information as a bar
chart or pie chart, but in a form that is often easier to grasp.

• Pie Chart: a graph that shows the share of individual values
in a variable, relative to the sum total of all the values.

These visualization plots are simple but powerful exploratory data
analysis tools that can help you quickly grasp the nature of your data.
Such an understanding can help you avoid the misuse of statistical
inference methods, such as using a method appropriate only for a
normal (Gaussian) distribution when the distribution is strongly non-
normal.

Density Plots As a first step in analyzing one-dimensional data, it is often useful to
study the shape of its distribution. A density plot displays an estimate of
the underlying probability density function for a data set, and allows
you to approximate the probability that your data fall in any interval.
The Trellis function that displays densities is called densityplot.

In Spotfire S+, density plots are essentially kernel smoothers. In this
type of algorithm, a smoothing window is centered on each x value,
and the predicted y value in the density plot is calculated as a
weighted average of the y values for nearby points. The size of the
smoothing window is called the bandwidth of the smoother. Increasing
the bandwidth results in a smoother curve but may miss rapidly
changing features. Decreasing the bandwidth allows the smoother to
track rapidly changing features more accurately, but results in a
rougher curve fit. Use the width argument in densityplot to vary the
bandwidth value in your displays.

The weight given to each point in a smoothing window decreases as
the distance between its x value and the x value of interest increases.
Kernel functions specify the way in which the weights decrease: kernel
choices for densityplot include a cosine curve, a normal (Gaussian)
kernel, a rectangle, and a triangle. The default kernel is Gaussian,
where the weights decrease with a normal (Gaussian) distribution
away from the point of interest. A rectangular kernel weighs each
point within the smoothing window equally, and a triangular kernel
has linearly decreasing weights. In a cosine kernel, weights decrease
with a cosine curve away from the point of interest. Use the window
argument in densityplot to vary the kernel function in your displays.
126

General Display Functions
Figure 3.4 is a density plot of the mileage data in fuel.frame:

> densityplot(~Mileage, data=fuel.frame, aspect=1/2,
+ width=5)

The width argument controls the width of the smoothing window in
the same units as the data; here, the units are in miles per gallon. The
rug at the bottom of the density plot shows the unique x values in the
data set.

Histograms Histograms display the number of data points that fall in each of a
specified number of intervals. A histogram gives an indication of the
relative density of the data points along the horizontal axis. For this
reason, density plots are often superposed with (scaled) histograms.
The Trellis function that displays histograms is called histogram.

Figure 3.5 is a histogram of the mileage data in fuel.frame:

> histogram(~Mileage, data=fuel.frame, aspect=1, nint=10)

The argument nint determines the number of intervals in which the
data is binned. The histogram algorithm chooses the intervals to
make the bar widths “nice” numbers, while trying to make the
number of intervals as close to nint as possible.

Figure 3.4: Density plot of the mileage data in fuel.frame using the
densityplot function.
127

Chapter 3 Traditional Trellis Graphics
QQ Math Plots The quantile-quantile plot, or qqplot, is an extremely powerful tool for
determining a good approximation to a data set’s distribution. In a
qqplot, the ordered data are graphed against quantiles of a known
theoretical distribution. If the data points are drawn from the
theoretical distribution, the resulting plot is close to the straight line
y=x in shape. The most common in this class of one-dimensional plots
is the normal probability plot, or normal qqplot, which is used to test
whether the distribution of a data set is nearly normal (Gaussian).
One Trellis function that displays qqplots is called qqmath; see the
section Visualizing Two-Dimensional Data (page 133) for a
description of a second Trellis function.

Figure 3.6 is a normal probability plot of the mileage data for small
cars:

> qqmath(~Mileage, data = fuel.frame,
+ subset = (Type=="Small"))

Figure 3.5: Histogram of the mileage data in fuel.frame using the histogram
function.
128

General Display Functions
The distribution argument in qqmath governs the theoretical
distribution used in the plot. It accepts Spotfire S+ functions that
compute quantiles for theoretical distributions. By default,
distribution=qnorm and normal probability plots are drawn. If
instead we use the command

> qqmath(~Mileage, data = fuel.frame, aspect = 1
+ subset = (Type=="Small"), distribution = qexp)

the result is an exponential probability plot. Note that the name of the
distribution function appears as the default label on the horizontal
axis of the plot.

Bar Charts A bar chart displays a bar for each point in a set of observations, where
the height of a bar is determined by the value of the data point. The
Trellis function that displays bar charts is called barchart.

Figure 3.6: Normal probability plot of the mileage data for small cars using the
qqmath function.

26

28

30

32

34

36

-1 0 1

qnorm

M
ile

ag
e

129

Chapter 3 Traditional Trellis Graphics
As an example, we compute the mean mileage for each vehicle type
in the fuel.frame data:

> mileage.means <- tapply(
+ fuel.frame$Mileage, fuel.frame$Type, FUN=mean)

Figure 3.7 is a bar chart of the mileage means:

> barchart(names(mileage.means) ~ mileage.means, aspect=1)

Notice that the vehicle types in Figure 3.7 are ordered, from bottom
to top, by the order of the elements of the vector mileage.means. This
is determined by the order of the levels in the Type column:

> names(mileage.means)
[1] "Compact" "Large" "Medium" "Small" "Sporty" "Van"

> levels(fuel.frame$Type)
[1] "Compact" "Large" "Medium" "Small" "Sporty" "Van"

Dot Plots The dot plot was first described by Cleveland in 1985 as an
alternative to bar charts and pie charts. The dot plot displays the same
information as a bar chart or pie chart, but in a form that is often

Figure 3.7: Bar chart of the mileage.means data using the barchart function.
130

General Display Functions
easier to grasp. Instead of bars or pie wedges, dots and grid lines are
used to mark the data values in dot plots. In particular, the dot plot
reduces most data comparisons to straightforward length comparisons
on a common scale. The Trellis function that displays dot plots is
called dotplot.

Figure 3.8 is a dot plot of the base 2 logarithm of the mileage.means
data created in the section Bar Charts:

> dotplot(names(mileage.means) ~
+ logb(mileage.means, base=2), aspect=1, cex=1.25)

Note that the vehicle categories appear on the vertical axis in the
same order as they do in bar charts. The argument cex is passed to
the panel function to change the size of the dot in the plot; for more
information on panel functions, see the section Panel Functions (page
171).

Pie Charts A pie chart shows the share of individual values in a variable, relative
to the sum total of all the values. Pie charts display the same
information as bar charts and dot plots, but can be more difficult to
interpret. This is because the size of a pie wedge is relative to a sum,
and does not directly reflect the magnitude of the data value. Because

Figure 3.8: Dot plot of the mileage.means data using the dotplot function.
131

Chapter 3 Traditional Trellis Graphics
of this, pie charts are most useful when the emphasis is on an
individual item’s relation to the whole; in these cases, the sizes of the
pie wedges are naturally interpreted as percentages. When such an
emphasis is not the primary point of the graphic, a bar chart or a dot
plot is preferred.

The Trellis function that displays pie charts is called piechart. For
example, Figure 3.9 is a pie chart of the mileage.means data created
in the section Bar Charts:

> piechart(names(mileage.means) ~ mileage.means)

Because the average mileage of each type of car cannot be easily
interpreted as a fraction of the total mileage, Figure 3.9 does not
convey the information in mileage.means very well. We can see that
small cars get slightly better mileage on average, since the
corresponding pie wedge is the largest in the chart. Other than that,
the size of the pie wedges simply imply that the mileage of the cars
are relatively close in value when compared to the sum total. To
refine these conclusions, we would need to view a bar chart or a dot
plot of the data.

Figure 3.9: Pie chart of the mileage.means data using the piechart function.
132

General Display Functions
Visualizing
Two-
Dimensional
Data

Two-dimensional data are often called bivariate data, and the
individual, one-dimensional components of the data are referred to as
variables. Two-dimensional plots help you quickly grasp the nature of
the relationship between the two variables that constitute bivariate
data. For example, you might want to know whether the relationship
is linear or nonlinear, if the variables are highly correlated, if there
any outliers or distinct clusters, etc. In this section, we examine a
number of basic plot types that are useful for exploring a two-
dimensional data object.

• Box Plot: a graphical representation showing the center and
spread of a distribution, as well as any outlying data points.

• Strip Plot: a one-dimensional scatter plot.

• QQ Plot: a powerful tool for comparing the distributions of
two sets of data.

When you couple two-dimensional plots of bivariate data with one-
dimensional visualizations of each variable’s distribution, you gain a
thorough understanding of your data.

Box Plots A box plot, or box and whisker plot, is a clever graphical
representation showing the center and spread of a distribution. A box
is drawn that represents the bulk of the data, and a line or a symbol is
placed in the box at the median value. The width of the box is equal
to the interquartile range, or IQR, which is the difference between the
third and first quartiles of the data. The IQR indicates the spread of
the distribution for the data. Whiskers extend from the edges of the
box to either the extreme values of the data, or to a distance of
1.5 x IQR from the median, whichever is less. Data points that fall
outside of the whiskers may be outliers, and are therefore indicated
by additional lines or symbols.

The Trellis function that displays box plots is called bwplot. For
example, Figure 3.10 is a box plot of mileage classified by vehicle
type in the fuel.frame data:

> bwplot(Type~Mileage, data=fuel.frame, aspect=1)

Notice that the vehicle types in Figure 3.10 are ordered, from bottom
to top, by the order of the levels in the Type column.
133

Chapter 3 Traditional Trellis Graphics
Strip Plots A strip plot can be thought of as a one-dimensional scatter plot. Strip
plots are similar to box plots in overall layout, but they display all of
the individual data points instead of the box plot summary. The
Trellis function that displays strip plots is called stripplot.

Figure 3.11 is a strip plot of the mileage data in fuel.frame:

> stripplot(Type~Mileage, data=fuel.frame, jitter=TRUE,
+ aspect=1)

Setting the option jitter=TRUE causes some random noise to be
added vertically to the points; this alleviates the overlap of the
plotting symbols. By default, jitter=FALSE and the points for each
level lie on a horizontal line.

Figure 3.10: Box plot of the mileage data in fuel.frame using the bwplot
function.
134

General Display Functions
QQ Plots In the section Visualizing One-Dimensional Data, we introduced the
quantile-quantile plot, or qqplot, as an extremely powerful tool for
determining a good approximation to a data set’s distribution. In a
one-dimensional qqplot, the ordered data are graphed against
quantiles of a known theoretical distribution. If the data points are
drawn from the theoretical distribution, the resulting plot is close to
the straight line y=x in shape. We can also use qqplots with two-
dimensional data to compare the distributions of the variables. In this
case, the ordered values of the variables are plotted against each
other. If the variables have the same distribution shape, the points in
the qqplot cluster along the line y=x.

The Trellis function that displays two-dimensional qqplots is called
qq. The qq function creates a qqplot for the two groups in a binary
variable. It expects a numeric variable and a factor variable with
exactly two levels; the values of the numeric variable corresponding
to each level are then plotted against each other. For example,
Figure 3.12 is a qqplot comparing the quantiles of mileage for
compact cars with the corresponding quantiles for small cars:

Figure 3.11: Strip plot of the mileage data in fuel.frame using the stripplot
function.
135

Chapter 3 Traditional Trellis Graphics
> qq(Type~Mileage, data=fuel.frame, aspect=1,
+ subset = (Type=="Compact") | (Type=="Small"))

Visualizing
Three-
Dimensional
Data

Three-dimensional data have three columns, or variables, of univariate
data, and the relationships between variables form a surface in 3D
space. Because the depth cues in three-dimensional plots are
sometimes insufficient to convey all of the information, special
considerations must be made when visualizing three-dimensional
data. Instead of viewing the surface alone, we can analyze projections,
slices, or rotations of the surface. In this section, we examine a
number of basic plot types useful for exploring a three-dimensional
data object.

• Contour Plot: uses contour lines to represent heights of
three-dimensional data in a flat, two-dimensional plane.

• Level Plot: uses colors to represent heights of three-
dimensional data in a flat, two-dimensional plane. Level plots
and contour plots are essentially identical, but they have
defaults that allow you to view a particular surface differently.

Figure 3.12: QQplot of the mileage data for small and compact cars using the qq
function.
136

General Display Functions
• Surface Plot: approximates the shape of a data set in three
dimensions.

• Cloud Plot: displays a three-dimensional scatter plot of
points.

In many of our examples in this section, we use the gauss data set,
which consists of a function of two variables over a grid:

> datax <- rep(seq(from=-1.5, to=1.5, length=50), times=50)
> datay <- rep(seq(from=-1.5, to=1.5, length=50),
+ times = rep(50,times=50))
> dataz <- exp(-(datax^2 + datay^2 + datax*datay))
> gauss <- data.frame(datax, datay, dataz)

Thus, dataz is the exponential of a quadratic function defined over a
50 x 50 grid; in other words, the surface is proportional to a bivariate
normal density.

Contour Plots A contour plot is a representation of three-dimensional data in a flat,
two-dimensional plane. Each contour line represents a height in the z
direction from the corresponding three-dimensional surface. Contour
plots are often used to display data collected on a regularly-spaced
grid; if gridded data is not available, interpolation is used to fit and
plot contours. The Trellis function that displays contour plots is called
contourplot.

Figure 3.13 is a contour plot of the gauss data set:

> contourplot(dataz ~ datax*datay, data=gauss, aspect=1,
+ at = seq(from=0.1, to=0.9, by=0.2))

The argument at specifies the values at which the contours are
computed and drawn. If no argument is specified, default values are
chosen.
137

Chapter 3 Traditional Trellis Graphics

Contour plots are helpful for displaying a function f(x, y) when there
is no need to study the conditional dependence of f on x given y, or of
f on y given x. Conditional dependence is revealed far better by
multipanel conditioning; for more details, see the section Multipanel
Conditioning (page 148).

Level Plots A level plot is essentially identical to a contour plot, but it has default
options that allow you to view a particular surface differently. Like
contour plots, level plots are representations of three-dimensional
data in flat, two-dimensional planes. Instead of using contour lines to
indicate heights in the z direction, however, level plots use colors. In
general, level plots are no better than contour plots when the surface
is simple, but they are often better when there is a lot of fine detail.

The Trellis function that displays level plots is called levelplot. For
example, Figure 3.14 is a level plot of the gauss surface:

> levelplot(dataz ~ datax*datay, data=gauss, aspect=1,
+ cuts=6)

Figure 3.13: Contour plot of the gauss surface using the contourplot function.
138

General Display Functions
The values of the surface are encoded by color or gray scale. For
devices with full color, the scale goes from pure magenta to white and
then to pure cyan. If the device does not have full color, a gray scale
is used.

For a level plot, the range of the function values is divided into
intervals and each interval is assigned a color. A rectangle centered
on each grid point is given the color of the interval containing the
value of the function at the grid point. In Figure 3.14, there are six
intervals. The argument cuts specifies the number of breakpoints
between intervals.

Surface Plots A surface plot is an approximation to the shape of a three-dimensional
data set. Surface plots are used to display data collected on a
regularly-spaced grid; if gridded data is not available, interpolation is
used to fit and plot the surface. The Trellis function that displays
surface plots is called wireframe.

Figure 3.15 is a wireframe plot of the gauss surface:

> wireframe(dataz ~ datax*datay, data=gauss,
+ screen = list(z=45, x=-60, y=0))

Figure 3.14: Level plot of the gauss surface using the levelplot function.
139

Chapter 3 Traditional Trellis Graphics
The screen argument is a list with components x, y, and z that refer to
screen axes. The surface is rotated about the axes in the order given
in the list. Here is how the perspective in Figure 3.15 was created: the
surface began with datax as the horizontal screen axis, datay as the
vertical, and dataz as the perpendicular axis. The origin was at the
lower left in the rear of the display. First, the surface was rotated 45
about the perpendicular screen axis, where a positive rotation is
counterclockwise. Then the surface was rotated -60 about the
horizontal screen axis, where a negative rotation pushes the top of the
picture away from the viewer and pulls the bottom of the picture
toward the viewer. Finally, there was no rotation about the vertical
screen axis. However, if there had been a positive vertical rotation,
the left side of the picture would have moved toward the viewer and
the right side of the picture would have moved away.

If the argument drape=TRUE, color is added to the surface using the
same encoding method of the level plot. By default, drape=FALSE.

Cloud Plots A cloud plot is a three-dimensional scatter plot of points. Typically, a
static 3D scatter plot is not effective because the depth cues of single
points are insufficient to give a strong 3D effect. On some occasions,
however, cloud plots can be useful for discovering simple
characteristics about the three variables. The Trellis function that
displays cloud plots is called cloud.

Figure 3.15: Surface plot of the gauss data using the wireframe function.
140

General Display Functions
Figure 3.16 is a 3D scatter plot of the first three variables in the data
set fuel.frame:

> cloud(Mileage ~ Weight*Disp., data=fuel.frame,
+ screen = list(z=-30, x=-60, y=0),
+ xlab = "W", ylab = "D", zlab = "M")

The behavior of the screen argument is the same as that for
wireframe. We have used the arguments xlab, ylab, and zlab to
specify scale labels; such labeling is discussed in more detail in the
section Scales and Labels (page 166).

Visualizing
Multi-
Dimensional
Data

In the previous sections, we discussed visual tools for simple one-,
two-, and three-dimensional data sets. With lower-dimensional data,
all of the basic information in the data may be easily viewed in a
single set of plots. Different plots provide different types of
information, but deciding which plots to use is fairly straightforward.

With multidimensional data, however, visualization is more involved.
In addition to univariate and bivariate relationships, variables may
have interactions such that the relationship between any two variables
changes depending on the remaining variables. Standard one- and
two-variable plots do not allow us to look at interactions between

Figure 3.16: 3D scatter plot of the fuel.frame data using the cloud function.
141

Chapter 3 Traditional Trellis Graphics
multiple variables, and must therefore be complemented with
techniques specifically designed for multidimensional data. In this
section, we discuss the following tools:

• Scatterplot Matrix: displays an array of pairwise scatter
plots illustrating the relationship between any pair of
variables.

• Parallel Plot: displays the variables in a data set as horizontal
panels, and connects the values for a particular observation
with a set of line segments.

Scatterplot
Matrices

A scatterplot matrix is a powerful graphical tool that enables you to
quickly visualize multidimensional data. It is an array of pairwise
scatter plots illustrating the relationship between any pair of variables
in a multivariate data set. Often, when faced with the task of
analyzing data, the first step is to become familiar with the data.
Generating a scatterplot matrix greatly facilitates this process.

Figure 3.17 is a scatterplot matrix of the variables in fuel.frame:

> splom(~fuel.frame)

Note that the factor variable Type has been converted to a numeric
variable and plotted. The six levels of Type (Compact, Large, Medium,
Small, Sporty, and Van) simply take the values 1 through 6 in this
conversion.
142

General Display Functions
Parallel Plots A parallel coordinates plot displays the variables in a data set as
horizontal panels, and connects the values for a particular observation
with a set of line segments. These kinds of plots show the relative
positions of observation values as coordinates on parallel horizontal
panels.

Figure 3.18 is a parallel coordinates display of the variables in
fuel.frame:

> parallel(~fuel.frame)

Figure 3.17: Scatterplot matrix of fuel.frame using the splom function.
143

Chapter 3 Traditional Trellis Graphics
Summary: The
Display
Functions and
Their Formulas

The list below organizes the general display functions and their
formulas; in doing so, it shows certain conventions and consistencies
in the formula mechanism.

Graph one numerical variable against another

xyplot(numeric1 ~ numeric2)

Graph the sample distribution of one data set

densityplot(~numeric)
histogram(~numeric)
qqmath(~numeric)

Graph measurements with labels

barchart(character ~ numeric)
dotplot(character ~ numeric)
piechart(character ~ numeric)

Figure 3.18: Parallel coordinates plot of the fuel.frame data set using the
parallel function.
144

General Display Functions
Compare the sample distributions of two or more data sets

bwplot(factor ~ numeric)
stripplot(factor ~ numeric)
qq(factor ~ numeric)

Graph a function of two variables evaluated on a grid

contourplot(numeric1 ~ numeric2*numeric3)
levelplot(numeric1 ~ numeric2*numeric3)
wireframe(numeric1 ~ numeric2*numeric3)

Graph three numerical variables

cloud(numeric1 ~ numeric2*numeric3)

Graph multivariate data

splom(~data.frame)
parallel(~data.frame)
145

Chapter 3 Traditional Trellis Graphics
ARRANGING SEVERAL GRAPHS ON ONE PAGE

Using the print function, you can arrange graphs created separately
by Trellis display functions onto a single page. The examples in this
section illustrate this feature. Note that these examples do not apply to
graphs containing multipanel conditioning that extend for more than
one page, such as those created in the section Columns, Rows, and
Pages (page 149).

Figure 3.19 shows two graphs arranged on one page:

> box.plot <- bwplot(Type~Mileage, data=fuel.frame)
> scatter.plot <- xyplot(Mileage~Weight, data=fuel.frame)
> print(box.plot, position=c(0, 0, 1, 0.4), more=TRUE)
> print(scatter.plot, position=c(0, 0.35, 1, 1))

The position argument specifies the position of each graph on the
page, using a coordinate system in which the lower left corner of the
page is 0,0 and the upper right corner is 1,1. The graph rectangle is the
portion of the page allocated to a graph. The position argument
takes a vector of four numbers: the first two numbers are the
coordinates of the lower left corner of the graph rectangle, and the
second two numbers are the coordinates of the upper right corner. If
the argument more=TRUE, Spotfire S+ expects more drawing on the
page with an additional call to print.

The following code illustrates the split argument to print, which
provides a different method for arranging plots on a page:

> other.plot <- xyplot(Mileage~Disp., data=fuel.frame)
> print(scatter.plot, split=c(1,1,1,2), more=T)
> print(other.plot, split=c(1,2,1,2))

The split argument accepts a numeric vector of four values. The last
two values define an array of subregions on the page; in our example,
the array has one column and two rows. The first two values of split
prescribe the subregion in which the current plot is drawn. In the
above code, scatter.plot is drawn in the subregion defined by the
first column and first row, and other.plot is drawn in the subregion
defined by the first column and second row.

For more details on the print function as it is used in this section, see
the help file for print.trellis.
146

Arranging Several Graphs on One Page

Figure 3.19: Multiple Trellis graphs on a single page using the print function.
147

Chapter 3 Traditional Trellis Graphics
MULTIPANEL CONDITIONING

About
Multipanel
Display

Suppose you have a data set based on multiple variables, and you
want to see how plots of two variables change in relation to a third
“conditioning” variable. With Trellis graphics, you can view your data
in a series of panels, where each panel contains a subset of the
original data divided into intervals of the conditioning variable.
When a conditioning variable is categorical, Spotfire S+ generates
plots for each level. When a conditioning variable is numeric,
conditioning is automatically carried out on the sorted unique values;
each plot represents either an equal number of observations or an
equal range of values.

We illustrate the main options for multipanel conditioning using the
built-in data set barley, which contains observations from a 1930s
agricultural field trial that studied barley crops. At six sites in
Minnesota, ten varieties of barley were grown for each of two years,
1931 and 1932. The data are the yields for all combinations of site,
variety, and year, so there are a total of 6 x 10 x 2 = 120 observations:

> names(barley)
[1] "yield" "variety" "year" "site”

> dim(barley)
[1] 120 4

The yield variable is numeric and all others are factors.

Figure 3.20 uses multipanel conditioning to display the barley data.
Each panel displays the yields of the ten varieties for one year at one
site; variety is graphed along the vertical scale and yield is graphed
along the horizontal scale. For example, the lower left panel displays
values of variety and yield for Grand Rapids in 1932. The panel
variables are yield and variety, and the conditioning variables are year
and site.

Figure 3.20 is created with the following command:

> dotplot(variety ~ yield | year*site, data = barley)
148

Multipanel Conditioning
The pipe character "|" is read as “given.” Thus, you can read the
formula as “variety is graphed against yield, given year and site.”
This simple use of the formula argument creates a complex
multipanel display.

Columns,
Rows, and
Pages

A multipanel conditioning display is a three-way rectangular array of
columns, rows, and pages. For example, there are two columns, six
rows, and one page in Figure 3.20. The dimensions of a multipanel
array are selected by an algorithm that attempts to fill as much of the
graphics region as possible, subject to certain constraints. The
constraints include the aspect ratio, the number of conditioning
variables, and the number of levels of each conditioning variable.

Figure 3.20: Multipanel conditioning for the barley data.
149

Chapter 3 Traditional Trellis Graphics
You can override the dimensions chosen by the layout algorithm by
specifying the layout argument explicitly. For example, variety (an
explanatory variable) appears as a panel variable in Figure 3.20. With
the command below, we create a new display with site as a panel
variable instead:

> dotplot(site ~ yield | year*variety, data = barley,
+ layout = c(2,5,2))

The layout argument accepts a numeric vector that specifies the
numbers of columns, rows, and pages, respectively. Thus, Figure 3.21
shows the first page of plots in the result, consisting of two columns
and five rows. Figure 3.22 shows the second page of plots, also
consisting of two columns and five rows.

Figure 3.21: The first page of plots for the barley data.
150

Multipanel Conditioning
Packet Order
and Panel
Order

In a multipanel display, a packet is the information sent to a panel for a
particular plot. In Figure 3.20, each packet includes the values of
variety and yield for a particular combination of year and site.
Packets are ordered by the levels attribute of the conditioning
variables; the levels of the first conditioning variable vary the fastest,
the levels of the second conditioning variable vary the next fastest,
and so forth. The order of the conditioning variables themselves is
determined by the formula used to create a Trellis graph.

As an example, consider the command that generates Figure 3.20,
which we reproduce here for convenience:

> dotplot(variety ~ yield | year*site, data = barley)

Figure 3.22: The second page of plots for the barley data.
151

Chapter 3 Traditional Trellis Graphics
The conditioning variable year appears first in the formula and site
appears second. This means that the levels of year vary the fastest
from packet to packet. In particular, the order of the packets is:

1932 Grand Rapids
1931 Grand Rapids
1932 Duluth
1931 Duluth
1932 University Farm
1931 University Farm
1932 Morris
1931 Morris
1932 Crookston
1931 Crookston
1932 Waseca
1931 Waseca

The year 1932 is first in the packet ordering because of the levels
attribute of the year variable. Likewise, Grand Rapids appears first
because of the levels attribute of the site variable:

> levels(barley$year)
[1] "1932" "1931"

> levels(barley$site)
[1] "Grand Rapids" "Duluth" "University Farm"
[4] "Morris" "Crookston" "Waseca"

The panels in a multipanel display are also ordered, from left to right
and from bottom to top. The bottom left panel is panel 1. From there,
we move fastest through the columns, next fastest through the rows,
and slowest through the pages. The panel ordering corresponds to
graphs and not to tables: the origin is in the lower left corner, and as
we move either from left to right or from bottom to top, the panel
order increases.

The following is the panel order for Figure 3.20:

11 12
9 10
7 8
5 6
3 4
1 2
152

Multipanel Conditioning
In Trellis Graphics, packets are assigned to panels according to both
the packet order and the panel order. The information in packet 1 is
drawn in panel 1, the information in packet 2 is drawn in panel 2, and
so forth. In Figure 3.20, the two orderings result in the year variable
changing along the columns and the site variable changing along the
rows. Thus, data for 1932 appear in the panels on the left side of the
figure, data for the Grand Rapids site appear at the bottom of the
figure, and data for the Waseca site appear at the top of the figure.
Note that as the levels for a factors change, the darkened bars in the
strip labels move from left to right.

Main-Effects
Ordering

The plots in Figure 3.20, Figure 3.21, and Figure 3.22 use an
important display method called main-effects ordering of levels. This
method displays the levels of a categorical variable according to some
function of the response variable, such as the median. Main effects
ordering greatly enhances our ability to perceive effects. In fact, it is
so important in Trellis Graphics that Spotfire S+ includes a function
reorder.factor designed specifically for it; we discuss this function in
more detail below.

For the barley data, each of the four explanatory variables are factors
and the response variable yield is numeric. Consider the median
yield for each level of the factor variables. We can compute the
medians for variety with the following command:

> variety.medians <- tapply(
+ barley$yield, barley$variety, FUN=median)

> variety.medians

Svansota No. 462 Manchuria No. 475 Velvet Peatland
 28.55 30.45 30.96667 31.06667 32.15 32.38334
 Glabron No. 457 Wisconsin No. 38 Trebi
 32.4 33.96666 36.95 39.2

Notice that the order of the levels in variety.medians is the same as
the order returned by the levels attribute:

> levels(barley$variety)
 [1] "Svansota" "No. 462" "Manchuria"
 [4] "No. 475" "Velvet" "Peatland"
 [7] "Glabron" "No. 457" "Wisconsin No. 38"
[10] "Trebi"
153

Chapter 3 Traditional Trellis Graphics
This is not a coincidence. The levels of variety have been specifically
sorted in order of increasing yield medians. Therefore, Spotfire S+
recognizes variety as an ordered factor instead of simply a factor:

> data.class(barley$variety)
[1] "ordered"

This is also true of the other categorical variables in the barley data
set. As a result, the varieties in Figure 3.20 are ordered in each panel
by the yield medians: Svansota has the smallest median and appears
at the bottom of each panel, and Trebi has the largest median and
appears at the top of each panel. Likewise, the panels are ordered by
the yield medians for site: Grand Rapids has the smallest median
and appears at the bottom of the figure, and Waseca has the largest
median and appears at the top. Finally, the panels are also ordered
from left to right by the yield medians for year: 1932 has the smaller
median and 1931 has the larger.

Main-effects ordering is achieved by making each explanatory
variable an ordered factor, where the levels are ordered by the
medians of the response variable. For example, suppose variety is a
factor without the median ordering. We can obtain the ordered factor
with the following command:

First assign barley to your working directory.
> barley <- barley
> barley$variety <- ordered(barley$variety,
+ levels = names(sort(variety.medians)))

To simplify this process, Trellis Graphics includes a function named
reorder.factor that reorders the levels of a factor variable. Here, it is
used to reorder variety according to the medians of yield:

> barley$variety <- reorder.factor(
+ barley$variety, barley$yield, median)

The first argument to reorder.factor is the factor to be reordered,
and the second is the data vector on which the main-effects ordering
is based. The third argument is the function to be applied to the
second argument to compute main effects.
154

Multipanel Conditioning
Conditioning
on the Values
of a Numeric
Variable

In the examples presented so far in this section, we have used the
barley data set, in which all of the conditioning variables are factors.
It is also possible to condition Trellis graphs on the values of a
numeric variable. If there are only a few unique values in a numeric
variable, we might want to condition plots on the individual values.
This produces a display identical to the one we would see if we coerce
the variable to class "factor". If there are too many unique values,
however, we must condition plots on intervals of the numeric
variable. We discuss these two options in detail below.

In the examples that follow, we use the built-in ethanol data set,
which contains three variables from an industrial experiment with 88
runs:

> names(ethanol)
 [1] "NOx" "C" "E"

> dim(ethanol)
 [1] 88 3

The concentrations of oxides of nitrogen (NOx) in the exhaust of an
engine were measured for different settings of compression ratio (C)
and equivalence ratio (E). These measurements are part of the same
experiment that produced the gas data set introduced in the section
Giving Data to Trellis Functions (page 120).

Conditioning on
Unique Values

In this example, we examine the relationships in ethanol between
NOx and E for various values of C. The conditioning variable C is
numeric and has 5 unique values: 7.5, 9.0, 12.0, 15.0, and 18.0. The
table function displays the number of observations that correspond
to each of these values:

> table(ethanol$C)

 7.5 9 12 15 18
 22 17 14 19 16

We create scatter plots of NOx versus E for each of the unique values in
C:

> xyplot(NOx ~ E|C, data=ethanol, layout=c(1,5,1),
+ aspect=1/2)
155

Chapter 3 Traditional Trellis Graphics
The result is shown in Figure 3.23. When the unique values of a
numeric variable are used to condition a Trellis graph, Spotfire S+
determines the packet order by sorting the values. The individual
scatter plots are therefore placed in order from C=7.5 to C=18 in
Figure 3.23: the plot for C=7.5 appears in the lower left corner of the
figure and the plot for C=18 appears at the top, as indicated by the
darkened bars in the strip labels. For more details on packet order in
multipanel displays, see the section Packet Order and Panel Order
(page 151).

Conditioning on
Intervals

In the examples below, we examine the relationships in ethanol
between NOx and C for various values of E. The numeric variable E
varies in a nearly continuous way: there are 83 unique values out of
88 observations. Clearly we cannot condition on unique values, so we
condition on intervals instead. In this type of situation, each panel
represents either an equal number of observations or an equal range

Figure 3.23: Multipanel conditioning for the ethanol data, using C as the
conditioning variable.
156

Multipanel Conditioning
of values. We use the equal.count function to condition on intervals
containing equal numbers of observations, and we use the shingle
function to condition on intervals containing equal ranges of values.

The equal.count function

The Spotfire S+ function equal.count implements the equal count
algorithm, which bins a numeric vector into intervals. The algorithm
selects interval endpoints that are values of the data: the left endpoint
of the lowest interval is the minimum of the data, and the right
endpoint of the highest interval is the maximum of the data. The
endpoints are chosen so that the number of observations across
intervals is nearly equal, while the fraction of points shared by
successive intervals is as close as possible to a specified target fraction.

For example, we can bin the E values in the ethanol data with the
following command:

> GIVEN.E <- equal.count(ethanol$E, number=9, overlap=1/4)

The number argument specifies the number of intervals, and overlap
specifies the target fraction of points to be shared by each pair of
successive intervals. In the above command, equal.count attempts to
bin E into nine intervals, while keeping the fraction of points shared
by successive intervals as close to 1/4 as possible:

> GIVEN.E

Data:
 [1] 0.907 0.761 1.108 1.016 1.189 1.001 1.231 1.123 1.042
[10] 1.215 0.930 1.152 1.138 0.601 0.696 0.686 1.072 1.074
[19] 0.934 0.808 1.071 1.009 1.142 1.229 1.175 0.568 0.977
[28] 0.767 1.006 0.893 1.152 0.693 1.232 1.036 1.125 1.081
[37] 0.868 0.762 1.144 1.045 0.797 1.115 1.070 1.219 0.637
[46] 0.733 0.715 0.872 0.765 0.878 0.811 0.676 1.045 0.968
[55] 0.846 0.684 0.729 0.911 0.808 1.168 0.749 0.892 1.002
[64] 0.812 1.230 0.804 0.813 1.002 0.696 1.199 1.030 0.602
[73] 0.694 0.816 1.037 1.181 0.899 1.227 1.180 0.795 0.990
[82] 1.201 0.629 0.608 0.584 0.562 0.535 0.655

Intervals:
 min max count
 0.535 0.686 13
 0.655 0.761 13
157

Chapter 3 Traditional Trellis Graphics
 0.733 0.811 12
 0.808 0.899 13
 0.892 1.002 13
 0.990 1.045 13
 1.042 1.125 12
 1.115 1.189 13
 1.175 1.232 13

Overlap between adjacent intervals:
[1] 4 3 3 3 4 3 3 4

With the following command, we use GIVEN.E to produce the Trellis
graph shown in Figure 3.24:

> xyplot(NOx ~ C|GIVEN.E, data = ethanol, aspect = 2.5)

The automatic layout algorithm chooses five columns and two rows
to display the nine panels. The intervals, which are portrayed by the
darkened bars in the strip labels, are ordered from low to high. As we
go from left to right and from bottom to top through the panels, the
data values in the intervals increase.

In Figure 3.24, the aspect ratio is chosen as 2.5 to bank the underlying
pattern of points to approximately 45 . For more information on
aspect ratio, see the section Aspect Ratio (page 189).
158

Multipanel Conditioning
The shingle function

The result of a call to equal.count is an object of class "shingle".
The class is named shingle because the overlap in the intervals is
similar to shingles on a roof. An object of class "shingle" contains the
original numerical values in addition to information about the
intervals. It can therefore be treated as an ordinary vector. For
example, the range function works for a shingle object just as it does
for a vector:

> range(GIVEN.E)
[1] 0.535 1.232

Figure 3.24: Multipanel conditioning for the ethanol data, using E as the
conditioning variable. The equal.count function is used to bin the values in E.
159

Chapter 3 Traditional Trellis Graphics
The endpoints of the intervals are attached to shingle object as an
attribute. You can use the levels function to extract the intervals:

> levels(GIVEN.E)

 min max
 0.535 0.686
 0.655 0.761
 0.733 0.811
 0.808 0.899
 0.892 1.002
 0.990 1.045
 1.042 1.125
 1.115 1.189
 1.175 1.232

Because of this, you can graphically display the intervals with a
special plot method. Figure 3.25 shows the intervals in GIVEN.E:

> plot(GIVEN.E)

You can create an object of class "shingle" directly with the function
shingle. This is most useful for computing intervals based on an
algorithm that is different than the equal.counts function. For

Figure 3.25: Plot of GIVEN.E, an object of class "shingle".
160

Multipanel Conditioning
example, the following commands create five intervals of equal width
from the E column in ethanol. The intervals include no overlapping
points:

> endpoints <- seq(
+ from=min(ethanol$E), to=max(ethanol$E), length=6)

> GIVEN.E2 <- shingle(ethanol$E,
+ intervals = cbind(endpoints[-6], endpoints[-1]))

The intervals argument is a two-column matrix holding the left and
right endpoints of the intervals. The width of each resulting interval is
approximately 0.14:

> levels(GIVEN.E2)

 min max
0.5350 0.6744
0.6744 0.8138
0.8138 0.9532
0.9532 1.0926
1.0926 1.2320

With the following command, we can use GIVEN.E2 to produce a
Trellis graph conditioned on these intervals:

> xyplot(NOx ~ C|GIVEN.E2, data = ethanol, aspect = 2.5)

Summary: The
Layout of a
Multipanel
Display

The following aspects control the layout of a multipanel display:

• The order of the conditioning variables in the formula
argument determines the packet order. The levels, values, or
intervals of the first conditioning variable vary the quickest in
the packet order; those of the last conditioning variable vary
the slowest.

• For categorical conditioning variables, the ordered and
reorder.factor functions can be used to control the levels in
the packet order. For numeric conditioning variables, the
values in the packets are automatically sorted in increasing
order.

• The number of columns, rows, and pages in the multipanel
display is determined by the layout argument. If layout is
not specified, a default algorithm is used.
161

Chapter 3 Traditional Trellis Graphics
GENERAL OPTIONS FOR MULTIPANEL DISPLAYS

Spacing
Between Rows
and Columns

You can use the general argument between to insert space between
adjacent rows or adjacent columns of a multipanel Trellis display. To
illustrate this argument, we use the built-in data set barley introduced
in the section About Multipanel Display (page 148).

The following commands display the barley data in a way similar to
that shown in Figure 3.21 and Figure 3.22. In the resulting two-page
graphic, yield is plotted against site given variety and year:

> barley.plot <- dotplot(site ~ yield | variety*year,
+ data=barley, aspect="xy", layout=c(2,5,2))

> print(barley.plot)

The defined layout places the measurements for 1931 on the first page
and those for 1932 on the second page. We can squeeze the panels
onto one page by changing the layout argument to (2, 10, 1). To do
this, we update the barley.plot object:

> barley.plot <- update(barley.plot, layout=c(2,10,1))
> print(barley.plot)

The result is shown in Figure 3.26. Rows 1 through 5 from the bottom
of the figure show the 1932 data, and rows 6 through 10 show the
1931 data.
162

General Options for Multipanel Displays
In the figure, the change in value of the year variable is indicated by
the text on the strip labels. We can provide a stronger indication of
the change by adding space in the display between rows 5 and 6, so
that a break occurs between the 1932 panels and the 1931 panels. For
this purpose, we use the between argument, which accepts a list with
components x and y. The x component is a vector with length equal
to one less than the number of columns in the multipanel display. The
values in x give the amount of space to be inserted between each pair
of adjacent columns, measured in units of character height. Similarly,

Figure 3.26: Multipanel dot plot of the barley data. Rows 1 through 5 show the
1932 data, and rows 6 through 10 show the 1931 data.
163

Chapter 3 Traditional Trellis Graphics
the y component specifies the amount of space between each pair of
adjacent rows. Either x or y can be missing, indicating that no space
should be added.

For example, the following command adds space between rows 5 and
6 of the display shown in Figure 3.26:

> barley.plot <- update(barley.plot,
+ between = list(y=c(0,0,0,0,1,0,0,0,0)))
> print(barley.plot)

Skipping
Panels

You can use the general argument skip to skip particular panels in a
multipanel display. The skip argument accepts a logical vector that
contains as many values as there are panels in one page of the display.
Each element of skip indicates whether to skip the corresponding
panel.

To illustrate this argument, we use the built-in data set market.survey,
which contains 10 columns of demographic data compiled from an
AT&T telephone survey. The following commands display box plots
of the market.survey data conditioned on the two variables income
and pick:

> market.plot <- bwplot(age ~ log(1+usage) | income*pick,
+ strip = function(...)
+ strip.default(..., strip.names=c(T,T)),
+ skip = c(F,F,F,F,F,F,F,T),
+ layout = c(2,4,2),
+ data = market.survey)

> print(market.plot)

The chosen layout has two pages, each containing eight panels and
seven plots. On each page, the last panel is skipped because the
conditioning variable income has only seven levels.

For more details about the strip argument as it is used in this
example, see the section Changing the Text in Strip Labels (page
168).

Multipage
Displays

You can use the general argument page to add page numbers, text, or
graphics to each page of a multipage Trellis display. The page
argument is a function that accepts a single argument n, the page
164

General Options for Multipanel Displays
number, and issues drawing commands specific to page n. For
example, the following updates the market.plot object from the
previous section so that it includes page numbers:

> update(market.plot, page = function(n)
+ text(x=0.75, y=0.95, paste("page",n), adj=0.5))

The text function is a Spotfire S+ traditional graphics command that
uses a coordinate system in which 0,0 is the lower left corner of the
page and 1,1 is the upper right corner.

Hint

If a multipage display is sent to a screen device, the default behavior draws each page in order
without pausing between pages. You can force the screen device to prompt you before drawing
each page by typing

> par(ask=TRUE)

before issuing your graphics commands.
165

Chapter 3 Traditional Trellis Graphics
SCALES AND LABELS

All of the functions presented in the section General Display
Functions (page 124) have arguments that specify the scales and
labels of graphs. We discuss these arguments in detail here.

Axis Labels
and Titles

The following command displays a scatter plot of NOx against E for the
gas data set, which was introduced in the section Giving Data to
Trellis Functions (page 120):

> xyplot(NOx~E, data=gas, aspect=1/2)

The default axis labels are the names of the variables used in the
formula argument. We can specify more descriptive axis labels, as
well as a main title and a subtitle, using the following command:

> xyplot(NOx~E, data=gas, aspect=1/2,
+ xlab = "Equivalence Ratio",
+ ylab = "Oxides of Nitrogen",
+ main = "Air Pollution",
+ sub = "Single-Cylinder Engine")

The result is shown in Figure 3.27. Note that the main title appears at
the top of the graph, and the subtitle appears at the bottom of the
graph under the horizontal axis label.

Figure 3.27: Scatter plot of the gas data that includes titles and axis labels.
166

Scales and Labels
Each of the four label arguments xlab, ylab, main, and sub can be a
list. When specified as a list, the first component is a character string
for the text of the label. The remaining components specify the size,
font, and color of the text in the label. The component cex specifies
the size, font is a positive integer that specifies the font type, and col
is a positive integer that specifies the color. For example, the following
code changes the sizes of the title and subtitle in Figure 3.27:

> xyplot(NOx~E, data=gas, aspect=1/2,
+ xlab = "Equivalence Ratio",
+ ylab = "Oxides of Nitrogen",
+ main = list("Air Pollution", cex=2),
+ sub = list("Single-Cylinder Engine", cex=1.25))

Axis Limits In Trellis graphics, the upper axis limit for a numeric variable is the
maximum of the data to be plotted plus 4% of the range of the data.
Similarly, the lower axis limit is the minimum of the data minus 4% of
the range of the data. The extra 4% at each end of the data values
prevents the extreme values from being plotted on edges of the plot.

We can alter the default limits with the arguments xlim and ylim. The
xlim argument is a numeric vector of two values specifying the
minimum and maximum limits on the horizontal axis. Similarly, ylim
is a vector of two values specifying the minimum and maximum
limits on the vertical axis. For example, the range of the NOx variable
in the gas data set is:

> range(gas$NOx)
[1] 0.537 5.344

The following command specifies the values 0 and 6 as the limits of
the vertical axis in a scatter plot of gas:

> xyplot(NOx~E, data=gas, aspect=1/2, ylim=c(0,6))

Tick Marks and
Labels

The general argument scales affects tick marks and tick labels in
Trellis graphics. With scales, you can change both the number of
ticks and the size of the tick labels. For example, the xyplot command
above results in seven ticks on the vertical axis and six on the
horizontal axis. With the following command, we reduce the number
of ticks and increase the size of the tick labels:

> xyplot(NOx~E, data=gas, aspect=1/2, ylim = c(0,6),
+ scales = list(cex=2, tick.number=4))
167

Chapter 3 Traditional Trellis Graphics
The argument scales accepts a list with two components: the cex
component affects the size of the tick labels and the tick.number
component affects the number of ticks. Note that Spotfire S+
interprets tick.number as a suggestion only. An algorithm finds a set
“nice” tick values that is as close in number to tick.number as
possible.

We can also specify the tick marks and labels separately for each axis.
For example, the specification

scales = list(cex=2,
x = list(tick.number=4),
y = list(tick.number=10))

changes cex on axes. However, tick.number is 4 for the horizontal
axis and 10 for the vertical axis. Thus, specifications for the horizontal
axis only appear in the argument scales as a component x that is
itself a list, specifications for the vertical axis only appear in scales as
a component y that is a list, and specifications for both axes appear as
remaining components of the argument scales.

The scales argument can contain many different list components in
addition to cex and tick.number. For more details, see the online help
file for trellis.args.

Changing the
Text in Strip
Labels

The default text in the strip labels of a multipanel display is derived
from the names and levels of the conditioning variables. If a
conditioning variable is categorical, the strip label for each panel is
the name of the corresponding factor level. The barley data set
introduced in the section About Multipanel Display (page 148)
illustrates this:

Exceptions

The two general display functions wireframe and cloud currently do not accept changes
to each axis separately. Thus, components x, y, and z cannot be used in the scales
argument.

The general display function piechart has no tick marks or tick labels, so the scales
argument does not apply at all.

The general display function splom has many scales, so only limited control over the
axes is available through the argument scales.
168

Scales and Labels
> dotplot(variety ~ yield | year*site, data = barley)

The strip labels in the resulting graphic contain the levels of the year
and site variables.

If a conditioning variable is numeric, however, the strip labels for all
panels simply contain the name of the variable. This is illustrated with
the ethanol data introduced in the section Conditioning on the
Values of a Numeric Variable (page 155):

> xyplot(NOx ~ E|C, data = ethanol)

The strip label “C” appears in all five panels of the resulting graphic.

One way to change the default strip labels is to change the names of
the factor levels or numeric variables directly. For example, suppose
we want to change the long label “University Farm” to “U. Farm” in
conditioned plots of the barley data. We can change the names of the
levels of the site variable as follows:

> levels(barley$site)

[1] "Grand Rapids" "Duluth" "University Farm"
[4] "Morris" "Crookston" "Waseca"

First assign barley to your working directory.
> barley <- barley
> levels(barley$site)[3] <- "U. Farm"

> levels(barley$site)

[1] "Grand Rapids" "Duluth" "U. Farm"
[4] "Morris" "Crookston" "Waseca"

The general arguments par.strip.text and strip provide additional
control over the look of strip labels in conditioned Trellis graphs.

The par.strip.text argument

The size, font, and color of the text in strip labels can be changed with
the argument par.strip.text. This argument is a list with the
following components: cex determines the font size, font determines
the font type, and col determines the text color. For example, we can
specify huge strip labels on a plot of the ethanol data with the
following command:

> xyplot(NOx ~ E|C, data = ethanol,
169

Chapter 3 Traditional Trellis Graphics
+ par.strip.text = list(cex=2))

The strip argument

The strip argument allows delicate control over the text that is
placed in the strip labels. One potential use removes the strip labels
altogether:

strip = F

Another possible use controls the information included in the text of
the strip labels. For example, the command below uses the names of
the conditioning variables along with their levels in the strip labels:

> dotplot(variety ~ yield | year*site, data = barley,
+ strip = function(...)
+ strip.default(..., strip.names = c(T,T)))

The argument strip.names in the strip.default function accepts a
logical vector of length two. The first element indicates whether the
names of factors should be included in strip labels along with the
names of factor levels. The second element indicates whether the
names of shingles should be included. The default value is
strip.names=c(F,T).

The strip.default function includes many other arguments that can
be modified through strip with syntax analogous to the above
command. For more details, see the help file for strip.default.
170

Panel Functions
PANEL FUNCTIONS

The data region of a panel in a Trellis graph is a rectangle that just
encloses the data. Panel functions have sole responsibility for drawing
in data regions; they are specified by a panel argument to the general
display functions. Panel functions manage the symbols, lines, and so
forth that encode the data in the data regions. The other arguments to
the general display functions manage the superstructure of the graph,
such as scales, labels, boxes around the data region, and keys.

Every general display function has a default panel function. The
name of the default panel function for a particular type of plot is
“panel,” followed by a period and the name of the display function.
For example, the default panel function for xyplot is panel.xyplot.
In all the examples so far in this chapter, default panel functions have
been used to draw all of the plots.

You can modify what is drawn in the data region of a plot by one of
three mechanisms:

• Pass new values to arguments in a default panel function.

• Write your own custom panel function.

• Modify a special-purpose panel function included in the
Trellis library.

In this section, we discuss all three of these options.

Passing
Arguments to
a Default Panel
Function

You can give an argument to a default panel function by passing it to
the corresponding general display function. The general display
functions automatically pass unrecognized arguments on to the
default panel functions. For example, the panel.xyplot function
accepts a pch argument that controls the plotting character in a scatter
plot. We can specify a plus sign for the plotting character by including
the argument pch="+" in our call to xyplot. The following command
does this for a plot of the built-in gas data set:

> xyplot(NOx~E, data=gas, aspect=1/2, pch="+")

For more details about the arguments accepted by a default panel
function, see its online help file.
171

Chapter 3 Traditional Trellis Graphics
Writing a
Custom Panel
Function

Panel functions can accept any number of arguments, but the first two
should always be named x and y. These two arguments represent
vectors containing the horizontal and vertical coordinates,
respectively, of the points to be displayed in the panels. The
remaining arguments can be parameters specific to the display you
want to create, traditional graphics parameters, etc.

As an example of a custom panel function, consider the gas data set.
Suppose you want to use xyplot to graph the NOx variable against E,
using “+” as the plotting symbol for all observations except those for
which NOx is a maximum, in which case you want to use “M.” There is
no provision in xyplot to do this, so you must write your own panel
function. The following command defines a panel.special function
that accomplishes this:

> panel.special <- function(x,y) {
+ biggest <- y==max(y)
+ points(x[!biggest], y[!biggest], pch="+")
+ points(x[biggest], y[biggest], pch="M")
+ }

The function points is a traditional graphics function that draws
individual points in a plot. The first argument to points contains the
horizontal coordinates of the points to be plotted, the second
argument contains the vertical coordinates, and the argument pch
determines the symbol used to display the points.

We can use the panel.special function to plot the gas data by
passing it to the panel argument in our call to xyplot. For example:

> xyplot(NOx~E, data=gas, aspect=1/2, panel=panel.special)

The result is shown in Figure 3.28. A custom panel function can also
be defined directly in a call to a general display function. For
example, the following command produces the same graphic as the
one shown in Figure 3.28:

> xyplot(NOx~E, data=gas, aspect=1/2,
+ panel = function(x,y) {
+ biggest <- y==max(y)
+ points(x[!biggest], y[!biggest], pch="+")
+ points(x[biggest], y[biggest], pch="M")
+ }
+)
172

Panel Functions
In most cases, a panel function that is used for a single-panel display
can be used for a multipanel display as well. For example, we can use
panel.special to show the maximum value of NOx on each panel in a
display of the ethanol data:

> xyplot(NOx ~ E|C, data=ethanol, aspect=1/2,
+ panel=panel.special)

Special Panel
Functions

When writing a custom panel function, you may want to incorporate
code from a default panel function as part of it. This is often true
when you want to simply augment a standard Trellis panel, without
creating a new one from scratch. In addition, the Trellis library
provides some special-purpose panel functions that are not attached
to particular display functions. One such function is panel.loess,
which adds smooth curves to scatter plots. Functions such as
panel.loess are very helpful for quickly augmenting standard panel
functions.

For example, to add smooth curves to a multipanel display of the
ethanol data, type the following:

> GIVEN.E <- equal.count(ethanol$E, number=9,
+ overlap=1/4)

Figure 3.28: Scatter plot of the gas data using the panel.special panel
function.
173

Chapter 3 Traditional Trellis Graphics
> xyplot(NOx ~ C|GIVEN.E, data=ethanol, aspect=2.5,
+ panel = function(x,y) {
+ panel.xyplot(x,y)
+ panel.loess(x, y, span=1)
+ }
+)

The default panel function panel.xyplot draws the data points in
each scatter plot. The special panel function panel.loess computes
and draws the smooth curves. The argument span to panel.loess is
the smoothing parameter; larger values of span result in smoother
curves and smaller values result in rougher curves. For more details
on the equal.count function as it is used in this example, see the
section Conditioning on Intervals (page 156).

A particularly useful argument to many default panel functions is
subscripts. If you request this argument in a custom panel function,
the subscripts of the original observations that are included in each
packet can be obtained. Knowing these subscripts is helpful for
extracting the values of other variables that might be needed to
render each panel. In such a case, the panel function argument
subscripts contains the subscripts. For example, the following
command uses subscripts to draw the observation numbers on a
conditioned plot of the ethanol data:

> xyplot(NOx ~ E|C, data=ethanol, aspect=1/2,
+ panel = function(x, y, subscripts)
+ text(x, y, subscripts, cex=0.75)
+)

Summary:
Common
Options in
Panel
Functions

The traditional graphics functions commonly used in both default and
custom panel functions are:

points, lines, text, segments, and polygon.

Use the Spotfire S+ online help system to see descriptions of each of
these functions.

The traditional graphics parameters commonly used in both default
and custom panel functions are:

col, lty, pch, lwd, and cex.

See the online help file for par to see descriptions of each of these
parameters.
174

Panel Functions and the Trellis Settings
PANEL FUNCTIONS AND THE TRELLIS SETTINGS

As we have discussed in this chapter, Trellis Graphics is implemented
using the traditional Spotfire S+ graphics system, which has
controllable parameters that determine the characteristics of plotted
objects. For example, graphical parameters determine the type, size,
font, and color of the symbols in a scatter plot. In Trellis Graphics, the
default panel functions for the general display functions select
graphical parameters to render plotted elements as effectively as
possible. Because the most desirable choices for one graphics device
can be different from those for another device, the default graphical
parameters are device-dependent. These parameters are contained in
lists that we refer to as the Trellis settings. When trellis.device sets up
a graphics device, the Trellis settings are established for that device
and are saved in a special data structure.

When you write your own custom panel functions, you may want to
make use of the Trellis settings to provide good performance across
different devices. Three functions enable you to access, display, and
change the settings for the current device: trellis.par.get allows
you to extract settings for use in a panel function, show.settings
shows the values of the settings graphically, and trellis.par.set lets
you change the settings for the current device. We discuss each of
these functions in this section.

The
trellis.par.get
Function

The trellis.par.get function allows you to extract the Trellis
settings for particular graphics devices. For example, here is the panel
function panel.xyplot:

> panel.xyplot

function(x, y, type = "p", cex = plot.symbol$cex,
pch = plot.symbol$pch, font = plot.symbol$font,
lwd = plot.line$lwd, lty = plot.line$lty,
col = if(type == "l") plot.line$col else plot.symbol$col,
...)
{

if(type == "l") {
plot.line <- trellis.par.get("plot.line")
lines(x, y, lwd = lwd, lty = lty, col = col,

type = type, ...)
175

Chapter 3 Traditional Trellis Graphics
}
else {

plot.line <- trellis.par.get("plot.line")
plot.symbol <- trellis.par.get("plot.symbol")
points(x, y, pch = pch, font = font, cex = cex,

col = col, type = type, lty = lty, lwd = lwd, ...)
}

}

In this panel function, point symbols are used to plot the data when
the argument type="p". The plotting symbol for the points is defined
by the settings list plot.symbol, which is accessed by
trellis.par.get. The components of plot.symbol are given to the
points function, which draws the symbols. Here is the plot.symbol
list for the device (graphsheet for Windows or Motif for UNIX):

> trellis.device(devicetype)
##where devicetype is graphsheet or motif##
> plot.symbol <- trellis.par.get("plot.symbol")
> plot.symbol

$cex:
[1] 0.8

$col:
[1] 2

$font:
[1] 1

$pch:
[1] 1

The pch value of 1 and the col value of 2 produces a cyan circle.

In the code for panel.xyplot, the lines function is used to plot the
data when type="l". In this case, the Trellis graphical parameters for
lines are extracted from the settings list plot.line. For example, here
is the plot.line list for the device (graphsheet for Windows or Motif
for UNIX):

> trellis.device(devicetype)
##where devicetype is graphsheet or motif##
> plot.line <- trellis.par.get("plot.line")
176

Panel Functions and the Trellis Settings
> plot.line

$col:
[1] 2

$lty:
[1] 1

$lwd:
[1] 1

These settings produce a cyan-colored solid line.

The
show.settings
Function

The show.settings function displays the graphical parameters in the
Trellis settings for the current device. For example, to see the settings
for the black and white postscript device, type:

> trellis.device(postscript, file = "settings.ps")
> show.settings()
> dev.off()
 null device
 1

This creates a postscript file in your working directory named
settings.ps that contains a series of plots. Each panel in the file
displays one or more lists of settings; the names of the settings appear
below the panels. For example, the panel in the third row (from the
top) and first column shows plotting symbols determined by
plot.symbol and lines determined by plot.line. To see the value of
all the trellis settings for this device, type trellis.settings.bwps at
the Spotfire S+ prompt.

The
trellis.par.set
Function

The Trellis settings for a particular device can be changed with the
trellis.par.set function. For example, the following commands
change the color of the plotting symbol for the graphsheet (Windows)
or Motif (UNIX) device from cyan to magenta:

If on Windows:
> trellis.device(graphsheet)
If on UNIX:
> trellis.device(motif)
177

Chapter 3 Traditional Trellis Graphics
> plot.symbol <- trellis.par.get("plot.symbol")
> plot.symbol$col
[1] 2

> plot.symbol$col <- 3
> trellis.par.set("plot.symbol", plot.symbol)
> plot.symbol <- trellis.par.get("plot.symbol")
> plot.symbol$col

 [1] 3

The trellis.par.set function sets an entire list of Trellis settings,
and not just some of the components. Thus, the simplest way to make
a change is to extract the current list with trellis.par.get, alter the
desired components, and then save the altered list. The change lasts
only as long as the device continues. If the Spotfire S+ session is
ended or the device is closed, the altered settings are removed.
178

Superposing Multiple Value Groups on a Panel
SUPERPOSING MULTIPLE VALUE GROUPS ON A PANEL

A common visualization technique involves superposing two or more
groups of values in the same data region and encoding the groups in
different ways. This technique allows you to quickly visualize the
similarities and differences between the groups of data values. In
Trellis Graphics, superposition is achieved by the special panel
function panel.superpose. The key argument to the general display
functions can be used in conjunction with panel.superpose to draw
legends that distinguish the points from each group.

Superposing
Points

We illustrate the superposition of points with the built-in data set
fuel.frame, which we introduced in the section General Display
Functions (page 124). In our examples, we graph the Mileage variable
against Weight for the six types of vehicles described by the factor
Type.

As a first example, we encode the vehicle types in fuel.frame using
different plotting symbols. The panel function panel.superpose
carries out such a superposition:

> xyplot(Mileage~Weight, data=fuel.frame, aspect=1,
+ groups=Type, panel=panel.superpose)

The factor Type is given to the groups argument of xyplot, which
passes it to the groups argument of panel.superpose. The
panel.superpose function then determines the plotting symbol for
each group of data points.

The panel.superpose function uses the graphical parameters in the
Trellis setting superpose.symbol for the default plotting symbols. For
example, the following lists the settings for the black and white
postscript device:

> trellis.device(postscript)
> trellis.par.get("superpose.symbol")

$cex:
[1] 0.85 0.85 0.85 0.85 0.85 0.85 0.85

$col:
[1] 1 1 1 1 1 1 1
179

Chapter 3 Traditional Trellis Graphics
$font:
[1] 1 1 1 1 1 1 1

$pch:
[1] "\001" "+" ">" "s" "w" "#" "{"

> dev.off()
 null device
 1

There are seven symbols, so that up to seven groups of data points
can be distinguished in a single plot. The symbols are used in
sequence: the first two symbols are used if there are two groups, the
first three symbols are used if there are three groups, and so on. You
can use the show.settings function to graphically view the seven
symbols for the current device; for more details, see the section The
show.settings Function (page 177).

The default symbols in the superpose.symbol list have been chosen
to enhance the visual assembly of each group of points. That is, we
want to effortlessly assemble the plotting symbols of a given type to
form a visual whole. If assembly can be performed efficiently, we can
quickly compare the characteristics of the different groups of data.

Using the pch argument, you can override the default symbols with
your own set of plotting symbols. For example, suppose we want to
use the first letters of the vehicle types in our plots of the fuel.frame
data. First, we define the following character vector to represent our
plotting symbols:

> mysymbols <- c("C","L","M","P","S","V")

Here, “C” is for Compact, “L” is for Large, “M” is for Medium, “P” is for
Small (to avoid duplication with Sporty), “S” is for Sporty, and “V” is
for Van. To use these symbols in a plot, pass mysymbols to the pch
argument in the call to xyplot:

> xyplot(Mileage~Weight, data=fuel.frame, aspect=1,
+ groups=Type, pch=mysymbols, panel=panel.superpose)

The result is shown in Figure 3.29. The pch argument passes the
vector to panel.superpose, which uses it to determine the plotting
symbol for each group.
180

Superposing Multiple Value Groups on a Panel
Superposing
Curves

The panel.superpose function also superposes curves onto the same
plot. For example, the following code superposes a line and a
quadratic:

> x <- seq(from=0, to=1, length=50)
> linquad <- c(x,x^2)
> x <- rep(x, times=2)
> which.curve <- rep(c("linear","quadratic"), c(50,50))
> xyplot(linquad~x, xlab="Argument", ylab="Functions",
+ aspect=1, groups=which.curve, type="l",
+ panel=panel.superpose)

The type="l" argument specifies that line plots should be rendered.
The panel.superpose function uses the graphical parameters in the
Trellis setting superpose.line for the default line types.

Figure 3.29: Scatter plot of the fuel.frame data, using the first letter of each car
type for the plotting symbols.
181

Chapter 3 Traditional Trellis Graphics
To list the settings for the black and white postscript device:

> trellis.device(postscript)
> trellis.par.get("superpose.line")

$col:
[1] 1 1 1 1 1 1 1

$lty:
[1] 1 2 3 4 5 6 7

$lwd:
[1] 1 1 1 1 1 1 1

> dev.off()
 null device
 1

There are seven line types, so that up to seven groups of data points
can be distinguished in a single plot. You can use the show.settings
function to graphically view the seven line types for the current
device; for more details, see the section The show.settings Function
(page 177).

Superposing
Other Plots

The function panel.superpose can be used with any general display
function where superposing different groups of values makes sense. In
general, we can superpose data sets using xyplot, dotplot, or many
of the other display functions. For example, the following code
produces a dot plot of the barley data introduced in the section About
Multipanel Display (page 148):

> barley.plot <- dotplot(variety ~ yield|site, data=barley,
+ groups=year, layout=c(1,6), aspect=0.5,
+ xlab="Barley Yield (bushels/acre)",
+ panel = function(x,y,...) {
+ dot.line <- trellis.par.get("dot.line")
+ abline(h=unique(y), lwd=dot.line$lwd,
+ lty=dot.line$lty, col=dot.line$col)
+ panel.superpose(x,y,...)
+ }
+)

> print(barley.plot)
182

Superposing Multiple Value Groups on a Panel
On each panel of the resulting figure, data for the years 1931 and
1932 are distinguished by different plotting symbols.

The panel function for dotplot is slightly more complicated than the
one for xyplot, because the horizontal lines of the dot plot must be
drawn in addition to the plotting symbols. The abline function is
used to draw the lines at unique values on the vertical axis; the
characteristics of the lines are specified by the Trellis setting dot.line.
To see the settings for the current graphics device, type
trellis.settings$dot.line at the Spotfire S+ prompt. For more
details, see the help file for panel.dotplot.

The key
Argument

A key can be added to a Trellis display through the key argument of
the general display functions. This argument is a list with components
that are the names of arguments to the key function, which actually
draws the key. Thus, the components in the key argument in a general
display function are passed directly to the corresponding arguments
of the key function. The exception to this is the space component,
which leaves extra space for a key in the margins of the display; the
space component does not have a corresponding argument in the key
function. For more details, see the help file for trellis.args.

A Simple Example The key argument to general display functions is easy to use and yet
quite powerful. As a simple example, the following command updates
the barley.plot object from the previous section:

> update(barley.plot, key = list(
+ points=Rows(trellis.par.get("superpose.symbol"),1:2),
+ text=list(levels(barley$year))))

The result is shown in Figure 3.30. The text component of the key
argument is a list with the year names. The points component is a list
with the graphical parameters of the two symbols used to plot the
data. We extract these parameters from the Trellis setting
superpose.symbol, which panel.superpose uses to draw the plotting
symbols. We want to give the points component only the parameters
of the symbols used, so we use the function Rows to extract the first
two elements of each component in superpose.symbol. The code
below show this for the black and white postscript device.
183

Chapter 3 Traditional Trellis Graphics
> trellis.device(postscript)
> Rows(trellis.par.get("superpose.symbol"),1:2)

$cex:
[1] 0.85 0.85

$col:
[1] 1 1

$font:
[1] 1 1

$pch:
[1] "\001" "+"

> dev.off()
 null device
 1

Note that only two values are returned for each graphical parameter,
instead of the usual seven.
184

Superposing Multiple Value Groups on a Panel
The key for the barley.plot object has two entries, one for each year.
Each entry has two items, the order of which is determined by the
order in the key argument. In the call to update above, points is
specified first and text is second in the key argument; thus, plotting
symbols are displayed first in the key, and text is second.

Figure 3.30: Multipanel dot plot of the barley data. A key is included to
distinguish the plotting symbols.
185

Chapter 3 Traditional Trellis Graphics
By default, the two entries in our key are drawn as an array with one
column and two rows. We can change this with the columns
component of the key argument. The following command illustrates
this, and also switches the order of the symbols and the text:

> update(barley.plot, key = list(
+ text=list(levels(barley$year)),
+ points=Rows(trellis.par.get("superpose.symbol"),1:2),
+ columns=2))

Repositioning a
Key

If the default location of a key seems a bit too far from the rest of the
graph, the key can be repositioned with a combination of various
components in the key argument. The code below shows one
approach for accomplishing this.

> update(barley.plot, key = list(
+ points=Rows(trellis.par.get("superpose.symbol"),1:2),
+ text=list(levels(barley$year)),
+ columns=2,
+ border=1,
+ space="top",
+ x=0.5,
+ y=1.02,
+ corner=c(0.5,0)))

For clarity, this command uses the border argument to draw a border
around the key. The border argument accepts a number that specifies
the color in which the border should be drawn.

To reposition a key, two coordinate systems are required. The first
describes locations in the rectangle that encloses the panels of the
display, but does not include the tick marks. The lower left corner of
this rectangle has coordinates 0,0 and the upper right corner has
coordinates 1,1. A location in the panel rectangle is specified by the
components x and y in the key argument. In the command above,
x=0.5 and y=1.02, which centers the key horizontally and places it at
the top of the figure, just outside the rectangle.

The second coordinate system describes locations in the border
rectangle of the key, which is shown when the border is drawn. The
lower left corner of the border rectangle has coordinates 0,0 and the
upper right corner has coordinates 1,1. A location in the border
rectangle is specified by the corner component, which is a vector with
two elements specifying the horizontal and vertical coordinates. The
186

Superposing Multiple Value Groups on a Panel
key is positioned so that the locations specified by the two coordinate
systems are at the same place on the graph. Having two coordinate
systems makes it far easier to place a key quickly, often on the first try.

The space component of the key argument allocates space for the key
in the margins. It takes one of four values and allocates space on the
corresponding side of the graph: "top", "bottom", "right", and
"left". By default, space for a key is allocated at the top of a graph.
However, notice that we explicitly specified space="top" in the
command above. The reason is that as soon as the components x, y,
and corner are specified, no default space is allocated in any margin
location unless we explicitly use space.

To allocate space on the right side of the graph, type:

> update(barley.plot, key = list(
+ points=Rows(trellis.par.get("superpose.symbol"),1:2),
+ text=list(levels(barley$year)),
+ space="right"))

To position the key in the upper left corner of the border rectangle, at
the same vertical position as the top of the panel rectangle and at a
horizontal position slightly to the right of the right side of the panel
rectangle, type:

> update(barley.plot, key = list(
+ points=Rows(trellis.par.get("superpose.symbol"),1:2),
+ text=list(levels(barley$year)),
+ space="right",
+ border=1,
+ corner=c(0,1),
+ x=1.05,
+ y=1))

For clarity, this command also draws a border around the key.

Including Lines in
a Key

So far this section, we have seen that the components points and
text can be used to create items in key entries. A third component,
lines, draws line items. To illustrate this, let us return to the
fuel.frame data. The following code creates a plot of the Mileage
variable against Weight for the six types of cars, and adds two loess
smooths using different values of the smoothing parameter span:

> superpose.line <- trellis.par.get("superpose.line")
187

Chapter 3 Traditional Trellis Graphics
> superpose.symbol <- trellis.par.get("superpose.symbol")
> xyplot(Mileage~Weight, data=fuel.frame, groups=Type,
+ aspect=1, panel=function(x,y,...) {
+ panel.superpose(x,y,...)
+ panel.loess(x,y, span=1/2,
+ lwd=superpose.line$lwd[1],
+ lty=superpose.line$lty[1],
+ col=superpose.line$col[1])
+ panel.loess(x,y, span=1,
+ lwd=superpose.line$lwd[2],
+ lty=superpose.line$lty[2],
+ col=superpose.line$col[2]) },
+ key = list(transparent=T, x=0.95, y=0.95, corner=c(1,1),
+ lines=Rows(superpose.line,1:6),
+ size=c(3,3,0,0,0,0),
+ text=list(c("Span = 0.5","Span = 1.0", rep("",4))),
+ points=Rows(superpose.symbol,1:6),
+ text=list(levels(fuel.frame$Type))))
188

Aspect Ratio
ASPECT RATIO

2D Displays The aspect ratio of a two-dimensional graph is the height of a data
region divided by its width. Aspect ratio is a critical factor in
determining how well a display shows the structure of the data. There
are situations where varying the aspect ratio reveals information in
the data that cannot be seen if the graph is square. This often occurs
when the aspect ratio is chosen to bank the underlying pattern of
points to 45 degrees.

More generally, any time we graph a curve or a scatter of points,
controlling the aspect ratio is vital. One important feature of Trellis
Graphics is the direct control of the aspect ratio through the argument
aspect. You can use the aspect argument with most general display
functions to set the ratio to a specific value. In Figure 3.31, for
example, the aspect ratio has been set to 3/4:

> xyplot(NOx~E, data=gas, aspect=3/4)

If aspect="xy", line segments are banked to 45 degrees. Here is how
it works: suppose x and y are data points to be plotted, and consider
the line segments that connect successive points. The aspect ratio is
chosen so that the absolute values of the slopes of these segments are
centered at 45 degrees. This is done in Figure 3.32 with the
expression

> xyplot(NOx~E, data=gas, aspect="xy")

The resulting aspect ratio is approximately 0.4. Ordinarily, you
should bank line segments based on a smooth underlying pattern in
the data. That is, you should bank based on the line segments of a
fitted curve, instead of arbitrarily setting the aspect argument. You
can do this with Trellis Graphics, as shown in the section Prepanel
Functions (page 191).
189

Chapter 3 Traditional Trellis Graphics
3D Displays The aspect ratio of a three-dimensional plot is defined by two ratios:
the length of the y axis to the length of the x axis, and the length of the
z axis to the length of the x axis. Thus, the aspect argument to the 3D
general display functions wireframe and cloud accepts a numeric

Figure 3.31: Scatter plot of the gas data with an aspect ratio of 3/4.

Figure 3.32: Scatter plot of the gas data with line segments banked to 45 degrees.
190

Aspect Ratio
vector of length two. For example, the following command displays a
surface plot of the gauss data introduced in the section Visualizing
Three-Dimensional Data (page 136):

> wireframe(dataz ~ datax*datay, data=gauss, aspect=c(1,2))

In the resulting figure, the y axis and the x axis are equal in length,
and the z axis is twice as long as both of them. For more details on the
aspect argument in three-dimensional displays, see the help file for
trellis.3d.args.

Prepanel
Functions

Banking to 45 degrees is an important display method built into
Trellis Graphics through the argument aspect. In addition, axis
ranges in a Trellis graph can be controlled by the arguments xlim,
ylim, and scales introduced in the section Scales and Labels (page
166). Another argument, prepanel, is a function that supplies
information for the banking and range calculations.

For example, the code below plots the ethanol data. In the plot, the
variable NOx is graphed against E given C, and loess curves are
superposed in each panel.

> xyplot(NOx ~ E|C, data=ethanol, aspect=1/2,
+ panel = function(x,y) {
+ panel.xyplot(x,y)
+ panel.loess(x, y, span=1/2, degree=2)
+ }
+)

The result is shown in Figure 3.33. We would like to do two things
with this plot: one involves the aspect ratio and the other involves
axis ranges. We use the prepanel argument to xyplot to accomplish
both of these things.

First, consider the argument value aspect=1/2 in the above
command. We could have set aspect="xy" to bank the line segments
connecting the graphed values of E and NOx to 45 degrees. Normally,
however, we do not want to carry out banking of the raw data if they
are noisy. Rather, we want to bank an underlying smooth pattern in
this situation. In the examples below, we show how to bank using the
line segments of the loess curves.
191

Chapter 3 Traditional Trellis Graphics
Second, notice that the loess curve exceeds the maximum value of the
vertical axis in the top panel. This occurs because Spotfire S+ chooses
the axis limits based on the values of E and NOx, but the loess curves
are computed by panel.loess after all of the scaling has been carried
out. In the examples below, we show how to force the scaling to
account for the values of the loess curves.

The argument prepanel to the general display functions allows us to
bank data points to 45 degrees based on loess curves. In addition, we
can take the loess curves into account when computing the axis
ranges. The following command shows how to do this:

> xyplot(NOx ~ E|C, data = ethanol,
+ prepanel = function(x,y)
+ prepanel.loess(x, y, span=1/2, degree=2),
+ layout = c(1,6),
+ panel = function(x,y) {
+ panel.xyplot(x,y)
+ panel.loess(x, y, span=1/2, degree=2)
+ }
+)

Figure 3.33: Multipanel display of the ethanol data with loess curves superposed.
192

Aspect Ratio
The prepanel argument accepts a function and does panel-by-panel
computations, just like the panel argument. However, the prepanel
computations are carried out before the axis limits and aspect ratio
are determined; this allows them to be used in the determination of
the axis scaling.

The return value of a prepanel function is a list with prescribed
component names. These names are shown in the code of
prepanel.loess:

> prepanel.loess

function(x, y, ...)
{

xlim <- range(x)
ylim <- range(y)
out <- loess.smooth(x, y, ...)
x <- out$x
y <- out$y
list(xlim = range(x, xlim), ylim = range(y, ylim),

dx = diff(x), dy = diff(y))
}

The component values xlim and ylim determine axis ranges just as
they do when given as arguments to the general display functions.
The values dx and dy are the horizontal and vertical changes of the
line segments that are to be banked to 45 degrees.

The function prepanel.loess computes the smooths for all panels. It
then computes values of xlim and ylim to ensure the curves are
included in the ranges of the axes. Finally, prepanel.loess returns
the changes in the line segments that make up the plotted curve. Any
of the component names can be missing from the list; if either dx or
dy is missing, the other must be as well. When dx and dy are both
present, they provide the information needed for banking to 45
degrees, as well as the instruction to do so. Thus, the aspect argument
should not be used as an argument when dx and dy are present.
193

Chapter 3 Traditional Trellis Graphics
DATA STRUCTURES

Trellis Graphics uses the Spotfire S+ formula language to specify data
for plotting. This requires the data to be stored in structures that work
with formulas. Roughly speaking, the data variables must either be
stored in a data frame or be vectors of the same length; this is also
true of the Spotfire S+ modeling functions such as lm.

To ensure that Trellis functions are easy to use regardless of the
structure of your data, Spotfire S+ includes three functions that
convert data structures of different types into data frames. The
make.groups converts multiple vectors into a single data frame, the
as.data.frame.array function converts multidimensional arrays into
data frames, and as.data.frame.ts converts time series into data
frames. We discuss each of these functions in this section.

Vectors The function make.groups takes several vectors and constructs a data
frame with two variables, data and which. To illustrate this function,
consider payoffs of the New Jersey Pick-It lottery from three time
periods. The data are stored in the built-in vectors lottery.payoff,
lottery2.payoff, and lottery3.payoff. Suppose we want to create
box plots of the vectors to compare their distributions. We first
convert the three vectors to a single data frame using the make.groups
function:

> lottery.payoffs <- make.groups(
+ "1975" = lottery.payoff,
+ "1977" = lottery2.payoff,
+ "1981" = lottery3.payoff)

> lottery.payoffs

 data which
 1 190.0 1975
 2 120.5 1975
 3 285.5 1975
 4 184.0 1975
 5 384.5 1975
 6 324.5 1975
 7 114.0 1975
 8 506.5 1975
194

Data Structures
 9 290.0 1975
10 869.5 1975
11 668.5 1975
12 83.0 1975
13 . . .

The data column is a numeric variable containing the payoff values
from each of the three vectors. The which column is a factor variable
with three levels corresponding to the chosen names "1975", "1977",
and "1981":

> names(lottery.payoffs)
 [1] "data" "which"

> levels(lottery.payoffs$which)
[1] "1975" "1977" "1981"

Thus, lottery.payoff appears at the beginning of the data frame,
lottery2.payoff is in the middle, and lottery3.payoff is at the end.
Note that it is not necessary to specify names for the factor levels in
make.groups; if names are not given, the levels correspond to the
names of the original data vectors.

The command below shows how to create box plots of the
lottery.payoffs data:

> bwplot(which~data, data=lottery.payoffs)

Arrays The function as.data.frame.array converts multidimensional arrays
into data frames. Consider the built-in object iris, which is a three-
way array containing 50 measurements of four variables for each of
three varieties of iris:

> dim(iris)
[1] 50 4 3

To convert iris to a data frame in preparation for Trellis plotting, use
the as.data.frame.array function as follows:

> iris.df <- as.data.frame.array(iris, col.dims=2)
> names(iris.df) <- c("Sepal.L", "Sepal.W",
+ "Petal.L", "Petal.W", "flower", "variety")
195

Chapter 3 Traditional Trellis Graphics
The resulting data frame iris.df has the second dimension of iris as
its first four columns:

> iris.df

 Sepal.L Sepal.W Petal.L Petal.W flower variety
 1 5.1 3.5 1.4 0.2 1 Setosa
 2 4.9 3.0 1.4 0.2 2 Setosa
 3 4.7 3.2 1.3 0.2 3 Setosa
 4 4.6 3.1 1.5 0.2 4 Setosa
 5 5.0 3.6 1.4 0.2 5 Setosa
6 . . .

To produce a scatterplot matrix of the iris.df data, use the following
code:

> superpose.symbol <- trellis.par.get("superpose.symbol")
> for (i in 1:4) iris.df[,i] <- jitter(iris.df[,i])

> splom(~iris.df[,1:4],
+ key = list(
+ space="top", columns=3,
+ text=list(levels(iris.df$variety)),
+ points=Rows(superpose.symbol, 1:3)),
+ groups = iris.df$variety,
+ panel = panel.superpose)

To prevent the plotting symbols from overlapping, the data have been
jittered using the jitter function.

Time Series The function as.data.frame.ts accepts one or more time series as
arguments and produces a data frame with variables named series,
which, time, and cycle. The series component is the data from all of
the time series combined into one long vector. The time component
gives the time associated with each of the data points, measured in the
same time units as the original series. The cycle variable gives the
periodic component of the times, and which is a factor that identifies
the original time series containing the measurement.

In the following example, we use as.data.frame.ts to convert the
built-in time series hstart. The hstart series contains census data on
the number of housing starts in the United States from January 1966
to December 1974.
196

Data Structures
> as.data.frame.ts(hstart)

 series which time cycle
1 81.9 hstart 1966.000 Jan
2 79.0 hstart 1966.083 Feb
3 122.4 hstart 1966.167 Mar
4 143.0 hstart 1966.250 Apr
5 133.9 hstart 1966.333 May
6 . . .

The following command displays the housing starts for each month
separately:

> xyplot(series ~ time|cycle,
+ data = as.data.frame.ts(hstart), type = "b",
+ xlab = "Year", ylab = "Housing Starts by Month")
197

Chapter 3 Traditional Trellis Graphics
SUMMARY OF TRELLIS FUNCTIONS AND ARGUMENTS

Table 3.1: An alphabetical guide to Trellis Graphics.

Statement Purpose Example

as.data.frame.array function iris.df <-as.data.frame.array(iris,
col.dims = 2)

as.data.frame.ts function data.frame.ts(hstart)

aspect argument xyplot(NOx~E, data=gas, aspect=1/2,
xlab = "Equivalence Ratio",
ylab = "Oxides of Nitrogen",
main = "Air Pollution",
sub = "Single-Cylinder Engine")

barchart function barchart(names(mileage.means) ~
mileage.means, aspect = 1)

between argument barley.plot <- update(barley.plot,
between = list(y=c(0,0,0,0,1,0,0,0)))

bwplot function bwplot(Type~Mileage, data=fuel.frame,
aspect=1)

cloud function cloud(Mileage ~ Weight*Disp.,
data = fuel.frame,
screen = list(z=-30, x=-60, y=0),
xlab = "W", ylab = "D", zlab = "M")

contourplot function contourplot(dataz ~ datax*datay,
data = gauss, aspect = 1,
at = seq(from=0.1, to=0.9. by=0.2))

data argument See the aspect example.

densityplot function densityplot(~Mileage, data=fuel.frame,
aspect=1/2, width=5)

dev.off function dev.off()
198

Summary of Trellis Functions and Arguments
dotplot function dotplot(names(mileage.means) ~
logb(mileage.means, base=2),
aspect=1, cex=1.25)

equal.count function GIVEN.E <- equal.count(ethanol$E,
number=9, overlap=1/4)

formula argument xyplot(formula = gas$NOx ~ gas$E)

histogram function histogram(~Mileage, data=fuel.frame,
aspect=1, nint=10)

intervals argument GIVEN.E2 <- shingle(ethanol$E,
intervals = cbind(
endpoints[-6], endpoints[-1]))

jitter argument stripplot(Type~Mileage, data=fuel.frame,
jitter=TRUE, aspect=1)

key argument update(barley.plot, key = list(
points = Rows(trellis.par.get(
"superpose.symbol"), 1:2),
text = list(levels(barley$year))))

layout argument dotplot(site ~ yield | year*variety,
data=barley, layout=c(2,5,2))

levelplot function levelplot(dataz ~ datax*datay,
data=gauss, aspect=1, cuts=6)

levels function levels(barley$year)

main argument See the aspect example.

make.groups function lottery.payoffs <- make.groups(
lottery.payoff, lottery2.payoff,
lottery3.payoff)

Table 3.1: An alphabetical guide to Trellis Graphics. (Continued)

Statement Purpose Example
199

Chapter 3 Traditional Trellis Graphics
page argument update(market.plot, page = function(n)
text(x=0.75, y=0.95, paste("page",n),
adj=0.5))

panel argument xyplot(NOx~E, data=gas, aspect=1/2,
panel=panel.special)

panel.superpose function xyplot(Mileage~Weight, data=fuel.frame,
aspect=1, groups=Type,
panel=panel.superpose)

panel.loess function xyplot(NOx ~ C|GIVEN.E, data=ethanol,
aspect=2.5, panel=function(x,y) {
panel.xyplot(x,y)
panel.loess(x, y, span=1) })

panel.xyplot function See the panel.loess example

parallel function parallel(~fuel.frame)

par function par(ask=TRUE)

par.strip.text argument xyplot(NOx ~ E|C, data = ethanol,
par.strip.text = list(cex=2))

piechart function piechart(names(mileage.means) ~
mileage.means)

prepanel argument xyplot(NOx ~ E|C, data=ethanol,
prepanel = function(x,y)
prepanel.loess(x, y, span=1/2,
degree=2), layout=c(1,6),
panel=function(x,y) {
panel.xyplot(x,y)
panel.loess(x, y, span=1/2, degree=2) })

prepanel.loess function See the prepanel example

print function print(box.plot,
position=c(0, 0, 1, 0.4), more=TRUE)

Table 3.1: An alphabetical guide to Trellis Graphics. (Continued)

Statement Purpose Example
200

Summary of Trellis Functions and Arguments
print.trellis function ?print.trellis

qq function qq(Type~Mileage, data=fuel.frame,
aspect=1, subset =
(Type=="Compact") | (Type=="Small"))

qqmath function qqmath(~Mileage, data = fuel.frame,
subset = (Type=="Small"))

reorder.factor function barley$variety <- reorder.factor(
barley$variety, barley$yield, median)

Rows function Rows(trellis.par.get(
"superpose.symbol"), 1:2)

scales argument xyplot(NOx~E, data = gas, aspect = 1/2,
ylim = c(0,6), scales = list(
cex=2, tick number=4))

screen argument wireframe(dataz ~ datax*datay,
data = gauss, drape = FALSE,
screen = list(z=45, x=-60, y=0))

shingle function See the intervals example.

show.settings function show.settings()

skip argument bwplot(age ~ log(1+usage) | income*pick,
strip = function(...)
strip.default(..., strip.names=TRUE),
skip = c(F,F,F,F,F,F,F,T),
layout = c(2,4,2), data = market.survey)

span argument See the prepanel.loess example.

Table 3.1: An alphabetical guide to Trellis Graphics. (Continued)

Statement Purpose Example
201

Chapter 3 Traditional Trellis Graphics
space argument update(barley.plot, key = list(
points = Rows(trellis.par.get(
"superpose.symbol"), 1:2),
text = list(levels(barley$year)),
space = "right"))

splom function splom(~fuel.frame)

strip argument See the skip example.

stripplot function See the jitter example.

sub argument See the aspect example.

subscripts argument xyplot(NOx ~ E|C, data = ethanol,
aspect = 1/2,
panel = function(x,y,subscripts)
text(x, y, subscripts, cex=0.75))

subset argument xyplot(NOx~E, data = gas, subset = E<1.1)

superpose.symbol argument trellis.par.get("superpose.symbol")

trellis.args arguments ?trellis.args

trellis.3d.args arguments ?trellis.3d.args

trellis.device function trellis.device(postscript,
file = "settings.ps")

trellis.par.get function plot.line <- trellis.par.get("plot.line")

trellis.par.set function trellis.par.set("plot.symbol",
plot.symbol)

update function See the between example.

Table 3.1: An alphabetical guide to Trellis Graphics. (Continued)

Statement Purpose Example
202

Summary of Trellis Functions and Arguments
width argument See the densityplot example.

wireframe function See the screen example.

xlab argument See the aspect example.

xlim argument xyplot(NOx~E, data = gas, xlim = c(0,2))

xyplot function xyplot(Mileage~Weight, data=fuel.frame,
aspect=1)

ylab argument See the aspect example.

ylim argument See the scales example.

Table 3.1: An alphabetical guide to Trellis Graphics. (Continued)

Statement Purpose Example
203

Chapter 3 Traditional Trellis Graphics
204

Introduction 206
Basic Terminology 206

Using motif Graphics Windows 207
Starting and Stopping the motif Device 207
An Example Plot 207
Motif Window Features 209
The Options Menu 211
Available Colors Under X11 216

Using java.graph Windows 221
Starting and Stopping the java.graph Device 221
An Example Plot 221
java.graph Window Features 223
The Options Menu 224

Printing Your Graphics 233
Printing with PostScript Printers 233
Using the Print Option from the Motif Window 234
Print Options in the Java Graphics Window 235
Using the printgraph Function 235
Using the postscript Function 236
Creating Encapsulated PostScript Files 239
Setting PostScript Options 241
Creating Color PostScript Graphics 243
Creating Bitmap Graphics 245
Managing Files from Hard Copy Graphics Devices 246
Using Graphics from a Function or Script 246

EDITING GRAPHICS IN UNIX 4
205

Chapter 4 Editing Graphics in UNIX
INTRODUCTION

In this section, we assume you are familiar with your particular
window system. In particular, we assume you know how to start your
window system and set your display so that X11 applications can
display windows on your screen. For further information on a
particular window system, consult your system administrator or the
following references:

• Quercia, V. and O’Reilly, T. (1989). X Window System User’s
Guide. Sebastopol, California: O’Reilly and Associates.

• Quercia, V. and O’Reilly, T. (1990). X Window System User’s
Guide, Motif Edition. Sebastopol, California: O’Reilly and
Associates.

Basic
Terminology

In this section, we refer to the window in which you start Spotfire S+
as the Spotfire S+ window. The window that is created when you start a
windowing graphics device from the Spotfire S+ window is called the
graphics window.
206

Using motif Graphics Windows
USING MOTIF GRAPHICS WINDOWS

In a motif graphics window, you can interactively change the color
specifications of your plots and immediately see the result and also
interactively change the specifications that are used to send the plot to
a printer.

Starting and
Stopping the
motif Device

To open a motif graphics window, start the motif device by calling
the motif function from Spotfire S+ command prompt:

> motif()

For information about the available motif arguments, see the section
The motif Device on page 366 and refer to motif in the Spotfire S+
online help.

The motif device is started automatically in both the Java-enabled
and Java-disabled command-line versions of Spotfire S+ if no other
graphics device is open when you use Spotfire S+ to evaluate a high-
level plotting function.

To stop a motif graphics device (and close the motif window)
without quitting Spotfire S+, use the dev.off or graphics.off
function.

An Example
Plot

As you explore the various motif features, you can use the following
Spotfire S+ code to generate an easily-reproducible graphic:

> plot(corn.rain, corn.yield, type="n",
+ main="Plot Example")
> points(corn.rain, corn.yield, pch="*", col=2)
> lines(lowess(corn.rain, corn.yield), lty=2, col=3)

Warning

Do not remove the motif graphics window by using a window manager menu! If you remove a motif
window in this way, Spotfire S+ will not know that the graphics device has been removed.
Thus, this graphics device will still appear on the vector returned by dev.list, but if you try to
send plot commands to it you will get an error message. If you do accidentally remove the motif
window with a window manager menu, use the dev.off function to tell Spotfire S+ that this
device is no longer active.
207

Chapter 4 Editing Graphics in UNIX
> legend(12, 23, c("Color 1", "Color 2", "Color 3"),
+ pch=" * ", lty=c(1, 0, 2), col=c(1, 2, 3))

Note that in the call to legend there is a space before and after the * in
the argument pch=" * ".

To create the example plot in a motif window, first start the motif
device:

> motif()

Then run the example code to create the plot shown in Figure 4.1.

By default, the color of the title, legend box, axis lines, axis labels, and
axis titles are color 1. We have specified the points to have color 2,
and the dashed line representing the smooth from the lowess
command to have color 3.

Figure 4.1: Plot example in a motif window.
208

Using motif Graphics Windows
Motif Window
Features

The features of the Spotfire S+ motif window are described below.

• Title bar Contains the window Menu button,
the title Spotfire S+, the Minimize
button, and the Maximize button.

• Menu Bar Contains three menu titles: Graph,
Options, and Help.

• Pane Area where Spotfire S+ displays any
graphs that you create while the motif
graphics device is active.

• Footer Area where Spotfire S+ displays status
or error messages about the graph you
have created.

• Resize Borders Used to change the size of the window.

The Help Menu The Help menu at the far right side of the menu bar produces a pop-
up window, rather than a menu, when you select it. The help window
contains a condensed version of the motif help file.

The Graph Menu The Graph menu provides the following commands:

• Redraw Redraws the graph that appears in the
pane of the graphics window.

• Copy Creates a copy of the current graphics
window, as shown in Figure 4.2. The
copy has a title bar, a menu bar, a
pane, and a footer, just like the
original. The title in the title area is
Spotfire S+ Copy. The menu bar in a
copy of the graphics window does not
contain an Options menu title, only
the Graph and Help menu titles.

• Print Converts the current plot in the
graphics window to either a PostScript
or LaserJet file and then sends the file
to your printer. Selecting Print is not
equivalent to typing the printgraph()
command in the Spotfire S+ window.
The printgraph command uses
Spotfire S+ environment variables to
209

Chapter 4 Editing Graphics in UNIX
determine printing defaults, whereas
Print uses the specifications shown in
the Printing dialog box.

When you select Print, a message is displayed in the footer of the
graphics window telling you what kind of file was created and the
command that was used to route the file to the printer. See the section
The Options Menu (page 211) for a description of how to set the
defaults for printing.

Figure 4.2: A copy of the motif graphics window.
210

Using motif Graphics Windows
The Options
Menu

The Options menu provides two commands: Color Scheme and
Printing.

Color Scheme
Dialog Box

The Color Scheme dialog box is a powerful feature of the motif
windowing graphics device. It allows you to change the colors in your
plot interactively and immediately see the results. Figure 4.3 shows an
example of the Color Scheme dialog box. This window has a menu
button in title bar.

The Color Scheme dialog contains:

• The Available Color Schemes list

• The Color Scheme Specifications editor showing the
specifications for the selected color scheme

Note

The information in the following “Color Scheme Dialog Box” section applies only if you are
using Spotfire S+ in the backward compatible use.device.palette(T) mode. When
using Spotfire S+ in use.device.palette(F) mode (which is the default), disregard this
information and refer to section Color Specification on page 3 for information about
working with colors.

For information about backward compatibility for the Spotfire S+ graphics features, see
section Backward Compatibility (page 24).

Figure 4.3: The motif Color Scheme dialog box.
211

Chapter 4 Editing Graphics in UNIX
• A button marked Create New Color Scheme

• An Apply button

• A Reset button

• A Save button

• A Close button

• A Help button

The Help Button

The Help button displays a pop-up help window for this dialog box.

The Color Scheme Specifications Editor

The Color Scheme Specifications editor includes specifications for
the following characteristics:

• Name The name of the color scheme.

• Background The color of the background. This
specification can have only one color
name or value.

• Lines The color names or values used for
lines.

• Text The color names or values used for
text.

• Polygons The color names or values used with
the polygon, pie, barplot, and hist
plotting functions.

• Images The color names or values used with
the image plotting function.

All color schemes must have values for the specifications Name,
Background, and Lines. The specifications for Text, Polygons, and
Images default to the specifications for Lines if left blank.

See the section Available Colors Under X11 (page 216) for
information on how to specify colors with the motif windowing
graphics device.
212

Using motif Graphics Windows
Applying a Different Color Scheme

To apply a different color scheme, select one of the color scheme
names under the Available Color Schemes option menu. Note that
its specifications are displayed in the Color Scheme Specifications
editor. The plot in the graphics window, however, is still based on the
original color scheme. To apply the selected color scheme, click the
Apply button.

Your available color schemes will not necessarily have the names or
specifications shown in Figure 4.3. Initially, the available color
schemes are defined using X resources.

Creating New Color Schemes

To create a new color scheme, follow these steps:

1. Click the Create New Color Scheme button. The word
“unnamed” appears as the last color scheme in the Available
Color Schemes list. The default values under the Color
Scheme Specifications are the name “unnamed”, a black
background, and white lines.

2. Click the Name box. Type in a name to replace “unnamed”.

3. In the Background box, specify the background color for this
color scheme. The background can only have one color
value. Refer to the section Available Colors Under X11 (page
216) for information on available color names.

4. In the Lines box type in one or more color names.

5. Repeat the previous step for the Text, Polygons, and Images
boxes.

6. To make this color scheme permanent, click the Save button.
If you do not save your newly-created color scheme, it
remains only until you close the graphics window.

7. Click the Apply button. The plot in the graphics window is
now based on your newly-created color scheme.

The Reset Button

Any time you are using the Color Scheme dialog box, click the
Reset button. If you have not yet clicked on the Apply button, then
the Available Color Schemes menu and Color Scheme
Specifications editor are set to how they were when you first entered
213

Chapter 4 Editing Graphics in UNIX
the dialog box. If you have at some time clicked on the Apply button,
then the color schemes are reset to how they were immediately after
the last time you clicked on the Apply button.

The Printing
Dialog Box

The Printing command in the Options menu allows you to
interactively change the specifications for the printing method used
when you select Print from the Graph menu.

Figure 4.4 shows the Printing dialog box, which provides options for
the printing Method and Orientation, a text entry box for specifying
the actual print Command, and (if Method is LaserJet) options for
specifying the Resolution. There are buttons labeled Apply, Reset,
Print, Save, Close, and Help. This window also has a menu button
in the title bar.

Method, Orientation, Resolution, and Command

The print options are as follows:

• Method Determines the kind of file that is
created when you select the Print
command. The PostScript method
produces a file compatible with
PostScript printers. The LaserJet
method produces a file of compatible
with LaserJet printers.

• Orientation Determines the orientation of the
graph on the paper. Landscape
orientation puts the x-axis along the

Figure 4.4: The motif Printing dialog box.
214

Using motif Graphics Windows
long side of the paper; Portrait
orientation puts the x-axis along the
short side of the paper.

• Command Allows you to specify the command
that is used to send the file to the
printer.

• Resolution Available only if Method is set to
LaserJet. Allows you to specify the
resolution of plots printed on an HP
LaserJet printer.

The default settings for Method, Orientation, Command, and
Resolution are initially set using X resources. The way to change
these settings is explained below.

Printing Options Buttons

• Apply Click to apply any changes you have
made to the printing specifications.
Only the specifications are changed;
no printing is done. Any changes you
make last only as long as the graphics
window remains, or until you make
more changes and select Apply again.
Once you close the graphics window,
any changes to the original default
settings are lost unless you click the
Save button.

• Reset Click to reset the printing
specifications. If you have not yet
clicked the Apply button, then the
specifications are set to how they were
when you first entered the dialog box.
If you have at some time clicked the
Apply button, then the specifications
are reset to their state after the last
time you clicked the Apply button.

• Print Click to apply any printing
specification changes you have made
and send the graph to the printer.
215

Chapter 4 Editing Graphics in UNIX
• Save Click to save the current printing
specifications as the default.

• Close Click to dismiss the dialog box.

• Help Click to pop-up a Help window for
this dialog box.

Figure 4.5 shows how the Printing dialog box in Figure 4.4 changes
when you select the LaserJet method. The Resolution options
appear, and the Command line changes.

Available
Colors Under
X11

To specify color schemes for the motif device, use the Color
Scheme Specifications window.

To specify a color scheme, you must create a list of colors. There are
two ways to list colors in a color scheme:

• Use color names listed in the system file rgb.txt.

• Use hexadecimal values that represent colors in the RGB
Color Model.

The first method is a ‘‘front end” to the second method; it is easier to
use, but you are limited to the colors listed in the rgb.txt file. The
second method is more complex, but it allows you to specify any
color your display is capable of producing.

Figure 4.5: Changing printing methods.
216

Using motif Graphics Windows
The initial set of colors is set system-wide at installation. Any changes
you make using the Color Scheme Specifications window override
the system values. This remains true even if system-wide changes are
installed.

Viewing Color
Names in rgb.txt

The rgb.txt file contains a list of predefined colors that have been
mapped from hexadecimal code to color names. To see the available
color names, you can either look at the rgb.txt file with a text editor,
or you can use the showrgb command coupled with a paging program
like more by executing the following command at the UNIX prompt:

showrgb | more

The rgb.txt file is usually located in the directory /usr/lib/X11. To
move into this directory, enter the command:

cd /usr/lib/X11

Table 4.1 gives some examples of available colors in the rgt.txt file.

Hexadecimal
Color Values

You can also specify a color by using a hexadecimal value from the
Red, Green, and Blue (RGB) Color Model, common to most color
displays. Each pixel on the screen is made up of three phosphors: one
red, one green, and one blue. Varying the intensities of each of these
phosphors varies the color that you see on your display.

You can specify the intensity of each of the three phosphors with a
hexadecimal triad. The first part of the triad corresponds to the
intensity of the red phosphor, the second to the intensity of the green
phosphor, and the third to the intensity of the blue phosphor. A
hexadecimal triad must begin with the symbol #. For example, the
hexadecimal triad #000 corresponds to no intensity in any of the

Table 4.1: Some available colors in rgb.txt.

violet blue green yellow

orange red black white

ghost white peach puff lavender blush lemon chiffon

lawn green chartreuse olive drab lime green

magenta medium orchid blue violet purple
217

Chapter 4 Editing Graphics in UNIX
phosphors and yields the color black, while the triad #FFF
corresponds to maximum intensity in all of the phosphors and yields
white.

A hexadecimal triad with only one digit per phosphor allows for

4,096 (163) colors. Most displays are capable of many more colors
than this, so you can use more than one digit per phosphor. Table 4.2
shows the allowed forms for an RGB triad; Table 4.3 illustrates
hexadecimal values for some common colors. You can use up to four
digits to specify the intensity of one phosphor (this allows for about 3

x $1014 colors). You do not need to know how many colors your
machine can display; your window system automatically scales the
color specifications to your hardware.

Table 4.2: Legal forms of RGB triads.

Triad Form
Approximate Number of Possible
Colors

#RGB 4,000

#RRGGBB 17 million

#RRRGGGBBB 70 billion

#RRRRGGGGBBBB 3 x 1014

Table 4.3: Hexadecimal values of some common colors.

Hex Value Color Name

#000000 black

#FFFFFF white

#FF0000 red

#00FF00 green

#0000FF blue

#FFFF00 yellow
218

Using motif Graphics Windows
Specifying Color
Schemes

The following conventions are used when listing colors to specify a
color scheme:

• Color names or values are separated by spaces.

• When a color name is more than one word, it should be
enclosed in quotes. For example, ‘‘lawn green”.

• The order in which you list the color names or values
corresponds to the numerical order in which they are referred
to in Spotfire S+ with the graphics parameter col. For
example, if you use the argument col=3 in a Spotfire S+
plotting function, you are referring to the third color listed in
the current color scheme.

• Colors are repeated cyclically, starting with color 1 (which
corresponds to col=1). For example, if the current color
scheme includes three colors (not including the background
color), and you use the argument col=5 in a Spotfire S+
plotting function, then the second color is used.

• You may abbreviate a list of colors with the specification
color1 n color2. This list is composed of (n+2) colors: color1,
color2, and n colors that range smoothly between color1 and
color2. For example, the color scheme blue red 10 "lawn

#00FFFF cyan

#FF00FF magenta

#ADD8E6 light blue

Table 4.3: Hexadecimal values of some common colors.

Hex Value Color Name

Note

When specifying a color scheme in your X resources, the first color listed is the
background color and corresponds to col=0.
219

Chapter 4 Editing Graphics in UNIX
green" specifies a list of 13 colors: blue, then red, then 10
colors ranging in between red and lawn green, and then lawn
green.

• You may specify a list of colors as halftones with the
specification color1 hn color2. This list is composed of (n+2)
‘‘colors,’’ which are actually tile patterns with progressively
more color2 on a background of color1. Halftone specifications
are useful on devices with a limited number of simultaneous
colors. For example, the color scheme blue red h10 "lawn
green" specifies a list of 13 colors, just as our previous
example did. In this example, however, only 3 entries in the
X server’s color table are allocated, rather than the 13
allocated by the previous example.

Note

This method of specification is especially useful with the image plotting function.
220

Using java.graph Windows
USING JAVA.GRAPH WINDOWS

The java.graph device is available only with Java-enabled versions of
Spotfire S+. Using java.graph, you can change interactively the color
specifications of your plots, and then immediately see the result. Also,
you can change interactively the specifications that are used to send
plots to a printer.

Starting and
Stopping the
java.graph
Device

To start a java.graph graphics device, enter the following at the
Spotfire S+ command prompt:

> java.graph()

The java.graph device is started automatically in the Java GUI
version of Spotfire S+ if no other graphics device is open when you
use Spotfire S+ to evaluate a high-level plotting function.

To stop the java.graph device, and close the graphics window
without quitting Spotfire S+, use the dev.off or graphics.off
function. Also, the java.graph device correctly shuts down if you
close it using the standard window system method for closing a
window.

An Example
Plot

As you explore the various java.graph features, you can use the
following Spotfire S+ code to generate an easily-reproducible
graphic:

plot(corn.rain, corn.yield, type="n",
 main="Plot Example")
points(corn.rain, corn.yield, pch="*", col=2)
lines(lowess(corn.rain, corn.yield), lty=2, col=3)
legend(12, 23, c("Color 1", "Color 2", "Color 3"),
 pch=" * ", lty=c(1, 0, 2), col=c(1, 2, 3))

Note that in the call to legend, there is a space before and after the *
in the argument pch=" * ".

Note

The Java GUI is deprecated as of Spotfire S+ 8.1.
221

Chapter 4 Editing Graphics in UNIX
To create the example plot in a java.graph window, first start the
java.graph device:

> java.graph()

Then run the example code to create the plot shown in Figure 4.6.

By default, the color of the title, legend box, axis lines, axis labels, and
axis titles are color 1. We have specified the points to have color 2,
and the dashed line representing the smooth from the lowess
command to have color 3.

Figure 4.6: Plot example in a java.graph window.

Note

Figure 4.6 shows how the java.graph window appears when you start the java.graph device
from the Java-enabled command-line version of Spotfire S+. If you start the java.graph device
from the Spotfire S+ Java GUI instead, the window does not include the File, View, and
Options menus; those menus are available in the Java GUI main window.
222

Using java.graph Windows
java.graph
Window
Features

The elements of the java.graph window are as follows:

• Title bar Contains a title of the form Graph
Window n, the Minimize button, the
Maximize button, the Close window
button, and a window menu.

• Page Contains Spotfire S+ graphs that you
create while the java.graph graphics
device is active. A java.graph device
can have multiple pages.

• Resize Borders Used to change the size of the window.

• Tab bar Displays the page tabs. Use it to
quickly move between pages.

You can right-click the Tab bar to display a menu with the following
options:

• Zoom In Expands the graph.

• Zoom Out Shrinks the graph.

• Zoom to Rectangle Expands the graph so the contents of a
specified rectangle fills the window.
Specify the rectangle by left-clicking in
a corner, dragging the mouse, and
then releasing it in the opposite
diagonal corner. You must define the
rectangle before choosing Zoom to
Rectangle for the graph to be
properly resized.

• Fit in Window Resizes the graph so that it fits
completely within its window.

• Set Graph Colors Opens the Set Graph Colors dialog.
This dialog is discussed in detail later
in this section.

• Graph Options Opens the Graph Options dialog.
This dialog is discussed in detail later
in this section.

• Page Properties... Opens the Page Properties dialog,
which allows you to specify a page title
and page tag. To use this dialog, right-
223

Chapter 4 Editing Graphics in UNIX
click on the tab of the page that you
want to modify; if you select Page
Properties after simply right-clicking
on the Tab bar, no dialog appears.

• Insert Page Inserts a new page after the selected
tab. To use this option, right-click on
the tab of the page that should precede
the new page, and choose Insert
Page. If this tab is the currently active
one, the new page is made active.

• Delete Page Deletes the selected tab and its
associated page. To use this option,
right-click on the tab of the page that
should be deleted, and choose Delete
Page.

• Clear Page Clears the selected page. To use this
option, right-click on the tab of the
page that should be cleared, and
choose Clear Page.

• Delete All Pages Deletes all pages in the current
graphics window.

Note that if you resize a java.graph window, the graph region resizes
but maintains the same height-to-width ratio, adding gray borders on
the sides if necessary. Printing a graph from a java.graph window
also maintains the aspect ratio, expanding as much as possible to fill
the page.

The Options
Menu

If you are running java.graph in the Spotfire S+ Java GUI, the main
Options menu contains options specific to the java.graph device. If
you run java.graph in the Java-enabled command-line version of
Spotfire S+, the Options menu in the graphics window is used to set
options used by all java.graph devices.
224

Using java.graph Windows
Set Graph Colors
Dialog Box

Use the Set Graph Colors dialog to set the color scheme for the
active java.graph window. The Set Graph Colors dialog (Figure
4.7) allows you change the colors in your plot interactively and
immediately see the results.

The Set Graph Colors dialog box contains:

• Selection buttons for each of the available color schemes

• An Edit Colors button

• An OK button

• A Cancel button

• A Help button (available in the Java GUI only)

Note

The information in the following “Set Graph Colors Dialog Box” section applies only if you are
using Spotfire S+ in the backward compatible use.device.palette(T) mode. When
using Spotfire S+ in use.device.palette(F) mode (which is the default), disregard this
information and refer to the section Color Specification on page 3 for information about
working with colors.

For information about backward compatibility for the Spotfire S+ graphics features, see
section Backward Compatibility (page 24).

Figure 4.7: The java.graph Set Graph Colors dialog box.
225

Chapter 4 Editing Graphics in UNIX
The Help Button

Click the Help button to view the help window for this dialog box,
which contains essentially the information presented here.

Available Color Schemes

The following color schemes can be selected from the Set Graph
Colors dialog:

• Default Used when graphs are first created in a
java.graph window. Initially, the
Default color scheme is the Standard
color scheme, which uses a white
background with a palette of darker
colors for lines. However, you can
customize this so that any color
scheme appears by default in your
graphs.

• Standard White background with a palette of
darker colors for lines. Initially, this is
used as the Default color scheme; it is
available mainly so you can recover
the initial Default color scheme after
temporarily customizing it for your
graphics.

• Trellis Gray background, mostly pastel line
colors, and the cyan-magenta color
scale for images.

• Trellis Black on White White background, various shades of
gray for lines, and a grayscale for
images.

• White on Black Grayscale color scheme with a black
background, white and various shades
of gray for lines, and a grayscale for
images.

• Cyan Magenta White background, an assortment of
line colors, and a cyan-magenta color
scale for images. Unlike the other
226

Using java.graph Windows
cyan-magenta color scales, this one
scales through black rather than
through white.

• Topographical Similar to Cyan Magenta, except with
image colors chosen to provide a
reasonable representation of
topographical data.

• User 1, User 2 Similar to the standard color scheme,
these are intended for further
customization by end users.

Changing the Color Scheme

To select a different color scheme for your plot, click a name in the
Set Graph Colors dialog. The name of the newly chosen color
scheme is highlighted, and the selected java.graph window shows
the chosen color scheme. This, however, is temporary. To make the
change permanent, you must click on the OK button. If you click
Cancel, the previous color scheme is restored.

Editing Colors

Each color scheme consists of four editable parts: a name, a background
color, a set of line colors, and a set of image colors. To view the colors in a
color scheme, click on Edit Colors in the Set Graph Colors dialog
to display the Edit Graph Colors dialog shown in Figure 4.8.

Use the top of the Edit Graph Colors dialog to edit individual colors
within a color scheme. To edit the background color, click the Edit
Background Color button in the Edit Graph Colors dialog. To edit
colors in the Line Colors or Image Colors palettes, click on a color
rectangle, then select either the Edit Selected Line Color button or
Edit Selected Image Color button as appropriate. The currently
selected color is surrounded by a red border. You can select multiple
consecutive colors by dragging the mouse over the desired colors; the
red border appears around all selected colors.
227

Chapter 4 Editing Graphics in UNIX
The three buttons labeled Edit xxx Color in the Edit Graph Colors
dialog bring up identical dialogs, titled Edit xxx Color. The Edit
Image Color dialog is shown in Figure 4.9.

Figure 4.8: The Edit Graph Colors dialog.

Figure 4.9: The Edit Image Color dialog.
228

Using java.graph Windows
Each dialog has three tabs: Swatches, HSB, and RGB. The three tabs
provide alternative but equivalent methods for modifying your colors.
The Swatches tab is the easiest to use: simply select a color from the
palette of colors, examine the Preview section to see if it has the
effect you’re looking for, then click OK.

The HSB tab lets you specify colors using the HSB model (Hue-
Saturation-Brightness) used by the PostScript page description
language. Use this tab if you have an HSB color map you are trying to
match exactly in your java.graph device. You can either specify the
HSB values exactly, using the H, S, and B text fields, or relatively, by
using the pointer on the color bar. The H values are drawn from a
color wheel, so H accepts the values 0 to 359. The S and B values are
percentages with 0 being none of the quality and 100 being full value.
The color bar can select values for any of the three qualities,
depending on which of the H, S, and B radio buttons is active. The H
color bar appears as a rainbow of colors. The S color bar is the
selected color shown with varying saturation, from white (no
saturation) to full intensity color. The B color bar shows the amount
of light in the color, from none (black) to full. The HSB tab also
shows you, for your information only, the associated RGB color of
the current HSB settings.

The RGB tab allows you to specify colors using the standard Red-
Green-Blue color model. Use the sliders or the text fields to describe
the appropriate RGB values.

Use the bottom of the Edit Graph Colors dialog to manipulate color
schemes and graph colors, as follows:

• Color Schemes popup list Use this list to select one of the known
color schemes. Note that selecting a
color scheme does not update the
colors in the Edit Graph Colors
dialog.

• Get Colors Retrieves the colors from the color
scheme selected in the popup list and
update the displayed colors.
229

Chapter 4 Editing Graphics in UNIX
• Set Color Scheme Sets the color scheme selected in the
popup list to the displayed colors. This
setting is temporary until you click
OK. If you click Cancel, the previous
colors are restored.

• Get Graph Colors Retrieves the colors from the color
scheme of the selected graph. This
essentially restores the initial colors in
the dialog, since the colors from the
selected graph’s color scheme are
shown when the dialog first opens.

• Set Graph Colors Sets the color scheme of the selected
graph window to be the current palette
of colors. You can use this option to
temporarily test combinations of
colors on an active graph. To commit
color changes made with this option,
click the OK button; if you click
Cancel, all changes are lost.

• Set Default Color Scheme
Sets the default color scheme to the
displayed colors. This is equivalent to
selecting the default color scheme in
the Color Schemes popup list, then
clicking Set Color Scheme.

The Graph
Options Dialog

The second graph menu item under the Options menu is labeled
Graph Options. This brings up the Graph Options dialog, shown
in Figure 4.10. Use the radio buttons under New Plot Action as
described below to specify how the graphics window should respond
to clear commands. Clear commands are generated whenever Spotfire
S+ attempts to create a new high-level graphic.
230

Using java.graph Windows

• Delete pages, then add new pages
The first time that a clear command is
issued to a java.graph device within a
top-level expression, all existing pages
in the window are deleted and a new
“Page 1” is created. Additional clear
commands within the top-level
expression create additional pages. In
this mode, graphics exist in the device
only until a new top-level graphics
expression replaces them.

• New page Whenever a clear command is issued,
create a new page. Use this mode to
keep all your graphics for a session
within a single java.graph device.

• Reuse page Whenever a clear command is issued,
clear the current page. In this mode,
functions that display multiple plots
will end up displaying just the last one.

Use the check boxes under Mouse Actions as follows:

• Enable active regions Select this checkbox to enable active
regions created with java.identify to
be highlighted as the mouse passes
over them and their associated actions
to be performed when the mouse is
clicked in the region. The default is
selected.

Figure 4.10: The Graph Options dialog.
231

Chapter 4 Editing Graphics in UNIX
• Display mouse position
Select this checkbox to display x-y
coordinates of the mouse in the upper-
right corner of the graph window. The
text field immediately following,
labeled Mouse position digits, allows
you to specify the number of decimal
digits to use when displaying mouse
coordinates.
232

Printing Your Graphics
PRINTING YOUR GRAPHICS

Spotfire S+ produces camera-ready graphics plots for technical
reports and papers. Spotfire S+ supports two kinds of hard copy
graphics devices: PostScript laser printers and Hewlett-Packard
HP-GL plotters. Spotfire S+ also supports publication on the World
Wide Web by means of a graphics device for creating files in Portable
Document Format (PDF), and popular word processing software by
means of a graphics device for creating files in Enhanced Metafile
Metafile (EMF) or Windows Metafile Format (WMF) and the ability
of the java.graph graphics device to create popular bitmap formats.
These devices are discussed in the following sections. General rules
for making plot files are discussed in the section Managing Files from
Hard Copy Graphics Devices (page 246).

Printing with
PostScript
Printers

For many Spotfire S+ users, producing graphics suitable for printing
on PostScript-compatible printers is essential.

In Spotfire S+, you can create PostScript graphics using any of the
following methods:

• Choose Print from the Graph menu on the motif
windowing graphics device.

• Use the printgraph function with any graphics device that
supports it. (The motif device supports printgraph, as do
many others. See the Devices help file for a complete list.)

• Use the postscript function directly.

We discuss each of these methods in the following subsections.

If you are using postscript directly, the aspect ratio of the finished
graphic is determined by the width and height, if any, that you
specify, the orientation, and the paper size. If you use the other
methods, by default the aspect ratio is the original aspect ratio of the
device on which the graphic is originally created. For the windowing
graphic device motif, this ratio is 8:6.32 by default. Resizing the
graphics window has no effect on PostScript output created from the
resized window; it retains the aspect ratio of the original, non-resized
window.
233

Chapter 4 Editing Graphics in UNIX
Using the Print
Option from
the Motif
Window

You can easily create PostScript versions of graphics created on the
motif device by using the Print option from the Graph menu. The
behavior of this option is determined by options specified in the
Printing Options dialog box selected from the Options menu. The
following choices are available:

• Method Verify that PostScript is selected.

• Orientation Determines the orientation of the graphic
on the paper. Landscape orientation puts
the x-axis along the long side of the paper;
Portrait orientation puts the x-axis along
the short side of the paper. To choose the
orientation, move the pointer to the
desired choice and click.

• Command A UNIX command executed when you
select the Print option from the Graph
menu. The default value, when Method is
set to PostScript, is the command stored
in the value of ps.options()$command.
To change this command, move the
pointer to this line and click to ensure the
line has input focus, then edit the
command.

As the default command is normally to send a file to a printer, the
most common use of the Print option is to create immediately a hard
copy of the displayed graphic. You can, however, specify a command
such as the following to store the PostScript output in a named file:

cat > myfile <

Here myfile is any desired file name. However, the printgraph
function, described in the next section, provides a more convenient
method for creating files of PostScript output.

To choose the Print option from the graphics device:

1. Move the pointer to the button labeled Graph.

2. Click and a menu appears.
234

Printing Your Graphics
3. Drag the pointer to the Print option, then release the mouse
button. A message appears in the footer of the graphics
window telling you that the specified command has been
executed.

Print Options
in the Java
Graphics
Window

You can print graphics created on the java.graph device by using
the Print option from the main File menu. The Print dialog has the
following options:

• Copies The number of copies of the graphic to
print.

• Print to The name of a printer, or the file name to
be used to print to a file.

• Banner Page Title The title to appear on the banner page of
your print job, if your printer is configured
to print a banner page.

• Print Command Options
Additional options to be sent to your print
command.

As the default command is normally to send a file to a printer, the
most common use of the Print option is to create immediately a hard
copy of the displayed graphic.

Using the
printgraph
Function

In its simplest use, the printgraph function is just another way to
produce immediate hard copies of graphics created on windowing or
other graphics devices. Many graphics devices for use with graphics
terminals and emulators, including tek14, support the printgraph
function.

The default behavior of the printgraph function is determined by a
number of environment variables. These are discussed in the User’s
Guide. To make printgraph produce PostScript output, make sure
the environment variable S_PRINTGRAPH_METHOD is set to
postscript, or call printgraph directly with the argument
method="postscript".
235

Chapter 4 Editing Graphics in UNIX
S_PRINTGRAPH_METHOD determines the default value for the
method argument to printgraph and specifies the type of printer for
which printgraph produces output. Environment variables cannot
be set from within Spotfire S+; if you want to change an environment
variable, quit Spotfire S+, reset the environment variable, then restart
Spotfire S+.

Within your Spotfire S+ session, you can control the default printing
behavior by using ps.options. We recommend that you use
ps.options instead of environment variables whenever possible.
The options that can be controlled through ps.options are
described in the section Setting PostScript Options (page 241).

To call printgraph to print an immediate hard copy of the current
graphic, use the following call:

> printgraph()

You can override the default method, command, and orientation with
arguments to printgraph:

> printgraph(horizontal=F, method="postscript",
+ command="lpr -h")

Using the
postscript
Function

You can start the postscript device directly very simply as follows:

> postscript()

By default, this writes PostScript output to a temporary file using the
template specified in ps.options. When the device is shut down, the
output is printed with the command specified in ps.options.

You can specify many options as arguments to postscript; most of
these are global PostScript printing options that are also used by the
Print option of the windowing graphics device and by the
printgraph function---these options are discussed in the section
Setting PostScript Options (page 241). The append, onefile, and
print.it arguments, however, are specific to calls to postscript.

The onefile argument is specified as a logical value, which defaults
to TRUE. By default, when you start the postscript device explicitly,
plots are accumulated into a single file as given by the file
argument. If no file argument is specified, the file is named using
the template specified in ps.options()$tempfile. When onefile
is FALSE, a separate file is created for each plot and the PostScript file
236

Printing Your Graphics
created is structured as an Encapsulated PostScript document. See the
section Creating Encapsulated PostScript Files (page 239), for further
details.

The append option is a logical value that specifies whether PostScript
output is appended to file if it already exists. In addition to
appending the new graphics, Spotfire S+ edits the file to comply with
the PostScript Document Structuring Conventions. If append=FALSE,
new graphics output writes over the existing file, destroying its
previous contents.

You can use the print.it argument to specify that the graphic
created on the postscript device be both sent to the printer and
written to a file, as follows:

> postscript(file="mystuff2.ps", print.it=T)
> plot(corn.rain)
> title("A plot created with postscript()")
> dev.off()

Starting to make postscript file.
 null device
 1

> !vi mystuff2.ps

%!PS-Adobe-3.0
%%Title: (Spotfire S+ Graphics)
%%Creator: Spotfire S+
%%For: (John Doe,x240)
%%CreationDate: Thur Sep 04 11:45:21 2008
%%BoundingBox: 20 11 592 781
%%Pages: (atend)
. . .
237

Chapter 4 Editing Graphics in UNIX
Using postscript directly can be cumbersome, since you don’t get
immediate feedback on graphics produced incrementally. You can,
however, build a graphics function incrementally, using a windowing
graphics device or graphics terminal. Then, when the graphics
function works well on screen, start a postscript device and call
your graphics function. Such an approach will result in fewer hard
copies for the recycling bin. For example, consider the code below,
which combines into a single function the commands needed for
creating a complicated graphic:

> usasymb.plot
function()
{

select <- c(“Atlanta”, “Atlantic City”, “Bismarck”,
“Boise”, “Dallas”, “Denver”, “Lincoln”,
“Los Angeles”, “Miami”, “Milwaukee”,
“New York”, “Seattle”)

city.name <- city.name
city.x <- city.x
city.y <- city.y
names(city.x) <- names(city.y) <-

names(city.name) <- city.name
pop <- c(425, 60, 28, 34, 904, 494, 129, 2967, 347,

741, 7072, 557)
usa()
symbols(city.x[select], city.y[select], circles =

sqrt(pop), add = T)
size <- ifelse(pop > 1000, 2, 1)
size <- ifelse(pop < 100, 0.5, size)
text(city.x[select], city.y[select], city.name[

select], cex = size)
}

Warning

If you want to both print the graphic and keep the named PostScript file, be sure that the UNIX
print command does not delete the printed file. For example, on some computers, the default
value of ps.options()$command (which is determined by the environment variable
S_POSTSCRIPT_PRINT_COMMAND) is lpr -r -h, where the -r flag causes the printed
file to be deleted. The following call to postscript replaces this default with a command that does
not delete the file:

> postscript(file="mystuff2.ps", print.it=T, command="lpr -h")
238

Printing Your Graphics
Modifying a function containing a string of graphics commands is
much easier than retyping all the commands to re-create the graphic.

Another useful technique for preparing PostScript graphics is to use
PostScript screen viewers such as ghostview.

Creating
Encapsulated
PostScript
Files

If you are creating graphics for inclusion in other documents, you
typically want to create a single file for each graphic in a file format
known as Encapsulated PostScript, or EPS. EPS files can be included in
documents produced by many word-processing and text-formatting
programs.

Documents conforming to the Adobe Document Structuring
Convention Specifications, Version 3 for Encapsulated PostScript
have the following first line:

%!PS-Adobe-3.0 EPSF-3.0

They must also include a BoundingBox comment. Non-EPS files
have the following first line:

%!PS-Adobe-3.0

You can use printgraph to produce separate files for each graphic
you produce, as soon as you’ve finished composing it on a windowing
graphics device or terminal/emulator that supports printgraph. You
can specify the file name and orientation of the graphics file. For
example, you can create the PostScript file mystuff.ps containing a
plot of the data set corn.rain as follows:

> motif()
> plot(corn.rain)
> title("My Plot of Corn Rain Data")
> printgraph(file="mystuff.eps")

Warning

Spotfire S+ supports the Encapsulated PostScript file format, EPSF. It does not support
the Encapsulated PostScript Interchange format, EPSI. EPS files created by Spotfire S+
do not include a preview image, so if you import a Spotfire S+ graphic into WYSIWYG
software such as FrameMaker or Word, you will see only a gray rectangle or a box
where the graphic is included.
239

Chapter 4 Editing Graphics in UNIX
You can produce EPS files with direct calls to postscript by setting
onefile=FALSE. To create a single file, with a name you specify, call
postscript with the file argument and onefile=F:

> postscript(file=”mystuff.eps”, onefile = F, print = F)
> plot(corn.rain)
> dev.off()

To create a series of Encapsulated PostScript files in a single call to
postscript, omit the file argument:

> postscript(onefile=F, print=F)
> plot(corn.rain)
> plot(corn.yield)

Starting to make postscript file.
Generated postscript file “ps.out.0001.ps”.

Because onefile is FALSE, postscript generates a postscript file as
soon as the new call to plot tells it that nothing more will be added to
the first plot. The file ps.out.0001.ps contains the plot of
corn.rain. A file containing the plot of corn.yield is generated as
soon as a new call to plot or a call to dev.off closes the old plot.

> plot(corn.rain, corn.yield)

Starting to make postscript file.
Generated postscript file “ps.out.0002.ps”.

You can give a series-specific naming convention for the series of files
using the tempfile argument to postscript:

> postscript(onefile=F, print=F, tempfile=”corn.####.ps”)
> plot(corn.rain)
> plot(corn.yield)

Starting to make postscript file.
Generated postscript file “corn.0001.ps”.

Warning

If you supply the file argument and set onefile=F in the same call to postscript, you
must turn off the device with dev.off after completing the first plot. Otherwise, the next plot
will overwrite the previous plot, and the previous plot will be irretrievably lost.
240

Printing Your Graphics
> plot(corn.rain, corn.yield)
Starting to make postscript file.
Generated postscript file “corn.0002.ps”.

> dev.off()
Starting to make postscript file.
Generated postscript file “corn.0003.ps”.

Setting
PostScript
Options

The behavior of the postscript graphics device, whether activated
by the Print option from a motif graphics device, by a call to
printgraph, or by a direct call to postscript, is controlled by
options you can set with the ps.options function. These options
allow you to control many aspects of the PostScript output, including
the following:

• The name of the PostScript output file.

• The UNIX command to print your PostScript output.

• The orientation and size of the finished plot.

• Printer-specific characteristics, including paper size, number
of rasters per inch, and the size of the imageable region.

• Plotting characteristics of the graphics, including the base
point size for text and available fonts and colors.

Specifying the
PostScript File
Name

All PostScript output is initially written to a file. Unless you explicitly
call the postscript device with the onefile=T argument, Spotfire
S+ writes a separate PostScript file for each plot, in compliance with
the Encapsulated PostScript Document Structuring Conventions. You
can specify the file name for the output file using the file argument
to postscript or printgraph, or provide a template for multiple
file names using the PostScript option tempfile, which defaults to
”ps.out.####.ps”. You can specify this option as an argument to
the printgraph, postscript, and ps.options functions. The
template you specify must include some # symbols, as in the default.
Spotfire S+ replaces the first series of these symbols that it encounters
with a sequential number of the same number of digits in the
generated file names. For example, if you have a project involving the
halibut data, and you know your project will use fewer than 1000
graphics files, you can set the tempfile option as follows to use the
name of your data set:

> ps.options(tempfile=”halibut.###.ps”)
241

Chapter 4 Editing Graphics in UNIX
Specifying a Printer Command

What happens to the file after it is created is determined by the
command option. The command option is a character string specifying
the UNIX command used to print a graphic. If file is specified (and
is neither a template nor an empty string), the command option must
be activated by some user action, either choosing the Print option
from a windowing graphics device, specifying print=TRUE in the
printgraph function, or specifying print.it=TRUE in the
postscript function.

The default for command is the value of the environment variable
S_POSTSCRIPT_PRINT_COMMAND.

Specifying Plot
Orientation and
Size

You specify the plot orientation with the horizontal option: TRUE
for landscape mode (x-axis along long edge of paper), FALSE for
portrait. Most figures embedded in documents should be created in
portrait mode, because that is the usual orientation of documents. The
default is the orientation specified by the S_PRINT_ORIENTATION,
which by default is set to TRUE, that is, landscape mode. If you specify
an orientation with your graphics window’s Options Printing menu,
that specified orientation is taken to be the default.

You specify the plotting region, in inches, with the width (the x-axis
dimension) and height (y-axis dimension) options. Thus, to create
graphics for inclusion in a manual, you might specify the following
options:

> ps.options(horizontal=F, width=5, height=4)

The default value for width and height are determined by the
printer’s imageable region, as described in the next subsection.

Specifying Printer
Characteristics

PostScript can describe pages of virtually any size, but it does little
good to create enormous page descriptions if you don’t have an
output device capable of printing them. Most PostScript printers have
remarkably similar characteristics, so you may not have to change the
options that specify them. For example, in the United States, most
printers default to "letter" (8 1/2 x 11) paper. Among the options
that you can specify for your printer, the paper option is the most
important. The paper argument is a character string; most standard
ANSI and ISO paper sizes are accepted. Each paper size has a
specific imageable region, which is the portion of the page on which the
printer can actually print. This region can vary slightly depending on
242

Printing Your Graphics
the printer hardware, even for paper of the same size. The imageable
region determines the default values for the width and height
options.

Specifying
Plotting
Characteristics

The PostScript options that have the greatest immediate impact on
what you see are those affecting the PostScript graphic’s plotting
characteristics. These options include the following:

• fonts A vector of character strings specifying all
available fonts.

• colors A numeric vector or matrix assigning
actual colors to the color numbers used as
arguments to graphics functions. This
option is discussed in more detail in the
next section.

• image.colors Same as colors, but for use with the
image function.

• background A numeric vector giving the color of the
background, as in colors.background,
can also be a single number that is used as
an index to the colors argument if it is
positive or, if it is negative, specifies no
background at all.

Creating Color
PostScript
Graphics

Creating PostScript graphics in color is no more difficult than creating
color graphics on your windowing graphics device. With the
xgetrgb function, you can copy the color map from the current
motif device and use it for PostScript output. The following steps
show how to print graphics from a motif window to a PostScript
printer using the same color map.

1. Start the graphics window:

> motif()

2. Set the color scheme using the Color Scheme dialog box,
accessible from the Options menu.

3. Plot the graphic in the graphics window:

> image(voice.five)
243

Chapter 4 Editing Graphics in UNIX
4. Capture the colors from the device using xgetrgb:

> my.colors <- xgetrgb(type="images")

The type argument to xgetrgb should be appropriate for the type
of graph being reproduced. Here, we use type="images" because
we want the colors used to produce an image plot. The default type
is "polygons", which is appropriate for bar plots, histograms, and
pie charts, and is usually also suitable for scatter plots and line plots
such as time series plots. Other valid types are "lines", "text",
and "background".

5. Send the color specification to update the graphics window’s
printer options:

> ps.options.send(image.colors=my.colors)

The image.colors argument assigns colors for image plots. Use
the colors argument to assign colors for all other plots. Use the
background argument to specify the background color.

You can, of course, use the results of xgetrgb as arguments
without first assigning them to a Spotfire S+ object, as is shown
below:

> ps.options.send(image.colors=xgetrgb("images"),
+ colors=xgetrgb("lines"),
+ background = xgetrgb("background"))

6. Select the Print button to print the colored graphic.

To create color graphics with the postscript function, you follow
essentially the same steps, as in the following example:

1. Start the graphics window:

> motif()

2. Set the desired color scheme using Options � Color
Scheme from the motif menu.

3. Capture the colors from the device using xgetrgb and specify
the captured colors as the PostScript color scheme using
ps.options:

> ps.options(colors = xgetrgb("lines"),
+ background = xgetrgb("background"))
244

Printing Your Graphics
4. Start the postscript device using the postscript function:

> postscript(file = "colcorn.ps")

5. Plot the graphic; the following commands produce a plot with
three different colors:

> plot(corn.rain, corn.yield, type="n")
> points(corn.rain, corn.yield, col=2)
> title(main="A plot with several colors", col=3)

6. Turn off the postscript device:

> dev.off()

Creating
Bitmap
Graphics

Bitmap graphics are popular because they are easy to include into
most word processing software. They are not recommended for most
statistical graphics, because they tend to have lower resolution than
normal Spotfire S+ vector graphics, such as those produced on screen
by the java.graph or motif devices, or in files by the postscript,
pdf.graph, emf.graph, or wmf.graph devices. Bitmaps can be
useful for image graphics, such as those produced by the image
function.

To create a bitmap graphic, start java.graph with a file argument
and, if necessary, a format argument. The supported format
arguments are "JPEG", "BMP", "PNG", "PNM", “SPJ”, and "TIFF".

To create a JPEG image of the voice.five data, use java.graph as
follows:

java.graph("voice.jpeg")
image(voice.five)
dev.off()

Note

java.graph interprets the file type from the file extension if it is specified by file. If the file
extension is not part of the file name, and you specify no format, java.graph defaults to JPEG. If
the file extension contains an unsupported type, or if format specifies an unsupported type,
java.graph defaults to JPEG.
245

Chapter 4 Editing Graphics in UNIX
Managing Files
from Hard
Copy Graphics
Devices

With all hard copy graphics devices, a plot is sent to a plot file not
when initially requested, but only after a subsequent high-level
graphics command is issued, a new frame is started, the graphics
device is turned off, or you quit Spotfire S+. To write the current plot
to a plot file (assuming you have started the graphics device with the
appropriate file option), you must do one of the following:

• Make another plot (assuming a single figure layout).

• Call the function frame (again, assuming a single figure
layout).

• Call the function dev.off to turn off the current graphics
device.

• Call the function graphics.off to turn off all of the active
graphics devices.

• Quit Spotfire S+.

Once you have created a graphics file, you can send it to the printer
or plotter without exiting Spotfire S+ by using the following
procedure:

1. Type ! to escape to UNIX.

2. Type the appropriate printing command, and then the name
of the file.

3. Type a carriage return.

To remove graphics files after sending them to the plotter without
exiting Spotfire S+:

1. Type ! to escape to UNIX.

2. Type rm file, where file is the name of the graphics file you
want removed.

3. Type a carriage return.

Using Graphics
from a
Function or
Script

Most experienced users of Spotfire S+ use a function or script to
construct complicated plots for presentation or publication. This
method lets you use the motif display device to preview the plots on
246

Printing Your Graphics
your screen, and then, once you are satisfied with your plots, send
them to a hard copy device without having to re-type the same
plotting commands.

To use this method using a Spotfire S+ function, follow these steps:

1. Put all the Spotfire S+ commands necessary to create the
graphs into a function in Spotfire S+ (say plotfcn) using fix.
Do not include commands that start a graphics device.

Note

Direct use of a hard copy device ensures the best hard copy output.
247

Chapter 4 Editing Graphics in UNIX
2. In Spotfire S+, start a graphics device, then call your function:

> motif()
> plotfcn()

3. View your graphs. If you want to change something, use fix
to modify your plotting function.

4. Once you are satisfied with your plots, start a hard copy
graphics device, call your function, and then turn the hard
copy graphics device off:

> postscript()
> plotfcn()
> dev.off()

5. Save your function containing graphics commands if you will
need to reproduce the plots in the future.

To use this method using a script, follow these steps:

1. Put all the Spotfire S+ commands necessary to create the
graphs into a file outside of Spotfire S+ (say plotcmds.asc)
using an editor (e.g., vi). Do not include commands that start
a graphics device.

2. In Spotfire S+, start a graphics device, then use source to
execute the Spotfire S+ commands in your file:

> motif()
> source(“plotcmds.asc”)

3. View your graphs. If you want to change something, edit your
file with an editor.

Note

If you are creating several plots on separate pages, you may want to set the graphics parameter
ask to TRUE before calling your plotting function. In this case, the sequence of steps is:

> motif()
> par(ask = T)
> plotfcn()
248

Printing Your Graphics
4. Once you are satisfied with your plots, start a hard copy
graphics device, source your plotting commands, and then
turn the hard copy graphics device off:

> postscript()
> source(“plotcmds.asc”)
> dev.off()

5. Save your file of graphics commands if you will need to
reproduce the plots in the future.
249

Chapter 4 Editing Graphics in UNIX
250

Graphs 252
The Graph Sheet 253
Methods for Creating a Graph 254
Changing the Plot Type 255
Adding a Plot to a Graph 256
Placing Multiple Graphs on a Graph Sheet 258
Projecting a 2D Plot Onto a 3D Plane 260
Trellis Graphics 262

Formatting a Graph 266
Formatting a Graph: An Example 268
Formatting a Graph Sheet 273
Formatting the Graph 274
Formatting 2D Axes 277
Formatting 2D Axis Labels 279
Adding and Formatting Multiline Text 280
Adding Titles and Legends 282
Adding Labels for Points 284
Adding a Curve Fit Equation 285
Adding Lines, Shapes, and Symbols 286
Modifying Image Colors 286

Working With Graph Objects 288

Plot Types 290
Formatting a Graph (Continued) 290

Using Graph Styles and Customizing Colors 293

Embedding and Extracting Data in Graph Sheets 295

Linking and Embedding Objects 296
Data From Another Application 296
Embedding Spotfire S+ Graphics in Other Applications 297

Printing a Graph 299

Exporting a Graph to a File 300

EDITING GRAPHICS IN
WINDOWS 5
251

Chapter 5 Editing Graphics in Windows
GRAPHS

The ability to create graphs quickly and easily is one of the most
powerful tools in Spotfire S+. If you have not already done so, it
would be a good idea to go through the tutorial booklet Getting Started
with Spotfire S+ before continuing to read this chapter. Spotfire S+
can generate a wide variety of 2D and 3D plots, and we will
concentrate on only a few of these in this chapter. For information on
the other plots and for much more detail, see the Chapter 4, Creating
Plots in the Spotfire S+ User’s Guide for Windows, and the online help.

Reading This
Chapter

Don’t read this chapter! That is, do not read it from beginning to
end. Much of the material describes procedures for doing a certain
action, such as changing the plot type or formatting an axis. Unless
you need to perform such a task, there is no need to read the
procedure.

To understand how to create graphs, we suggest the following steps:

1. Read the booklet Getting Started with Spotfire S+ for the basics
on how to create graphs and look through the example plot
types.

2. Read the information on importing, exporting, and exploring
data in the Spotfire S+ User’s Guide.

3. Read this section for basic terminology and graph creation
information.

4. Skim the remainder of this chapter and refer back to the
material as needed.

Note

If your plot was created from the command line, as described in Chapter 2, Traditional Graphics
or Chapter 3, Traditional Trellis Graphics and you want to edit it using the GUI, you must first
convert the plot to graphic objects as follows:

1. At the command prompt, enter use.legacy.graphics(T) to put the Spotfire S+ graphics
system into legacy mode.

2. Right-click inside the plot and select Convert to Objects from the shortcut menu.
252

Graphs
This should provide you with a good overview of the graphics
capabilities of Spotfire S+.

The Graph
Sheet

In Spotfire S+ we distinguish between the Graph Sheet, the graph
area, and the plot area. The Graph Sheet is best described as the
sheet of paper on which we draw our plots. When we print, we print
one or more pages of the Graph Sheet. A Graph Sheet can contain
more than one graph. The graph area refers to the rectangle
surrounding the data points, axes, legends, graph title, etc. The plot
area is the rectangular area within the graph where the data are
plotted. See Figure 5.1 for an illustration.

Creating,
Opening, Saving,
and Printing

You can create a new Graph Sheet using the New button on the
Standard toolbar. To save or print a Graph Sheet, you must first

select the Graph Sheet by clicking it. Then use the Save button

to save the Graph Sheet or the Print button to print it to your
printer. To open a previously saved Graph Sheet, use the Open

button (Graph Sheets have .sgr file extensions). These Graph
Sheet functions can also be accessed from the File menu.

Figure 5.1: A Graph Sheet with graph area (gray) and plot area (center).
253

Chapter 5 Editing Graphics in Windows
Sometimes you may want to export your Spotfire S+ graph into an
image file format, such as a Windows bitmap (.BMP), JPEG (.JPG), or
Paintbrush (.PCX). To do this, choose File � Export Graph from
the main menu.

Viewing Graph
Sheets

You can zoom your Graph Sheets to focus on a particular area by
choosing View � Zoom. Press F2 to view the graph at full screen
without the menu bar, window title bar, or toolbars. Click the mouse
or any keyboard button to return to the original view. Note that
Graph Sheets are always printed at 100% size, even if they are
zoomed.

To increase the display speed of Graph Sheets, you can use Draft
mode. You can toggle this option on and off by choosing View �

Draft. This option is helpful for users with slow computer systems.
Draft mode does not affect the print quality of your plots.

Methods for
Creating a
Graph

There are several methods for creating graphs. You can select data
and click a plot palette button, you can drag and drop plot buttons
onto graphs and then drag data onto the plot buttons, or you can use
the Graph option on the Insert menu. The first two methods are
described below.

Creating a Graph
Using Plot
Buttons

The 2D Plots button and 3D Plots button are available on the
Standard toolbar for creating graphs quickly. When you click the 2D
or 3D Plots button, a palette of plot buttons appears. For a
description of each plot, move the mouse cursor over each button in
the palette. A text description of the plot type appears.

When a new graph is created using a plot button, a new Graph
Sheet is automatically opened.

Creating a graph using a plot button

1. Click the 2D Plots button or 3D Plots button on the
Standard toolbar to open a palette of available plot types.

2. Open the Data window or Object Explorer containing the
data to plot.

3. Select the data columns you want to plot. Use CTRL-click to
select noncontiguous columns. The order in which columns
are selected determines their default plotting order.
254

Graphs
4. Click the desired plot button on the palette. If you hold the
mouse over a plot button, a description of the plot type
appears.

5. A new Graph Sheet opens, and the graph is drawn on the
Graph Sheet.

Creating a Graph
Using Drag-and-
Drop

You can also create a graph by dragging and dropping each
component of a graph onto a Graph Sheet.

Creating a graph using drag-and-drop

1. Open the Data window or Object Explorer containing the
data to plot.

2. Create a new Graph Sheet or open an existing Graph
Sheet.

3. From the main menu, choose Window � Tile Vertical.
Now you can see the data and the Graph Sheet
simultaneously. Select the Graph Sheet window by clicking
its title bar.

4. Click the 2D Plots button or 3D Plots button on the
Standard toolbar. A palette of available plot types appears.

5. Drag the desired plot button from the palette and drop it
inside the Graph Sheet. Default axes are drawn, and a plot
icon is drawn on the graph.

6. Select the data columns you want to plot. Use CTRL-click to
select noncontiguous columns.

7. Position the mouse within the selected region (not in the
column header) until the cursor changes to an arrow. Drag the
data with the mouse and move it over a plot icon. When the
plot icon changes color, release the mouse button to drop the
data and generate the plot.

8. The plot icon is replaced by an actual plot of the data
columns.

Changing the
Plot Type

Once a graph is created, it is possible to change the plot type. For
example, suppose you have created a scatter plot and now you want
to create a linear fit plot with the same data. By following the above
255

Chapter 5 Editing Graphics in Windows
procedures for creating a new plot, you can create the linear fit plot.
Instead of creating a new plot, you can also change the plot type of
the existing plot.

Changing the plot type using a plot palette

1. Select the plot you want to change. A green knob appears on
the data point closest to the x-axis when the plot is properly
selected.

2. Click the 2D Plots button or 3D Plots button on the
Standard toolbar. A palette of available plot types appears.

3. Click the desired plot button. The selected plot is redrawn
using the new type. You can cycle through multiple plot types
by clicking on the appropriate plot buttons.

The only caveat is that the plot types you select must have the same
data requirements. For example, you can change a scatter plot into a
linear fit plot since both require the same type of data, but you cannot
change a 2D scatter plot into a 3D scatter plot because a 2D scatter
plot only requires two columns of data, while a 3D scatter plot
requires three columns of data. If your data are not appropriate for
the chosen plot type, the plot appears on the graph in an iconized
form. An alternative way of changing the plot type is by selecting the
plot and then choosing Format � Change Plot Type from the main
menu.

Adding a Plot
to a Graph

Plots can be added to an existing graph using the plot buttons or the
menus.

Each plot on a graph represents one or more data columns. The plots
can all be of the same plot type (for example, line plots) or a
combination of plot types (for example, line, scatter, and bar plots).

Combined plots must have the same type of axes. For example, both a
line plot and a bar chart have xy axes and can be combined on one
graph. However, a boxplot and a surface plot cannot be combined on
the same graph because they have different types of axes. A 2D graph
and a 3D graph can both be placed on the same Graph Sheet, but
they will not be on the same graph.

You can easily add plots to an existing graph by selecting the graph,
selecting the data, and SHIFT-clicking the plot buttons.
256

Graphs
Adding a plot using a plot button

1. Select the graph to which you want to add the plot.

2. Open the Data window containing the data to plot or select
the data in the Object Explorer so that the columns appear
in the right pane.

3. From the main menu, choose Window � Tile Vertical.
Now you can see the data and the Graph Sheet
simultaneously.

4. Select the data columns you want to plot. Use CTRL-click to
select noncontiguous columns.

5. Click the 2D Plots button or 3D Plots button on the
Standard toolbar. A palette of available plot types appears.

6. SHIFT-click the desired plot button on the palette.

The plot is added to the selected graph using the selected data
columns. If no graph is selected before SHIFT-clicking, a new graph
will be added to the current Graph Sheet.

Figure 5.2: Multiple plots on a single graph.

-0.85 -0.60 -0.35 -0.10 0.15 0.40 0.65
diff.hstart

1.0

1.2

1.4

1.6

1.8

2.0

te
l.g

ai
n

257

Chapter 5 Editing Graphics in Windows
Placing
Multiple
Graphs on a
Graph Sheet

Graphs can be added to an existing Graph Sheet using the plot
buttons, the menus, or drag-and-drop. Plots can be added either to
the current page, or you can create new pages to hold additional
graphs.

Adding a graph by SHIFT-clicking on a plot button

1. Open the Graph Sheet in which you want to add a graph.
Make sure nothing on the Graph Sheet is selected. If a graph
is selected, this procedure will add a plot to the selected graph
instead of adding a new graph.

Note

Use the following general approach any time you want to add another graph line or curve fit to a
scatter plot:

1. Select the graph region.

2. Select the data.

3. Press the SHIFT key and click the plot palette button for the line or curve you want to
add to your scatter plot.

Figure 5.3: Multiple graphs on a page.

-0.6 -0.1 0.4
diff.hstart

1.0

1.2

1.4

1.6

1.8

2.0

te
l.g

ai
n

-0.6 -0.1 0.4
diff.hstart

1.0

1.2

1.4

1.6

1.8

2.0

te
l.g

ai
n

258

Graphs
2. Open the Data window containing the data to plot or view
the data in the Object Explorer.

3. From the main menu, choose Window � Tile Vertical.
Now you can see the data and the Graph Sheet
simultaneously.

4. In the Data window, select the data columns you want to plot.
Use CTRL-click to select noncontiguous columns.

5. Click the 2D Plots button or 3D Plots button on the
Standard toolbar. A palette of available plot types appears.

6. SHIFT-click the desired plot button on the palette.

The graph is added to the current Graph Sheet, and a plot is placed
on the graph using the selected data columns.

Adding a graph using drag-and-drop

1. Open the Data window containing the data to plot or view
the data in the Object Explorer.

2. Open the Graph Sheet in which you want to add a graph.

3. From the main menu, choose Window � Tile Vertical.
Now you can see the data and the Graph Sheet
simultaneously. Select the Graph Sheet window by clicking
its title bar.

4. Click the 2D Plots button or 3D Plots button on the
Standard toolbar. A palette of available plot types appears.

5. Drag the desired plot button from the palette and drop it
inside the Graph Sheet. Default axes are drawn, and a plot
icon is drawn on the graph.

6. Select the data columns you want to plot. Use CTRL-click to
select noncontiguous columns.

7. Position the mouse within the selected columns until the
cursor changes into an arrow. Pressing the left mouse button,
drag the data and move it over a plot icon. When the plot
icon changes color, release the mouse button to drop the data
and generate the plot.
259

Chapter 5 Editing Graphics in Windows
Adding a new page to a Graph Sheet

1. Open the Graph Sheet in which you want to add a graph.

2. Right-click the page tab at the bottom of the Graph Sheet
and select Insert Page from the shortcut menu.

3. Add a plot to the new page as described above using either
SHIFT-click or drag-and-drop.

Projecting a
2D Plot Onto a
3D Plane

Most of the 2D plot types can be projected onto a 3D plane. This can
be useful if you want to combine multiple 2D plots in 3D space and
then rotate the results. You can drag-and-drop a 2D plot button onto a
3D plane, or you can select Graph from the Insert menu to create a
projected 2D plot.

Figure 5.4: Adding a page to a Graph Sheet.
260

Graphs
Projecting a 2D plot using drag-and-drop

1. Create a new Graph Sheet.

2. Click the 3D Plots button on the Standard toolbar to
display the plot palette.

3. There are six 3D plane combinations on the Plots 3D palette.

Drag one of the 3D plane buttons off the plot palette and drop
it onto the Graph Sheet. A 3D graph is drawn, and the plane
is added automatically to the graph. The plane is
automatically positioned at the minimum or maximum
position, depending on which plane button you choose. You
can drag and drop additional 3D planes as desired.

4. Click the 2D Plots button on the Standard toolbar to
display the plot palette.

5. Drag-and-drop a 2D plot button onto the desired 3D plane.
As you drag the plot over a 3D plane, the plane becomes
highlighted (because it is an active drop target).

Figure 5.5: Multiple 2D plots in 3D space.
261

Chapter 5 Editing Graphics in Windows
6. The plot icon is now linked to the 3D plane. You can double-
click the plot icon to specify your data columns, or you can
drag and drop data columns directly from your data.

When you have specified the data, the 2D plot is drawn on the
specified 3D plane.

Trellis Graphics Trellis graphs allow you to view relationships between different
variables in your data set through conditioning. Chapter 3,
Traditional Trellis Graphics, provides examples of creating Trellis
graphics.

Introduction Suppose you have a data set based on multiple variables and you
want to see how plots of two variables change with variations in a
third “conditioning” variable. By using Trellis graphics, you can view
your data in a series of panels where each panel contains a subset of
the original data divided into intervals of the conditioning variable.

For example, a data set contains information on the high school
graduation rate per year and average income per household per year
for all 50 states. You can plot income against graduation for different
regions of the U.S., for example, South, North, East, and West, to
determine if the relationship varies geographically. In this case, the
regions of the U.S. would be the conditioning variable.
262

Graphs
All graphs can be conditioned using Trellis graphics. The data
columns used for the plot and for the conditioning variables must be
of equal length. The axis specifications and panel display attributes
(for example, fill color) are identical for each panel, although axis
ranges may be allowed to vary. The border and fill attributes for the
panels can be specified on the Fill/Border page of the Graph
properties dialog.

Figure 5.6: A Trellis graph.

3000 4000 5000 6000

3000 4000 5000 6000

Per Capita Income

40

60

40

60

Pe
rc

en
t H

ig
h

Sc
ho

ol
 G

ra
du

at
es

Northeast South

West Midwest
263

Chapter 5 Editing Graphics in Windows
Creating Trellis
Graphs

Creating Trellis graphs using drag-and-drop

1. Create a graph.

2. Drag a column of conditioning data onto the graph and drop
it in the highlighted rectangle at the top of the graph (the
highlighted rectangle is shown in Figure 5.7).

3. If the conditioning data are continuous, you can use the
conditioning buttons to change the number of panels.

Creating Trellis graphs using SHIFT-click

1. Create a graph and select the graph area.

2. Select the conditioning data column(s) in the Data window or
Object Explorer.

3. SHIFT-click one of the conditioning buttons on the plot
palette.

Figure 5.7: Dragging and dropping conditioning data.
264

Graphs
Plots on Trellis
Graphs

Plots on Trellis graphs behave very much the way they do on
standard graphs. You can:

1. Double-click or right-click to change the data specifications or
any other attributes. When plot specifications change, all of
the panels are modified.

2. Change the plot type by selecting the plots and clicking a plot
button.

3. Drag new data onto them.

4. Add additional plots.

By default, each plot uses the same conditioning variables specified in
the multipanel page of the graph to determine which rows of the data
set will be used in each panel. This is appropriate when all of the plots
on the graph are using data from the same data set, so that the data
columns are all of equal length.

Extracting a
Panel From a
Trellis Plot

You can extract a single panel from any Trellis graph. This is useful,
for example, if each panel contains a lot of detail, and you want to
examine one panel at a time very carefully.

Extracting a panel from a Trellis plot

1. Click the Extract Panel button on the Graph Tools
palette.

2. Click anywhere within the panel that you would like to
extract.

Conditioning for the graph is turned off, and the Subset Rows with
expression for the plot is set to the conditioning expression for that
panel. You can also extract a panel by choosing Format � Extract
Panel � Redraw Graph from the main menu. To have the panel
placed in a separate Graph Sheet, choose Format � Extract Panel
� New Graph Sheet from the main menu.

Restoring the Trellis plot

• Click the Show All Panels button on the Graph Tools
palette.

or

• From the main menu, choose Format � Show All Panels.
265

Chapter 5 Editing Graphics in Windows
FORMATTING A GRAPH

Spotfire S+ generates all plots using reasonable, data-driven defaults.
For example, the x-axis and y-axis lengths are determined by the
minima and maxima of the data. The axis labels are derived from the
descriptions or column names of the data (if they exist). The colors,
line types, plot symbols, and other aspects all have reasonable
defaults that work with a wide variety of different data. Once a plot
has been generated, Spotfire S+ allows you to annotate and customize
practically every aspect of the graph.

This powerful feature is called “formatting a graph.” For example,
Figure 5.8 is a default linear fit plot.

After formatting the plot by adding a title, changing the axis tick
marks, and adding some annotations, the plot is transformed into
Figure 5.9. In this section, we will discuss formatting features and
show how Figure 5.8 was transformed into Figure 5.9. For more
detail, see the online help.

Figure 5.8: An unformatted linear fit plot.
266

Formatting a Graph
Object-Oriented
Nature of Graphs

All graphics are built from objects that can be individually edited. For
example, a line/scatter graph might contain the plot object (the object
that plots the data), two axis objects (the objects that define and draw
the axes), two axis label objects (the objects that display the axis
labels), the title object (the object that displays the graph title), the 2D
graph object that defines the general layout, and multipanel options
for two-dimensional plots. Each of these objects has its own properties
dialog and can be edited. This allows you to customize practically
every aspect of the graph. Since all the components in the graph are
objects, it is possible to add additional objects (or delete them). For
example, a third axis can be added to any plot by adding an
additional axis object to the graph.

Figure 5.9: The plot from Figure 5.8 after it has been formatted.
267

Chapter 5 Editing Graphics in Windows
Formatting a
Graph: An
Example

The following steps were used to transform Figure 5.8 into Figure 5.9.

Generating the plot

We begin by generating the plot we will format.

1. From the main menu, choose Data � Select Data to open
the Select Data dialog. Type fuel.frame in the Name field of
the Existing Data group and click OK.

The fuel.frame data set appears in a Data window. The data list 60
cars with their respective weight (in pounds), engine displacement,
gas mileage, fuel value, and car type. We want to plot the weight
versus the gas mileage of the 60 cars. We are interested in generating
a plot that helps us address the question: “Does the weight of a car
affect the gas mileage and, if so, how?”

2. Select the two data columns Weight and Mileage. Since we
want Weight on the x-axis, we click the Weight column header
first and then we CTRL-click Mileage. The two data columns
should now be highlighted.

3. Open the Plots 2D palette and click the Linear Fit button

. Spotfire S+ should now display a plot very similar to
Figure 5.8. If the plot looks significantly different, it is possible
that the default 2D plot properties have been changed.

Formatting the axis titles

Let’s change the text of the y-axis title. In addition, we want to
increase the size of the axis titles to make them stand out a bit more.

4. Click twice on the y-axis title Mileage. Change the @Auto
label to Mileage (gal). Click outside the edit box.

5. With the text selected, use the toolbar to increase the font size
to 20.

The y-axis title is now formatted. Format the x-axis title in a similar
manner by changing the title to Weight (lbs) and the font size to 20.

Formatting the axes

We continue by formatting the axis labels. We want to make four
formatting changes to each of our axes: adjust the tick mark labels,
add minor tick marks, increase the width of the axis lines, and remove
the frame on the top and right sides of the plot.
268

Formatting a Graph
6. Click the x-axis line to select it. A green knob should appear
on the center of the axis. If a green triangle appears instead of
a knob, you have selected the axis labels. Double-click the
x-axis line to open the X Axis dialog (or type CTRL-1 after the
axis has been selected).

7. To increase the width of the axis, select a Line Weight of 1 in
the Axis Display group of the Display/Scale page. Click
Apply to see the change appear.

Note that you can always click Apply to see what a change you’ve
made looks like. If you do not click Apply, the changes you have
made will not display in the graph until you click OK to exit the
dialog. We will no longer mention this step.

8. To eliminate the top frame, select None for the Frame in the
Options group of the Display/Scale page.

9. Click the Range tab to display the Range page of the dialog.
In the Axis Range group, type 1800 for the Axis Minimum
and 4000 for the Axis Maximum.

10. We want the tick marks to start at the beginning of the axis so
also set the Tick Range to have First Tick at 1800 and Last
Tick at 4000.

11. We want a major tick mark every 200 lbs so type 200 as the
Major Tick Placement Interval. Set the Interval Type to
Size.

12. Click the Grids/Ticks tab to display the Grids/Ticks page of
the dialog. In the Minor Ticks group, type 0.05 in the
Length field and click OK to exit the dialog.

The x-axis is now formatted. Format the y-axis in a similar manner.
Leave the y-axis range the way it is; that is, skip steps 9 and 10 when
formatting the y-axis. Type 2 as the Major Tick Placement Interval
and set the Interval Type to Size.

Changing the regression line color

Next, we will change the color of the regression line from the default
color to a custom color.

13. Select the linear fit plot by clicking the regression line or any
data point. A green knob appears at the bottom of the plot,
indicating the data object is selected.
269

Chapter 5 Editing Graphics in Windows
14. Right-click the regression line and select Line/Symbol from
the shortcut menu. A dialog appears with the Line/Symbol
tab selected.

15. In the Line group, select Custom from the Color drop-down
list. The Color selection dialog appears.

16. You can select the red swatch from the Basic Colors group to
get basic red, or you can define a custom shade of red. To
vary the shade, enter numeric values in the Red, Green, and
Blue (RGB) fields. For example, basic red has an RGB value
of 255, 0, 0. To define a custom shade of red, experiment by
entering other values in the Green and Blue fields. When
you are satisfied with your custom color specification, click
OK.

Note that on the Line/Symbol dialog, the color swatch
beside Custom in the Color drop-down list has changed to
match your specification.

17. Click OK to apply the custom color to the regression line and
dismiss the dialog box.

Figure 5.10: Defining a Custom Color
270

Formatting a Graph
Adding a title to the graph

To format a title, we need to first insert a title object into the graph.

18. Make sure the Graph Sheet is in focus and choose Insert �
Titles � Main from the main menu. An edit box appears.
Replace @Auto with Weight vs. Mileage in Passenger
Cars. Do not press RETURN when you are done; instead, click
outside the title area. The title will center itself.

19. To increase the font size of the title, click the title to select the
title object. Green knobs will surround the title once it has
been selected. Use the toolbar to change the size of the font to
28.

Generally, double-clicking an object will bring up the properties
dialog for that object. In the case of a text object (axis, title, or other
text object), double-clicking the object causes the object to be edited
in-place. Type CTRL-1 to open the properties dialog of a text object
instead of double-clicking it as we do with all other objects.

Adding a curve fit equation

We want to add the equation of the regression line to the plot.
Spotfire S+ makes this easy.

20. First select the linear fit plot by clicking the regression line or
any data point. A green knob should appear at the bottom of
the plot, indicating the data object has been selected.

21. From the main menu, select Insert � Curve Fit Equation.
The equation of the regression line will appear on the plot.
Add y = to the front of the equation by clicking twice on the
text, pressing HOME, and typing y =. Change the font size to
16 using the toolbar. Finally, move the text object by selecting
it, left-clicking inside the object (bounded by the green
knobs), and dragging it to the desired location.

Annotating the graph

The last step in formatting the graph is to add some annotations to it.
We will draw an arrow from the curve fit equation to the line, and we
will indicate what car is the most fuel efficient car.

22. Open the Annotation palette by clicking the Annotations

button on the Graph toolbar.
271

Chapter 5 Editing Graphics in Windows
23. First we want to label the most fuel efficient car. Click the

Label Point button on the Annotation palette; the cursor
changes to a large plus sign (see Figure 5.11).

Move the cursor on top of the top-most y-axis point and click
it. The label Ford Festiva 4 will appear, along with the values
of that car’s weight and mileage.

24. Click the Select Tool button on the Annotation palette,
click the label to select it, and use the toolbar to change the
label’s font size to 16. If necessary, reposition the label.

Figure 5.11: Using the Label Point tool on the Annotation palette.
272

Formatting a Graph
25. The final step is to draw the arrow from the curve fit equation

to the line. Click the Arrow Tool button on the
Annotation palette; the cursor changes to a plus sign with an
arrow (see Figure 5.12).

Move the cursor to just beneath the minus sign of the curve fit
equation. Now drag the mouse from this point (the beginning
of the arrow) to just above the regression line. When you
release the mouse button, the arrow is drawn.

The formatting is done! The graph on your screen should now
resemble Figure 5.9. Later in this chapter, we will continue formatting
this graph (see page 290).

Formatting a
Graph Sheet

The Graph Sheet is the object that defines the plotting environment
of the entire page. It is here that you can set the name of the Graph
Sheet, the plotting orientation (portrait or landscape), the “document
units” (default is inches), the size of the Graph Sheet (default is 11 by
8.5 inches), the page margins, and the default colors. More advanced
users can specify how multiple graphs are plotted on the same Graph
Sheet.

Formatting the Graph Sheet

1. With the Graph Sheet in focus, choose Format � Sheet
from the main menu. The Graph Sheet Properties dialog
appears.

Figure 5.12: Using the Arrow Tool on the Annotation palette.
273

Chapter 5 Editing Graphics in Windows
2. Make the desired formatting changes to the Graph Sheet
and click OK.

Saving Graph
Sheet Defaults

You can save the settings from your Graph Sheet so they will be
used as defaults when you create new Graph Sheets. This is
convenient if you intend to create many Graph Sheets with similar
properties.

Saving the settings from the active Graph Sheet as the defaults

1. Load a Graph Sheet or create a Graph Sheet with the
desired formatting specifications.

2. Click in a blank area of the Graph Sheet, outside any graphs.

3. From the main menu, choose Options � Save Window
Size/Properties as Default.

The settings from the current Graph Sheet (including window size
and position) are saved as the default settings. You can also right-click
at the edge of the Graph Sheet and select Save Graph Sheet as
default.

Formatting the
Graph

The graph has properties defining the outer bounds of the graph area
and the plot area. If you want to resize or move the graph or plot, you
can format the graph either interactively or by using the properties
dialog.

Formatting the
Graph Area

You can select the graph area to change its size or formatting.

Figure 5.13: The graph area (gray) is selected.
274

Formatting a Graph
Selecting the graph area

• Click anywhere outside the axes but inside the graph
boundary. When selected, the graph area has green knobs on
all sides and all four corners.

Changing the size of the graph area

• Select the graph area and drag the corner resize knobs to the
desired size.

or

• Double-click inside the graph area, but not on another object,
to display the Graph properties dialog and click the
Position/Size tab. In the Graph Size group, specify the
Width and Height and click OK.

or

• Select the graph area, right-click, and select Position/Size
from the shortcut menu. In the Graph Size group, specify the
Width and Height and click OK.

Moving the graph area

• Select the graph area and drag it to a new location.

or

• Double-click inside the graph area to display the Graph
properties dialog and click the Position/Size tab. In the
Graph Position group, specify the Horizontal and Vertical
positions and click OK.

Formatting the graph area

• Double-click inside the graph area to display the Graph
properties dialog and click the Fill/Border tab. Make the
desired formatting changes to the graph area and click OK.
275

Chapter 5 Editing Graphics in Windows
Formatting the
Plot Area

You can select the plot area to change its size or formatting. In a 2D
graph, the plot area is bounded by the axes.

Selecting the plot area

• Click anywhere inside the region bounded by the axes. When
selected, the plot area has green knobs on all sides and all four
corners.

Changing the size of the plot area

• Select the plot area and drag the corner resize knobs to the
desired size.

or

• Double-click inside the graph to display the Graph properties
dialog and click the Position/Size tab. In the Plot Display
Size group, specify the Width and Height and click OK.

or

• Select the plot area, right-click, and select Position/Size from
the shortcut menu. In the Plot Display Size group, specify
the Width and Height and click OK.

Moving the plot area

• Select the plot area and drag it to a new location.

or

Figure 5.14: The plot area (gray) is selected.
276

Formatting a Graph
• Double-click inside the graph to display the Graph properties
dialog and click the Position/Size tab. In the Plot Origin
Position group, specify X and Y values and click OK.

Formatting the plot area

• Double-click inside the graph to display the Graph properties
dialog and click the Fill/Border tab. Make the desired
formatting changes to the plot area border and fill and click
OK.

Formatting 2D
Axes

You can customize axes in many ways. You can choose linear, log, or
probability axes, in several combinations. Additional axes can be
added to your plot, axes can be deleted and moved, and they can be
fully customized using the axis properties dialog. Note that Spotfire
S+ distinguishes between the axis and the axis label, and each has a
separate properties dialog.

Choosing the Axis
Type

You can specify the default 2D axis type or specify the axis type as
part of formatting an individual axis.

Specifying the default 2D axis type

• From the Standard toolbar, select the desired 2D axis type
from the dropdown menu.

Interactively
Rescaling Axes

You can zoom in on a specified portion of a plot using the Crop

Graph button . Drag a rectangle around the area of a 2D graph on
which you would like to refocus. The x and y axes will be rescaled to
show only this area of the graph. This tool can also be accessed by
choosing Format � Crop Graph from the main menu.

To see additional regions of the plot, use the pan buttons on the

Graph Tools palette: , , , .
277

Chapter 5 Editing Graphics in Windows
To restore the full plot, click the Auto Scale Axes button or,
equivalently, choose Format � Auto Scale Axes from the main
menu.

Selecting an Axis Selecting an axis

• Click inside the tick area of the axis. When the axis is selected,
it has a square green knob in the center of the axis. If you see
a triangular green knob, you have selected the axis labels, not
the axis.

Formatting an axis

1. Double-click the axis or select the axis and choose Format �
Selected Axis from the main menu. If you want to make the
same changes to both axes, select them both using CTRL-click
and use either the toolbar or the Format � Selected Objects
dialog.

2. In the Axis dialog, choose the desired page: Display/Scale,
Range, Grids/Ticks, or Axis Breaks. Make your changes
and click OK.

or

• Access pages of the properties dialog by selecting the axis,
right-clicking, and choosing one of the axis properties pages
from the shortcut menu.

In the Axis properties dialog, you can change the display
characteristics of your axis. The range and tick mark intervals can be
changed, and even the precise look of the major and minor tick marks
can be specified. More advanced users can create breaks in the axis.

Moving an axis and offsetting it from the plotting area

• Select the axis. A knob appears in the center of the axis. Drag
the knob until the axis is in the desired position.

Adding an additional axis

You can add additional axes to your 2D graph easily. Most easily, you
can add a second x or y axis by choosing the Multiple X or Multiple
Y 2D axis type from the Standard toolbar.
278

Formatting a Graph
You can also use drag-and-drop or a menu option to add additional
axes:

• Drag one of the extra axes off the Graph Tools palette and
drop it inside the graph area. An extra axis is added to the
selected graph. If an axis already exists in that position, the
new axis is automatically offset slightly from the original axis.

or

• Select the graph and choose Insert � Axis from the main
menu.

Axes with frames can also be added in the same manner. The frame is
not a true axis; it is a mirror of the opposite axis and always has
identical scaling.

Formatting 2D
Axis Labels

Axis labels are formatted in a way similar to axes. Formatting options
include the label type (Decimal, Scientific, Percent, Currency,
Months, Date, etc.), the precise location of the tick mark labels, and
their font and color. Note that axis titles are not part of the axis
specification. They are text objects that can be formatted separately.
(See page 282.)

Selecting 2D axis labels

• Click anywhere on the labels to select them. You will see a
triangular selection knob. A rectangular green knob means
you have selected the axis and not the axis labels.

Formatting 2D axis labels

• Double-click the labels or select the labels and choose
Format � Selected Axis Labels from the main menu. In the
Axis Label dialog, choose the desired page: Label 1,
Label 2, Minor Labels, Position, or Font. Make the desired
changes and click OK.

Figure 5.15: The extra axis buttons on the Graph Tools palette.
279

Chapter 5 Editing Graphics in Windows
Moving 2D axis labels

• Select the axis labels and then drag the labels inside or outside
the axis by dragging the triangular selection knob.

or

• Double-click the labels or select the labels and choose
Format � Selected Axis Labels from the main menu. Click
the Position tab, specify values in the Horizontal and
Vertical Offset fields, and click OK.

Adding and
Formatting
Multiline Text

You can add an unlimited amount of multiline text to your graph in
the form of text (comments), main titles or subtitles, axis titles, and
date and time stamps. The formatting options in the properties
dialogs for these different text types are basically the same.

Adding multiline text

• Choose Insert � Text from the main menu. A text edit box
will open. (Other types of text, for example, Titles, are also
available from the Insert menu.)

or

• Open the Annotation palette and click the Comment Tool

button ; the cursor changes to the Comment Tool. On the
Graph Sheet, click and drag the cursor and then release the
mouse button. Default text the size of the box is added to the
graph. Click the selected text to open the edit box.

Type the desired text. Press ENTER to create a new line. To end
editing and save results, click outside the edit box. Alternatively, you
can press F10 or press CTRL-ENTER. To exit without saving, press the
ESC key.

Editing existing text in-place

• Right-click the text and select Edit In-place from the menu.

or

• Click the text to select it, then click again.
280

Formatting a Graph
Make changes to the text in the edit box. Press ENTER to create a new
line. To end editing and save results, click outside the edit box.
Alternatively, you can press F10 or press CTRL- ENTER. To exit
without saving, press the ESC key.

Moving text

• Select the text. Green selection knobs appear on the outline of
the text box. Click inside the selected region and drag the box
to a new location.

You can also move the text by changing the X and Y positions on the
Position page of the properties dialog.

Resizing text

• Select the text. Green selection knobs appear on the outline
around the text box. Drag one of the square green knobs to
increase or decrease the size of the box. The proportions of
the text (ratio of height to width) remain constant.

Alternatively, use the toolbar button to change the font size.

Formatting text using the properties dialog

• Select the text and press CTRL-1 or choose Format �

Selected Comment from the main menu. The Comment
dialog appears. Make your desired formatting changes in the
dialog and click OK.

Formatting text in place

• Open the text edit box and select the text. Choose a Graph
toolbar option (using the Font, Font Size, Bold, Underline,
Italic, Superscript, and Subscript buttons) to change the
format of the text. You can change the font and point size and
choose whether to bold, italicize, or underline the selected
text.

or

• Right-click the text to display the shortcut menu. Choose
Superscript or Subscript to format the text, Font to open a
dialog to edit font type, or Symbol to open a dialog to add or
edit symbols and Greek characters.
281

Chapter 5 Editing Graphics in Windows
Deleting text

• Select the text. Press the DELETE key. Alternatively, you can
select Clear from the Edit menu or you can right-click and
select Cut.

Adding Titles
and Legends

Inserting a title is different from inserting regular text because a title is
positioned automatically. See page 280 for information on editing and
formatting titles.

Adding a main title or a subtitle

• From the main menu, choose Insert � Titles and then
choose Main or Subtitle. Spotfire S+ opens an edit box for
you to enter text. Type the desired text. Press ENTER to create
a new line. To end editing and save results, click outside the
edit box. Alternatively, you can press F10 or press CTRL-
ENTER. To exit without saving, press the ESC key.

Adding 2D Axis
Titles

You can place axis titles on your graph. Axis titles are convenient
because they are positioned automatically. See page 280 for
information on editing and formatting axis titles.

Adding a 2D axis title

• Select the axis to which you want to add a title. From the main
menu, choose Insert � Titles � Axis. Spotfire S+ opens an
edit box for you to enter text. Type the desired text. Press
ENTER to create a new line. To end editing and save results,
click outside the edit box. Alternatively, you can press F10 or
press CTRL-ENTER. To exit without saving, press the ESC key.

Adding 3D Axis
Titles

3D axis titles are different from 2D axis titles in that they cannot be
moved and sized interactively. The text for 3D axis titles is specified
from within the 3D Axes dialog and cannot be multiline. However,
you can add multiline text to 3D graphs in the form of comments and
titles. See page 282 for more information on specifying text.
282

Formatting a Graph
Adding 3D axis titles

• Double-click the axis or select the axis and choose Format �
Selected 3D Axes from the main menu. In the 3D Axes
dialog, click the X Text, Y Text, or Z Text tab and make the
desired changes for the Text, Font, Size, and Color fields.
Click OK.

or

• From the main menu, choose Insert � Titles � Axis. The
3D Axes dialog appears for editing.

Adding a Date
and Time Stamp

A date and time stamp lets you display the date and time along with
specified text. See page 280 for information on editing and formatting
existing text.

Adding a date stamp

• Click the Date Stamp Tool button on the Annotation
palette; the cursor changes to the Date Stamp Tool. In the
Graph Sheet, click and drag the Date Stamp Tool until you
have a text box of the desired size. Release the mouse button.
A default date stamp is placed on the graph. The text box will
automatically expand if the text starts extending beyond the
box boundary.

or

• From the main menu, choose Insert � Annotation � Date
Stamp. Spotfire S+ opens an edit box for you to enter text.
Type the desired text. Press ENTER to create a new line. To
end editing and save results, click outside the edit box.
Alternatively, you can press F10 or press CTRL-ENTER. To exit
without saving, press the ESC key.

Adding a Legend A legend is a combination of text and graphics that explains the
different plots on the graph. In a multipanel graph, there is only one
legend.
283

Chapter 5 Editing Graphics in Windows
Adding a legend

• Click the Auto Legend button on the Graph toolbar or
choose Insert � Legend from the main menu. If you have
more than one graph on the Graph Sheet, first select the
desired graph before choosing Legend from the Insert menu.

To remove the legend, click the Auto Legend button again.

Formatting the legend box

• Double-click the legend margin, outside of the legend items,
or select the legend and choose Format � Selected Legend
Item from the main menu. In the Legend Item dialog, you
can specify the legend position and formatting for the legend
box. Alternatively, you can right-click the legend and select
pages of the Legend Item dialog from the shortcut menu.

Adding Labels
for Points

If you have a 2D scatter plot on your graph, you can automatically
display labels (determined by row names) for selected points.

Labeling points

• If you have more than one scatter plot on your Graph Sheet,
select the scatter plot you want to use. Click the Label Point

button on the Graph Tools palette. Click a data point in
your scatter plot. A label will appear. The label can be moved
or edited as any other comment can.

• To replace the label with a label for a different point, click
another data point. The first label will be removed and a new
label will appear for the newly selected data point.

• To add a label for another point, SHIFT-click another data
point. Another label will appear.

Identifying points in a data view

If you have a 2D scatter plot on your graph, you can select rows in the
Data window by clicking on points in your scatter plot.

• If you have more than one scatter plot on your graph, select
the scatter plot you want to use. Open a view on the data used
for the x and y columns in the scatter plot. From the main
284

Formatting a Graph
menu, choose Window � Tile Vertical to show your data
and graph side by side. Click the Select Data Points button

 on the Graph Tools palette. Click a data point in your
scatter plot. The corresponding row in the Data window will
become selected.

• To select a different row, click a different point in the scatter
plot.

• To add a row to the selection, SHIFT-click another data point.

• To select a group of points, press the left mouse button and
drag a rectangle around the points to select.

Adding a Curve
Fit Equation

If you have a curve fit plot on your graph, you can automatically
display the equation for the line.

Inserting a curve fit equation

• Select the desired curve fit plot. From the main menu, choose
Insert � Curve Fit Equation. The equation of the line is
displayed on your graph.

Specifying the precision of a curve fit equation

• Right-click the desired curve fit plot and select Results from
the shortcut menu. The Curve Fitting Plot dialog is
displayed with the Results page in focus. In the Equation
group, specify the precision to use for your curve fit equation
in the Precision field (the valid range is 1-15). Click OK.
From the main menu, choose Insert � Curve Fit Equation.
The equation of the line is displayed on your graph with the
precision you specified.

Editing an existing curve fit equation

• Double-click the equation or select the equation and choose
Format � Selected Comment from the main menu. For
more information on formatting the equation, see page 280.

Note

Once a curve fit equation has been added to a graph, its precision cannot be changed.
285

Chapter 5 Editing Graphics in Windows
The curve fit equation option is only available when you have at least
one curve fit plot on the graph. If you have multiple curve fit plots,
you can select each one and get the equation describing the line
automatically.

Adding Lines,
Shapes, and
Symbols

You can add extra items to your graph, such as text, lines, shapes, and
symbols. These drawing objects can be added by using the
Annotation palette.

Adding an object from the Annotation palette

• Drag-and-drop a drawing object icon from the Annotation
palette onto the graph.

or

• Click a drawing object button to turn the mouse into a
drawing tool. The object to be drawn appears as a small
symbol on the lower right side of the mouse pointer. Place this
tool on the plot and click and drag to insert a drawing object
of a specified size. The object remains selected until you draw
another object or click somewhere else on the sheet.

You can resize an object by selecting it and dragging on one of the
corner selection knobs or move the object by selecting and dragging
in the center of the object. To edit other properties of a drawing
object, double-click it to open its properties dialog or right-click it and
select the relevant page of the dialog from the shortcut menu.

Modifying
Image Colors

For image or contour plots, you can modify the first 16 colors of the
image color set that was used when the plot was created.

Converting an image plot to graphic objects

If your plot was created from the command line (e.g., with the image
or contour function), you must first convert the plot to graphic objects
before you can modify it in the GUI. For more information, see the
note in section Graphs on page 252.

Modifying the image colors

• Right-click any object within the plot and select Contour/
Fills from the shortcut menu. The Contour Plot dialog box
appears.
286

Formatting a Graph
Note that RGB Image Colors is selected in the Fill Type
drop-down list.

• Click the Special Colors button to display the Color
selection dialog. The image colors you specified for your plot
appear in the 16 color swatches of the Custom Colors group.
For example, Figure 5.16 shows the 14 custom colors from the
heat.colors set used by the image command to create the
plot.

For information about using heat.colors and other color sets
provided with Spotfire S+, see the section Creating Color Sets
on page 13.

• To modify the custom colors, set each swatch to the desired
color, then click OK to apply your changes and dismiss the
Color selection dialog.

• On the Contour Plot dialog box, click Apply to apply your
changes to the plot.

Figure 5.16: Modifying image colors.
287

Chapter 5 Editing Graphics in Windows
WORKING WITH GRAPH OBJECTS

Overlapping
Objects

Using the Bring to Front or Send to Back buttons

If objects overlap on a graph, some objects may be completely or
partially covered by others. You can change the order of overlapping
objects by bringing certain objects to the front or sending others to
the back.

• Select the object or objects you want to bring to the front or

send to the back. Click the Bring to Front button or the

Send to Back button on the Graph toolbar, or from the
main menu, choose Format � Bring to Front or Send to
Back. To bring objects forward or backward by single
increments (one level at a time), choose the Bring Forward
or Send Backward options from the Format menu.

Deleting Objects Deleting an object from a graph

• Select the object or objects you want to delete. Press the
DELETE key or choose Edit � Clear from the main menu.

Once an object is deleted, you can undo the deletion immediately.
From the main menu, choose Edit � Undo or click the Undo button

 on the Standard toolbar.

Objects can be removed from the Graph Sheet but not permanently
deleted by using the Cut command. The object is placed on the
clipboard so that it can be pasted in another location on the current
Graph Sheet or in another document.

The Object
Explorer and
Graph Objects

An alternative way of accessing the objects of a graph is through the
Object Explorer. All the objects of a graph are stored in the Object
Explorer under the Graph Sheet root node. Expanding that node
(clicking on the plus sign) will reveal nodes of all the graphs currently
being displayed. You can continue expanding the nodes down the
288

Working With Graph Objects
Graph Sheet tree until the individual graph objects are displayed in
the right pane of the Object Explorer. Double-clicking on a graph
object will display the formatting dialog of that graph object.

The ability to access graph objects is useful when formatting
complicated graphs with multiple objects that are overlapping or
hidden. There are rare cases where an object can be accessed only
through the Object Explorer.

Figure 5.17: The objects of a graph as seen through the Object Explorer.
289

Chapter 5 Editing Graphics in Windows
PLOT TYPES

So far we have discussed how to create plots. Spotfire S+ is a versatile
program, and there are numerous options you can specify in every
different plot type Spotfire S+ can plot. For example, in the linear fit
plot, the data are plotted and a linear regression line is drawn through
the data. It is possible to add confidence limits to that line, change the
color of the line, change the color and symbols of the data points, and
so on. In this section, we will describe the more commonly used plots
and show some of the plot configuration options that let you alter the
appearance of the plots. For more detail, see the online help.

Plot Properties
Dialog

The first step in changing the plot properties of a plot is to select the
plot, just as you would select any other graph object. You select the
plot object by clicking on a data point within the plot area. A green
knob will appear at the bottom of your plot. If eight green knobs
appear surrounding the plot area, then you have selected the plot area
instead of the plot itself.

Once you have selected the plot, open the plot properties dialog by
doing one of the following:

• Double-click the plot.

• Choose Format � Selected Plot from the main menu.

• Right-click the plot to display its shortcut menu and select a
dialog page.

After the plot properties dialog appears, edit the desired properties in
the dialog and click OK.

Formatting a
Graph
(Continued)

Earlier in this chapter (see page 268), we went through a step-by-step
example on how to format a graph. We will now continue with this
process by adding confidence bounds on the regression line and by
altering the look of the plotted data. The resulting plot is shown in
Figure 5.18.
290

Plot Types
To follow this example, you must create the plot shown in Figure 5.8.
Follow the steps on page 268 to generate the figure. At a minimum,
you must perform steps 1 through 3 to generate the basic plot.

Lines, Symbols,
and Colors

1. Select the plot by clicking the regression line or any of the
data points. A green knob should appear at the bottom right-
hand corner of the plot area, indicating that the plot has been
selected. From the main menu, choose Format � Selected
Curve Fitting Plot to open the plot properties dialog (or use
one of the other methods described earlier in this section).

2. Go to the Line/Symbol page and choose Magenta for the
Line Color and 2 for the Line Weight. Note how the
regression line changes when you click Apply.

3. On the same Line/Symbol page, select Diamond, Solid as
the Symbol Style and choose Black as the Symbol Color.
Click Apply.

Confidence
Bounds

Next we add confidence bounds to our plot.

4. Click the By Conf Bound tab of the dialog. To add 95%
confidence bounds to the regression line, highlight the
Confidence 0.95 line and select the Line Attributes Style to

Figure 5.18: Figure 5.9 after we add 95% confidence bounds and change the plot
symbols.

1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Weight (lbs)

15

17

19

21

23

25

27

29

31

33

35

37

M
ile

ag
e

(g
al

)

Weight vs. Mileage in Passenger Cars

Ford Festiva 4
Weight = 1845.00
Mileage = 37.00

y = 48.35 - 0.008193*x
291

Chapter 5 Editing Graphics in Windows
be a series of dots (the last option) and the Line Attributes
Color to be Red. Click OK and see the 95% confidence
bounds appear on the plot.

Your plot now looks similar to Figure 5.18.

Model Options The formatting features of the plot properties dialog can be used to
explore the characteristics of your data. For example, so far we have
fit the simple linear regression line . Perhaps you

suspect that the regression model is more
appropriate.

5. To fit this model, open the plot properties dialog and type 2 as
the Polynomial Order on the Curve Fitting page. Note how
the curve and confidence bounds change as Spotfire S+
redraws the graph.

Try a few other values (numbers greater than 7 cause problems with
this data set). You could also select an exponential or power model to
fit to the data instead of the default linear model.

Changing the
Plot Type

Extensive formatting is not lost when you change the plot type (see
page 255).

6. To change the plot type, make sure the plot is selected (the
green knob appears in the bottom right-hand corner). Open
the Plots 2D palette and click the Loess (local regression)

button . The graph is redrawn with a loess line drawn
through the data.

7. Delete the curve fit equation and arrow (they do not apply to
the loess line). Select each of these objects and delete them by
choosing Edit � Cut from the main menu.

y x + +=

y 1x 2x2 + + +=
292

Using Graph Styles and Customizing Colors
USING GRAPH STYLES AND CUSTOMIZING COLORS

Graph styles allow you to customize the way your plots will look by
default. Two graph styles are available—a Color Style and a Black
and White style. If you use the Color Style, plots will be created
using different colors. The Black and White style distinguishes
between plots by using different line and symbol styles but does not
vary the color. To specify the graph style to be used for new Graph
Sheets, choose Options � Graph Options from the main menu
and select the desired Graph Style. To change a Graph Sheet from
one style to another, choose Format � Apply Style from the main
menu.

You can use the Options � Graph Styles dialogs to customize the
two graph styles. On the first page of each dialog, you can specify the
color schemes to use, including the scheme for User Colors and the
background color. The User Colors are the 16 extra colors that
appear in the dropdown color list when you edit the color of an
object. These colors will always be set in a newly created Graph
Sheet and will override any color specifications in the default Graph
Sheet. You can edit the background color and color palettes for a
specific Graph Sheet after it has been created by choosing Format
� Sheet from the main menu.

On the first page of the Graph Styles dialogs, you can also specify
whether or not colors, line styles, patterns, and symbol styles should
vary if you put more than one plot on your graph. For example, you
might frequently create two line with scatter plots scaled to the same
axes. Here you could specify that the plots should be created using
different line colors, line styles, and symbol styles but with the same
symbol colors.

On the remaining pages of the Graph Styles dialogs, you can specify
the colors, line styles, patterns, and symbol styles that will be used for
plotting the first plot, second plot, etc. if they are varying. If you
choose Plot Default as the color, Spotfire S+ uses the color settings
in the default plot object of the type being created. To modify the plot
default, create a plot of the desired type and edit it to attain the
desired appearance. Then, on the right-click shortcut menu of the
plot, choose Save [Plot Type] as default.
293

Chapter 5 Editing Graphics in Windows
There are eight different color schemes available. They can be
customized using the Options � Color Schemes dialog. Here, for
each color scheme, you can modify the Background Color, User
Colors, and the Image Colors. For example, if you edit the User
Colors of the Standard color scheme, all of your newly created
Graph Sheets will show the revised User Colors. The Image
Colors are a special color palette that can be used for draped surfaces
or filled contours. For Image Colors, you can specify a number of
shades to interpolate between each specified color.

If you like to use different background colors and user colors for
different projects, you can edit any or all of the eight color schemes to
suit your needs. Once you have set up your color schemes, you can
easily switch among them. For example, if you use the Color Graph
Style, go to Options � Graph Styles � Color. Set the User Colors
to Trellis, the color scheme traditionally used for Trellis graphics. All
new Graph Sheets are now created using the Background Color
and User Colors specified in the Trellis color scheme. To switch
back to using the Standard colors by default, just return to Options
� Graph Styles � Color and reset the User Colors to Standard.
294

Embedding and Extracting Data in Graph Sheets
EMBEDDING AND EXTRACTING DATA IN GRAPH SHEETS

You may want to share one of your Graph Sheets with a colleague
who may want to make further modifications to the graph. To do so,
simply embed the data used to create the graph in the Graph Sheet.
Because the data are embedded, you need only distribute the Graph
Sheet. (Graphs created by the Statistics dialogs have data embedded
in them automatically.)

When you embed data in a Graph Sheet, only the variables actually
displayed in the graph are embedded. So, for example, if you create a
plot using four variables from a data set with 20 variables, then
embed the data, only four variables are embedded.

You can also extract data from any Graph Sheet. This is a
convenient way to create new data sets consisting solely of the data
used to create a given graph.

Embedding data in a Graph Sheet

1. Create a graph in a Graph Sheet.

2. From the main menu, choose Graph � Embed Data. The
data required to reproduce the plot are embedded in the
Graph Sheet.

Once the data are embedded, the Graph Sheet is no longer linked to
the data set used to create the graph initially. That is, changes to the
original data set are not reflected in the Graph Sheet. You also
cannot use the Select Data Points graph tool if data are embedded.

Extracting data from a Graph Sheet

1. Open a Graph Sheet displaying data. The plot properties
dialog shows =Internal as the Data Set name for Graph
Sheets with embedded data, but you can extract data from
any Graph Sheet.

2. From the main menu, choose Graph � Extract Data. The
Extract Data dialog appears.

3. Enter a name for the extracted data set and click OK.
295

Chapter 5 Editing Graphics in Windows
LINKING AND EMBEDDING OBJECTS

Spotfire S+ supports linking and embedding capabilities so you can
use data or objects created in other applications in your Graph
Sheets. This section describes how to link a Spotfire S+ plot to data
from another application and have it retain a connection to the source
data.

You should link Spotfire S+ plots to data when:

• the data are likely to change,

• you need the most current version of the data in your Spotfire
S+ plot, and

• the source document is available at all times and updating is
necessary.

You can also embed Spotfire S+ data or Graph Sheets in another
application, such as Word or Excel. Embedded objects can be edited
using Spotfire S+ from within the other application. This section
describes how to embed Graph Sheets in another application.

You should embed data or graphics when:

• the embedded information is not likely to change,

• the embedded information does not need to be used in more
than one document, and

• the source document is not available for updating if it is
linked.

Data From
Another
Application

To link data from another application to a Spotfire S+ plot:

1. Select the data in the source application (for example,
Microsoft Excel).

Note

In order to use linking or embedding, the source application must support object linking and
embedding (OLE). For example, Excel 5.0 data can be embedded or linked in a Spotfire S+
Graph Sheet because Excel 5.0 supports OLE.
296

Linking and Embedding Objects
2. Copy the data to the clipboard using Copy from the Edit
menu.

3. With your Spotfire S+ plot selected and in focus, choose Edit
� Paste from the main menu.

or

• Use the drag-and-drop method by selecting the data from an
application and dragging it to the Spotfire S+ plot.

Editing Links You can control each link in your Spotfire S+ Graph Sheets. By
default, data are linked to plots with automatic updating. You can
change this to manual updating in the Links dialog.

Editing links

1. From the main menu, choose Edit � Links.

2. In the Links dialog, select the link to edit.

3. Choose Automatic or Manual linking. Under Manual
updating, Spotfire S+ only updates the link when you choose
the Update Now button from the Links dialog.

Reconnecting or
Changing Links

If you rename or move the source file, you need to reestablish the
link. In the Links dialog, you need to rename the source file or
specify the new location of the source file.

Reestablishing or changing a link

1. From the main menu, choose Edit � Links.

2. Change the name of the linked source file or specify a
different file name and click OK.

Embedding
Spotfire S+
Graphics in
Other
Applications

Because Spotfire S+ supports object linking and embedding, you can
embed Spotfire S+ Graph Sheets within other applications, such as
PowerPoint and Word.

Embedding a Spotfire S+ Graph Sheet

1. Load the client application, such as Word. Choose Object
from the Insert menu of the client application.
297

Chapter 5 Editing Graphics in Windows
2. Choose the Create New button and select Spotfire S+
Graph Sheet. Click OK. Now you can create and activate
the new Graph Sheet.

3. When you are finished editing the Graph Sheet, click outside
the Graph Sheet to deactivate it. The embedded Graph
Sheet is displayed in your document.

Editing the embedded Graph Sheet in place

1. In your client application document, double-click the
embedded Spotfire S+ Graph Sheet. Alternatively, select the
Graph Sheet, choose Object from the Edit menu, and then
choose Edit.

2. The embedded Graph Sheet remains in the client
application, but the menus and toolbars change to those used
by Spotfire S+. Edit the Graph Sheet using the Spotfire S+
menus and toolbars.

3. When finished, click anywhere outside the embedded object
to return to the client application’s menus and toolbars.

Updating
Embedded
Graphs

You can update changes to an embedded Spotfire S+ Graph Sheet
without leaving the current Spotfire S+ session when you have
opened an embedded Spotfire S+ Graph Sheet.

Updating the embedded Graph Sheet

• Click the Update button (this button replaces the Save
button when editing an embedded Graph Sheet in Spotfire
S+). The Update button updates the embedded graph in the
client application document where it is embedded.

or

• Select the Save Copy As option on the File menu. Save the
embedded graph to a new Graph Sheet file (*.sgr file) on
disk.
298

Printing a Graph
PRINTING A GRAPH

To print a Graph Sheet in Spotfire S+, use the Windows-standard

Print button or the Print Graph Sheet option in the File menu.
You can print a Graph Sheet either as a whole or one page at a time.

The Print button always prints just the current page, while the
Print dialog displayed when you choose Print Graph Sheet gives
you the option of printing all or some of the pages.

Printing a Graph Sheet

• Click the Print button on the Standard toolbar. A dialog
appears asking you to confirm your print choice.

or

1. From the main menu, choose File � Print Graph Sheet.
The Print dialog appears.

2. In the Print dialog, choose the options that you want. See the
online help for a description of the options.

3. Click OK to start printing.
299

Chapter 5 Editing Graphics in Windows
EXPORTING A GRAPH TO A FILE

You can export your graphs to files in a wide variety of formats for
use in other applications. Note that these files will no longer be linked
to Spotfire S+. To share a Graph Sheet (*.sgr file) with another
application, see Linking and Embedding Objects on page 296.

Exporting a graph to a file

1. Make sure the graph you want to export is showing in the
current Graph Sheet.

2. From the main menu, choose File � Export Graph. The
Export Graph dialog is displayed, as shown in Figure 5.19.

3. Navigate to the desired target folder, if necessary.

4. Select the desired file type in the Save as type dropdown list.

5. Type a file name for the exported graph in the File name
box.

6. Click Export.

Figure 5.19: The Export Graph dialog.
300

Exporting a Graph to a File
Exporting
Multipage Graph
Sheets

If your Graph Sheet contains multiple pages and you want to export
all the pages simultaneously, do the following:

1. Make sure your multipage Graph Sheet is the current
document.

2. From the main menu, choose File � Export Graph to open
the Export Graph dialog.

3. Navigate to the desired target folder, if necessary.

4. Select the desired file type in the Save as type dropdown list.

5. Type a “base” file name for the exported graphs in the File
name box.

6. In the lower left corner of the Export Graph dialog, select
the All pages check box. Selecting this option disables the
File name field and inserts a # symbol before the last dot in
the file name.

7. Click Export.

All the Graph Sheet pages are exported to separate files, with the #
symbol in each file name replaced by its corresponding page number
in the Graph Sheet.
301

Chapter 5 Editing Graphics in Windows
302

Introduction 305

Getting Started 307

Graphics Objects 310
Graph Sheets 310
Graphs 310
Axes 311
Plots 311
Annotations 311
Object Path Names 312

Graphics Commands 315
Plot Types and Plot Classes 315
Viewing Argument Lists and Online Help 317
Specifying Data 319
Display Properties 320
Displaying Dialogs 323

Plot Types 324
The Plots2D and ExtraPlots Palettes 324
The Plots3D Palette 338

Titles and Annotations 347
Titles 347
Legends 347
Other Annotations 348
Locating Positions on a Graph 351

Formatting Axes 352

Formatting Text 354
Modifying the Appearance of Text 355
Superscripts and Subscripts 356
Greek Text 356
Colors 357

WINDOWS EDITABLE
GRAPHICS COMMANDS 6
303

Chapter 6 Windows Editable Graphics Commands
Layouts for Multiple Plots 359
Combining Plots on a Graph 359
Multiple Graphs on a Single Page 359
Multiple Graphs on Multiple Pages 360
Conditioned Trellis Graphs 360

Specialized Graphs Using Your Own Computations 361
304

Introduction
INTRODUCTION

This chapter introduces the editable graphics system that is part of the
Spotfire S+ graphical user interface, and it focuses on creating and
customizing editable graphics via the point-and-click approach. In
this chapter, we show how to create and modify such graphics by
calling Spotfire S+ functions directly. All of the graphics available in
the Plots2D, Plots3D, and ExtraPlots palettes can be generated by
pointing and clicking, or by typing commands in the Script and
Commands windows. Likewise, editable graphs can be modified by
using the appropriate dialogs and the Graph toolbar, or by calling
functions that make the equivalent modifications.

An editable graph contains numerous graph objects, such as axes and
annotations. Each field in a graphics dialog corresponds to a property
of an object. Similarly, toolbar actions such as changing plot colors or
line styles are changes in the values of an object’s properties. Each
time you create or modify a graph through the Spotfire S+ GUI, the
corresponding command is recorded in the History Log. This
provides an easy way for you to generate programming examples and
familiarize yourself with the editable graphics functions. The basic
procedure is:

1. Select Window � History � Clear to clear your History
Log.

2. Create a graph using the plot palettes and modify it with the
dialog and toolbar options.

3. Select Window � History � Display to view the commands
that created your graphic.

By default, Spotfire S+ writes a condensed History Log. You can also
record a full History Log by selecting Options � Undo & History
and changing the History Type to Full.

Note

The graphics produced by the Statistics menus and dialogs are traditional graphics. See Chapter
2, Traditional Graphics for details.
305

Chapter 6 Windows Editable Graphics Commands
The main differences between the condensed and full History Log
are:

• Calls to the guiPlot function are recorded in the condensed
History Log while calls to the guiCreate function are
recorded in the full History Log. We discuss guiPlot in the
section Getting Started on page 307 and we discuss both
functions in the section Graphics Commands on page 315.

• The guiPlot calls in the condensed History Log include only
those arguments that are different from their default values.
The guiCreate calls in the full History Log include all
arguments, even if they are not used explicitly to create a
particular plot.

• The condensed History Log records plotting commands
while the full History Log also records commands that
initialized graph sheets, open palettes, and close dialogs.

Rather than attempt to learn the language of Spotfire S+ editable
graphics from scratch, we encourage you to make extensive use of the
History Log for programming examples and templates. For more
information on the History Log, see Chapters 9 in the Spotfire S+
User’s Guide for Windows.

In the section Getting Started on page 307, we provide an overview of
the guiPlot function and show how it corresponds to particular GUI
actions. We then describe the types of objects that constitute an
editable graphic in Spotfire S+. We provide examples that show how
you can create each type of editable plot programmatically, and then
show how you can modify different properties of the plots. Finally, we
illustrate how to place multiple plots on a single page, including how
to create multipanel Trellis graphics.

In this chapter, we assume that you are familiar with components of
the Spotfire S+ graphical user interface such as toolbars, toolbar
buttons, palettes, and dialogs.
306

Getting Started
GETTING STARTED

The guiPlot function emulates the action of interactively creating
plots by first selecting columns of data and then clicking on a button
in a plot palette. The colors, symbol types, and line styles used by
guiPlot are equivalent to those specified in both the Options �

Graph Styles dialogs and the individual graphics dialogs. The
arguments to guiPlot are:

> args(guiPlot)
function(PlotType = "Scatter", NumConditioningVars = 0,

Multipanel = "Auto", GraphSheet = "", AxisType = "Auto",
Projection = F, Page = 1, Graph = "New", Rows = "",
Columns = "", ...)

The PlotType argument is a character string that matches the name of
the plot button as displayed in its tool tip. To see the appropriate
string for a plot, hover your mouse over its button in one of the plot
palettes until the tool tip appears. Alternatively, use the
guiGetPlotClass function to see a list of all plot types that guiPlot
accepts:

> guiGetPlotClass()
 [1] "Scatter" "Isolated Points"
 [3] "Bubble" "Color"
 [5] "Bubble Color" "Text as Symbols"
 [7] "Line" "Line Scatter"
 [9] "Y Series Lines" "XY Pair Lines"
[11] "Y Zero Density" "Horiz Density"
[13] . . .

The default value PlotType="Scatter" produces a simple scatter plot.
For example, the command

guiPlot("Scatter", DataSet = "fuel.frame",
Columns = "Mileage, Weight")

emulates the following actions:

1. Highlight the Mileage column in the fuel.frame data set.
CTRL-click to simultaneously highlight the Weight column.

2. Click the Scatter button in the Plots2D palette.

Either approach displays a scatter plot of Weight versus Mileage.
307

Chapter 6 Windows Editable Graphics Commands
The AxisType argument to guiPlot allows you to define different axis
types exactly as you do from the Standard toolbar. It accepts a string
that matches the name of the axis type as it appears in the Default 2D
Axes Type list. For example, the following call creates a graph with a
Log Y axis:

guiPlot("Scatter", DataSet = "fuel.frame",
Columns = "Mileage, Weight", AxisType = "Log Y")

This command is equivalent to specifying Log Y axes in the
Standard toolbar before clicking the Scatter button in the Plots2D
palette.

Similarly, the following command creates a graph with two overlaid
plots: one showing Weight versus Mileage and the other showing
Disp. versus Mileage. The AxisType argument is set to "Multiple Y"
so that the y axis for the second plot appears along the right side of the
graph sheet, while the y axis for the first plot appears on the left.

guiPlot("Scatter", DataSet = "fuel.frame",
Columns = "Mileage, Weight, Disp.",
AxisType = "Multiple Y")

The following call places the plots in two separate panels that have
the same x axis scaling but different y axis scaling:

guiPlot("Scatter", DataSet = "fuel.frame",
Columns = "Mileage, Weight, Disp.",
AxisType = "Vary Y Panel")

The NumConditioningVars argument allows you to create Trellis
conditioning plots using guiPlot. For example, the command

guiPlot("Scatter", DataSet = "fuel.frame",
Columns = "Mileage, Weight, Type",
NumConditioningVars = 1)

emulates the following GUI actions:

1. Click the Set Conditioning Mode button in the Standard
toolbar.

2. Highlight the Mileage column in the fuel.frame data set.
CTRL-click to simultaneously highlight the Weight and Type
columns.

3. Click the Scatter button in the Plots2D palette.
308

Getting Started
Either approach creates a scatter plot of Weight versus Mileage for
each type of car. The last variable specified in the Columns argument
to guiPlot (or highlighted in the Data window) is always used as the
conditioning variable. We discuss the NumConditioningVars argument
more in the section Conditioned Trellis Graphs on page 360.

Spotfire S+ writes guiPlot commands to the condensed History Log
when you create a graph interactively. If the History Type is set to
Full instead of Condensed, Spotfire S+ writes guiCreate commands
to the History Log; we discuss guiCreate more in the section
Graphics Commands on page 315. You can write your own examples
using guiPlot by creating the desired plot type and then viewing the
condensed History Log.
309

Chapter 6 Windows Editable Graphics Commands
GRAPHICS OBJECTS

There are five main types of graphics objects in the editable graphics
system: graph sheets, graphs, axes, plots, and annotations. Plots are
contained in graphs, and graphs are contained in graph sheets. Most
graphics objects cannot exist in isolation. If a graphics object is
created in isolation, it generates an appropriate container. For
example, when you create a plot, the appropriate graph, axes and
graph sheet are automatically configured and displayed.

In general, the simplest way to create plots is with guiPlot. You can
create all types of graphics objects with the guiCreate function. The
properties of graphics objects can be modified using the guiModify
function. In this section, we briefly describe each of the graphics
objects; the section Graphics Commands on page 315 discusses
guiPlot, guiCreate, and guiModify in more detail.

Graph Sheets Graph sheets are the highest-level graphics object. They are documents
that can be saved, opened, and exported to a wide variety of graphics
formats. Graph sheet properties determine the orientation and shape of
the graph sheet, the units on the axes, the default layout used when
new graphs are added, and any custom colors that are available for
other objects. Graph sheets typically contain one or more graphs in
addition to annotation objects such as text, line segments, arrows, and
extra symbols.

Graphs There are six types of graphs in the editable graphics system: 2D, 3D,
Matrix, Smith, Polar, and Text. The graph type determines the
coordinate system used within the graph:

• A 2D graph can have one or more two-dimensional
coordinate systems, each composed of an x and y axis.

• A 3D graph has a single three-dimensional coordinate system
defined by a 3D axes object.

• A Matrix graph has a set of two-dimensional coordinate
systems drawn in a matrix layout.

• Smith plots are specialized graphs used in microwave
engineering that have a single two-dimensional coordinate
system.
310

Graphics Objects
• A Polar graph has a single polar coordinate system.

• Text graphs display pie charts and have no coordinate system
other than the measurements of the graph sheet.

Graph properties determine the size and shape of both the graph area
and the plot area. You can fill both areas with colors and include
borders around them. All graphs support the Trellis paradigm of
displaying multiple panels; the graph properties determine the
conditioning data and the layout of the panels. The 3D graphs also
have properties that determine the shape and view angle of the 3D
workbox.

Axes The characteristics of the coordinate systems within graphs are set by
the properties of axes objects. Typically, axes properties contain
information about the range, tick positions, and display characteristics
of an axis, such as line color and line weight. Axes for 2D graphs also
have properties that determine scaling and axis breaks. All axes other
than those for 2D graphs contain information about tick labels and
axis titles; 2D axes contain separate objects for tick labels and axis
titles, both of which have their own properties.

Plots A plot contains data specifications and options relating to how the
data are displayed. In many cases, a plot determines the type of
calculations that Spotfire S+ performs on the data before drawing the
plot. A plot is always contained within a graph and is associated with
a particular type of coordinate system. For example, a 2D graph can
contain any of the following plot types, among others: bar charts, box
plots, contour plots, histograms, density plots, dot charts, line plots,
and scatter plots. Plot properties are components that describe aspects
of the plot such as the line style and color.

Annotations Annotation objects can be placed directly on a graph sheet or included
within a graph. If annotations are contained in a graph, Spotfire S+
repositions them as the graph is repositioned on the page. Annotation
properties control display information such as line color and line style.
They also control an annotation’s position on the graph or graph
sheet; the units that define the position can be either document units
as determined by the graph sheet, or axes units as determined by the
311

Chapter 6 Windows Editable Graphics Commands
graph’s coordinate system. Examples of annotations include titles and
legends, which we discuss more in the section Titles and Annotations
on page 347.

Object Path
Names

Every graph object in Spotfire S+ has a unique path name that
identifies it. A valid path name has the following components:

• The first component is the name of the graph sheet preceded
by $$.

• The name of the graph sheet is followed by the graph number
or annotation number.

• The name of the graph is followed by the plot number, axis
number, or annotation number.

• The name of an annotation can be followed by numbers that
correspond to specific components. For example, legends are
annotations that can contain legend items, which control the
display of individual entries in a legend.

• In 2D graphics, the name of an axis can be followed by
numbers that correspond to tick labels or axis titles.

• The name of some plots can be followed by numbers that
correspond to particular plot components. For example,
confidence intervals are components that are associated with
specific curve fit plots.

The components in the path name for a graph object are separated by
dollar signs. You can think of the individual components as
containers. For example, plots are contained within graphs, and
graphs are contained within graph sheets; therefore, the path name
$$GS1$1$1 refers to the first plot in the first graph of the graph sheet
named GS1. Likewise, annotations can be contained within graphs, so
the path name $$GS1$1$1 can also refer to the first annotation in the
first graph of GS1. Figure 6.1 visually displays this hierarchy of object
path names.

If a path name does not include the name of a graph sheet, Spotfire
S+ assumes it refers to the current graph sheet instead. The current
graph sheet is the one that was most recently created, modified, or
viewed.
312

Graphics Objects
You can use the following functions to obtain path names for specific
types of graph objects. Most of the functions accept a value for the
GraphSheet argument, which is a character vector giving the name of
the graph sheet. By default, GraphSheet="" and the current graph
sheet is used.

• guiGetAxisLabelsName: Returns the path name of the tick
labels for a specified axis. By default, Spotfire S+ returns the
path name of the labels for axis 1, which is the first x axis in
the first plot on the graph sheet.

• guiGetAxisName: Returns the path name of a specified axis.
By default, the path name for axis 1 is returned.

• guiGetAxisTitleName: Returns the path name of the title for a
specified axis. By default, the path name of the title for axis 1
is returned.

• guiGetGSName: Returns the path name of the current graph
sheet.

Figure 6.1: Hierarchy of graph objects in path names. Each node in the tree can be a
component of a path name. To construct a full path name for a particular type of
graph object, follow a branch in the tree and place dollar signs between the names in
the branch.

Graph Sheet

Annotation

Annotation Components

Graph

Annotation

Annotation Components

Axis

Tick Label Axis Title

Plot

Plot Components
313

Chapter 6 Windows Editable Graphics Commands
• guiGetGraphName: Returns the path name of the graph with a
specified graph number.

• guiGetPlotName: Returns the path name of the plot with the
specified graph and plot numbers.
314

Graphics Commands
GRAPHICS COMMANDS

This section describes the programming interface to the editable
graphics system. The three main functions we discuss are guiPlot,
guiCreate, and guiModify. You can use guiPlot and guiCreate to
draw graphics and guiModify to change particular properties about
your plots. For detailed descriptions of the plot types and their GUI
options, see the User’s Guide .

Throughout this chapter, we emphasize using guiPlot over
guiCreate to generate editable graphics. This is primarily because
guiPlot is easier to learn for basic plotting purposes. In this section,
however, we provide examples using both guiPlot and guiCreate.
The main differences between the two functions are:

• The guiPlot function is used exclusively for editable
graphics, while guiCreate can be used to create other GUI
elements such as new Data windows and Object Explorer
pages.

• The guiPlot function accepts a plot type as an argument while
guiCreate accepts a plot class. We discuss this distinction more
in the subsection below.

• Calls to guiPlot are recorded in the condensed History Log
while calls to guiCreate are recorded in the full History Log.

If you are interested solely in the editable graphics system, we
recommend using guiPlot to create most of your plots. If you are
interested in programmatically customizing the Spotfire S+ graphical
user interface, using guiCreate to generate graphics may help you
become familiar with the syntax of the required function calls.

Plot Types and
Plot Classes

Spotfire S+ includes a large number of editable plot types, as
evidenced by the collective size of the three plot palettes. Plot types
are organized into various plot classes , so that the plots in a particular
class share a set of common properties. To see a list of all classes for
the Spotfire S+ graphical user interface (of which the plot classes are a
subset), use the guiGetClassNames function.

> guiGetClassNames()

 [1] "ActiveDocument" "Application" "Arc"
315

Chapter 6 Windows Editable Graphics Commands
 [4] "Area" "AreaPanel" "AreaPlot"
 [7] "Arrow" "attribute" "Axes3D"
 [10] "AxesMatrix" "AxesPolar" "Axis2DLabelX"
 [13] "Axis2DLabelY" "Axis2dX" "Axis2dY"
 [16] "AxisPanel" "AxisPanelLabel" "AxumBoxPlot"
 [19] "Bar" "BarPanel" "BarPlot"
 [22] "Box" "BoxPanel" "BoxPlot"
 [25] . . .

See the section Plot Types on page 324 for comprehensive lists of
plots and their corresponding plot classes. Table 6.1 lists the most
common classes for the remaining by graph objects (graph sheets,
graphs, axes, and annotations).

You can create variations of basic plot types by modifying the
appropriate properties. When creating or modifying a plot, you
specify properties by name as arguments to the guiCreate and
guiModify functions. Thus, both guiCreate and guiModify accept
plot classes for their first arguments while guiPlot accepts plot types.
For example, Line, Scatter, and Line Scatter plots are all members
of the plot class LinePlot. You can create a scatter plot easily with
either guiPlot or guiCreate as follows:

Table 6.1: Common classes for graph objects. This table does not include plot classes.

Graph Object GUI Classes

Graph Sheets GraphSheet, GraphSheetPage, GraphSheetPageItem.

Graphs Graph2D, Graph3D, GraphMatrix, GraphPolar,
GraphSmith, TextGraph.

Axes Axes3D, AxesMatrix, AxesPolar, Axis3DLabelX,
Axis2DLabelY, Axis2dX, Axis2dY.

Titles MainTitle, Subtitle, XAxisTitle, YAxisTitle.

Legends Legend, LegendItem, ScaleLegend.

Other
Annotations

Arc, Arrow, CommentDate, ConfidenceBound, DateStamp,
Ellipse, Radius, ReferenceLine, Slice, Symbol.
316

Graphics Commands
guiPlot("Scatter", DataSet = "fuel.frame",
Columns = "Weight, Mileage")

guiCreate("LinePlot", DataSet = "fuel.frame",
xColumn = "Weight", yColumn = "Mileage")

Note that guiPlot accepts the plot type Line Scatter as its first
argument while guiCreate accepts the plot class LinePlot. The
guiCreate arguments DataSet, xColumn, and yColumn all define
properties of a LinePlot graphic; they correspond the first three
entries on the Data to Plot page of the Line/Scatter Plot dialog.

To create a line plot with symbols using all of the default values, type:

guiPlot("Line Scatter", DataSet = "fuel.frame",
Columns = "Weight, Mileage")

You can generate the same plot with guiCreate as follows:

guiCreate("LinePlot", DataSet = "fuel.frame",
xColumn = "Weight", yColumn = "Mileage",
LineStyle = "Solid")

Similarly, you can create a line plot without symbols using either of
the following commands:

guiPlot("Line", DataSet = "fuel.frame",
Columns = "Weight, Mileage")

guiCreate("LinePlot", DataSet = "fuel.frame",
xColumn = "Weight", yColumn = "Mileage",
LineStyle = "Solid", SymbolStyle = "None")

In each of the above examples, Spotfire S+ opens a new graph sheet
containing a 2D graph with a set of x and y axes, and then draws the
plot within the graph.

Viewing
Argument Lists
and Online
Help

You can obtain online help for guiPlot using the help function just as
you would for any other built-in command. The help files for
guiCreate and guiModify are structured by class name, however.
Typing help(guiCreate) displays a short, general help file. To see a
detailed help page for a guiCreate class, you can include the class
name in your help call. For example:

> help(GCLinePlot)
317

Chapter 6 Windows Editable Graphics Commands
where GC = guiCreate. Note that this syntax does not work for
guiModify. To see detailed help for guiModify classes, open the
Language Reference online help, click the Index tab, and search for
guiModify. Then scroll down to the class name of interest (e.g.,
guiModify(LinePlot).

Similarly, you can use the guiPrintClass function to see information
about a class. The output from guiPrintClass includes the following:

• A list of arguments for the plot class

• The dialog prompt that corresponds to each argument

• The default value

• Any available options

For example, to see information about the LinePlot class, type:

> guiPrintClass("LinePlot")

CLASS: LinePlot
ARGUMENTS:
 Name
 Prompt: Name
 Default: ""
 DataSet
 Prompt: Data Set
 Default: "fuel.frame"
 xColumn
 Prompt: x Columns
 Default: ""
 yColumn
 Prompt: y Columns
 Default: ""
 zColumn
 Prompt: z Columns
 Default: ""
 . . .

The Prompt value gives the name of the field in the Line/Scatter
Plot dialog that corresponds to each argument. The Default entry
gives the default value for the argument, and Option List shows the
possible values the argument can assume.
318

Graphics Commands
The argument lists for guiCreate and guiModify are also organized
by class name. Instead of using the args function to see a list of
arguments, use the guiGetArgumentNames function. For example, the
following command lists the arguments and properties that you can
specify for the LinePlot class:

The args function does not return a detailed list of
arguments.
> args(guiCreate)
function(classname, ...)

> args(guiModify)
function(classname, GUI.object, ...)

The guiGetArgumentNames function returns the arguments
for a particular plot class.
> guiGetArgumentNames("LinePlot")

 [1] "Name" "DataSet"
 [3] "xColumn" "yColumn"
 [5] "zColumn" "wColumn"
 [7] "PlotConditionType" "ConditionDataSet"
 [9] "ConditionColumns" "PanelToDraw"
[11] "PointLabelsColumn" "RelativeAxisX"
[13] "RelativeAxisY" "RelativePlane"
[15] "UseForAspectRatio" "Hide"
[17] "Crop" "LineStyle"
[19] "LineColor" "LineWeight"
[21] . . .

You can pass the properties returned by guiGetArgumentNames to
either guiCreate or guiModify. Each property corresponds to a field
in the dialog for the plot class. The properties returned by the above
command all have fields in the Line/Scatter Plot dialog.

Specifying
Data

You can specify data for plots either by name or by value . The examples
so far in this section illustrate the syntax for specifying data by name.
The commands in the examples all refer to data sets and their
columns by the associated names, such as "fuel.frame", "Mileage",
and "Weight". In this case, the plot is live; it automatically updates
when you open it or bring it into focus after the values in the data set
have changed. With guiPlot, you specify data by name using the
DataSet and Columns arguments, which must be character vectors.
319

Chapter 6 Windows Editable Graphics Commands
With guiCreate and guiModify, you specify data by name using the
arguments DataSet, xColumn, yColumn, zColumn and wColumn, all of
which accept character vectors.

Alternatively, a plot can store the data internally by value. The
expression used to specify the data is evaluated when the plot is
created and is not updated thereafter. This is similar to selecting
Graph � Embed Data when you wish to embed data in a particular
GUI plot. To specify the data values that are used permanently within
a plot, use the argument DataSetValues in guiPlot. With guiCreate
and guiModify, use the arguments DataSetValues, xValues, yValues,
zValues, and wValues. All of these arguments accept Spotfire S+
expressions such as subscripting statements and data frame names.

For example, to create a scatter plot of Mileage versus Weight that
stores a copy of the data internally in the graph sheet, use one of the
following commands:

guiPlot("Scatter", DataSetValues =
fuel.frame[, c("Mileage","Weight")])

guiCreate("LinePlot",
xValues = fuel.frame$Mileage,
yValues = fuel.frame$Weight)

If you generate plots from within a function, you may want to pass the
data by value if you construct the data set in the function as well.
Spotfire S+ erases the data upon termination of the function.
Therefore, any graphs the function generates by passing the data by
name will be empty.

Display
Properties

There are a number of display properties commonly used in plots
and annotation objects. Table 6.2 lists the properties that determine
the appearance of lines and symbols. They correspond to fields in the
Line and Symbol pages of many plot dialogs.
320

Graphics Commands

Table 6.2: Common display properties of plots and annotation objects.

Property Description Settings

LineColor Color of the lines drawn
between data points in the
plot.

For details about specifying
colors, and information
about what colors are
available, see the section
Colors (page 357).

GUI color palette names:

"Transparent", "Black", "Blue", "Green", "Cyan",
"Red", "Magenta", "Brown", "Lt Gray",
"Dark Gray", "Lt Blue", "Lt Green", "Lt Cyan",
"Lt Red", "Lt Magenta", "Yellow",
"Bright White", "User1", "User2", ...,
"User16", “Custom”.

LineStyle Style of the lines drawn
between data points in the
plot. Accepts a character
vector naming the style.

"None", "Solid", "Dots", "Dot Dash",
"Short Dash", "Long Dash", "Dot Dot Dash",
"Alt Dash", "Med Dash", "Tiny Dash".

LineWeight Thickness of the lines
drawn between data points
in the plot. Accepts a
numeric value measured in
point size.

SymbolColor Color of the symbols used
to plot the data points.

For details about specifying
colors, and information
about what colors are
available, see the section
Colors (page 357).

Identical to the settings for LineColor.

FillColor Color used to fill an object
such as a circle or square.

For details about specifying
colors, and information
about what colors are
available, see the section
Colors (page 357).

Identical to the settings for LineColor.
321

Chapter 6 Windows Editable Graphics Commands
To use the properties listed in the table to change the appearance of
your plot, pass them as arguments to either guiCreate or guiModify.
For example, the following commands create a plot of Mileage versus
Weight where the points are light red, filled circles and the lines that
connect the points are light blue dashes.

Create a basic plot with guiPlot and modify its
properties with guiModify.
guiPlot("Scatter",

DataSetValues = fuel.frame[, c("Mileage", "Weight")])
guiModify("LinePlot", Name = guiGetPlotName(),

LineStyle = "Short Dash",
LineColor = "Lt Blue",
LineWeight = "1/2",
SymbolStyle = "Circle, Solid", SymbolColor = "Lt Red")

You can accomplish the same thing using guiCreate as follows:

Create a basic line plot with guiCreate and modify its
properties with guiModify.
guiCreate("LinePlot", xValues = fuel.frame$Mileage,

yValues = fuel.frame$Weight)

SymbolStyle Style of the symbols used to
plot the data points.
Accepts either an integer
value representing the style
or a character vector
naming it.

Integer values: 0,1, 2, ..., 27.

Corresponding character values:
"None"; "Circle, Solid"; "Circle, Empty";
"Box, Solid"; "Box, Empty";
"Triangle, Up, Solid"; "Triangle, Dn, Solid";
"Triangle, Up, Empty"; "Triangle, Dn, Empty";
"Diamond, Solid"; "Diamond, Empty"; "Plus";
"Cross"; "Ant"; "X"; "-"; "|"; "Box X"; "Plus X";
"Diamond X"; "Circle X"; "Box +"; "Diamond +";
"Circle +"; "Tri. Up Down"; "Tri. Up Box";
"Tri. Dn Box"; "Female"; "Male".

SymbolHeight Size of the symbols used to
plot the data points.
Accepts a numeric value
measured in point size.

Table 6.2: Common display properties of plots and annotation objects. (Continued)

Property Description Settings
322

Graphics Commands
guiModify("LinePlot", Name = guiGetPlotName(),
LineStyle = "Short Dash",
LineColor = "Lt Blue",
LineWeight = "1/2",
SymbolStyle = "Circle, Solid", SymbolColor = "Lt Red")

In both of the above calls to guiModify, the guiGetPlotName function
returns the path name of the active plot. We discuss path names of
GUI objects in the section Object Path Names on page 312.

Because you can pass each of the properties in Table 6.2 to guiCreate
as well as to guiModify, you can also draw the plot using a single call
to guiCreate:

guiCreate("LinePlot", xValues = fuel.frame$Mileage,
yValues = fuel.frame$Weight,
LineStyle = "Short Dash",
LineColor = "Lt Blue",
LineWeight = "1/2",
SymbolStyle = "Circle, Solid", SymbolColor = "Lt Red")

Displaying
Dialogs

You can use the guiDisplayDialog function to open the property
dialog for a particular graph object. For example, the following
command displays the dialog for the current plot of class LinePlot:

guiDisplayDialog("LinePlot", Name = guiGetPlotName())

The properties for the plot may be modified using the dialog that
appears.
323

Chapter 6 Windows Editable Graphics Commands
PLOT TYPES

The Spotfire S+ editable graphics system has a wide variety of
available plot types. In this section, we present guiPlot commands
you can use to generate each type of plot. The plots are organized first
by palette (Plots2D, ExtraPlots, and Plots3D) and then by plot class.
We discuss commands for customizing axes and layout operations in
a later section. For additional details on any of the plot types, see the
User’s Guide .

As we mention in the section Getting Started on page 307, you can
use the guiGetPlotClass function to see a list of all plot types that
guiPlot accepts. Once you know the name of a particular plot type,
you can also use guiGetPlotClass to return its class. For example, the
Bubble plot type belongs to the LinePlot class:

> guiGetPlotClass("Bubble")
[1] "LinePlot"

Knowing both the type and class for a particular plot allows you to
use guiPlot, guiCreate, and guiModify interchangeably.

The Plots2D
and ExtraPlots
Palettes

The Plots2D and ExtraPlots palettes contain a collection of two-
dimensional plots. Table 6.3 shows a quick description of the plot
classes and the plots that belong to each of them.

Table 6.3: The plot types available in the Plots2D and ExtraPlots palettes. The left column of the table gives
the class that each plot type belongs to.

Plot Class Description Available Plot Types

LinePlot Line and scatter plots. Scatter, Line, Line Scatter, Isolated Points,
Text as Symbols, Bubble, Color, Bubble Color,
Vert Step, Horiz Step, XY Pair Scatters, XY
Pair Lines, High Density, Horiz Density, Y
Zero Density, Robust LTS, Robust MM, Loess,
Spline, Supersmooth, Kernel, Y Series Lines,
Dot.

LinearCFPlot Linear curve fit plots. Linear Fit, Poly Fit, Exp Fit, Power Fit, Ln
Fit, Log10 Fit.
324

Plot Types
NonlinearCFPlot Nonlinear curve fit plots. NLS Fit.

MatrixPlot Scatterplot matrices. Scatter Matrix.

BarPlot Bar plots. Bar Zero Base, Bar Y Min Base, Grouped Bar,
Stacked Bar, Horiz Bar, Grouped Horiz Bar,
Stacked Horiz Bar, Bar with Error, Grouped
Bar with Error.

HiLowPlot High-low plots for time
series data.

High Low, Candlestick.

BoxPlot Box plots for a single or
grouped variable.

Box, Horizontal Box.

AreaPlot Area charts. Area.

QQPlot One- and two-sample
quantile-quantile plots.

QQ Normal, QQ.

PPPlot One- and two-sample
probability plots.

PP Normal, PP.

ParetoPlot Pareto plots. Pareto, Horizontal Pareto Plot.

Histogram Histograms and density
curves.

Histogram, Density, Histogram Density.

PiePlot Pie charts. Pie.

ErrorBarPlot Error bar plots. Error Bar, Horiz Error Bar, Error Bar - Both.

ContourPlot Contour and level plots. Contour, Filled Contour, Levels.

VectorPlot Vector plots. Vector.

Table 6.3: The plot types available in the Plots2D and ExtraPlots palettes. The left column of the table gives
the class that each plot type belongs to.

Plot Class Description Available Plot Types
325

Chapter 6 Windows Editable Graphics Commands
The LinePlot
Class

The LinePlot class includes various kinds of line and scatter plots.
The scatter plot is the fundamental visual technique for viewing and
exploring relationships in two-dimensional data. Its extensions
include line plots, text plots, bubble plots, step plots, robust linear fits,
smooths, and dot plots. The line and scatter plots we illustrate here
are the most basic types of plots for displaying data. You can use
many of them to plot a single column of data as well as one data
column against another.

Scatter plot

guiPlot("Scatter", DataSetValues =
data.frame(util.mktbook, util.earn))

Line plot

guiPlot("Line", DataSetValues =
data.frame(util.mktbook, util.earn))

Line with scatter plot

guiPlot("Line & Scatter", DataSetValues =
data.frame(util.mktbook, util.earn))

Isolated points plot

guiPlot("Isolated Points", DataSetValues =
data.frame(util.mktbook, util.earn))

CommentPlot Plots in which a third
variable can be used to
write comments on the
graph.

Comment.

SmithPlot Smith plots. Smith.

PolarPlot Polar line and scatter
plots.

Polar Line, Polar Scatter.

Table 6.3: The plot types available in the Plots2D and ExtraPlots palettes. The left column of the table gives
the class that each plot type belongs to.

Plot Class Description Available Plot Types
326

Plot Types
Text as symbols plot

guiPlot("Text as Symbols", DataSetValues =
data.frame(util.mktbook, util.earn, 1:45))

guiModify("LinePlot", Name = guiGetPlotName(),
SymbolHeight = "0.2")

Bubble plot

guiPlot("Bubble", DataSetValues =
data.frame(util.mktbook, util.earn, 1:45))

Color plot

guiPlot("Color", DataSetValues =
data.frame(util.mktbook, util.earn, 1:45))

Bubble color plot

guiPlot("BubbleColor", DataSetValues =
data.frame(util.mktbook, util.earn, 45:1, 1:45))

Vertical step plot

guiPlot("Vert Step", DataSetValues =
data.frame(x = 1:10, y = seq(from=2, to=20, by=2)))

Horizontal step plot

guiPlot("Horiz Step", DataSetValues =
data.frame(x = 1:10, y = seq(from=2, to=20, by=2)))

XY pairs scatter plot

guiPlot("XY Pair Scatters", DataSetValues =
data.frame(x1 = 1:10, y1 = rnorm(10, mean=1, sd=0.5),

x2 = 6:15, y2 = rnorm(10, mean=5, sd=0.5)))

XY pairs line plot

guiPlot("XY Pair Lines", DataSetValues =
data.frame(x1 = 1:10, y1 = rnorm(10, mean=1, sd=0.5),

x2 = 6:15, y2 = rnorm(10, mean=5, sd=0.5)))
327

Chapter 6 Windows Editable Graphics Commands
Vertical high density plot

guiPlot("High Density", DataSetValues =
data.frame(util.mktbook, util.earn))

Horizontal high density plot

guiPlot("Horiz Density", DataSetValues =
data.frame(util.mktbook, util.earn))

Y zero high density plot

guiPlot("Y Zero Density", DataSetValues =
data.frame(x = 1:20, y = runif(20, min=-10, max=10)))

Robust least trimmed squares linear fit

guiPlot("Robust LTS", DataSetValues =
data.frame(util.mktbook, util.earn))

Robust MM linear fit

guiPlot("Robust MM", DataSetValues =
data.frame(util.mktbook, util.earn))

Loess smooth

guiPlot("Loess", DataSetValues =
data.frame(util.mktbook, util.earn))

Smoothing spline

guiPlot("Spline", DataSetValues =
data.frame(util.mktbook, util.earn))

Friedman’s supersmoother

guiPlot("Supersmooth", DataSetValues =
data.frame(util.mktbook, util.earn))

Kernel smooth

guiPlot("Kernel", DataSetValues =
data.frame(util.mktbook, util.earn))
328

Plot Types
Y series lines

guiPlot("Y Series Lines", DataSet = "hstart",
Columns = c("Positions","Data"))

Dot plot

guiPlot("Dot", DataSetValues =
data.frame(NumCars = table(fuel.frame$Type),

CarType = levels(fuel.frame$Type)))

The LinearCFPlot
Class

The linear, polynomial, exponential, power, and logarithmic curve
fits all have class LinearCFPlot. Curve-fitting plots in this class display
a regression line with a scatter plot of the associated data points. The
curves are computed with an ordinary least-squares algorithm.

Linear fit

guiPlot("Linear Fit", DataSetValues =
data.frame(util.mktbook, util.earn))

Polynomial fit

guiPlot("Poly Fit", DataSetValues =
data.frame(util.mktbook, util.earn))

Exponential fit

guiPlot("Exp Fit", DataSetValues =
data.frame(util.mktbook, util.earn))

Power fit

guiPlot("Power Fit", DataSetValues =
data.frame(util.mktbook, util.earn))

Natural logarithmic fit

guiPlot("Ln Fit", DataSetValues =
data.frame(util.mktbook, util.earn))

Common logarithmic fit

guiPlot("Log10 Fit", DataSetValues =
data.frame(util.mktbook, util.earn))
329

Chapter 6 Windows Editable Graphics Commands
The
NonlinearCFPlot
Class

The NonlinearCFPlot class includes a single plot type for fitting
nonlinear curves. In addition to the data, this type of plot needs a
formula and a vector of initial values for any specified parameters.
For this reason, it is usually easier to create the plot with a single call
to guiCreate, rather than sequential calls to guiPlot and guiModify.

Nonlinear fit

guiCreate("NonlinearCFPlot", DataSet = "Orange",
xColumn = "age", yColumn = "circumference",
Model = "circumference ~ A/(1 + exp(-(age-B)/C))",
Parameters = "A=150, B=600, C=400")

The MatrixPlot
Class

The MatrixPlot class includes a single plot type for displaying
scatterplot matrices. This type of plot displays an array of pairwise
scatter plots illustrating the relationship between any pair of variables
in a data set.

Scatterplot matrix

guiPlot("Scatter Matrix", DataSet = "fuel.frame",
Columns = "Mileage, Weight, Type")

The BarPlot Class A wide variety of bar plots are available in the editable graphics
system via the BarPlot class. A bar plot displays a bar for each point in
a set of observations, where the height of a bar is determined by the
value of the data point. For most ordinary comparisons, we
recommend the simplest bar plot with the zero base. For more
complicated analysis, you may wish to display grouped bar plots,
stacked bar plots, or plots with error bars.

Vertical bar plot with zero base

guiPlot("Bar Zero Base", DataSetValues =
data.frame(as.factor(c("A","B")), c(-20,70)))

Vertical bar plot with Y minimum base

guiPlot("Bar Y Min Base", DataSetValues =
data.frame(as.factor(c("A","B")), c(-20,70)))

Vertical grouped bar plot

guiPlot("Grouped Bar", DataSetValues =
330

Plot Types
data.frame(as.factor(c("A","B")), c(20,70), c(30,80)))
guiModify("BarPlot", Name = guiGetPlotName(),

BarBase = "Zero")

Vertical stacked bar plot

guiPlot("Stacked Bar", DataSetValues =
data.frame(as.factor(c("A","B")), c(20,70), c(30,80)))

Horizontal bar plot

guiPlot("Horiz Bar", DataSetValues =
data.frame(c(20,70), as.factor(c("A","B"))))

Horizontal grouped bar plot

guiPlot("Grouped Horiz Bar", DataSetValues =
data.frame(c(30,80), c(20,70), as.factor(c("A","B"))))

guiModify("BarPlot", Name = guiGetPlotName(),
BarBase = "Zero")

Horizontal stacked bar plot

guiPlot("Stacked Horiz Bar", DataSetValues =
data.frame(c(30,80), c(20,70), as.factor(c("A","B"))))

Vertical bar plot with error

guiPlot("Bar with Error", DataSetValues =
data.frame(as.factor(c("A","B")), c(20,70), c(3,6)))

Vertical grouped bar plot with error

guiPlot("Grouped Bar with Error")
guiModify("BarPlot", Name = guiGetPlotName(),

xValues = as.factor(c("A","B")),
yValues = data.frame(c(20,70), c(30,80)),
zValues = data.frame(c(3,3), c(10,10)))

The HiLowPlot
Class

The HiLowPlot class contains two types of plots: the high-low plot and
the candlestick plot. A high-low plot typically displays lines indicating
the daily, monthly, or yearly extreme values in a time series. These
kinds of plots can also include average, opening, and closing values,
and are referred to as high-low-open-close plots in these cases.
Meaningful high-low plots can thus display from three to five
331

Chapter 6 Windows Editable Graphics Commands
columns of data, and illustrate simultaneously a number of important
characteristics about time series data. Because of this, they are most
often used to display financial data.

One variation on the high-low plot is the candlestick plot. Where
typical high-low plots display the opening and closing values of a
financial series with lines, candlestick plots use filled rectangles. The
color of the rectangle indicates whether the difference is positive or
negative. In Spotfire S+, cyan rectangles represent positive
differences, when closing values are larger than opening values. Dark
blue rectangles indicate negative differences, when opening values
are larger than closing values.

High-low-open-close plot

dow <- djia[positions(djia) >= timeDate("09/01/87") &
positions(djia) <= timeDate("11/01/87"),]

guiPlot("High Low", DataSet = "dow",
Columns = "Positions, open, close, high, low")

Candlestick plot

guiPlot("Candlestick", DataSet = "dow",
Columns = "Positions, open, close, high, low")

The BoxPlot Class The BoxPlot class contains box plots that show the center and spread
of a data set as well as any outlying data points. In the editable
graphics system, box plots can be created for a single variable or a
grouped variable.

Vertical box plot

guiPlot("Box", DataSetValues = data.frame(util.earn))

Horizontal box plot

guiPlot("Horizontal Box", DataSetValues =
data.frame(util.earn))

Vertical grouped box plot

guiPlot("Box", DataSet = "fuel.frame",
Columns = "Type, Mileage")
332

Plot Types
Horizontal grouped box plot

guiPlot("Horizontal Box", DataSet = "fuel.frame",
Columns = "Type, Mileage")

The AreaPlot
Class

The AreaPlot class contains a single plot type that displays area plots.
An area chart fills the space between adjacent series with color. It is
most useful for showing how each series in a data set affects the whole
over time.

Area plot

guiPlot("Area", DataSetValues =
data.frame(car.time, car.gals))

The QQPlot Class The QQPlot class produces quantile-quantile plots, or qqplots, which
are extremely powerful tools for determining good approximations to
the distributions of data sets. In a one-dimensional qqplot, the
ordered data are graphed against quantiles of a known theoretical
distribution. If the data points are drawn from the theoretical
distribution, the resulting plot is close to the line in shape. The
normal distribution is often the distribution used in this type of plot,
giving rise to the plot type "QQ Normal". In a two-dimensional qqplot,
the ordered values of the variables are plotted against each other. If
the variables have the same distribution shape, the points in the
qqplot cluster along a straight line.

QQ normal plot

Two data sets compared with the normal distribution.
guiPlot("QQ Normal", DataSetValues =

data.frame(rnorm(25), runif(25)))

QQ plot

Two data sets plotted against each other.
guiPlot("QQ", DataSetValues =

data.frame(rnorm(25), runif(25)))

One data set compared with the Chi-square distribution.
guiPlot("QQ", DataSetValues = data.frame(rchisq(20,5)))
guiModify("QQPlot", Name = guiGetPlotName(),

Function = "Chi-Squared", df1 = "5")

y x=
333

Chapter 6 Windows Editable Graphics Commands
The PPPlot Class The PPPlot class produces probability plots. A one-dimensional
probability plot is similar to a qqplot except that the ordered data
values are plotted against the quantiles of a cumulative probability
distribution function. If the hypothesized distribution adequately
describes the data, the plotted points fall approximately along a
straight line. In a two-dimensional probability plot, the observed
cumulative frequencies of both sets of data values are plotted against
each other; if the data sets have the same distribution shape, the
points in the plot cluster along the line y = x.

PP normal plot

guiPlot("PP Normal", DataSetValues = data.frame(rnorm(25)))

PP plot

Two data sets plotted against each other.
guiPlot("PP", DataSetValues =

data.frame(rnorm(25), runif(25)))

One data set compared with the Chi-square distribution.
guiPlot("PP", DataSetValues = data.frame(rchisq(20,5)))
guiModify("PPPlot", Name = guiGetPlotName(),

Function = "Chi-Squared", df1 = "5")

The ParetoPlot
Class

The ParetoPlot class displays Pareto charts, which are essentially
specialized histograms. A Pareto chart orders the bars in a histogram
from the most frequent to the least frequent, and then overlays a line
plot to display the cumulative percentages of the categories. This type
of plot is most useful in quality control analysis, where it is generally
helpful to focus resources on the problems that occur most frequently.
In the examples below, we use the data set exqcc2 that is located in
the samples\Documents\exqcc2.sdd file under your Spotfire S+
home directory.

Vertical Pareto plot

data.restore(paste(getenv("SHOME"),
"samples/Documents/exqcc2.sdd", sep = "/"))

guiPlot("Pareto", DataSet = "exqcc2",
Columns = "NumSample, NumBad")
334

Plot Types
Horizontal Pareto plot

guiPlot("Horizontal Pareto Plot", DataSet = "exqcc2",
Columns = "NumBad, NumSample")

The Histogram
Class

The Histogram class creates histograms and density plots for one-
dimensional data. Histograms display the number of data points that
fall in each of a specified number of intervals. A density plot displays
an estimate of the underlying probability density function for a data
set and allows you to approximate the probability that your data fall
in any interval. A histogram gives an indication of the relative density
of the data points along the horizontal axis. For this reason, density
plots are often superposed with (scaled) histograms.

Histogram

guiPlot("Histogram", DataSetValues = data.frame(util.earn))

Density plot

guiPlot("Density", DataSetValues = data.frame(util.earn))

Histogram with density plot

guiPlot("Histogram Density", DataSetValues =
data.frame(util.earn))

The PiePlot Class The PiePlot class displays pie charts, which show the share of
individual values in a variable relative to the sum total of all the
values. The size of a pie wedge is relative to a sum, and does not
directly reflect the magnitude of the data value. Because of this, pie
charts are most useful when the emphasis is on an individual item’s
relation to the whole; in these cases, the sizes of the pie wedges are
naturally interpreted as percentages.

Pie chart

guiPlot("Pie", DataSetValues =
data.frame(table(fuel.frame$Type)))

The ErrorBarPlot
Class

The ErrorBarPlot class includes error bar plots, which display a range
of error around each plotted data point.
335

Chapter 6 Windows Editable Graphics Commands
Vertical error bars

guiPlot("Error Bar", DataSetValues =
data.frame(as.factor(c("A","B")), c(20,70), c(3,6)))

Horizontal error bars

guiPlot("Horiz Error Bar", DataSetValues =
data.frame(c(20,70), as.factor(c("A","B")), c(3,6)))

Vertical and horizontal error bars

guiPlot("Error Bar - Both", DataSetValues =
data.frame(c(20,43), c(20,70), c(3,6), c(5,8)))

The ContourPlot
Class

The ContourPlot class displays contour plots and level plots. A
contour plot is a representation of three-dimensional data in a flat, two-
dimensional plane. Each contour line represents a height in the z
direction from the corresponding three-dimensional surface. A level
plot is essentially identical to a contour plot, but it has default options
that allow you to view a particular surface differently.

Contour plot

guiPlot("Contour", DataSet = "exsurf",
Columns = "V1, V2, V3")

Filled contour plot

guiPlot("Filled Contour", DataSet = "exsurf",
Columns = "V1, V2, V3")

Level plot

guiPlot("Levels", DataSet = "exsurf",
Columns = "V1, V2, V3")

The VectorPlot
Class

The VectorPlot class contains the vector plot type, which uses arrows
to display the direction and velocity of flow at particular positions in a
two-dimensional plane. To create a vector plot, specify two columns
of data for the positions of the arrows, a third column of data for the
angle values (direction), and a fourth column of data for the
336

Plot Types
magnitude (length). In the example below, we use the data set
exvector that is located in the samples\Documents\exvector.sdd
file under your Spotfire S+ home directory.

Vector plot

data.restore(paste(getenv("SHOME"),
"samples/Documents/exvector.sdd", sep = "/"))

guiPlot("Vector", DataSet = "exvector",
Columns = "x, y, angle, mag")

The
CommentPlot
Class

The CommentPlot class contains the comment plot type, which displays
character labels on a two-dimensional graph. You can use comment
plots to display character data, plot combinations of characters as
symbols, produce labeled scatter plots, and create tables. To create a
comment plot, specify two columns of data for the position of each
comment and a third column for the text.

Comment plot

guiPlot("Comment", DataSetValues =
data.frame(x = 1:26, y = rnorm(26), z = LETTERS))

The SmithPlot
Class

The SmithPlot class contains Smith plots, which are drawn in polar
coordinates. This type of plot is often used in microwave engineering
to show impedance characteristics. There are three types of Smith
plots: reflection, impedance, and circle. In a reflection plot, the x
values are magnitudes in the range [0,1] and the y values are angles in
degrees that are measured clockwise from the horizontal. In an
impedance plot, the x values are resistance data and the y values are
reactance data. In a circle plot, the x values are positive and specify
the distance from the center of the Smith plot to the center of the
circle you want to draw. The y values are angles that are measured
clockwise from the horizontal; the z values are radii and must also be
positive.

Smith plots

Reflection plot.
guiPlot("Smith", DataSetValues =

data.frame(x = seq(from=0, to=1, by=0.1), y = 0:10),
 AxisType="Smith")
guiModify("SmithPlot", Name = guiGetPlotName(),

AngleUnits = "Radians")
337

Chapter 6 Windows Editable Graphics Commands
Impedance plot.
guiPlot("Smith", DataSetValues =

data.frame(x = seq(from=0, to=1, by=0.1), y = 0:10),
AxisType="Smith")

guiModify("SmithPlot", Name = guiGetPlotName(),
DataType = "Impedance", AngleUnits = "Radians")

Circle plot.
guiPlot("Smith", DataSetValues =

data.frame(x = seq(from=0, to=1, by=0.1), y = 0:10,
z = seq(from=0, to=1, by=0.1)), AxisType="Smith")

guiModify("SmithPlot", Name = guiGetPlotName(),
DataType = "Circle", AngleUnits = "Radians")

The PolarPlot
Class

The PolarPlot class displays line and scatter plots in polar
coordinates. To create a polar plot, specify magnitudes for the x values
in your data and angles (in radians) for the y values.

Polar line plot

guiPlot("Polar Line", DataSetValues = data.frame(
x = seq(from=0.1, to=2, by=0.1),
y = seq(from=0.5, to=10, by=0.5)))

Polar scatter plot

guiPlot("Polar Scatter", DataSetValues = data.frame(
x = seq(from=0.1, to=2, by=0.1),
y = seq(from=0.5, to=10, by=0.5)))

The Plots3D
Palette

The Plots3D palette contains a collection of three-dimensional plots.
Table 6.4 shows a quick description of the plot classes and the plots
that belong to each of them.
338

Plot Types
The last nine plots in the Plots3D palette are composite plots that do
not have their own classes. Instead, they are tools that allow you to
view plots we’ve discussed already in new and different ways. The
tools fall into two broad categories: rotated plots and conditioned plots.
We discuss each of these categories below.

Table 6.4: The plot types available in the Plots3D palette. The left column of the table gives the class that
each plot type belongs to.

Plot class Description Available Plot Types

Line3DPlot Line, scatter, drop-
line, and regression
plots.

3D Scatter, 3D Line, 3D Line Scatter, Drop Line
Scatter, 3D Regression, 3D Reg Scatter.

SurfacePlot Surface and bar plots. Coarse Surface, Data Grid Surface, Spline Surface,
Filled Coarse Surface, Filled Data Grid Surface,
Filled Spline Surface, 8 Color Surface, 16 Color
Surface, 32 Color Surface, 3D Bar.

ContourPlot Contour plots. This
class contains both
2D and 3D contour
plots. See Table 6.3.

3D Contour, 3D Filled Contour.

Grid3D Projection planes. This group of plots does not have formal plot types. The
plots are listed in the Plots3D palette with the following
names:

XY Plane Z Min, XZ Plane Y Min, YZ Plane X Min, XY
Plane Z Max, XZ Plane Y Max, YZ Plane X Max.

Rotated plots. This group of plots has neither a plot class nor a
corresponding formal plot type. The plots are listed in
the Plots3D palette with the following names:

2 Panel Rotation, 4 Panel Rotation, 6 Panel Rotation.
339

Chapter 6 Windows Editable Graphics Commands
In the subsections below, we present examples for each of the plot
types listed in the table. The data set we use in the examples is created
as follows:

x <- ozone.xy$x
y <- ozone.xy$y
z <- ozone.median
ozone.df <- data.frame(x,y,z)

To familiarize yourself with this data set and the 3D plot types, first
create a mesh surface plot:

guiPlot("Data Grid Surface", DataSetValues = ozone.df)

Next, add the data points as a separate plot to the surface:

guiCreate("Line3DPlot", Name = "1$2",
xValues = x, yValues = y, zValues = z,
SymbolStyle = "Circle, Solid")

The Data Grid Surface is the first plot in the first graph of the graph
sheet. We give the plot of data points the name 1$2 to designate it as
the second plot in the first graph. For more details on naming
conventions for graph objects, see the section Object Path Names on
page 312.

You can use guiModify to rotate the axes:

guiModify("Graph3D", Name = guiGetGraphName(),
Rotate3Daxes = T)

Conditioned plots. This group of plots has neither a plot class nor a
corresponding formal plot type. The plots are listed in
the Plots3D palette with the following names:

Condition on X, Condition on Y, Condition on Z, No
Conditioning, 4 Panel Conditioning, 6 Panel
Conditioning.

Table 6.4: The plot types available in the Plots3D palette. The left column of the table gives the class that
each plot type belongs to.

Plot class Description Available Plot Types
340

Plot Types
Note that Rotate3Daxes is part of the properties for the graph type
Graph3D and not the plot type Line3DPlot; see the section Graphics
Objects on page 310 for details.

If you would like to see the surface again without the overlaid data
points, use the guiRemove function to remove the second plot:

guiRemove("Line3DPlot", Name = "1$2")

The Line3DPlot
Class

The Line3DPlot class contains scatter and line plots that display
multidimensional data in three-dimensional space. Typically, static
3D scatter and line plots are not effective because the depth cues of
single points are insufficient to give strong 3D effects. On some
occasions, however, they can be useful for discovering simple
relationships between three variables. To improve the depth cues in a
3D scatter plot, you can add drop lines to each of the points; this gives
rise to the plot type "Drop Line Scatter". The 3D Regression plot
draws a regression plane through the data points.

Scatter plot

guiPlot("3D Scatter", DataSetValues = ozone.df)

Line plot

guiPlot("3D Line", DataSetValues = ozone.df)

Line with scatter plot

guiPlot("3D Line Scatter", DataSetValues = ozone.df)

Drop line scatter plot

guiPlot("Drop Line Scatter", DataSetValues = ozone.df)

Regression plot

guiPlot("3D Regression", DataSetValues = ozone.df)

Regression with scatter plot

guiPlot("3D Reg Scatter", DataSetValues = ozone.df)
341

Chapter 6 Windows Editable Graphics Commands
The SurfacePlot
Class

The SurfacePlot class includes different types of surface plots, which
are approximations to the shapes of three-dimensional data sets.
Spline surfaces are smoothed plots of gridded 3D data, and 3D bar
plots are gridded surfaces drawn with bars. For two variables, a 3D
bar plot produces a binomial histogram that shows the joint
distribution of the data. A color surface plot allows you to specify
color fills for the bands or grids in your surface plot.

Coarse surface

guiPlot("Coarse Surface", DataSetValues = ozone.df)

Data grid surface

guiPlot("Data Grid Surface", DataSetValues = ozone.df)

Spline surface

guiPlot("Spline Surface", DataSetValues = ozone.df)

Coarse filled surface

guiPlot("Filled Coarse Surface", DataSetValues = ozone.df)

Data grid filled surface

guiPlot("Filled Data Grid Surface",
DataSetValues = ozone.df)

Filled spline surface

guiPlot("Filled Spline Surface", DataSetValues = ozone.df)

Eight color draped surface

guiPlot("8 Color Surface", DataSetValues = ozone.df)

Sixteen color draped surface

guiPlot("16 Color Surface", DataSetValues = ozone.df)

Thirty-two color draped surface

guiPlot("32 Color Surface", DataSetValues = ozone.df)
342

Plot Types
Bar plot

guiPlot("3D Bar", DataSetValues = ozone.df)

The ContourPlot
Class

The 3D contour plots are identical to 2D contour plots, except that
the contour lines are drawn in three-dimensional space instead of on
a flat plane. For more details, see the section The ContourPlot Class
on page 336.

Contour plot

guiPlot("3D Contour", DataSetValues = ozone.df)

Filled contour plot

guiPlot("3D Filled Contour", DataSetValues = ozone.df)

The Grid3D Class The Grid3D class contains a set of two-dimensional planes you can use
either on their own or overlaid on other 3D plots. The class is
separated into six plots according to which axis a plane intersects and
where. For example, the plot created by the XY Plane Z Min button
in the Plots3D palette intersects the z axis at its minimum.

The plots in the Grid3D class do not have their own plot types.
Instead, they are different variations of the Grid3D class, so that you
must use guiCreate to generate them. In all of the commands below,
we overlay planes on a 3D contour plot of the ozone.df data.

XY plane

Minimum Z.
guiPlot("3D Contour", DataSetValues = ozone.df)
guiCreate("Grid3D", Name = guiGetPlotName(),

ProjectionPlane = "XY", Position = "Min")

Maximum Z.
guiPlot("3D Contour", DataSetValues = ozone.df)
guiCreate("Grid3D", Name = guiGetPlotName(),

ProjectionPlane = "XY", Position = "Max")

YZ plane

Minimum X.
guiPlot("3D Contour", DataSetValues = ozone.df)
guiCreate("Grid3D", Name = guiGetPlotName(),
343

Chapter 6 Windows Editable Graphics Commands
ProjectionPlane = "YZ", Position = "Min")

Maximum X.
guiPlot("3D Contour", DataSetValues = ozone.df)
guiCreate("Grid3D", Name = guiGetPlotName(),

ProjectionPlane = "YZ", Position = "Max")

XZ plane

Minimum Y.
guiPlot("3D Contour", DataSetValues = ozone.df)
guiCreate("Grid3D", Name = guiGetPlotName(),

ProjectionPlane = "XZ", Position = "Min")

Maximum Y.
guiPlot("3D Contour", DataSetValues = ozone.df)
guiCreate("Grid3D", Name = guiGetPlotName(),

ProjectionPlane = "XZ", Position = "Max")

Rotated Plots The Plots3D palette contains buttons that allow you to see 3D plots
rotated in either two, four, or six different ways. By rotating a three-
dimensional plot, you gain a better understanding of the overall shape
of the data. Note that these plots do not have their own class or plot
type, but are instead part of a tool that Spotfire S+ provides for you.
To use this tool programmatically, define the Multipanel argument in
your call to guiPlot to be one of "3DRotate2Panel",
"3DRotate4Panel", or "3DRotate6Panel".

2 panel rotation

guiPlot("Data Grid Surface", DataSetValues = ozone.df,
Multipanel = "3DRotate2Panel")

4 panel rotation

guiPlot("Data Grid Surface", DataSetValues = ozone.df,
Multipanel = "3DRotate4Panel")

6 panel rotation

guiPlot("Data Grid Surface", DataSetValues = ozone.df,
Multipanel = "3DRotate6Panel")
344

Plot Types
Conditioned
Plots

You can condition three-dimensional graphs in the same manner as
two-dimensional graphs. The final six buttons in the Plots3D palette
provide tools that allow you to condition either on a variable in a 3D
plot or on a fourth variable that is external to the plot:

• Conditioning on a plot variable causes Spotfire S+ to slice the
plot according to the values of that variable. This corresponds
to the buttons Condition on X, Condition on Y, and
Condition on Z in the Plots3D palette. It is available for 3D
surface plots only.

• Conditioning on an external variable provides a way to view
how a 3D plot varies according to the values in the fourth
variable. This corresponds to the buttons No Conditioning,
4 Panel Conditioning, and 6 Panel Conditioning.

Note that these plots do not have their own class or plot type, but are
instead part of a tool that Spotfire S+ provides for you. To use this
tool programmatically, set the argument PanelType="Condition" in
either guiCreate or guiModify. As we mention in the section
Graphics Objects on page 310, conditioning parameters are
properties of graph objects; thus, PanelType is a property of the
Graph3D class.

Conditioning on a variable in the plot

Condition on X.
guiPlot("Data Grid Surface", DataSet = "exsurf",

Columns = "V1, V2, V3")
guiModify("Graph3D", Name = guiGetGraphName(),

PanelType = "Condition", ConditionColumns = "V1")

Condition on Y.
guiModify("Graph3D", Name = guiGetGraphName(),

PanelType = "Condition", ConditionColumns = "V2")

Condition on Z.
guiModify("Graph3D", Name = guiGetGraphName(),

PanelType = "Condition", ConditionColumns = "V3")

Conditioning on a fourth variable

No conditioning.
guiPlot("3D Scatter", DataSet = "galaxy",
345

Chapter 6 Windows Editable Graphics Commands
Columns = "east.west, north.south, velocity")

4-panel conditioning.
guiPlot("3D Scatter", DataSet = "galaxy",

Columns = "east.west, north.south, velocity,
radial.position",

NumConditioningVars = 1)
guiModify("Graph3D", Name = guiGetGraphName(),

PanelType = "Condition", NumberofPanels = "4")

6-panel conditioning.
guiModify("Graph3D", Name = guiGetGraphName(),

PanelType = "Condition", NumberofPanels = "6")

Back to no conditioning.
guiModify("Graph3D", Name = guiGetGraphName(),

PanelType = "None")
346

Titles and Annotations
TITLES AND ANNOTATIONS

Titles All graphs can contain titles and subtitles and all 2D axes contain axis
titles. To add titles to your 2D editable graphics, specify properties for
the "MainTitle", "Subtitle", "XAxisTitle", and "YAxisTitle" GUI
classes. For example, the following commands create a basic scatter
plot using guiPlot and then add all four types of titles using
guiCreate:

guiPlot("Scatter", DataSetValues =
data.frame(car.miles, car.gals))

guiCreate("XAxisTitle", Name = "1",
Title = "Gallons per Trip")

guiCreate("YAxisTitle", Name = "1",
Title = "Miles per Trip")

guiCreate("MainTitle", Name = "1",
Title = "Mileage Data")

guiCreate("Subtitle", Name = "1",
Title = "Miles versus Gallons")

For 3D graphs, you can use the "MainTitle" and "Subtitle" classes
exactly as you do for 2D graphs. Adding axis titles is slightly different,
however. This is because 2D axis titles are separate objects with their
own properties, while 3D axis titles are themselves properties of 3D
axes; we discuss this in the section Axes on page 311. Thus, instead of
calling guiCreate with the "XAxisTitle" and "YAxisTitle" classes,
call guiModify with the axes class Axes3D. For example:

xData <- 1:25
guiPlot("3D Line", DataSetValues =

data.frame(xData, cos(xData), sin(xData)))
guiModify("Axes3D", Name = "1", xTitleText = "x",

yTitleText = "cos(x)", zTitleText = "sin(x)")
guiCreate("MainTitle", Name = "1", Title = "Spirals")

Legends All graphs can also contain legends. To add a legend to an editable
graphic, specify properties for the "Legend" GUI class. This class of
graphics objects is equivalent to the legends displayed by the Auto
Legend button on the Graph toolbar. For example, the following
347

Chapter 6 Windows Editable Graphics Commands
commands create a scatter plot of Weight versus Mileage in the
fuel.frame data set, vary the plotting symbols according to the Type
column, and then add a legend.

guiPlot("Scatter", DataSet = "fuel.frame",
Columns = "Weight, Mileage, Type")

guiModify("LinePlot", Name = guiGetPlotName(),
VarySymbolStyleType = "z Column",
VarySymbolColorType = "z Column")

guiCreate("Legend", Name = "1$1",
xPosition = "6.6", yPosition = "6.1")

Legends contain legend properties that can be modified individually.
To do this, specify properties for the LegendItem class of graphics
objects. For example, the following command changes the text in the
first entry of the legend from above:

guiModify("LegendItem", Name = "1$1",
Text = "Compact Cars")

Other
Annotations

As we mention in the section Object Path Names on page 312, you
can place annotation objects (extra text, lines, symbols, etc.) directly
on a graph sheet or within a graph. Because of this, it is necessary to
include the graph sheet as part of the Name argument when creating
these objects. In contrast, commands from previous sections specify
names in formats without graph sheet names, similar to Name="1$1".
Titles and legends are associated with a particular graph, so the path
name defaults to one in the current graph sheet. The annotation
objects we discuss in this section, however, are associated with either
graph sheets or individual graphs, so the graph sheet must be
explicitly included in the object path name.

For example, to center a date stamp at the bottom of a graph sheet,
first open the graph sheet and create the appropriate path name for it:

> graphsheet()
> gsObjName <- paste("$$", guiGetGSName(), "$1", sep = "")
> gsObjName
[1] "$$GSD2$1"

To add a date stamp, specify properties for the CommentDate class of
GUI objects. Spotfire S+ positions date stamps according to the
properties xPosition and yPosition, using the document units of the
348

Titles and Annotations
graph sheet as measured from the lower left corner. If a position is set
to "Auto", Spotfire S+ centers the date stamp along that axis. For
example, the following command centers a date stamp along the
width of the graph sheet. For illustration, we use a scatter plot of the
built-in data sets car.gals and car.miles.

guiPlot("Scatter", GraphSheet = guiGetGSName(),
DataSetValues = data.frame(car.gals, car.miles))

guiCreate("CommentDate", Name = gsObjName,
Title = "My Project",
xPosition = "Auto", yPosition = 0.1,
UseDate = T, UseTime = F)

The next command places a box with rounded edges outside of the
axes in the graph sheet. To do this, we specify properties for the
"Box" class of GUI objects.

guiCreate("Box", Name = gsObjName,
OriginX = 0.5, OriginY = 0.5, SizeX = 10, SizeY = 7.5,
FillColor = "Transparent", RoundCorners = T,
UseAxesUnits = F)

The OriginX and OriginY arguments position the lower left corner of
the box, and SizeX and SizeY specify its width and length,
respectively. The units used are those of the page unless
UseAxesUnits=TRUE.

Next, create an arrow on the graph. The xStart, yStart, xEnd, and
yEnd properties define the starting and ending points of the arrow;
when UseAxesUnits=TRUE, these positions are in axes units. The
appropriate path name for the arrow is one level deeper than
gsObjName, since the arrow is placed directly on the graph:

objName <- paste(gsObjName, "$1", sep = "")
guiCreate("Arrow", Name = objName,

xStart = 15, yStart = 320, xEnd = 20, yEnd = 340,
UseAxesUnits = T)

Similarly, other annotations such as extra symbols and lines can be
added:

guiCreate("Symbol", Name = objName,
SymbolStyle = "Box, Empty",
xPosition = 8, yPosition = 334, SymbolColor = "Red",
SymbolHeight = 0.25, UseAxesUnits = T)
349

Chapter 6 Windows Editable Graphics Commands
guiCreate("Line", Name = objName,
LineStyle = "Short Dash",
xStart = 5, yStart = 334, xEnd = 25, yEnd = 334,
UseAxesUnits=T)

The following command adds a horizontal reference line at the mean
of the data:

guiCreate("ReferenceLine", Name = objName,
LineColor = "Black", LineStyle = "Long Dash",
Orientation = "Horizontal", Position = mean(car.miles))

The next command adds an error bar showing the standard deviation
of the data:

stddevy <- stdev(car.miles)
guiCreate("ErrorBar", Name = objName,

xPosition = mean(car.gals), yPosition = mean(car.miles),
xMin = 0, yMin = stddevy, xMax = 0, yMax = stddevy,
UseAxesUnits = T)

Other annotation objects such as ellipses, radial lines, and arcs can be
used for specialize drawing. The following script creates a new graph
sheet and adds such annotations to it:

guiCreate("Ellipse", FillColor = "Transparent",
xCenter = 5.5, yCenter = 3.5,
HorizontalRadius = 2.7, VerticalRadius = 3)

guiCreate("Arc", Name = "1",
xCenter = 5.5, yCenter = 2.0,
HorizontalRadius = 1.2, VerticalRadius = 0.7,
StartAngle = 180, EndAngle = 0)

guiCreate("Radius", Name = "1",
xCenter = 5.5, yCenter = 3.3, xStart = 3.0, xEnd = 3.5,
Angle = 75)

guiCreate("Radius", Name = "2",
xCenter = 5.5, yCenter = 3.3, xStart = 3.0, xEnd = 3.5,
Angle = 90)

guiCreate("Radius", Name = "3",
xCenter = 5.5, yCenter = 3.3, xStart = 3.0, xEnd = 3.5,
Angle = 105)
350

Titles and Annotations
Locating
Positions on a
Graph

You can use the guiLocator function to prompt the user to click on
locations in a graph. Among many other things, you can use the
chosen locations to interactively place titles, legends, and general
annotations. This function accepts as an argument the number of
points the user should select. It returns the positions of the chosen
points as a list with elements x and y. By default, guiLocator operates
on the current graph sheet.

For example, the function my.rescale below uses guiLocator to
allow you to rescale a plot interactively. The my.rescale function first
creates a line plot with the input data. It then places a comment on
the graph prompting the user to click on two points. The guiLocator
function captures the selected points, which determine the new x axis
minimum and maximum. Finally, the comment is removed and the x
axis rescaled with the values returned by guiLocator.

my.rescale <- function(x,y)
{

guiCreate("LinePlot", xValues = x, yValues = y)
gsName <- guiGetGSName(),
commentName <- paste("$$", gsName, "$1", sep = "")
guiCreate("CommentDate", Name = commentName, Title =
 "Click on two points to determine the \n
 new X axis minimum and maximum",

xPosition = "Auto", yPosition = 0.12, FontSize = 15,
UseDate = F, UseTime = F)

a <- guiLocator(2)
minXVal <- a$x[1]
maxXVal <- a$x[2]
guiRemove("CommentDate", Name = commentName)
guiModify("Axis2dX", Name = "1$1",

AxisMin = minXVal, AxisMax = maxXVal)
invisible()

}

To use this function, try the following commands:

theta <- seq(from=0, by=pi/10, length=150)
y <- sin(theta)
my.rescale(theta, y)

Hint

If you call guiLocator(-1), the current plot redraws.
351

Chapter 6 Windows Editable Graphics Commands
FORMATTING AXES

You can add axes to a 2D plot by creating objects from the classes
Axis2dX and Axis2dY. The AxisPlacement property of these two
classes may be set to either "Left/Lower" or "Right/Upper"; this
specifies the side of the plot on which to place the axis. The frame for
the axis is defined by setting the DrawFrame property to "None", "No
ticks", "With ticks", or "With labels & ticks". For example, the
following commands create a scatter plot and add an x axis with
labels and ticks to the top of the plot.

guiPlot("Scatter", DataSetValues =
data.frame(util.mktbook, util.earn))

guiCreate("Axis2dX", Name = "1$1",
AxisPlacement = "Right/Upper",
DrawFrame = "With labels & ticks")

To customize 3D axes, you must modify the properties of an Axes3D
object. This is because, unlike 2D axes, 3D axes are single objects that
do not contain subclasses. For example, the following commands
create a surface plot of the exsurf data, change the range of the axes,
and modify the axis titles:

guiPlot("Data Grid Surface", DataSet = "exsurf",
Columns = "V1, V2, V3")

guiModify("Axes3D",
Name = paste(guiGetGraphName(), "$1", sep=""),
XAxisMin = "DataMin", XAxisMax = "DataMax",
YAxisMin = "DataMin", YAxisMax = "DataMax",
ZAxisMin = "DataMin", ZAxisMax = "DataMax",
XTitleText = "X", YTitleText = "Y", ZTitleText = "Z")

The AxisMin and AxisMax arguments for all three axes accept the
character strings "DataMin" and "DataMax" as well as numeric values.

For comparison, the following commands make the same
modifications to a two-dimensional graph:

XaxesObj <- paste(guiGetGraphName(), "$Axis2dX1", sep="")
guiPlot("Scatter", DataSetValues =

data.frame(util.mktbook, util.earn))
guiModify("Axis2dX", Name = XaxesObj,

AxisMin = "DataMin", AxisMax = "DataMax")
352

Formatting Axes
guiModify("XAxisTitle",
Name = paste(XaxesObj, "$XAxisTitle", sep=""),
Title = "X")

YaxesObj <- paste(guiGetGraphName(), "$Axis2dY1", sep="")
guiModify("Axis2dY", Name = YaxesObj,

AxisMin = "DataMin", AxisMax = "DataMax")
guiModify("YAxisTitle",

Name = paste(YaxesObj, "$YAxisTitle", sep=""),
Title = "Y")
353

Chapter 6 Windows Editable Graphics Commands
FORMATTING TEXT

You can format the axis labels, titles, and text annotations in your
graphs using a set of codes recognized by the Spotfire S+ editable
graphics system. Table 6.5 lists the most common text codes and the
syntax required for each of them. You can use these codes in
guiCreate and guiModify commands to customize the appearance of
text in your editable graphs, as we illustrate in the examples below.
The \"Symbol\" code in the table can be used to include Greek text in
graphs as well as other general symbols.
Table 6.5: Common codes for formatting text in editable graphics.

Format
Starting
Character

Ending
Character Example

Font \" \" \"Arial\"

Font size \p \p012

Bold # # #HELLO#

Italics ` ` `Programmer’s Guide`

Underline \u \u \uGoodbye\u

Superscript [] x[2]

Subscript] [x]i[

Symbols \"Symbol\" \"Symbol\"abcd

Colors (hex) "# " "#FF0000"

Colors (named) "= " "=olive"

Colors (GUI
palette names)

" " "Lt Blue"

Extended ASCII
character

~ ~163
354

Formatting Text
Like all other features of the editable graphics system, you can use the
History Log to familiarize yourself with the text codes in the table.
The following steps show the idea behind this process:

1. Create a graph from the Plots2D palette.

2. Double-click on an axis label so that you can see the @Auto
string. Type in a different axis label.

3. Highlight the text you wish to modify and right-click to select
Superscript, Subscript, Font, or Symbol from the context-
sensitive menu.

4. When you are finished formatting, click anywhere in the plot
to accept the changes.

5. Select Window � History � Display to view the History
Log. The formatting you choose appears as text codes in calls
to guiCreate and guiModify.

Modifying the
Appearance of
Text

The commands below create a scatter plot of two variables in the
fuel.frame data set, add a CommentDate, and modify the text of the
annotation. The final CommentDate uses Helvetica 20-point font that is
bold, italicized, and underlined.

guiPlot("Scatter", DataSet = "fuel.frame",
Columns = "Mileage, Weight")

Create and position the annotation.
objName <- paste(guiGetGraphName(), "$1", sep="")
guiCreate("CommentDate", Name = objName,

Title = "The Fuel Data",
xPosition = "3.9", yPosition = "6.5")

Warning

The backslash is a reserved character in Spotfire S+. When you use the codes to change the font
size or underlining of text, be sure to include extra backslashes in front of the starting and ending
characters: \\p012 and \\uGoodbye\\u.

This also applies when you change the font of or include symbols in your text. Here, however,
the two extra backslashes are included at the beginning so that they are not part of the character
strings: \\\"Arial\", \\\"Symbol\"abcd.
355

Chapter 6 Windows Editable Graphics Commands
Change the appearance of the text.
guiModify("CommentDate", Name = objName,

Title = "\\\"Helvetica\"\\p020#`\\uThe Fuel Data\\u`#")

Note the order of the text codes in this command. First, the font name
is specified and then the font size. Finally the bold, italics, and
underlining surround the text of the title.

Superscripts
and Subscripts

The following commands show how you can include superscripts and
subscripts in the text of your titles and annotations.

x <- seq(from = -2, to = 2, by = 0.1)
y <- x^2
guiPlot("Line", DataSetValues = data.frame(x,y))

guiCreate("MainTitle",
Name = paste(guiGetGraphName(), "$1", sep=""),
Title = "x[2] versus x where x]i[= -2, -1.9, ..., 2",
xPosition = "3.1", yPosition = "7")

The title created with this command displays as “ versus where
.”

Greek Text To include Greek text in the titles and annotations on your graphics,
use the \"Symbol\" text code. This code precedes the names of the
symbols that appear in the Symbol table. To access the Symbol
table, double-click on text in a graph until it is highlighted, right-click
and select Symbol from the menu. By selecting different symbol
types and viewing the History Log, you can learn their naming
conventions. The names of Greek letters are simply their English
counterparts, so that corresponds to , corresponds to , etc.

For example, the following script plots a parabola, changes the axis
titles to the Greek letters and , and includes an annotation that

displays the equation . In this example, we use the vectors x
and y defined in the previous section.

guiPlot("Line", DataSetValues = data.frame(x,y))

Modify the axis titles.
guiModify("XAxisTitle", Name = guiGetAxisTitleName(),

x2 x
xi 2 1.9 2 – –=

 a b

 2=
356

Formatting Text
Title = "\\\"Symbol\"a")
guiModify("YAxisTitle", Name = guiGetAxisTitleName(),

Title = "\\\"Symbol\"b")

Include the equation of the line as an annotation.
guiCreate("CommentDate", Name = guiGetGraphName(),

Title = "\\\"Symbol\"\\p018b = a[2]",
xPosition = "1.5", yPosition = "5.8")

Colors For general information about available colors, see the section Color
Specification (page 3). For details about how colors specified as
hexadecimal values or character strings are converted to RGB values,
see the section Color Name Resolution (page 9).

In guiCreate or guiModify commands, you can specify RGB values
by using a # prefix to indicate that a hex value follows. For example,
to create an Arrow and set its LineColor to red:

guiCreate("Arrow", Name = "GS1$1",
xStart = "4.7978021978022",
yStart = "3.77142857142857",
xEnd = "6.7978021978022",
yEnd = "5.77142857142857",
LineStyle = "Solid",
LineColor = "#FF0000")

You can specify a named color by using a = prefix:

guiCreate("Arrow", Name = "GS1$1",
xStart = "4.7978021978022",
yStart = "3.77142857142857",
xEnd = "6.7978021978022",
yEnd = "5.77142857142857",
LineStyle = "Solid",
LineColor = "=blue")

Notes

Eight-character hex representations for RGB + Alpha are not supported in GUI commands.

If using Spotfire S+ in use.legacy.graphics(T) mode, see the Spotfire S+ 7 documentation
for an explanation of how to specify colors in GUI command code.
357

Chapter 6 Windows Editable Graphics Commands
If you leave off the = prefix, then the color name refers to the GUI
color palette names:

guiCreate("Arrow", Name = "GS1$1",
xStart = "4.7978021978022",
yStart = "3.77142857142857",
xEnd = "6.7978021978022",
yEnd = "5.77142857142857",
LineStyle = "Solid",
LineColor = "Blue")
358

Layouts for Multiple Plots
LAYOUTS FOR MULTIPLE PLOTS

Combining
Plots on a
Graph

You can combine multiple plots within a single graph by defining the
Graph argument to guiPlot. By default, this argument is empty and a
new graph is created each time you generate a plot. You can set Graph
to be the path name of an existing graph, however; this causes
Spotfire S+ to place the new plot within the existing graph.

For example, create a line plot of the car.miles data with the
following command:

guiPlot("Line Scatter", DataSet = "car.miles")

Add a second plot of a different type and place it in the first graph:

guiPlot("Line", DataSet = "car.gals",
GraphSheet = guiGetGSName(), Graph = 1)

The plot of the car.miles data is the first one in the graph. By
specifying Graph=1 in the above command, we place the car.gals
plot within the first graph.

Note that the ranges of the two data sets are quite different. We can
place the plots in separate panels of the graph with the following call
to guiModify:

guiModify("Graph2D", Name = guiGetGraphName(),
PanelType = "By Plot")

Finally, we can vary the y axis range across panels with the following
modification:

guiModify("Axis2dY", Name = guiGetAxisName(),
VaryAxisRange = T)

Multiple
Graphs on a
Single Page

A graph sheet automatically resizes and repositions any existing
graphs on a page when a new graph is added. The layout parameters
for positioning the graphs are properties of the graph sheet object.
Thus, you can change the arrangement of graphs on a page by
specifying the appropriate graph sheet properties. For example,
create a new graph sheet containing a line plot with the following
command:

guiPlot("Line", DataSet = "car.miles")
359

Chapter 6 Windows Editable Graphics Commands
The next command defines the AutoArrange property of the graph
sheet so that graphs are stacked on top of each other, with one graph
in each row:

guiModify("GraphSheet", AutoArrange = "One Across")

Possible values for the AutoArrange property include "None", "One
Across", "Two Across", "Three Across", "Four Across", and
"Overlaid".

When you add a second graph to the graph sheet, the first graph is
moved and resized to fit in the top half of the page while the second
graph appears in the lower half:

guiPlot("Line", DataSet = "car.gals",
GraphSheet = guiGetGSName())

Multiple
Graphs on
Multiple Pages

You can also place multiple graphs on different pages of the same
graph sheet. To do this, define the argument Page="New" in the call to
guiPlot. For example, create a new graph sheet containing a line plot
with the following command:

guiPlot("Line", DataSet = "car.miles")

Now add another graph on a second page of the same graph sheet:

guiPlot("Line", DataSet = "car.gals",
GraphSheet = guiGetGSName(), Page = "New")

Conditioned
Trellis Graphs

In Trellis graphics, the layout of conditioned plots is specified as part
of the graph object. The conditioning variable defined in the guiPlot
command is used for all plots contained within the graph. For
example, create a scatter plot of Mileage versus Weight conditioned
on Type in the fuel.frame data set:

guiPlot("Scatter", DataSet = "fuel.frame",
Columns = "Weight, Mileage, Type",
NumConditioningVars = 1)

The following call to guiModify changes the layout so that two plots
are placed on each page of the graph sheet:

guiModify("Graph2D", Name = "1", NumberOfPages = 3,
NumberOfPanelColumns = 2)
360

Specialized Graphs Using Your Own Computations
SPECIALIZED GRAPHS USING YOUR OWN COMPUTATIONS

You can use the UserFunctionName property of 2D line plots to create
your own customized plot types. For example, the following built-in
function creates a plot type that draws crosshairs showing the mean
and 95% confidence intervals of x and y data:

> crosshairs

function(x, y, z, w, subscripts, panel.num)
{

Displays 95% confidence intervals for the means of x and
y. x,y,z,w correspond to the data fields in the plot
dialog. Currently only numeric columns are supported.
z and w can be empty -- NULL will be sent (in this
function they are ignored, but in others they might be
useful).
Subscripts contains the row numbers for the x, y, etc.
data. This may be useful for conditioning.
panel.num will contain the panel number if
conditioning, otherwise it will contain 0.
meanx <- mean(x)
meany <- mean(y)
stdx <- sqrt(var(x))
stdy <- sqrt(var(y))
crit.x <- qt(0.975, length(x) - 1)
crit.y <- qt(0.975, length(y) - 1)
xdata <- c(meanx - crit.x * stdx, meanx + crit.x * stdx,

NA, meanx, meanx)
ydata <- c(meany, meany, NA,

meany - crit.y * stdy, meany + crit.y * stdy)
list(x = xdata, y = ydata)

}

Notice that the first four arguments of the crosshairs function, x, y, z,
and w, correspond to the data fields in the plot dialog. If no data are
specified for one of these fields, NULL is passed into the function. Any
user-defined 2D plot type like crosshairs must return a list
containing the components x and y. Spotfire S+ uses the return
vectors as the data to be plotted in the graph.
361

Chapter 6 Windows Editable Graphics Commands
In the code for crosshairs above, the first two values in the return
vectors x and y are points that represent a line at the mean of the
input data y. The boundaries for this line are from the mean of the
input x minus the 97.5% confidence interval, to the mean of the input
x plus the 97.5% confidence level. The third element in the return
vectors are missing values that are used to break the line. The last two
elements in the return values represent a line drawn at the mean of
the input x, showing the 95% confidence interval for the input y.

To create a plot that draws the crosshairs, define the argument
UserFunctionName="crosshairs" in the call to guiCreate. In the
command below, we plot the original data points with solid circles so
that they are visible in the graph.

guiCreate("LinePlot",
xValues = car.time, yValues = car.miles,
LineStyle = "Solid", SymbolStyle = "Circle, Solid",
BreakForMissings = T,
SmoothingType = "User", UserFunctionName = "crosshairs")

Specifying the property SmoothingType="User" allows Spotfire S+ to
recognize the UserFunctionName argument. The SmoothingType
property is used in any plot that has computations built in; examples
include curve fits and smoothed curves as well as user-defined plots.

Note

In this version of crosshairs, the arguments z, w, subscripts and panel.num are all ignored.
However, subscripts and panel.num may be useful in a version of the function that generates
editable Trellis plots. The vector subscripts contains the row numbers for the data that are used
in the current panel. The argument panel.num contains the panel number if conditioning;
otherwise it contains 0.
362

Introduction 364

The graphsheet Device 365
Starting a graphsheet Device 365

The motif Device 366
Starting a motif Device 366

The java.graph Device 367
Starting a java.graph Device 367
java.graph Device Settings 367

The pdf.graph Device 375
Creating PDF Files 375
pdf.graph Settings 375

The wmf.graph and emf.graph Devices 384
Creating WMF or EMF Graphics 385
wmf.graph and emf.graph Settings 385

The postscript Device 391
postscript Device Settings 391

Device-Specific Color Specification 398
pdf.graph Colors 398
wmf.graph and emf.graph Colors 402
postscript Colors 404
java.graph Colors 409
Using the S-PLUS 6.2 Colorscheme 412

WORKING WITH GRAPHICS
DEVICES 7
363

Chapter 7 Working With Graphics Devices
INTRODUCTION

Spotfire S+ supports several graphic device types. For a complete list,
refer to the Devices online help file.

This chapter describes the most commonly-used graphics device
types:

• graphsheet (Windows only)

• motif (UNIX/Linux only)

• java.graph

• pdf.graph

• wmf.graph

• emf.graph

• postscript

Note

The CGM format is not supported in Spotfire S+. To produce CGM graphics, find a package
that converts a supported graphic format to CGM.
364

The graphsheet Device
THE GRAPHSHEET DEVICE

The graphsheet device displays a graphics window that allows you
to interactively create, edit, print, and export graphics. It is available
on all supported Windows platforms and is the default device type in
Spotfire S+ for Windows.

Starting a
graphsheet
Device

Spotfire S+ sessions begin with no graphics device running. If you
have not started a graphics device before executing a plotting
command in a Spotfire S+ for Windows session, the graph is
automatically sent to the graphsheet device.

To start a graphsheet device manually, call the graphsheet
function. The graphsheet arguments and their defaults are:

graphsheet(width = NULL, height = NULL, type = "auto",
win.width = NULL, win.height = NULL, win.left = NULL,
win.top = NULL,pointsize = 16, orientation = "automatic",
units.per.inch = 1, format = "", file = "", ncopies = 1,
color.style = NULL, background.color = NULL,
print.background = F, color.scheme = NULL,
image.color.scheme = NULL, color.table = NULL,
num.image.colors = NULL,
num.image.shades = if(!is.null(image.color.table)) 10
else NULL, image.color.table = NULL, pages = NA,
object.mode = NA, Name = NULL, fonts = character(0),
suppress.graphics.warnings, params = character(0))

For details about these arguments, refer to the graphsheet online
help. For information about setting default values, refer to the par
online help.

For information about working with graphics in a graphsheet
window, see Chapter 5, Editing Graphics in Windows.
365

Chapter 7 Working With Graphics Devices
THE MOTIF DEVICE

The motif device displays a graphics window that allows you to
interactively modify the color specifications of your plots and
immediately see the result, and also interactively change the plot’s
print specifications.

The motif device conforms to the OSF/Motif graphical user
interface standards for the X Window System, Version 11 (X11). It is
the default graphics device on all supported UNIX and Linux
platforms.

Starting a
motif Device

Spotfire S+ sessions begin with no graphics device running. If you
have not started a graphics device before executing a plotting
command in a Spotfire S+ for UNIX/Linux session, the graph is
automatically sent to the motif device.

To start a motif device manually, call the motif function. The
motif arguments and their defaults are:

motif(options="", color=T, ignore.sgraphrc=F, ...)

For details about these arguments, refer to the motif online help. For
information about setting default values, refer to the par online help.

For information about working with graphics in a motif window, see
the section Using motif Graphics Windows on page 207.
366

The java.graph Device
THE JAVA.GRAPH DEVICE

The java.graph device is available with Java-enabled versions of
Spotfire S+ on all supported operating system platforms. This device
displays a graphics window that allows you to interactively modify
the color specifications of your plots and immediately see the result,
and also interactively change the plot’s print specifications.

Starting a
java.graph
Device

When you start a java.graph device (by calling the java.graph
function) a graphics window is displayed.

The java.graph arguments and their defaults are:

java.graph(file = "", format = "", width = -1,
height = -1, colorscheme = java.colorscheme.default,
jpeg.quality = 1., png.color = "color")

For details about these arguments, refer to the java.graph online
help. For information about setting default values for these
arguments, refer to the par online help.

java.graph
Device Settings

You can set the following the java.graph device:

• symbols

• color

• font (including point size)

• line types

File formats supported by the java.graph device are:

• JPEG (default)

• BMP

• PNG

• PNM

• SPJ

• TIFF

java.graph
Symbols

The pch argument specifies the number of a plotting symbol to be
drawn when plotting points. Table 7.1 lists the available values for
the pch argument and corresponding plotting symbol.
367

Chapter 7 Working With Graphics Devices
The symbols for these values are shown in Figure 7.1.

Table 7.1: java.graph symbols.

Argument Value Description

0 square

1 octagon

2 triangle

3 cross

4 X

5 diamond

6 inverted triangle

7 square + X

8 X + cross

9 diamond + cross

10 octagon + cross

11 triangle + inverted triangle

12 square + cross

13 octagon + X

14 square + triangle

15 filled square
368

The java.graph Device
These are the same marks described in the points online help.

Assigning the values 32 through 126 to the pch argument yields the 95
ASCII characters, from space through tilde.

Example

java.graph(file="test.jpg")
plot(0:18, 0:18, type="n")
points(0:18, 0:18, pch=0:18, cex=3)
dev.off()

java.graph Colors By default, Spotfire S+ uses a global color palette and global image
color palette to map color indexes to specific colors. Previous Spotfire
S+ versions performed color mapping on a device-specific basis. For
details about the global palettes, see the section Global Color Palette
on page 9.

16 filled octagon

17 filled triangle

18 filled diamond

Figure 7.1: java.graph symbols

Table 7.1: java.graph symbols. (Continued)

Argument Value Description
369

Chapter 7 Working With Graphics Devices
For Spotfire S+ users who have developed code that makes extensive
use of the device-specific palettes, the use.device.palette
function is available for enabling backward compatibility. For usage
details, see the section Backward Compatibility on page 24.

For information about device-specific color controls for the
java.graph device, see the section java.graph Colors on page 409.

java.graph Fonts The following fonts are supported for the java.graph device. To use
a font, specify its corresponding number for the font argument. For
example, specify font=3 for SansSerif bold.

The default font size is 12 points when cex=1, but the size is adjusted
when the graph is zoomed in and out. It should be exactly 12 points if
the graph is 512 pixels wide by 384 pixels high.

The following font rules apply:

• The default font is SansSerif plain (font=1).

• The font values loop; that is, font=7 is the same as font=1,
font=8 is the same as font=2, and so on. The exception to this
rule is font=13, which assigns the Greek font.

• Any font number set to less than 1 is the same as font=1. The
set of fonts cannot be changed.

Table 7.2: java.graph fonts.

Argument value Font

1 SansSerif plain

2 SansSerif italic

3 SansSerif bold

4 Serif plain

5 Serif italic

6 Serif bold

13 Greek
370

The java.graph Device
Example:

java.graph(file="test.jpg")
plot(1:25, 1:25, type="n")
text(1:25, 1:25, "qwerty", font=1:25)
dev.off()

java.graph Line
Types

The line type is controlled by the lty argument. The following line
types are supported for java.graph.

Figure 7.2: java.graph fonts.

Table 7.3: java.graph line types.

Argument value Line type

1 solid

2 dotted

3 short dashed dotted

4 medium dashed

5 dashed with three dots
371

Chapter 7 Working With Graphics Devices
Example:

java.graph(file="test.jpg")
plot(1:8, 1:8, type="n")
for(i in 1:8) lines(c(1,8), c(i,i), lty=i)
dev.off()

Resolution (DPI)
Information

The dpi graph style is dependent on the resolution of the printer or
device, not the resolution of the graph produced by Spotfire S+.
Spotfire S+ produces 300 dpi graphics.

6 medium dashed dotted

7 dotted (groups of three)

8 short dashed

Figure 7.3: java.graph line types.

Table 7.3: java.graph line types.

Argument value Line type
372

The java.graph Device
Resolution is fixed in all Spotfire S+ bitmapped files as a function of
page dimensions. To change the resolution, you have two options:

• Change the default resolution of a (TIFF) graphics file from 72
dpi (the default) by creating a WMF graphics file (using
wmf.graph) or EMF graphics file (emf.graph) and converting
it to a TIFF in another application that provides the ability to
change resolution. Currently, there is not a way to change this
in Spotfire S+.

• The java.graph function takes the arguments width and
height (in pixels), which you can use to set the size of the
bitmap that the graphic is drawn on, before the bitmap is
converted to a JPEG or other format. By increasing these
values from the defaults, you can create a higher-quality
image. Of course, the resulting image files are larger. If just
one of width or height is given, the other is set to keep the
normal width/height ratio.

Graphics Formats
Details

The following guidelines can help you with your graphics formats:

• JPEG, BMP, TIFF, and GIF are bitmapped graphics. They
are raster formats more suited for displaying images (pictures)
than vector-based graphics. Spotfire S+ displays graphics
internally as vector graphics. Vector graphics are redrawn
according to scale and do not suffer from pixilation as do
bitmaps.

• The 16-bit Windows Metafile (WMF) or the 32-bit Enhanced
Metafile (EMF) are the suggested graphics formats because
they are vector-based types of files. Graphsheets look sharp
inside of Spotfire S+ because vector graphics are used to
create images. This means that Spotfire S+ plots are drawn
with complete lines. In contrast, JPEG, GIF, TIFF, BMP, and
other bitmapped file formats use pixels, and can result in
some information loss due to compression. These formats
work well with photographs, which usually contain so much
information that the loss is not dramatic. However, all of the
information in a graphics file is necessary, so Spotfire S+ plots
do not tend to export well to bitmapped formats.

• If you create a Spotfire S+ graphics file in JPEG, TIFF, or
BMP format, the resulting image can have poor resolution
and appear badly pixilated. Enlarging a bitmapped image
373

Chapter 7 Working With Graphics Devices
produces additional image deterioration: the resolution is not
increased, but merely enlarged so that you can see more of
the individual pixels. Instead, try exporting your Spotfire S+
graphics to a Windows Metafile (WMF), Enhanced Metafile
(EMF), or Encapsulated Postscript (EPS) format. Both of these
formats support vector graphics, and will retain all of the
information in your Spotfire S+ plots.

Overall, the 16-bit WMF and 32-bit EMF formats are the best
reproduction quality formast, because they are the only formats
drawn from the original graphics primitives.

To access resolution/dpi information from the graphics file:
Table 7.4: Finding resolution/dpi information for a graphics file.

Format Menu command Resolution Details

EPS Media � Display
 Settings

JPG File � Properties Default resolution is 300 pixels/inch.
Default width is 520 pixels; height is
390 pixels.

PNG File � Properties Default resolution is 97 pixels/inch.
Default width is 520 pixels; height is
390 pixels.

TIF View � Page
 Properties

Default resolution is 72 DPI.
Default length is 390 pixels; width is
520 pixels.
374

The pdf.graph Device
THE PDF.GRAPH DEVICE

Portable Document File (PDF) is a popular electronic publishing
format closely related to PostScript. You can create PDF graphics files
in Spotfire S+ using the pdf.graph graphics device.

The pdf.graph arguments and their defaults are:

pdf.graph(file, horizontal = F, width = 0, height = 0,
pointsize = 14, font = 1, color = T,
colorspec = if(color) pdf.colors
else pdf.grays, colormap = colorspec$colormap,
text.colors = colorspec$text.colors,
polygon.colors = colorspec$polygon.colors,
line.colors = colorspec$line.colors,
image.colors = colorspec$image.colors,
background.color = colorspec$background.color,
region = c(0, 0, paper), paper = pdf.paper,
object, command)

For details about these arguments, refer to the pdf.graph online
help. For information about setting default values for these
arguments, refer to the par online help.

Creating PDF
Files

You can create a PDF version of your plot simply by calling
pdf.graph with the desired output file name. For example:

> pdf.graph("mygraph.pdf")
> plot(corn.rain, corn.yield, main="Another corny plot")
> dev.off()

Once you have created a PDF file, you can view it using the Adobe
Acrobat Reader (available at http://www.adobe.com).

pdf.graph
Settings

You can set the following for the pdf.graph device:

• symbols

• color

• font (including point size)

• line types
375

Chapter 7 Working With Graphics Devices
PDF Symbols The pch argument specifies the number of a plotting symbol to be
drawn when plotting points. The following table lists the available
values for the pch argument and their corresponding plotting symbol.
Table 7.5: PDF symbols.

pch argument Symbol

0 square (❑)

1 circle (❍)

2 triangle ()

3 cross/plus sign (✜)

4 X (✕)

5 diamond ()

6 inverted triangle ()

7 steering wheel (✇)

8 8-point star/asterisk (✴)

9 filled diamond with white X (❖)

10 circle with plus sign ()

11 Star of David (✡)

12 16-point star/asterisk (✹)

13 circle with X ()
376

The pdf.graph Device
The symbols that appear when you set pch=0:18 are drawn from the
character set in the Symbol and ZapfDingbats fonts. The symbols do
not look exactly like the marks described in the points online help
example, but resemble them where possible.

Example:

pdf.graph("test.pdf", horizontal=TRUE)
plot(0:18, 0:18, type="n")
points(0:18, 0:18, pch=0:18, cex=3)
dev.off()

14 filled star (5-point) (★)

15 filled square (■)

16 filled circle (●)

17 filled triangle (▲)

18 filled diamond (◆)

Table 7.5: PDF symbols. (Continued)

pch argument Symbol

Hint

Setting the pch argument to one of the numbers 32 through 126 yields the 95 ASCII characters,
from space through tilde.
377

Chapter 7 Working With Graphics Devices
pdf.graph Colors By default, Spotfire S+ uses a global color palette and global image
color palette to map color indexes to specific colors. Previous Spotfire
S+ versions performed color mapping on a device-specific basis. For
details about the global palettes, see the section Global Color Palette
on page 9.

For Spotfire S+ users who have developed code that makes extensive
use of the device-specific palettes, the use.device.palette
function is available for enabling backward compatibility. For usage
details, see the section Backward Compatibility on page 24.

For information about device-specific color controls for pdf.graph,
see the section pdf.graph Colors on page 398.

pdf.graph Fonts The following PDF fonts are supported in Spotfire S+. To use a font,
specify its corresponding number for the font argument.

Figure 7.4: PDF symbols.

Table 7.6: PDF fonts.

Argument Value Font

1 Helvetica (The default.)

2 Courier
378

The pdf.graph Device
3 Times-Roman

4 Helvetica-Oblique

5 Helvetica-Bold

6 Helvetica-BoldOblique

7 Courier-Oblique

8 Courier-Bold

9 Courier-BoldOblique

10 Times-Italic

11 Times-Bold

12 Times-BoldItalic

13 Symbol (contains Greek letters and math
symbols)

14 AvantGarde-Book

15 AvantGarde-BookOblique

16 AvantGarde-Demi

17 AvantGarde-DemiOblique

18 Bookman-Demi

19 Bookman-DemiItalic

Table 7.6: PDF fonts. (Continued)

Argument Value Font
379

Chapter 7 Working With Graphics Devices
20 Bookman-Light

21 Bookman-LightItalic

22 Helvetica-Narrow

23 Helvetica-Narrow-Bold

24 Helvetica-Narrow-BoldOblique

25 Helvetica-Narrow-Oblique

26 NewCenturySchlbk-Roman

27 NewCenturySchlbk-Bold

28 NewCenturySchlbk-Italic

29 NewCenturySchlbk-BoldItalic

30 Palatino-Roman

31 Palatino-Bold

32 Palatino-Italic

33 Palatino-BoldItalic

34 ZapfChancery-MediumItalic

35 ZapfDingbats (contains plotting symbols)

Table 7.6: PDF fonts. (Continued)

Argument Value Font
380

The pdf.graph Device
Example:

pdf.graph("test.pdf", horizontal=TRUE)
plot(1:35, 1:35, type="n")
text(1:35, 1:35, "qwerty", font=1:35)
dev.off()

Note

Font size is determined by the pdf.graph argument pointsize, which is 14 by default. It is
the size in 1/72s of inch of text when par("cex") is 1.

Figure 7.5: PDF fonts.
381

Chapter 7 Working With Graphics Devices
pdf.graph Line
Types

The line type is controlled by the lty argument. The following line
types are supported for PDF.

Example:

pdf.graph("test.pdf", horizontal=TRUE)
plot(1:10, 1:10, type="n")
for(i in 1:10) lines(c(1,10), c(i,i), lty=i)
dev.off()

Table 7.7: PDF line types.

Argument Value Description

1 solid

2 dotted

3 short dashed

4 medium dashed

5 long dashed

6 long dashed dotted

7 medium dashed dotted

8 dotted with more space

9 medium-short dashed (between 3 and 4)

10 “long dashed (very similar to 5, but with a little
more space)”
382

The pdf.graph Device
Figure 7.6: PDF line types.
383

Chapter 7 Working With Graphics Devices
THE WMF.GRAPH AND EMF.GRAPH DEVICES

Windows Metafile (WMF) and Enhanced Metafile (EMF) are popular
graphics formats for importing graphics into Windows-based
programs such as Microsoft Word and Excel. Windows Metafile is
the standard 16-bit format, while Enhanced Metafile is the 32-bit
format.

You can create WMF and EMF graphics files in Spotfire S+ using the
wmf.graph and emf.graph graphics devices, respectively.

The wmf.graph arguments and their defaults are:

wmf.graph(file, horizontal = F, width = 7, height = 5.4,
pointsize = 14, fonts = character(0), color = T,
colorspec = if(color) pdf.colors else pdf.grays,
colormap = colorspec$
colormap, text.colors = colorspec$text.colors,
polygon.colors = colorspec$polygon.colors,
line.colors = colorspec$line.colors,
image.colors = colorspec$image.colors,
background.color = colorspec$background.color,
region = c(0, 0, paper), paper = pdf.paper, command,
paint.background = T, line.width.factor = 15,
text.line.spacing.factor = 0.8)

The emf.graph arguments and their defaults are:

emf.graph(file, horizontal = F, width = 7, height = 5.4,
 pointsize = 14, fonts = character (0), color = T,
 colorspec = if(color) pdf.colors else pdf.grays,
 colormap = colorspec$colormap,
 text.colors = colorspec$text.colors,
 polygon.colors = colorspec$polygon.colors,
 line.colors = colorspec$line.colors,
 image.colors = colorspec$image.colors,
 background.color = colorspec$background.color,
 region = c(0, 0, paper), paper = pdf.paper, command,
 paint.background = T, line.width.factor = 15,
 text.line.spacing.factor = 0.8)

For details about these arguments, refer to the wmf.graph and
emf.graph online help. For information about setting default values
for these arguments, refer to the par online help.
384

The wmf.graph and emf.graph Devices
Creating WMF
or EMF
Graphics

You can create a WMF or EMF graphics file simply by calling
wmf.graph or emf.graph with the desired output file name. For
example:

> wmf.graph("mygraph.wmf")
> plot(corn.rain, corn.yield, main="Another corny plot")
> dev.off()

or

> emf.graph("mygraph.emf")
> plot(corn.rain, corn.yield, main="Another corny plot")
> dev.off()

wmf.graph and
emf.graph
Settings

You can set the following for the wmf.graph or emf.graph devices:

• symbols

• color

• font (including point size)

• line types

wmf.graph and
emf.graph
Symbols

The pch argument specifies the number of a plotting symbol to be
drawn when plotting points. Table 7.8 lists the available values for the
pch argument and their corresponding plotting symbol. Symbols
produced are the same as those produced for java.graph. The
symbols for these argument values are shown in Figure 7.7.
Table 7.8: WMF and EMF symbols.

Argument Value Description

0 square

1 octagon

2 triangle

3 cross

4 X

5 diamond
385

Chapter 7 Working With Graphics Devices
These are the same marks described in the points online help.

Assigning the values 32 through 126 to the argument pch yields the
95 ASCII characters, from space through tilde.

WMF Example

wmf.graph("test.wmf", horizontal=TRUE)
plot(0:18, 0:18, type="n")
points(0:18, 0:18, pch=0:18, cex=3)

6 inverted triangle

7 square + X

8 X + cross

9 diamond + cross

10 octagon + cross

11 triangle + inverted triangle

12 square + cross

13 octagon + X

14 square + triangle

15 filled square

16 filled octagon

17 filled triangle

18 filled diamond

Table 7.8: WMF and EMF symbols. (Continued)

Argument Value Description
386

The wmf.graph and emf.graph Devices
dev.off()

wmf.graph and
emf.graph Colors

By default, Spotfire S+ uses a global color palette and global image
color palette to map color indexes to specific colors. Previous Spotfire
S+ versions performed color mapping on a device-specific basis. For
details about the global palettes, see the section Global Color Palette
on page 9.

For Spotfire S+ users who have developed code that makes extensive
use of the device-specific palettes, the use.device.palette
function is available for enabling backward compatibility. For usage
details, see the section Backward Compatibility on page 24.

For information about device-specific color controls for the
wmf.graph or emf.graph device, see the section wmf.graph and
emf.graph Colors on page 402.

Figure 7.7: WMF and EMF symbols.

0:18

0:
18

0 5 10 15

0
5

10
15
387

Chapter 7 Working With Graphics Devices
wmf.graph and
emf.graph Fonts

The following WMF and EMF fonts are supported in Spotfire S+. To
use a font, specify its corresponding number for the font argument.
For example, specify font=3 for Courier New.
Table 7.9: WMF and EMF fonts.

Argument Value Font name

1 or 0 Arial (The default)

2 Times New Roman

3 Courier New

4 Tahoma

5 Modern

6 MS Sans Serif

7 Script

8 Symbol
388

The wmf.graph and emf.graph Devices
Example:

wmf.graph("test.wmf", horizontal=TRUE)
plot(1:8, 1:8, type="n")
text(1:8, 1:8, "qwerty", font=1:8)
dev.off()

To use a font that is not listed above, specify the Windows typeface
name for font in wmf.graph and emf.graph. For example:

emf.graph("test.emf", font="Americana ExBld")
plot(1:8, 1:8)
text(3, 7, "americana bold")

dev.off()

Figure 7.8: WMF and EMF fonts.

Note

Font size is determined by the wmf.graph or emf.graph argument pointsize, which is 14
by default. It is the size in 1/72 of inch of text when par("cex") is 1.
389

Chapter 7 Working With Graphics Devices
wmf.graph and
emf.graph Line
Types

The line type is controlled by the lty argument. The following line
types are supported for the wmf.graph and emf.graph devices.

Lines are drawn par("lwd")*line.width.factor/1000 inches wide.
By default, line.width.factor=15 and par("lwd") is 1, so lines are
drawn 3/200 (or 0.015) inches wide.

EMF Example:

emf.graph("test.emf", horizontal=TRUE)
plot(1:5, 1:5, type="n")
for(i in 1:5) lines(c(1,5), c(i,i), lty=i)
dev.off()

Table 7.10: WMF and EMF line types

Argument value Line type

1 solid line

2 short dashed (dotted)

3 long dashed

4 dots and dashes

5 dash dot dot

Figure 7.9: WMF and EMF line types
390

The postscript Device
THE POSTSCRIPT DEVICE

You can create PostScript graphics files in Spotfire S+ using the
postscript graphics device.

The postscript arguments and their defaults are:

postscript(file = NULL, width = -1, height = -1,
append = F, onefile = T, print.it = NULL,
color.p = F, ..., old.style = F)

For details about these arguments, refer to the postscript online
help. For information about setting default values for these
arguments, refer to the par online help.

postscript
Device Settings

You can set the following for the postscript device:

• symbols

• color

• font (including point size)

• line types

postscript
Symbols

The pch argument specifies the number of a plotting symbol to be
drawn when plotting points. Table 7.11 lists available values for the
pch argument and their corresponding plotting symbol.

The symbols produced are the same as those produced for wmf.graph
and emf.graph. The symbol for each argument value is shown in
Figure 7.7.
Table 7.11: PostScript Symbols.

Argument value Symbol

0 square

1 octagon

2 triangle

3 cross
391

Chapter 7 Working With Graphics Devices
These are the same basic marks that are described in the points
online help.

Assigning the values 32 through 126 to the argument pch yields the 95
ASCII characters, from space through tilde.

4 X

5 diamond

6 inverted triangle

7 square + X

8 X + cross

9 diamond + cross

10 octagon + cross

11 triangle + inverted triangle

12 square + cross

13 octagon + X

14 square + triangle

15 filled square

16 filled octagon

17 filled triangle

18 filled diamond

Table 7.11: PostScript Symbols. (Continued)

Argument value Symbol
392

The postscript Device
Example

postscript("test.eps", horizontal=TRUE)
plot(0:18, 0:18, type="n")
points(0:18, 0:18, pch=0:18, cex=3)
dev.off()

postscript Colors By default, Spotfire S+ uses a global color palette and global image
color palette to map color indexes to specific colors. Previous Spotfire
S+ versions performed color mapping on a device-specific basis. For
details about the global palettes, see the section Global Color Palette
on page 9.

For Spotfire S+ users who have developed code that makes extensive
use of the device-specific palettes, the use.device.palette
function is available for enabling backward compatibility. For usage
details, see the section Backward Compatibility on page 24.

For information about device-specific color controls for the
postscript device, see the section postscript Colors on page 404.

postscript Fonts The postscript device supports the fonts listed in Table 7.12 on
page 394.

The fonts argument of the ps.options function is a character
object enumerating the fonts you want available in the postscript
device.

The font argument of the ps.options function is the number that
specifies the default font for the text. A negative number selects the
font in its outline form. The default value is 1, specifying the first font
in ps.options$fonts. The font argument can also be specified in
the plotting command.

Font size is determined by the ps.options argument pointsize,
which is 14 by default. It is the base size of text, in points (one point is
equal to 1/72 inches). If par("cex") is 1, text appears in the size
specified by pointsize.

Refer to the ps.options online help for more information.
393

Chapter 7 Working With Graphics Devices
To use a font, specify its corresponding number for the font
argument. For example, specify font=3 for Times-Roman.
Table 7.12: PostScript fonts.

Argument Value Font

1 Helvetica

2 Courier

3 Times-Roman

4 Helvetica-Oblique

5 Helvetica-Bold

6 Helvetica-BoldOblique

7 Courier-Oblique

8 Courier-Bold

9 Courier-BoldOblique

10 Times-Italic

11 Times-Bold

12 Times-BoldItalic

13 Symbol

14 AvantGarde-Book

15 AvantGarde-BookOblique

16 AvantGarde-Demi
394

The postscript Device
17 AvantGarde-DemiOblique

18 Bookman-Demi

19 Bookman-DemiItalic

20 Bookman-Light

21 Bookman-LightItalic

22 Helvetica-Narrow

23 Helvetica-Narrow-Bold

24 Helvetica-Narrow-BoldOblique

25 Helvetica-Narrow-Oblique

26 NewCenturySchlbk-Roman

27 NewCenturySchlbk-Bold

28 NewCenturySchlbk-Italic

29 NewCenturySchlbk-BoldItalic

30 Palatino-Roman

31 Palatino-Bold

32 Palatino-Italic

Table 7.12: PostScript fonts. (Continued)

Argument Value Font
395

Chapter 7 Working With Graphics Devices
Example:

postscript("test.eps", horizontal=TRUE)
plot(1:35, 1:35, type="n")
text(1:35, 1:35, "qwerty", font=1:35)
dev.off()

postscript Line
Types

The line type is controlled by the lty argument. The postscript
device supports the following line types.

33 Palatino-BoldItalic

34 ZapfChancery-MediumItalic

35 ZapfDingbats

Table 7.12: PostScript fonts. (Continued)

Argument Value Font

Table 7.13: PostScript line types.

Argument value Line type description

1 solid

2 dotted

3 short dashed

4 medium dashed

5 long dashed

6 long dashed dotted

7 medium dashed dotted

8 dotted with more space
396

The postscript Device
Line width is specified by the lwd parameter and is interpreted in
units of 1/36 inches. The default lwd=1 line is 2 points wide. A line
width of 0 draws the thinnest possible line on the device.

Example:

postscript("test.eps", horizontal=TRUE)
plot(1:10, 1:10, type="n")
for(i in 1:10) lines(c(1,10), c(i,i), lty=i)
dev.off()

9 medium-short dashed (between 3 and 4)

10 “long dashed (very similar to 5, but with a little
more space)”

Figure 7.10: postscript line types

Table 7.13: PostScript line types. (Continued)

Argument value Line type description
397

Chapter 7 Working With Graphics Devices
DEVICE-SPECIFIC COLOR SPECIFICATION

Most Spotfire S+ uses should disregard this section and use the
default global color palette and global image color palette described in the
section Global Color Palette on page 9.

For Spotfire S+ users who have developed code that makes extensive
use of the device-specific palettes, the use.device.palette
function provides a means of disabling the global palettes and
enabling backward compatibility. For usage details, see the section
Backward Compatibility on page 24.

pdf.graph
Colors

The pdf.graph, wmf.graph, and emf.graph devices use
pdf.colors$colormap for their color mapping. These devices do not
control color by name, but by the argument colorspec, which
specifies the components from the arguments colormap, line.colors,
text.colors, polygon.colors, and image.colors.

The following arguments in the pdf.graph, wmf.graph, and
emf.graph functions control color:

Note

The information in this “Device-Specific Color Specification” section applies only if you are using
Spotfire S+ in the backward compatible use.device.palette(T) mode. For usage
details, see the section Backward Compatibility on page 24.

When using Spotfire S+ in the default use.device.palette(F) mode, disregard this
information and refer to the section Color Specification on page 3 for information about
working with colors.

Table 7.14: pdf.graph color arguments.

Argument Description

color If TRUE (the default) use colors; if FALSE use grayscale.
This argument sets the default for colorspec to
either pdf.colors or pdf.grays.
398

Device-Specific Color Specification
colorspec A list containing a colormap and four vectors of
indices into that colormap: one vector each for use
when drawing lines, text, polygons, and images. The
components must be named colormap, line.colors,
text.colors, polygon.colors, and image.colors.
You can give those components as individual
arguments to pdf.graph; however, doing this
overrides the corresponding component of
colorspec. See the corresponding argument
descriptions for more information. See the datasets
pdf.grays and pdf.colors for examples.

colormap For grayscale, a vector of numbers between 0 (black)
and 1 (white). For color, a three-column by ncolor-
row matrix of numbers between 0 and 1. Each row
represents a color and its entries give the intensity of
its red, green, and blue components. (Instead of this
matrix, you can also use an ncolor long list of three
long vectors.)

text.colors Indexes used in the colormap, giving the colors for
text. The color in:
colormap[text.colors[par(““col””)]]
(or corresponding row of colormap if it is a matrix)
will be used for text. Typically, text.colors,
line.colors, and polygon.colors point to
contrasting colors.

polygon.colors Indexes used in colormap for filled polygon colors.

line.colors Indexes used in colormap for line colors.

image.colors Indexes used in colormap for image colors. Typically,
image.colors points to a smoothly changing
sequence of colors.

background.color index into colormap for background color.

Table 7.14: pdf.graph color arguments. (Continued)

Argument Description
399

Chapter 7 Working With Graphics Devices
To display the red/green/blue (RGB) values for the default
background, at the Spotfire S+ prompt in the Commands window,
type:

pdf.colors$colormap[pdf.colors$background.color,]

 Spotfire S+ returns the following:

 [1] 1 1 1 #white

To display RGB values for the default line, polygon, and text colors,
at the Spotfire S+ prompt in the Commands window, type:

pdf.colors$colormap[pdf.colors$line.colors,]

[1,] 0.0000000 0.00000000 0.00000000 #black
[2,] 0.0000000 0.3725490 0.7450980 #blue
[3,] 0.7450980 0.0000000 0.3725490 #fuschia
[4,] 0.0000000 0.7450980 0.0000000 #green
[5,] 1.0000000 0.5019608 0.0000000 #orange
[6,] 0.0000000 0.5019608 1.0000000 #light blue
[7,] 0.5019608 0.2509804 0.0000000 #brown
[8,] 0.7529412 0.0000000 0.0000000 #red
[9,] 0.7215686 1.0000000 1.0000000 #robin’s egg blue
[10,] 1.0000000 0.7647059 1.0000000 #light lavender
[11,] 0.7843137 1.0000000 0.7843137 #mint green
[12,] 1.0000000 0.8196078 0.5607843 #tan
[13,] 0.6627451 0.8862745 1.0000000 #sky blue
[14,] 1.0000000 1.0000000 0.7647059 #pale yellow
[15,] 1.0000000 0.5490196 0.5411765 #pale orange
[16,] 0.4313725 0.4313725 0.3921569 #gray

To create a PDF that displays the colors, type the following in the
Commands window of Spotfire S+:

Test graph
pdf.graph("test.pdf", horizontal=TRUE)
plot(1:16, 1:16, type="n")
for(i in 1:16) points(i, i, col=i, cex=3, pch=16)
dev.off()
400

Device-Specific Color Specification
Customizing
Colors

Suppose you want to use PDF or WMF colors similar to the default
colors in a Spotfire S+ (Windows) graph. The graphsheet window in
Spotfire S+ has its own color map. Both maps contain RGB values;
however, the pdf.colors map values range from 0 to 1, where the
Spotfire S+ graph sheet map ranges from 0 to 255.

To get PDF colors similar to default Spotfire S+ colors, modify
pdf.colors as follows:

Create a vector of RGB values:
color.vec <- c(0,0,0,255,0,0,255,102,0,255,102,153,255,

204,153,255,255,0,204,255,102,102,255,0,0,102,0,0,
51,51,102,0,0,204,0,153,255,102,204,255,102,102,204,
0,0,102,0,153,255,255,255)

Create a matrix of RGB values from the vector:
color.mat <- matrix(color.vec, ncol=3, byrow=T)

Divide by 255 so values range from 0 to 1 for use
#in the pdf.colors map:
color.mat <- color.mat/255

Modify pdf.colors:
pdf.colors <- pdf.colors
pdf.colors$colormap <- color.mat
pdf.colors$image.colors <-
c(1,2,6,13,9,11,4,16,7,5,12,14,15,8,10,3)
pdf.colors$line.colors <- 1:16
pdf.colors$polygon.colors <- 1:16
pdf.colors$text.colors <- 1:16
pdf.colors$background.color <- 17

Test graph:
pdf.graph("test.pdf", horizontal=TRUE)
plot(1:16, 1:16, type="n")
for(i in 1:16) points(i, i, col=i, cex=3, pch=16)
dev.off()
401

Chapter 7 Working With Graphics Devices
When you open test.pdf, the resulting graph appears as follows:

Alternatively, it's possible to specify the color arguments in
pdf.graph. For example:

pdf.graph("test.pdf", horizontal=TRUE,
colormap=color.mat, line.colors=1:16, text.colors=1:16,
polygon.colors=1:16, image.colors=1:16,
background.color=17)

plot(1:16, 1:16, type="n")
for(i in 1:16) points(i, i, col=i, cex=3, pch=16)
dev.off()

wmf.graph and
emf.graph
Colors

The wmf.graph and emf.graph device uses the same color map as
the pdf.graph device. For information about setting colors for
wmf.graph and emf.graph, see the section pdf.graph Colors on page
398.

wmf.graph Color
Example

Suppose you want to have wmf.graph colors similar to the default
colors in a Spotfire S+ (Windows) graph. The graphsheet window in
Spotfire S+ has its own color map. Both maps contain RGB values;
however, the pdf.colors map values range from 0 to 1 whereas the
Spotfire S+ graphsheet map ranges from 0 to 255.

Figure 7.11: PDF color example.
402

Device-Specific Color Specification
Create a vector of values from the Graph Sheet Color
Table (in this case the default colors):
color.vec <-

c(0,0,0,0,64,128,128,0,64,0,128,0,255,128,0,0,128,255,
128,64,0,192,0,0,198,255,255,255,195,255,200,255,
200,255,209,143,169,226,255,255,255,195,255,140,138,
110,110,100,255,255,255)

Create a matrix of RGB values from the vector:
color.mat <- matrix(color.vec, ncol=3, byrow=T)

Divide by 255 so values range from 0 to 1 for use in
the pdf.colors map:
color.mat <- color.mat/255

Modify pdf.colors:
pdf.colors <- pdf.colors
pdf.colors$colormap <- color.mat
pdf.colors$image.colors <-
c(1,2,6,13,9,11,4,16,7,5,12,14,15,8,10,3)
pdf.colors$line.colors <- 1:16
pdf.colors$polygon.colors <- 1:16
pdf.colors$text.colors <- 1:16
pdf.colors$background.color <- 17

Test graph:
wmf.graph("test.wmf", horizontal=TRUE)
plot(1:16, 1:16, type="n")
for(i in 1:16) points(i, i, col=i, cex=3, pch=16)
dev.off()
403

Chapter 7 Working With Graphics Devices
Alternatively, you can specify the color arguments in wmf.graph. See
the example in the section section Customizing Colors on page 401.

postscript
Colors

To display PostScript default colors, in the Spotfire S+ Commands
window, type the following:

ps.options()$colors

 [1] 0.0 0.6 0.3 0.9 0.4 0.7 0.1 0.5 0.8 0.2

This is a vector, defining gray levels (0 = black to 1 = white).

To display the default background color, type the following:

ps.options()$background

[1] -1 #no color

Figure 7.12: wmf.graph colors.
404

Device-Specific Color Specification
Managing
postscript Colors

The following arguments to the ps.options function are specific to
color:

Here are examples of specifying colors for PostScript files:

• Create a vector of color names from the ps.colors.rgb
matrix that you can use when specifying colors in ps.options.

color.vec <-
c("black","blue","green","cyan","gold","purple",
"orange","red","orchid","gray")

ps.options(colors=ps.colors.rgb[color.vec,])
postscript("test.eps", horizontal=TRUE)
plot(1:10, 1:10, type="n")

Table 7.15: PostScript color options.

Argument Description

background A numeric object specifying a background color to use.
If background is a single positive integer, it is treated as
an index into the colors argument. If it is a negative
number, then there is no background. Otherwise, it is
assumed to be a single explicit color specification, as in
the colors argument. The default is -1 (no background).

colors A numeric object giving an assignment of colors to
color numbers. Using the default setcolor specification,
there are two possibilities. If colors is a vector, it is used
to define gray levels (0=black to 1=white) beginning
with color number 1. If colors is a three-column matrix,
it is used to define colors in the RGB model (see the
postscript online help), one per row, beginning with
color number 1.

ps.colors.rgb can be subsetted to provide a value for
this argument. Also, the function ps.hsb2rgb can be
used to convert colors from the HSB model to the RGB
model equivalents.

image.colors Numeric objects giving an assignment of colors to color
numbers. These colors are used as fill colors for use
with the image function. Refer to the colors component
for specification details.
405

Chapter 7 Working With Graphics Devices
for(i in 1:10) points(i, i, col=i, cex=3, pch=16)
dev.off()

• Reset to the default black and white with the following
command:

ps.options(reset=T)

• Alternatively, you can specify colors in the PostScript
command:

postscript("test.eps", horizontal=TRUE,
colors=ps.colors.rgb[color.vec,])

plot(1:10, 1:10, type="n")
for(i in 1:10) points(i, i, col=i, cex=3, pch=16)
dev.off()

By following this technique, you do not need to reset
ps.options.

• Suppose you want to have postscript colors similar to the
default colors in a Spotfire S+ (Windows) graph. The graph
sheet window in Spotfire S+ has its own color map with RGB
values that range from 0 to 255. The PostScript colors matrix
of RGB values should range from 0 to 1 (as you can see with
ps.colors.rgb).

To get postscript colors similar to default Spotfire S+ colors,
you can create a color matrix as follows:

Create a vector of values from the Graph Sheet
Color Table (in this case the default colors):
color.vec <-

c(0,0,0,0,64,128,128,0,64,0,128,0,255,128,0,0,
128,255,128,64,0,192,0,0,198,255,255,255,195,

255,200,255,200,255,209,143,169,226,255,255,
255,195,255,140,138,110,110,100,255,255,255)

Create a matrix of RGB values from the vector:
color.mat <- matrix(color.vec, ncol=3, byrow=T)

Divide by 255 so values range from 0 to 1 for use
in the colors argument:
color.mat <- color.mat/255
406

Device-Specific Color Specification
Test graph:
postscript("test.eps", horizontal=TRUE,

colors=color.mat)
plot(1:16, 1:16, type="n")
for(i in 1:16) points(i, i, col=i, cex=3, pch=16)
dev.off()

You can set the background color by specifying the background
argument. Here are a couple different ways:

• Set background to a positive integer so it is an index into the
colors argument.

color.vec <-
c("black","blue","green","cyan","gold","purple",
"orange","red","orchid","gray","light blue")

ps.options(colors=ps.colors.rgb[color.vec,],
background=11) #index for light blue

postscript("test.eps", horizontal=TRUE)
plot(1:10, 1:10, type="n")
for(i in 1:10) points(i, i, col=i, cex=3, pch=16)
dev.off()

• Set background to a single explicit color specification. See
Figure 7.14.

Figure 7.13: postscript colors.
407

Chapter 7 Working With Graphics Devices
ps.options(colors=ps.colors.rgb[color.vec,],
background=c(0.9019608,0.9019608,0.9803922)) #rgb for

lavender
postscript("test.eps", horizontal=TRUE)
plot(1:10, 1:10, type="n")
for(i in 1:10) points(i, i, col=i, cex=3, pch=16)
dev.off()

You can also use ps.colors.rgb with pdf.graph, wmf.graph, and
emf.graph. For example:

color.vec <-
 c("black","blue","green","cyan","gold","purple",
"orange","red","orchid","gray","white")

wmf.graph("test.wmf", horizontal=TRUE,
colormap=ps.colors.rgb[color.vec,], line.colors=1:10,
text.colors=1:10,polygon.colors=1:10, image.colors=1:10,
background.color=11)

plot(1:10, 1:10, type="n")
for(i in 1:10) points(i, i, col=i, cex=3, pch=16)
dev.off()

Figure 7.14: postscript color example.
408

Device-Specific Color Specification
java.graph
Colors

To set the color scheme for a Java-enabled Spotfire S+ Graphlet, use
the argument colorscheme in the function java.graph.

To get the list of RGB colors for java.graph, in the Spotfire S+
Commands window, type:

 java.colorscheme.default$palette

 [,1] [,2] [,3]
 [1,] 0 0 0 #black
 [2,] 0 95 190 #navy
 [3,] 190 0 95 #dark magenta
 [4,] 0 190 0 #green
 [5,] 255 128 0 #orange
 [6,] 0 128 255 #blue
 [7,] 128 64 0 #brown
 [8,] 192 0 0 #red
 [9,] 184 255 255 #cyan
[10,] 255 195 255 #violet
[11,] 200 255 200 #pale green
[12,] 255 209 143 #light orange
[13,] 169 226 255 #light blue
[14,] 255 255 195 #light yellow
[15,] 255 140 138 #light coral
[16,] 110 110 100 #gray

To get the default background color, in the Commands window,
type:

java.colorscheme.default$background

[1] 255 255 255 #white

The colorscheme argument of java.graph contains the following
predefined color scheme variables:

• java.colorscheme.default

• java.colorscheme.standard

• java.colorscheme.trellis

• java.colorscheme.trellis.black.on.white

• java.colorscheme.white.on.black
409

Chapter 7 Working With Graphics Devices
• java.colorscheme.cyan.magenta

• java.colorscheme.topographical

• java.colorscheme.user.1

• java.colorscheme.user.2

java.graph does not control color by name; you must specify its
scheme.

java.colorscheme.default is almost identical to the default color
scheme in the Spotfire S+ for Windows graphsheet.

Each java.graph device has a color scheme that determines the color
of the background, the colors of lines, text, and so on, and the colors
of image bitmaps. Currently there is a single color palette used for
lines, text, symbols, and polygons.

Example java.graph(file="test.jpg")
plot(1:16, 1:16, type="n")
for(i in 1:16) points(i, i, col=i, cex=3, pch=16)
dev.off()

Example of changing colors:

Create template for new color scheme:
java.colorscheme.new <- java.colorscheme.standard
java.colorscheme.new$name <- "My New Colors"

Figure 7.15: java.graph default colors.
410

Device-Specific Color Specification
Create a vector of RGB values:
color.vec <-

c(0,0,0,102,51,204,153,0,51,255,204,51,51,0,255,
153,102,153,102,255,102,153,204,255,255,0,0,
255,255,102,0,255,204,153,153,204,0,0,130,
255,153,204,153,102,51,153,153,153)

Create a matrix from the vector:
color.mat <- matrix(color.vec, ncol=3, byrow=T)

Assign RGB matrix to color palette:
java.colorscheme.new$palette <- color.mat

Test graph:
java.graph(file="test.jpg",

colorscheme=java.colorscheme.new)
plot(1:16, 1:16, type="n")
for(i in 1:16) points(i, i, col=i, cex=3, pch=16)
dev.off()

 Example with a different background color:

java.colorscheme.new$background <- c(230,230,250)
#lavender

java.graph(file="test.jpg",
colorscheme=java.colorscheme.new)

plot(1:16, 1:16, type="n")

Figure 7.16: java.graph color change.
411

Chapter 7 Working With Graphics Devices
for(i in 1:16) points(i, i, col=i, cex=3, pch=16)
dev.off()

Using the
S-PLUS 6.2
Colorscheme

Each device type has functions that set the colorscheme to the
S-PLUS 6.2 setting. Some require resetting for each session and some
retain the setting state.

Graphsheet

If you want to use the old color settings for a graphsheet, run the
function stdImageColorSet(blue=F). You must run this function
during every session, because stdImageColorSet(blue=T) is called in
the startup file S.init. You can remove the call to stdImageColorSet in
S.init; the file is in the top level directory where Spotfire S+ is
installed.

java.graph

If you use java.graph, the S-PLUS 6.2 colorscheme is available in the
list java.colorscheme.standard.6.2. Run the following:

 java.colorscheme.default <- java.colorscheme.standard.6.2

All subsequent calls to java.graph (where the colorscheme argument
is not explicitly set) in the current project directory will use the old
colorscheme. If you switch to a different project directory, you must
recreate the java.colorscheme.default object, as shown above.

Figure 7.17: java.graph background color change.
412

Device-Specific Color Specification
pdf.graph,
wmf.graph, and
emf.graph

If you use pdf.graph, wmf.graph, or emf.graph, set the colorspec
argument to pdf.colors.6.2 or pdf.grays.6.2 to get the old
colormaps.

postscript Device You can set the new argument, old.style=T to get the old behavior.

A new argument, color.p has been added to the PostScript device.
Setting color.p=T (or just color=T) creates color PostScript output
using the new colormaps. The default is color.p=F so that postscript
continues to produce black-and-white PostScript by default.

The behavior and setting of graphics devices started with the
trellis.device function has not changed.
413

Chapter 7 Working With Graphics Devices
414

Introduction 416
Requirements 418
Examples 418

Creating a Graphlet Data File 420
Interactive File Creation 420
Programmatic File Creation 420
Page Titles and Tags 420
Active Regions 421
Action Strings 424
A Detailed Example 428

Embedding the Graphlet in a Web Page 432
Applet Parameters 433
A Detailed Example (Continued) 437

Using the Graphlet 438

SPOTFIRE S+ GRAPHLETS® 8
415

Chapter 8 Spotfire S+ Graphlets®
INTRODUCTION

The Spotfire S+ Graphlet is a Java applet that supports displaying and
interacting with Spotfire S+ graphics that have been saved in a file.
The Graphlet can be embedded in a Web page and viewed with a
Web browser. For example, Figure 8.1 shows an example Graphlet
displayed in Internet Explorer.

Figure 8.1: An example Graphlet.
416

Introduction
Displaying Spotfire S+ graphs with the Graphlet provides several
interactive features not available with static graph images such as
JPEG or GIF images:

1. The Graphlet displays a graph window with multiple tabbed
pages, similar to the Spotfire S+ java.graph graphics display.
In many cases, it is useful to collect a set of related graphs into
a number of pages. The graphics creator can set the titles of
the page tabs to meaningful names.

2. The displayed graph can be panned and zoomed to examine
details more closely. The graph is represented as a series of
graph commands rather than as a bitmap, so a zoomed image
is just as sharp as the original size.

3. The graphics creator can define any number of rectangular
active regions within a page. As you move the mouse over an
active region, it is outlined and a label associated with the
region is displayed. The label is a string that is used to display
additional information for a given element of the graph. For
example, active regions can be defined around all of the
points in a scatter plot, giving additional information for every
point.

4. Each active region may also have an associated action string,
which specifies what should happen if the mouse is clicked in
an active region. Options include switching to another page in
the Graphlet, having the Web browser jump to a specified
Web page, or popping up a menu for selecting one of multiple
such actions. This provides a way to “drill down” and display
more information about a particular region of the graph.

5. The graph coordinates of the mouse pointer can be displayed as
the pointer is moved over the graph. The graph coordinates
are the (x,y) coordinates of the mouse position according to
the graph axes, rather than just the (x,y) pixel coordinates
within the window. Thus, the display can be used to examine
the positions of points in a scatter plot or other plot where the
coordinates are of interest. If there are multiple graphs in a
single page, the graph coordinates of the graph containing the
mouse are displayed.
417

Chapter 8 Spotfire S+ Graphlets®
Note that there is no direct link between the Graphlet and Spotfire
S+. Using Spotfire S+, a series of graphics commands is stored in a
file and the file is closed. Later, the Graphlet reads the file and
displays the graphics, perhaps long after the Spotfire S+ session has
ended, perhaps by a user over the Web who does not have Spotfire
S+.

There are three main steps in creating and using Spotfire S+
Graphlets:

1. Create a Graphlet data file in the SPJ format.

2. Embed the Graphlet in a Web page.

3. View and interact with the Graphlet.

In this chapter, we discuss each of these steps in detail. A graphics
creator is typically concerned with the first two steps, while an end user
is concerned only with the third. If you are an end-user who needs to
know how to interact with Spotfire S+ Graphlets, you can skip to the
section Using the Graphlet (page 438).

Requirements The Spotfire S+ Graphlet is designed to work with Web browsers that
support Java applets with Java version 1.1 or later.

To test whether your browser supports Java applets try viewing the
following page, which contains a simple Java applet:

http://www.insightful.com/products/graphlets/gallery/TestJav
aApplet.asp

If your browser does not support Java applets, install the free Java
Runtime Environment available at http://www.java.com.

The Graphlet displays traditional Spotfire S+ graphics. For details on
graphics commands and options, see the following two chapters:

• Chapter 2, Traditional Graphics

• Chapter 3, Traditional Trellis Graphics

Examples Example Graphlets are included in the following locations in your
Spotfire S+ installation:

• Windows: <Spotfire S+ install dir>\library\winspj
418

Introduction
• UNIX: $SHOME/library/example5/graphlet
Before attempting to view these files, copy the *.html and
*.spj files, along with $SHOME/java/spjgraph.jar, into the
same directory.

To view each Graphlet, open the associated HTML file in a Web
browser. Some of the HTML files include the Spotfire S+ code used
to create the graphics. Throughout this chapter, we discuss the
fuel.html and map.html Graphlets.

This Web site
(http://www.insightful.com/products/graphlets/gallery/
graphlet_gallery.asp) also includes many examples using Graphlets.
419

Chapter 8 Spotfire S+ Graphlets®
CREATING A GRAPHLET DATA FILE

Spotfire S+ graphics can be saved in a Graphlet file either
interactively or programmatically.

Interactive File
Creation

To save a Graphlet data file interactively, create a graph in a
java.graph window. Select the Save As menu item in the File menu.
This brings up a dialog for selecting the file type and file name. Select
the file type Spotfire S+ Graphlet (SPJ) and press OK to write all of
the pages of the current graph into the specified file.

Programmatic
File Creation

To create a Graphlet data file programmatically, call the java.graph
function and specify a file name with the SPJ file extension. For
example:

> java.graph(file = "myfile.spj")

This opens a Spotfire S+ graphics device that stores Graphlet data in
the specified file. Note that this command does not open a window.
Next, execute all graphics commands necessary for creating your
desired graphs. When you are finished, close the device with the
dev.off function. When the graphics device is closed, the contents
are written to the named file.

Whereas some bitmap file formats such as JPEG can store only a
single image in a file, the SPJ format allows multiple graph pages to
be saved in the same file. When java.graph is used to create an SPJ
file, all of the pages drawn are stored in a single file.

Page Titles and
Tags

Each page in a multi-page Graphlet display has an associated title
string and tag string . The title string is displayed in the tab and can be
the empty string "" to show a small empty tab. If the title is the string
"#", the displayed title is an auto-generated string like "Page 3". The
tag string is not displayed, but is used to identify the target page in
page action strings that we describe in the section Jump to Another
Page in the Graphlet (page 425).
420

Creating a Graphlet Data File
At any point during the process of creating graphics in the
java.graph device, there is a current page . The title and tag for the
current page are set with the following Spotfire S+ functions:

> args(java.set.page.title)
function(name)

> args(java.set.page.tag)
function(tag)

Active Regions The java.identify function specifies text labels and actions to be
associated with rectangular active regions in a graph. The Graphlet
displays these labels when a user moves the mouse within the
specified regions. Here is a simple example that displays the name of
car models as the mouse is run over each point in a scatter plot of
Weight versus Fuel.

Open a java.graph device.
> java.graph(file = "fuel.spj")

Plot the data and identify the points.
> plot(fuel.frame[["Weight"]], fuel.frame[["Fuel"]])
> java.identify(fuel.frame[["Weight"]],
+ fuel.frame[["Fuel"]],
+ labels = dimnames(fuel.frame)[[1]])

Close the device.
> dev.off()

Once the file fuel.spj is embedded in a Web page, an end user can
view this plot in a Web browser and display the name of each car
model by moving the mouse pointer over each point in the graph.

We discuss the steps necessary for embedding SPJ files in the section
Embedding the Graphlet in a Web Page (page 432).

The java.identify function takes many optional arguments, each of
which we describe below.

> args(java.identify)
function(x1, y1, x2, y2, labels = character(0),
actions = character(0), size = 0.01, size.relative = T,
adj = 0.5, polygons = F, one.region = F)
421

Chapter 8 Spotfire S+ Graphlets®
x1, y1, x2, y2

These arguments specify a series of rectangles in the current plot;
each rectangle defines an active region. The arguments accept
numeric vectors, possibly of length one. Different combinations of the
arguments can be specified as follows:

1. If all of x1, y1, x2, y2 are specified, a set of arbitrary
rectangular regions is defined by the points (x1,y1), (x1,y2),
(x2,y1), and (x2,y2). The regions can be either inside or outside
the plot region.

2. If only x1 and y1 are given, regions are created around each
of the points (x1,y1). This is how we specify the active regions
in the fuel.spj example above.

3. If x1 and x2 are given, regions are created along the x axis
from x1 to x2, extending the full height of the plot region.

4. If y1 and y2 are given, regions are created along the y axis
from y1 to y2, extending the full width of the plot region.

5. If only x1 is given, regions are created around these values on
the x axis, extending the full height of the plot region.

6. If only y1 is given, regions are created around these values on
the y axis, extending the full width of the plot region.

The argument x1 may also be a structure containing components x
and y or a two-column matrix, in which case the two vectors are used
for the x1 and y1 arguments, and any supplied y1 argument is
ignored.

labels

The labels argument is a vector of strings associated with the active
regions in a plot. Each label is displayed when a user hovers the
mouse over the associated region. Labels can include the new line
character "\n" to display multiple lines of text. In the fuel.spj
example above, we specify labels = dimnames(fuel.frame)[[1]].

actions

Like labels, the actions argument is also a vector of strings
associated with the active regions in a plot. It defines the actions that
occur when a user left-clicks in each active region. If
length(actions) is less than length(labels), the actions vector is
422

Creating a Graphlet Data File
extended with empty strings (which specify no action) to the proper
length. We discuss the format of action specification strings in the
section Action Strings (page 424).

size

In cases where only points are specified, the size argument
determines how large the active regions around the points are. The
size argument can be a vector of two numbers, which is interpreted
as separate x and y values. If size.relative=T, the size values are
fractions of the plot’s x or y range. Otherwise, size is interpreted as
absolute values in pixels.

size.relative

This is a logical value that determines how the size argument is
interpreted.

adj

In cases where only points are specified, the adj argument determines
where active regions are located relative to the points. Similar to size,
the adj argument can be a vector of two numbers that specify
separate x and y values. The default values position the points in the
centers of the active regions. If adj=0.0, an active region is positioned
with the associated point in the lower left corner.

polygon

If this value is T, this command defines one or more polygonal
regions rather than rectangles. In this case, the polygon vertices are
given by the x1,y1 arguments, and x2,y2 are ignored. The polygon
vertices are listed in order, and it is assumed that the polygon closes
by joining the last point to the first. Missing values (NAs) are allowed
and signify breaks between polygons.

one.region

If this value is T, this command defines a single region composed of
one or more subregions, which may be rectangles or polygons. This
can be used to specify a set of non-contiguous regions that act as a
single active region. If this is true, then only the first element in the
labels and actions arguments is used.
423

Chapter 8 Spotfire S+ Graphlets®
Action Strings Each element of the actions vector for java.identify specifies an
action to occur when the mouse is left-clicked in the associated active
region. An action can be rather complicated, particularly when it
pops up a menu of choices, each of which is another action. To
accommodate such complicated actions in a single string, as well as to
provide opportunities for future enhancements, the action string is
specified in XML format. This format can be difficult to write without
error, so Spotfire S+ includes the set of functions described below for
creating these strings. If an action string is not in one of these formats,
clicking on the active region does nothing.

Jump to Another
Web Page

An example XML action string for jumping to another Web page:

<link href="http://www.tibco.com" target="_top"/>

The href property gives a URL specifying a Web page; in this
example, the Web page is www.tibco.com. The target property
specifies the HTML frame where the Web page should be displayed.
If target is not given, it defaults to "_top", which replaces the current
Web page shown in the Web browser. Another useful target value is
"_blank", which displays the URL in a new Web browser window.
Note that some Web browsers may ignore the target property.

The Spotfire S+ function that corresponds to this action is
java.action.link:

> args(java.action.link)
function(url, target = "_top")

Given a URL as a string, java.action.link returns an action string
in the above format. This function is vectorized, so that passing in a
vector of URLs returns a vector of corresponding action strings. If
target is specified, it is used in the action string; otherwise, it defaults
to "_top". For example, the action string above can be generated with
the following Spotfire S+ code:

> java.action.link("http://www.tibco.com")
[1] "<link href=\"http://www.tibco.com\"
target=\"_top\"/>"
424

Creating a Graphlet Data File
Jump to Another
Page in the
Graphlet

An example XML action string for jumping to another page in the
Graphlet:

<page tag="p3"/>

The tag property specifies the page tag to select. If none of the pages
in the Graphlet have the specified tag, nothing happens when the
action is selected. Page tags are defined with the java.set.page.tag
function, as we mention in the section Page Titles and Tags (page
420).

The Spotfire S+ function that corresponds to this action is
java.action.page:

> args(java.action.page)
function(tag)

Given a page tag, java.action.page returns an action string in the
above format. This function is vectorized, so that passing in a vector
of page tags returns a vector of corresponding action strings. For
example, the action string above can be generated with the following
Spotfire S+ code:

> java.action.page("p3")
[1] "<page tag=\"p3\"/>"

Pop Up a Menu of
Actions

An example XML action string for popping up a menu of action
choices:

<menu title="some actions">
 <menuitem label="go to page1">
 <page tag="p1"/>
 </menuitem>
 <menuitem label="go to URL">
 <link href="http://www.tibco.com" target="_top"/>
 </menuitem>
</menu>

The corresponding Spotfire S+ functions are java.action.menu and
java.action.menuitem:

> args(java.action.menu)
function(items = character(0), title = "")
425

Chapter 8 Spotfire S+ Graphlets®
> args(java.action.menuitem)
function(action, label = "item")

The java.action.menu function takes a vector of menuitem actions,
each of which is created by java.action.menuitem. It returns a string
defining a single menu action command. The title for the menu is
specified with the title argument; if title="", the menu has no title.
Some platforms do not support titles on pop-up menus, in which case
the title argument is ignored.

The java.action.menuitem function accepts a vector of action strings
and returns a vector of corresponding menuitem objects. Each menu
item appears in the menu with the specified label. For example, the
action string above can be generated with the following Spotfire S+
code:

> java.action.menu(
+ java.action.menuitem(
+ action = c(java.action.page("p1"),
+ java.action.link("http://www.tibco.com")),
+ label = c("go to page1", "go to URL")),
+ title = "some actions")

[1] "<menu title=\"some actions\">\n<menuitem label=\"go to
page1\"><page tag=\"p1\"/></menuitem>\n<menuitem label=\"go
to URL\"><link href=\"http://www.tibco.com\"
target=\"_top\"/></menuitem>\n</menu>"

Define a Selection
Tag

An example XML action string for defining a selection tag:

 <select tag="t17"/>

The tag property defines a selection tag for this active region. If this
region is buttoned, all regions with this selection tag (including this
region) will be selected. A user can select any number of selectable
regions, see the corresponding regions selected in other graphs in the
same Graphlet, and send the selection list back to a server for further
processing.

The corresponding Spotfire S+ function:
426

Creating a Graphlet Data File
 java.action.select(tag)

Given a selection tag, this function returns an action string in the
format above. This is vectorized, so passing in a vector of selection
tags will return a vector of action strings.

A simple click on a selectable region selects it and deselects any other
regions that might have been selected. A shift-click on a region adds it
to the list of selected regions. A control-click on a region toggles the
selection, selecting or deselecting the region depending on whether it
was already selected.

Groups of selectable regions can selected by sweeping out a rectangle,
and then clicking the Select button. If a user sweeps a rectangular area
of the graph and then clicks the Select button, all selectable regions
intersecting the swept rectangle will become selected. Holding the
shift key down while sweeping the rectangle causes the swept regions
to be added to the selected list when the Select button is clicked.
Holding the control key down while sweeping the rectangle causes
the selection of the swept regions to be toggled when the Select
button is clicked.

JavaScript within an HTML page can access the selected tags in a
Graphlet using HTML such as the following:

<applet name="Graphlet1"
code="spjgraph.class" archive="spjgraph.jar"
width="480" height="360">

<param name="spjgraph.filename" value="StateSelect.spj">
<param name="spjgraph.select.button" value="on">

</applet>
<button onclick="alert(document.Graphlet1.getSelectedTags())">

List Selected Tags
</button>

In this HTML code, the applet element needs a name property so
that the JavaScript can refer to the Graphlet, and the parameter
spjgraph.select.button must be specified to enable the Select
button in the Graphlet. The selected tags are returned as a single
string, with tags separated by commas.

XML String
Utility Function

The XML format reserves certain characters for particular uses,
including double quotes and the less-than sign "<". To use reserved
characters in string values, you must convert them to special
427

Chapter 8 Spotfire S+ Graphlets®
sequences of characters with the Spotfire S+ function
java.xml.string. This function accepts a vector of strings and
converts them to strings with the XML quote sequences. For
example:

> java.xml.string("bad characters: \"<hello & Goodbye>\"")

[1] "bad characters: "<hello &
Goodbye>""

The java.xml.string function may be useful when constructing
XML strings explicitly. Functions such as java.action.link call
java.xml.string on all of their string arguments, so ordinarily you
do not need to call this function.

A Detailed
Example

In this section, we illustrate the steps necessary for creating a Graphlet
data file similar to the example file map.spj. To view the map.spj
Graphlet, open the file map.html in:

• Windows: <Spotfire S+ install dir>\library\winspj

• UNIX: $SHOME/library/example5/graphlet

See the section Using the Graphlet (page 438) for a tutorial on
interacting with this Graphlet. The Graphlet we create in this section
is slightly simpler than the one in map.html, but it captures the
essence of creating SPJ files in Spotfire S+. The code we use includes
some of the Spotfire S+ functions we have discussed so far in this
chapter, including java.set.page.title, java.set.page.tag,
java.identify, and java.action.page.

The map.spj Graphlet displays a complicated multi-page plot of
census data on the racial distribution of populations in 47 U.S. cities.
The data set is taken from the Geospatial & Statistical Data Center at
the University of Virginia (http://fisher.lib.virginia.edu/ccdb) and
is not part of the regular Spotfire S+ program files. To locate and
label the cities on a map of the United States, we use the built-in data
vectors city.name, city.x, and city.y.
428

Creating a Graphlet Data File
There are three main features of the map.spj Graphlet:

1. The first page of the graphic displays a map of the United
States. Forty-seven cities are labeled on the map, each of
which corresponds to an active region. The circle that marks
each city is sized according to the city’s population; larger
cities have larger circles.

2. Clicking on an active region in the map switches to a page
that contains a bar plot of racial data for the associated city.
Clicking on the page tab for a particular city also displays the
bar plot.

3. Each page that contains a bar plot has an active region at the
bottom that switches to the first page. This allows the user to
navigate the Graphlet easily and select multiple cities to view
in sequence.

Suppose the data are stored in the Spotfire S+ data set census. This
data set has the columns listed below.

• AreaName: Name of the city as it appears in the built-in vector
city.name.

• Population: Population of the city in 1986.

• Pct.white: Percentage of the 1980 population that was white.

• Pct.black: Percentage of the 1980 population that was black.

• Pct.amerind: Percentage of the 1980 population that was
American Indian.

• Pct.asiapac: Percentage of the 1980 population that was
Asian or Pacific Islander.

• Pct.hisp: Percentage of the 1980 population that was
Hispanic.

• x: Equivalent to the built-in vector city.x, which is negative
longitude of the city (in degrees) corresponding to a
coordinate system set up by the usa function.

• y: Equivalent to the built-in vector city.y, which is latitude
(in degrees) corresponding to a coordinate system set up by
the usa function.
429

Chapter 8 Spotfire S+ Graphlets®
In the steps below, we describe the Spotfire S+ code used to create a
Graphlet for these data. First, open a java.graph graphics device to
create the file map.spj:

java.graph(file = "map.spj")

Next, plot a map of the U.S. and label the cities in census. The
symbols function draws circles on the map, the sizes of which are
determined by the cities’ populations. The text function writes the
city names next to the circles.

usa()
symbols(census$x, census$y,

circles = sqrt(census$Population), inches = 0.05,
col = 2, add = T)

text(census$x, census$y, paste("", census$AreaName),
adj = 0, cex = 0.5, col = 3)

title("Racial distribution in US cities")

Label the page of the Graphlet that contains the map:

java.set.page.title("USA map")
java.set.page.tag("p0")

Next, we define active regions surrounding the points in the map.
This step associates each of the cities with one of the page tags "p1",
"p2", "p3", The labels argument to java.identify displays the
name of the city in the upper right corner of the Graphlet when the
mouse hovers over the city’s active region.

java.identify(census$x, census$y, labels = census$AreaName,
actions = java.action.page(

paste("p", 1:length(census$x), sep="")))

Sort the cities alphabetically and generate a bar plot for each city’s
racial data. Each iteration of the following for loop creates one bar
plot that displays in its own Graphlet page.

cities <- census$AreaName
for(thecity in sort(cities))
{

datum <- census[census$AreaName == thecity,]
grps <-c("Pct.white", "Pct.black", "Pct.amerind",

"Pct.asiapac", "Pct.hisp")
grp.eng <- c("White", "Black", "American Indian",
430

Creating a Graphlet Data File
"Asian/Pacific", "Hispanic")
x <- unlist(datum[grps])
The barchart() command creates a new Graphlet page.
print(barchart(grp.eng ~ x, xlim = c(0,100),

xlab = "Percent", ylab = ""))
title(paste("Racial distribution in", thecity))

Label this page of the Graphlet.
java.set.page.title(datum$AreaName)
java.set.page.tag(paste("p",

match(thecity, cities, nomatch = 0),
sep = "", collapse = ""))

Define an active region below the x axis in the bar plot
that returns you to the first page in the Graphlet.
title(xlab = "[Click here to return to USA Map]",

adj = 0.0)
java.identify(y1 = par("usr")[[3]],

y2 = par("usr")[[3]] - 100, labels = "return to map",
actions = java.action.page("p0"))

}

Finally, close the graphics device. This writes all of the information
from the graphics commands to the file map.spj:

dev.off()

The Windows
winspj Library

Because the java.graph device uses Java, calling the java.graph
function starts the Java runtime system if it is not already running.

The Windows winspj library provides an alternative implementation
of java.graph that does not use Java at all. You can load this library
by running the following command:

library(winspj, first=T)

The library must be attached with the first=T argument to override
the default definition of the java.graph function.

With this library loaded, you can create SPJ files as follows:

java.graph(file="myfile.spj")

This version of java.graph can create SPJ files only. It does not
support the other file types available in java.graph windows.
431

Chapter 8 Spotfire S+ Graphlets®
EMBEDDING THE GRAPHLET IN A WEB PAGE

To embed a Spotfire S+ Graphlet in a Web page, several files are
necessary:

1. The spjgraph.jar file, which contains the Graphlet Java code.
This file is included in the Spotfire S+ distribution in the
following locations

• Windows: <Spotfire S+ install dir>\library\winspj

• UNIX: $SHOME/java

Copies of this file can be freely distributed.

2. The SPJ file containing the Spotfire S+ graphics commands to
be displayed in the Graphlet. Such a file can be generated in
Spotfire S+ as described in the section Creating a Graphlet
Data File (page 420).

3. The HTML file defining the Web page. This can be created
manually or with one of the many Web page editors available.

To embed a Spotfire S+ Graphlet as an applet within a Web page, the
HTML for the Web page must include an APPLET object. For
example, the following is the HTML text of a very simple Web page
for the fuel.spj file defined in the section Active Regions (page 421):

<HTML>
<BODY>
A Web page with an embedded Spotfire S+ graph:

<APPLET code="spjgraph.class" ARCHIVE="spjgraph.jar"
 WIDTH="967" HEIGHT="601">
<PARAM NAME=spjgraph.filename VALUE="fuel.spj">
</APPLET>
</BODY>
</HTML>

Suppose this page is the file /u/web/fuel.html. To access the
Graphlet Java classes, the file spjgraph.jar should be in the /u/web
directory as well. Alternatively, spjgraph.jar can be in a subdirectory
of /u/web, in which case you specify the file’s location as a relative
path. For example, the following APPLET command looks for
spjgraph.jar in the directory /u/web/graph:
432

Embedding the Graphlet in a Web Page
<APPLET code="spjgraph.class" ARCHIVE="graph/spjgraph.jar"
 WIDTH="967" HEIGHT="601">

The applet parameter spjgraph.filename specifies the name of the
SPJ graphics file to be loaded by the Graphlet. In the above example,
the file /u/web/fuel.spj is loaded. If spjgraph.filename is not
specified, the file graph.spj is loaded by default. The applet width
and height are specified in the APPLET command and cannot be
changed in the Web browser.

Applet
Parameters

A set of optional PARAM values control both the name of the graphics
file and the buttons that appear at the top of the Graphlet (see Figure
8.2). As we mention above, the parameter spjgraph.filename
specifies the name of the SPJ graphics file to be loaded. The
remaining parameters interpret any of Yes, ON, Y, or T to mean ON;
anything else is interpreted as OFF. For example, adding the following
elements to an APPLET command causes the mouse coordinates to
display initially, and does not allow graphs to be resized by the end
user.

<PARAM NAME=spjgraph.mouse.position VALUE="ON">
<PARAM NAME=spjgraph.resize.buttons VALUE="OFF">

We briefly describe each of the available PARAM options in Table 8.1
below. For additional details on the buttons that appear in a Spotfire
S+ Graphlet, see the section Using the Graphlet (page 438).
433

Chapter 8 Spotfire S+ Graphlets®
Figure 8.2: The example Graphlet in the file fuel.html.

Table 8.1: Applet parameters.

Applet Parameter Description

spjgraph.filename Specifies the name of the SPJ
graphics file to be loaded by the
Graphlet. Default is graph.spj.

spjgraph.mouse.position Determines whether the mouse
coordinates should be displayed
when the mouse is within the
graph. Default is OFF.

spjgraph.mouse.position.checkbox Determines whether the Display
mouse position check box
appears in the dialog for the
Options button. If it does, an end
user can change whether the
mouse coordinates are displayed in
the Graphlet. Default is ON.
434

Embedding the Graphlet in a Web Page
spjgraph.active.regions Specifies whether active regions
are enabled. If they are enabled, a
region is outlined and the
associated label is displayed when
the mouse is moved over an active
region. If active regions are
disabled, the regions and labels are
not displayed and clicking on an
active region does not perform the
associated action. Default is ON.

spjgraph.active.regions.checkbox Determines whether the Enable
active regions check box appears
in the dialog for the Options
button. If it does, an end user can
control whether active regions are
enabled in the Graphlet. Default is
ON.

spjgraph.rect.button Determines whether the Rect
button appears at the top of the
Graphlet. Default is ON.

spjgraph.resize.buttons Determines whether any of the
resize buttons (In, Out, Rect, and
Fill) appear at the top of the
Graphlet. If not, the graph cannot
be resized by the end user. Default
is ON.

spjgraph.options.button Determines whether the Options
button appears. Default is ON.

spjgraph.help.button Determines whether the Help
button appears. Default is ON.

Table 8.1: Applet parameters. (Continued)

Applet Parameter Description
435

Chapter 8 Spotfire S+ Graphlets®
spjgraph.tabs Determines whether page tabs
appear below the graph. Default is
ON. It may be useful to turn this
option off when there is only one
page of graphics, or when users
should switch pages only through
active regions.

spjgraph.tabs.checkbox Determines whether the Display
page tabs check box appears in
the dialog for the Options button.
If it does, an end user can control
whether page tabs appear below
graphs in the Graphlet. Default is
ON.

spjgraph.select.button Determines whether the Select
button appears. Default is OFF.

spjgraph.print.button Determines whether the Print
button appears. Default is ON.

spjgraph.print.option.chooser Determines whether the Options
dialog includes a list of print
options: “Print current page as-is”,
“Print current page unzoomed”,
“Print all pages unzoomed”.
Default is ON.

spjgraph.print.selections.checkbox Determines whether the Options
dialog includes the “Print selected
region” check box. Default is ON.

Table 8.1: Applet parameters. (Continued)

Applet Parameter Description
436

Embedding the Graphlet in a Web Page
A Detailed
Example
(Continued)

Here, we continue the example we began in the section Creating a
Graphlet Data File (page 420), where we describe the steps necessary
for generating the Graphlet data file map.spj. The HTML code
below both embeds the map.spj file in a Web page and sets particular
options in the APPLET command.

<HTML>
<HEAD>
<TITLE>Racial Distribution in US cities</TITLE>
</HEAD>
<BODY>
<APPLET code="spjgraph.class" archive="spjgraph.jar"

WIDTH=600 HEIGHT=400 >
<PARAM NAME=spjgraph.filename VALUE=map.spj>
<PARAM NAME=spjgraph.mouse.position VALUE=ON>
<PARAM NAME=spjgraph.options.button VALUE=OFF>

</APPLET>
</BODY>
</HTML>

Save this HTML code in a file named map.html and place it in a
directory with the map.spj and spjgraph.jar files. After doing this,
you can view and interact with the Graphlet in a Web browser. Note
that the example file map.html in the following location is different
than the HTML file we create above:

• Windows: <Spotfire S+ install dir> \library\winspj

• UNIX: $SHOME/library/example5/graphlet

The map.html example file maintains the default values of all PARAM
values, while the file we create above changes the values of
spjgraph.mouse.position and spjgraph.options.button.
437

Chapter 8 Spotfire S+ Graphlets®
USING THE GRAPHLET

Suppose you are viewing a Spotfire S+ Graphlet that has been
embedded in a Web page. It appears as a window with a number of
labeled buttons on the top, a large region for displaying graphics, and
one or more tabs along the bottom. Left-clicking on a tab displays the
graphic on that page. For instance, Figure 8.3 shows the example
Graphlet in the file map.html. This Graphlet displays the racial
distribution in the populations of 47 U.S. cities. To view this Graphlet,
open the map.html file in:

• Windows: <Spotfire S+ install dir> \library\winspj

• UNIX: $SHOME/library/example5/graphlet

Several buttons for resizing the image appear in a Graphlet. The In
button zooms in on the image and the Out button zooms out. The
Fill button resizes the graph so that it fills the window exactly. If the
graph is resized to be larger than the window, scroll bars appear
around the graph.

Figure 8.3: The example Graphlet in the map.html file.
438

Using the Graphlet
The Rect button allows zooming in on a specific region. If you press
the left mouse button and drag it in the graphics window, you define
the bounding box of a rectangle. After defining such a rectangle, press
the Rect button. This changes the zoom so that the specified rectangle
fills the window.

The Select button (not displayed by default) selects all selectable
regions within a given rectangle. Click and drag the left mouse button
to define a rectangle, then click the Select button to select all the
selectable regions within the rectangle. For information about
including this button in the Graphlet, see the section Applet
Parameters (page 433). For more information about using this feature,
see the section Define a Selection Tag (page 426).

The Options button displays the dialog shown in Figure 8.4. This
dialog allows you to modify several options that control the operation
of the Graphlet. The check box labeled Display mouse position
specifies whether graph coordinates are displayed as the mouse runs
over the graph. This box is initially cleared, so that the mouse
coordinates are not displayed. A text field labeled Mouse position
digits specifies the number of digits to use when displaying the
precision of mouse coordinates. A check box labeled Enable active
regions specifies whether active regions are enabled; this box is
initially checked, so that active regions are enabled. The Display
page tabs check box determines whether page tabs appear below the
graph. By default, this box is checked and page tabs appear. It may be
useful to turn this option off, however, when there is only one page of
graphics.

Figure 8.4: The dialog that appears when you press the Options button in a
Spotfire S+ Graphlet.
439

Chapter 8 Spotfire S+ Graphlets®
The Graphlet Options dialog provides the following print controls:

• A drop-down menu with three options:

• “Print current page as-is” (the default) specifies that the
currently selected Graphlet page will be printed with the
current zooming. In other words, if the current page is
zoomed and panned to show a small part of the graph,
only that portion will be printed.

• “Print current page unzoomed” specifies that the entire
Graphlet page will be printed with no zooming.

• “Print all pages unzoomed” specifies that all pages of the
Graphlet will be printed with no zooming.

• The “Print selected regions” check box specifies whether
selected regions should be highlighted when printed.

The Print button prints the contents of the Graphlet without printing
the rest of the Web page containing the graphlet.

The Help button in a Spotfire S+ Graphlet brings up a window that
contains simple documentation on using the Graphlet. The S+ button
in the upper right corner displays a Web page describing the Spotfire
S+ Graphlet.

To “drill down” into the data used to create the map.spj Graphlet, run
your mouse over the points in the map of the United States. Note that
when the mouse passes over a particular city, an active region is
highlighted and the name of the city appears in the upper right corner
of the Graphlet. If the labels for the cities are too small on your
screen, use the Rect button to zoom in on a particular region of the
map.

If you click on one of the active regions in the map, the Graphlet
jumps to another page that shows a bar plot of racial data for the
associated city. For example, click on the active region for San

Note

Not all of the buttons mentioned above may appear in a Graphlet. Applet parameters that
determine which buttons appear can be set in a Web page, as described in the section
Embedding the Graphlet in a Web Page (page 432). This allows a graphics creator to prevent the
end user from resizing a graph, for example.
440

Using the Graphlet
Francisco in the map of the United States. The Graphlet jumps to the
page shown in Figure 8.5. Alternatively, you can use the arrows in the
lower left corner of the Graphlet to navigate through the page tabs.
Clicking on the tab titled “San Francisco” also displays the bar plot
shown in the figure.

To return to the map of the United States, run the mouse over the
lower portion of the bar plot. This highlights an active region
surrounding the text “Click here to return to USA map.” Clicking
within this active region returns you to the first page of the graph,
where you can choose a different city to see a bar plot of its racial
data.

Figure 8.5: A bar plot of racial data for San Francisco in the map.spj Graphlet.
441

Chapter 8 Spotfire S+ Graphlets®
442

Numerics
2-D Line and Scatter Plots 326
2D plots

projecting onto a 3D plane 260
titles, adding axis 282

3D contour plots 343
3D line plots 341
3D plots

titles, adding axis 283
3D scatter plots 341

A
abline 67, 72
action strings 417, 424

jump to another page 425
jump to a Web page 424
pop up a menu of choices 425

active regions 417, 421, 435
defining 422
defining actions 422
defining the location of 423
defining the size of 423
labeling 422

add argument 98
adding a legend 70
adding new data to a plot 68
adding straight lines to a scatter plot

67
adding text to existing plot 69
adj argument 85
alpha channel 4
angle argument 44

annotation objects 311
Annotation palette 286
annotations 271
aov 119
APPLET object 432

spjgraph.active.regions.checkb
ox parameter 435

spjgraph.active.regions
parameter 435

spjgraph.filename parameter
433, 434, 437

spjgraph.help.button parameter
435

spjgraph.mouse.position.check
box parameter 434

spjgraph.mouse.position
parameter 433, 434, 437

spjgraph.option.chooser
parameter 436

spjgraph.options.button
parameter 435, 436, 437

spjgraph.print.selections.check
box parameter 436

spjgraph.rect.button parameter
435

spjgraph.resize.buttons
parameter 433, 435

spjgraph.select.button
parameter 436

spjgraph.tabs.checkbox
parameter 436

spjgraph.tabs parameter 436
area charts 333

INDEX
443

Index
area plots 333
arrows 102
as.data.frame.array 195
as.data.frame.ts 196
aspect 191
aspect argument 189
at argument 87, 137
attach 122
auto.stats data set 72
axes

formatting
labels 268, 279
titles 268

interactive rescaling 277
specifying default 2D 277
titles

adding 2D 282
adding 3D 283

axes objects 311
axes parameter 89
axis 89
Axis2dX object 352
Axis2dY object 352

B
background color 11
backward compatibility

use.device.palettes function 24
use.legacy.graphics function 24

bandwidth 126
bar chart 129, 330
Bar Chart dialog 129, 330
barley data set 148
barplot 43
bar plots 330
bar plots, 3D 342
bg argument 17
binomial histogram 342
border argument 186
box kernel 126
box plot 133
Box Plot dialog 133
box plots 332
bwplot 133

C
candlestick plot 332
car.miles data set 38
cbind 32
cex.axis argument 19
cex.lab argument 19
cex.main argument 19
cex.sub argument 19
cex argument 21, 83, 131, 169, 174
city.name data set 104
city.x data set 104
city.y data set 104
cloud 141
cloud plot 140
Cloud Plot dialog 140
cm.colors color set 13
col.axis argument 17
col.lab argument 17
col.main argument 17
col.sub argument 17
col argument 17, 21, 42, 83, 169
color

alpha channel 4
background color 11
bg argument 17
col.axis argument 17
col.lab argument 17
col.main argument 17
col.sub argument 17
col argument 17
creating color sets 13
CSS color names 5
default palette 11
device-specific palette mode 24
fg argument 17
function summary 15
global palette 9
HSB color space 14
HSL color space 15
HSV color space 14
image color palette 10
information 6
legacy graphics mode 24
name resolution 9
444

Index
names 5
preconstructed color sets 8
R compatibility 2, 7, 11, 12, 13,

14, 15, 16, 18
RGBA values 5
RGB values 4
setting names 7
specification 3
Spotfire S+ default colors 12
transparency 4
transparency, device support

for 5
Trellis functions 22
truecolor 3
X11 color names 6

color sets
cm.colors 13
creating a color set 13
gray 13
gray.colors 13
grey 13
grey.colors 13
heat.colors 13
rainbow 13
terrain.colors 13
topo.colors 13

color style 293
Commands window 305
comment plots 337
comments 280
composite figures 101
conditioned Trellis graphs 360
conditioning variables 148
confidence bounds 291
contour 57
contour plot 137, 336
contourplot 137
Contour Plot dialog 137, 336
coordinate systems 310
corn.rain data set 102
cosine kernel 126
csi parameter 84
CSS color names 5
curve fit equations 271

editing 285
inserting 285
specifying the precision of 285

Curve Fitting Plot dialog 285
cuts argument 139

D
data argument 122
data array 63
datax horizontal screen axis 140
datay vertical screen axis 140
dataz 137
dataz perpendicular screen axis 140
date stamps 283
default color palette 11
default colors 12
default image colors 12
defaults, saving Graph Sheet settings

as 274
density argument 44
density plot 126, 335

bandwidth 126
cosine kernel 126
kernel functions 126
normal (Gaussian) kernel 126
rectangle kernel 126
triangle kernel 126

density plot 127
dev.off 118
dev.off function 420, 431
Device.Default 73
digits 43
digits argument 47
Direct axis 93
display properties 320
dot plot 130
dotplot 117, 124
Dot Plot dialog 130
drag-and-drop

adding graphs with 259
creating a graph with 255
creating a Trellis graph with 264
445

Index
E
editable graphics 324
embedding data in Graph Sheets

295
embedding objects 296

from another application 297
Graph Sheets 297

in place 298
updating 298

EMF 233, 384
equal count algorithm 157
erase.screen 97
error bar plots 335
ethanol data set 169
Export Graph dialog 300, 301
exporting

graphs 300
with multiple pages 301

exp parameter 91
Extended axes label 93
Extended Metafile 384
Extensible Markup Language

(XML)
see XML

extracting data from Graph Sheets
295

extracting panels from Trellis
graphics 265

Extract Panel/Redraw Graph 265
eye argument 59

F
faces 65
fg argument 17
fig parameter 96
figure region 79
FillColor property 321
font.axis argument 19
font.lab argument 19
font.main argument 19
font.sub argument 19
font argument 169
formula argument 120, 149, 166

frame 96
fuel.frame data set 143

G
Gaussian kernel 126
general display function 124
general display functions 117
glm 119
global color palette 9
graph area, formatting 274
graph dialogs

QQ Math Plot 128
graphics 85

R compatibility 2, 7, 11, 12, 13,
14, 15, 16, 18

graphics arguments 72
graphics dialogs

Bar Chart 129, 330
Box Plot 133
Cloud Plot 140
Contour Plot 137, 336
Dot Plot 130
Histogram 127, 335
Level Plot 138, 336
Parallel Plot 143
Pie Chart 131, 335
QQ Plot 135, 333
Scatter Plot Matrix 142
Strip Plot 134
Surface Plot 139, 342
Time Series High-Low Plot 331

graphics objects 310
Graphlet 438

action strings 417, 424
active regions 417, 421, 435,

440
and Spotfire S+ 418
creating 420
embedding in a Web page 432
Fill button 435, 438
graph coordinates of mouse 417
Help button 435, 440
In button 435, 438
jump to another page 425
446

Index
jump to a Web page 424
multiple pages 417, 420, 436
Options button and dialog 434,

435, 436, 439
Out button 435, 438
pop up a menu of choices 425
Print button 440
Rect button 435, 439, 440
resizing 417
Select button 439
setting APPLET parameters 433
spjgraph.jar file 432, 437
Spotfire S+ button 440
tag string 420
title string 420
viewing and interacting with

438
Graph Measurements with Labels

144
Graph Multivariate Data 145
graph objects 288

accessing through the Object
Explorer 288

deleting 288
overlapping 288

graphs
2D, 3D, polar, matrix, and text

310
adding

using drag-and-drop 259
using plot buttons 258

adding plots to 256, 257
annotating 271
changing the plot type of 255,

256
creating

using drag-and-drop 255
using plot buttons 254

date stamps for 283
exporting 300

multiple pages 301
formatting 266, 274

adding a title to 269, 271
an example of 268
axis labels 268

axis titles 268
curve fit equations

adding 271, 285
editing 285
specifying the precision

of 285
legends, adding 282, 283
lines, shapes, and symbols,

adding 286
titles and subtitles, adding

282
labeling points on 284
multiline text in, adding and

formatting 280
multipanel 265
multiple, on a Graph Sheet 258
object-oriented nature of 267
time stamps for 283
Trellis 262, 360

creating 264, 265
Graph Sheet

adding pages 260
embedded data 295
extracting data 295
formatting 273
placing multiple graphs on 258
saving defaults for 274

graph sheets 310
graph styles 293
gray.colors color set 13
gray color set 13
grey.colors color set 13
grey color set 13
guiDisplayDialog 323
guiGetArgumentNames 319
guiGetAxisLabelsName function

313
guiGetAxisName function 313
guiGetAxisTitleName function 313
guiGetGraphName function 314
guiGetGSName function 313

H
heat.colors color set 13
447

Index
high-level graphics functions 72
high-low-open-close plot See high-

low plot
high-low plot 331
hist 50
histogram 127, 335
histogram 124
Histogram dialog 127, 335
History log 305
HSB color space 14
HSL color space 15
HSV color space 14

I
identify 66
image 57
image color palette 10
internally labeled axis 93
interp 57
interpolates 57
interquartile range 133
intervals argument 161
iris data set 63

J
java.action.link function 424, 428

target argument 424
java.action.menu function 425

title argument 426
java.action.menuitem function 425
java.action.page function 425, 428
java.graph function 420, 421, 430
java.identify function 421, 428, 431

actions argument 422, 424
adj argument 423
labels argument 422, 430
one.region argument 423
polygon argument 423
size.relative argument 423
size argument 423
x1 argument 422
x2argument 422
y1 argument 422

y2 argument 422
java.set.page.tag function 425, 428,

430, 431
java.set.page.title function 421, 428,

430, 431
java.set page.tag function 421
java.xml.string function 427
jitter argument 134
joint distribution 342

K
key argument 179, 183

L
labels

axis 268
labex argument 58
lab parameter 90
legends

adding to a graph 282, 283
level plot 138, 336
levelplot 138
Level Plot dialog 138, 336
levels 160
linear curve fit plots 329
LineColor property 321
line plots 326

3D 341
lines 68, 174
LineStyle property 321
line types 40
LineWeight property 321
linking objects 296

changing links 297
editing links 297
from another application 296
reconnecting links 297

lm 67, 119
locator 70
loess 119
log 37
low-level graphics functions 72
low-level plotting functions 98
448

Index
lty argument 21, 174
lwd argument 21, 174

M
main argument 34
main-effects ordering of levels 153
main title of a plot 34
mai parameter 80, 81
make.groups 194
make.symbol 106
margin 79
mar parameter 80, 81
mex argument 81
mfcol argument 79
mfrow argument 33
mgp argument 92
mileage.means vector 130
more argument 146
most useful graphics parameters 108
mtext 86
multiline text, adding and

formatting 280
multiple plots 36

on one graph 359

N
named colors 5
n argument 67
nclass argument 51
nint argument 127
normal (Gaussian) kernel 126

O
objects

graph 288
accessing through the

Object Explorer 288
deleting 288
overlapping 288

linking and embedding 296
changing links 297
editing links 297

from another application
296, 297

Graph Sheets 297
in place 298
updating embedded

298
reconnecting links 297

oma parameter 80
omd parameter 80
omi parameter 80
orientation of axis labels 91
outer margin 79
outlier data point 66
overlay figures 98
ozone data set 57

P
pairs 62
palettes

default 11
device specific 24
global 9
image color 10
matching R 12
overview 3

panel 171
panel.loess 173
panel.special 173
panel.superpose 179, 182
panel.xyplot 171, 174, 175
panel argument 193
Panel functions 117
panel variables 148
par 33
par.strip.text argument 169
parallel 143
parallel plot 143
Parallel Plot dialog 143
PARAM options 433

spjgraph.active.regions 435
spjgraph.active.regions.checkb

ox 435
spjgraph.filename 433, 434, 437
spjgraph.help.button 435
449

Index
spjgraph.mouse.position 433,
434, 437

spjgraph.mouse.position.check
box 434

spjgraph.option.chooser 436
spjgraph.options.button 435,

436, 437
spjgraph.print.selections.check

box 436
spjgraph.rect.button 435
spjgraph.resize.buttons 433, 435
spjgraph.select.button 436
spjgraph.tabs 436
spjgraph.tabs.checkbox 436

p argument 176
pch argument 21, 41, 42, 83, 171,

174
pdf.graph argument 118
pie 45
pie chart 131, 335
piechart 132
Pie Chart dialog 131, 335
planes, inserting 261
plot 30
plot.line 177
plot.symbol parameter 177
plot area 79
Plot Properties dialog 290
plots

3D line 341
3D scatter 341
area 333
bar, 3D 342
bar charts 129, 330
box plots 133
cloud plots 140
comment 337
confidence bounds, adding to

291
contour plots 137, 336
density plots 126, 335
dot plots 130
high-low plots 331
histograms 127, 335
level plots 138, 336

line 326
lines, symbols, and colors for

291
parallel plots 143
pie charts 131, 335
qqplots 128, 135, 333
scatter 326
scatter plot matrix 142
Smith 337

circle 337
impedance 337
reflection 337

strip plots 134
surface plots 139, 342
time series plots 331
Trellis 265
Trellis graphics 148
type of, changing 292

plotting characters 41
plot types 37
points

identifying in a data view 284
labeling 284

points 68, 172, 174
polygon 174
position argument 146
precision of curve fit equations 285
preconstructed color sets 8
prepanel.loess 193
prepanel argument 191
printing

graphs 299
projection planes 343
pscales argument 168
pty argument 33
pugetN data set 61

Q
qqline 54
qqmath 128
QQ Math Plot dialog 128
qqnorm 54
QQ Plot dialog 135, 333
Q-Q plots 333
450

Index
qqplots 54, 128
normal qqplot 128
two-dimensional 135, 333

qqunif 55
quantile-quantile plot See qqplots

R
rainbow color set 13
R compatibility

graphics 2, 7, 11, 12, 13, 14, 15,
16, 18

rectangle kernel See box kernel
rectangular plot shape 33
reorder.factor 153, 154
rescaling axes 277
RGBA values 5
RGB values 4
rotating 3D graphs 344
Rows 183

S
scales and labels of graphs 166
scales argument 167
scatterplot 62
scatter plot matrices 330
scatter plot matrix 142
Scatter Plot Matrix dialog 142
scatter plots 326

3D 341
three-dimensional 140

screen argument 140
screen axes 140
Script window 305
segments 102, 174
shingle 159
show.settings 175, 177
single-symbol operators 121
Smith plots 337

circle 337
impedance 337
reflection 337

smooth 68
space argument 183

span argument 174
span parameter 187
spjgraph.jar file 432, 437
split argument 146
splom 142
square plot shape 33
Standard axes 93
star plot 64
static data visualization 62
strip.names argument 170
strip argument 170
strip plot 134
stripplot 134
Strip Plot dialog 134
sub argument 34
subscripts argument 174
subset argument 122
Subset Rows with 265
subtitle of a plot 34
superpose.symbol 179, 181
surface plot 139, 342
Surface Plot dialog 139, 342
switzerland data set 57
SymbolColor property 321
symbols 104
symbols function 430
SymbolSize property 322
SymbolStyle property 322

T
t 47
tck parameter 89
terrain.colors color set 13
text 69, 174
text function 430
time series

candlestick plots 332
high-low plots 331

Time Series High-Low Plot dialog
331

time stamps 283
title 35, 73
title function 430, 431
titles
451

Index
adding to a graph 269, 271, 282
axis 268
graph 269, 271

topo.colors color set 13
transparency 4
transparency, device support for 5
trellis.device 117, 175
trellis.par.get 175
trellis.par.set 175, 178
Trellis graph 360
Trellis graphics 148, 262

creating
with drag-and-drop 264

extracting panels 265
Trellis settings 175
triangle kernel 126
truecolor 3
type argument 31

U
usa 104
usa function 430
use.device.palettes function 24
use.legacy.graphics function 24
using logarithmic scale 37
usr parameter 84

W
width argument 52, 127
Windows Metafile 384
wireframe 117, 124, 139
WMF 384

X
X11 color names 6
xaxs argument 36
xlab argument 35
xlim argument 36, 167
XML 424

jump to a page in a Graphlet
425

jump to a Web page from a
Graphlet 424

pop-up menu in Graphlets 425
reserved characters 427

xyplot 117, 120, 124

Y
yaxs argument 36
ylab argument 35
ylim argument 36, 167
452

	Important Information
	TIBCO Spotfire S+ Books
	Graphics Enhancements
	Overview
	R Graphics Compatibility

	Color Specification
	Color Names
	Global Color Palette
	Other Color Spaces
	Summary of Color Specification Functions

	Additional Graphics Arguments
	Additional Color Arguments
	Additional Text-Related Arguments

	Vectorized Graphics Parameters
	Backward Compatibility
	Using Legacy Graphics
	Using Device- Specific Palettes

	Traditional Graphics
	Introduction
	Getting Started with Simple Plots
	Vector Data Objects
	Mathematical Functions
	Scatter Plots

	Frequently Used Plotting Options
	Plot Shape
	Multiple Plot Layout
	Titles
	Axis Labels
	Axis Limits
	Logarithmic Axes
	Plot Types
	Line Types
	Plotting Characters
	Controlling Plotting Colors

	Visualizing One-Dimensional Data
	Bar Plots
	Pie Charts
	Dot Charts
	Notes and Suggestions

	Visualizing the Distribution of Data
	Box Plots
	Histograms
	Density Plots
	Quantile- Quantile Plots

	Visualizing Three-Dimensional Data
	Contour Plots
	Perspective Plots
	Image Plots

	Visualizing Multidimensional Data
	Scatterplot Matrices
	Plotting Matrix Data
	Star Plots
	Faces

	Interactively Adding Information to Your Plot
	Identifying Plotted Points
	Adding Straight Line Fits to a Scatter Plot
	Adding New Data to the Current Plot
	Adding Text to Your Plot

	Customizing Your Graphics
	Low-level Graphics Functions and Parameters
	Setting and Viewing Graphics Parameters

	Controlling Graphics Regions
	The Outer Margin
	Figure Margins
	The Plot Region

	Controlling Text and Symbols
	Text and Symbol Size
	Text Placement
	Text Orientation
	Text in Figure Margins
	Plotting Symbols in Margins
	Line Width

	Controlling Axes
	Enabling and Disabling Axes
	Tick Marks and Axis Labels
	Axis Style
	Axis Boxes

	Controlling Multiple Plots
	Multiple Figures on One Page
	Pausing Between Multiple Figures
	Overlaying Figures

	Adding Special Symbols to Plots
	Arrows and Line Segments
	Stars and Other Symbols
	Custom Symbols

	Traditional Graphics Summary
	References

	Traditional Trellis Graphics
	A Roadmap of Trellis Graphics
	Getting Started
	General Display Functions
	Common Arguments
	Panel Functions
	Core Spotfire S+ Graphics
	Printing, Devices, and Settings
	Data Structures

	Giving Data to Trellis Functions
	The formula and data Arguments
	The subset Argument

	General Display Functions
	Scatter Plots: the xyplot Function
	Visualizing One- Dimensional Data
	Visualizing Two- Dimensional Data
	Visualizing Three- Dimensional Data
	Visualizing Multi- Dimensional Data
	Summary: The Display Functions and Their Formulas

	Arranging Several Graphs on One Page
	Multipanel Conditioning
	About Multipanel Display
	Columns, Rows, and Pages
	Packet Order and Panel Order
	Main-Effects Ordering
	Conditioning on the Values of a Numeric Variable
	Summary: The Layout of a Multipanel Display

	General Options for Multipanel Displays
	Spacing Between Rows and Columns
	Skipping Panels
	Multipage Displays

	Scales and Labels
	Axis Labels and Titles
	Axis Limits
	Tick Marks and Labels
	Changing the Text in Strip Labels

	Panel Functions
	Passing Arguments to a Default Panel Function
	Writing a Custom Panel Function
	Special Panel Functions
	Summary: Common Options in Panel Functions

	Panel Functions and the Trellis Settings
	The trellis.par.get Function
	The show.settings Function
	The trellis.par.set Function

	Superposing Multiple Value Groups on a Panel
	Superposing Points
	Superposing Curves
	Superposing Other Plots
	The key Argument

	Aspect Ratio
	2D Displays
	3D Displays
	Prepanel Functions

	Data Structures
	Vectors
	Arrays
	Time Series

	Summary of Trellis Functions and Arguments

	Editing Graphics in UNIX
	Introduction
	Basic Terminology

	Using motif Graphics Windows
	Starting and Stopping the motif Device
	An Example Plot
	Motif Window Features
	The Options Menu
	Available Colors Under X11

	Using java.graph Windows
	Starting and Stopping the java.graph Device
	An Example Plot
	java.graph Window Features
	The Options Menu

	Printing Your Graphics
	Printing with PostScript Printers
	Using the Print Option from the Motif Window
	Print Options in the Java Graphics Window
	Using the printgraph Function
	Using the postscript Function
	Creating Encapsulated PostScript Files
	Setting PostScript Options
	Creating Color PostScript Graphics
	Creating Bitmap Graphics
	Managing Files from Hard Copy Graphics Devices
	Using Graphics from a Function or Script

	Editing Graphics in Windows
	Graphs
	The Graph Sheet
	Methods for Creating a Graph
	Changing the Plot Type
	Adding a Plot to a Graph
	Placing Multiple Graphs on a Graph Sheet
	Projecting a 2D Plot Onto a 3D Plane
	Trellis Graphics

	Formatting a Graph
	Formatting a Graph: An Example
	Formatting a Graph Sheet
	Formatting the Graph
	Formatting 2D Axes
	Formatting 2D Axis Labels
	Adding and Formatting Multiline Text
	Adding Titles and Legends
	Adding Labels for Points
	Adding a Curve Fit Equation
	Adding Lines, Shapes, and Symbols
	Modifying Image Colors

	Working With Graph Objects
	Plot Types
	Formatting a Graph (Continued)

	Using Graph Styles and Customizing Colors
	Embedding and Extracting Data in Graph Sheets
	Linking and Embedding Objects
	Data From Another Application
	Embedding Spotfire S+ Graphics in Other Applications

	Printing a Graph
	Exporting a Graph to a File

	Windows Editable Graphics Commands
	Introduction
	Getting Started
	Graphics Objects
	Graph Sheets
	Graphs
	Axes
	Plots
	Annotations
	Object Path Names

	Graphics Commands
	Plot Types and Plot Classes
	Viewing Argument Lists and Online Help
	Specifying Data
	Display Properties
	Displaying Dialogs

	Plot Types
	The Plots2D and ExtraPlots Palettes
	The Plots3D Palette

	Titles and Annotations
	Titles
	Legends
	Other Annotations
	Locating Positions on a Graph

	Formatting Axes
	Formatting Text
	Modifying the Appearance of Text
	Superscripts and Subscripts
	Greek Text
	Colors

	Layouts for Multiple Plots
	Combining Plots on a Graph
	Multiple Graphs on a Single Page
	Multiple Graphs on Multiple Pages
	Conditioned Trellis Graphs

	Specialized Graphs Using Your Own Computations

	Working With Graphics Devices
	Introduction
	The graphsheet Device
	Starting a graphsheet Device

	The motif Device
	Starting a motif Device

	The java.graph Device
	Starting a java.graph Device
	java.graph Device Settings

	The pdf.graph Device
	Creating PDF Files
	pdf.graph Settings

	The wmf.graph and emf.graph Devices
	Creating WMF or EMF Graphics
	wmf.graph and emf.graph Settings

	The postscript Device
	postscript Device Settings

	Device-Specific Color Specification
	pdf.graph Colors
	wmf.graph and emf.graph Colors
	postscript Colors
	java.graph Colors
	Using the S-PLUS 6.2 Colorscheme

	Spotfire S+ Graphlets®
	Introduction
	Requirements
	Examples

	Creating a Graphlet Data File
	Interactive File Creation
	Programmatic File Creation
	Page Titles and Tags
	Active Regions
	Action Strings
	A Detailed Example

	Embedding the Graphlet in a Web Page
	Applet Parameters
	A Detailed Example (Continued)

	Using the Graphlet

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X
	Y

