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Chapter 1 Introduction To Robust Library

OUR OVERALL GOAL

Our overall goal is to provide a broad range of robust methods for
statistical modeling with the following features:

Automatic Computation of both Classical and Robust
Estimates When using the graphical user interface dialog for
the Robust Library, the default choice is to automatically
compute both the classical and the robust estimate. A special
“fit. models” function for fitting multiple models is provided to
facilitate computing both classical and robust estimates at the
command line.

Outlier Data Mining and Comparison Plots. Diagnostic
plots are provided as a fundamental data mining tool that will
assist you in quickly identifying outliers, in isolation or in
small clusters, and determining whether or not outliers have
substantial influence on the classical estimate.

Trellis Graphics Diagnostic Comparison Plots. Trellis
graphics are used to display side by side diagnostic plots for
comparing classical maximum likelihood estimate (MLE)
model fits with robust fits.

Robust Statistical Inference. Robust t-statistics, p-values, F-
tests, and bias-detection tests are provided, based on robust
covariances and normal distribution approximations for
parameter estimates.

Robust vs. Classical Inference Comparison is Facilitated.
Pairwise tabular displays of the robust and classical inference
results facilitate quick comparison of inference results.

Special Scalable Methods for Linear Model Fits and
Covariance Matrix Estimation. Special methods are
provided for robust fitting of linear models with large
numbers of numeric predictor variables and/or many factor
variables with possibly many levels, and for robust covariance
matrix estimation with large numbers of variabels and large
numbers of observations.



Basic Notions of Robustness

BASIC NOTIONS OF ROBUSTNESS

Classical maximum likelihood estimates (MLE) based on assumed
idealized distributions almost always lack robustness toward outliers
in the sense that outliers can have a very substantial influence on
maximum likelihood parameter estimates. This is true not only of
Gaussian maximum likelihood estimates such as the least squares
estimates of linear models and the classical covariance matrix
estimates, but also of a variety of non-Gaussian maximum likelihood
estimates such as the MLE’s for the parameters of exponential,
Weibull and gamma distributions.

The probability distribution models that generate outliers are often
close to the assumed ideal distribution in the central portion of the
distribution, but differ from the ideal distribution in the tails of the
distribution in a seemingly small but potent manner. The major
consequence of such outlier-generating distributions is that the
maximum likelihood parameter estimates based on the ideal
distribution can suffer from large bias and substantially increased
variability (or equivalently decreased statistical efficiency). Furthermore,

the resulting bias persists even as the sample size n increases toward
infinity, while the increased variability typically tends to zero like
n-1. Thus control of bias is more important for larger sample sizes.

Robust estimation methods were invented to deal with the above
problems, and the important properties of a good robust estimator are
as follows:

* In data-oriented terms: parameter estimates and the
associated robust model fit are minimally influenced by
outliers, and provide a good fit to the bulk of the data.

+ Diagnostic plots based on the robust fit will allow you to
quickly and easily identify outliers, and determine whether or
not outliers are affecting the classical MLE model fits.

* In probability-oriented terms, a robust method minimizes the
bias in coefficient estimates due to outlier-generating
distribution models, while at the same time achieving a high
¢fficiency when the data has the assumed ideal distribution
(equivalently, the variance is not much larger than that of the
MLE at the assumed ideal distribution)
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* The robust parameter estimates provide good approximate
statistical inference based on the large sample size
approximate normality of the parameter estimates.

For further information, read the sections on Theoretical Details in
subsequent chapters.



Robust Modeling Methods

ROBUST MODELING METHODS

Robust
Regression for

the Linear
Model

The following robust modeling methods are provided in the Robust
Library.

* Robust Linear Regression and Model Selection
*  Robust ANOVA

* Robust Covariance and Correlation Estimation
*  Robust Principal Component Analysis

* Robust Fitting of Poisson and Logistic GLIM’s
* Robust Discriminant Analysis

* Robust Parameter Estimates for Asymmetric Distributions

Two robust linear model fitting methods are included: (1) An MM-
estimate, and (2) a new adaptive estimate due to Gervini and Yohai
(1999). The MM-estimate is the default choice. The new adaptive
estimate has the feature that it is asymptotically efficient when the data
is Gaussian, i.e., is as good as least-squares when the data is Gaussian,
while at the same time controlling bias due to outliers in a nearly
optimal manner.

computation time

Both estimators described above require a highly robust initial
estimate, and for the case all the predictor variables are numeric we
continue to use a sampling approach to computing an initial S-
estimate. It is known that such an approach has exponential

complexity of order 2” where p is the number of predictor variables.
We provide some tabled estimates, based on empirical studies, of
approximate computation times of the robust linear model fit as
function of p, the number of observations, and the computer platform.
The practical limit on the number of independent variables for
reasonably quick computation with present generation workstations is
roughly 15. In addition, we print out estimates of the time remaining
for a robust fit so that you can decide whether to wait for the result or
defer the computation to a more convenient time.
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Robust ANOVA

Robust
Covariance
Estimation

fast robust regression procedure

A fast procedure for obtaining initial estimates is implemented
following Pena and Yohai (1999). Although these estimates are not
guaranteed to have high breakdown point, they result in enormous
speed improvement for large problems. The reliability of these
estimates has been confirmed by simulation.

fitting models with both numeric and categorical variables

When you have factor type variables as well as numeric variables,
each factor level requires an additional linear model parameter and
dummy predictor variable. In such cases you may often find yourself
with many more than 15 predictor variables. On the other hand, the
predictor variables used to model the factor variables only take on the
values 0 and 1, and for such variables a high breakdown point initial
S-estimate is not really required. A least absolute deviations (LAD)
type M-estimate will suffice. Based on this observation, Maronna and
Yohai (1999) designed an alternating S-estimate/M-estimate method
for fitting linear models with both factor and numeric predictor
variables, which we have implemented for this release. This method
will allow you to handle linear models with factor variables that
require many more than 15 parameters.

robust model tests and robust model selection

Robust F-tests and robust Wald tests are provided. In addition, a
robust model selection criterion called RFPE is provided. RFPE is a
robust version of Akaike’s Final Prediction Error criterion (FPE).
Also, a robust backward elimination method for model selection is
provided.

A robust ANOVA capability has been introduced using the same final
M-estimate as is used for the MM-estimate for the linear model. The
main difference is that since the ANOVA setup has only factor
variables, a high-breakdown initial S-estimator is not required and it
suffices to use an LAD initial estimate.

We provide the Fast Minimum Covariance Determinant (MCD)
covariance matrix estimate of Rousseeuw and van Driessen (1999),
the Donoho-Stahel projection-type estimator, an M-estimator, and a
new scalable estimator based on pairwise robust covariance estimates
due to Maronna and Zamar (2001). The pairwise covariance matrix



Robust
Principal
Component
Analysis

Robust
Logistic and
Poisson
Generalized
Linear Models

Robust
Discriminant
Analysis

Parameter
Estimates for
Asymmetric
Distributions

Robust Modeling Methods

estimate is adjusted so that it is positive definite. The default choice is
the Donoho-Stahel estimator for sufficiently small numbers of
observations and variables, and otherwise is the MCD estimator.
Also included are: plots for the comparison of robust and classical
covariance estimates: an overlaid eigenvalue scree plot, a distance-
distance plot, an ellipses plot for smaller matrices, and an image
display for larger covariance matrices.

The Robust Library includes functions for conducting a principal
component analysis (PCA) based on a robust covariance matrix
estimate. You can use any of the estimators mentioned above for the
robust covariance matrix estimate.

Robust generalized linear model fitting has been provided for the
logistic and Poisson link functions, using the conditionally unbiased
bounded-influence function approach of Kiinsch, Stefanski and
Carroll (1989). For logistic regression models, the Robust Library
provides two additional robust estimates: a weighted MLE estimate
with Mallows-type leverage-dependent weights and a consistent
estimate based on Copas's (1988) misclassification model (Carroll and
Pederson, 1993).

Deviance residuals gg-plots

Deviances are not normally distributed in GLIM’s, and hence normal
QQ-plots of deviances can be misleading when assessing the fit of a
GLIM model. The QQ-plot of deviances estimates the distribution of
the deviances and uses the resulting estimated quantiles to draw the
QQ-plot (Garcia Ben and Yohai, 2000).

A robust discriminant analysis function is provided, based on one of
the above robust covariance matrix estimates. Error rate estimates are
provided via a Monte Carlo simulation based on the fitted model.

The robust library includes functions that calculate the following two
classes of estimates for Gamma, Weibull and Lognormal distributions:
(i) Truncated-mean estimates, and (ii) optimal bounded-influence M-
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estimates. The truncated-mean estimates are simpler to compute than
the optimal M-estimates, and are intuitive in nature to most users.
Thus the truncated-mean estimates are the default choice.
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SPECIAL FEATURES OF THE ROBUST LIBRARY

Plots for
Outlier
Detection and
Comparing Fits

Multiple Model
Fits and
Comparisons
Paradigm

GUI for the NT/
Windows
Version

When both a classical and a robust fit are computed, all plots selected
on the Plots page of the dialog are created in a Trellis display with the
classical and robust results displayed sided by side. For linear
regression models including ANOVA models, QQ-plots and residuals
density estimates are also available as overlaid plots. For regression
models, plots of standardized residuals or deviances versus robust
distances, introduced by Rousseeuw and von Zomeren (1990) are
provided.

A command line creator function fit.models is provided for
creating an object of class “fit.models”, along with print, plot
and summary methods for this class of objects. You can use the
function fit.models to create an object that contains both the least-
squares and robust fits. Then you can make convenient comparison
of the fits with respect to inference results by using summary, and
convenient visual comparison of the fits and visual outlier detection
by using plot.

A uniform model-fitting dialog design has been created with the
following basic features. Each robust model fitting dialog uses the
current dialog for the classical model fitting method, with two
minimal changes to accommodate the robust method. The first is that
on each dialog’s Model page you have three fitting method choices:
(1) Compute both the classical and the robust fit, (2) Compute only
the classical fit, and (3) Compute only the robust fit, with choice (1)
being the default. Second, an Advanced page containing the various
parameters and tuning constants used in the numerical procedures for
the robust methods has been added to each dialog. Most users will not
want to bother with these options.
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DATA SETS IN THE ROBUST LIBRARY

10

The following data sets are included in the Robust Library and can
be used to carry out the examples in this document and to
experiment with the library.

stack.dat This data set has been analyzed by a large
number of statisticians. See Dodge (1996) for the history of
this data set.

wagner.dat The data set has been analyzed by Wagner
(1994), Hubert and Rousseeuw (1997), and Maronna and
Yohai (1999).

breslow.dat This data set is used by Breslow (1996).
Tawson.dat This data set is from Lawson and Gold (1988).
milkcomp.dat This data set is analyzed by Atkinson.

bushfire.dat This data set is analyzed by Maronna and
Yohai (1995).

woodmod.dat This data set is a modified version of the wood
gravity data from Rousseeuw and Leroy (1987).

hawkins.dat This data set is used by Hawkins, Bradu and
Kass (1984).

sim.dat This artificial data set is used for illustrating robust F
tests and robust model fitting for robust linear regression.

In addition, the S+PLUS built-in data set oilcity is used for illustrating
the control of Advanced options in robust modeling.

In order to conveniently view and use these data sets in the Windows
version of Spotfire S+, follow the instructions for viewing the
Robust Library data sets in the next section.
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LOADING THE ROBUST LIBRARY

Loading the
library from
the NT/
Windows GUI

Viewing the
Robust Library
Data Sets

To load the Robust Library from the NT/Windows GUI, select File
» Load Library... from the S+PLUS menu bar to bring up the fol-
lowing dialog window.

Load Library 0] =]
Library M arne: rirme2 - Action: {* Load Librany
nirme3 .
- " Description

v itittach at bop of search list

0k | cancel | app | 1] o cuent Help |

Figure 1.1: Load Library Dialog

Select Robust from the list of library names, and make sure to check
Attach at top of search list. Click OK to load the library. After the
Robust Library is loaded, a menu will be added to the S+PLUS
menubar. Most of the functions provided by the Robust Library can
be accessed through this menu.

If you use the Object Explorer you will want to be able to view and
use the example data sets included in the Robust Library. To do
this, right click (after loading the library) on the Data icon and
select Advanced from the context menu to open the Database Filter
dialog.

11
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Figure 1.2: Database Filter Dialog

Uncheck the Search Working Chapter Only check box. Select
Robust from the list of databases and enter data.frame Classes
field (or select data.frame from the Classes drop-down list box).
Then click OK. Notice that shortcuts to the Robust Library data
sets have been added in the right pane of the Object Explorer.

Alternatively, in the Object Explorer you can expand the SearchPath

object, then expand the robust object to access the data sets in the
Robust Library directly.

12



Loading the
Library from
the Command
Line

Loading the Robust Library

Use the following command to load the library from the commands
window:

> Tibrary(robust, first=T)

This command will attach the Robust Library in position 2 and
add the robust menu to the Spotfire S+ menubar.

13
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Overview of the Method: A Special M-Estimate

OVERVIEW OF THE METHOD: A SPECIAL M-ESTIMATE

You are fitting a general linear model of the form
T .
yi:xiB+8i’l:1’ ey N

with p-dimensional independent predictor (independent) variables x;

and coefficients B, and scalar response (dependent) variable y;.

Spotfire S+ computes a robust M-estimdte = which minimizes
the objective function

T
L yi—x; B
p =

where 5 is a robust scale estimate for the residuals and p is a
particular optimal symmetric bounded loss function, described in the

section Theoretical Details. Alternatively B is a solution of the

estimating equation
A
” yi—x B
i=1

where W= p’ is a redescending (nonmonotonic) function. The

shapes of the p and y = p’ functions are shown in Figure 2.17.

The above minimization problem can have more than one local
minima, and correspondingly the estimating equation above can have
multiple solutions. Spotfire S+ deals with this by computing special highly

robust initial estimates B and s, using the methods described in the
section Theoretical Details. Then Spotfire S+ computes the final estimate

A

B as the local minimum of the M-estimate objective function nearest

to the initial estimate. We refer to an M-estimate of this type and

computed in this special way as an MM-estimate, a term introduced
by Yohai (1987).

17
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COMPUTING LS AND ROBUST FITS WITH THE WINDOWS
GUI

Computing You easily obtain both a least squares and robust linear model fit for
Both LS and the so called “stack loss” data using the Robust Linear Regression

. dialog in the Robust Library. The stack loss data is known to contain
Robust Fits highly influential outliers, and is included in the Robust Library as
the data frame stack.dat. Display the Robust Library data sets in
the left-hand pane of Spotfire S+ Object Explorer using one of the
methods recommended in the Introduction chapter and select
stack.dat. The right-hand pane of the Object Explorer displays the
four variables in stack.dat: the dependent (response) variable Loss,
and the three independent (predictor) variables Air.flow, Water.Temp
and Acid.Conc. First select the response variable Loss, and then

)

Robust Linear Regression g -10] x|
Madel | Results | Plat I Predict I Advanced I
—Data — Fitting O ptiorn

[ata Set: Istack.dat vI % L5 + Robust

) LS
“Wwieights: I vI ~ Robust
Subzet Bows with: I

v Ot Boves with Missing W alues — Model 5 election
—"ariables I~ stepwize [backwards]
Dependent: j — Sawve Model Object

Save A I

Independent:

Create Formula |

— Formula

Farmula: ILDSS”.-’-'«ir. Flow+wf ater. Temp+acid. Conc.

(1] I Eanc:ell .-'l'«ppl_l,ll I<| >| curmenk Help |

Figure 2.1: The Linear Regression Dialog: Model Page

18
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select the three independent (predictor) variables (you can do this by
shift clicking on Acid.Conc. Choose Robust P Linear Regression
from the menubar. The dialog shown in Figure 2.1 appears. Because
you selected the response variable Loss first, followed by the three
predictor variables, the Formula field is automatically filled in with
correct formula Loss ~ Air.Flow + Water.Temp + Acid.Conc. for
modeling Loss in terms of the three predictor variables.

Note that the Model page of this dialog looks exactly like that of the
Linear Regression dialog in Spotfire S+, except for the Fitting Options
choices, with the default choice LS + Robust (both least squares and
robust fits are computed) and alternate choices LS (least squares fit
only) and Robust (robust fit only) and the Advanced tab. Click on
the Advanced tab to access optional advanced features of the robust
fitting method. These are discussed in the section Advanced Options
For Robust Regression, and we suggest you wait until reading that
section to experiment with the robust fitting method options.

Robust Linear Regression = =) =]

kodel I FResultz I Plat | Predict I Advanced I
— Plats — Dptionz
I™ Residuals ws Fit ¥ Include Smooth
[ Response ws Fit ¥ Include Fugplot
W Residuals Marmal 20 v Q0 Plat Envelope
v Std. Resid. ve Robust Distances v Include Robust DG Line
[+ Estimated Fesidual Density [~ Half Mormal 33 Plot

[+ Standardized Fesid. vz Indes (Time] Murmber of Extreme Points To ldentify:

I | Data with Fit [+

— Partial Rezidual Flot Options
[~ Partial Besiduals

— Dverlaid Plots

™ Residualz Normal 30

[~ Estimated Residual Density I Inclide Parial Fit

I™ | Ihclude Fugplot

I™ | Common 'r-axis Seale

ak. I Eancell .-'l'«pplyl I<| >| curment Help |

Figure 2.2: The Linear Regression Dialog: Plot Page
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Click on the tabs labeled Results, Plot and Predict to look at those
dialog pages. You will notice that the Results and Predict pages are
identical to those of the Linear Regression dialog in Spotfire S+.
However, the Plot page shown in Figure 2.2 is different in that it has
several new Plots region entries: Std. Resid. vs. Robust Distances,
Estimated Residual Density, Standardized Resid. vs. Index (Time) and Data
with Fit. The latter is greyed out when there is more than one
independent variable. The Plot page also has a new Overlaid Plots
region with the entries: Residuals Normal QQ and Estimated Residual
Density. The latter are only available when you have chosen the
default choice LS + Robust on the Model page.

We have made the default choices of plots indicated by the checked
boxes. This will encourage you to quickly compare the LS and robust
versions of these plots and quickly determine whether or not there are
any outliers in the data, and whether or not the outliers have an
impact on the least squares fit. In the Number of Extreme Points to
Identify text box, replace the 3 by 4.

Click OK to compute both the LS and robust fits, along with the four
diagnostic comparison plots and other standard statistical summary
information. The results appear in a Report window and four tabbed
pages of a Graph Sheet, respectively.

The Diagnostic Each of the Graph Sheet pages contains a Trellis display for the LS
Plots and robust fit, as shown below.

Normal QQ-Plots As seen in Figure 2.3, the normal QQ-plot for the LS fit residuals

of Residuals shows at most one outlier, while the one for the robust fit reveals four
outliers. The outliers are those points that fall outside the 95%
simulation envelopes for the normal qqg-plot, shown as dotted lines.
This reveals one of the most important advantages of a good robust fit
relative to a least squares fit: the least squares fit is highly influenced
by outliers in such a way that the outliers are not clearly revealed in
the residuals, while the robust fit clearly exposes the outliers.

You also note that if you ignore the outliers, a normal distribution is a
pretty good model for the residuals in both cases. However, the slope
of the central linear portion of the normal QQ-plot of the residuals for
the robust fit is noticeably smaller than that for the LS fit. This
indicates that the normal distribution fit to the robust residuals,

20
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Normal QQ-Plot of Residuals
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Figure 2.3: LS and Robust Normal QQ-Plots of Residuals: stack.dat

ignoring the outliers, has a substantially smaller standard deviation
than the normal distribution fit to the LS residuals. In this sense, the
robust method provides a better fit to the bulk of the data.

Figure 2.4 displays the (kernel) probability density estimates for the
residuals for the least squares and robust fits, and it clearly reveals the
existence of outliers that adversely influence the LS fit. The story here
is consistent with that provided by the normal QQ-plot comparisons:
you see that density estimate of the LS residuals is much broader in
the central region than that of the robust residuals, and is rather
skewed and not centered on zero. The density estimate of the
residuals for the robust fit is very compact and centered on zero in the
central region, and exhibits two distinct bumps that indicate the
presence of outliers. From this point of view, the robust fit again
provides a better fit to the bulk of the data and indicates the presence
of outliers.

21
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Robust Linear Regression

Kernel Density of Residuals
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Figure 2.4: LS and Robust Density Estimates of Residuals: stack.dat

A highly useful plot of scaled residuals versus robust distances of the
predictor variables was invented by Rousseeuw and van Zomeren
(1990). For both the LS and robust fits, the robust distances are the
Mabhalanobis distances based on a robust covariance matrix estimate
for the predictor variables, as described in the section Theoretical
Details. A large robust distance for a predictor variable indicates that
the predictor variable has leverage that might exert undue influence on
the fit. The scaled residuals for the LS fit are the residuals divided by
the standard error of the residuals. The scaled residuals for the robust
fit are the residuals divided by a robust scale estimate for the
residuals, obtained as part of the robust fitting method.

The standardized residuals vs. robust distances plots for both the least
squares and robust fits are shown in Figure 2.5. Following Rousseeuw
and van Zomeren (1990), the horizontal dashed lines are located at
+2.5 and -2.5, and the vertical line is located at the upper .975 percent
point of a chi-squared distribution with p degrees of freedom, where p
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= 3 in this case. Points outside the horizontal lines are regarded as
residual outliers, and points to the right of the vertical line are
regarded as leverage points or x-outliers.

Standardized Residuals vs Robust Distances
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Figure 2.5: LS and Robust Standardized Residuals vs. Robust Distances: stack.dat

In this case the LS fit produces no residuals outliers and four x-
outliers, whereas the robust fit produces four residuals outliers and
four x-outliers. Three of the four x-outliers for the robust fit are also
residuals outliers, while one x-outlier is not a residuals outlier. The
interpretation is that three of the x-outliers have substantial influence
on the LS fit, while the fourth x-outlier does not. The robust fit is not
much influenced by outliers, whether they occur in the response
space or the predictor space, or both.

This example illustrates the problem of outlier maskingin least squares
fits, i.e., the influence of outliers on the least squares parameter
estimates distorts the parameter estimates in such a manner that the
outliers can not be detected in plots of the LS residuals. The robust
estimate does not suffer from this problem.
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Standardized
Residuals versus
Index (Time)

The Statistics
Report

24

Figure 2.6 shows the standardized residuals vs. index (time) plots for
both the LS and robust fits. As in the previous plot, the standardized
residuals for the LS fit are the residuals divided by the standard error
of the residuals, and the standardized residuals for the robust fit are
the residuals divided by a robust scale estimate for the residuals. If the
response variable is a time series, then this plot is a time series plot.

From Figure 2.6, you can see that the LS fit does not reveal any
outlier, while the robust fit again clearly reveals the four outliers in
the data set: the first three occur at the startup of the underlying
chemical process and the other one in the end when the process is
shut down.

Standardized Residuals vs Index (Time)
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Figure 2.6: LS and Robust Standardized Residuals vs. Index (Time): stack.dat

The Report window contains the following results.

*** (Classical and Robust Linear Regression ***

Calls:

Robust ImRob(formula = Loss ~ Air.Flow + Water.Temp +
Acid.Conc., data = stack.dat, na.action = na.exclude)
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LS Im(formula = Loss ~ Air.Flow + Water.Temp +
Acid.Conc., data = stack.dat, na.action = na.exclude)

Residual Statistics:
Min 1Q Median 3Q Max
Robust -8.6299 -0.6713 0.3594 1.1507 8.1740
LS -7.2377 -1.7117 -0.4551 2.3614 5.6978

Coefficients:
Value Std. Error t value Pr(>|t])

Robust (Intercept) -37.6525 5.0026 -7.5266  0.0000
LS (Intercept) -39.9197 11.8960 -3.3557 0.0038
Robust Air.Flow 0.7977 0.0713 11.1886  0.0000
LS Air.Flow 0.7156 0.1349 5.3066 0.0001
Robust Water.Temp 0.5773 0.1755 3.2905 0.0043
LS Water.Temp 1.2953  0.3680 3.5196 0.0026
Robust Acid.Conc. -0.0671 0.0651 -1.0297 0.3176
LS Acid.Conc. -0.1521 0.1563 -0.9733  0.3440

Residual Scale Estimates:
1.837 on 17 degrees of freedom
: 3.243 on 17 degrees of freedom

Proportion of variation in response(s) explained by
model(s):

Robust : 0.6205
LS : 0.9136

Bias Tests for Robust Models:

Robust:
Test for Bias:
Statistics P-value
M-estimate 2.75 0.60
LS-estimate 2.64 0.62

The standard errors, the t-statistics, and the p-values of the robust
coefficient estimates for the robust fit are themselves robust because
they are computed using a robust covariance matrix for the
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parameter estimates. The Proportion of variation in response explained by
model, or multiple R2, for the robust fit is a robust version of the
classical least-squares R%

There is also a Zest for Bias in the summary statistics provided in the
Report window. This provides two statistical tests of the bias: the first
for bias of the final M-estimate relative to a highly robust initial
estimate, and the second for the bias of the LS estimate relative to the
final M-estimate. In this example, the p-values for these tests are .60
and .62, indicating that for both comparisons there is little evidence of
bias.

Read the section Theoretical Details to find out how these robust
inference quantities are computed.

COMPUTING LS AND ROBUST FITS AT THE COMMAND
LINE

Computing If you prefer to work at the Spotfire S+ command line, you can use the

Both LS and fit.models function in the Robust Library to compute both an LS

Robust Fit and a robust linear model fit and store them as a single S-PLUS object,
obust Fits say stack.fits:

> stack.fits <- fit.models(1ist(Robust = "ImRob",
+ LS = "1Im"), Loss ~. , data = stack.dat)

Now view a brief summary of the results:

> stack.fits

Calls:
Robust ImRob(formula = Loss ~ ., data = stack.dat)
LS Im(formula = Loss ~ ., data = stack.dat)

Coefficients:
Robust LS
(Intercept) -37.6525 -39.9197
Air.Flow 0.7977 0.7156
Water.Temp 0.5773 1.2953
Acid.Conc. -0.0671 -0.1521

26



Computing LS and Robust Fits at the Command Line

Residual Scale Estimates:
Robust : 1.837 on 17 degrees of freedom
LS : 3.243 on 17 degrees of freedom

Use the summary function to obtain a more complete summary of the
model fitting results:

> summary(stack.fits)

Calls:
Robust TmRob(formula = Loss ~ ., data = stack.dat)
LS Im(formula = Loss ~ ., data = stack.dat)

Residual Statistics:
Min 1Q Median 3Q Max
Robust -8.6299 -0.6713 0.3594 1.1507 8.1740
LS -7.2377 -1.7117 -0.4551 2.3614 5.6978

Coefficients:
Value Std. Error t value Pr(>|t]|)

Robust (Intercept) -37.6525 5.0026 -7.5266  0.0000
LS (Intercept) -39.9197 11.8960 -3.3557 0.0038
Robust Air.Flow 0.7977 0.0713 11.1886  0.0000
LS Air.Flow 0.7156 0.1349 5.3066 0.0001
Robust Water.Temp 0.5773  0.1755 3.2905 0.0043
LS Water.Temp 1.2953  0.3680 3.5196  0.0026
Robust Acid.Conc. -0.0671 0.0651 -1.0297  0.3176
LS Acid.Conc. -0.1521 0.1563 -0.9733  0.3440

Residual Scale Estimates:
Robust : 1.837 on 17 degrees of freedom
LS : 3.243 on 17 degrees of freedom

Proportion of variation in response(s) explained by
model(s):

Robust : 0.6205
LS : 0.9136
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Correlations:
Robust

(Intercept) Air.Flow Water.Temp Acid.Conc.

(Intercept) 1.0000

Air.Flow 0.0049 1.0000
Water.Temp -0.0828 -0.7077 1.0000
Acid.Conc. -0.8442 -0.2885 -0.0453 1.0000
LS

(Intercept) Air.Flow Water.Temp Acid.Conc.

(Intercept) 1.0000

Air.Flow 0.1793 1.0000
Water.Temp -0.1489 -0.7356 1.0000
Acid.Conc. -0.9016 -0.3389 0.0002 1.0000

Bias Tests for Robust Models:

Robust:
Test for Bias:

Statistics P-value

M-estimate 2.75 0.60

LS-estimate 2.64 0.62

The Diagnostic You can also make comparison plots with the plot function:

Plots
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> plot(stack.fits)

Make plot selections (or 0 to exit):

0 N O O B W N

9:

: plot:
: plot:
: plot:
: plot:
: plot:
: plot:
: plot:
: plot:
plot:

A1l

Normal QQ-Plot of Residuals

Estimated Kernel Density of Residuals
Robust Residuals vs Robust Distances
Residuals vs Fitted Values

Sqrt of abs(Residuals) vs Fitted Values
Response vs Fitted Values

Standardized Residuals vs Index (Time)
Overlaid Normal QQ-Plot of Residuals

10: plot: Overlaid Estimated Density of Residuals
Selection(s): 9, 10
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Note that in the Robust Library, you can select more than one plot
from the above menu of choices, which was not possible before. On
Windows platform, this will result in a multi-paged Graph Sheet,
with each plot on one page. In this case, both the overlaid normal
QO-plot and residuals density are shown in Figure 2.8. One thing you
might have noticed is that in the overlaid normal QOQ-plot, the
residuals are plotted on the horizontal axis, instead of on the vertical
axis as shown in Figure 2.3 for the Trellis display. This makes it easier
to compare the normal QQ-plot with the density plot. In Figure 2.8
you can easily visualize the impacts of outliers in the robust fit.

Normal QQ-Plot of Residuals
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Figure 2.7: Overlaid Normal QQ-Plot of Residuals
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Kernel Density of Residuals
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Figure 2.8: Overlaid Kernel Density of Residuals

Computing Use the function TmRob to compute only a robust fit:
Only a Robust > stack.robfit <- TmRob(Loss ~., data = stack.dat)
Fit > stack.robfit

Call:

TmRob(formula = Loss ~ ., data = stack.dat)

Coefficients:
(Intercept) Air.Flow Water.Temp Acid.Conc.
-37.65246 0.7976856 0.5773405 -0.06706018

Degrees of freedom: 21 total; 17 residual
Residual scale estimate: 1.837073

You can also use the summary and plot functions to get more
extensive summary results and plots, just as in the case of a least
squares fit “1m” object.
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Computation  For the size of most regression problems, the robust regression
Time Required method requires a computationally intensive resampling method to
obtain an initial robust estimate of the regression parameters and
residual scale, as a starting point for computing the final robust
estimates. This initial estimate requires a number of samples and

corresponding computational time proportional to 2”, where p is the
number of regression parameters. Obviously when p is large, the
computation time can quickly become prohibitive.

Recently Pena and Yohai (1999) proposed a fast procedure for
obtaining a reliable initial regression estimate, which can be used as a
starting point for high efficiency estimates. Although the initial
estimates from the fast procedure are not guaranteed to have high
breakdown point, Pena and Yohai (1999) showed that they are
comparable with other available robust estimates for a wide range of
problems.

By default, Spotfire S+ employs the random resampling algorithm
for initial estimates when the number of variables is smaller than 15,
and switches to the fast procedure when the number of variables is
greater than 15.

The tables below compare the computation times required by the
resampling algorithm and the fast procedure, as a function of p and
the number of observations 7, for Spotfire S+ on a Sun SPARC Ultra-
60 with 1024MB memory.

Table 2.1: Spotfire S+ User Time with Random Sampling Initial Estimate Method

n =50 n=100 | n=150 | n=200 | n=250 | n=300 | n=500

p=>5 0.20 0.21 0.22 0.24 0.25 0.29 0.34

p=10 0.73 0.90 1.08 1.26 1.49 1.67 2.59

p=15 28.54 34.82 41.86 49.84 58.01 64.73 92.98

p=20 1580.47 1812.71 | 2099.97 | 2444.63 | 2663.29 | 2942.46 | 4001.77
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Table 2.2: Spotfire S+ User Time with Pena-Yohai Fast Initial Estimate Method

n=50 |n=100 |[n=150 |n=200 | n=250 | n=300 | n=>500
p=>5 0.20 0.22 0.23 0.26 0.28 0.28 0.36
p=10 0.28 0.32 0.34 0.37 0.44 0.53 0.58
p=15 0.36 0.44 0.57 0.53 0.60 0.82 1.03
p=20 0.51 0.71 0.85 111 115 1.65 2.10
p=230 N/A 1.05 1.94 2.08 2.02 2.39 6.34
p=>50 N/A 3.24 4.38 5.52 17.24 14.91 14.18
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In the case you choose to use the random resampling initial estimate
whe pis greater than 15 by choosing it on the Advanced tab of Robust
Linear Regression dialog, Spotfire S+ informs you in the case of
long computation time requirements for the robust regression method
by printing out estimates of the remaining computing time. The printout
occurs in the Report window on the NT/Windows platform, as
shown in Figure 2.9 (and in the Command Window on a UNIX/
LINUX platform).

NOTE: For small values of n and p, Spotfire S+ automatically does
exhaustive sampling for the initial estimate. Specifically, this happens

for n <250 for p= 2, and for n <80 for p = 3. Otherwise, random
resampling is used as the default for p < 16.
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00:01:27 left
00:01:16 left
00:01:03 left

P w T+ A+ nd+ BB+ 7

Figure 2.9: Computation Time Left in Report Window

The printout of the remaining time estimate using the usual
hours:minutes:seconds format. So in the above example, the first
printout states that approximately one minute and twenty-seven
seconds remain, and the time between successive printouts is
approximately twelve seconds.
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Fitting Models
with Both
Numeric and
Factor
Variables

34

In the event you want to defer the computation of the robust estimate
until another time such as over your coffee break or lunch, press ESC
once on an Windows version (control-C on a UNIX/LINUX
version) and wait until the error message appears in the Messages
window as shown.

Often you fit linear models with both numeric and factor variables.
When the factor variables have many levels, you may be fitting a
linear model with considerably more independent variables than
fifteen or so. An example of this type is provided by the data set
wagner.dat included with this library, and a portion of this data set is
displayed below. For this data set y is the response variable.
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This data set contains four numeric variables: PA, GPA, HS, GHS, two
factor variables Region and Period, and response variable y. Region
has twenty-one levels and Period has three levels, resulting in a total
of 4 + 1 + 20 + 2 = 27 independent variables.

If you try to fit a linear model using the function 1mRobMM, available in
current versions of Spotfire S+, you will find that it takes a long
time (some hours) to compute the fit (or the algorithm fails due

to singularity problems). This is because TmRobMM uses a subsampling
approach with exponential complexity in the number of independent
variables, as described earlier.

The Robust Library deals with this problem by using a new
alternate S/M-estimate computing algorithm due to Maronna and
Yohai (1999) for robustly fitting linear models which contain factor
variables with possibly many levels. Spotfire S+ automatically uses
the new S/M-estimate algorithm whenever the linear model

data contains at least one factor variable. For further information see
the Theoretical Details section Alternating S and M Initial Estimate.

Compute LS and robust fits to wagner.dat in a manner similar to the
one you used for the stack loss data set stack.dat. Open the Robust
Library data sets in the Object Explorer and select wagner.dat. The
right-hand pane of the Object Explorer displays the seven variables in
wagner.dat. First select the dependent (response) variable y. Then
select the other variables by pressing the CTRL while selecting them
(you have to do it this way for wagner.dat because the response
variable is not the top icon, and so you can not select it first and then
SHIFT select the bottom icon to get all the dependent variables as
you did with stack.dat). Now choose Robust » Linear Regression
from the menubar, and proceeding just as you did with the stack loss
data set. The resulting residuals diagnostic plot comparisons for the
LS and robust fits are shown below.

(Alternatively, you could skip selecting variables in the Object
Browser and just select them in the Robust Linear Regression dialog
box).

Note that when a linear model contains factor variables as well as
continuous (numeric) variables, robust distances are computed only
for the continuous variables (it does not make much sense to look at
robust distances for factor variables, which are represented by values
of zero and one for the corresponding independent variables).

35



Chapter 2 Robust Linear Regression

Normal QQ-Plot of Residuals
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Figure 2.10: LS and Robust Normal QQ-Plots of Residuals: wagner.dat
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Figure 2.11: LS and Robust Density Estimates of Residuals: wagner.dat
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Standardized Residuals

Figure 2.12: LS and Robust Standardized Residuals vs. Robust Distances:

Computing LS and Robust Fits at the Command Line

Standardized Residuals vs Robust Distances
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Figure 2.13: LS and Robust Standardized Residuals vs. Index (Time): wagner.dat
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Figure 2.10-Figure 2.13 show quite dramatic differences between the
LS and robust fits: The LS fits give no hints whatsoever of outliers,
and the robust method provides a good fit to the bulk of the data and
exposes a number of outliers quite clearly.

The Report window output for this example is shown below:

*** (Classical and Robust Linear Regression ***

Calls:
Robust : TmRob(formula =y ~ Period + GHS + HS + GPA + PA +
Region, data = wagner.dat, na.action = na.exclude)

LS : ITm(formula =y ~ Period + GHS + HS + GPA + PA +
Region, data = wagner.dat, na.action = na.exclude)

Residual Statistics:
Min 1Q Median 3Q Max
Robust : -21.0047 -1.6697 -0.2091 1.5360 20.4836
LS : -10.2302 ~-3.4272 -0.2351 3.4048 13.2492

Coefficients:
Value Std. Error t value Pr(>|t])

Robust (Intercept) -40.4171 73.5980 -0.5492  0.5863
LS (Intercept) 4.7556 23.5957 0.2015 0.8414
Robust Periodl  4.3807 2.6139 1.6759  0.1024
LS Periodl 1.9477 1.4944 1.3033 0.2007
Robust Period2 3.9658 1.1962 3.3152 0.0021
LS Period2 1.0876 1.0953 0.9930 0.3273
Robust GHS  2.7902 2.0520 1.3597 0.1824
LS GHS  6.1485 1.7159 3.5832 0.0010
Robust HS  3.7261 5.4735 0.6808 0.5004
LS HS 5.0899 2.1070 2.4157  0.0209
Robust GPA  0.3912 1.3309 0.2939 0.7705
LS GPA  0.0737 0.5583 0.1320 0.8958
Robust PA 1.1309 1.8571 0.6089 0.5464
LS PA -0.4104 0.7058 -0.5815 0.5645
Robust Regionl 2.1205 8.6427 0.2453  0.8076
LS Regionl -5.1072  5.5911 -0.9135 0.3671
Robust Region2  8.9457  7.7568 1.1533  0.2564
LS Region2z  2.1396  3.5075 0.6100  0.5457
Robust Region3  3.6278  3.2025 1.1328 0.2648
LS Region3 1.2105 1.5928 0.7600 0.4522
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Robust Region4 1.6062 2.2043 0.7286 0.4709
LS Region4 -0.1202 1.1281 -0.1065 0.9158
Robust Region5 -2.8809 1.9829 -1.4529  0.1549
LS Regionb5 -2.5068 0.8667 -2.8925 0.0064
Robust Region6 -0.3746 1.7531 -0.2137 0.8320
LS Region6 -0.7652 0.7343 -1.0421 0.3043
Robust Region7 1.3170 1.3252 0.9938 0.3269
LS Region7 -2.4701 1.2616 -1.9580 0.0580
Robust Region8 0.0130 0.7499 0.0173 0.9863
LS Region8  0.4503 0.4824 0.9334 0.3568
Robust Region9 -0.0148 0.4902 -0.0302 0.9761
LS Region9 -0.0349 0.4032 -0.0865 0.9316
Robust Regionl0 -0.5491 0.5011 -1.0959 0.2804
LS Regionl0  0.2104 0.4260 0.4939 0.6244
Robust Regionll -0.2878 0.4718 -0.6100  0.5457
LS Regionll -0.0978  0.3249 -0.3011 0.7650
Robust Regionl2  0.1403 0.7538 0.1861 0.8534
LS Regionl2  0.5725 0.3422 1.6729  0.1030
Robust Regionl3 -0.2356 0.6115 -0.3854 0.7022
LS Regionl3 -0.1733 0.3510 -0.4937 0.6245
Robust Regionl4 -0.7599 0.5812 -1.3075 0.1993
LS Regionl4 -0.2735 0.3100 -0.8823 0.3835
Robust Regionl5 -1.2966 0.5723 -2.2655 0.0296
LS Regionlb -0.3064 0.3279 -0.9343 0.3564
Robust Regionle -0.2686  0.5598 -0.4798 0.6343
LS Regionle  0.3953  0.4052 0.9758  0.3357
Robust Regionl7  0.0871 0.5872 0.1483 0.8830
LS Regionl7 -0.0266  0.2529 -0.1051 0.9169
Robust Regionl8 -0.2807 0.5688 -0.4936 0.6246
LS Regionl8 0.5132 0.4305 1.1921 0.2410
Robust Regionl9 -0.3779 0.1529 -2.4712 0.0183
LS Regionl9 -0.0294 0.2137 -0.1377  0.8912
Robust Region20 -0.8073 0.7121 -1.1338 0.2644
LS Region20 -1.3662  0.4549 -3.0033 0.0048

Residual Scale Estimates:
Robust : 2.68 on 36 degrees of freedom
LS : 6.229 on 36 degrees of freedom
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Proportion of variation in response(s) explained by
model(s):

Robust : 0.596
LS : 0.773

Bias Tests for Robust Models:
Robust:
Test for Bias:
Statistics P-value
M-estimate 17.17 0.927
LS-estimate 3.41 1.000



Robust Model Selection

ROBUST MODEL SELECTION

It is not enough for you to robustly fit a linear model when you are
trying to decide which of two linear models with different
independent/predictor variables to use, or which of several
alternative linear models with different sets of independent/predictor
variables to use. You also need robust test statistics and robust model
selection criteria. In this section we first briefly mention robust t-tests,
and then show you how to use Spotfire S_ to obtain robust F-tests and
robust Wald tests for determining which of two candidate models is
preferred. After that we show you how to use a new robust model
selection criterion called Robust Final Prediction Error (RFPE)
criterion for selecting a “best” model from a set of several candidate
models.

Since we have not yet implemented a dialog access to use the robust
tests and RFPE, we show you how to use them at the command line.

Robust F Tests The data set sim.dat is a simulated data set provided in the Robust
Library. The data was created by first generating four independent
standard normal random variables, x1, x2, x3, x4, and then added
outliers in special locations. Then we generated the response y
according to the linear model equation:

y = bix1 +byx2+byx3 +byx4+u

where the first two coefficients have value one and the third and
fourth coefficients have value zero, and the error term « is normally
distributed.

Use the function pairs
> pairs(sim.dat)

to obtain the pairwise scatter plots of the five-dimensional data
consisting of the response and four independent variables. The result
is shown in the figure below.
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Figure 2.14: Pairwise Scatter plots of Simulated Linear Model Data with Outliers

Now make two least squares linear model fits, one with just the first
two variables and one with all four variables:

> Im.modl12 <- Tm(y ~ x1+x2, data = sim.dat)

> Tm.mod1234 <- Tm(y ~ x1+x2+x3+x4, data = sim.dat)

The short summary of the 1m.mod12 fit is as follows:
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> Tm.mod12

Call:
Tm(formula =y ~ x1 + x2, data = sim.dat)

Coefficients:
(Intercept) x1 X2
2.368499 -0.175945 0.0217107

Degrees of freedom: 100 total; 97 residual
Residual standard error: 1.801764

The coefficients are nowhere near their common true values of one. If
you use the summary function on 1m.mod12, you will find that these
coefficient estimates are not significantly different than zero.

The short summary of the Tm.mod1234 fit is:

> Tm.mod1234

Call:
Tm(formula =y ~ x1 + x2 + x3 + x4, data = sim.dat)

Coefficients:
(Intercept) x1 x2 x3 x4
0.8810634 0.05003338 0.1185325 0.4257607 0.3557092

Degrees of freedom: 100 total; 95 residual
Residual standard error: 1.511241

The first two coefficients are nowhere near their common true value
of one, while the third and fourth coefficients are far from their
common true value of zero. If you use the summary function on
Tm.mod1234, you will find that the first two coefficients are not
significant, while the third and fourth are highly significant. These
results are quite opposite of the truth.

Now use the anova function to compute a classical F-test of whether or
not the third and fourth coefficients belong in the model:
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> anova(Im.modl2, 1m.mod1234)

Analysis of Variance Table

Response:

Terms ResDf RSS Test Df SS F Value
1 x1 + x2 97 314.8961
2 x1+x2+x3+x4 95 216.9657 +x3+x4 2 97.93038 21.43976

Pr(F)
1
2 2.068392e-008

The (classical) F-test erroneously tells you that the third and fourth
variables should be in the model!

Now make two robust model fits, the first using the first two variables
x1 and x2, and the second using all four variables x1, x2, x3, x4.

> rob.modl2 <- TmRob(y ~ x1+x2, data = sim.dat)

> rob.mod1234 <- TmRob(y ~ x1+x2+x3+x4, data = sim.dat)
The short summaries of these two robustly fitted models are as
follows:

> rob.mod12

Call:
TmRob(formula = y ~ x1 + x2, data = sim.dat)

Coefficients:
(Intercept) x1 X2
-0.04584343 1.072822 1.015621

Degrees of freedom: 100 total; 97 residual
Residual scale estimate: 0.7566563



Robust Wald
Tests

Robust Model Selection

> rob.mod1234

Call:
TmRob(formula =y ~ ., data = sim.dat)

Coefficients:
(Intercept) x1 x2 x3 x4
-0.02257299 1.072947 1.017503 -0.005768044 -0.01629436

Degrees of freedom: 100 total; 95 residual
Residual scale estimate: 0.7776201

You notice that rob.mod12 provides coefficient estimates that are quite
close to the true values of one. You also notice that rob.mod1234
provides estimates for the first two coefficients that are quite close to
their true values of one, and estimates for the third and fourth
coefficients that are quite close to their true values of zero.

Now use the anova function on these two robustly fitted models to
compute a robust I test:

> anova(rob.modl2,rob.mod1234)

Response: y

Terms Df RobustF P(>RobustF)
1 x1 + x2
2 x1 + x2 + x3 + x4 2 0.02121456 0.9890456

The test accepts the null hypothesis that the third and fourth
coefficients are not significant.

The default test used by anova is a robust F test. You can also use
anova to compute a robust Wald test based on robust estimates of the
coefficients and covariance matrix. To use the robust Wald test, use
the optional argument test = “RWald”:

> anova(rob.modl2,rob.mod1234, test = "RWald")
Response: y

Terms Df Wald P(>Wald)
1 x1 + x2
2 x1 + x2 + x3 + x4 2 0.07997027 0.9608037

which gives a result quite similar to that of the robust F test.
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Robust FPE for Although many robust estimators have been constructed in the past,
Model the issue of robust model selection has not received its due attention.
For robust model selection, Spotfire S+ provides a Robust
Final Prediction Error (RFPE) criterion proposed by V. Yohai (1997).
This criterion is a robust analogue to the Akaike’s Final Prediction
Error (FPE) criterion.

Selection

You may use the RFPE criterion to choose a best model when
robustly fitting linear models from the Robust Linear Regression
dialog by selecting the Robust fitting option and checking the
stepwise (backwards) check box, as shown in the figure 2.15 below.

Robust Linear Regression 0] =]
b odel | Results I Plaot | Predict I Advanced "
—Data — Fitting Option

Cata Set: Istack.dat vI " LS + Robust

) LS
“Wieights: I TI & Robust
Subset Bows with; I

¥ Omit Bows with Missing alues

— M odel Selection

—Yarables V¥ stepwize [backwards)
Dependent j — Save Model Object
Independent; oLl - Save Az I

Loss

Air, Flow

W ater Temp
Arid.Conc. -

Create Formula |

— Formula

Forrnula; ILl:uss ~ Air Flow + wWater, Temp + Acid. Conc,

o0k | Cancel | appl | 1 o[ cunent Help |

Figure 2.15:
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When considering a variety of model choices with respect to several
different choices of predictor variables, you choose the model with
the smallest value of RFPE. See the section Theoretical Details for
further information.

The RFPE criterion is used by the function step to compute a
backward stepwise robust method of model selection (only backward
stepwise robust regression is available in this release of the Robust
Library). For example, when you use step on the robustly fitted
model rob.mod1234:

> step(rob.mod1234)

Start: RFPE= 79.7096
y ~x1 + x2 + x3 + x4

Single term deletions

Model:
y ~x1 + x2 + x3 + x4

scale: 0.7776201

Df RFPE

<none> 79.7096
x1 1 117.1077

x2 1 143.8299

x3 1 79.2279

x4 1 79.2475

Step: RFPE = 79.2279

y ~x1 + x2 + x4

Single term deletions

Model:
y ~x1 + x2 + x4

scale: 0.7776201
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<none>
x1
x2
x4

Step:

Df
79.
1 124.
1 129.
1 78.

RFPE =

y ~ x1 + x2

RFPE
2279
4032
2550
7647

78.7647

Single term deletions

Model:

y ~ x1 + x2

scale:

<none>
x1
X2

0.7776201

Df
78.
1 129.
1 160.

RFPE
7647
0664
7258

Call:
TmRob(formula = y ~ x1 + x2, data = sim.dat)

Coefficients:
(Intercept) x1 X2
-0.04584343 1.072822 1.015621

Degrees of freedom: 100 total; 97 residual
Residual scale estimate: 0.7566563

Recall that sim.dat was generated by a model in which only the two
coefficients associated with x1 and x2 were non-zero and have the
common value one. RFPE has clearly chosen the correct robustly
fitted model!



Advanced Options For Robust Regression

ADVANCED OPTIONS FOR ROBUST REGRESSION

In this section, you will learn how to change the default settings of
some control parameters for the robust estimator so as to obtain
particular estimates that fit your purpose. You can change those
options either through a GUI dialog for Spotfire S+ or from the
command line. From the command line, most of the default settings
can be changed through the functions 1mRob.robust.control and
TmRob.genetic.control. Only the commonly used control
parameters are introduced in this section. For the default settings of
other parameters and how to change them, see the online help file for
1mRob.robust.control and 1mRob.genetic.control.
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Launch the Selecting the Advanced tab in the dialog shown in Figure 2.1 brings
GUI Dialog up the following page:
Robust Linear Regression -10] x|
todel | Results I Plat | Predict I &dvanced |
— Final Estimatar — Initial E stimator

E ztimate: bk - Sampling Method: I.-'i'-.uh:u "I

Lozs Function: IDptimaI vI — 5 ampling Control
Efficiency: ||:|_'_E| bax. Samples: I,&.,ut.;.

. . Random Seed: |1 33

— M aximurn [terations
Final t-estimate: IEEI Fapulation Size; I.-'i'-.uh:u
Feszid. Scale; IEEI [Fenetic Births: I.-i‘-.utcu

5-Fefinement; IEEI fliaw, [beeryations:
— Talerance Cantral I.-'l'-.utcu

Convergence: ID.UDU'I b utation Prab: I.i‘-.uh:u - I

Scale Threshold:  |1e6 Stocks: I.-i‘-.utcu vI
Rank Threshald: I'I ek Stock Prob: I.E‘-.utcu vI

o0k | Cancel | appl | 1 o[ cunent Help |

Figure 2.16: The Robust Regression Advanced Page

Adaptive Robust For the final estimate, Spotfire S+ uses the MM-estimate briefly described

Estimate in the section Overview of the Method: A Special M-Estimate on
page 17. Alternatively, you can also use a very new adaptive robust
estimate recently introduced by Gervini and Yohai (1999). This
estimate has the property that in large samples it is fully efficient, i.e.,
has 100% efficiency, when the data is Gaussian. Thus the estimator
performs equally as well as least squares in large samples. At the same
time the estimator minimizes bias due to outliers nearly as well as the
MM-estimate. See the section Theoretical Details for more
information on this new estimator (not yet added in the current
documentation).
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To choose the adaptive robust estimate from the dialog, you simply
click the down arrow to the right of the Estimate list box, and then
select Adaptive from the drop-down list.

From the command line, you can use the TmRob.robust.control
optional argument final.alg. For example,

> oil.tmp <- TmRob(0il ~ Market, data = oilcity,
+ robust.control = TmRob.robust.control(final="adaptive”))

Efficiency at If the final MM-estimates are chosen, they have a default asymptotic
Gaussian efficiency of 90% compared with the LS estimates, when the errors
Model are normally distributed. However, sometimes an efficiency of 90%

ode may not be what you exactly want. For example, you might prefer
85% or 95%. Keep in mind that when you increase the efficiency from
the default setting of 0.9 you get less protection from bias due to
outliers, and conversely if you want more protection from bias due to
outliers, use a smaller efficiency, e.g., 0.85 or 0.8.

To change the efficiency level, you can either type your desired
Gaussian model efficiency in the Efficiency field, or use the
TmRob.robust.control optional argument efficiency from the
command line:

> oil.tmp <- TmRob(0il ~ Market, data = oilcity,
+ robust.control = TmRob.robust.control(efficiency=0.95))
> coef(oil.tmp)

(Intercept) Market
-0.0739893 0.8491134

M-Estimate The Loss Function list box in the Final Estimator region displays
Loss Function the default choice Optimal, indicating that Spotfire S+ uses as its default
the optimalloss function p discovered by Yohai and Zamar (1998) for
the final M-estimate (see Theoretical Details). This optimal loss
function is shown in the upper right of Figure 2.17, and the

corresponding psi-function y = p” is shown in the lower right of that

figure. The exact forms of the optimal p andy functions can be found
in the section Theoretical Details.
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If you wish, you can also choose to use the Tukey bisquare loss

function p shown in the upper left of Figure 2.17 by selecting
Bisquare from the drop-down list. The corresponding Tukey

bisquare psi-function y is shown in the lower left of Figure 2.17.
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Figure 2.17: Available Loss Functions
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To choose different settings of the loss function from the command
line, you use the 1mRob.robust.control optional argument weight as

follows:
> control <- TmRob.robust.control(weight = c(“Bisquare”,
+ “Optimal”))
> oil.tmp <- 1TmRob(0il ~ Market, data = oilcity,
+ robust.control = control)
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> coef(oil.tmp)

(Intercept) Market
-0.07914363 0.8450448

In the above commands, the rescaled bisquare function is used for the
initial S-estimates, and the optimal loss function is used for the final
M-estimates.

Optimizer Describe maximum number of iterations and tolerance control

Parameters constants here in the next release. The current default settings are
reasonable.

Confidence Spotfire S+ provides two bias tests for the default MM-estimate:

Level of Bias one testing the bias of least squares coefficients against final M-estimates,
and the other testing the bias of final M-estimate against the initial

Test robust estimates.
To compute these tests for the model fit 0i1.tmp created in the above
subsection, use the following command:
> test.ImRob(oil.tmp)
Test for Bias
Statistics P-value
M-estimate 1.99 3.69e-001
LS-estimate 23.58 7.57e-006
The results show that the least squares estimate is biased relative to
the final M-estimate, while the bias of the final M-estimates relative to
the initial S-estimate is not significant.
By default, the level of significance of the tests is set at 10%. To change
the level of the tests, you should specify the argument Tevel for the
test.1mRob function. A higher value of Tevel will reject the final
M-estimates more often, and a lower value of Tevel will reject the
final M-estimates less often.
Resampling When computing the initial S-estimates, Spotfire S+ uses an exhaustive
Algorith ms resampling scheme for sufficiently small combinations of n and p, and

otherwise uses a random resampling scheme when the number of
numeric predictor variables p is no greater than 15. The random
resampling scheme is designed so that a high breakdown point is
achieved with high probability. When the number of numeric
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Random
Resampling
Parameters

Genetic
Algorithm
Parameters
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predictors is greater than 15, Spotfire S+uses a fast initial
estimate due to Pena and Yohai (1999). You can over-ride this default
if you wish, at both the GUI and the command line. You can also use
a genetic algorithm for the initial S-estimate if you wish .

To choose a particular resampling algorithm from the dialog, you
simply click the down arrow to the right of the Sampling Method list
box, and then pick one from the drop-down list. These algorithms can
also be selected from the command line by using the initial.alg
argument to the function TmRob.robust.control, for which the valid
choices are "Random", "Exhaustive" and "Genetic". Note that
exhaustive resampling is only used/recommended when the sample
size is small and there are less than 10 predictor variables.

Random resampling is controlled by two parameters: a random seed
and the number of subsamples to draw. By default, the number of

subsamples is set at[4.6 - 2”1, where p is the number of explanatory

variables, and [ ] denotes the operation of rounding a number to its
closest integer. Note that this number will work fine if you have less
than 15 predictor variables. However, if you have more than 15
predictor variables, the default number may be too big for computing
in a reasonable time. To choose a different value for the number of
subsamples to draw, use the optional argument nrep as follows:

> o0il.tmp <- TmRob(0il ~ Market,data = oilcity, nrep = 10)

The seed of the random resampling can be controlled by specifying
the argument seed to TmRob.robust.control.

If you choose to use the genetic algorithm, the parameters for genetic
algorithm can be changed through the TmRob optional argument
genetic.control, the default of which is NULL. The optional argument
genetic.control should be a list, usually returned by a call to the
function 1mRob.genetic.control. To look at the arguments of the
function TmRob.genetic.control, use the following command:

> args(ImRob.genetic.control)

function(popsize = NULL, mutate.prob = NULL,
random.n = NULL, births.n = NULL, stock = Tist(),
maxslen = NULL, stockprob = NULL, nkeep = 1)
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For an explanation of the various arguments above, see the online
help file for the function 1tsreg.default.
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THEORETICAL DETAILS

Initial The key to obtaining a good local minimum of the M-estimation
Estimate When objective function when using a bounded, nonconvex loss function is

p is Not Too to compute a highly robust initial estimate BO. For models where the
number of variables p is not too large, namely for p less than 15,
Spotfire S+ does this by using the S-estimate method introduced
by Rousseeuw and Yohai (1984). The S-estimate is part of an overall
MM-estimate computational strategy proposed by Yohai, Stahel and
Zamar (1991), and supported by a number of robustness experts who
participated in the 1989 IMA summer conference on “Directions in
Robust Statistics and Diagnostics.”

Large

The S-estimate approach has as its foundation an M-estimate s of an
unknown scale parameter for observations y;, yy, .., y,, assumed to

be robustly centered (that is, by subtracting a robust location

estimate). The M-estimate s is obtained by solving the equation

where p is a symmetric, bounded function. It is known that such a
scale estimate has a breakdown point of one-half (Huber, 1981), and

that one can find min-max bias robust M-estimates of scale (Martin
and Zamar, 1989, 1993).

The following regression S-estimate method was introduced by
Rousseeuw and Yohai (1984). Consider the linear regression model
modification of Equation (2.1):

n

1 v~ B
n—pizp( B J = 22

=1
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For each value of B, we have a corresponding robust scale estimate

5(B). The regression S-estimate (which stands for “minimizing a

~0 .
robust scale estimate”) is the value B that minimizes s(P):

A

BO = argminB:v(B) (2.3)

This presents another nonlinear optimization, one for which the
solution is traditionally found by a random resampling algorithm,
followed by a local search, as described in Yohai, Stahel and Zamar
(1991). Spotfire S+ allows you to use a genetic algorithm in place of the
resampling algorithm, and also to use an exhaustive form of sampling

~0
algorithm for small problems. Once the initial S-estimate [ is
computed, the final M-estimate is obtained as the nearest local
minimum of the M-estimate objective function.

For details on the numerical algorithms used, see Marazzi (1993),
whose algorithms, routines and code were used in creating TmRob.

Fast Initial When the number of variables p is 15 or greater, the above S-estimate
Estimate for based on random sample is often requires too much computation
time for most users. Consequently Spotfire S+ uses a new “fast” initial
estimate due to Pena and Yohai (1999). Although their new fast
initial estimate is not guaranteed to have a high breakdown point,
these authors provided evidence that the method favors well relative

to other available robust estimates.

Large p

Alternating S  For models with factor variables (with possibly many levels), Spotfire S+
and M Initial uses a new initial estimate due to Maronna and Yohai. The new initial
estimate uses an alternating resampling based S-estimate for the
continuous (numeric) variables and a Huber type M-estimate with a
least absolute deviations (LAD) start for the factor variables. This
approach is based on the fact that for a model which contains only
factor variables, there are no leverage points among the predictor
variables and consequently LAD and Huber type M-estimates
provide good initial parameter estimates. In this overall approach, the
final estimate is the same as in the case of a linear model with only
continuous (numeric) variables.

Estimate
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Optimal and
Bisquare Rho
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Functions
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A robust M-estimate of regression coefficient B is obtained by
minimizing

where p(-;¢) is a convex weight function of the residuals with tuning

constant ¢. The derivative of p(-;c) is usually denoted by (-;c). For
both the initial S-estimate and the final M-estimate in S-PLUS, two
different weight functions can be used: Tukey’s bisquare function and
an optimal weight function introduced in Yohai and Zamar (1998).

Tukey’s bisquare functions p(-;c) and (-;c) are as follows:

p(ric) = C )6_ 36 )4 " 3(5 )2 il <

1 if [r| >c

6 1200\ 6\ .
weo = | o)) el ) s
1 if [r| >c¢



Theoretical Details

The Yohai and Zamar optimal functions p(-;c) and (-;c) are as

follows:
3.25¢° if |7 >3
C
) D) 4 6 .
orc) = | ¢ [1.792+h1€) +h2€) +h3€) +h4(zﬂ if2<?f 3
c
2
r if |7 <
2 c
0 if |7 >3
c
e ) _ r r 3 r 5 r 7 . r
Wric) = c[glg+g2 E) + 83 2) +g, - J1f2< . 3
r if |71 <2
c
where
81
ho =2l
)
g, = -1.944 2
g, = 1728 =7
57 6
g, = 0.016
84
h, = o4
+T 8

The Efficient Yohai and Zamar (1998) showed that the p and y functions given
Bias Robust above are optimal in the following highly desirable sense: the final
M-estimate has a breakdown point of one-half, and minimizes the
maximum bias under contamination distributions (locally for small
fractions of contamination), subject to achieving a desired efficiency
when the data are Gaussian.

Estimate
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Efficiency
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Robust
R-Squared
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The Gaussian efficiency of the final M-estimate is controlled by the
choice of the tuning constant c¢. As discussed in the earlier sections,
you can specify a desired Gaussian efficiency and Spotfire S+
automatically uses the correctc for achieving that efficiency.

The robust R2 is calculated as follows:

~0
Initial S-estimator 3
If an intercept term is included in the model, then
2 2
2 (n-Ds.—(n-p)s.

(n— l)si

R

~0 . e ~ .
where 5, = s° and s, is the minimized s(u), for a regression

model with only an intercept term with parameter p. If there

is no intercept term, replace (n— l)si in the above formula

with n:v(O)Q.

~1
Final M-estimator 3

If an intercept term L is included in the model, then

i) (ol
E)[E—O)_Z)( l 301 ]
y,--;l

29( 3‘0 J

where U is the location M-estimate corresponding to the local
minimum of

R’ =

i~ U
0,() = E{y - J
S

such that



Robust
Deviance

Robust F Test

Robust Wald
Test

Robust FPE
(RFPE)

Theoretical Details

0,( <0,(1)

where ].L* is the sample median estimate. If there is no

intercept, replace u with zero in the formula.

For an M-estimate, the deviance is defined as the optimal value of the

objective function on the ¢ -scale; that is:

~0
*  Initial S-estimator 3

~2 A0 ~0

D=s(B)=_()

»  Final M-estimator Bl
TAl
~0.2 Yi—X;
D=2 (5)- E(%J

The robust F-statistics is

o 10 (vimxeiB) (vi-xh B
Frop=—— _Z(p( - J)‘P( e JD
p—qn= oy (o8

where the subscript p indicates the predictor variables, coefficients,
and robust residuals scale for the “full” p parameter model, and the
subscript ¢ indicates similar quantities for the “smaller” ¢ parameter
model, i.e. ¢ <p.

See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986).

Ronchetti (1985) proposed to generalize the Akaike Information
Criterion (AIC) to robust model selection. The results therein mimic
the maximum likelihood approach thereby relying on an unbounded

p(-;¢) . But such an estimate has a zero breakdown point. Yohai (1997)
proposed an RFPE criterion which is a natural generalization of
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Akaike’s Final Prediction Error (FPE) criterion, and which is not tied
to the likelihood approach. RFPE is based on the use of a bounded

function p(-;c), and which should therefore retain a high breakdown
point.

This new RFPE is calculated as follows:

with

where [3 is the final M-estimate of 3, and r; = yi—xiTB. Note that

when p(u) = u’/ 2 , RFPE reduces to the Akaike’s classical FPE.
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The Robust Library enables you to robustly fit Generalized Linear
Models (GLIM’s) for response observations y, i = 1, .., n, that

follow one of the following two distributions:

The Binomial Distribution

)Mi(l_uz‘) j=0, ., n

PG, =) = ('j

where 0 1, <1 and n; is the number of binomial trials for observation
y;- When n; = 1 the observations are called y; Bernoulli trials. The

expected value of y; for the Binomial distribution is related to u; by:
Vi
El=Z)| = u
(nl') M

The Poisson Distribution:

P(yi=j) = exp(-) W/ jl  j=0, .

where u;>0. The expected value of y; for the Poisson distribution

1S:

E(yi) =L
In both of these cases you have a vector
T —
X = (X1, .o Xip

of pindependent explanatory variables, and corresponding vector

B" = By By - By



Overview of the Methods

of unknown regression coefficients, from which you form the linear
predictor

T
n=xp.
The linear predictor 1} and the expected value L, are related through
the link function g which maps i, to 1 :

n =g .

The inverse link transformation g_1 maps 1 to U;:

W= g .

The robust library currently allows you to use (only) the canonical
links for the Binomial and Poisson Families:

Binomial Model Canonical Link (the Logit link):
Hi
N =g = log(==}  0<p<1

with inverse transformation

exp(1)

Trepay 7

W= g () =

Poisson Model Canonical Link:

n = g(y,) = log(u,), O<p;<eo

with inverse transformation

Wo=g () = exp(y), (<1<

For the Binomial model you have conditional expectation
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exp (xiTB)

EB(yi|xi) =n;- W =n; T
1+ exp(x; B)

and for the Poisson model you have conditional expectation

EB(yi‘xi) =W = exp(xiTB)

The classical approach to fitting the above models is to compute a

maximum likelihood estimate (MLE) Byre as a solution of the
following estimating equation.:

! dlogP(y;, xl.TB)
Z B

i=1 B=[§MLE

=0.

These are nonlinear equations that are solved iteratively, as described
in McCullagh and Nelder (1989).

The classical MLE’s for generalized linear models can be highly
influenced by outliers. In all of the above models the explanatory
vectors x; can be highly influential outliers, calling for the use of a
robust alternative to the MLE. In the Bernoulli case, the response y;,
is either 0 or 1, and so can not be an outlier. In the general Binomial
model when n; is large, the y; can also be outliers in cases where the
expected values of y;/ n are small, and in the Poisson model the y,
can take on arbitrarily large integer values and so can be outliers.
Thus in the general Binomial and Poisson cases, influential y; outliers
also call for a robust alternative to the MLE.

You may use one of the following three robust model fitting methods,

the first of which you can use for both Binomial and Poisson models,
while you use the second and third only for the Bernoulli model.



Conditionally
Unbiased
Bounded
Influence
Estimate

Mallows-Type
Unbiased
Bounded
Influence
Estimates

Overview of the Methods

You compute a conditionally unbiased bounded influence (CUBIF)

estimate B as a solution of the following equation:

n

SV, (- - g7 (x/8)) = 0

i=1
for certain constants a; and c; that make the estimate J consistent.

The inverse link function g_1 is given above for the Binomial and
Poisson models. The function v, is even, bounded and chosen to
minimize the trace of the asymptotic covariance matrix of the
estimator [%, subject to a bound on bias due to a small fraction of
outliers. For more details on the choice of y, and other elements in

the equation above, see the Theoretical Details section below.

For the Bernoulli case you compute a Mallows-type unbiased

bounded influence estimate (a Mallows estimate) as a solution [ : of
the estimating equation

n

Swi % (y-g (B =0

i=1

where the weights w;, = w(xiTEf_lxi), with C a robust covariance
matrix estimate are decreasing functions of the robust Mahalanobis
distance of the explanatory vectors x; (robustly measured leverages of
x;). You can use one of two weight functions, the Carroll and the Huber

type, with the Carrolltype being the default. For further details see the
Theoretical Details section below.
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Consistent For the Bernoulli model, you may also compute a so-called mis-
Mis- classification model estimate B, as a solution of the estimating equation
Classification

Model

n
T
Estimate Zwi‘m' X+ (v -F(x; B, v) =0,
i=1

where F is given by the mis-classification model
-1, T -1, T T
P(yi:1|x,'):g (xiB)+Y' [1-2¢g (XZB)] :F(x,'Ba Y)

with g_1 the Binomial inverse link given above, and the weights w;"

are given by a formula provided in the Theoretical Details section.
This estimator, introduced by Copas (1988), has properties similar to
those of the Mallows-type unbiased bounded influence estimates.
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COMPUTING MLE AND ROBUST FITS WITH THE NT/
WINDOWS GUI

Computing You can easily compute both MLE and robust GLIM fits for the
Both MLE and Binomial and Poisson models with canonical links from the NT/
Robust Fits Windows GUI. Let’s do so for the data set breslow.dat, analyzed by

Breslow (1996) using a Poisson GLIM to explain the number of
epilepsy attacks patients have during a given time interval. Choose
Robust » Generalized Linear Models from the menubar, to open
the dialog shown below. Type in breslow.dat for Data Set, and
select sumY as the dependent variable, and type the formula Agel0 +
Base4 * Trt in the Formula field. Select the Poisson Family and the
log Link in the Model region to the right. The variable sumY

Robust Generalized Linear Models o [m] |
i odel | Fesults I Plotsz I Predict I Advanced I
— Data — Fitting kethod

[ata Set: Ihreslnw.dat vI % MLE + Fobust
Subset R 'th'l ® e
ubzet Rows with: € Bobust

v Omit Rows with Missing Yalues

—anables — Madel
Dependent: I - I Farmily:
|ndependent; <alls 21! | Link:
IO
$12 Yarance Function: Iconstant ""I
:@ 1| —Save Model Object———————————
Create Formula | Save Ag I
— Formula
Farrula: IsumY ~Agell + Bazed = Trt

0k | Cancel | apply | 1] o[ curent Help |

Figure 3.1: The Robust Generalized Linear Models Dialog: Model Page
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contains the sum of the number of epilepsy attacks of each patient
during the four weeks of the study, Agel0 contains the age of each
patient divided by 10, Base4 contains the base line number of
epilepsy episodes in the four weeks prior to the study divided by 4,
and Trt is a factor variable that indicates whether the patient received
the active drug or the placebo.

The Model page is similar to the Model page for Generalized Linear
Models except for the addition of the Fitting Method group. The
default choice is MLE + Robust (both MLE and robust fits are
computed) and the alternate choices are MLE (MLE only) and
Robust (robust fit only). The Advanced page provides access to the
various optional control features of the robust fit. The Results and
Predict pages are identical to those of the Generalized Linear Models
dialog. Also, you will notice some differences between the Plots page

Robust Generalized Linear Models o ] |
kM odel I Flesults I Plots Predict I Advanced I
— Platz — Optians
v Fesiduals vz Fit [T Include Smooth
v Response vz Fit [ Include Rugplat
[T Pearson Residuals Mormal B0 Murnber af Extrerne Paoints Ta |dentify:

V¥ Deviances QGE-Plot I3

— Partial Residual Plot Options
[ Partial Fesiduals

v Deviances vz Robust Distances

v Deviances ve lndex

[T Include Partial Fit

[ Ihclude Fugplat

¥ Common r-axis Scals

(] 4 I Ear‘u:ell Apply | I<| >| - 1of 1 Help |

Figure 3.2: The Robust Generalized Linear Models Dialog: Plots Page
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shown in Figure 3.2 and Plots page in the Generalized Linear Models
dialog. Several new plots have been added, the Sqrt Abs Residuals vs
Fit has been removed, and the Partial Residuals plots selection has
been moved to the Partial Residuals Plot Options group.

The following three new plots are computed as defaults: the Deviance
QQ plot, the Deviances versus Robust Distances plot, and the Deviances
versus Index plot. The Deviance QQ plot is of particular note, having
been added following a recent paper of Yohai and Garcia Ben (2000)
that points out the inadequacy of normal QQ-plots of deviances.
Since deviances are not typically well-approximated by a normal
distribution, the deviance QQ-plot estimates the distribution of the
deviances and plots the deviances against these estimated quantiles
(see Yohai and Garcia Ben, 2000).

The Deviances versus Robust Distances plot gives information about the
influence and outlyingness of the observations by plotting the
deviances versus the robust distances of the corresponding predictor
vectors, i.e., Mahalanobis distances based on a robust covariance
matrix estimate for the predictor vectors. A large robust distance
indicates that the observation has leverage and might overly influence
the fit. See the corresponding section in Chapter 2 for more details.

In addition to the three plot types checked by default, check the
Residuals versus Fit and Response versus Fit check-boxes. Click OK to
compute both fits, along with the selected diagnostic plots. The results
appear in a Report window and five tabbed pages of a Graph Sheet.
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The Diagnostic Each of the Graph Sheet pages contains a Trellis display of the MLE
Plots and robust fits, as shown below.

Residuals versus Figure 3.3 shows the Deviances vs. Fitted Values plots for both the
Fitted Values MLE and robust fits. The MLE fit fails to identify the outlier, while
the robust fit shows it clearly.

Deviances vs Fitted Values
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Figure 3.3: Deviances vs Fitted Values
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Response versus Figure 3.4 shows the Response vs. Fitted Values plots for both MLE

Fitted Values and robust fits. Note that the MLE fitted line tries to accommodate
the outlier, and consequently the corresponding deviance is small. On
the other hand the robust fit downweights this observation, and
achieves a fit that clearly reveals the anomaly.

Response vs Fitted Values
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Figure 3.4: Response vs Fitted Values
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Deviances QQ-
Plot

74

In Figure 3.5 below, the deviances QQ-plot for the robust fit is shown
side by side with the corresponding plot for the MLE fit.

We immediately identify an outlier in the robust deviances QQ-plot.
In contrast, the MLE fit does not reveal any unusual observations.
This illustrates one of the most important advantages of a robust fit
relative to the MLE fit: the MLE fit is influenced by the outlier in
such a way that the outlier is not revealed by the deviances.

Deviances QQ-Plot
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Figure 3.5: Deviances QQ-Plot
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Deviances versus Figure 3.6 shows a plot of the deviances versus the robust distances
Robust Distances for both the MLE and robust fits. Both plots reveal that there are a
number of predictor vectors that have high leverage. In the MLE plot
only one of these, labeled 25, shows up as a large deviance, but in the
robust plot, four of the high leverage points have large (negative)

deviances.
Standardized Deviances vs Robust Distances
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MLE : : : Raobust :
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Figure 3.6: Standardized Deviances vs Robust Distances
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Deviances versus Figure 3.7 shows a plot of deviances versus observation index (row

Index number) for both the MLE and robust fits. This plot lets you clearly
see which observations are the outliers in the fits, and in particular
those that are revealed by the robust fit but not by the MLE.

Standardized Deviances vs Index (Time)
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Figure 3.7: Standardized Deviances vs Index (Time)

The Statistics The Report window contains the following results.
Report **% GLM Fits Comparison ***x

Calls:

Robust : gIlmRob(formula = sumY ~ AgelQ + Base4 * Trt, family

= "poisson", data = breslow.dat, na.action = na.exclude)
MLE : gIim(formula = sumY ~ AgelO + Base4 * Trt, family =

"poisson", data = breslow.dat, na.action = na.exclude)
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Residual Statistics:

Min 1Q Median 3Q Max
Robust : -55.9440 -1.4577 -0.0307 1.0632 9.4756
MLE : -6.0032 -2.0744 -1.0803 0.8202 11.0386

Coefficients:
Value Std. Error t value Pr(>|t])

Robust : (Intercept) 1.6294 0.2709 6.0145 0.0000
MLE : (Intercept) 1.8404 0.1298 14.1800 0.0000
Robust : Agel0 0.1286 0.0789 1.6305 0.1030
MLE : Agel0  0.2435 0.0413 5.8967  0.0000
Robust : Base4 0.1472 0.0224 6.5774  0.0000
MLE : Base4 0.0892 0.0022 40.4874  0.0000
Robust : Trt -0.2211 0.1169 -1.8914 0.0586
MLE : Trt -0.1276  0.0383 -3.3359 0.0009
Robust : Base4:Trt  0.0153 0.0221 0.6913 0.4894
MLE : Base4:Trt  0.0038 0.0022 1.7089  0.0875

Residual Deviance of model(s):
Robust : 3962
MLE : 556.5
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COMPUTING MLE AND ROBUST ESTIMATES AT THE
COMMAND LINE

Computing
Both MLE and
Robust Fits

Conditionally
Unbiased
Bounded
Influence

78

If you prefer to work at the command line, use the fit.models
function in the Robust Library to compute both the MLE and the
robust GLIM estimates and store them in a single S-PLUS object.

The different estimates (Conditionally Unbiased Bounded Influence,
Mallows-type and Consistent Misclassification) are selected by
specifying the argument fit.method of gimRob. You use fit.method
= ’cubif’, fit.method = ’mallows’ and fit.method = ’'misclass’
respectively. Recall that the options mallows and misclass only apply
to the case of a Bernoulli response variable.

Compute both robust and MLE fits of a Poisson GLIM for the data
set breslow.dat, and store the result as the fitted models object
breslow.fits as follows:

> breslow.fits <- fit.models(1ist(Robust="gIlmRob',
+ MLE = 'gIm'), sumY ~ Agel0 + Base4 * Trt,
+ family = poisson, data = breslow.dat)

Now display a brief summary of the results

> breslow.fits

Calls:
Robust : gIlmRob(formula = sumY ~ Agel0 + Base4 * Trt,
family = poisson, data = breslow.dat)

MLE : gIm(formula = sumY ~ Agel0 + Base4 * Trt,
family = poisson, data = breslow.dat)

Coefficients:
Robust MLE

(Intercept) 1.6294 1.8404
Agel0 0.1286 0.2435

Base4 0.1472 0.0892

Trt -0.2211 -0.1276
Base4:Trt 0.0153 0.0038
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Residual Deviance Estimates:
Robust : 3962 on 54 degrees of freedom
MLE : 556.5 on 54 degrees of freedom

Use the summary function to obtain more detailed information on the
fit.

> summary(breslow.fits)

Calls:

Robust : gIlmRob(formula = sumY ~ Agel0 + Base4 * Trt,
family = poisson, data = breslow.dat)
MLE : gIm(formula = sumY ~ AgelO + Base4 * Trt,
family = poisson, data = breslow.dat)

Residual Statistics:

Min 1Q Median 3Q Max
Robust : -55.9440 -1.4577 -0.0307 1.0632 9.4756
MLE : -6.0032 -2.0744 -1.0803 0.8202 11.0386

Coefficients:
Value Std. Error t value Pr(>|t]|)

Robust : (Intercept) 1.6294 0.2709 6.0145 0.0000
MLE : (Intercept) 1.8404 0.1298 14.1800 0.0000
Robust : Agel0 0.1286 0.0789 1.6305 0.1030
MLE : Agel0  0.2435 0.0413 5.8967  0.0000
Robust : Base4 0.1472 0.0224 6.5774  0.0000
MLE : Base4 0.0892 0.0022 40.4874 0.0000
Robust : Trt -0.2211 0.1169 -1.8914 0.0586
MLE : Trt -0.1276  0.0383 -3.3359 0.0009
Robust : Base4:Trt  0.0153 0.0221 0.6913 0.4894
MLE : Base4:Trt  0.0038 0.0022 1.7089  0.0875

Residual Deviance of model(s):
Robust : 3962
MLE : 556.5
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Correlations:

Robust:
(Intercept) Agel0 Base4 Trt Base4:Trt
(Intercept) 1.0000
Agel0 -0.9022 1.0000
Base4 -0.5218 0.1536 1.0000
Trt -0.0472 -0.0254 0.3243 1.0000
Base4:Trt 0.1536 -0.0115 -0.5477 -0.8985 1.0000
MLE:
(Intercept) Agel0 Base4 Trt Base4:Trt
(Intercept) 1.0000
Agel0 -0.9556 1.0000
Base4 -0.4421 0.2234 1.0000
Trt -0.0166 -0.0150 0.2401 1.0000
Base4:Trt -0.1442 0.2260 -0.3834 -0.7784 1.0000The

Diagnostic Plots

Use the plot function to obtain diagnostic plots. When the command
line menu appears as below, type 2 and 8 after “Selection:”.

> plot(breslow.fits)
Make plot selections (or 0 to exit):

: plot: All

: plot: Deviances vs Fitted Values

: plot: Response vs Fitted Values

: plot: QQ-Plot of Pearson Residuals

: plot: Deviances QQ-Plot

: plot: Standardized Deviances vs Robust Distances
: plot: Standardized Deviances vs Index (Time)

: plot: Sqrt of abs(Deviances) vs Fitted Values
Selection(s): 3, 5

0 N O OB~ W N

This results in the “Response vs Fitted Values” plots and the
“Deviances QQ-Plot” in Figure 3.4 and Figure 3.5, respectively
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Computing MLE and robust estimates at the Command Line

You can also obtain any one of the plots in the menu with the
plot.gImRob command, and appropriate arguments. For example,

you get the Deviances QOQ-plots with the command
plot.glmRob(my.glm.obj, which = 5).

Consider the data 1euk.dat (Cook and Weisberg, 1982, p. 193). The
data consist of measurements on 33 leukemia patients. The response
variable is 1 if the patient survived more than 52 weeks. There are
two covariates: WBC: White blood cell count, and AG: Presence or
absence of certain morphologic characteristic in the white cells. You
want to fit a Binomial GLIM.

Compute the MLE fit and a Mallows type fit with the default Carroll
type weight function:

> Teuk.mallows.default.fits <-fit.models(1ist(
+ Robust ='gImRob', MLE='gIm'), y ~ wbc + ag,
+ family = binomial, data = leuk.dat,

+ fit.method = "mallows")

Now look at the brief summary of your fits,

> Teuk.mallows.default.fits

Calls:

Robust : gIlmRob(formula =y ~ wbc + ag, family = binomial,
data leuk.dat, fit.method = "mallows")
MLE : gIim(formula =y ~ wbc + ag, family = binomial,
data leuk.dat)

Coefficients:
Robust MLE
(Intercept) 0.1710 -1.3074
wbc -0.0002 0.0000
ag 2.5240 2.2610

Residual Deviance Estimates:

Robust : 18.47 on 24 degrees of freedom
MLE : 31.06 on 30 degrees of freedom
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The Diagnostic
Plots
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Note that the coefficients of the robust Mallows type fit are different
from those of the MLE. Cook and Weisberg (1982) detected that
observation #15 was very influential in the model and that removing
it yielded a better fit for the rest of the data. So make a deviance QQ-
plots with:

> plot(leuk.mallows.default.fits, which = 4)

The deviance QQ-plot for the MLE in Figure 3.8 does not give much
hint of an outlier, and is furthermore rather ragged and irregular. On
the other hand, the deviance QQ-plot for the Mallows estimate in
Figure 3.8 clearly reveals the outlier, and is otherwise more smoothly
linear than in the case of the MLE. This large deviance in the case of
the robust fit is due to the fact that the fitted probability for
observation #15 is almost zero but the observed value is 1.
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Figure 3.8: Deviances QQ-Plot

Estimated Quantiles

You can check to see if this observation automatically received weight
zero with our Mallows-type estimate, by checking to see observations
which received weight zero as follows:



Computing MLE and robust estimates at the Command Line

> (1:33)[Teuk.mallows.default.fits[[1]]1$mallows.
+ weights == 0]
[1] 15 16 17 31 32 33

Now you see that in fact observation #15 was removed from the fit.

To fit a Mallows-type estimate with Huber’s weight function and
tuning constant equal to 0.5, use

> Teuk.mallows.huber.fits <- fit.models(1ist(

+ Robust = ‘gImRob’, MLE = °gIm’), y ~ wbc + ag,

+ family = binomial, data = leuk.dat,

+ fit.method = ‘mallows’, mallows.control =

+ gImRob.mallows.control(wt.fn = wt.huber, wt.tuning = .5))
> leuk.mallows.huber.fits

Calls:
Robust : gIlmRob(formula =y ~ wbc + ag, family = binomial,
data = leuk.dat, fit.method = "mallows",
mallows.control = gIimRob.mallows.control(wt.fn =
wt.huber, wt.tuning = 0.5))
MLE : gIim(formula =y ~ wbc + ag, family = binomial,
data = leuk.dat)

Coefficients:
Robust MLE
(Intercept) -0.4913 -1.3074
wbc -0.0001 0.0000
ag 2.1547 2.2610

Residual Deviance Estimates:
Robust : 13.28 on 30 degrees of freedom
MLE : 31.06 on 30 degrees of freedom

The shapes of the Carroll and Huber weight functions are different as
indicated in Figure 3.9 and Figure 3.10, respectively. The former
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Redescending weight function
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Figure 3.9: Carroll’s weight function

Huber's weight function
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Figure 3.10: Huber’s weight function

84

[N




Computing MLE and robust estimates at the Command Line

gives weight zero to sufficiently large observations, whereas the later
gives weights that only approach zero for large argument values. This
results in somewhat different values for the Mallows type estimates
using these two weight functions. The Carroll type is preferred, which
is why it is the default weight type. However, you may wish to
experiment with both types.

Consistent To fit a consistent misclassification estimate to the data analyzed

Misclassification  above with misclassification probability y = 0.02 use
estimate

> Teuk.misclass.fits <- fit.models(list(Robust="glmRob"',
+ MLE = 'gIlm'), y ~ wbc + ag, family = binomial,

+ data = Teuk.dat, fit.method = "misclass",

+ misclass.control = glmRob.misclass.control(mc.gamma =
+ 0.02))

> leuk.misclass.fits

Calls:

Robust : gImRob(formula =y ~ wbc + ag, family = binomial,
data = leuk.dat, fit.method = "misclass",
misclass.control = glmRob.misclass.control(mc.gamma =
0.02))

MLE : gIim(formula =y ~ wbc + ag, family = binomial,
data = leuk.dat)

Coefficients:
Robust MLE
(Intercept) 0.1447 -1.3074
wbc -0.0002 0.0000
ag 2.4613 2.2610

Residual Deviance Estimates:
Robust : 17.66 on 30 degrees of freedom
MLE : 31.06 on 30 degrees of freedom

Computin Use the function g1mRob to compute only the robust fit. For example,
p y p

only a Robust for the conditionally unbiased bounded influence example:

GLIM Fit > breslow.robfit <- glmRob(sumY ~ Agel0 + Base4*Trt,

+ family = poisson, data = breslow.dat)
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> breslow.robfit

Call:

gIlmRob(formula = sumY ~ AgelO + Based4 * Trt, family =
poisson, data = breslow.dat)

Coefficients:

(Intercept) Agel0  Base4 Trt Base4:Trt
1.629352 0.1286164 0.14723 -0.2211265 0.01529229

Degrees of Freedom: 59 Total; 54 Residual
Residual Deviance: 3962.335

You can also use plot and summary to obtain more detailed
information and plots, just as you would do with a “gim” object. The
other estimates are fitted in a similar manner. For example, the
Mallows-type estimate is obtained by typing

> Teuk.mallows.default <- gIlmRob(y ~ wbc + ag,
+ family = binomial, data = Teuk.dat,
+ fit.method = "mallows")
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CONTROLLING OPTIONS FOR ROBUST GILM FITS

Conditionally
Unbiased

Bounded
Influence

Mallows type
estimate

The user can set the parameters of the fitting algorithm for the
Conditionally Unbiased Bounded Influence robust GLIM fits. These
include: the maximum number of iterations, the tolerance of the
convergence criterion, and the tuning constant of the final estimate.
These control parameters can be set from the GUI by clicking the
Advanced tab in Figure 3.1, or from the command line with the
function gimRob.control. For example, in the commands shown
below we set the maximum number of iterations to 50 and the
precision of the convergence criteria to 10~ -5.

> breslow.control <- gImRob.cubif.control(maxit=50,

+ epsilon=le-5)

> breslow.robfit <- gIlmRob(formula =

+ sumY ~ AgelO + Base4 * Trt, family = poisson,

+ data = breslow.dat, cubif.control = breslow.control)
> coef(breslow.robfit)

(Intercept) Agel0 Base4 Trt Base4:Trt
1.629497 0.1286316 0.147239 -0.2210817 0.0152693

The parameter cpar controls the initial estimate used in the iterative
algorithm. By default it is set to 1.5. For more information see the
section Theoretical Details below.

For these estimates you can control the weighting function and its
corresponding tuning constant. For example

mallows.par <- gimRob.mallows.control(wt.fn = wt.huber,
wt.tuning = 3)

mallows.rob <- glmRob(y~a + b + ¢, data = mallows.dat,
family = binomial, fit.method = 'mallows’',

+ mallows.control = mallows.par)

>
+
>
+

The default values are wt.fn = wt.carroll and wt.tuning = 8. See
section Theoretical Details below for more information on them.
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For these estimates you can set the probability of misclassification, the
tolerance for the convergence criterion and the maximum number of
iterations. You can also specify an initial value for the iterations and
you can have gimRob print a trace of the current values of the
parameters estimates while the algorithm iterates.

> misclass.par <- glmRob.misclass.control(mc.gamma = .01,
+ mc.maxit = 50, mc.tol = le-6, mc.trc = T)

> misclass.rob <- gImRob(y ~ ag + wbc, data = leuk.dat,
+ family = binomial, fit.method = 'misclass’',

+ misclass.control = misclass.par)

The default values are mc.gamma = 0.01, mc.maxit = 30, mc.trc = F,
mc.tol = 0.001 and mc.initial = NULL.
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THEORETICAL DETAILS

Conditionally
Unbiased
Bounded
Influence
Estimate

Consider general M-estimators defined implicitly by an estimating
equation of the form

n

Z\I(yia xia e) = O

i=1

In order to obtain consistent estimators we require that the above
equation be unbiased. We say that an M-estimator is conditionally
Fisher consistent if it satisfies

Eo(Wy, x, 0)[x) = [ [ Wy, x, 8)Py(dy[x) = 0

for all ® and for all x. Pregibon (1981) and Stefanski, Carroll and
Ruppert (1986) proposed M-estimates for Generalized Linear Models.
However, those proposals are not conditionally Fisher consistent as
defined above. Kiinsh, Stefanski and Carroll (1989) derived M-
estimates that satisfy the above consistency condition and that are
optimal in the following sense: they achieve minimum trace of the
asymptotic covariance matrix subject to an upper bound on their
sensitivity. Intuitively the semsitivity of an estimator measures the
maximum influence that an arbitrary observation can have on any
linear combination of the parameters (see Hampel ez al. 1986). Kiinsh,
Stefanski and Carroll (1989) also showed that the resulting estimator

0 is asymptotically normally distributed.
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The estimate 8 is defined by the following system of equations

n

Z%i(yi_ci_g_l(xi'e))xi =0,
i=1
M,

Y G- g (JODPO= jlx) = 0
j=0

I
—_
M
M
S
-

1l
~

n
’%l N uy(yi n, X0, ¢ |JAx|)(Ax)(Ax))'

i=1

where g~! is the inverse of the link function; A is a p by p lower
triangular matrix; y,(s) = max[-d, min(s, d)] is the Huber

function with tuning constant d; a; = b/ |Axi| ; b is a user chosen
tuning constant that satisfies b>./p; I, is the identity matrix of

dimension p; M; = n; in the Binomial case, and M, = o< in the

Poisson case. The function u,, is given by

M.
i

) = Y, |zi‘(i_Ci_g_l(xi'e))]QP(yi: Jlx)
j=0

'
ub(yia nia xl‘ ea Cl‘a
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(see Marazzi, 1993). The fitting algorithm iterates updating estimates

of ¢;, A and 0. The initial estimates are Mallows estimates 6y and

Ao that solve the following equations:

c= med‘ﬁ(&i—xi'éo)‘/ To

1 ~ A '
~dE(Aox) (Aox) =1,

w; = Wb(‘oni‘)/ ‘oni ,
where T, is chosen so that ¢ is consistent for normally distributed
data, y; is the Huber’s function as above, and » and ¢ are chosen by
the user. The option ufact controls 5 in both sets of equations by

setting b = ufact x Jp where p is the number of predictors. The

constant ¢ for the initial estimate is set with the option cpar.

Kiinsh, Stefanski and Carroll (1989) show that the estimate 0 is

asymptotically normal. Its asymptotic covariance matrix can be
consistently estimated by

(K=51" 898/ n),

where
n Mi
A 1 . 'A ) . 'A
1= % TW G- cimmg(0))P(= j1x) 0 - n8(x/0))xx]
i=1j=0
n Mi
~ 1 . ',\ ) .
So = p > Z‘Vai[(]—ci—nig(xiﬁ))] P(y;= j|x;) xixl’__
i=1j=0
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Mallows-type
estimate

92

To calculate these estimates we need to asses the leverage of each
observation x;. Assume that x; = (1, z;) where z; € R and let
1n,(u) be a weight function that depends on a tuning constant d. Let
(1, V) be robust estimates of the center and dispersion matrix of the

observations z; (see the documentation for the Splus function covRob

for details of these estimates). Let d; = (zi—ui)tV_l(zi—ui) be the
Mahalanobis distances of the covariates to their centres. Define the
weights w; as

w;, = W(Jd;/ (p-1)).

Carroll and Pederson (1993) discuss the following choice for m,(u) :

nw = (1-(4) ) 1w,

where

1 if u<s
0 if u>c

I(us) = {

The choice ¢ = 8 gives weight 0.75 or higher to those points with
d; 2.5 , weight 0.50 or greater to those with d;<3.6 and weight 0.25

or greater when d;<5 .

Another choice for the weights is based on Huber’s function . Let

1 if us
-]

u/ ¢ if u>c

and

w, = n(Jyd;/ (p-1)),



Consistent
Misclassificatio
n Estimate

Theoretical Details

where ¢ is 1/ J/p-1 times the square root of the o -quantile of a
x%,_1 distribution. Typically o = 0.95 or o = 0.90. To use these

functions set wt.fn = wt.huber in glmRob.malTlows.control().

The default values in gIimRob.mallos.control() are wt.fn =
wt.carroll and wt.tuning = 8.

Carroll and Pederson (1993) show that the Mallows-type estimate is
asymptotically normal and that its asymptotic covariance matrix can
be consistently estimated by

1 _ A~ A _ A~
;l ni(e)vnﬂ(e)vni(e) )

where

1 i 1 .
V,(0) = - SwixxFVe)y, =1, 2
i=1

and F m(u) denotes the derivative of F(u).

Copas (1988) proposed a misclassification model for the case of
Bernoulli logistic regression. In this model each observation y,; is

mistakenly classified with probability vy, 0 <y <1, i.e.:

P(y;=1|x) = F(x0) +Y[1-2F(x|0)] = G(x}8, Y),

where F(u) = 1/ (1 +exp(-u)) as before. The MLE estimator
based on this model is not consistent to the parameters of the logistic
model. Carroll and Pederson (1993) proposed the following simple
procedure to obtain a consistent estimate based on the
misclassification model.

Let émc satisfy

Zwlr'nc X [yi_G(xﬁémc: Y)] =0 5

i=1
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with
(1 _QY)F(X emc)(l —F()C emc))
G(x emc’ Y)(1 - G(x emc, Y))

mc
Wi

Now, the corrected estimator 0 is defined by the following equation:

Zw;"c xi[yi—F(xzé)] =0.
i=1

To specify a particular value of y wuse the option mc.gamma in
gImRob.misclass.control().

These estimates are determined by the choice of v, the probability of
misclassification. Carroll and Pederson (1993) show that these
estimates have the same asymptotic behavior as the Mallows-type
ones discussed above. They only difference is that in the above
formulas for the asymptotic covariance matrix we have to use

(1-2y)F(xe)(1 F(x’é))
G(JCe Y)(I—G(Xe Y))

mc
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INTRODUCTION
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This chapter shows you how to analyze designed experiments using
robust model fitting as a complement to least squares model fitting.
For designed experiments, it is usually assumed that experimental
errors are normally distributed. In this case, the classical Analysis of
Variance (ANOVA) technique based on least squares is safe to use.
However, in many experiments the data may contain outliers that
exert considerable undesirable influence on the least squares fit, and
subsequent misleading analysis in the ANOVA context.

Outliers in data from industrial or laboratory experiments might be
due to recording errors, or they might be valid and highly informative
data points. For example, when industrial design experiments are
performed, the independent variable design points may sometimes be
set at rather extreme values in order to see how the dependent
variable responds to extreme conditions. In such cases the response
may take on extreme values that appear as outliers. Such data points
should not be ignored as they may convey very important
information about the response variable.

No matter what the cause of outliers, it is highly desirable to have a
good robust model fitting method that fits the majority of the data
well. Then outliers will be clearly exposed in the residuals for further
study, no matter what the cause of the outliers. The robust ANOVA
method that you will learn to use in this chapter accomplishes exactly
that purpose. We remark that the robust fitting method will often lead
to a better model choice with regard to the inclusion or exclusion of
interaction terms. The reason is that even a single outlier can result in
apparent significant interaction effects when fitting by the classical
least squares method, and this is not the case when using a robust fit.

The robust ANOVA model fitting is carried out using an MM-
estimate as in the case of robust linear regression described in
Chapter 2, Robust Linear Regression, with one important difference.
Because there are no independent variable leverage points in
designed experiments, the computationally expensive initial estimate
based on resampling is not required. Instead an L1 initial estimate is
used.
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FITTING LS AND ROBUST ANOVA MODELS WITH THE NT/
WINDOWS GUI

The Lawson
Data Set

This section shows you how to fit a robust ANOVA model using the
NT/Windows GUI dialog.

The data object Tawson.dat in the Robust Library consists of sixteen

. 4 . . .
measurements from an unreplicated 2~ designed experiment. View
this data object via the GUI as follows. Display the Robust Library
data sets in the left-hand pane of the Object Browser by one of the
methods recommended in the Introduction chapter. Then double
click on the Tawson.dat icon to display the data sheet shown below:

1 2 3 4 3

C1 C2 C3 C4 Y
1 I I M M 47.46
2 P M M M 49.62
3 M P M M 43,13
4 P P M M 46,31
3 M M F M 3147
] P M P M 43,49
7 M P P M 49,34
2 P P P M 46,10
9 M M M P 46,76
10 P M M P 43,56
11 M P M P 44,83
12 P P M P 44,45
12 M M F P 29,15
14 P M P P 21,33
15 M P P P 47.02
16 P P P P 47.90

Figure 4.1: The Lawson Data Set
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You do not spot any unusual observations by simply looking at the
data in tabular form.

Computing You easily compute both classical and robust ANOVA fits to the
Both Least Tawson.dat data set using the fixed effects ANOVA dialog in the
Robust Library.

Choose Robust P Fixed Effects ANOVA from the menubar. The
dialog shown below appears.

Squares and
Robust Fits

Robust ANDYA -10] x|
ki odel | O ptione I Results | Plats I Advanced "
—Data — Fitting Option

Dlata Set: Ilawsnn.dat vI f* L5 + Fobust

. L5
Wweights: I TI £ Bobust
Subzet Bows with; I

v Omit Fows with Missing ¥ alues — Save Model Object

Save b I

—Yariables
Dependent: Im - I
Independent: <ALL> -
Forrnula: I w1 +C2+03+C4

Create Formula |
o0k | Cancel | appl | 1 o[ cunent Help |

Figure 4.2: The Robust ANOVA Dialog: Model Page

Note that the Robust ANOVA dialog is identical to the (classical)
ANOVA dialog under Statistics » ANOVA » Fixed Effects, except
for the Fitting Option group at the upper right of the Model page,
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some differences on the Plot page, and the Advanced tab which
replaces the Compare tab. The default fitting option LS + Robust
computes robust and least squares fits and ANOVA, LS computes
only with a least squares fit, and Robust computes with a robust fit.

Type in 1awson.dat under Data Set of the Model page, select y from
the Dependent Variable drop-down list, and select ALL from the
Independent Variable drop-down list. The formula y~.
automatically appears in the Formula box, where y is the dependent
variable and the “.” on the right-hand side of the “~” indicates that all
the four independent variables (factors) C1, €2, €3, and C4 are included
in the model. (Alternatively, select your dependent and independent
variables in the Object Explorer before opening the Robust ANOVA
dialog, as described in the Robust Linear Regression chapter).
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Now click the Plot page tab to view the Plot page below.

e

odel | Cptionz I Fesuls | Flotz | Advanced "
— Plotz — Options
[T Residuals vz Fit ¥ Include Smooth
[~ Fesponse vs Fit [ Include Fugplot
v Residuals Maormal 30 v 00 Flat Envelope
[T Estimated R esidual Density W Include Fobust D0 Line

¥ Standardized Resid. vs Index [Time] | | [ Half Momal G0 Plat

— Overlaid Plotz Hurber of Extreme Points To [dentify:
[T Residuals Maormal 30 |3
¥ Estimated R esidual Diensity — Partial Rezidual Plot Options

[ Paitial Residualz
™| Include Partial Fit
™| Inelude Buwaplat

¥ | Comman ‘T-axiz Scale

ok | cancel | appi | 1 o cunent Help |

Figure 4.3: The Robust ANOVA Dialog: Plots Page

Note the checked boxes for the Residuals Normal QQ, Estimated
Residual Density and Standardized Resid. vs Index (Time) plots. Uncheck
the Estimated Residual Density box in the Plots region, and check the
Estimated Residuals Density box in the Overlaid Plots region.

Click OK. This results in the computation of an ANOVA table for the
Robust and LS fits, and three diagnostic plots corresponding to the
above plot selections.



The Report
Window

The Diagnostic
Plots

Fitting LS and Robust ANOVA Models with the NT/Windows GUI

First look at the Report Window, which shows the following two
ANOVA tables, one for the LS fit and one for the robust fit, with
values arranged to facilitate easy comparison of the LS versus robust
results:

Calls:
Robust : aovRob(formula =y ~ Cl + C2 + C3 + C4,
data lawson.dat, na.action = na.exclude)
LS : aov(formula =y ~ Cl + C2 + C3 + C4,
data lawson.dat, na.action = na.exclude)

Comparison of ANOVA Tables:
Df Sum of Sq Mean Sq RobustF  Pr(F)

Robust C1 1 0.3535 0.3535 0.1920 0.6552
LS C1 1 2.5600 2.5600 0.3797 0.5503
Robust C2 1  39.0057 39.0057 5.5157 0.0167
LS C2 1 71.2336 71.2336 10.5646 0.0077
Robust C3 1 27.3054 27.3054 8.5384 0.0029
LS C3 1 55.0564 55.0564 8.1654 0.0156
Robust C4 1 0.0305 0.0305 0.0066 0.9341
LS C4 1 4.0804 4.0804 0.6052 0.4530

Note that the robust F and p-values for the robust fit are rather
different than those from the classical least squares fit. For details on
the robust F and p-values, see the Theoretical Details section.

From the above ANOVA tables, you see that the classical analysis of
variance produces different results from the robust analysis, and you
wonder whether this is caused by one or more outliers in the data.
You quickly answer this question by looking at the three diagnostic
plots you selected, which give you a quick visual comparison of
results of the robust and classical fits. You find these plots on the three
tabbed graph sheet pages, as shown below.

Look at normal QQ-plots for the LS and Robust residuals shown in
Figure 4.4.
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Normal QQ-Plot of Residuals

-2 -1 0 1 2
1 L 1 1 !
1S Robust

Residuals

T T T
-2 -1 0 1 2

Quantiles of Standard Normal

Figure 4.4: Normal QQ-Plots for LS and Robust Residuals

The dotted lines are 95% simulation envelopes. For the classical least
squares fit you conclude that the residuals are approximately
normally distributed, except for one moderately sized outlier and
three marginal outliers in the right hand part of the left panel.
However, the normal qq-plot of residuals from the robust fit in the
right hand panel shows that there is really only one residual outlier,
corresponding to the 13th observation, and that all the other residuals
conform quite well to a normal distribution. For details on the 95%
simulation envelopes, see the Theoretical Details section.

The plots of Standardized Residuals versus Index (in this case
observation number) for the LS and Robust fits are shown in Figure
4.5 below. The horizontal reference lines at #2.5 correspond to tail
probabilities of .006 for a standard normal random variable. Note that
the LS residuals barely hint at the presence of an outlier, while the



Fitting LS and Robust ANOVA Models with the NT/Windows GUI

robust residuals clearly identify observation #13 as an outlier. These
plots are consistent with the behavior of the normal QQ-plots in
Figure 4.4.

Standardized Residuals vs Index (Time)

5 10 15
I I I
LS Robust

Standardized Residuals
[ ]

5 10 15

Index (Time)

Figure 4.5: Standardized Residuals vs Index for the LS and Robust fits

Figure 4.6 below shows overlaid probability density estimates for the
residuals from the least squares and robust fits. The density estimate
for the latter gives a much more accurate picture of the distribution of
the error term in the model: The main mode of the density estimate
for the Robust residuals is well centered on zero, and has a single
bump in the right-hand tail reflecting the presence of a single large
positive outlier. On the other hand for the least squares fit, the density
estimate main mode is shifted to the left of the origin, and there are
two misleading bumps to the right.
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Kernel Density of Residuals

0.30
|

Robust /
LS

0.20 0.25
| |

Kernel Density
0.15
1

Residuals

Figure 4.6: Least Squares (Classical) and Robust Residuals Density Estimates
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COMPUTING ROBUST ANOVA AT THE COMMAND LINE

View the Data

Fitting LS and
Robust ANOVA
Models

View Tlawson.dat at the command line by typing lawson.dat and

pressing ENTER:
> lawson.dat

Cl C2 C3 C4
1 N N N N 47.
2 P N N N 49.
3 N P N N 43.
4 P P N N 46.
5 N N P N 5I.
6 P N P N 48.
7 N P P N 49.
8 P P P N 46.
9 N N N P 46.
10 P N N P 48.
11. N P N P 44.
12 P P N P 44.
13 N N P P 59.
14 P N P P 51.
15 N P P P 47.
16 P P P P 47.

46
62
13
31
47
49
34
10
76
56
83
45
15
33
02
90

Use the fit.models function in the Robust Library to fit two or
more ANOVA models at once. For example, you fit ANOVA models
for the Tawson.dat data set with both least squares and robust fits as

follows:

> Tawson.both <- fit.models(1list(Robust="aovRob",
+ Classical="aov"), y~., data=lawson.dat)

The function aovRob computes the robust fit and the function aov
computes the LS fit. The returned object Tawson.both is of class
“fit.models”. You use the print, summary and plot functions to
compare different aspects of the two fitted models.
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> Tawson.both

Calls:

Robust aovRob(formula =y ~ ., data = Tawson.dat)
Classical aov(formula =y ~ ., data = lawson.dat)
Terms:

Cl
Robust Sum of Squares 0.35348
Classical Sum of Squares 2.56000
Robust Deg. ofFreedom 1
Classical Deg. ofFreedom 1

Residual Scale Estimates:

C4 Residuals
0.03047 98.24935
4.08040 74.16920

Robust : 2.061 on 11 degrees of freedom
Classical : 2.597 on 11 degrees of freedom

1 11
1 11

Also, you can apply the print, summary and plot functions to
individual fitted models in a “fit.models” object by using the models =
optional argument, with the right-hand side a number indicating the
position of the model in the “fit models” object. For example, you

view a summary of the robust fit as follows:

> summary(lawson.both, models = 1)

Calls:
Robust : aovRob(formula =y ~ ., data =

Comparison of ANOVA Tables:

lTawson.dat)

Df Sum of Sq Mean Sq RobustF  Pr(F)

Robust C1 1 0.3535 0.3535 0.1920 0.6552

Robust C2 1 39.0057 39.0057 5.5157 0.0167

Robust C3 1 27.3054 27.3054 8.5384 0.0029

Robust C4 1 0.0305 0.0305 0.0066 0.9341
Here the models = optional argument specifies that you want a

summary of the first fit only. Alternatively, you can call the print,
summary and plot methods on the individual elements of the
“fit.models” object. For example, you can make diagnostic plots for
the robustly fitted model in Tawson.both as follows:



Fit Only a
Robust ANOVA
Model

Computing Robust ANOVA at the Command Line
> plot(lawson.both$Robust)
Make plot selections (or 0 to exit):

: plot: All

: plot: Normal QQ-Plot of Residuals

: plot: Estimated Kernel Density of Residuals

: plot: Residuals vs Fitted Values

: plot: Sqrt of abs(Residuals) vs Fitted Values
: plot: Response vs Fitted Values

: plot: Residual-Fit Spread

: plot: Standardized Residuals vs Index (Time)
9: plot: Overlaid Normal QQ-Plot of Residuals
10: plot: Overlaid Estimated Density of Residuals
Selection(s):

0 N O O B W N

The robust ANOVA method can also be invoked from the command
line using the function aovRob. For example, you can use the
following command to fit the same model as in the previous sections:

> lawson.rob <- aovRob(y~., data=lawson.dat)

The syntax for aovRob is the same as that for aov, and the returned
object Tawson.rob is of class “aovRob”, which inherits from the class
“ImRob”. Typing the name of the object automatically invokes the
print method giving a short summary of the fit:

> Tawson.rob

Call:
aovRob(formula =y ~ ., data = Tawson.dat)
Terms:
C1 (o C3 c4
RobustF 0.191975 5.515712 8.538365 0.006575
Chisq Df 1 1 1 1

Robust residual scale: 2.060918

Use the summary function on this object to print the ANOVA table:
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> summary(lawson.rob)

Cl
C2
C3
C4

Df
1

Sum of Sq Mean Sq RobustF Pr(F)

0.35348430 0.35348430 0.19197506 0.655245174

1 39.00570248 39.00570248 5.51571219 0.016699961
1 27.30537521 27.30537521 8.53836475 0.002904638

1

0.03046612 0.03046612 0.00657517 0.934145352

The sums-of-squares are “robust sums-of-squares” and the F-test is a
“robust F test”. For information on these see the Theoretical Details
section at the end of this chapter.

To view the diagnostic plots, use the command:

> plot(lawson.rob)

Make plot selections (or 0 to exit):

0O N O O B W N

9:

: plot:
: plot:
: plot:
: plot:
: plot:
: plot:
: plot:
: plot:
plot:

A1l

Normal QQ-Plot of Residuals

Estimated Kernel Density of Residuals
Residuals vs Fitted Values

Sqrt of abs(Residuals) vs Fitted Values
Response vs Fitted Values

Residual-Fit Spread

Standardized Residuals vs Index (Time)
Overlaid Normal QQ-Plot of Residuals

10: plot: Overlaid Estimated Density of Residuals
Selection(s):
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THEORETICAL DETAILS

Normal QQ-
Plot
Simulation
Envelopes

Robust Sums-
of Squares

Robust F-Tests

The simulation envelopes are constructed by generating a 100-by-n
matrix of independent standard normal samples. The rows of this
matrix are then sorted so that the first column contains a sample of
first order statistic, the second column contains a sample of the

second order statistic, and so on. The third row and the 98th row
plotted against the sample quantiles form a roughly 95% quantile
based confidence envelope for the observed values. For a more
thorough discussion of simulation envelopes see Atkinson pp. 34-48.

The robust sums-of-squares are obtained by using the well-known
expressions for sums-of-squares in terms of sums of squared model
coefficients for balanced designs, using the robust model-coefficient
estimates. For example in a two-way layout with I levels for main

effects estimates o;, J levels for main effects estimates f;, IJ

interaction estimates Yy;;, and K observations per cell, the adjusted

sums of squares is:

1 J
A A ~9
Z(yij'—y..)2= J- Zoc?+l- ZB?+ ZYij
i, J

i=1 j=1 i, j
or

SS,

Cadj = 5S4+ SSp+SS,p.

We compute robust sums-of-squares by using robust estimates in
place of the usual least squares estimates of the main effects and
interactions. =~ We compute such robust sums-of-squares only for
balanced designs.

The robust F-test is of the same form as the robust F-test used for
robust linear regression. See the Theoretical Details section of
Chapter 2, Robust Linear Regression.
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The robust covariance estimators implemented in the Robust
Library function covRob include the Fast MCD estimator, the
Donoho-Stahel projection estimator, an M-estimator based on the
Tukey biweight function that uses the Fast MCD for an initial
estimate, and a new and relatively untested “pairwise” estimator
(where the pairwise covariances are estimated using either the
Gnanadesikan-Kettenring method or the quadrant correlation
method) that adjusts the resulting covariance matrix to be positive
definite. The default behavior is to choose an estimator from among
the Donoho-Stahel, the Fast MCD and the quadrant correlation
version of the pairwise estimtor based on the size of the data. If the
data has dimension smaller than 1000 by 10 or smaller than 5000 by 5
the Donoho-Stahel is used. If the data has dimension greater than
50000 by 20 then the pairwise estimator is used. Otherwise (for
medium sized problems), the Fast MCD is used.

We note that the robust correlation matrices are obtained from robust
covariance matrices by dividing the latter by pairwise products of
robust scale estimates obtained from the robust covariance matrix
estimates.

The robust covariance estimators included in the Robust Library rely
on computationally intense algorithms. The following tables compare
the computation time required for each of the three estimators on
several different sized data sets. These simulations were carried out
on a Sun SPARC Ultra-60 with 1024MB of RAM.

Table 5.1: MCD, Time in Seconds

n=>500 n = 1,000 n = 10,000 n = 50,000

p=2 0.87 77 1.24 3.96
p=5 1.95 1.74 2.59 6.18
p=10 4.18 3.52 540 10.98
p=30 31.52 26.26 33.86 49.92




Overview of the Method

Table 5.2: Donoho-Stahel estimator, Time in Seconds

n =500 n = 1,000 n=10,000 | n=150,000
p=2 .84 1.87 31.04
p=5 .92 1.98 31.86
p=10 9.17 19.74 312.31
p=30
Table 5.3: M-estimator, Time in Seconds
n =500 n = 1,000 n=10,000 | n=150,000
p=2 1.35 1.55 7.01 31.58
p=5 3.28 2.75 12.01 61.26
p=10 5.85 5.22 35.15 142.61
p=30 35.79 34.80 129.96 496.00

NOTE: Timing results for the pairwise estimators will be provided
here in a future release of the Robust Library. This estimator is quite
new, and we encourage you to experiment with it and provide your

feedback to us.
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You can compute both classical and robust covariance or correlation
estimates and compare the results using the Robust Covariance
dialog. Try this out with the data set woodmod.dat which is included in

the Robust Library. Display the Robust Library data sets in the left-
hand pane of the Spotfire S+ Object Explorer using one of the methods
recommended in the Introduction then select the data set
woodmod.dat. Choose Robust » Covariance (Correlations) ... from

the Spotfire S+ menubar to open the Robust Covariance dialog.

Robust Covariance {Correlation) ]
Estimates I Reszults | Plot Advanced |
—Data — Methiod
Data Set: woodmod, dal & Bath
Varibles: " Classical
ariables:  Robust
— Tupe
Method to Handle Miszing Y alues: & Covariances
Iomit vl (" Correlations

ok | cancel | appl |1 o cument Help |

Figure 5.1: Robust Covariance (Correlation) Dialog: Estimates Page

NOTE: You could also skip selecting woodmod.dat in the Object
Explorer, in which case you could type woodmod.dat into the Data
Set combo box.

The default is to compute both classical and robust covariance
estimates. You compute only one or the other by clicking the radio
button of your choice in the Method region.



Computing Robust Covariance with the Windows GUI

If you wish to compute covariances or correlations for only some of
the variables in the data set, then select those variables in the

Variables list.

To compute correlation estimates rather than covariance estimates,
click the Correlations radio button in the Type region of the dialog.

Click on other page tabs to see what options are available for
covariance estimation. For example, click the Plot page tab to reveal
the plot options for the returned object:

Robust Covariance {Correlation} o ] |

E ztimates I Resulz

— Plots
¥ Eigenvalues of Cow/Car

[+ tdahalanobis Distances
[~ Distance-Distance Plot
¥ Ellipses Matriz

[~ Image Display

| Advanced |

O ptions
Mumber of Extreme Points To [dentify:

e

ok | cancel| appw | 1| [ cument Help |

Figure 5.2: Robust Covariance (Correlation) Dialog: Plot Page
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The Eigenvalues comparison plot is shown in Figure 5.3. This plot is a
convenient way for you to immediately see whether or not there is
much difference between the classical and robust covariance (or
correlation) estimates.

a Robust o—o—o
Classical A koA

Eigenvalues
0.006 0.008 0.010 0.012
1 | ]

0.004

0.002
|

0.0
L

Eval. 1 Eval. 2 Eval. 3 Eval. 4 Eval. 5

Figure 5.3: Eigenvalues Plot

The Mahalanobis distances based on the classical and robust
estimates are shown with Trellis display in Figure 5.4. From the
distances based on classical covariance estimate, you do not see any
outliers in the data set. In contrast, the robust distances using the
default robust covariance estimate reveal quite a few outliers in the
data set that are otherwise hard to find.



Distance-
Distance Plot

Computing Robust Covariance with the Windows GUI

|
Robust

I
Classical

°8

8 °6

Square Root of Mahalanobis Distance

® 19

20

Index

Figure 5.4: Robust and Classical Mahalanobis Distances

The Distance-Distance Plot in Figure 5.5 plots the robust distances
versus the classical Mahalanobis distances. The dashed line is the set
of points where the robust distance is equal to the classical distance.
The horizontal and vertical dotted lines are drawn at values equal to
square root of the 97.5% quantile of a chi-squared distribution with p
degrees of freedom. Points beyond these lines can be considered

outliers.
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Distance-Distance Plot

| |
Robust Distance versus Classical Distance
ogtd
8 °6 L
L]
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,,,,,,,,,,,,,,,,,,,,,,,,,, L -
//"‘/
;ﬂ/"”/’
—_—— L]
2 ///,,/r’ ° L
"/,_.—"//4// ° °
B 4 ° [ 4 °°
T T T T
15 2.0 25 3.0

Classical Mahalanobis Distance

Figure 5.5: Robust Distance vs. Classical Distance

This plot compares robust and classical correlation matrix estimates
by interpreting the correlations in the upper triangle of each matrix as

ellipses. The ellipses are drawn such that the ith, jth ellipse is the
contour of a bivariate normal distribution with correlation Py The
lower triangle contains the numerical correlations. The overlaid
ellipses are particularly useful for spotting where the robust and
classical correlation estimates differ. In practice, this plot works best
for matrices smaller than 10 by 10 and may still be useful for matrices
as large as 25 by 25.



Correlation
Image Display

Computing Robust Covariance with the Windows GUI

Vi
v2
V3

V4

vs -0.1154  0.3372 0.4465 0.3261
-0.5999 0.5275 -0.498 -0.2401

Robust —
Classical —

Figure 5.6: Classical vs Robust Correlation Ellipses Plot

For sufficiently large covariance or correlation matrices the above
display will no longer be useful because the ellipses and text will be
too small. So we provide you with an image type display that gives an
indication of pairs of variables for which the classical and robust
correlations differ substantially. Specifically, the image function is used
to display “significant” differences between robust and classical

correlation matrix estimates as follows: the i—jth (j > 1) element of the
image matrix displays the standardized difference of the Fisher z-
transformations of the robust and classical correlations for the two
variables corresponding to i and j:

rob cls
Zij =2

N2(n—-p)

where n is the number of observations and p is the dimension of the

image; ; =

data. Since Z" ob and Z° ls are approximately standard normal and
typically positively correlated, 2(n-p) is conservative upper bound on
the variance of their difference. The significance is calculated from
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the quantiles of a standard normal so the values in the Correlation
Image Display are almost certain to be more significant than the scale
suggests.

99%

95%

0%

Figure 5.7: Display of Significant Differences Between Classical and Robust
Correlation Estimates

Note that you interpret the legend intervals as follows: a cell value
coded 0% has a value anywhere between zero and the 95th-percentile
of the standard normal distribution; a cell value coded 95% has a
value anywhere between the 95th and the 99th-percentile of the
standard normal distribution; a cell value coded 99% has a value at
least as large as the 99th-percentile of the standard normal
distribution.

You can use the command line function identify.cov to view the robust
and classical correlation estimates for a given cell. The function
requires a graphsheet showing a Correlation Image Display and the
fit.models object that created it. If the plot was created with the



The Statistics
Report

Computing Robust Covariance with the Windows GUI

GUI, the most recent object is saved as .Last.guiCovRob (unless you
changed the default value in the Save A4s field). In this case, use the
command,

> identify.cov(.Last.guiCovRob)

and select a cell from the display. For example, clicking in the (2,3)
cell produces:

Correlation between V2 and V3:
correlation
Robust: 0.7078387
LS: -0.2461404

NOTE: The above image display is a first attempt to display/compare
large covariance matrix estimates. We hope to improve it in future
releases of the Robust Library and we welcome any suggestions you
may have.

The Report window output is shown below.

Calls:
Robust : covRob(data = woodmod.dat, na.action = na.omit)
Classical : cov(data = woodmod.dat, na.action = na.omit)

Comparison of Covariance/Correlation Estimates:
(unique correlation terms)

[1,1] [2,1] [3.,1] [4,1] [5,1] [2,2]
Robust 0.0102 0.0018 0.0011 -0.0002 -0.0008 0.0005
Classical 0.0083 -0.0003 0.0036 0.0027 -0.0029 0.0005
[3,2] [4,2] [5.2] [3,3] [4,3] [5,3]
Robust 0.0008 0.0001 0.0005 0.0052 0.0008 0.0021
Classical -0.0004 -0.0008 0.0006 0.0042 0.0016 -0.0017
[4,4] [5,4] [5.5]
Robust 0.0035 0.0012 0.0042
Classical 0.0039 -0.0008 0.0028

Comparison of Location Estimates:
V1 V2 V3 V4 V5
Robust 0.5671 0.1165 0.5050 0.5520 0.9017
Classical 0.5509 0.1330 0.5087 0.5112 0.9070
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Comparison of Eigenvalues:
Eval. 1 Eval. 2 Eval. 3 Eval. 4 Eval. 5
Robust 0.0108 0.0074 0.0031 0.0022 0.0001
Classical 0.0129 0.0030 0.0021 0.0016 0.0001
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COMPUTING ROBUST COVARIANCE AT THE COMMAND
LINE

Computing You can simultaneously compute classical and robust covariance (or

Both Classical correlation) estimates at the command line using the function
fit.models in the Robust Library:

and Robust y

. > woodmod.fm <- fit.models(1list(Robust = "covRob",
Estimates

+ Classical = "cov"), corr = T, data = woodmod.dat)
> woodmod.fm

Calls:
Robust : covRob(data = woodmod.dat, corr =T)
Classical : cov(data = woodmod.dat, corr = T)

Comparison of Covariance/Correlation Estimates:
(unique covariance terms)
[1,1] [2,1] [3,1] [4,1] [5,1] [2,2]
Robust 0.0102 0.0018 0.0011 -0.0002 -0.0008 0.0005
Classical 1.0000 -0.1447 0.6115 0.4704 -0.5999 1.0000

(3,21 [4,2] [5.2]1 [3,3] [4.,3]1 [5.,3]
Robust 0.0008 0.0001 0.0005 0.0052 0.0008 0.0021
Classical -0.2461 -0.6039 0.5275 1.0000 0.3885 -0.4980

[4,4] [5,4] [5,5]
Robust 0.0035 0.0012 0.0042
Classical 1.0000 -0.2401 1.0000

Comparison of Location Estimates:
V1 V2 V3 V4 V5
Robust 0.5671 0.1165 0.5050 0.5520 0.9017
Classical 0.5509 0.1330 0.5087 0.5112 0.9070

Note that the optional argument corr=T tells Spotfire S+ to compute the
correlation matrix instead of the covariance matrix (the default,
corr=F, is to compute a covariance estimate). The returned object is

of class “fit.models”. You can use the generic plot function on the
returned object:
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Computing
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> plot(woodmod. fm)

which brings up the following menu of plot options for covariance
models.

Make plot selections (or 0 to exit):

: plot: All

: plot: Eigenvalues of Covariance Estimate
: plot: Sqrt of Mahalanobis Distances

: plot: Ellipses Matrix

: plot: Distance - Distance Plot
Selection(s):

gl B~ WD

The menu choices 2 through 5 produce the plots that appear in Figure
5.3, Figure 5.4, Figure 5.6, and Figure 5.5 respectively. A11 draws all
four plots in order. You can create the Correlation Image Display
described in the previous section using the function image.cov,

> image.cov(woodmod.fm)
and you can view the correlation of specific cells using identify.cov.
> identify.cov(woodmod.fm)

Finally, you can use the summary function on the “fit.models” object
to produce the output shown in the Statistics Report above.

Use the function cov if you just want a classical covariance or
correlation matrix estimate, and use the function covRob if you just
want a robust covariance matrix estimate. For example:

> covRob(stack.dat)
Call:
covRob(data = stack.dat)

Robust Estimate of Covariance:
Loss Air.Flow Water.Temp Acid.Conc.
Loss 30.35614 32.18611 12.727357 19.505018
Air.Flow 32.18611 36.94189 12.223170 24.125233
Water.Temp 12.72736 12.22317 8.755008 9.727378
Acid.Conc. 19.50502 24.12523 9.727378 39.274340

Robust Estimate of Location:
Loss Air.Flow Water.Temp Acid.Conc.
13.83285 56.88652 20.51654 86.2826
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CONTROLLING OPTIONS FOR ROBUST COVARIANCE
ESTIMATION

In this section, you will learn how to change the default settings of the
control parameters used by the robust covariance (correlation)
estimators. You can change these options either through a GUI dialog
(Windows only) or from the command line.

From the GUI To change the default options for the robust covariance or correlation

Dialog estimates from the GUI, click on the Advanced tab in the Robust
Covariance (Correlation) dialog. This opens the Advanced page
shown in Figure 5.8:

Robust Covariance (Correlation} =10
E stimates I Reszults I Plat Advanced |
— Robust Covariance Estimator———— — Robust Parameters

I.-“-".utcl - I Samples: IAutu:u - I

— MCD Caontrol I aw Bezamples: I.-'l'-.utcn "I
luiantity: I"I:"""t':| jv ™| Use Bandom Subsets?

Trrizls: 500 Contarmitation: |-45
Alpha: I-':I5
=10 |1 e-00E

bolerance: .0

hl & [beratiomz: |1 a0
k. I Eancell .-'1'-.|:||:||_l,l| I<| >| currert Help |

Figure 5.8: Robust Control Parameters Dialog

The control parameters are estimator specific, only the parameters
relevant to the selected estimator are enabled in the dialog. Note that
here are no control parameters for either of the pairwise estimators.
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Table 5.4: MCD Parameters

GUI Option | Command Description
Line Option
Trials: ntrial: | Number of subsets used for initial estimates. Default is 500.
Quantity: quan: | The integer size of the subsets over which the determinant is

minimized. Must be between the defaultis (n+p+1)/2 and the
n. You may provide a fraction between .5 and 1, indicating the
fraction of the data over which the determinant is minimized.

Table 5.5: Donoho-Stahel Parameters

GUI Option Command Description
Line Option
Samples: nresamp: | The number of resamples required (integer). If
nresamp=0, all subsamples are taken. By default,
nresamp is calculated so that P(high breakdown) = .99.
Max Resamples: maxres: | The maximum number of resamples allowed.
Use Random random. | A logical parameter. If TRUE, the current .Random.seed
Subsets? sample: | isused. If FALSE, the seed is fixed before the samples are
drawn. For a specific seed x, at the command line use
set.seed(x) and random.sample=T.

Tune: tune: | The proportion of points assigned nonzero weight. Used
to calculate the square root of the tune quantile of a chi
squared distribution with p degrees of freedom.

Contamination: eps: | Fraction of contamination used to calculate nresamp. By
default, .5. If nresamp is given, eps is ignored.

Prob: prob: | Probability of high breakdown used to calculate
nresamp. Defaultis.99. Ignored if nresamp is given.
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Table 5.6: M-estimator Parameters

GUI Option

Command Description
Line Option

Contamination:

r: | The fraction of contamination. The default is .45.

Alpha:

alpha: | Fraction of points receiving zero weight. By default, .05.

Max Iterations:

maxit: | The maximum number of M-iterations performed. By
default, 150.

tolerance:

tol: | The relative precision of the solution of the M-estimate.
The default is 1e-003.

tau:

tau: | The tolerance used to determine the singularity of the
scatter matrix estimate. The default is 1e-006.

Controlling
Options at the
Command Line

Remarks:

Since the M-estimator uses the MCD for an initial estimate, the MCD
parameters are also relevant for the M-estimator.

The control option can also be used by any function that relies on
covRob, namely princompRob and discRob.

You can also change the default options for the robust covariance/
correlation estimation from the command line. This involves using
the covRob optional arguments estim, center, distance, and
control as well as the function covRob.control.

estim

This argument allows you to specify the robust estimator used by
covRob. The choices are “M” for a constrained M-estimate,
“donostah” for a Donoho-Stahel estimate, “pairwiseQC” for a
quadrant correlation based pairwise estimate, “pairwiseGK” for a
Gnanadesikan-Kettenring based pairwise estimate, and “MCD” for
the Fast MCD. The default value “Auto” chooses from among the
Donoho-Stahel, the MCD and the quadrant correlation based
pairwise estimator based on the size of the data.
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Examples:
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center

If center = T, a robust location estimate is computed. If center = F,
then the mean is assumed to be zero. A vector containing the mean
may also be given. Note that center is only implemented for the
Donoho-Stahel estimator.

distance
If distance = T, then the Mahalanobis distances are computed.
control

A list of control parameters for the estimator named in the covRob
argument estim. The utility function covRob.control is useful for
generating this list. It takes as arguments the name of the estimator
(the same value assigned to estim in covRob) and the names and
values of the control parameters you wish to specify. Any parameters
not specified in the call to covRob.control will be assigned their
default values. Refer to Figure 5.4, Figure 5.5, and Figure 5.6 for
estimator specific parameters and their default values.

Control parameters may be specified by using the function
covRob.control,

> covRob(woodmod.dat, estim = “mcd”,
+ control = covRob.control(estim = “mcd”, ntrial = 250,
+ quan = 17))

or by passing them directly to covRob.

> covRob(woodmod.dat, estim = “mcd”, ntrial = 250,
+ quan = 17))

The control argument is also useful for performing several analyses
with the same list of parameters. Use covRob.control to make the list,

> rob.params <- covRob.control(estim = “donostah”,
+ nresamp = 500)

then use rob.params as the control argument.

> covRob(woodmod.dat, estim = “donostah”,
+ control = rob.params)

When using fit.models to fit multiple covariance/correlation models
the control parameters must be specified through the control
argument.
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THEORETICAL DETAILS

MCD

Description of
the C-step

The Fast MCD
algorithm

The minimum covariance determinant estimator of location and
covariance available in the Robust Library function covRob is similar
to the existing S-PLUS function cov.mcd. This implementation uses the
Fast MCD algorithm of Rousseeuw and Van Driessen (1999) to
approximate the minimum covariance determinant estimator. This
algorithm relies on a method called the “C-step” with which, given
any approximation to the MCD, it is possible to compute another
approximation with a smaller determinant.

Let X = (x1x2..xn)T be a set of n data points in R’ . Suppose

1
Hc{l,..,n}, |H|=h, and put T;= Eiezyxi and
J
1 ’
S, = p -GZH( i—T)(x, =T . If det(S)=0 , calculate the
J
distances

d(i) = (e~ T)) 8} (x, - T)

and form a new subset Hji by choosing the % points with the smallest

distances dj Then
det(S;, ) <det(S))

with equality if and only if T]-+ 1=Tj- and S]- +1=S]-.

By default 7 is set equal to [#+p+1]/2 (A may be specified by using the
control argument qua n).

Repeat ntrial (by default, ntrial = 500) times:

* Draw a random (p+1)-subset J, and compute T, = mean(])
and S, = cov(]). If det(S,) = 0 then extend J by adding

another randomly chosen observation. Continue until
det(S,) >0 . Compute the relative distances (as in the C-step)

and let H; be the set of / points with the £ smallest distances.
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*  Carry out two C-steps and calculate det(S).

For the 10 results with the lowest det(S3), continue taking C-steps until

det(S;, ) = det(S))

then return the solution (T, S) with the minimum det(S).

Remark: When 7 is large, the initial 2 C-steps are done on a
collection of up to 5 disjoint subsets containing at most 1500 data
points.

For a complete description of the Fast MCD see Rousseeuw, P.J. and
Van Driessen, K. (1999), A Fast Algorithm for the Minimum
Covariance Determinant Estimator, Technometrics, 41, 212-223.

The Donoho-Stahel estimator is defined as a weighted mean and a
weighted covariance matrix, where the weight of each point is a
function of an “outlyingness” measure. The outlyingness measure ris
based on the idea that if a point is a multivariate outlier then there
must be some one-dimensional projection of the data for which the

point is a univariate outlier. Suppose X = (x1x2..xn)T is a set of n
points in R’ . The outlyingness r of each point ; is computed by
finding the direction a;€ A where A = {ae R’ ‘||a|| = 1} such that

T T 1
sup xia—med{xja}/»:l‘

r;= .
ac A T »n
madi{r; a}_,

The weight w; is computed using the following function of

outlyingness:
0 if |Z| >1
c
2 4 6
w(rie) = | aq +aQ(Z) +a3(z) +a4(z) if 0.8 <|1 <1
c c c c
1 if |11 <0.8
c




Computation

Theoretical Details

where

a, = —19.71879
a, = 82.30453
ay = —105.45267
a, = 42.86694 .

The tuning constant is set, by default, to be the square root of the .95
quantile of a chi squared distribution with p degrees of freedom.

The Donoho-Stahel estimator of location and scatter ((X), V(X)) is
defined as

Wi'xl
t =t(X) = ‘=1n
W
i=1
and
iwi(x,-—t)(xi—t)’
V=vXx) = ‘2!

The practical difficulty with the Donoho-Stahel estimator lies in
computing r. The algorithm implemented in the Robust Library uses

an approximation based on subsampling. Define r as r but where the
supremum is taken over a finite set A, defined as follows. For each

subsample X of size pfrom X, let a be the direction orthogonal to the

hyperplane containing X; let A be the set of all these a’s. Since A
will in general be too large to be useful for computation, one replaces
A with a random subsample A, of size N. The number of

subsamples N s computed using the relation

1-(1=(1-g)’" 1)N = prob where € (eps) is the desired breakdown
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point and prob is the probability of not breaking down. By default we
take € = 0.5, prob = 0.99, and solve for N as a function of p. The

weights are calculated using the resulting outlyingness measure 7.

For the complete description see Maronna, R.A. and Yohai, V]J.
(1995), The Behavior of the Stahel-Donoho Robust Multivariate
Estimator, Journal of the American Statistical Association, Vol. 90, No.
429, 330-341.

Suppose X = (x1x2..xn)T is a set of n points in R’. An S-estimate of
multivariate location and shape is defined as the vector ¢t and the
positive definite symmetric matrix é’ that minimize the determinant

of 6’ subject to

Lo (10" CCra-n1" Y
(51) n 3p =n Zp(—)=bo

i=1 ¢

where d; = [(xl-—t)TCfl(x,-—t)]l/2 and p is a non-decreasing

function on [0, o).

The function p is chosen to be a scaled version of a base function such
as the biweight, which reaches a maximum of 1 at ¢;. The constant 4,

is chosen as b, = rp(c,) for breakdown r which is set by default to

0.45. Since p reaches a maximum of 1 at ¢y, §, equals 0.45 as well.

The constant ¢ is chosen so that the estimate C of C is consistent
under multivariate normality, that is such that E(p(d/c)) = b,

where the expectation is taken under a chi-squared distribution with p
degrees of freedom.

Let c}i = d/ ¢ . An S-estimate is also a solution (2, é') of a weighted

mean and covariance iteration



Translated
Biweight

Theoretical Details

~U)

» di)x.

by i BT
Sw(di")
(5.3) é(j) 3 ZW(&y))(xi_tj)(xi_tj)T
20(3?))
where

w(d) = Wd)/ d
Wd) = p’ (d)
v(d) =d Wd).

Note that zero weight is given when d;>c.

The above iteration in turn can be viewed as an iterative computation
of an M-estimate of location and covariance, starting with a highly

robust initial estimate (EO,CO). The M-estimator included in the
Robust Library uses the Fast MCD as an initial robust estimate then
refines the estimate with M iterations using the translated biweight
function described below.

For the complete description of this estimator see Rocke, D.M. (1996),
Robustness Properties of S-Estimators of Multivariate Location and
Shape in high Dimension, Annals of Statistics, Vol 24, No. 3, 1327-1345.

Since zero weight is given to points with distance larger than ¢, one
might expect that points that are a great distance from the main body
of points will receive zero weight. This is the case for one-dimensional
data where the 50% breakdown biweight S-estimator gives zero
weight to any point x; such that d,>1.55. However, this behavior
changes as p increases. In 20 dimensions a point must lie at least a
distance of ./94.5 from the mean to receive zero weight from the 50%
breakdown biweight S-estimator. Under normality, such distances

occur with probability on the order of 10" Points much closer to the
center are clear outliers, but are still assigned positive weight in the

analysis. Figure 5.9 shows the weight versus the distance d for the
biweight and the translated biweight. Also shown is the density of the
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square root of a chi-squared variate with 10 degrees of freedom (the

distribution of the d for normal data). The biweight assigns positive
weight to outliers and down-weights most of the “good” data.

1.2

4 Biweight -
T-Biweight
Chi Density —

1.0

Weight
0.8

0.4

0.2

0.0

Distance

Figure 5.9: The Biweight and Translated Biweight Functions

This problem is addressed by using a weight function that is
essentially the same as the biweight except that it has been translated.
It is clear from figure 5.8 that the translated biweight assigns full
weight to the major of the data and zero weight to any clear outliers.
The translated biweight is defined by a two-parameter class of p
functions.

1 0<d<M

(54) w(d;c,M) = (1-((d-=M)/ ¢ )2)2 M <d<M +c
0 d>M +c
d 0<d<M

(5.5)  Wds esM) = | 41— ((d—M)/ ) M<d<M +c

0 d>M + ¢




The Pairwise
Robust
Covariance
Estimator

Theoretical Details

5.6 4’/ 2 0<d<M
pld;c,M) = f(d:c, M) M <d<M +c
M/ 2 +c((5c+16M)/ 30)d>M+c¢
where

57)  f(d; c,M):M/2
—M(M 5Mc +15c )/ (30¢ )
+d(1/ 2+M/ (2c) M/ )
+d(4M/ (3c) 4M/(3 )
d(3M/ (2c)—1/ (2c))
—AMd’/ (5¢f)+d°/ (6ch

The parameters ¢ and M are chosen to give the desired breakdown
point and asymptotic rejection probability (that is the probability that
a “good” data point lies beyond the rejection point).

This estimator was recently proposed by Maronna and Zamar (2001)
to allow you to compute robust covariance matrices “safely” with
many more variables p than with the other estimators above. This

estimator has complexity n in the sample size n, and p2 in the
number of variables p. The estimator computes all pairwise
covariances using either the estimator proposed by Gnanadesikan
and Kettenring (1972), or the quadrant correlation estimator, using a
very clever adjustment to insure that the resulting covariance matrix
is positive definite. Further details on the estimator will be provided
in the next release of the Robust Library.
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Chapter 6 Robust Principal Component Analysis

COMPUTING ROBUST PRINCIPAL COMPONENTS WITH
THE NT/WINDOWS GUI

Computing
Both Classical
and Robust
Estimates

138

You can quickly compute both classical and robust principal
components estimates and generate a comparison of the results using

the Robust Principal Component Analysis dialog. Try this out with

the data set woodmod.dat which is included with the Robust Library.
First select the data set woodmod.dat in the Spotfire S+ Object Explorer.
Then choose Robust » Principal Components ... from the Spotfire S+
menubar to open the following dialog box.

Robust Principal Component Analysis I i
Estimates | Resultz | Flat | Advanced |
—Data — Method
[1ata Set: woodmod. dat &+ Bath
Wariables: " Classical
" Fobust
— Type

Method to Handle Missing W alues: f« Covariances

Iomit vl " Correlations

— Save Model Object

Save Az I
ok | cancel| appl | | o[ cument Help |

Figure 6.1: Robust Principal Components Dialog: Estimates Page

NOTE: You could also skip selecting woodmod.dat in the Object
Explorer, in which case you could type woodmod.dat in Data Set
combo box.

If you wish to compute the principal components for only some of the
variables in the data set, then select those variables in the Variables
list.



Scatter Plot of
Components

Computing Robust Principal Components with the NT/Windows GUI

The default is to compute both classical and robust principal
components estimates. You can compute only classical or only robust
estimates by clicking the radio button of your choice in the Method
region.

To base the principal component analysis on robust correlation
estimates rather than covariance estimates, click the Correlations
radio button in the Type region of the dialog.

Click on other page tabs to see what options are available for
covariance estimation. For example, click the Plot page tab to reveal
the plot options for the returned object.

Robust Principal Component Analysis ) ]

E ztimates I Fesuls | Plot | Advanced |
— Plots
[~ Scatter Plots

whhich Cormpaonents

I.-’-'«uto vl

¥ Loadings

¥ Screeplot

ok | cancel| appy | | o[ cument Help |

Figure 6.2: Robust Principal Components Dialog: Plot Page

This Trellis display plots pairwise the scores of the principal
components for the robust model and for the classical model. You can
use the which components field to specify the components included in
the plot. The built in choices are “Auto” and “A11”. “A11” includes all
of the components, and “Auto” displays the top five components (all
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if there are less than 5). Additionally, an integer vector may also be
given. For example c(1, 2, 5) would plot the scores for the 1%, 2nd,

and 5th components.

Scatter Plot of Components

Raobust Classical
s o
° % o o ©° o ®oo nE:om .5 ® “« e 4 “Eom 5.
el 1 oa | UG, BRSNS | ey
LA S L o0 & 7 o o % Po o heece o 0w o | g ®
° D [T ° 4 I X . .
SR N R Comp.4-{ ® ° .o '.": o o @omp.4«=‘ o
| el g ® b gl e e
2 % 8 d *4q
8 o0 °° & of° (S [ °2e° P o ° ® o%%°
*% ® .o‘.. ° Comp.2. :3 #. Pe s ” ...- Comp.3 .o;'.. :§.
e b PP $o%
® o ° w o g @ oo | o0 o.'j. 0 ] ° 0 '.. ..'
L] ° o o005 .&‘. ; 5. .;. 005 .;.. '.‘.
° e | Comp.2~ 0% oo o |Ppe Comp.2 L4
: A <., o R o qj » R & ’. °®
- d
Comp.1+{® / . 'J:° :? ? ‘ Comp.1~ .3 IS B o x :'
“10® ®e L4 s &° ‘D oo . % .o.o S,

Figure 6.3: Scatter Plot of Components
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Loadings The second option produces a side-by-side plot of the loadings for
each component. Only four components are displayed per page so
that high dimensional cases will not confound the plot.

Robust: Comp.1 Loadings - Page 1 Classical: Comp.1
e 3
| Vi v2 V3 va A : Vi v2 V3 va V5
Robust: Comp.2 Classical: Comp.2
vi vz va va Vs vi v2 va va V5
Robust: Comp.3 Classical: Comp.3
; l . ; l .
V1 v2 va va Vs V1 v2 va va vs
Robust: Comp.4 Classical: Comp.4
: Vi v2 V3 va V5 Vi v2 v3 va V5

Figure 6.4: Robust and Classical Loadings (first page only)
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Screeplot The final choice is an overlaid screeplot.
Variances
a_ A Robust oo
g \ Classical Ak A
3
=
o

Variances
0.004 0.006 0.008
| |

0.002
|

0.0
L

Figure 6.5: Overlaid Screeplot

The Statistics The Long Output and Loadings are shown below.

Report Calls:

Window Robust : princompRob(data = woodmod.dat, na.action =
na.omit)
Classical : princomp(data = woodmod.dat, na.action =
na.omit)

Importance of components:

Standard deviation
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
Robust 0.1039 0.0862 0.0561 0.0466 0.0079
Classical 0.1105 0.0530 0.0448 0.0394 0.0101

Proportion of Variance
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
Robust 0.4574 0.3147 0.1332 0.0920 0.0026
Classical 0.6534 0.1506 0.1074 0.0831 0.0055
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Cumulative Proportion
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

Robust 0.4574 0.7721 0.9054 0.9974 1
Classical 0.6534 0.8040 0.9114 0.9945 1
Loadings:

Robust

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
Vl -0.962 -0.133 -0.128 ~-0.104 ~-0.172

V2 -0.181 0.974

V3 -0.201 0.686 0.511 0.472

V4 0.347 -0.840 0.416

V5 0.619 -0.127 -0.765 -0.121
Classical

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
V1 -0.760 -0.252 0.530 -0.235 -0.151
V2 -0.194 0.111 -0.349 0.907
V3 -0.444 -0.829 -0.325
V4 -0.343 0.902 0.245
V5 0.321 0.274 0.130 -0.843 -0.307
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COMPUTING ROBUST PRINCIPAL COMPONENTS
ESTIMATES AT THE COMMAND LINE

Computing You can compute both classical and robust estimates of the Principal
Both Classical Components at the command line using the Robust Library
function fit.models.

and Robust
. > wood.rpc <- fit.models(list(Classical = "princomp”,
Estimates + Robust = "princompRob"), data = woodmod.dat)
> wood.rpc
Calls:

Classical : princomp(data = woodmod.dat)
Robust : princompRob(data = woodmod.dat)

Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
Classical 0.11049902 0.10394430 0.05304690 0.08621876
Robust 0.05609822 0.03940449 0.04661103 0.01010690

Comp.5
Classical 0.044797818
Robust 0.007907684

The number of variables is 5 and the number of observations
is 20.

The returned object is of class “fit.models”. You can use the generic
plot function on the returned object:

> plot(wood.rpc)
which displays the following menu of choices.

Make plot selections (or 0 to exit):

: plot: All

: plot: Trellis of Component Scatter Plots
: plot: Loadings

: plot: Variances

Selection(s):

B~ w o
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Choices 2 through 4 correspond to Figure 6.3, Figure 6.4, and Figure
6.5 respectively. A11 draws all three plots in order.

The generic function summary is also supported for class
“fit.models” objects. The following command will produce the
output found in the Statistics Report shown above.

> summary(wood.rpc, loadings = T)

i se the function princomp if you only want a classical principa
Computin Use the funct fy ly want a cl 1 principal
Only One component analysis, and use the function princompRob if you want

. only a robust estimate. For the robust case:
Estimate

> princompRob(woodmod.dat)

Standard Deviations:
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
0.1039443 0.08621876 0.05609822 0.04661103 0.007907684

The number of variables is 5 and the number of observations
is 20

Component names:

"sdev" "Toadings"™ "correlations" "scores" "center" "scale"
"n.obs™ "call"™ "factor.sdev" "coef"

Call:
princompRob(x = woodmod.dat)

The returned object is of class “princompRob”. The generic plot and
summary functions are similar to those for the existing “princomp”
class.

You can use the princompRob optional argument corr=T for a
principle component analysis based on the robust correlation matrix
rather than the covariance matrix:

> princompRob(x = woodmod.dat, corr =T)
Standard Deviations:

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
1.474969 1.209257 0.8883914 0.7091129 0.2647359
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The number of variables is 5 and the number of observations
is 20

Component names:

correlations scores center scale"

" "Coef"

"sdev" "Toadings
"n.obs"™ "call"™ "factor.sdev

Call:
princompRob(x = woodmod.dat, corr =T)
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OVERVIEW OF THE METHOD

Introduction

148

Suppose you have a set of quantitative observations about individuals
belonging to two or more groups, along with a group identifier for
each vector observation that is represented by a categorical (factor)
variable. Discriminant analysis uses the quantitative variables along
with the group identifier to create a model that can be used to assign
new observations to one of the groups (i.e., classify new observations).
See the documentation for the S-PLUS discrim function for further
details about this technique.

Robust discriminant analysis is implemented for two classes of
models where the quantitative data in each group follows a nominally
multivariate normal distribution: the Aomoscedastic and the
heteroscedastic models. We say nominally because we are allowing for
heavy-tailed departures for multivariate normality that give rise to
multivariate outliers.

In the homoscedastic model the covariance matrices of the groups are
assumed to be the same for every group. In this case you can derive a
linear discriminant function

I(x) = Bo+PB x

where B, is a scalar and B; is a vector, and you classify new

observations as being in one of two groups depending on whether or
not /(x) is larger or smaller than a certain threshold.

In the heteroscedastic model you do not make any assumption on the
covariance matrices, and allow them to be different for each group. In
this case the discriminant functions is quadratic:

g(x) = B+ Pl x+x Pax

where B, is a matrix. For classical discriminant analysis, the scalar,
vector and matrix quantities B, B; and B, depend on maximum
likelihood estimates of the multivariate group means and variance-
covariance matrices |; and X; respectively, assuming multivariate

normal distributions for each group.



Overview of the Method

Because outliers can badly distort the Gaussian MLE’s of the group
means and covariances, and hence distort the linear and quadratic
discriminant function, it is highly desirable to have robust
discriminant methods that are not much influenced by a small
fraction of outliers.

The basic idea behind the robust discriminant methods we provide
you with here is to replace the Gaussian maximum likelihood

estimates |; and X; by the robust alternatives provided by the
function covRob in this Robust Library.
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COMPUTING MLE AND ROBUST DISCRIMINANT MODELS
WITH THE NT/WINDOWS GUI

Computing
Both MLE and
Robust
Discriminants

150

Consider the data frame hemo.cont included in the library, of
observations on two variables for subjects belonging to two groups.
The original data (Johnson and Wichern, 1992, page 570) has been
contaminated by adding 10 outliers to the first group. Fit a
discriminant analysis model to this data by choosing Robust »
Discriminant Analysis from the menubar. Select Group as the
dependent variable and Activity and Antigen as your dependent
variables. In the Model region, select classical from the Family pull-
down menu and select heteroscedastic from the Covariance Struct
pull-down menu. Save the discriminant model object by typing the
name hemo.gui in the Save As box in the Save Model Object
region.

Robust Discriminant Analysis =l =l
kodel | Results I Advanced I
—Data — Fitting kethod

[rata Set: Ihemu:u.u:u:unt vI & MLE + Fobust
.  MLE

Wi eights: I YI  Robust

Frequencies: I hi I

Subset Rows with: I — kaodel

v Ornit Fowes with Mizsing ¥ alues Family Iclassical "I
— %Y ariables Covariance Struct Iheteruscedastic vI
Dependent: IG'UUIj 'I Group Prior; Ipru:upu:urtiu:unal vI

Independent: — Save Model Object

Save Az I

Create Formula |

— Formula

Farrnula: IGroup”.-‘l'«ctivit_l,l+.-'l'mtigen

ok | Cancel | [ &gl | 1| o[ cument Help_|




Computing MLE and Robust DISCRIMINANT MODELS with the NT/Windows GUI

Note that the above dialog Model page looks exactly like the one for
Discriminant Analysis in Spotfire S+, except for the Fitting Method
choices, with the default choice MLE + Robust (both maximum
likelihood estimates and robust fits are computed) and alternate
choices MLE (maximum likelihood estimates only) and Robust
(robust fit only).

Click on the tab labeled Results and select the Short Output option
only. Note that the option Cross-Validate that is available in the
(classical) Discriminant Analysis dialog is not available here, as it
demands excessive computing time for the default robust estimate
implemented in covRob.

Robust Discriminant Analysis =l =l
kodel Rezultz Advanced I
Printed/Graphic Resulte———— — Sawved Results
[T Short Output Save | I "I
v Long Output [~ Plug-in
[~ Flat [T Predictive
[T Urbiazed
[T Crozs*alidate

oK | cancel | apply | 1| o cument Help |
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The Statistics Click OK. The output comparing the MLE and the robust
Report discriminant models appears in the Report window:

*** Robust Discriminant Analysis ***

Calls:

MLE : discrim(formula = structure(.Data = Group ~
Activity + Antigen, class

= "formula"), data = hemo.cont, family = Classical(

"homoscedastic"), na.action = na.omit, prior =
"proportional™)

Robust : discRob(formula = structure(.Data = Group ~
Activity + Antigen, class

= "formula"), data = hemo.cont, family = Classical(

"homoscedastic"), na.action = na.omit, prior =
"proportional™)

Constants:

MLE
1 2
-1.120877 -1.319132

Robust
1 2
-1.336137 -6.527361

Linear Coefficients:

MLE
1 2
Activity 0.4801456 -4.4227122
Antigen -4.8420655 -0.7207522

Robust

1 2
Activity -10.50404 -35.60441
Antigen 1.95306 12.32662
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Mahalanobis Distances:

MLE
X1 X2
1 0.000000 2.338221
2 0.000000

Robust

X1 X2
1 0.000000 5.843787
2 0.000000

PTug-in classification table:

MLE
X1 X2 Error Posterior.Error
1 21 19 0.4750000 0.5964972
2 0 45 0.0000000 -0.0183033
Overall 0.2235294 0.2710146
Robust
X1 X2 Error Posterior.Error
1 37 3 0.0750000 -0.0394930
2 9 36 0.2000000 0.2168326
Overall 0.1411765 0.0962088

(from=rows,to=columns)

Monte Carlo Error Rates:
Group 1 Group 2
MLE 0.265 0.802
Robust 0.140 0.904

(conditioned on the training data)
Note that there is a marked difference in the values of the MLE and
robust coefficient estimates for the quadratic discriminant function

above. But how do you compare the relative classification error-rate
performance of these two methods?
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One way is to use simple “plug-in” empirical error rates for the
“training” sample used to fit the discriminant model. This approach
tends to give inaccurate estimates of the error rate. Another way is to
simulate multivariate “test” data using the estimated means and
covariances for the groups. Both of these methods are used when you
check the Long Output box on the Results page of the dialog. Try this,
and see what happens. You will also see these kinds of results when
you carry out robust discriminant analysis from the command line as
described in the next section.

NOTE: The options in the Saved Results region of the Results page
are not currently available when you select MLE+Robust or Robust
on the Model page. We expect to fix this in a future release of the
Robust Library.
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COMPUTING MLE AND ROBUST DISCRIMINANT MODELS
AT THE COMMAND LINE

Computing
Both MLE and
Robust
Discriminants

If you prefer to work at the command line, use the new fit.models
function in the Robust Library to compute both the MLE and the
robust discriminant estimates and store them in a single S-PLUS
object.

> hemo.fit <- fit.models(model 1ist(MLE = 'discrim',
+ Robust = 'discRob'), formula Group ~.,
+ data = hemo.cont, family = Classical('hetero'))

To obtain a detailed comparison of the fits use the summary method
(this might take a few minutes to finish).

> summary(hemo.fit)

Starting simulation. Generating 1000 new random samples.
This may take a few minutes.
Done.

Starting simulation. Generating 1000 new random samples.
This may take a few minutes.

Done.
Calls:

MLE : discrim(formula = structure(.Data = Group ~
Activity + Antigen, class = "formula"), data = hemo.cont,
family

Classical("hetero™))

Robust : discRob(formula = structure(.Data = Group ~
Activity + Antigen, class = "formula"), data = hemo.cont,
family

Classical("hetero™))
Constants:
MLE

1 2
1.718957 0.04783382
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Robust
1 2
15.06448 8.648668

Linear Coefficients:

MLE
1 2
Activity -0.4619015 -21.80618
Antigen -4.3220909 13.70132

Robust

1 2
Activity -11.31777 -36.418161
Antigen 4.29550 8.399457

Quadratic Coefficients:

Group: 1

MLE
Activity Antigen
Activity -4.730540 -3.213555
Antigen -3.213555 -15.854149

Robust

Activity Antigen
Activity -71.99090 46.86212
Antigen 46.86212 -52.63087

Group: 2

MLE
Activity Antigen
Activity -35.85158 22.93602
Antigen 22.93602 -35.47632

Robust
Activity Antigen
Activity -54.38198 14.10806
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Antigen 14.10806 -15.31899
Pairwise Generalized Squared Distances:

MLE
1 2
1 0.000000 15.25672
2 1.195969 0.00000

Robust

1 2
1 0.000000 5.720328
2 8.225338 0.000000

Plug-in classification table:

MLE
X1 X2 Error Posterior.Error
1 27 13 0.3250000 0.4186656
2 1 44 0.0222222 0.0081484
Overall 0.1647059 0.2013330
Robust
X1 X2 Error Posterior.Error
1 31 9 0.2250000 0.0714852
2 9 36 0.2000000 0.1097189
Overall 0.2117647 0.0917266

(from=rows,to=columns)
Monte Carlo Error Rates:

Group 1 Group 2

MLE 0.250 0.958

Robust 0.077 0.861

(conditioned on the training data)
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Computing
only a Robust
Discriminant
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Note the Plug-in classification table results above. The X1 column
gives the number of observations from groups 1 and 2 that are
classified as group 1, in the rows labeled 1 and 2, respectively.
Similarly, the X2 column gives the number of observations that are
classified as group 2.

The last table “Monte Carlo Error Rates”is computed as follows. We
simulated 1000 observations (this number can be controlled with the
option n.MC of summary.discRob, see below) for each group. These
observations were drawn from a multivariate normal distribution with
the mean and covariance matrix equal to the corresponding
estimates. We used the discriminant function to assign them to one of
the two groups, and then counted how many of these new
observations were misclassified. The above table contains the
corresponding proportions. Note that in this example the Robust
estimates performs significantly better than the classical estimate for
the first group (0.7% versus 25% misclasified observations) and both
methods are comparable for Group 2 (97.5% versus 95.8%). See
below to learn how to obtain such a measure for classical discriminant
analysis objects of class discrim.

NOTE: A predict method does not currently exist for a discRob
object. We expect to remedy this in a future release.

Use the function discRob to compute only the robust fit. For
example:

> hemo.rob <- discRob(Group ~., data = hemo.cont, family =
+ Classical('hetero'))

By default, the summary method does not calculate the Monte Carlo
Error Rates discussed above. To obtain it, use the optional
arguments MC and n.MC (the number of simulated observations to
generate) as follows:

> summary(hemo.rob, MC=T, n.MC = 500)

Starting simulation. Generating 500 new random samples.
This may take a few minutes.
Done.
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Call:
discRob(structure(.Data = Group ~ Activity + Antigen,
class = "formula"), data = hemo.cont, family =

Classical("hetero™))

Group means:

Activity Antigen N Priors
1 -0.1237905 -0.06941429 40 0.4705882
2 -0.3465000 -0.04495833 45 0.5294118

Covariance Structure: heteroscedastic

Group: 1

Activity Antigen
Activity 0.01652061 0.01470982
Antigen 0.02259764

Group: 2

Activity Antigen
Activity 0.01208047 0.01112554
Antigen 0.04288533

Constants:
1 2
15.06448 8.648668

Linear Coefficients:
X1 X2
Activity -11.31777 -36.41816
Antigen 4.29550 8.39946

Quadratic coefficents:
group: 1

Activity Antigen
Activity -71.99090 46.86212
Antigen -52.63087

group: 2
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Activity Antigen
Activity -54.38198 14.10806
Antigen -15.31899

Pairwise Generalized Squared Distances:
1 2

1 0.000000 5.720328

2 8.225338 0.000000

Classification table:

X1 X2 Error Posterior.Error

1 31 9 0.2250000 0.0714852

2 9 36 0.2000000 0.1097189
Overall 0.2117647 0.0917266

(from=rows,to=columns)

Monte Carlo Error Rates:
Group 1 Group 2
0.07 0.83
(conditioned on the training data)

Computing To obtain a Monte Carlo error rates table for the classical
Monte Carlo discriminant fit you use the function summary.discRob on an object

Error Rates for of class discrim as follows. First fit an MLE model to the data.

a Classical
Discriminant
Model

> hemo.mle <- discrim(Group ~., data = hemo.cont,
+ family = Classical('hetero'))

Now use the function summary.discRob on it.
> summary.discRob(hemo.mle, MC = T, n.MC = 500)
Starting simulation. Generating 500 new random samples.
This may take a few minutes.
Done.
Call:

discrim(structure(.Data = Group ~ Activity + Antigen,
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class = "formula"), data = hemo.cont, family =
Classical("hetero™))

Group means:

Activity Antigen N Priors
1 0.05076578 -0.146597846 40 0.4705882
2 -0.30794889 -0.005988889 45 0.5294118
Covariance Structure: heteroscedastic

Group: 1

Activity Antigen
Activity 0.1225740 -0.02484513
Antigen 0.03657347
Group: 2

Activity Antigen
Activity 0.02378340 0.01537636
Antigen 0.02403498

Constants:
1 2
1.718957 0.04783382

Linear Coefficients:

X1 X2
Activity -0.461902 -21.80618
Antigen -4.322091 13.70132

Quadratic coefficents:

group: 1

Activity Antigen
Activity -4.730540 -3.21356
Antigen -15.85415

group: 2

Activity Antigen
Activity -35.85158 22.93602
Antigen -35.47632

Pairwise Generalized Squared Distances:
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1 2
1 0.000000 15.25672
2 1.195969 0.00000

PTug-in classification table:

X1 X2 Error Posterior.Error

1 27 13 0.3250000 0.4186656

2 1 44 0.0222222 0.0081484
Overall 0.1647059 0.2013330

(from=rows,to=columns)

Monte Carlo Error Rates:
Group 1 Group 2
0.244 0.942
(conditioned on the training data)
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Tuning constants 1760VERVIEW OF THE METHOD

Introduction

Function
Names

164

Asymmetric distributions of positive random variables occur in many
statistical applications concerning, for example, survival data
(medicine), yield data (agriculture, industry), failure times (industry),
income and resource consumption measures (econometric studies).

We focus on two particular aspects of this kind of data. First, the
population mean or the total of a finite population is the characteristic
of interest; because the total is a multiple of the mean, we concentrate
on the population mean. Second, the data may contain values that are
markedly different from most others. When some of these values are
observed, the sample mean can be much larger than when none are
observed, and, therefore, it varies strongly from sample to sample.

Transformations are often used to make the distribution (closely)
symmetric; many robust procedures based on the Gaussian model are
then available to estimate the transformed mean. Unfortunately,
symmetrizing transformations do not always exist. Moreover, the
original mean cannot usually be estimated by transforming back the
transformed mean. For example, to estimate a lognormal mean both
the estimates of normal mean and scale are required; therefore, the
distinction between main (mean) and nuisance (scale) parameters—
that characterizes most location and scale procedures—is not
appropriate anymore. The Robust Library makes available two
procedures that do not make this distinction: the truncated mean

estimate proposed by Marazzi and Ruffieux (1999), and the B.F-
estimate proposed in Hampel et al. (1986, pp 238-257).

Table 8.1: Function Names

Classical Robust
Gamma gammaMLE | gammaRob
Weibull weibullMLE | weibullRob
Lognormal | lognormMLE | lognormRob




Computing MLE and Robust Fits with the NT/Windows GUI

COMPUTING MLE AND ROBUST FITS WITH THE NT/
WINDOWS GUI

Computing
Both MLE and
Robust Fits

Consider the data Tos included in this library. The vector Tos
represents the observed lengths of stay (LOS) in days of 32 patients
hospitalized in a Swiss hospital during 1988 for certain “disorders of
the nervous system” (Marazzi, Paccaud and Ruffieux, 1998). LOS is
an important indicator of hospital costs. The LOS means of medically
homogeneous groups of patients (e.g., the group considered here)
within a hospital are used for hospital planning and budgeting; the
means of different hospitals are used to compare costs and explore
possible reductions.

The mean is 25.5 days. In many applications it is useful to use a
mathematical model in order to summarize the entire distribution; for
example, one can use the Gamma distribution to model and simulate
hospital stays. To adjust a Gamma distribution according to both the
maximum likelihood criterion and the robust estimate use the GUI
dialog as follows. Choose Robust P Asymmetric Parameter
Estimation. The dialog window is shown in Figure 8.1.

Robust Asymmetric Parameter Esl:in1al:iun§§§ P ] e
P odel | Results I Flot I Advanced I
—Data — Fitting kMethad
[rata Set: los - i MLE + Robust
) " MLE
Wariable: -  Robust

— Save Model Object

—

v Omit Mizzing Walues

IGamma VI

Sawve b

— Digtribution

(1] I I:ar'u:ell .-'-‘-.ppl_l,ll I<| >| current

Figure 8.1: The Robust Gamma and Weibull Fit Dialog

Help |
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Diagnostic
Plots

The Statistics
Report

166

When you press OK the results appear in a Report window and a
Graph Sheet. The plot is shown in Figure 8.2.

In the Graph Sheet you obtain a histogram of the data with the
overlaid estimated density functions (one for the MLE estimate and
one for the Robust estimate) and a QQ plot showing the response vs.
estimated quantiles. These plots appear in Figure 8.2 and Figure 8.3.

In the Report window you obtain a short description of the estimates
(or a longer more detailed listing if you check the Long output in the
Results page of the GUI Dialog).



Computing MLE and robust estimates at the Command Line

COMPUTING MLE AND ROBUST ESTIMATES AT THE
COMMAND LINE

Computing To fit the same models using the command line use the Robust
Both MLE and Library function fit.models.
Robust Fits > los.fits <- fit.models(1ist(mle = 'gammaMLE",

+ robust = 'gammaRob'), data = los)

The detailed summary of the estimates obtained by checking the
Long Output option on the Results tab page of the GUI Dialog is
obtained using the generic summary method on the fit.models
object (los fits).

> summary(los.fits)
Calls:

mle : gammaMLE(data = Tos)
robust : gammaRob(data 1os)

Coefficients:
Estimates Std. Error

mle : Alpha 0.9263 0.7735
robust : Alpha 1.3858
mle : Sigma 8.4992 0.0645
robust : Sigma 3.6396
mle : Mu 7.8730 0.4609
robust : Mu 4.9727 0.2750
Diagnostic The generic plot method is also implemented for fit.models objects.
Plots > plot(los.fits)

Make plot selections (or 0 to exit):

1: plot: ATl

2: plot: Overlaid Density Estimates

3: plot: Response vs Estimated Quantiles
Selection(s): 1

Select 1 to produce the following diagnostic plots.
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Overlaid Densities
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Figure 8.2: MLE and Robust Gamma fits for the 10s data
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Figure 8.3: Response vs. Estimated Quantiles for both the MLE and Robust fits
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Computing
only a Robust
GLM Fit

The Diagnostic
Plots

Computing MLE and robust estimates at the Command Line

Note that the robust estimate has been applied to the entire data set
but that the Gamma distribution has automatically been fitted to the
“majority” of the data. The mean of the fitted model is 4.97 days.

If you want to fit a robust estimate to the 1os data you can use the
function gammaRob ()
> los.robust.fit <- gammaRob(10s)

Detailed information on the estimated parameters is obtained by
using the summary () function.

> summary(los.robust.fit)
Robust gamma distribution parameter estimate

Call:
gammaRob(data = Tos)

Coefficients:
Estimates Std. Error
Alpha 1.3857686
Sigma 3.6395658
Mu 4.9726962 0.2749752

The command

> plot(los.robust.fit)

is used to produce the plots similar to those in Figure 8.2 and Figure
8.3 except that only the information pertaining to the robust fit is
displayed.
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CONTROLLING OPTIONS FOR ROBUST WEIBULL AND

GAMMA FITS

170

The parameters that control the computational procedures used to
compute the MLE and robust estimates for both gamma, lognormal,
and Weibull distributions are passed to their respective functions
through the control argument. The Robust Library provides the
following funcions which are useful for creating these lists.

* gammaMLE.control
* gammaRob.control
* TlognormRob.control
* weibulTMLE.control
* weibulTRob.control

The functions for generating the control lists for the robust estimators
each have one required argment: the name of the estimator (the same
value that is passed to the estim argument in gammaRob, TognormRob,
or weibul1Rob). If no additional arguments are provided then a list
with the control parameters each set to their default valu is returned.
Only the parameters required for the specified estimator are returned.
Please refer to the online help for explanations of the parameters and
their default settings. For example,

> help(lognormRob.control)

will display the help for lognormRob.control. Also, it may be helpful
to note that the control list can be save in your working chapter and
used for several analyses. For example, we can shorten th initial
interval used by the truncated mean estimator:

> los.robust.control <- gammaRob.control(“tdmean”,
+ alphal = .5, alpha2 = 10.5)

> Tos.robust.fit <- gammaRob(los, robust.control =
+ los.robust.control)



Controlling Options for Robust Weibull and Gamma FITS

Note that control arguments can also be passed directly to the
corresponding function. Internally they are processed through the
corresponding control function. Hence the following is equivalent to

the lines above.

> los.robust.fit <- gammaRob(los, alphal = .5,
+ alpha2 = 10.5)

The same applies to all the asymmetric distribution parameter
estimation functions included in the Robust Library.
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THEORETICAL DETAILS

The Models

172

Let Y>0 be a random variable with unknown cumulative

distribution function G and asymmetric density g. We suppose that,
as it often occurs in practice, we are mainly interested in estimating
W(G), the expected value of Y, using n independent observations

Xy, .., X,. Moreover, we are willing to use a parametric model F -

for the distribution F = G°h™" (with density f) of some monotone
increasing transformation Y = h(X). The corresponding model for
G is G, , (density g, ;) and define p = (G, ). We assume that:

; and (b) either o is a location

(a) o is a scale parameter of F, ;

parameter or o is a shape parameter of F o o

Two popular asymmetric models that satisfy (a) and (b) are the
Weibull and the Gamma distributions. The Weibull distribution with
shape T and scale y has density

g ,(X) = (/ v)(x/ v)*lexp(—~(x/ v)7), x>0, v>0, T>0.

The mean is 'I'(1+1/ t. It is often convenient to consider
Y = In(X); the density of Y is then

Jo o) = exp([((y-— )/ 0)—exp((y-0)/ 0)]/ 0).
where o = Inv is a location parameter and 5= 1/ T a scale
parameter. The Gamma distribution with shape o and scale ¢ has

density

fu ) = (T (@) (v/ 9% lexp(-y/ ©), y>0, 6>0, a>0.

We have W(G, ) =oo.



The B_"-
estimate

Theoretical Details

This estimator is used to estimate the gamma and Weibull distribution
parameters. Let S(y, 0) denote the score vector function of Fy, i.e.,

S(y, 6) = dlnfy(y)/ 00 and let b be a user chosen tuning constant.

The Bsp—estimate 6 of 0 is then defined as a solution of

2 [AL(8)(S(y, 8)-Cy(8))] = 0,
i=1

where the function W,(z), z = (z), zp)€ R? is defined by
¥,(2) = (H, (21), H,,(29)), b= (b, by) e R? and

H,(z) = min(b, max(y, —b)) denotes the Huber function.
Moreover, A,(0) is a 2 by 2 non-singular lower triangular matrix and

C,(0) is a 2-component vector; they are both functions of 6 and are

defined jointly and implicitly by the following equations

| W,IA,(0)(S(y, 8) = CLONTW,[AL(0)S(y, 0)—CW(ON]Sfo(y)oy=1
| WIAL8)S(y. 8) = C,(0)]fe(3)dy= 0

(see Hampel et al., 1986, pp 238-256). The corresponding estimate of
his k= W(Gy).

Under certain regularity conditions 6 is asymptotically normally
distributed with asymptotic covariance matrix

V(6, F) = M(y F)-'Q(y F)M(y F),
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Computations

The Truncated
Mean Estimate

174

where

0w F) = [ Wy, 0)(Wy, 8)3F(y),

My F)

- [ 2w 0] FO).

0=

Let F, denote the empirical distribution of the sample. In practice we

use V(é, F,)/ n or V(é, Fé)/ n as approximations for the

covariance matrix of 0.

The computation of the Bsp-estimate is discussed in Marazzi and
Ruffieux (1996); details can be found in Marazzi and
Randriamiharisoa (1997a, 1997b, 1997¢). The general approach is as

follows: given an initial value for 6, one computes A,(0), C,(8) and
an improved value of 6. However, in the Gamma case, A,(0) and

C,(9) depend on o. The repeated computation of A,(8) and C,(0)

slows down iterations. Therefore, the following two-step procedure is
used: (a) for fixed b, determine A,(8) and C,(8) for a discrete set of

values of o; (b) solve the equations for 8 using a linear interpolation

of the tables obtained in step (a) in order to compute A,(c) and

C, () . This scheme is particularly time efficient when the estimator

has to be evaluated for a sequence of similar problems, such as those
required in a bootstrap procedure.

This estimator is used to estimate the lognormal distribution
parameters. Let m(F,) and s(F,) be robust measures of location and

dispersion based on 7 (transformed) observations y,,...,,. Specifically,

we take the median and the median absolute deviation or the B-
trimmed mean and the y-trimmed absolute deviation defined below.
Let m(F) and s(F) denote the asymptotic values of m(F,) and s(F,)

when the data is distributed according to the distribution F The

truncated mean is based on four steps. First, an initial estimate (0, ©)
is computed by solving



Theoretical Details

m(F&, 2D = m(F,) and s(F&, D = s(F,)
Second, an upper truncation limit 7, is defined as the w-quantile

T, = Gé’l &(u) of the fitted model for X, where u is a user chosen

number (i.e., a “tuning constant”) e.g., # = 0.99. Third, a lower limit 7

is determined so that the mean of the truncated model coincides with
the mean of the entire model, i.e.,

T

_— ng~ -(x)dx = | xg- -(x)dx
u—G-" -(T)) JTZ ® 0 '[ %0
o

The truncated mean estimate | is the arithmetic mean of the x; such
that 7, < x; <T,:
w = ave{xi|Tl<xi< T,

The truncated mean estimate does not strongly depend on the
parametric model which is only used to compute 7;and 7, It is very

robust because it completely rejects extreme observations (its
breakdown point is the minimum between the breakdown points of s

and m). The influence functions IF(y;((&, ET), F)) andIF(y;u, G)
can be computed but the formulae are cumbersome (Marrazzi and

Ruffieux, 1999). The asymptotic variance of I is obtained using,
V(T, F) = | IF(y, T, F)IF(y, T, F) dF(y).
The efficiency of the truncated mean with respect to the maximum

likelihood estimator depends on u (see tuning constants) and can be

very high.
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Tuning
constants
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Trimmed Mean and Trimmed Absolute Deviation

The B-trimmed mean m(F,) and the y-trimmed absolute deviation
s(F,) of yy,...,9, are defined as follows:

i

1 u
m(F,) = —iu+”u—iz_’”z ‘_Z y[i]+ruy[iu+1]+(1_rl)y[il+1]’
l—zl+2
1 u
d(F,) =+ X tsudy, eyt (=502, 10y,

JutSu—J1—5 j=j1+2

where i, = [n(1-B)], i, = [nB], r, = n(1-B)—i,, r, = np—i,
ju I_n(l_’Y)Ja jl: I_nYJ, Su:n(l_Y)_iL¢, Sl:ny_ila
z; = |[y;—m(F,)|; moreover, y; <y <.<y,, denote the order

statistics and the notation | z] is used for the largest integer smaller

than z The constants B € [0, 0.5] and y € [0, 0.5] are user chosen.
For B = vy = 0.5, m is the median and d is the median absolute
deviation. For 3 and y close to 0.5, m and d are “smoothed” versions
of these estimates. By default we use B =7y = 0.4.

Classical statistics assumes that Y is distributed according to some
distribution F for an unknown value of a parameter 8 € R 7. The

maximum likelihood (ML) criterion is often used to estimate this
value of 6. In robustness theory, one assumes that F belongs to a

neighborhood P of one of the Fy, say Fyy . For example, one can use

the € -contamination model (Huber, 1981)

Fe P, = {G|G=(l-¢)Fy +¢eH, H arbitrary }

€



Theoretical Details

If we let uy g denote the Maximum Likelihood (ML) estimate of
then the asymptotic relative efficiency (ARE) of u with respect to

Upre at the distribution F is

ARE(W, Wure, F) = (V(Uuee, F)/ V(U F)).

ARE is usually evaluated at the model Fy. We also define the

maximum asymptotic variance (MAV) of u over the neighborhood

*

P, of distribution functions, for a given mean [ , as

MAV(1, W, €) = supg. p V(K G) .

The most common rule for determining the tuning constants of an M-
estimator is to require that the ARE with respect to the ML estimator
at the model be a certain value, e.g., 90%. The higher the value of
ARE, the more the estimate is sensitive to outliers. There are,

however, several pairs of values of (b,, by) with the same ARE, and
the rule does not determine them uniquely. As a remedy, it has been
proposed to minimize MAV as a function of 4 and find optimal
values b(¢) for varying € and o. The sensitivity of the estimate to
contamination depends then on € and on the optimal value b(¢) of
b. The choice of € would be made on the grounds of collateral
information about the frequency of outliers. It turns out, however,
that minimization of MAV under the constraint b; = b, gives almost
the same minimum as the unconstrained minimization. Therefore, we
suggest to use a single tuning constant b = b; = b,. Unfortunately,

the ARE of the mean estimate depends on the estimated value of the
parameters and the choice of the tuning constant must be made on

the grounds of a preliminary guess of 8. In the Weibull and Gamma
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cases ARE only depends on o and hence, given a rough estimate for

o, Table 1 allows us to choose b to obtain a certain ARE at the

model.

ARE Gamma Weibull Lognormal
a b b u

0.85 1 1.76 1.83 997
2 1.48 1.38 996
3 1.39 1.26 995
4 1.35 1.25 993
5 1.33 1.22 992
10 1.29 1.21 991

0.90 1 2.12 2.18
2 1.76 1.67 998
3 1.62 1.39 997
4 1.55 1.36 996
5 1.51 1.34 996
10 1.44 1.32 995
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OVERVIEW OF CONTRIBUTED CODE

Robust
Smoothing
Splines

180

This chapter very briefly describes contributed code for three
statistical methods: (1) Robust smoothing splines, (2) A robust
version of Mallows’ Cp for robust selection of linear models, and (3)
Quantile regression. The methodology and S-PLUS functions for the
robust smoothing splines and robust Cp were developed by
combinations  of the following individuals: Eva Cantoni, Evezio
Ronchetti, Suzanne Sommer, and Robert Staudte. The regression
quantiles methodology and S-PLUS code were developed by Roger
Koenker.

We did not have time to develop a menu/dialog interface for these S-
PLUS functions, so they are only available at the command line.
Also, we only had time for minimal testing of the S-PLUS functions.
None-the-less, we hope they will be of interest to users of the Robust
Library, and that user feedback and interest will result in further
development of these functions as needed.Computing Robust
Covariance at the Command Line

You fit a robust smoothing spline that is not distorted by outliers with
the function smooth.spline.Rob. Here is a brief example:

> attach(ethanol)

> plot(E, NOx)

> temp.cv <- smooth.splineRob(E, NOx, lambda = "cv")
> lines(temp.cv)

The resulting plot is shown in the figure below.

For further details see the Help file for smooth.spTineRob. See also,
Cantoni and Ronchetti (2000), “Resistant selection of the smoothing
parameter for smoothing splines”, Statistics and Computing.

NOTE: The function smooth.spline.Rob bundles up several
functions provided by Eva Cantoni and Elvezio Ronchetti, namely:

e.psi, frob, matS, my.smooth.spline, opt.RCp, opt.cv,
psihuber.

Although we do not provide Help files for these individual functions,
you may view them by printing smooth.spTlineRob.
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NOx

0.6 0.8 1.0 1.2

Figure 9.1: Robust Smoothing Spline Fit

Robust Cp The function RCp computes a robust version of Mallows’ Cp based on
weighted least squares, which provides for robust model selection of
subset models that fit the bulk of the data in the presence of outliers.

Here is a simple example of using RCp:

> rcp.result <- RCp(stack.x, stack.loss)
> plot(rcp.result)

This results in the plot shown below. You can also get a long
summary with:

> summary(rcp.result)
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Figure 9.2: Robust Cp Plot for Stack Loss Data

For further details see the Help file for RCp. See also, Ronchetti and
Staudte (1994), “A robust version of Mallows’ Cp”, Jour. Amer. Statist.
Assoc., 89, 550-559, and Sommer and Staudte (1995), “Robust variable
selection in regression in the presence of outliers and leverage
points”, Australian Jour. of Statistics, 37, 323-336..

NOTE: The function RCp bundles up several functions provided by
Eva Cantoni and Elvezio Ronchetti, namely:

Bfinal, Hwt, Label, Mwt, plot.RCp, Plot.cp, RCp, RCp.reduced,
select.best, Subset.

Although we do not provide Help files for these individual functions,
you may view them by printing RCp.
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Quantile The function rq computes a quantile regression fit. This methodology
Regression has been extensively developed by Roger Koenker. See for example
Koenker and Bassett (1978), “Regression quantiles”, Econometrica, 46,
33-50, Koenker and d’Orey (1987, 1994), and “Computing regression
quantiles”, Applied Statistics, 36, 383-393, and 43, 410-414.

For example:
> greg.mod <- rqg(stack.loss ~ stack.x, .4)

computes a .4 quantile regression for the stack loss data.

See the Help file for rq for more examples, further use details, and
additional references.
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	Overview of the Method: A Special M�Estimate
	You are fitting a general linear model of the form
	,
	with p�dimensional independent predictor (independent) variables and coefficients , and scalar re...
	where is a robust scale estimate for the residuals and is a particular optimal symmetric bounded ...
	where is a redescending (nonmonotonic) function. The shapes of the and functions are shown in Fig...
	The above minimization problem can have more than one local minima, and correspondingly the estim...

	Computing LS and Robust Fits with the Windows GUI
	Computing Both LS and Robust Fits
	You easily obtain both a least squares and robust linear model fit for the so called “stack loss”...
	)
	select the three independent (predictor) variables (you can do this by shift clicking on Acid.Con...
	Note that the Model page of this dialog looks exactly like that of the Linear Regression dialog i...
	Click on the tabs labeled Results, Plot and Predict to look at those dialog pages. You will notic...
	We have made the default choices of plots indicated by the checked boxes. This will encourage you...
	Click OK to compute both the LS and robust fits, along with the four diagnostic comparison plots ...

	The Diagnostic Plots
	Each of the Graph Sheet pages contains a Trellis display for the LS and robust fit, as shown below.
	Normal QQ-Plots of Residuals
	As seen in Figure 2.3, the normal QQ-plot for the LS fit residuals shows at most one outlier, whi...
	You also note that if you ignore the outliers, a normal distribution is a pretty good model for t...
	ignoring the outliers, has a substantially smaller standard deviation than the normal distributio...

	Probability Density Estimates of Residuals
	Figure 2.4 displays the (kernel) probability density estimates for the residuals for the least sq...

	Standardized Residuals versus Robust Distances
	A highly useful plot of scaled residuals versus robust distances of the predictor variables was i...
	The standardized residuals vs. robust distances plots for both the least squares and robust fits ...
	In this case the LS fit produces no residuals outliers and four x- outliers, whereas the robust f...
	This example illustrates the problem of outlier masking in least squares fits, i.e., the influenc...

	Standardized Residuals versus Index (Time)
	Figure 2.6 shows the standardized residuals vs. index (time) plots for both the LS and robust fit...
	From Figure 2.6, you can see that the LS fit does not reveal any outlier, while the robust fit ag...


	The Statistics Report
	The Report window contains the following results.
	The standard errors, the t�statistics, and the p�values of the robust coefficient estimates for t...
	There is also a Test for Bias in the summary statistics provided in the Report window. This provi...
	Read the section Theoretical Details to find out how these robust inference quantities are computed.


	Computing LS and Robust Fits at the Command Line
	Computing Both LS and Robust Fits
	If you prefer to work at the S�Plus command line, you can use the fit.models function in the Robu...
	Now view a brief summary of the results:
	Use the summary function to obtain a more complete summary of the model fitting results:

	The Diagnostic Plots
	You can also make comparison plots with the plot function:
	Note that in the Robust Library, you can select more than one plot from the above menu of choices...

	Computing Only a Robust Fit
	Use the function lmRob to compute only a robust fit:
	You can also use the summary and plot functions to get more extensive summary results and plots, ...

	Computation Time Required
	For the size of most regression problems, the robust regression method requires a computationally...
	Recently Pena and Yohai (1999) proposed a fast procedure for obtaining a reliable initial regress...
	By default, S�Plus employs the random resampling algorithm for initial estimates when the number ...
	The tables below compare the computation times required by the resampling algorithm and the fast ...
	Table 2.1: S-PLUS User Time with Random Sampling Initial Estimate Method
	Table 2.2: S-PLUS User Time with Pena-Yohai Fast Initial Estimate Method

	In the case you choose to use the random resampling initial estimate whe p is greater than 15 by ...
	NOTE: For small values of n and p, S-PLUS automatically does exhaustive sampling for the initial ...
	The printout of the remaining time estimate using the usual hours:minutes:seconds format. So in t...
	In the event you want to defer the computation of the robust estimate until another time such as ...

	Fitting Models with Both Numeric and Factor Variables
	Often you fit linear models with both numeric and factor variables. When the factor variables hav...
	This data set contains four numeric variables: PA, GPA, HS, GHS, two factor variables Region and ...
	If you try to fit a linear model using the function lmRobMM, available in current versions of S�P...
	The Robust Library deals with this problem by using a new alternate S/M-estimate computing algori...
	Compute LS and robust fits to wagner.dat in a manner similar to the one you used for the stack lo...
	(Alternatively, you could skip selecting variables in the Object Browser and just select them in ...
	Note that when a linear model contains factor variables as well as continuous (numeric) variables...
	Figure 2.10-Figure 2.13 show quite dramatic differences between the LS and robust fits: The LS fi...
	The Report window output for this example is shown below:


	Robust Model Selection
	It is not enough for you to robustly fit a linear model when you are trying to decide which of tw...
	Since we have not yet implemented a dialog access to use the robust tests and RFPE, we show you h...
	Robust F Tests
	The data set sim.dat is a simulated data set provided in the Robust Library. The data was created...
	where the first two coefficients have value one and the third and fourth coefficients have value ...
	Use the function pairs
	to obtain the pairwise scatter plots of the five-dimensional data consisting of the response and ...
	Now make two least squares linear model fits, one with just the first two variables and one with ...
	The short summary of the lm.mod12 fit is as follows:
	> lm.mod12

	The coefficients are nowhere near their common true values of one. If you use the summary functio...
	The short summary of the lm.mod1234 fit is:
	> lm.mod1234

	The first two coefficients are nowhere near their common true value of one, while the third and f...
	Now use the anova function to compute a classical F-test of whether or not the third and fourth c...
	> anova(lm.mod12, lm.mod1234)

	The (classical) F-test erroneously tells you that the third and fourth variables should be in the...
	Now make two robust model fits, the first using the first two variables x1 and x2, and the second...
	The short summaries of these two robustly fitted models are as follows:
	> rob.mod12
	> rob.mod1234

	You notice that rob.mod12 provides coefficient estimates that are quite close to the true values ...
	Now use the anova function on these two robustly fitted models to compute a robust F test:
	> anova(rob.mod12,rob.mod1234)

	The test accepts the null hypothesis that the third and fourth coefficients are not significant.

	Robust Wald Tests
	The default test used by anova is a robust F test. You can also use anova to compute a robust Wal...
	which gives a result quite similar to that of the robust F test.

	Robust FPE for Model Selection
	Although many robust estimators have been constructed in the past, the issue of robust model sele...
	You may use the RFPE criterion to choose a best model when robustly fitting linear models from th...
	When considering a variety of model choices with respect to several different choices of predicto...
	The RFPE criterion is used by the function step to compute a backward stepwise robust method of m...
	> step(rob.mod1234)

	Recall that sim.dat was generated by a model in which only the two coefficients associated with x...


	Advanced Options For Robust Regression
	In this section, you will learn how to change the default settings of some control parameters for...
	Launch the GUI Dialog
	Selecting the Advanced tab in the dialog shown in Figure 2.1 brings up the following page:
	Adaptive Robust Estimate
	For the final estimate, S�Plus uses the MM-estimate briefly described in the section Overview of ...
	To choose the adaptive robust estimate from the dialog, you simply click the down arrow to the ri...
	From the command line, you can use the lmRob.robust.control optional argument final.alg. For exam...
	> oil.tmp <- lmRob(Oil ~ Market, data = oilcity,



	Efficiency at Gaussian Model
	If the final MM�estimates are chosen, they have a default asymptotic efficiency of 90% compared w...
	To change the efficiency level, you can either type your desired Gaussian model efficiency in the...
	> oil.tmp <- lmRob(Oil ~ Market, data = oilcity,


	M-Estimate Loss Function
	The Loss Function list box in the Final Estimator region displays the default choice Optimal, ind...
	If you wish, you can also choose to use the Tukey bisquare loss function shown in the upper left ...
	To choose different settings of the loss function from the command line, you use the lmRob.robust...
	> control <- lmRob.robust.control(weight = c(“Bisquare”,

	In the above commands, the rescaled bisquare function is used for the initial S�estimates, and th...
	Optimizer Parameters
	Describe maximum number of iterations and tolerance control constants here in the next release. T...


	Confidence Level of Bias Test
	S�Plus provides two bias tests for the default MM-estimate: one testing the bias of least squares...
	To compute these tests for the model fit oil.tmp created in the above subsection, use the followi...
	The results show that the least squares estimate is biased relative to the final M-estimate, whil...
	By default, the level of significance of the tests is set at 10%. To change the level of the test...

	Resampling Algorithms
	When computing the initial S�estimates, S�Plus uses an exhaustive resampling scheme for sufficien...
	To choose a particular resampling algorithm from the dialog, you simply click the down arrow to t...

	Random Resampling Parameters
	Random resampling is controlled by two parameters: a random seed and the number of subsamples to ...
	> oil.tmp <- lmRob(Oil ~ Market,data = oilcity, nrep = 10)

	The seed of the random resampling can be controlled by specifying the argument seed to lmRob.robu...

	Genetic Algorithm Parameters
	If you choose to use the genetic algorithm, the parameters for genetic algorithm can be changed t...
	> args(lmRob.genetic.control)

	For an explanation of the various arguments above, see the online help file for the function ltsr...


	Theoretical Details
	Initial Estimate When p is Not Too Large
	The key to obtaining a good local minimum of the M�estimation objective function when using a bou...
	The S�estimate approach has as its foundation an M�estimate of an unknown scale parameter for obs...
	where is a symmetric, bounded function. It is known that such a scale estimate has a breakdown po...
	The following regression S�estimate method was introduced by Rousseeuw and Yohai (1984). Consider...
	For each value of , we have a corresponding robust scale estimate . The regression S�estimate (wh...
	This presents another nonlinear optimization, one for which the solution is traditionally found b...
	For details on the numerical algorithms used, see Marazzi (1993), whose algorithms, routines and ...

	Fast Initial Estimate for Large p
	When the number of variables p is 15 or greater, the above S-estimate based on random sample is o...

	Alternating S and M Initial Estimate
	For models with factor variables (with possibly many levels), S-PLUS uses a new initial estimate ...

	Optimal and Bisquare Rho and Psi- Functions
	A robust M�estimate of regression coefficient is obtained by minimizing
	where is a convex weight function of the residuals with tuning constant . The derivative of is us...
	Tukey’s bisquare functions and are as follows:
	The Yohai and Zamar optimal functions and are as follows:
	where
	.

	The Efficient Bias Robust Estimate
	Yohai and Zamar (1998) showed that the and functions given above are optimal in the following hig...

	Efficiency Control
	The Gaussian efficiency of the final M�estimate is controlled by the choice of the tuning constan...

	Robust R�Squared
	The robust R2 is calculated as follows:

	Robust Deviance
	For an M�estimate, the deviance is defined as the optimal value of the objective function on the ...

	Robust F Test
	The robust F-statistics is
	where the subscript p indicates the predictor variables, coefficients, and robust residuals scale...

	Robust Wald Test
	See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986).

	Robust FPE (RFPE)
	Ronchetti (1985) proposed to generalize the Akaike Information Criterion (AIC) to robust model se...
	This new RFPE is calculated as follows:
	with
	where is the final M�estimate of , and . Note that when , RFPE reduces to the Akaike’s classical ...
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