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1 Introduction

We address the problem of estimating the distributional parameters for multivariate normal
(MVN) data that contains missing values via the well-known EM (Expectation-Maximization)
iteration (Dempster, Laird, and Rubin [3]). The data Y is represented as a matrix of n rows
and p columns, whose rows correspond to the individual observations and whose columns
correspond to the variables in the model. The rows of Y are assumed to be independent
and identically distributed (iid) according to a multivariate normal distribution with mean
vector p and covariance matrix ¥. The objective is to estimate the parameters p and ¥ of
this distribution, assuming no prior restrictions other than positive definiteness of .
The (MVN) density of a single observation of Y is

(252 exp { =5 (e — S — 1)

where y, is the kth row of Y represented as a column vector, so that an expression for the
likelihood for Y is then

o= 1) < 51 exp {5 30 = )72 | )

k=1

When all of the data in Y is observed, the values of y and ¥ maximizing (1) are

L=

S
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the vector of individual column means, and
> =—yTy — . (3)
n

However, when Y contains missing data, further assumptions have to be made about the
distribution of the missing data in order to obtain a solution. Following Little and Rubin
[10] and Schafer [12], let Y, be the observed portion of ¥, and Y}, be the missing portion.
If the mechanism for creating the missing data is ignorable, that is, if the probability that a
particular variable in an observation is missing may depend on Y, but not on Y,,, then the
relevant density can be obtained by integrating the missing data Y, out of the complete data
loglikelihood. This reasoning holds for more general distributions, although the multivariate
normal model is the only one of interest here. The parameters can be estimated via the EM
algorithm ([3] — see McLachlan and Krishnan [11] for a recent treatment of EM and its
applications).

The EM iteration alternates between two steps, an ‘E-step’, in which the conditional
expectation of the complete data loglikelihood given the observed data and the current pa-
rameter estimates is computed, and an ‘M-step’ in which parameters are determined that
maximize the expected loglikelihood from the E-step. Under fairly mild regularity assump-
tions, the iteration converges to a local maximum of the complete data loglikelihood ([?],
Boyles [1], Wu [14], [11], [12]).

Arguments for and against the use of EM have been presented elsewhere (e. g. Little
and Rubin [10], Schafer [12]). Its main drawback is that the rate of covergence is linear and
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can be slow. However, in the multivariate normal case direct optimization of the complete
data loglikelihood via superlinearly convergent methods is impractical except when the num-
ber of variables p is small because there are p + (p(p + 1))/2 parameters to be estimated,
and the required derivatives are not sparse. Although the Gaussian model is not always a
good representation of the data, it is nevertheless useful as a point of departure in iterative
simultation for data whose distributions are not directly accessible [12].

The E-step involves linear regressions and formation of the covariance matrix that are
typically computed via sweep operations. This allows relevant quantities to be updated
rather than recomputed between successive missing data patterns, as well as efficient use
of memory. A disadvantage is that it involves formation of sums of crossproducts of data
values, so that scaling may be required to keep quantities involved in the computations from
growing too large. Moreover, the sweep method allows growth in numerical errors which
can increase the number of iterations required for convergence and/or reduce the accuracy
of the resulting estimates of the optimal parameters. The purpose of this paper is to give a
scheme based on parameterization in terms of the Cholesky factor of ¥ that is more stable
and accurate.

This paper is organized as follows. Section 2 gives the E-steps and M-steps of the iteration
as they are conventionally formulated. Computation of the E-step via sweep operations is
then described in section 3, followed by details of a Cholesky-based method for computing
the EM iteration in section 4.

2 EM for Multivariate Normal Missing Data

This section summarizes information that is covered in more detail in [10] and [12]. In the
EM iteration for multivariate normal datawith missing values, the E-step involves computing
the expectation values of the sufficient statistics 3¢, yr and 3¢ yr;yxj, for o, 7 =1,2,...,p
given the current values of the parameters y and ¥. The M-step is then straighforward —
these expectation values are just substituted into the maximum likelihood expressions (2)
and (3) for complete data:

n n
o= nilg(z Yk); Yij 7"0715(2 ykiykj) — il (4)
k=1 k=1
It is understood that all expectations are taken with respect to the observed data and the
current, estimates of the parameters p and X.

Since E(XF_1yk) = Sp—i E(yk), expectations of the individual missing values are com-
puted in the E-step. An observation g, containing missing data can be partitioned into
observed and missing portions; that is

o]
Y=y

where P is permutation. The current parameter estimates can be correspondingly parti-

tioned:
(@)

v, 7T
P :(“) d PEPT:< 00 MO). 5
p= an SRS (5)

2



Because of the iid assumption, each observation has a multivariate normal distribution with
unknown mean g and covariance ¥ (for which there are estimates). Because of the ignora-
bility assumption, the conditional distribution of the missing observations is also normal, so
that

Ei' Iyl 1, 2) = 1™ + X0 X506 (Y — 1)
This is the mean value of a linear regression with the observed values of y; as predictor
variables, given the current 1 and . Hence

ER) = ks (6)
E(yi') = " +ZuoXos (Yg — 1°).

For the crossproduct terms,

E(Yrivr;) = E(yri)€(yr;) + Cov(yryr;)

YkiYkjs Ykis Yk; Observed; (7)
= ykig(ykj)a Yi; observed, Yk j missing;
5(%@')5(%]') + gikja Ykis Yk; missing.

The term gfj is the element corresponding to yx; and y; in

Y — SrwoZgoiy (8)

MO?

the covariance matrix of the missing elements given the observed data and the current values
of u and ¥. This value is the same for all rows having a given missing data pattern.

Given the above formulas for the expectation values of the data, a procedure for com-
puting the estimated parameters is given in Figure 2. Note that only ¥,,, rather than X,
need be nonsingular for all data patterns.

If the missing data patterns are organized in such a way that close patterns are pro-
cessed in succession, then it is more efficient to update the quantities needed to form
Yo — ZwoXgeX o and y) than compute them completely from scratch. Finding the pat-
tern that produces the most efficient computation in every case is impractical since it would
involve the solution of a combinatorial problem. A good heuristic is to organize columns
in order of increasing number of missing observations, and then order the rows in increas-
ing numeric order treating the missing data patterns as bitwise representations of integers
(missing obervations encoded as 0). Patterns of missingness in which observed data always
precedes missing data are called monotone data patterns, and parameter estimates can be
obtained directly rather than iteratively for data that falls into this category. The heuristic
mentioned above for ordering will expose monotone patterns.

Because sums of products of the data elements are being formed to get the elements
of ¥, quantities could become rather large course of the computation, leading to numerical
instability. The data can be centered and scaled relative to the observed values, although
there may be some loss of accuracy in recovering the original parameters. Moreover, estimates
obtained from centered and scaled data will not necessarily correspond to larger values of
the observed data loglikelihood than estimates from unscaled data (see section [?]).
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Form s,, the sum of the observed values in each variable of Y, and
W,, the matrix of partial sums of products involving pairs of observed values.

Assume estimates p, 3 of the mean and covariance are given.

repeat

§ 4 So; W W,

for each missing data pattern P

for each observation k£ conforming to P

it M+ BanoXop (F — 1°)

Add values of y; to the appropriate components of s.

Form all products involving y;" and add them into W.

Add the corresponding entry of ¥, — S10X55%7,, to each product involving two
missing terms of the current observation.

end for

end for
W
TREED PR
n n

until termination criteria are satisfied

Figure 1: Conventional procedure for estimation of y and ¥ via EM.

3 Computation via Sweep Operations

Little and Rubin [10] and Schafer [12] give computational methods for the EM iteration for
MVN missing data following the scheme of Figure 2 in terms of sweep operations. This
allows advantage to be taken of symmetry as well as updating between related missing data
patterns. Sweep operations are widely used for organizing computations for linear regression
via the normal equations (see, e. g. Thisted [13]), and expectation values of the missing
elements in the E-step of the EM iteration are obtained via linear regression (see section 2).

Sweeping a (symmetric) positive-definite matrix relative to the first variable has the

following effect:
(Oz b )sw(-l/a bT/Oé )
I C) iy \b Ja C—(bb)/a

The matrix can be swept relative to any variable, although it is easier to visualize by per-
muting the relevant rows and columns into the leading positions, while suppressing notation
for the permutations. For the EM iteration, sweeping the current ¥ relative to the observed
variables for a given missing data pattern results in the quantities needed to compute the
expectation values in the E-step (see section 2). As an example, for a missing data pattern in
which the first k variables are observed and the remaining variables are missing, the current
Y would be swept relative to those variables to give:

Yoo Eﬂo) sweep ( %50 Yoo )
— ; Yoo k X k.
(EMO Yoarar / {Lk} EMozgé Yy — EMozgézﬂo o0



A sweep operation cannot be represented by a single matrix operator; it is rather a composite
of matrix operations. Sweep operations are reversible, so that in the EM iteration one can
proceed from one missing data pattern to the next by doing a reverse sweep operation for
each variable that is observed in the current pattern but missing in the next, and a sweep
operation for each variable that is missing in the current pattern but observed in the next.
All sweep and reverse sweep operations are commutative, so that they can be performed in
any order. Since the matrices involved are symmetric, operations need only be carried out
on either an upper or lower triangle.

Sweep operations are usually presented in terms of the individual arithmetic operations re-
quired to transform one tableau to another. However, provided the relevant rows and columns
are gathered into contiguous blocks, sweeps can be carried out via matrixz operations, allowing
more opportunity for compiler and run-time optimization [9], [5], [4]. The same holds true
for the matriz multiplication in computing the missing data estimates (6) and for extracting
elements in (8) when forming crossproducts involving two missing entries. Depending on the
missing data pattern and the computing environment, permuting to achieve the ordering in
(5) could be more efficient despite the need for data movement.

4 Computation Based on the Cholesky Factor of X

4.1 Expectations of missing values

Analogous to the partitioning of ¥ in (5), the columns in the Cholesky factor R of 3 can be
partitioned so that observed variables precede the missing ones

_ Rgo ROO Rgo ROM

(Roo ROM>T(ROO ROM>_( )Z(EOO 2M0>
RZMROO RZMROM‘FR};MRMM EMo EMM '

The expression for the expectation values of the missing data in (6) has the equivalent
formulation

E(pi') = "+ RE,R:S (yg — 1°) (9)
since
Yoo = Ry Roo(RogRog) = Ry Rog -

If the number of missing observations in this particular pattern is greater than the number
of observations having the pattern, then z = R;T (yo — 1) should be computed for each
missing observation by solving Rooz = (yg — pu©), followed by formation of RY,,z. Otherwise
it is more efficient to form Z = R Ry, by solving RooZ = Roy (Z overwrites Ro,,), then
form ZT (yo — u°) for each missing observation. Note that only the nonsingularity of Ryo
for each missing data pattern is required in order to obtain new parameter estimates. An
advantage of using (9) is that the upper bound on the size of numerical errors is approximately
the square root of that for the normal equations (6) (Golub and Van Loan [8]). Moreover,
solution of linear equations with triangular coefficient matrices can be accomplished very
efficiently ([8], Dongarra et al. [5]).

In order to take full advantage of the efficiency of the triangular solves in (9), it is nec-
essary to order the rows of Y so that those with the same data pattern occur consecutively,



and to permute the columns of the Cholesky factor between missing data patterns. The
following illustrates the permutation procedure for a five-dimensional case, in which obser-
vations having missing data in (say) column 5 are followed by ones in which columns 2 and
4 are missing. The first step is a permutation step, while the remaining steps restore the
matrix to triangular form.

X X X X X X X X X X X X X X X
0 X X X X 0 X X X X 0 X X X X
0 0 x x x [P0 x x 0 x |90 0 x x x
0 0 0 x x 0 0 x 0 x 0 0 x 0 x
0 0 0 0 x 0 0 x 0 0 0 0 x 0 0
X X X X X X X X X X X X X X X
0 X X X X 0 X X X X 0 X X X X
sl o 0 ox ox ox |l 0 ox ox x|l 0 x x X
0 0 0 x x 0 0 0 x x 0 0 0 x x
0 0 x 0 0 0 0 0 x x 0 0 0 0 x

wens

The symbol G Stands for application of a Givens rotation, an elementary orthogonal
transformation that allows selective and numerically stable introduction of zero elements in
a matrix [8]. The marked entries are values changed in the last transformation. The basic
idea is to permute the columns in such a way that missing columns follow the observed ones,
but otherwise the order of columns is preserved from the previous configuration. This ensures
that the sparser columns tend to be the leading columns, thus minimizing the number of
operations required to restore upper-triangular form. In the example above more operations
would have been required had column 5 preceded column 3 in the permutation.

The efficiency of the update sequence is dependent on the overall missing data pattern.
For a monotone data pattern (observed values always precede missing values) in which the
rows are ordered by increasing number of missing values, no column permutation is necessary.
However in this case the parameter estimates need not be computed iteratively [10], [12].The
number of operations required for the permutations will be minimized if the the rows and
columns of Y are ordered so that the overall missing data pattern is as close to monotone as
possible (see sections 2 and 4.3).

4.2 Forming the Cholesky factor of the estimate for X

Instead of obtaining an estimate for Y7Y in the E-step, the Cholesky factor of the estimate
of ¥ resulting from the M-step is formed as the rows are processed.
From the expressions for the elements of ¥ is the M-step (4), it follows that
EYTY)

s = 0 T 10
- [LfL (10)

The matrix (YY) can be expressed as the sum of two parts:

EYTY)=eW)TeEV)+ S, S= zn: Cov(YrYk;)-



Since Cov(yx;yk;) is the same for all rows k having a given missing data pattern, an alter-
native expression for £(YTY) is

EYTY)=EW)TEWY) + fj n;S;, (11)

where m is the number of missing data patterns, n; is the number of observations having
the ith missing data pattern, and S; the covariance matrix associated with that pattern (its
nonzero portion is a permutation of (8)). Moreover, each S; is positive semi-definite, with
non-zero elements corresponding to the matrix 3,,,, — 2,602,357  in (8) for the ith data
pattern. Since

St = Sato 00T b0 = (R Row + Ry Rus) — (RS, Rod) RbgRow = Ry Rusu,

Ry is the Cholesky factor of Xy, — 23,0257 . It follows that S; = AT A;, where the
associated R, is a submatrix of a permutation of the columns of A; (all other elements
of A; vanish). Using this representation of S; in (11) gives the following expression for the
updated estimate of ¥ (10)

. EWMTElY
n =1
e £V E)
o 1 & . .
= i = = Y (E(yk) — ) (E () — )" = =YY,
n n i n

where Y is the matrix £(Y) after subtracting the estimated column means. The matrix
YTY has an alternative decomposition in terms of rank-1 matrices that allows row-wise
accumulation:

o~ n k— J
YTY =3 v, 00 1/ k—l —\[——Ewr) s0=0, s;=> Ey;)
k=1 i=1

Note that each vy depends only on rows j < k. Assuming that rows are ordered according
to missing data patterns, we may write

m kr(rz;a)a,x m
YRV, YRV, T _ Ty
I RS D DR S e
1=1p_p(® 1=0

min

where YTYO involves only complete rows, and kmm, k(@) are the largest and smallest row

indexes associated with the sth nontrivial missing data pattern. It follows that
N\ Yo
Y Y
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a formulation that is compatible with row-wise formation of the Cholesky factor. The
Cholesky factor of Y{'Yy is formed at the outset, before the iteration is started. As the
iteration, proceeds this Cholesky factor is updated one row at a time. For each missing
data pattern P;, expectation values of the missing data are computed using (9). When the
Cholesky factor has been updated for each row having that pattern, the non-zero rows of A;
are incorporated with the appropriate weight (,/n;). The number of these rows is equal to
the number of missing elements (m;) in the pattern.

The row update is accomplished as follows: if R is the Cholesky factor X, then the

T
Cholesky factor R of <;§> <;§> = XTX + 227 can be formed using Givens rotations.

The procedure is illustated below for a 5-dimensional example:

X X X X X X X X X X X X
X 0 X X X . 0 X X X . 0 X X X
(xT>: 0 0 x x|[=3]10 0 x x|[=5]10 0 x x
0 0 0 x 0 0 0 x 0 0 0 x
X X X X 0 X x X 0 0 x x

X X X X X X X X

_ 0 x x X . 0 x x X >
Goess 1 g 0 x x|l 0 x x :(Z()%),
0 0 0 x 0 0 0 x
0 0 0 x 0 0 0 0

XTX + 227 = RTR.

The marked entries are values changed in the last transformation. The time efficiency for the
Cholesky update is O(p?), in contrast to O(p?) for forming a new Cholesky factor from the
updated p x p matrix X7 X + z2”. For details of the Cholesky update via Givens rotations,
see [8]. The non-zero rows of A; will often contain leading zeros, so that it will require fewer
rotations to incorporate them than otherwise.

4.3 Retaining invariant Givens rotations

A synthesis of the Cholesky-based method for the EM iteration described in sections 4.1 and
4.2 is given in Figure 4.3.

We have already mentioned that it is desirable for the rows and columns of the data Y
to be ordered so that its overall missing data pattern is as close to monotone as possible
for efficient restoration of triangular form between missing data patterns (section 4.1) and
described a heuristic for achieving this order (section 2).

Further advantage can be taken of the monotone structure of the data with Cholesky
method. For a given data set, assume that the rows of its missing data pattern are ordered
according to decreasing number of leading observed elements (complete rows can be ignored,
since they are processed in advance). If the observations are processed in this order, then
the Givens rotations needed to process the entries corresponding to the leading observed
elements in the restoration to triangular form are known and can be applied before the
iteration begins. The rotations can be saved in a preprocessing step as a vector that is



accessed sequentially during the iteration and applied starting with the first missing element
in each row. Ordinarily two values are used to specify a Givens rotation, but these can
be encoded by a single value if necessary in order to save space [8]. The requirement of
additional storage of one or two values for each leading observed element in a row is offset
by the savings for computing and applying the Givens rotations to the leading observed
elements in each iteration.
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Order the rows of Y according to missing data pattern.

Compute s, and R, the column sums and Cholesky factor of the sample cross-product matrix for
the complete observations.

Assume estimates p, R of the mean and the Cholesky factor of ¥ are given.

repeat

k < number of complete observations; s < s.; U <+ R,

for each nontrivial missing data pattern P;,+ =1,2,...,m

Let n; be the number of observations conforming to P;, and
let m; be the number of missing observations in that pattern.

Permute columns of R so that observed variables precede missing ones (P);
Restore to upper triangular via using orthogonal transformations (Q):

Roo  Rowm >
RP = .
@ ( 0 Ruwm

Condition estimate of Ry0; take appropriate action if nearly singular.
if n; < m; then

for each observation conforming to P;

Solve R,z = (yg,, — pu°) for z; yk+1 —pM+RY 2.
Rank-one update of U with (k+1) myk+1; S S5+ypr1; k< k+1
end for
else

Solve RpoZ = Roy for Z  (Z overwrites Ro )
for each observation conforming to P;

Yiy M+ 20 (YR — 1)

Rank-one update of U with \/Tﬂ k+1 Yk+1; S S+ yp+1; kK k+1
end for

end if
for each missing variable in P;

Let w be a p-vector which has the corresponding row of R,;,, in the respective positions
of missing variables and is otherwise zero.

Rank-one update of U with /n; w
end for

end for
s s/n; R« U/\/n

until termination criteria are satisfied

Figure 2: EM iteration based on the Cholesky factor of the estimate of ¥. Can be enhanced
by ordering data patterns to be as close to monotone as possible, as well as applying Givens
rotations corresponding to the leading observed elements and saving them for later use.
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