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Abstract

We discuss rules for combining inferences from multiple imputations when complete-data in-
ferences would be based on t-distributions rather than normal distribution, or F -distributions
rather than �2 distributions. Standard errors are obtained based on a distinction between
the squared standard error and the actual variance of a t-distribution. Degrees of freedom
are based on the coe�cient of variation of a squared standard error, and combine the sim-
ulation error from using a �nite number of imputations and the degrees of freedom in the
original problem, adjusted for the estimated loss of information due to missing data.

We extend these ideas to situations where complete-data inferences would be based on
�2- and F -distributions, or are based on p-values or �2 (Wald) or F statistics.

We conclude with a discussion about appropriate calculations for regression summaries.
This is work in progress, and comments are welcomed.

Key Words: Missing data; Multiple imputations; Incomplete data.

1 Introduction

For an introduction to statistical analysis using multiple imputations, see Schafer (1997)
(referred to as S97 in the sequel). We use notation from S97, in particular Sections 4.3.2
and 4.3.3 (S432 and S433 in the sequel) S432 is based on (Rubin (1987), Chapter 3).

S432 provides rules for combining inferences across multiple imputations which are ap-
propriate if complete-data inferences (where no missing data is present) would be based on
normal distributions; e.g. con�dence intervals in the absence of missing data would be of
the form

Q̂� z�=2
p
U

where Q̂ is a parameter estimate, U is its variance (or a very accurate estimate), and za
is the 1 � a quantile of a standard normal distribution. We focus on combining inferences
when complete-data inferences would instead be based on t-distributions,

Q̂� t�=2;�
p
U

where � is the degrees of freedom and U is an estimate of the variance.
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Similarly, S433 provides rules for combining inferences when complete-data inferences
would be based on �2 distributions; we provide alternative versions of those rules, and extend
those rules to situations where complete-data inferences would be based on F distributions.

We begin in Section 2 with a review of rules for normal-based problems, and discuss
rules for t-based problems in Section 3. In Section 4 we review rules for �2-based problems,
and generalize those rules. In Section 5 we extend those rules to F -distributions. Section 6
relates to combining F -statistics, when only F -statistics (not the parameter estimates and
covariances matrices that were used to obtain the statistics) are available. In Section 7 we
discuss the construction of common summary statistics from a linear model.

2 Combining normal-based inferences

We begin by reviewing the rules from S432 for combining inferences in normal problems. The
observed data are Yobs, and the missing data are replaced by one of m sets of imputations
Y

(t)
mis, t = 1; : : : ; m. Let

Q̂(t) = Q̂(Yobs; Y
(t)
mis)

and
U (t) = U(Yobs; Y

(t)
mis)

be the point and variance estimates using the tth set of imputed data, t = 1; : : : ; m.
The multiple-imputation point estimate for Q is the average of the complete-data point

estimates,

Q =
1

m

mX
t=1

Q̂(t): (1)

The variance estimate associated with Q has two components. The within-imputation vari-

ance is the average of the complete-data variance estimates,

U =
1

m

mX
t=1

U (t): (2)

The between-imputation variance is the variance of the complete-data point estimates,

B =
1

m� 1

mX
t=1

(Q̂(t) �Q)2: (3)

The total variance is de�ned as

Tz1 = U + (1 +m�1)B; (4)

and inferences are based on the approximation

(Q�Q)=
q
T1 � t�1 (5)
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where the degrees of freedom are

�z1 = (m� 1)

"
1 +

U

(1 +m�1)B

#2
: (6)

In the sequel we write T for a generic estimate of total variation, and use subscripts such
as Tz1 to denote speci�c estimates, where the z indicates an estimate for normal-based
problems; t, c, and f will indicate t, �2, and F -based problems, respectively. Similarly, �T
will indicate a generic estimate of the �nal degrees of freedom, and speci�c estimates are
written e.g. �z1.

3 Combining Inferences in t-based problems

In this section we discuss how to estimate total variation in t-based problems. We discuss
two ways to combine t-based inferences, one based on adding variances, and the other based
on adding variance parameters. This distinction does not arise with normal-based problems,
because the variance of a normal distribution is its variance parameter. But with t-shaped
distributions there is a di�erence. For example, suppose that S is the standard error for
an estimate Q̂, such that the posterior distribution of (Q � Q̂)=S has a t-distribution with
� degrees of freedom, then the posterior variance for Q has variance parameter (squared
standard error) S2 but variance �=(� � 2)S2. This distinction may be important when
combining inferences.

We begin by extending the notation in S432. Let U (t) be the complete-data squared
standard error for the tth complete data set, and

U�(t) = �=(� � 2)U (t)

the variance of the corresponding scaled t distribution. Similarly, write T and T � = �T=(�T�
2)T for the squared standard error and corresponding variance for the combined analysis,
where �T is the �nal degrees of freedom for the inference, discussed below.

Note that from the point of view of a user of software it is most convenient to work
with squared standard errors, rather than the (posterior) variances. However, it may be
appropriate to work with variances internally within software that combines inferences.

One way to combine t-based inferences works solely with the squared standard errors,
and uses (1, 2, 3) from Section 2, yielding the �nal squared standard error estimate as

Tt1 = U + (1 +m�1)B; (7)

(this is distinct from (4) because U (t) now a squared standard error rather than a variance).
The second way adds variances of posterior distributions. Here

T � = U
�

+ (1 +m�1)B;
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where U
�

= m�1P
(t) U

�(t); and the �nal squared standard error is

Tt2 =
�T � 2

�T
T � =

�T � 2

�T

��
�

� � 2

�
U + (1 +m�1)B

�
(8)

This is unde�ned if �T � 2 (�T � �), and has a small factor on B if � is slightly greater
than 2.

Tt1 is the simpler estimate, and is more conservative (i.e. larger) than Tt2, which is
generally preferred. However, we give here one example in which only Tt2 gives correct
inferences.

Example 1 This is Example 1, page 73, of S97. Suppose that the observed data are a
sample of n1 observations from a univariate normal distribution with unknown mean � and
variance  , there are n0 = n � n1 missing observations from the same distribution, and
that multiple imputations would be based on data augmentation using the di�use prior
�(�;  ) /  �1. Using this prior for a Bayesian analysis based solely on the observed data
matches the standard frequentist con�dence interval for � of the form

y1 � t�=2;n1�1s1

where y1 and s1 are the mean and sample standard deviation of the observed data. It would
be desirable for multiple-imputation based inference to yield the same interval, in the limit
as m!1 (for �nite m there is simulation variability); the interval should not be di�erent
because in this univariate example multiple imputations do not add information to that
contained in the observed data.

When doing data augmentation with the above prior (conditional on the observed data),
the steady-state distribution for  (t) is

 (t) � (n1 � 1)s21=�
2
n1�1;

which has expected value

E( (t)) =
�
n1 � 1

n1 � 3

�
s21:

Conditional on  (t), the steady-state distribution for �(t) is

�(t) � N(y1; n
�1
1  (t));

which has variance

var(�(t)) =
1

n1
E( (t)) =

1

n1

�
n1 � 1

n1 � 3

�
s21:

The unconditional variance of ymis is

var(Y mis) =
�
1

n0
+

1

n1

��
n1 � 1

n1 � 3

�
s21;
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so that

var(Y ) =
�
n0
n

�2 � 1

n0
+

1

n1

��
n1 � 1

n1 � 3

�
s21:

The complete-data sample variance has expected value

E(S2(t)) =
�
n1 � 1

n1 � 3

��
n� 3

n� 1

�
s21:

Let Q̂(t) = Y
(t)

and U (t) = S2(t)=n. Then the following limits hold as m!1:

Q ! y1
U ! E(S2(t))=n

=
1

n

�
n1 � 1

n1 � 3

��
n� 3

n� 1

�
s21

B ! var(Y
(t)
)

=
n0
nn1

�
n1 � 1

n1 � 3

�
s21

Tt1 ! s21
n1

�
n1 � 1

n1 � 3

� 
1� 2n1

(n� 1)n

!
(9)

Note that Tt1 does not approach the desired s21=n1.
Using the second way of combining inferences yields the same limits for Q and B, but

U
� ! E(S2(t))=n

=
1

n

�
n1 � 1

n1 � 3

�
s21

T � ! s21
n

n1 � 1

n1 � 3
(1 + n0=n1)

=
s21
n1

n1 � 1

n1 � 3

Tt2 = T �
�T � 2

�T

! s21
n1

if �T ! n1 � 1

Note that Tt2 has the desired limiting value, if �T approaches the correct limiting degrees of
freedom n1 � 1.

3.1 Degrees of freedom for combining normal inferences

S97 provides a heuristic Bayesian justi�cation for the procedure in S432 and Section 2, and
indicates that the degrees of freedom �z1 \are obtained by approximately matching the �rst
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two moments of the reduced-information posterior to those of a t-distribution." We provide
an alternate interpretation, which suggests alternatives to �z1 for normal-based problems,
and which provides a way to combine � and �z� for t-based problems.

Recall that if Z has a normal distribution with mean 0 and variance �2, and if T is an
estimate of �2 which has mean �2, is proportional to a �2 variable and is independent of Z,
then

Zp
T
� t�T (10)

where �T is the degrees of freedom for T . The reference distribution is t rather than normal
because of variation in the denominator, causing the ratio to have a wider distribution.

In practice, the t reference distribution is often used when the numerator is only approx-
imately normal, the denominator is only approximately proportional to a �2 variable, and
the numerator and denominator have small covariance. What is important for our purposes
is that variation in the denominator gives rise to a t-distribution. Furthermore, the relation-
ship between the variance and mean of the denominator determines the degrees of freedom.
If T is proportional to a �2 variate, then

var(T )

E(T )2
=

2

�T
: (11)

In other words, the (squared) coe�cient of variation of T is inversely proportional to the
degrees of freedom. Rearranging (11) yields an expression for the degrees of freedom,

�T =
2E(T )2

var(T )
; (12)

which may be used whether or not T has a �2 distribution.
In S432, Tz1 (4) is the squared standard error of Q, so the appropriate degrees of freedom

depends on var(Tz1), which in turn involves the variance of U , variance of B, and the
covariance of U and B. We now make two assumptions:

A1: var(U) = 0 (this implies that the covariance is also zero), and

A2: B is proportional to a �2 variate with m� 1 degrees of freedom.

Then
var(Tz1) = (1 +m�1)2var(B) = (1 +m�1)2(2=(m� 1))E(B)2: (13)

Substituting into (12), and replacing E(Tz1) and E(B) with Tz1 and B, respectively, we
obtain:

�̂T =
2(Ê(Tz1))

2

v̂ar(Tz1)

=
2T 2

z1

(1 +m�1)2(2=(m� 1))B2
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which simpli�es to (6). In other words, assumptions A1 and A2 lead to the degrees of
freedom formula (6).

In normal-based problems, it may be possible to improve on (6) by avoiding assumptions
A1 and A2. The variances and covariances of U and B may be estimated from multiple
imputations; note that Tz1 can be written as a sample average,

Tz1 = m�1
mX
t=1

T (t) (14)

where
T (t) = U (t) + (m=(m� 1))(Q̂(t) �Q)2; (15)

so that var(T ) may be estimated by the usual formulas for the variance of a sample average,

v̂ar(Tz1) =
1

m(m� 1)

mX
t=1

(T (t) � T )2 (16)

and used in (12) to estimate the �nal degrees of freedom,

�z2 = (2T 2)

 
1

m(m� 1)

mX
t=1

(T (t) � T )2
!
�1

(17)

However, doing this accurately requires that m be relatively large, but in practice it is is
usually small, say 3 to 5. Furthermore, the improvement over (6) is likely to be relatively
small in normal problems, where the presumption is that U is exact so that variability in U
should be small.

3.2 Degrees of freedom in t-based problems

In this section we derive formulas for combining �z1 (or any replacement that avoids as-
sumptions A1 and A2) and �. In this section T indicates one of Tt1 or Tt2.

We begin with a frequentist derivation, decomposing the variance of T by conditioning
on the observed data Yobs:

var(T ) = E(var(T jYobs)) + var(E(T jYobs))
= E(simulation variance) + other variance (18)

In this derivation the underlying parameter Q is �xed, so there are two sources of variation:
one due to random observed data Yobs, and the simulation variance in choosing m random
sets of imputations Y

(t)
mis.

The �rst term in (18) involves var(T jYobs), the simulation variation in T due to using a
�nite number m of random imputations, after conditioning on the observed data. This is
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the variance that was estimated in (13), implicitly conditioned on Yobs. We estimate this
term as:

Ê(simulation variance) = Ê(var(T jYobs)) = v̂ar(T jYobs)
=

2

�sim
(Ê(T ))2 =

2

�sim
T 2 (19)

where �sim is an estimate of degrees of freedom due to simulation error in estimating T ; in
particular, we may use �sim = �z1.

The second term involves variance due to random Yobs. Let U1 = E(U (t)jYobs) and
B1 = E(BjYobs). Note that these are functions of Yobs, but not of the random imputations.
Then

other variance = var(E(T jYobs)) = var(U1 + (1 +m�1)B1): (20)

In the absence of missing data, B1 = 0 and U1 = U , the complete-data squared standard
error for Q̂. In this case, the degrees of freedom � from the complete-data problem implies
by (11) that v̂ar(U) = (2=�)U2.

In the presence of missing data, we begin with a simple estimate for the non-simulation
variance of T , then propose adjustments. The simple estimate supposes that (aU1 + bB1)
is proportional to a �2 variable with � degrees of freedom for any positive a and b (particular
a and b correspond to Tt1 and Tt2), yielding the estimate

v̂ar(E(T jYobs)) = (2=�)T 2: (21)

This choice in combination with (19) leads to a simple estimate for the �nal degrees of
freedom,

�t1 =
2T 2

v̂ar(T )
=

2T 2

(2=�sim)T 2 + (2=�)T 2

=
�

1

�sim
+

1

�

��1
(22)

Note that this is never greater than �; this is desirable in statistical software, where the
degrees of freedom for an analysis with multiple imputations should be at least as small as
would obtain with complete data. However, note that as m ! 1 that (22) approaches �,
but the actual degrees of freedom should be smaller because some data are missing.

We propose two ways to adjust the relatively simple estimate (22). The basic idea is to
estimate the fraction of nonmissing data as U=T , and adjust the original degrees of freedom
by this quantity, yielding

�t2 =

 
1

�sim
+

1

(U=T )�

!
�1

(23)

A minor variation on the previous adjustment is based on maintaining a distinction
between sample size and degrees of freedom. For example, in Example 1, the observed and
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complete-data sample sizes were n1 and n, respectively, while the appropriate degrees of
freedom are n1 � 1 and n � 1; the degrees of freedom are o�set from the sample size by 1.
In other problems the o�set is di�erent, e.g. p + 1 in linear regression with p coe�cients
and an intercept. If n is known and the appropriate o�set is (n � �); then the adjusted
non-simulation degrees of freedom would be (U=T )n� (n� �), yielding

�t3 =

 
1

�sim
+

1

(U=T )n� (n� �)

!
�1

(24)

Both (23) and (24) may be calculated using Tt1 or Tt2; using Tt2 requires solving a system
of two equations in two unknowns. The combination of Tt2 and (24) and yields the desired
answer as m!1 in Example 1.

3.3 Summary for univariate estimates

The single estimate for total variation T in normal-based problems is Tz1 (4).
Estimates for degrees of freedom �T in normal-based problems are �z1 and �z2 (6, 17).

As long as m is relatively small, we suggest using �z1 because �z2 would be highly variable.
Estimates for total variation T in t-based problems are: Tt1 and Tt2 (7, 8), both linear

combinations of U and B. Tt1 is simplest. Tt2 is more accurate in Example 1 as m!1, but
Tt1 is more conservative, which would generally be preferred in more complicated situations
(where some of the assumptions underlying the methods may not hold) or where m is small.
Di�erences between these will be small if the original degrees of freedom � are large, or if
the fraction of missing information is smaller. We suggest using Tt1, which is simpler and
more conservative.

Estimates for degrees of freedom �T in t-based problems are: �t1, �t2, and �t3 (22, 23,
24). We suggest using �t3, which should be the most accurate.

Combining estimate Tt2 for total variation and degrees of freedom (�t2, �t3) require solving
a system of two nonlinear equations in two unknowns. We suggest using the approximations
obtained by �rst computing Tt1, using it to compute degrees of freedom, then using those
degrees of freedom in Tt2.

4 Combining inferences in for multidimensional esti-

mates, �2 situations

We begin by reviewing the rules from S433 for combining inferences in �2 problems; these
largely parallel the rules in Section 2 from S432.

Let Q̂ be a complete-data point estimate of a k-dimensional parameter Q, and let U be
its covariance matrix (or an very accurate estimate), and assume that Q̂ is approximately
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distributed as N(Q;U), so that complete-data inferences would be based on

(Q̂�Q)TU�1(Q̂�Q) _� �2k

The multivariate analogs of (1{4) are

Q =
1

m

mX
t=1

Q̂(t); (25)

U =
1

m

mX
t=1

U (t); (26)

B =
1

m� 1

mX
t=1

(Q̂(t) �Q)(Q̂(t) �Q)T ; (27)

Tc1 = U + (1 +m�1)B (28)

Inferences are based on the test statistic

(Q�Q)TT�1(Q�Q) _� Fk;�T (29)

for some T and associated degrees of freedom �T .
S433 notes that B is a noisy estimate of var(Q̂jYobs), and does not even have full rank

of m � k, and implies that using Tz1 for T in (29) yields a test statistic which may not be
approximately F -distributed. S433 suggests assuming that

A3: var(Q̂jYobs) / E(U jYobs),
and letting

Tc2 = (1 + r1)U (30)

where
r1 = (1 +m�1)tr(BU

�1
)=k

with degrees of freedom

�c1 =

(
k�(1 + k�1)(1 + r�11 )2=2 if k� = k(m� 1) � 4
4 + (k� � 4)[1 + (1� 2=k�)r�11 ]2 otherwise

(31)

S433 indicates that assumption A3 is equivalent to assuming that the fractions of missing
information for all components of Q are equal. We believe that the assumption is actually
stronger, that it implies that the fractions of missing information for all linear combinations
of components of Q are equal.

We suggest the weaker assumption

A4: the correlation matrices corresponding to var(Q̂jYobs) and E(U jYobs) are equal.
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Then let
B0 = diag(B)1=2diag(U)�1=2Udiag(U)�1=2diag(B)1=2 (32)

be the adjusted estimate of var(Q̂jYobs) and, where diag(M) for a square matrix M is the
matrix with the same diagonal elements and zero elsewhere, and

Tc3 = U + (1 +m�1)B0 (33)

be the estimate of total variation. Note that the diagonal elements of this matrix are the
same as if total variation were estimated individually for components of the multivariate
parameter using (4).

It is easy to construct examples for which even the weaker assumption A4 is violated.
For example, if X and Y are jointly gaussian with largely disjoint sets of missing values and
the parameters of interest are the means of the variables, then the o�-diagonal element of
var(Q̂jYobs) is really larger than implied by assumption A4.

4.1 Degrees of freedom in multivariate �2 situations

Degrees of freedom may also be computed individually for components of the multivariate
parameter using (6) or (17). These may be combined to obtain the denominator degrees of
freedom using the conservative choice of the smallest degree of freedom

�c2 = min
j=1;:::;k

�1;j (34)

the reciprocal average

�c3 =

0
@k�1 kX

j=1

��11;j

1
A
�1

(35)

or the directionally-weighted reciprocal average

�c4 =

0
@(Xwj)

�1
kX

j=1

wj�
�1
1;j

1
A
�1

(36)

where wj = (T5;j;j)
�1=2(Qj�Qj) is proportional to the normalized value of Q�Q in the jth

direction. We use reciprocal (weighted) averages because of the reciprocal relationship (12)
between degrees of freedom and squared coe�cient of variation of T .

4.2 Summary for �2 situations

Note that assumption A4 is much weaker than A3, and a�ects only the correlation structure
of the total variation estimates. The correlation structure is where the lack of full rank in
B would occur, and is also presumably where the greatest noise would occur.
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We suggest the use of Assumption A4 and resulting estimate of total variation Tc3. The
big advantage of this over A3 and Tc2 is that overall results are consistent with component-
wise results.

We suggest using the conservative choice of the smallest degrees of freedom, �c2; in
fact even this choice is not overly conservative, as it is easy to construct examples where
the fraction missing information for a combination of parameters is higher than for any
parameter individually. This conservative choice is sensitive to random variation with large
k and small m, in that a single one of a large number of parameters may have a high
individual estimated degrees of freedom. The choice �c4 might be the most accurate in
the majority of situations, but requires speci�cation of Q in order to compute directional
weights, leading to the unusual situation for F statistics that the denominator degrees of
freedom depends on the particular null hypothesis value being tested.

5 Combining inferences in for multidimensional esti-

mates, F situations

Inferences in F situations would involve the test statistic

k�1(Q̂�Q)TU�1(Q̂�Q) _� Fk;�

for complete data problems, where Q and Q̂ is as in Section 4 but U is an estimate of the
covariance matrix for Q̂ (which is smaller than the covariance matrix U� for the posterior
distribution by a factor (� � 2)=�).

Combining multiple-imputations inferences in F situations involves a combination of the
ideas from t and �2 situations. We summarize here the results that would obtain using the
particular methods recommended in earlier sections.

We begin by extending the notation used in �2 situations, Let U (t) be the \covariance-
error" matrix for the tth complete data set, with average U , and let T denote the total
covariance-error matrix. Let B0 be as in (32). The �nal estimate of total variation based on
(7) and (33) is

Tf1 = (U + (1 +m�1)B0) (37)

The test statistic is the F -statistic (29).
The degrees of freedom for individual components of T may be computed as for t-based

problems, and the overall degrees of freedom (the denominator degrees of freedom for the
F -statistic) computed using the conservative choice (34).

6 Combining F -statistics

In the previous section we discussed combining F -inferences, when the parameters and
covariance estimates used to obtain F -statistics were available. Here we combine inferences
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based solely on the statistics. This incorporates ideas from previous sections and the material
on page 115 in S97, which is based on (Li et al. (1991)). We begin by reviewing that material,
which relates to combining �2 statistics.

The complete-data Wald (�2) statistics are

d
(t)
W = (Q(t) �Q0)

T (U (t))�1(Q(t) �Q0):

The combined statistic is

D2 =
dWk

�1 � (m + 1)(m� 1)�1r2
1 + r2

where

dW =
1

m

mX
t=1

d
(t)
W

is the average of the Wald statistics, and

r2 = (1 +m�1)

"
1

m� 1

mX
t=1

�q
d
(t)
W �

q
dW

�2#

is an estimate of the average relative increase in variance. The numerator degrees of freedom
are k and the denominator degrees of freedom are

�2 = k�3=m(m� 1)(1 + r�12 )2

To extend this methodology to the case where F statistics are available, we note that
dividing a �2 variate by its degrees of freedom k yields an F variate with k and 1 degrees
of freedom. Given F -statistics, we propose to convert them into approximate �2 statistics
by multiplying by k and applying the above methodology; however the denominator degrees
of freedom combine the degrees of freedom �2 due to �nite m with the original denominator
degrees of freedom using (23), except that \fraction of information not lost to missing data"
will be estimated by (1� 2=(�2+ 3))=(r2+1) instead of U=T ; the former is based on (4.30)
in S432.

In particular, if the individual F -statistics are d
(t)
F with k and �denom let

d
(t)
W = D

(t)
F � k;

calculate D2, dW , r2, and �2 as above, let the overall statistic be

DF = D2=k

with numerator degrees of freedom k and denominator degrees of freedom

� 02 =

0
@ 1

�2
+

1
1�2=(�2+3)

r2+1
�denom

1
A
�1
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7 Linear Model Summary Statistics

There are well-known relationships that apply between common summary statistics for a
linear model, in particular including those in an analysis of variance (anova) table of the
form:

SS df MS F
model SSm �m MSm F
error SSe �e MSe
total SST �T

as well as R2 = SSm=SST and residual standard deviation s =
p
MSe. In this section we

discuss the computation of these quantities in a multiple-imputation setting.
Ideally, these summary statistics could be computed in the multiple-imputation context

in a way that is consistent with their uses in the non-imputation context for both

� descriptive summaries and

� inference.

However, this does not appear possible. In particular, the F -statistic has two uses:

� it is a simple descriptive statistic measuring the quality of the model; it estimates the
ratio between the actual reduction in residual sums of squares due to the model and
what the reduction would be under under the null hypothesis, and

� it is used in computing a p-value for determining statistical signi�cance

The appropriate values of F for these uses di�er in the multiple-imputation context.
We propose to maintain a distinction between inferential and non-inferential statistics.

For inferential purposes, only F , �m and �e are needed; these were discussed in Section 5,
albeit with di�erent notation: �m = k, and �e = �c2.

For computing descriptive statistics, we presume that all quantities in the anova table
are available for each complete data set, and are denoted with a superscript(t), e.g. SS(t)

m .
Then we propose the following de�nitions:

SSm = SS
(t)
m �m = �(t)m MSm =MS

(t)
m = SSm=�m F =MSm=MSe

SSe = SS
(t)
e �e = �(t)e MSe =MS

(t)
e = SSe=�e

SST = SS
(t)
T �T = �

(t)
T

The sum of squares and mean squares terms are all simple averages across the imputations.
The degree of freedom terms are identical across imputations. Other quantities, including
R2 and s, are calculated as in the non-imputation setting. The values for �e and F are
di�erent than the values used for inference.
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Note that these de�nitions are consistent with the descriptive use of the F ratio described
above, the use of R2 as a description of \the fraction of variance explained by the model,"
and the use of MSe = s2 as an estimate of the conditional variance of the response given
the explanatory variables (assuming homoskedasticity).
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