www.insightful.com

S+JavaServer Pages Documentation

S+JavaServer Pages Documentation

TABLE OF CONTENTS

CHAPTER 1: INTRODUGCTION ...ttt ettt e et e et e et s e et st s e aeeaaeans 3
OTHER TYPES OF S-PLUS SERVER APPLICATIONS ...ittitiitiiiiet ittt i eeie et et e eaeeaeeasesasaasteeneenes 4
REQUIREMENT S ..ttt ittt et e e et e e e ettt e e et e et e e e e e et et e et e et e ea et e et e ene et e et eeneanaeanns 4
CONTENTS OF THIS IMODULEvuiiitiit ittt et e et e e et e e e e s et et e et e et e e s e s e et et eneeanes 5

CHAPTER 2: SETTING UP THE SAMPLE APPLICATION ...t 6
INSTALLING S-PLUS SERVER ...ttt ettt et e et et e e et e e e st et e et eaaens 7
INSTALLING THE WEB CONTAINER AND SAMPLE APPLICATION ...tuitiitiitinieeietietieteeneeneeneaesisneeneenens 7
VIEWING THE APPLICATION . .ttt ttttttttttaetetett et eae et e s e s e st st ea e et e ea e ea s s e st et ee s e eaeeaeea s s st stetaeteeneens 8
CHECKING THE S-PLUS CONNECTIONS ..ettttittitittt ettt e e e et eeas e et s et ea e et e ea e e s e s astasaaeneeanes 9
TRYING OUT THE APPLICATION .1ttt tuituttustet et ettt eaees st e e ste et e et s e e s s e st et eaeeaeea e e s e s aeteeteeteeneens 10

CHAPTER 3: A GUIDED TOUR OF THE TAG LIBRARY .ot 11
TESTING A TAG IN THE SAMPLE APPLICATION 1. tttitttttteteteteeteeteeaeeaeasastaeteeteeaeenssnsaneastaetaeneenaens 11
SR o I SR €T =YY = TSN 14
OUTPUT AND RESULTS FROM S-PLUS ..o 18

CHAPTER 4: AUTHORING YOUR OWN APPLICATIONS ...t 21
MODIFYING THE SAMPLE APPLICATION ..etituituitnittttttteeaeaetetteae st et easasaststeeaeesseaeensaeteeseenaenes 21
APPLICATION COMPONENTS ...t ttttttteetetet et et et ea e e e e et et e et e et e ea e st st et ea e et e eaeea e e s e sestaenaenaenns 21
AADDITIONAL SUGGESTIONS ...t ttitttttteetstaet et et et et e et e e st et ea et e ea e e s e st et st et eeaeea e saststteaaenaenns 23

CHAPTER 5: S-PLUS CODE IN WEB APPLICATIONS.t 25
WRITING CUSTOM S-PLUS FUNCTIONS FOR AWEB APPLICATION ..uuvuiiniiiitiitiitiineiieeeaeeieiieneeneenns 25
DEPLOYING S-PLUS FUNCTIONS ...ttt ettt ettt e e et e et et e e e e e e e st et et eaeeaaes 26

CHAPTER 6: DEPLOYMENT AND ADMINISTRATION ..ot 27
CONNECTIONS CONFIGURATION FILE: SPLUSCONNECTIONS.XML AND SPLUSBATCH.XML................. 27
JSP CONFIGURATION FILE: WEB. XML 11 ttutttteteteeteeteeeaeteeteeteeaesas e s s sasae et eaeeaeeae s s anssstaeteeneenens 28
CONFIGURING S-PLUS PERSISTENCE INWEB.XML ..eutuitnititietieteeaeesteasteeaesaesnssnsensaneseesesseeneenes 30
OTHER CONNECTIONS PARAMETERS IN WEB. XML +.tutuituitnetiteteneeneensansssteseseenssnssnesnsseeseeseeneenes 32
GRAPHS PARAMETERS IN WEB. XML .eutuittitititeteeteeetst st st st sassas e saasasteea et e eaesa s e sanstetesaeenaenes 34
S =0 U] = 12 22N 35

2 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Chapter 1: Introduction

The S-PLUS JavaServer Pages (S+JSP) module integrates S-PLUS into Web applications using
S-PLUS Server for UNIX/Linux. In such an integrated application, Web pages use S-PLUS
Server to perform customized analyses and produce reports and graphs. These results are
displayed in the web page.

In this scenario the Web server acts as a client application to S-PLUS Server for UNIX/Linux
running a number of S-PLUS sessions. Users submit requests to the Web server, which calls
S-PLUS to run the required analyses and produce graphs, tables, and reports. The Web server
packages these into Web pages that it returns to the users.

Figure 1-1 shows the overall architecture.

Web
Browsers

JSP
Pages

Web
> Server

S-PLUS
Connection
Manager

L

S-PLUS
S-PLUS Session S-PLUS Session S-PLUS Session Servers

< N

Data
Source(s)

Figure 1-1. Architecture of a Web application with S-PLUS Server.

An application using this module uses JavaServer Pages (JSP) technology to process user
requests. The JSP pages contain custom tags to access S-PLUS, in addition to the text and
HTML to format the output. The JSP tags incorporate normal S-PLUS commands (typically
function calls) that the tags run in an S-PLUS session. Each specific type of tag expects a

3 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

different type of output, which it includes in the Web page as text, as tables, or as graphs as
appropriate.

The Web server runs an S-PLUS connection manager that pools a number of connections to
running S-PLUS sessions and makes them available to incoming requests. When the number of
requests exceeds the number of available sessions, the manager queues requests. An
administrator can easily increase the number of S-PLUS connections to handle increased load,
as long as hardware is available to run the sessions.

The S-PLUS connection manager, which manages multiple S-PLUS sessions, is thread-safe and
fault tolerant. It can handle multiple requests received simultaneously by the Web server without
interference. If one of the sessions becomes unavailable for some reason (for example, if the
connection is lost), the connection manager is able to switch the job to another session within its
pool. This process is automatic and invisible to the client’s application.

Other Types of S-PLUS Server Applications

S-PLUS Server can also be used for other types of applications that do not require this module.

Some Web applications use graphs, tables and reports generated by S-PLUS, but they use
previously generated versions of these results and do not need to call S-PLUS at request time.
Such applications can use S-PLUS Server to prepare the components in batch mode every night
or every week, but do not require this module.

Chapter 4 of the S-PLUS Server Programmer’s Guide discusses two types of Web applications:
those that use previously generated results and those that call S-PLUS at request time. The
chapter discusses which approach to use for a particular application.

S-PLUS Server can also be used with an S-PLUS client GUI that comes with the product, and
customers can write their own custom Java applications that access S-PLUS over a local
network. Chapter 1 of the S-PLUS Server Getting Started Guide discusses these deployment
scenarios.

Requirements

This module is intended to be used with S-PLUS Server 6.2 for UNIX/Linux. S-PLUS Server
provides the advanced data analysis methods and graphics of S-PLUS 6.2 for UNIX/Linux in a
distributed environment. It builds on the CONNECT/Java interface provided in S-PLUS and
allows you to develop scalable applications that serve large numbers of users. This module is not
for use with S-PLUS Server for Windows.

The module has been written to Version 2.3 of the Java Servlet specification and Version 1.2 of
the JavaServer Pages specification, and it has been tested with Version 4.x and 5.x of Tomcait,
the reference implementation for these APIs, as well as in several other Web containers. We
anticipate that the module will run with little or no alteration in any Web server supporting these
versions (or higher) of the APIs. Most of today’s Web servers either support these APIs
themselves or can be run with an add-on engine that supports them. A list of Web servers and
add-on engines that support Java servlets and JSP pages is available at

http://java.sun.com/products/servlet/industry.html

4 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

The Java code portion of this module is designed to run with Version 1.4 (or higher) of the Java 2
Platform (J2SE). Your Web server might put more rigid requirements on the version of Java that
you use.

Contents of this Module

This module consists of

o amain sample application,
o components and tools for authoring your own application
o documentation

The main sample application includes

o several example JSP pages illustrating how to use the custom tags to access S-PLUS

o pages that allow you to interactively experiment with your own tag code as well as access
the underlying S-PLUS sessions

o pages for administering the underlying S-PLUS sessions

o an online tag reference system

o access to all documentation

We recommend that you install and try out this sample application as a way to begin learning
about this module. Chapter 2 of this Guide provides installation instructions for the sample
application, and Chapter 3 uses the sample application to provide a guided tour of the S-PLUS
tag library.

The components and tools for authoring your own application include

the S-PLUS connection manager code

the S-PLUS tag library

tools for accessing an S-PLUS session in a running Web application
sample configuration files

sample administrative Web pages

OO0 O0OO0Oo

Chapter 4 of this Guide describes how to author your own Web application using the connection
manager and the tag library. Chapter 5 tells how to write, edit, and deploy your own S-PLUS
functions with your Web application. Chapter 6 discusses administrative issues such as the
configuration files.

The documentation includes
o this Getting Started Guide
o a Tag library summary page
o aTag library reference
o Javadoc for the Java code

5 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Chapter 2: Setting Up the Sample Application

This Chapter describes how to set up and run the main S+JSP sample application. Later
sections of this document — particularly Chapter 6: Deployment and Administration — provide
more details.

One Web container that is convenient for setting up and running this sample application is
Tomcat, which is available for free from Apache's Jakarta project
(http://jakarta.apache.org/). Tomcat (Version 4.x or 5.x) is the official reference
implementation for the Java servlet and JSP APIs that this module uses. Tomcat can run as a
standalone Web server for demonstration and development purposes, or as a servlet and JSP
container in a full-featured Web server (such as Apache).

These instructions explain how to set up the sample application with Tomcat running in
standalone mode. If you use a different Web container, some of the details will be different;
please refer to the documentation for the container you use.

The setup for the sample application consists of two parts:
1. Installing S-PLUS Server, and
2. Installing the Web container and the sample application code.

The S-PLUS Server and the Web container can be on the same computer or on different
computers on a network. S-PLUS Server for UNIX/Linux will run on a Linux, Solaris or AIX
system. Tomcat, a pure Java application, will run under any operating system that supports Java,
including Windows and Unix. If you use a different Web server, check with the manufacturer to
see what operating systems it will run under.

One handy configuration for testing and development is to run Tomcat on your desktop PC and to
run S-PLUS Server on a backend server. Because Tomcat is simple to install on Windows and
Unix platforms, and because it is easy to use, you might consider using it for testing this sample
application and for developing and testing your own code, even if you plan to use a different Web
container to deploy your code.

NOTE: Security and the Sample Application

The sample application has several pages intentionally designed to allow you to run your own
JSP code and S-PLUS code. These pages are great for learning how the S+JSP module
works and for testing out your code, but a malicious user might use these pages to access
and damage your system. In addition, the sample application includes pages for
administering S-PLUS connections, and a malicious user could use these to halt the sample
application itself.

We recommend running the Web container for the sample application in a protected
environment, for example on your desktop computer on a local area network accessible only
to trusted users. If you make the sample application more widely available, for example on
the World Wide Web, then you should restrict access to the insecure pages or remove them
completely. Chapter 6 includes a section on security that summarizes the important issues,
for the sample application and for your own application.

6 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Installing S-PLUS Server for UNIX/Linux

1. Install S-PLUS Server according to the directions that come with that product.
2. Start the S-PLUS Server factory:
SplusAS SERVER -factory [options]
See the S-PLUS Server instructions if you need more details.

If you want the sample application to use more than one server to run its S-PLUS sessions,
repeat the above instructions for each server on which you'll be running these sessions.

Installing the Web Container and Sample Application

1. Onyour Web server machine, install a Java Development Kit conformant to J2SDK 1.4 or
later, if one is not installed there already. Java Development Kits for Solaris, Linux and
Windows operating systems are available from http://java.sun.com.

Create an environment variable named JAVA HOME, whose value is the path to the new
JDK directory.

Add the bin subdirectory of the new JDK directory to your path.

2. Download Tomcat from http://jakarta.apache.org/ and install it according to the
instructions that come with it. NOTE: On Windows, make sure that the path to the
directory in which Tomcat is installed does NOT have a space in the name, i.e. do not
install to C: \Program Files\Tomcat since this path has a space in the name.

In the instructions that follow, TOMCAT HOME refers to the top-level Tomcat directory.
3. Copy the file sjsp.war to TOMCAT HOME/webapps.

4. Launch Tomcat. For Windows, Linux, or Unix, the appropriate batch file or script is in
TOMCAT HOME/bin. Tomcat will automatically unpack the file sjsp.war and set up the
sample Web application.

5. (Optional) Edit the file
TOMCAT_ HOME/webapps/sjsp/WEB-INF/SplusConnections.xml

to describe the S-PLUS session(s) you want to run. You can also launch these sessions
using the administrative tools in the Web site. Sessions described in the
SplusConnections.xml file automatically get launched each time you start the Web
server, saving you the hassle of starting them by hand every time. The XML code for one
session will look something like this:

<connection name="Friendly Name">
<host>computer</host>
<usernames>account</username>
<passwords>yourpassword</password>
</connection>

7 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Here Friendly Name is any name you want to use for the session, computer is the
name or IP address of the computer running S-PLUS Server, account is the name of
your account on the host computer, and yourpassword is your password. If you want
the sample application to run multiple S-PLUS sessions, include a section of XML code
like that above for each such session. The multiple sessions can be on the same
computer or on different computers.

For more information on the SplusConnections.xml file, see Chapter 6.

Viewing the Application

To view the sample application, point your browser to
http://host:8080/sjsp/

where host is the name or IP address of the computer running the Web container. The "8080" in
this URL is the port that Tomcat uses by default when it runs in standalone mode. If you
reconfigure Tomcat or use another Web server, adjust the URL appropriately. Figure 2-1 shows

the sample application.

/3 5+15P Sample Application - Microsoft Internet Explorer

J Fil= Edit ‘ew Favorites Tools Help

|J = Back - ”“Address“Links &

Qe

sInsightful

& S-PLUS SERVER™

Welcomel

Sample pages

Batch Test Page
Batch Jobs Page

Page Directives
£3plus:connects
ssplus:graphlet>
<splus: img>
£splus:gutput>
£splus:parsamw:
ssplus:result>
ssplus:sarg>
<splus:script>
<splus:useResult>
<splus:batch>
<splus:file>

[D'ocumentation

Tag Summary
Tag Reference
Javadocs

[

Welcome to S+JSP

3-PL1TZ Java Server Pages (S+ISF) technelogy prowides a way to embed 3-PLUS codema
“Web page. When a user requests the page, the Web server sends the 3-PLUS code to -
PLITE Server to be run, and embeds the resulting cutput, results and graphs in the copy of the
“Web page it sends to the user.

Regression
Automobiles S+TEP consists of a mumber of custom elements (also called tags) to use in a Web page. These
Mtz Inversion elments set off the S-PLTTS code and mdicate what cutput 15 ezpected from 3-FPLTUS and how
Linked Graphlets it should be included in the page. For example, an <splus:graphlet> element marks 5-
PLUS code that generates a Graphlet, which the element adds to the Web page
[Batch Johs

SHIEP represents a new paradigm for developing Web apphcatons that use 3-PLUS to
analyze data and produce graphs on demand. This new paradigm iz an alternative to the one

Y our Examples used by StatServer and a number of Web applications for S-PLUS Server. We hope that
ISP Code 3+I5F will prove easier to lean and that 3+I3P code will prowe quicker to wnte and simpler
2-PLUS Code to debug,

B The menu on the left inclides linkes to sample pages, to pages you can use to write and test
Connection List
AR code using these tags, to pages for admmustermg the S-PLITE comnections i use, and to online
Ad a Connection A written d o
Sl Morific ation and written documentation
N

|a Daone

’7 ’7 ’7 szi Local intranet v

Figure 2-1. The S+JSP Sample Application.

8 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Checking the S-PLUS Connections

For the sample application to work correctly, it must have working connections to one or more
running S-PLUS sessions. To check, click the Connection List link in the Administration section
of the frame on the left in the sample application.

If you edited the SplusConnections.xml file when you set up the Web containier (see Step 5
of the Installing the Web Container and Sample Application section), and if everything is
configured properly, the application will report active sessions as shown in Figure 2-2.

a 5+15P Sample Application - Microsoft Internet Explorer

JFilE Edit Wiew Favorites Tools Help

|J G Back v P

Jnddress |J Links **

M,

Insightful

£ S-PLUS SERVER"

Welcomel

Sample pages
Eegression
Autemaobies
Iatris Inversion

Linked Graphlets

Batch Jobs

Eatch Test Page
Eatch Jobs Page
Your Examples
ISP Code
S-PLUE Code

Administration
Ceonnection List
Addmg a Connection
Etnail Notification

Tag Reference

Page Directives
£Splus:connects
fsplus:graphlet>
“splus: img:
<splus:outputs>
<3plus:param>
<aplus:result>
<splus:sargr
£splus:script>
“splus:useResult>
<splus:hatchy
<splus:filex

Documentation

Tag Summary

-

=l

S-PLUS Connections

Active Connections

Connection | Status

|localc ot |Avaﬂable |rem0ve

Refresh

Add aconnection,

:Insightful

£ S-PLUS SERVER"

@ Done

[[1 Bocclwaet 4

Figure 2-2. A Connection List showing an active S-PLUS session.

If you do not have any active connections, the application will show one or more inactive
connections, or report that the connection pool is empty. In this case click on the Adding a
Connection link to add a connection, using the page shown in Figure 2-3.

Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

a S5+15P Sample Application - Microsoft Internet Explorer

| Fie Edt Vew Favoritss Tooks Help H & - ”Hnddressuunks &

-

:Insightful Add a New S-PLUS Connection

€ S-PLUS SERVER™

Enter the mnfermation for the new cotmection

el | i i
cleome ‘ Required Information

Sample pages
Regression

Automobiles ‘ User Name:l | Password |
Iuflatrix Inversion ‘

Linked Graphlets COptional Information

Batch Johs EXI Port: I Working Directory I

Batch Test Page ¥ Display Host: | Telnet Prompt |
Batch Jobs Page
Your Examples ‘ ‘
ISP Code
3-PLUS Code

I . c
Connection List Read a Connections File
Ad a Comnection
Email Motification Enter the name of an XL file with cennection information

Page Directives SplusConnections.xml Read file

“Splus:connects
<splus:graphlet>
<splus: img>
<splus:outputs
<splus: param>
<splus:result> :
<splus:sarg> E i B
“splus:soripts E Inslghtful
<3plus:useResults ™
e Toatea § -PLUS SERVER
<gplus:file>

Documentation

Tag Surrary =l
& [T Bl
Figure 2-3. The Adding a Connection page.

‘Frienclly Iame: I | Host Computer. I

Addd Connection I Reset Infarrmation |

List connections

To add a connection, fill out the form at the top of the page. Here Friendly Name iS any hame
you want to use for the S-PLUS session, Host Computer is the name or IP address of the
computer running S-PLUS Server, User Name is the name of your account on the host
computer, and Password is your password. When you have filled out the required information,
click the Add Connection button. The server will add the connection you specified and return with
a list of the current connections, as shown in Figure 2-2.

If you want the sample application to run multiple S-PLUS sessions, add the additional
connections in the same way.

The Adding a Connection page provides a handy way to add connections to a running
application. However this page does not change the SplusConnections.xml file for the
application, so any connections you add this way will be lost if you restart the Web container.

Chapter 6 gives more information about configuring the S-PLUS connections for your application.

Trying Out the Application

Once you've installed the sample application and established a connection to an S-PLUS
session, go ahead and try out the various pages in the application.

The next chapter uses the sample application to give a tour of the custom tags for writing your
own Web applications with this module.

10 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Chapter 3: A Guided Tour of the Tag Library

In this Chapter we’ll see how to write Web pages that include dynamically generated results and
graphs from S-PLUS. Custom S-PLUS tags, similar to HTML tags, do nearly all of the work. The
first section explains the tags and shows how to try out tags and other small samples of JSP code
from within the sample application. The next two sections describe the commonly used tags in
more detail.

Testing a Tag in the Sample Application

After installing the sjsp sample application according to the results in the previous Chapter and
starting up your Web server, open the application by pointing your browser to this URL:

http://host:port/sjsp/
where host is the name of the computer running your Web server and port is the number of the

port it is using. (By default, Tomcat uses port 8080. If your Web server is using port 80, you
don’t have to specify it in the URL.) This URL requests the page shown in Figure 3-1.

a 5+15P Sample Application - Microsoft Internet Explorer

JFiIe Edit View Fawarites Tools Help

s Insightful

£ 5-PLUS SERVER™

“ Back ~ ”Hﬁddress“unks =

Welcome to S+JSP

3-FLUE Java Server Pages (3+T3F) technology provides a way to embed 3-PLUS codeina
Web page. When a user requests the page, the Web server sends the S-PLUE code to 3-

Welcome!|

Sample pages
Regression
Automobiles
IMatriz Inversion
Linked Graphlets

Batch Johs

Batch Test Page
Batch Tobe Page
Your Examples
J5P Code
5-PLUS Code

Administration

Connection List
Ad a Connection
Email Motification

Tag Reference

Page Directives
<s3plus:connects
<splus:graphlets>
<splus: img>
<splus:outputs
<splus: param>
<splus:result>
<splus:sarg>
<splus:script>
<splus:iuseResult:
“splusibatchs>
“splusifile>

Tag Summary
Tag Reference

PLUE Server to be run, and embeds the resulting cutput, results and graphs m the copy of the
Web page it sends to the vser.

SHISP consists of a number of custom elements (also called tags) to use in a Web page. These
elments set off the 5-PLUS code and indicate what output 15 expected from S-PLUS and how
it should be included in the page. For example, an <splus:graphlets element marks S-
PLUS code that generates a Graphlet, which the element adds to the Web page

3+I5F represents a new paradigm for developing Web applications that use 3-PLUS to
analyze data and produce graphs on demand. This new paradigm is an alternative to the one
used by Stat3erver and a number of Web applications for 3-PLTT3 Server. We hope that
3+IET will prove easier g learn and that S+TSP code will prove quicker to write and simpler
to debug

The tnenu on the left ncludes links to sample pages, to pages you can use te wiite and test
code using these tags, to pages for administenng the S-PLUE connections in use, and to onling
and written documentation.

Javadocs

‘a Done |

[[BE Cocal intranet 4

Figure 3-1: The S+JSP Sample Application.

In the Your Examples section of the menu on the left, click the JSP Code link to bring up the page
shown in Figure 3-2 below.

11 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

/3 5+15P sample Application - Microsoft Internet Explorer
J File Edit “ew Favorites Took Help |J = Back - ”HAddress |J Links

s

Al

§|n5ightfu[Your Own S+JSP Example

$ S-PLUS SERVER™ _
Add an 3-PLTTS tag or two, and any other code you like, to the T3P page below

Then click the button to compile and run it.
Welcome|

Sample pages <%@ page language="java" contentType="text/html" %> =]
Regression <%B@ page errorPage="/error.jsp" %>

g <3[taglib uri="/sjsp"™ prefix="splus" %>
Atomobiles

Iulatrix Inversion chtwls
Linked Graphlets <head>

Batch Jobs <titler

S-PLUS Javaferwver Pages Exsmple

Batch Test Page /titles>
Batch Jobs Page </ head>

Your Examples
ISP Code
S-PLUS Code <hl1>3-PLUS JavaZerver Pages Example</hils

Administration

M <splus:connects> :[
Adding a Connection
Email Motification <E-= 4 I

<%-— | Put your test code here. | —--%>
Tag Reference cno— & boo—ms

Page Directives

<splus:connects>
<splus:graphlet> </splus:connects
<splus: imgs

<splus:outputy>
<splus:param> </body:-
“splus:results </ html>
<splus:sarg> -
<splus:scripts j
<splus:useResult>

=splus:batch> .

s p——rE Compile and Run |
[
@ Cone ’_'_’_ l:;l'i' Local intranet &

<hody:>

Figure 3-2: A JSP page for testing small samples of code.

The right frame contains a text window, which already contains code. This code is an example of
a JavaServer Pages (JSP) Web page. JSP pages are the primary — and in many cases the only
— components needed to construct a Web application with S-PLUS Server for UNIX/Linux.

Let's examine this JSP page in some detail. Most of the page consists of text and HTML that is
sent to the user’s browser in response to a request. The remaining elements are instructions that
tell the Web container what to do when at request time. The top three lines on the page declare
this page to be a JSP page, specify what page to run instead if this page contains an error, and
declare that this page uses the S+JSP custom tag library to communicate with S-PLUS. The
<splus:connect> tag tells the Web server to obtain a connection to an S-PLUS session, and
the </splus:connect> tag tells the server to release the connection.

We'll now add an additional custom tag to make use of this connection. Between the two connect
tags, add this line of code:

The value of pi is <splus:result expr="pi” />.

The entire page should now look something like page in Figure 3-3.

12 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

3 5+15P Sample Application - Microsoft Internet Explorer
J Fil= Edit Wiew Favorites Tools Help “ daBack - ”Hﬂddress “ Links **
% S N I—
sInsightful Your Own S+JSP Example
&
§ S-PLUS SERVER" .
Add an 5-PLUS tag or two, and any other code you like, to the ISP page below
Then click the button te compile and run it.
TWelcome!
Sample pages <% page language="java” contentType="text/html" %> =]
Reoression <%@ page errorPage="/error.jsp"™ %>
e <%@ taglib uri="/sjsp" prefix="splus" %=
Iatrizt Inversion s
Linked Graphlets <head>
Batch Johs Sedel
S5-PLUS JawvaSerwver Pages Example
Batch Test Page <ititles
Batch Tobs Page </head>
Your Examples
<hody>
JSF Code
S-PLUS Code <hl>S-PLUS JavaServer Pages Example</hls
Administration
Connection List <Splus:Cconnect> i
Adding a Conmection
Email Motification SR i
<%-- | Put your test code here. | --%>
Tag Reference T ——%x
Page Directives
<splus:connects The walue of pi is <splus:iresult expr="pi" />.
<splus:graphlet>
=splus:img> </splusiconnect>
“3plus:gutputs
<gplus;:param:>
<splus:result:> </body>
ssplus:sarg: || ¢/ neml>
“<splus:scripti ;I
<splus:useResult>
AT
ornpile and Fun
<splus:file> a
=
|a Done ’_’_’_ iﬁ;" Lacal inkranet 4

Figure 3-3. Test code added to a sample JSP page.

When a user requests this page, the <splus:result expr="pi” /> tag tellsthe serverto

send the expression pi to S-PLUS, and to add the result to the HTML page before sending it to
the user requesting it.

Now click the Compile and Run button. This button simulates what would happen if the page with
your edits was part of a Web application, and if you requested the page. The system displays the
results in a separate window, as shown below.

4} 5-PLUS JavaServer Pages Example - Microsoft Internet Explorer

J Flle Edit ‘Wiew Fawarites Tools Help |
J d=ack -~ = - & 7l | Qsearch [GFavorites @fMedia 4 | By S QY - |JLinks &)Googe ?
J Address I@ http:/femu:E080]sispisplusitesta308. jsp j ﬁGU

B

S-PLUS JavaServer Pages Example

The value of pris 3.141592653585793,

=l
|@ Dane l_ l_ l_ (2 Local intranet v

Figure 3-4. Output from the sample JSP page.

Note that the custom tag has been replaced with the value 3.141592653589793, calculated by
S-PLUS at request time. If you view the page source you'll see that all of the HTML on the

13 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

original page was sent to your browser, but none of the JSP code was sent, except that the
<splus:result> tag was replaced by the numerical value.

The JSP Code page in the sample application (shown in Figure 3-2) provides a convenient way to
test small samples of JSP code. We'll continue to use this page to look at more custom S-PLUS
tags as well as some coding suggestions. This page, however, should not be used for
developing large applications. Later we'll discuss setting up a development environment for
S+JSP applications.

The next two sections give a tour of the most commonly used custom tags. More information on
these tags is in the Tag Reference section of the sjsp Sample Application. For example, you
can click on the <splus:img> link to bring up the page shown below. The Documentation

section of the Sample Application gives links to additional documentation, namely the Tag
summary and Tag reference.

/2 5+35P Sample Application - Microsoft Internet Explorer

| Fle Edi View Favortes Took Help |
| wtack - = - D 4| Qoearch (iFavorites @vedia (4 | B S Y - |JL\nks &) Googe @] InsightfulTime 2
| dress [&] epfiemu e080/ssspr x| @

8 i B i
g |n5|ghthl <splus:img>

§ S-PLUS SERVER"
The «splus:imgs element creates a graph in 3-FLTTS and places it on the Web page

Welcome!

Sample pages The body of an <splus:iwg> clement must be a set of 3-FLTS commands that create a
- graph. The commands must not open or close graphics devices, as the element will takee care
P of this automatically. If the commands create more than one graph, only the last one will
Matrix Inversion appear on the Web page.

Linked Graphlets L
Fatch Job Consider vsing Graphlets (generated with the <splus:graphilet> tag) rather than tmages

HrndInie generated with this tag, Graphlet files are considerably smaller than JPEG files, unless the

Batch Test Page graph is extremely complicated. Graphlets also allow the user to pan and zoom, and they can
Batch Jobs Page have active reglons with labels and]mksIo other pages.

[Your Examples

ISP Code Example

S-PLUS Code

| Administration This example shows a hexbin plot for carthquake locations in the San Francisco Bay area for
Connection List 1962 to 1381,

Adding a Connection _ L dLh-"800" heichio"300

<gplus:imy width=" " height=" L

m colorscheme="java.colorschems . crellis.black.on.white™>
pla

Pape Directives hexbin(gquakes.bayslongitude, cuakes.bavilatitude),

rage LIrecives

feplus:connects ERL-ZEHERE = CUaiE,

<splus:graphlets> at = c(0, 10, 20, 30, 40, 50, 150))

plus:grap

£splus: imgs> </splus: img>

£3plus:outpurcs

sesplus;:param> iew Result

fsplus:result>

fsplus:scripts> Attl‘lbutes

£splus:useResult>

s SEELSLR A G
:: ﬁ: 2?;:}? The <splus:img- element takees three types of attributes. Attributes specifiing the size of the
SRS LR e

- image are sent to 3-PLUS and are also included m the element places on the Web
El page. Attributes governing how a graph is to be generated are sent to 5-PLUS, and attributes El
L . S a4 PP

& ,_ ’_ ,_ iji't Lacal intranet 4

Figure 3-5. Online documentation for the <splus:img> tag.

S-PLUS Graphics

This section introduces custom tags for graphs. The next section describes tags for text and
numerical output from S-PLUS.

Our first graphical example displays a JPEG with a three-dimensional graph of velocity versus
position for a spiral galaxy. Click the JSP Code link in the left frame of the browser to get a fresh

14 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

copy of the JSP page, as shown in Figure 3-2. Inside the <splus:connect> element on that
page, insert the code shown below.

<splus:img height="440" width="550">
print (cloud(velocity ~ east.west * north.south,
data = galaxy))
</splus:img>

After inserting this code, your page should look something like Figure 3-6.

/3 5+35P Sample Application - Microsoft Internet Explorer

JFiIe Edit Wiew Favorites Tools Help

J GBak - = - (5 ﬁ| @ search (GFavortes G0Media (4 | By S . |JLinks &)Google &) InsightfulTime 2

J Address Ia httpf femu: 080y sisp/ j @Go
g 3 El El
: InSIthfu! Your Own S+JSP Example
g S-PLUS SERVER

Add an 3-PLUS tag or two, and any other code you like, to the JSP page below. Then click
TWelcome! the button to compile and run it.

Sample pages

Temmaiem <%@ page language="java" contentType="text/html™ %> =
LLESIE S5O0 B - - o =
- <%@ page errorPage="/error.jsp" %>
ﬁiumm()bﬂes_ <%@ taglib uri="/=jsp" prefix="splus" %>
Ilatre Tnversion
Linked Graphlets <htwml>
<head:
Batch Jobhs -
<titlex
Batch Testnge 3-PLU3 Javalerver Pages Example
Batch Jobs Page </titlex
7 </ head:
Your Examples
ISP Code <hody>

S-PLTTE Code

N . <h1>3-PLUS JavaServer Pages Example</hil>
Administration & L2

Connection List
Adding a Connection <gplus:connects
Email Notification

<E—— = - Fo——%
<%—— | Put wour test code here. | —-%>»
Page Directives “E-- 4 == b4 I
“splus:connect>
<splus:graphlet> <gplus:img height="440" width="550":>
<splus: img> print (cloud(velocity ~ east.west ¥ north.south,
<splus:outputs> data = galaxy))
<splus: param> </splus: imgs>
<gplus:result: | b
<splus:sargr </splus:connects
<splus:script> b
<splus:useResult> LI
zsplus:batchs

-
5] [[[[EEioclinrane:

Compile and Fun I

Ll

Figure 3-6. JSP code for the JPEG example.

The <splus:img> tag tells S-PLUS to generate a graph, and specifies the size. The code
between the <splus:img> and <splus:img> tags is S-PLUS code that plots the graph. When
you Compile and Run the page, the output looks something like the page in Figure 3-7.

15 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

2 5-PLUS JavaServer Pages Example - Microsoft Internet Explorer ~ HEEE
| Fie Edt View Favoites Tooks Help |

| =k - =» - @ G} | @search [aFavortes @vedis 4 | By S) - JLinks

| mddress [&) nietp:j femu:BuB0js1sp/splusitest3308. jsp | @0

S-PLUS JavaServer Pages Example
FEEE

=
[@tee T T et
Figure 3-7. Output from an <splus:img> tag.

At request time, the code for the <splus:img> element calls S-PLUS to generate the requested
graph, which it stores in a JPEG file on the Web server. The element then adds an HTML
tag to the Web page sent to the user. The tag causes the Web page to load the JPEG
file. For more information, view the HTML code sent to your browser for this page and examine
the element. The <splus:img> element takes care of all of these details for you, so you
can concentrate on the overall design of your Web page.

Next, we’'ll generate this graph as a Graphlet. A Graphlet is an interactive graph generated by
S-PLUS and viewed on a Web page. We can create a Graphlet rather than a JPEG by simply
changing the <splus:img> element to an <splus:graphlet> element. In your JSP code,
make the changes shown below in bold:

<splus:graphlet height="440" width="550">
print (cloud(velocity ~ east.west * north.south,
data = galaxy))
</splus:graphlet>

Figure 3-8 shows the graph as a Graphlet.

16 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

3 5-PLUS JavaServer Pages Example - Microsoft Internet Explorer - HEEE
J File Edt Wiew Favarites Tools Help

J =Back - = - ﬁ| Qhsearch [GFavorites §fMedia ®| B-S - |JLinks £
J Address I@ http: ffemuS080/sjspfsplustesta305. jsp d @GD

=

S-PLUS JavaServer Pages Example

In| Elutl Rect | F|II| Options... | Help.... | rS-I’LUS'p

welacity

north.south

east.west

A[F] Fage 1
[
@ Done l_l_ ’_ gi" Local inkranet v

Figure 3-8. Output from an <splus:graphlet> tag.

The <splus:graphlet> element calls S-PLUS to generate the requested graph, which it stores
in a Graphlet file on the Web server. The element then adds and HTML <applet> tag to the
Web page sent to the user. The <applet> tag causes the Web page to load a Java applet,
which in turn loads and displays the Graphlet file. For more information, view the HTML code
sent to your browser for this page and examine the <applets> element. The
<splus:graphlet> element takes care of all of these details for you, so you can concentrate
on the overall design of your Web page.

Notice the Page 1 tab in the lower left of the Graphlet. Such page tabs are useful in multi-page
Graphlets, but we don'’t need this tab for this single-page Graphlet. Let's edit the code to remove
the tab. To do so, add the line of code shown below in boldface to the code in your JSP page.

<splus:graphlet height="440" width="550">
<splus:param name="spjgraph.tabs" value="off" />
print (cloud(velocity ~ east.west * north.south,
data = galaxy))
</splus:graphlet>

Then compile and run the page, and notice that the tab is no longer present.

The <splus:param> element, which we used to remove the Page 1 tab, sets parameters for the
way the applet displays a Graphlet. For more information, see the documentation for the
<splus:params> element, or read the Graphlets chapter in the S-PLUS Server Programmer’s
Guide.

17 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Output and Results from S-PLUS

Now we’ll examine tags for obtaining text and numerical output from S-PLUS.

For these examples we’'ll use the fuel.frame data set built into S-PLUS. We’'ll perform a t-test to
compare gas mileage for large and medium-size cars, and look at several ways to format the
output.

Once again click the JSP Code link in the menu of the sample application to get a fresh JSP
page, as shown in Figure 3-2. Add the following code inside the <splus:connect> element.

<splus:scripts>
tAns <- t.test(

fuel.frame$SMileage [fuel.frame$Type == "Large"],
fuel.frame$SMileage [fuel.framesType == "Medium"],
alternative = "less")

</splus:scripts>

<pre>
<splus:output>

print (tAns)
</splus:output>
</pre>

The <splus:script> element executes commands in S-PLUS, but it adds nothing to the HTML
page sent to the user. In this case we use an <splus:script> element to perform the t-test
and to assign the results to a variable named tans. In this and the next several examples we’ll
explore ways to output information contained in the S-PLUS object tAns. Make sure you keep
this <splus:script> element on your page for the rest of the examples in this section.

The <splus:output> element displays the text output that a user would see running the same
code in a command-line version of S-PLUS. In this example, printing tAns creates a text report

of the t-test results. When you compile and run the page you will see the output shown in Figure
3-9.

2 5-PLUS JavaServer Pages Enample - Microsoft Internet Explorer = I =] 3
J File Edit View Favorites Tools Help ‘

| ek - = - @[3 A& | Boeach GAFavorites Freda B | By S 0] - HLinks &coogle & InsightfulTime

| adhess [hetp:femuic0n0/syspisplusitest 08 35 | @

S-PLUS JavaServer Pages Example

Srandard Two-Sample £-Test
data: fuel.frameiMileage[fuel.frameiType == "Large"] and fuel.frame$Mileage[fuel.frameiType == "Medium"]

t = -1.75, df = 14, p-wvalue = 0.051
alternative hypothesis: difference in means is less than 0O
95 percent confidence interwval:
ML 0.009230111 k
sample estimates:
mwean of x mean of y
20.33333 21.76923 -
|
‘a Done ’7’7’7 iji't Local intranet v

Figure 3-9. Output from an <splus:output> tag.

Notice that we put the <splus:output> element inside of an HTML <pre> element. The
<pre> element preserves the text formatting; without it, the user’s browser would reformat the

18 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

lines and paragraphs of the report, making it much harder to read. Try removing the <pre> and
</pre> tags and look at the output you get.

The t-test report looks nice, but suppose we want to format our own report. The
<splus:results> tag returns the number, text or vector returned by an S-PLUS expression.
We'll start by using this tag to report the p-value to the user. On the JSP Code page, replace the
code

<pre>
<splus:output>

print (tAns)
</splus:output>
</pre>

with the code
The p-value is <splus:result expr="tAnsSp.value" />.
Compile and run the page to get the result shown below.
The p-value is 0.050996532236794956.

Next let’s draw a conclusion from the t-test. If the p-value is less than 5% we’ll conclude that the
medium size cars get better gas mileage; otherwise we’ll conclude that the mileage is the same.
Add this code to the JSP page:

<h2>Conclusion</h2>

<splus:useResult expr="tAns$p.value < 0.05"
id="bReject" className="boolean[]" />

With 95% confidence we conclude that
<% if (bReject[0]) { %>
medium cars have better gas mileage than large cars.
<% } else { %>
medium cars do not have better gas mileage
than large cars.
<%}%>

Like the <splus:results> element, <splus:useResult> element obtains a result from
S-PLUS, but rather than adding it directly to the output page it assigns it to a Java variable. In
this example the Java variable is named bReject. Java code inside the <%. . . %> elements
uses this variable. The Java code in this example is simple if-then code to determine which
conclusion to print.

When you compile and run this code, you get the output shown in Figure 3-10.

19 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

/3 5-PLUS JavaServer Pages Example - Microsoft Internet Explorer [_ |EI|‘_§l

J File Edit Miew Favorites Tools Help

J $=Back - = - &} 7 | @y search [FdFavorites G Media ®| B & » JLinks b
Jﬂddress IE kb feruB080)sisp) splusitest 9303, isp j f‘?GD
|

S-PLUS JavaServer Pages Example

The p-walue 13 0.050936532236794 956,

I

Conclusion

Wfith 95% confidence we conclude that medim cars do not have better gas mileage
than large cars.

=
@ Done ’_ ’_ ’_ (B8 Local intranet 4

Figure 3-10. Output from a page using the <splus:result>and <splus:useResult> tags.

We end this tour with one more <splus:result> example. The <splus:result> tag can
display tables created by the S-PLUS function html.table. For example, we can display all the
data in the tAns object in an HTML table by using the code

<splus:result>
html.table (unlist (tAns))

</splus:result>

The table is shown in Figure 3-11.

/3 5-PLUS JavaServer Pages Example - Microsoft Internet Explorer %_T_IQI_XJ
J File Edit Yiew Favorites Tools Help |
J 4=Eack ~ = - E tat | @ 5search [GEFavortes GMedia &4 | Ey- S - ¥ JLinks =
| address @ http:) emu: 8080/ sispisplus/testa308. jsp | @a
=l
S-PLUS JavaServer Pages Example
| statistic.t | -1.75
| para.meters.d:f| 14
| p.value | 0.050996532236795
| conf.int1 | N4
| conf.int2 | 0.00328011140503715
| estimate.mean of x | 20.3333333333333
| estimate.mean of y | 21.7692307692308
null.value.difference in % a
means
| alternative | lezs
| method | Standard Two-Sample t-Test
-]
[&] Done [

Figure 3-11. Output from a page using the html . table function and the <splus:result>
tag.

20 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Chapter 4: Authoring Your Own Applications

In the previous chapter we used the JSP Code page of the sample application to test a number of
S-PLUS tags. This JSP Code page provides a handy way to test small samples of code, but
should not be used as a development environment. This chapter discusses authoring Web
applications that use the S+JSP module.

Modifying the Sample Application

You can quickly create small Web applications by modifying the sample application. Simply
remove all the JSP and HTML pages that you don’t want, and replace them with the new ones
that you write.

If you add a JSP page to a running Web application, or edit a JSP page already in the application,
the Web container will recompile the page the next time it is requested. This Web container
feature is very handy during development. You can modify the sample application one page at a
time and check your work as you go, all without restarting the Web container.

When your application is complete you can distribute and deploy it in a standard archive format
known as a WAR file. A later section of this chapter describes WAR files.

Application Components

For a larger Web application, simply modifying the sample application is a rather haphazard way
to proceed. You will probably prefer to construct a directory tree with your source code, back up
the directory tree in a source control system, and use a build utility to assemble the application.
This section discusses the components of an S+JSP Web application, the components you will
need to include in your directory tree and to assemble with the build utility in order for the
application to work. The next section makes some suggestions regarding this approach.

Figure 4-1 shows the main components of an S+JSP Web application. The directory tree shows
the deployment structure for the application. You might use a somewhat different directory
structure during development, and use a build tool to assemble the pieces in the structure shown
in the figure for deployment.

21 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

+=] application

=3 WEB-INF

= lib
Splus.jar
spmgr.jar
sjsp.jar

—&5] tlds
i—@ sjsp.tld

L @ web.xml

— @ SplusConnections.xml
— splus

L spjgraph.jar

—3] admin (optional)

\‘% administrative JSP pages
7% application-specific files (JSP, HTML, JPEG, etc.)

Figure 4-1. Components of an S+JSP Web application, arranged for deployment.

Java Code

The WEB-INF/lib directory contains the Java code for the S+JSP module, compressed into JAR
files. You must include these files:

o Splus.jar: Code to access S-PLUS Server. All S-PLUS Server clients use the code in
this jar file.

o spmgr.jar: Code to manage S-PLUS sessions.

o sjsp.jar: Tag library code.

Tag Library Descriptor File

In the WEB- INF/t1ds directory include one file:

o sjsp.tld: The descriptor file for the S+JSP custom tags.

22 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

In some cases you can omit this file and use the descriptor information in the sjsp. jar file
directly. See Chapter 6 for more information.

Configuration Files

In the WEB- INF directory include these two configuration files:
o web.xml: The standard configuration file for JSP/serviet Web applications.

o SplusConnections.xml: A file specifying the number and locations of S-PLUS
sessions to run.

Chapter 6 discusses these two files in detail.

The splus directory

The splus directory serves as a storage area for graph files generated by S-PLUS to be
included on Web pages. The S+JSP module periodically deletes old files in this directory.

If you use Graphlets in your application, you must create this directory in your application and
include in it a copy of spjgraph. jar, the applet that displays Graphlets. If you do not use
Graphlets, you do not need the spjgraph. jar file, and the module will construct this directory
automatically if you do not create it.

You can use a different name for this directory if you specify it in the web . xm1 configuration file.
Chapter 6 describes the details.

Administrative pages

Consider including a copy of the administrative pages from the sample application in your
application. These pages provide a way to add and remove connections to S-PLUS sessions
while your application is running.

If you include these administrative pages, however, and if your application is available beyond a

trusted core audience, you will need to control access to these pages for security reasons. See
the documentation for your Web container to learn how to control access to certain pages.

Application-specific pages

The rest of the application consists of the pages you write for your application. These can be in
the top-level directory for your application, or they can be organized into a directory tree
appropriate for the structure of the application.

Additional suggestions

23 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Authoring JSP pages

You can write JSP pages in a text editor or in a JSP-aware Web page editor.

The file blank. jsp, included in the top-level directory of the sample application, provides a
template for writing your own JSP pages. Simply copy the file, rename the copy, and add your
own code.

WAR files

A WAR (Web ARchive) file is a zipped file containing all the pages and components of a Web
application. Distributing your application is easy; you simply provide the WAR file. Most Web
containers understand WAR files and can unpack and install them. Tomcat, for example,
automatically installs any new WAR files it finds in its webapps directory at startup time.

If you create your application in the Web container, you can create a WAR file using the jar
command. For example, if you have modified the sjsp sample application, and you want to
archive it as a new application named myapp, use commands similar to the following:

cd TOMCAT HOME/webapps/sjsp
jar cf ../myapp.war *

If you create a development directory with all the source files for your application, you can use a
build utility to assemble everything into a WAR file. One such utility especially suited for Web
applications is ant, which is available for free from Apache’s Jakarta project
(http://jakarta.apache.org/ant/).

24 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Chapter 5: S-PLUS Code in Web Applications

All the sample pages in the main sample application for this module use only built-in S-PLUS
functions. S-PLUS provides thousands of thoroughly tested functions providing expert statistical
analysis and powerful graphics, and for many Web applications these will suffice. However
S-PLUS is also a programming language, and many Web applications require custom S-PLUS
functions. This chapter discusses how to write, troubleshoot and deploy such functions for a Web
application.

Writing Custom S-PLUS Functions for a Web Application

Use a standalone S-PLUS session, not a Web application, to write your custom S-PLUS code
and to test it as much as possible. You can use the S-PLUS Java GUI with S-PLUS Server, or a
desktop version of S-PLUS if you have one.

We recommend keeping your code in source form in text files outside of S-PLUS. This is the
easiest form for a human to read and the best form to store in a source control system. Text files
containing S-PLUS source code typically have the extension .q in Unix and .ssc in Windows. The
script window in the Windows S-PLUS product is especially convenient for editing source code
files and reading them into S-PLUS for testing. With other versions of S-PLUS you can edit your
code in a text editor and use the S-PLUS source function to read it in.

Here are some suggestions for writing custom S-PLUS functions for Web applications.

o Each function can return a value, generate a graphic, or output a report (using the cat
command, for example), but it should do only one of these things. Otherwise some of the
work of the function will be lost, as the tag that calls it will be able to handle only one type
of result or side effect. If your function performs a long analysis that produces several
results, graphs and/or reports, design the function to return a list of them (or an S-PLUS
object that contains them). Then a JSP page can perform the analysis once, save the list
as a variable in S-PLUS, and use several tags to get the results, graphs, and reports to
format on the output page.

o Avoid opening, closing, and otherwise manipulating graphics devices in your code. The
tags that display the graphs will take care of the devices for you. If you need explicit
graphics device code to test your function in the standalone S-PLUS session, put that
code in a short wrapper function that calls the main function you are writing.

o Where possible, avoid using the java.identify command in your custom functions.
Instead place the java.identify command in the tag right after the call to your custom
function. This way you avoid hard-coding page links within the S-PLUS code. Names of
linked pages appear only within the tags, so all editing of the structure of the application
can be done in the JSP pages.

In some cases, separating a java.identify command from the rest of the code in a
function is difficult or impossible to do. In such cases, consider passing in as function
arguments the names of the pages to which you're providing links. This is another way to
avoid hard coding the page names in the S-PLUS code.

25 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Deploying S-PLUS Functions

The custom S-PLUS functions are best stored in a separate directory attached in position 2 or
lower in the search path.

To install the S-PLUS code for the select Web application in a production system, follow these

steps.

1.

Create a directory for the custom S-PLUS code. Any directory accessible from the
S-PLUS sessions is fine.

Copy the file functions (lets say they are in myfuns.q) myfuns. g to this directory. Then
use the following commands to create an S-PLUS chapter and install the functions in
myfuns.q.

SplusAS CHAPTER
SplusAS make install.funs

In the top-level working directory for each S-PLUS session you use, add this . First
function:

.First <- function()

{
}

where diris the directory you created in Step 1.

attach(dir)

If you run S-PLUS sessions on multiple machines, repeat Steps 1 through 3 for each
machine. Alternatively, create the directory in Step 1 on a drive that is mounted on all the
machines running S-PLUS sessions.

26 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

Chapter 6: Deployment and Administration

This chapter describes how to configure a Web application that uses the S+JSP module. The
module reads from two configuration files at startup time. One of these, named web . xm1, is the
standard configuration file for all JSP and servlet Web applications. The module checks the
web . xml file for some configuration parameters, and uses default values for any parameters not
specified in that file. The other file, SplusConnections.xml, is specific to S+JSP applications
and specifies the S-PLUS connections that the module must initiate and administer. For running
batch jobs, there is a separate connections file called SplusBatch.xml that specifies the
connections to use when running a batch process. Having separate connections files allows one
to specify separate users and different machines to run longer processes.

Connections Configuration File: SplusConnections.xml and
SplusBatch.xml

The connections configuration file, typically named SplusConnections.xml, lists the S-PLUS
connections that the system will attempt to initiate at startup time. Listing 6-1 shows a sample of
such a file.

<?xml version="1.0" encoding="IS08859 1" standalone="yes"?>
<splus-connections>

<connection name="bubble 1">
<host>bubble</host>
<username>splusweb</username>
<password>d0ntTell</password>
</connections>

<splus-connections>
Listing 6-1. A sample SplusConnections.xml file.

The sample in Listing 6-1 describes a single connection specified by the <connection>
element. The friendly name for this connection is “bubble 1”. The S+JSP module uses the
friendly name to identify the session, for example in log entries. The <connections> element
has three required child elements:

<host> Name or IP address of the host computer on which to run the
S-PLUS session. The host machine, which must be running S-PLUS
Server, can be the same machine as the one running the Web
container, or it can be another machine accessible over a network.

<username> Name of the account under which to run the S-PLUS session.
During development this will often be the Web author’s account. For
production consider creating a new account representing the Web
application that will be running the S-PLUS sessions.

<passwords> Password for the account under which the S-PLUS session will run.

The <connection> element also accepts four optional child elements:

<rmiport> RMI port for S-PLUS Server on the host machine. This value
defaults to 1099.

27 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

<cwd> Directory to use as the S-PLUS working directory. If this element is
missing, S-PLUS uses its default working directory, typically
~/MySwork.

<display> X-server display string. S-PLUS needs access to an X-server to

produce JPEG and PNG graphics files. Typical values for this
element are :0.0 and :1.0, to access an X-server or X11 virtual frame
buffer on the host computer. X has a program called Xvfb for X-
virtual frame buffer that can be run on the server and be accessed to
create static graphics.

<prompt> Prompt string for telnet login.

The connections file can contain multiple <connections> elements, one for each S-PLUS
session that the application should initiate at startup time. The S-PLUS sessions can all be on
the same machine, or they can be on multiple machines on a network. In general you should not
run more than one or perhaps two S-PLUS sessions per CPU; more sessions will only decrease
efficiency as they compete for CPU time.

For security reasons, the connections file must be in the Web application’s WEB- INF directory.
By default, the module will look for a file named SplusConnections.xml. If you want to use a
different name for this file you can specify the name in the web . xm1 file for the application; see
the next section for details.

While a Web application is running an administrator can add and remove S-PLUS sessions, for
example by using administrative JSP pages. Changes made at run time, however, are not
automatically reflected in the connections file. If you restart the Web container, the application
will revert to the original configuration of S-PLUS sessions, unless you edit the connections file to
change this configuration.

JSP Configuration File: web.xml

The web . xml file is the standard configuration file for JSP (and Java servlet) Web applications.
This section describes elements of the web . xm1 file for configuring an S+JSP application.

A sample web . xml file is included with the S+JSP module. Having a copy of this sample
available to look at might be helpful as you read this section. You can also edit it for use with
your application, or cut and paste sections of it into your configuration file.

Tag library

The code below tells the Web container where to find the file sjsp.t1d, the descriptor file for the
S+JSP tag library.

<taglibs>
<taglib-uri>/sjsp</taglib-uris>
<taglib-location>/WEB-INF/tlds/sjsp.tld</taglib-location>
</taglibs>

You should add this code to the web . xm1 file for your applications. With this declaration in the
web . xml file, the Web container can read the page directive

28 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

<%@ taglib uri:"/sjsp" prefix=nsp1usn s
at the top of a JSP page and find the tag library code to run the S-PLUS tags on the page.

The name of the t1ds directory is conventional but not required. You can put the file sjsp.tld
elsewhere (within the WEB - INF subtree) and adjust the code in your web . xm1 file to point to it.

According to the JSP Specification, a Web container should be able to use tag library descriptor
information that is inside a jar file, in this case the file sjsp.jar. However some of the popular
Web containers we tested do not appear to support this feature at the time of this writing. If your
container supports this feature, you can omit the file WEB-INF/t1ds/sjsp.t1d from your
application and use the code shown below in your web . xm1 file.

<taglibs>
<taglib-uri>/sjsp</taglib-uris>
<taglib-location>/WEB-INF/lib/sjsp.jar</taglib-location>
</taglibs>

Initialization and shutdown servlet

A servlet is a particular type of Java class that runs in a Web container. The S+JSP initialization
and shutdown servlet, included in this module, is primarily useful for cleanly shutting everything
down when the Web container shuts down. It can also initialize the application when the Web
container starts up, by attempting to establish the specified S-PLUS sessions and by starting the
maintenance and cleanup threads. The initialization is optional, however. If the servlet is not
configured for initialization, the first request that accesses S-PLUS automatically initializes
everything. In the sample applications in this module the servlets are configured not to perform
any initialization, so that you can edit the SplusConnection.xml files before they get run.

For the servlet to run you need to declare it in the web .xm1 file, and specify that it be loaded at
startup time. The following code does the trick.

<servlet>
<servlet-name>
SaspInitServlet
</servlet-name>
<servlet-class>
com.insightful .webapp.taglib.SaspInitServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

The code above is recommended but not required. Initialization is optional anyway, and most
applications do not need to be shut down cleanly.

You can enable or disable the servlet initialization feature with an application-level context
parameter named splus-start-managers, as shown in the sample below.

<context-param>
<param-name>splus-start-managers</param-name>
<param-values>true</param-value>
</context-param>

29 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

A parameter value of true or yes enables initialization. If the parameter is missing or has any
other value, the servlet performs no initialization.

Configuring S-PLUS Persistence in web.xml

The S+JSP module can automatically manage persistent information within S-PLUS. In fact, the
module offers several levels of support for persistence. An administrator can set the appropriate
level of support by specifying a parameter in the web . xm1 file. Before considering the module’s
solution, however, let’s look at the problem it solves.

Persistence in S-PLUS

S-PLUS can store information, for example as a result of an assignment statement like
X <= 7

Many Web applications need to store information in S-PLUS this way. An application might save
the results from one analysis for use in subsequent analyses. Or it might allow a user to upload
data and then perform a sequence of analyses on it. The information needs to be stored on a
per-user basis; each person uploading data, for example, should see the all the data he
uploaded, and no data anyone else uploaded.

Many other Web applications do not need persistence. An application might provide reports and
graphs based on data pulled from a database, and never need to store intermediate results. The
sample application described in Chapters 2 and 3 does not need persistence, for example. Such
applications should not incur the extra overhead of providing persistence when they don't need it.

In a Web application, users share a pool of S-PLUS sessions. Without careful management of
persistent information, unwanted results can occur. For example, one user might assign a value
to x (by calling a page with a tag on it that makes the assignment). Later, when the user wants to
use that value, she might get a connection to a different S-PLUS session, one with a different
value for x or even no value at all. Even if she gets the same S-PLUS session, someone else
might have used it and changed the value of x.

Regardless of how the module is configured, persistence is always guaranteed for the time that a
JSP page holds an S-PLUS connection. For example, the following code will always work.

<splus:connect>

<splus:scripts>

X <= 7

</splus:scripts>

The value of x is <splus:result expr="x" />.

</splus:connect>

In this case the <splus:script> element that sets the value of x and the <splus:result>
element that uses the value both make calls to the same S-PLUS session, and no other requests
can access that session in between the calls. If the <splus:results> elementis on another
JSP page, however, then special persistence management is necessary to make the code work.

30 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

The S+JSP module manages persistence by managing S-PLUS’s working directories. It can
automatically attach a user’s working directory before providing an S-PLUS session to a JSP
page requested by that user, and it automatically detaches any such directory when the JSP
page returns the connection to the pool.

Levels of persistence

The S+JSP module currently offers two levels of persistence support: no support, and session-
level support. In the next section we’ll see below how to set the level of support for an
application.

A support level of no support is appropriate for applications that do not need persistence in
S-PLUS, and it incurs no overhead attaching and detaching directories.

With session-level support the module automatically manages working directories on a session
basis. A “session” is the largest group of requests that the Web container can recognize as
coming from a single user. If a user switches to a different computer, he begins a new session.
Depending on how the Web container is configured, it will typically time out inactive sessions; the
default time out period is typically 30 minutes.

For session-level persistence support, the S+JSP module creates a new working directory for a
user the first time she makes a request in a given session. The module automatically attaches
the directory every time it provides an S-PLUS session to a JSP page that the user has called,
and detaches the directory when the JSP page returns the session to the pool. When the session
ends, the module deletes the working directory.

Some Web applications will need an additional type of support for S-PLUS persistence, namely
persistence at the user level. This level of support would ensure that a user gets the same
working directory every session. It will require writing a new CWDManager class that integrates
with the application’s login code. The S+JSP module currently does not provide this level of
persistence.

The BatchCWDManager will manage the working directories for batch processes if a working
directory is specified in the batch tag. The BatchCWDManager differs from the session
persistence in that the directory used by the batch process is kept around and not removed when
the session is over. This allows a user to return to the batch analysis and continue with another
analysis or view results that may not present well in an e-mail. The application developer can
determine how the user returns to the batch S-PLUS directory.

S-PLUS can store data in places other than the working directory. For example, S-PLUS can
assign data to other directories in the search path. The S+JSP module does not manage
persistence in any such cases. In almost all cases Web authors — not end users — write the
S-PLUS code for a Web application, and they should take care to store data only in the top-level
working directory.

Setting the persistence level

You can specify the persistence level for an application by defining a context parameter named
splus-CWD-policy inthe web.xml file, as shown below.

<context-param>
<param-name>splus-CWD-policy</param-name>
<param-value>null</param-value>

31 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

</context-param>

A value of null for this parameter causes the S+JSP module to perform no persistence
management. A value of session causes the module to provide session-level support.

In addition to the values null and session, the splus-CWD-policy parameter can be set to
the name of a Java class derived from com.insightful .webapp.spcon.CWDManager. This
feature allows for the addition of custom-written CWD managers in the future.

For session-level support, another context parameter named splus-CWD-parent-dir
specifies where the session-specific directories are created. The example code below sets this
directory to /tmp.

<context-param>
<param-name>splus-CWD-parent-dir</param-name>
<param-values>/tmp</param-value>
</context-param>

The value splus-CWD-parent-dir can be specified as an absolute path, or as a relative path
from the original working directory that the S-PLUS sessions use. If you don’t provide a value,
the code will use the original working directory specified in SplusConnections.xml itself as
the parent directory. Using the original working directory or a path relative based on that directory
works only if all S-PLUS sessions share the same original working directory. The S-PLUS
session is run as the user specified in SplusConnections.xml SO one needs to make sure that
the user listed in SplusConnections.xml has complete access to the directory listed in
splus-CWD-parent-dir

If an application runs S-PLUS sessions on multiple computers and implements session-level
persistence, the value of the splus-CWD-parent-dir must be a directory on a drive that is
cross mounted to all the computers running the S-PLUS sessions.

Other connections parameters in web.xml

The S-PLUS connection management code can read several additional configuration parameters
from the web .xml file. These parameters are described below. All of these parameters are
optional; you don't have to include them in the web . xm1 file. The default values for these
parameters work fine for most applications. You might want to change these parameters as you
fine tune your application.

splus-connections-file

A context parameter named splus-connections-file specifies the name of the S-PLUS
connections configuration file. The code fragment below specifies the filename to be
SplusConnections.xml, which in any case is the default value.

<context-param>
<param-name>splus-connections-file</param-name>
<param-value>SplusConnections.xml</param-value>
</context-param>

splus-inspect-interval-minutes

32 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

The S-PLUS connection management code runs an inspector thread that identifies hung
connections and attempts to fix broken connections. The splus-inspect-interval-
minutes parameter specifies how frequently the inspector will run. The default is every 5
minutes. If you set this parameter to 0, the inspector will never run. The sample code below
causes the inspector to run every hour.

<context-param>
<param-name>splus-inspect-interval-minutes</param-name>
<param-value>60</param-value>

</context-param>

splus-hang-time-minutes

The inspector identifies hung S-PLUS sessions based on how long each session has been
processing its current request. If a session has been running too long, the inspector deems it to
be hung and it restarts the session. The splus-hang-time-minutes parameter specifies how
long a session can process a request before the inspector deems it to be hung. The default value
is 5 minutes. If you set the value to 0, the inspector will never deem any sessions to be hung.
Make sure you set this parameter to a value longer than your longest analysis can run. The
sample below sets the hang time to 10 minutes.

<context-param>
<param-name>splus-hang-time-minutes</param-name>
<param-value>10</param-value>

</context-param>

splus-max-hit-count

S-PLUS sessions running under S-PLUS Server leak substantial amounts of memory, 30 kb per
graph in one test. The connection manager restarts the sessions from time to time to reclaim the
leaked memory. The splus-max-hit-count parameter specifies the number of times an
S-PLUS session can be used before it is restarted. The default value is 300 times. If this value is
set to 0, the session will never be restarted on the basis of the hit count. The sample code below
causes S-PLUS sessions to be restarted after every 1000 uses.

<context-param>
<param-name>splus-max-hit-count</param-name>
<param-value>1000</param-value>
</context-param>

splus-reconnect-interval-minutes, splus-reconnect-start-time

The S-PLUS connection manager can also restart all the S-PLUS connections periodically, for
example every night. The splus-reconnect-interval-minutes parameter specifies how
often the manager reconnects the sessions. The default value is once per day (1440 minutes). If
the value is 0, the manager will never reconnect the sessions for this reason.

The splus-reconnect-start-time parameter specifies the first time the manager will
reconnect all the S-PLUS sessions. The default value is the current time plus the splus-
reconnect-interval-minutes value.

33 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

The sample code below tells the manager to reconnect all S-PLUS sessions every other day at
1:38 AM.

<context-param>
<param-name>splus-reconnect-interval-minutes</param-name>
<param-value>2880</param-value>

</context-param>

<context-param>
<param-name>splus-reconnect-start-time</param-names>
<param-value>1:38:00 AM</param-value>

</context-param>

Graphs parameters in web.xml

The S+JSP module temporarily stores graph files (like Graphlets and JPEGSs) on the Web server
so that the users’ browsers can find and download them. The module periodically deletes these
files. Several optional parameters in the web . xm1 file specify where the graph files are stored
and how often they are deleted.

graphs-directory

The graphs-directory parameter specifies where the graphs are stored. Its value is a path relative
to the root directory for the Web application. The default value is /splus/. The sample code
fragment below changes the value to /temp/.

<context-param>
<param-name>graphs-directory</param-name>
<param-values>/temp/</param-value>
</context-param>

graphs-delete-interval-minutes

The graphs-delete-interval-minutes parameter specifies how often the module deletes
old graphs files. The default value is once per day. A value of 0 specifies that the module never
deletes the files. For a high-volume Web site you might want to delete the files more often. The
sample code below specifies that the files be deleted every 5 mintues.

<context-param>
<param-name>graphs-delete-interval-minutes</param-name>
<param-value>5</param-value>

</context-param>

graphs-delete-start-time

The graphs-delete-start-time parameter specifies the first time the module should delete
the graphs. This parameter is primarily useful if the module deletes the files only once per day
and you want it to do so at night. The default value is the current time plus the value of the
graphs-delete-interval-minutes parameter. The sample XML element below sets the first deletion
time to 1:37 AM.

<context-param>
<param-name>graphs-delete-start-time</param-name>

34 Copyright © 2004 Insightful Corp

S+JavaServer Pages Documentation

<param-value>1:37:00 AM</param-value>
</context-param>

graphs-delete-age-minutes

The graphs-delete-age-minutes parameter specifies how old a graph file must be before it
is deleted. The default is six hours. For a high-volume Web site you might want to delete much
younger files. The sample code below specifies that files at least 3 minutes old will be deleted.

<context-param>
<param-name>graphs-delete-age-minutes</param-name>
<param-value>3</param-value>

</context-param>

Security

This section summarizes the security considerations for a deployed Web application using
S-PLUS Server. Itidentifies pages and servlets that pose risks if made available to malicious
users. You can restrict access to these pages and servlets, and indeed to any or all pages in
your application, by using access control provided by the Web container or by implementing your
own access control. Information about your Web container or a good book on JavaServer Pages
will explain the techniques.

You can, of course, simply leave out of your application all pages that pose risks, or deploy your
application in a local environment where all possible users are trusted.

o Inany Web application, pages that let users run their own JSP code are a serious
security risk. In the sample application, the pages jspCode.html and
jspResult.jsp provide this ability. If you make this application available to untrusted
users, either remove these pages or restrict access to them.

o Pages that allow users to write and run their own S-PLUS code are a security risk.
Examples of such pages are the pages splusCode.html and splusResult.jspin
the sample application. Any such pages in your application should be restricted to
trusted users.

o Administrative pages for listing, adding and removing S-PLUS connections can be used
to shut down your application. Including them in your application can simplify
administrative tasks, but you should allow only administrators to access these pages.

35 Copyright © 2004 Insightful Corp

