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TIBCO SPOTFIRE S+ BOOKS

The TIBCO Spotfire S+® documentation includes books to address 
your focus and knowledge level. Review the following table to help 
you choose the Spotfire S+ book that meets your needs. These books 
are available in PDF format in the following locations:

• In your Spotfire S+ installation directory (SHOME\help on 
Windows, SHOME/doc on UNIX/Linux).
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Spotfire S+ documentation.

Information you need if you... See the...

Are new to the S language and the Spotfire S+ 
GUI, and you want an introduction to importing 
data, producing simple graphs, applying statistical 

models, and viewing data in Microsoft Excel
®

. 

Getting Started
 Guide

Are a new Spotfire S+ user and need how to use 
Spotfire S+, primarily through the GUI.

User’s Guide

Are familiar with the S language and Spotfire S+, 
and you want to use the Spotfire S+ plug-in, or 
customization, of the Eclipse Integrated 
Development Environment (IDE).

Spotfire S+ Workbench 
User’s Guide

Have used the S language and Spotfire S+, and 
you want to know how to write, debug, and 
program functions from the Commands window.

Programmer’s Guide

Are familiar with the S language and Spotfire S+, 
and you want to extend its functionality in your 
own application or within Spotfire S+.

Application 
Developer’s Guide
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Are familiar with the S language and Spotfire S+, 
and you are looking for information about creating 
or editing graphics, either from a Commands 
window or the Windows GUI, or using Spotfire 
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+, 
and you want to use the Big Data library to import 
and manipulate very large data sets. 

Big Data 
User’s Guide

Want to download or create Spotfire S+ packages 
for submission to the Comprehensive S-PLUS 
Archive Network (CSAN) site, and need to know 
the steps.

Guide to Packages

Are looking for categorized information about 
individual Spotfire S+ functions.

Function Guide

If you are familiar with the S language and 
Spotfire S+, and you need a reference for the 
range of statistical modelling and analysis 
techniques in Spotfire S+. Volume 1 includes 
information on specifying models in Spotfire S+, 
on probability, on estimation and inference, on 
regression and smoothing, and on analysis of 
variance.

Guide to Statistics, 
Vol. 1

If you are familiar with the S language and 
Spotfire S+, and you need a reference for the 
range of statistical modelling and analysis 
techniques in Spotfire S+. Volume 2 includes 
information on multivariate techniques, time series 
analysis, survival analysis, resampling techniques, 
and mathematical computing in Spotfire S+.

Guide to Statistics, 
Vol. 2

Spotfire S+ documentation. (Continued)

Information you need if you... See the...
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Chapter 1  Introduction to the Big Data Library
INTRODUCTION

In this chapter, we discuss the history of the S language and large data 
sets and describe improvements that the Big Data library presents. 
This chapter discusses data set size considerations, including when to 
use the Big Data library. The chapter also describes in further detail 
the Big Data library architecture: its data objects, classes, functions, 
and advanced operations.

To use the Big Data library, you must load it as you would any other 
library provided with Spotfire S+: that is, at the command prompt, 
type library(bigdata). 

• To ensure that the library is always loaded on startup, add 
library(bigdata) to your SHOME/local/S.init file. 

• Alternatively, in the Spotfire S+ GUI for Microsoft 

Windows®, you can set this option in the General Settings 
dialog box.

• In the Spotfire S+ Workbench, you can set this option in the 
Spotfire S+ section of the Preferences dialog box, available 
from the Window menu.
2



Working with a Large Data Set
WORKING WITH A LARGE DATA SET

When it was first developed, the S programming language was 
designed to hold and manipulate data in memory. Historically, this 
design made sense; it provided faster and more efficient calculations 
and modeling by not requiring the user’s program to access 
information stored on the hard drive. Data size has outstripped the 
rate at which RAM size increased; consequently, S program users 
could have encountered an error similar to the following:

Problem in read.table: Unable to obtain requested dynamic 
memory. 

This error occurs because Spotfire S+ requires the operating system 
to provide a block of memory large enough to contain the contents of 
the data file, and the operating system responds that not enough 
memory is available. 

While Spotfire S+ can access data contained in virtual memory, the 
maximum size of data files depends on the amount of virtual memory 
available to Spotfire S+, which depends in turn on the user’s 
hardware and operating system. In typical environments, virtual 
memory limits your data file size, and then it returns an out-of-
memory error. 

Finally, you can also encounter an out-of-memory error after 
successfully reading in a large data object, because many S functions 
require one or more temporary copies of the source data in RAM for 
certain manipulation or analysis functions. 

Finding a 
Solution

S programmers with large data sets have historically dealt with 
memory limitations in a variety of ways. Some opted to use other 
applications, and some divided their data into “digestible” batches, 
and then recompile the results. For S programmers who like the 
flexibility and elegant syntax of the S language and the support 
provided to owners of a Spotfire S+ license, the option to analyze and 
model large data sets in S has been a long-awaited enhancement.

Out-of-Memory 
Processing

The Big Data library provides this enhancement by processing large 
data sets using scalable algorithms and data streaming. Instead of 
loading the contents of a large data file into memory, Spotfire S+ 
creates a special binary cache file of the data on the user’s hard disk, 
3



Chapter 1  Introduction to the Big Data Library
and then refers to the cache file on disk. This out-of-memory design 
requires relatively small amounts of RAM, regardless of the total size 
of the data.

Scalable 
Algorithms

Although the large data set is stored on the hard drive, the scalable 
algorithms of the Big Data library are designed to optimize access to 
the data, reading from disk a minimum number of times. Many 
techniques require a single pass through the data, and the data is read 
from the disk in blocks, not randomly, to minimize disk access times. 
These scalable algorithms are described in more detail in the section 
The Big Data Library Architecture on page 8.

Data Streaming Spotfire S+ operates on the data binary cache file directly, using 
“streaming” techniques, where data flows through the application 
rather than being processed all at once in memory. The cache file is 
processed on a row-by-row basis, meaning that only a small part of 
the data is stored in RAM at any one time. It is this out-of-memory 
data processing technique that enables Spotfire S+ to process data 
sets hundreds of megabytes, or even gigabytes, in size without 
requiring large quantities of RAM.

Data Type Spotfire S+ provides the large data frame, an object of class bdFrame. 
A big data frame object is similar in function to standard Spotfire S+ 
data frames, except its data is stored in a cache file on disk, rather 
than in RAM. The bdFrame object is essentially a reference to that 
external file: While you can create a bdFrame object that represents an 
extremely large data set, the bdFrame object itself requires very little 
RAM.

For more information on bdFrame, see the section Data Frames on 
page 11.

Spotfire S+ also provides time date (bdTimeDate), time span 
(bdTimeSpan), and series (bdSeries, bdSignalSeries, and 
bdTimeSeries) support for large data sets. For more information, see 
the section Time Date Creation on page 177 in the Appendix.

Flexibility The Big Data library provides reading, manipulating, and analyzing 
capability for large data sets using the familiar S programming 
language. Because most existing data frame methods work in the 
same way with bdFrame objects as they do with data.frame objects, 
the style of programming is familiar to Spotfire S+ programmers. 
Much existing code from previous versions of Spotfire S+ runs 
4



Working with a Large Data Set
without modification in the Big Data library, and only minor 
modifications are needed to take advantage of the big-data 
capabilities of the pipeline engine.

Balancing 
Scalability with 
Performance

While accessing data on disk (rather than in RAM) allows for scalable 
statistical computing, some compromises are inevitable. The most 
obvious of these is computation speed. The Big Data library provides 
scalable algorithms that are designed to minimize disk access, and 
therefore provide optimal performance with out-of-memory data sets. 
This makes Spotfire S+ a reliable workhorse for processing very large 
amounts of data. When your data is small enough for traditional 
Spotfire S+, it’s best to remember that in-memory processes are faster 
than out-of-memory processes.

If your data set size is not extremely large, all of the Spotfire S+ 
traditional in-memory algorithms remain available, so you need not 
compromise speed and flexibility for scalability when it's not needed. 

Metadata To optimize performance, Spotfire S+ stores certain calculated 
statistics as metadata with each column of a bdFrame object and 
updates the metadata every time the data changes. These statistics 
include the following:

• Column mean (for numeric columns).

• Column maximum and minimum (for numeric and date 
columns).

• Number of missing values in the column.

• Frequency counts for each level in a categorical column.

Requesting the value of any of these statistics (or a value derived from 
them) is essentially a free operation on a bdFrame object. Instead of 
processing the data set, Spotfire S+ just returns the precomputed 
statistic. As a result, calculations on columns of bdFrame objects such 
as the following examples are practically instantaneous, regardless of 
the data set size. For example:

• mean(census$Income)

• range(census$Age)

No 64-Bit 
Solution

Are out-of-memory data analysis techniques still necessary in the 64-
bit age? While 64-bit operating systems allow access to greater 
amounts of *virtual* memory, it is the amount of *physical* memory 
5



Chapter 1  Introduction to the Big Data Library
that is the primary determinant of efficient operation on large data 
sets. For this reason, the out-of-memory techniques described above 
are still required to analyze truly large data sets.

64-bit systems increase the amount of memory that the system can 
address. This can help in-memory algorithms handle larger problems, 
provided that all of the data can be in physical memory. If the data 
and the algorithm require virtual memory, page-swapping (that is, 
accessing the data in virtual memory on the disk) can have a severe 
impact on performance.

With data sets now in the multiple gigabyte range, out-of-memory 
techniques are essential. Even on 64-bit systems, out-of-memory 
techniques can dramatically outperform in-memory techniques when 
the data set exceeds the available physical RAM.
6



Size Considerations
SIZE CONSIDERATIONS

While the Big Data library imposes no predetermined limit for the 
number of rows allowed in a big data object or the number of 
elements in a big data vector, your computer’s hard drive must 
contain enough space to hold the data set and create the data cache. 
Given sufficient disk space, the big data object can be created and 
processed by any scalable function. 

The speed of most Big Data library operations is proportional to the 
number of rows in the data set: if the number of rows doubles, then 
the processing time also doubles.

The amount of RAM in a machine imposes a predetermined limit on 
the number of columns allowed in a big data object, because column 
information is stored in the data set’s metadata. This limit is in the 
tens of thousands of columns. If you have a data set with a large 
number of columns, remember that some operations (especially 
statistical modeling functions) increase at a greater than linear rate as 
the number of columns increases. Doubling the number of columns 
can have a much greater effect than doubling the processing time. 
This is important to remember if processing time is an issue.

Summary By bringing together flexible programming and big-data capability, 
Spotfire S+ is a data analysis environment that provides both rapid 
prototyping of analytic applications and a scalable production engine 
capable of handling datasets hundreds of megabytes, or even 
gigabytes, in size. 

In the next section, we provide an overview to the Big Data library 
architecture, including data types, functions, and naming 
conventions.
7



Chapter 1  Introduction to the Big Data Library
THE BIG DATA LIBRARY ARCHITECTURE

The Big Data library is a separate library from the Spotfire S+ engine 
library. It is designed so that you can work with large data objects the 
same way you work with existing Spotfire S+ objects, such as data 
frames and vectors. 

Block-based 
Computations

Data sets that are much larger than the system memory are 
manipulated by processing one “block” of data at a time. That is, if 
the data is too large to fit in RAM, then the data will be broken into 
multiple data sets and the function will be applied to each of the data 
sets. As an example, a 1,000,000 row by 10 column data set of double 
values is 76MB in size, so it could be handled as a single data set on a 
machine with 256MB RAM. If the data set was 10,000,000 rows by 
100 columns, it would be 7.4GB in size and would have to be handled 
as multiple blocks.

Table 1.1 lists a few of the optional arguments for the function 
bd.options that you can use to set limits for caching and for 
warnings:
Table 1.1: bd.options block-based computation arguments.

bd.option argument Description

block.size The block size (in number of rows), the number 
of bytes in the cache to be converted to a 
data.frame.

max.convert.bytes The maximum size (in bytes) of the big data 
cache that can be converted to a data.frame.

max.block.mb The maximum number of megabytes used for 
block processing buffers. If the specified block 
size requires too much space, the number of rows 
is reduced so that the entire buffer is smaller than 
this size. This prevents unexpected out-of-
memory errors when processing wide data with 
many columns. The default value is 10.
8



The Big Data Library Architecture
The function bd.options contains other optional arguments for 
controlling column string width, display parameters, factor level 
limits, and overflow warnings. See its help topic for more 
information. 

The Big Data library also contains functions that you can use to 
control block-based computations. These include the functions in 
Table 1.2. For more information and examples showing how to use 
these functions, see their help topics.
Table 1.2: Block-based computation functions.

Function name Description

bd.aggregate Use bd.aggregate to divide a data object into 
blocks according to the values of one or more of 
its columns, and then apply aggregation 
functions to columns within each block.

bd.aggregate takes two required arguments: 
data, which is the input data set, and by.columns, 
which identifies the names or numbers of 
columns defining how the input data is divided 
into blocks.

Optional arguments include columns, which 
identifies the names or numbers of columns to 
be summarized, and methods, which is a vector 
of summary methods to be calculated for 
columns. See the help topic for bd.aggregate for 
a list of the summary methods you can specify 
for methods.

bd.block.apply Run a Spotfire S+ script on blocks of data, with 
options for reading multiple input datasets and 
generating multiple output data sets, and 
processing blocks in different orders. See the 
help topic for bd.block.apply for a discussion on 
processing multiple data blocks.

bd.by.group Apply the specified Spotfire S+ function to 
multiple data blocks within the input dataset.
9



Chapter 1  Introduction to the Big Data Library
For a detailed discussion on advanced topics, such as block size issues 
and increasing efficiency, see Chapter 5, Advanced Programming 
Information.

bd.by.window Apply the specified Spotfire S+ function to 
multiple data blocks defined by a moving 
window over the input dataset. Each data block 
is converted to a data.frame, and passed to the 
specified function. If one of the data blocks is too 
large to fit in memory, an error occurs.

bd.split.by.group Divide a dataset into multiple data blocks, and 
return a list of these data blocks.

bd.split.by.window Divide a dataset into multiple data blocks 
defined by a moving window over the dataset, 
and return a list of these data blocks.

Table 1.2: Block-based computation functions. (Continued)

Function name Description
10



The Big Data Library Architecture
Data Types Spotfire S+ provides the following data types, described in more 
detail below: 

Data Frames The main object to contain your large data set is the big data frame, 
an object of class bdFrame. Most methods commonly used for a 
data.frame are also available for a bdFrame. Big data frame objects 
are similar to standard Spotfire S+ data frames, except in the 
following ways:

• A bdFrame object stores its data on disk, while a data.frame 
object stores its data in RAM. As a result, a bdFrame object has 
a much smaller memory footprint than a data.frame object.

• A bdFrame object does not have row labels, as a data.frame 
object does. While this means that you cannot refer to the 
rows of a bdFrame object using character row labels, this 
design reduces storage requirements and improves 
performance by eliminating the need to maintain unique row 
labels. 

• A bdFrame object can contain columns of only types double, 
character, factor, timeDate, timeSpan or logical. No other 
column types (such as matrix objects or user-defined classes) 
are allowed. By limiting the allowed column types, Spotfire 
S+ ensures that the binary cache file representing the data is 
as compact as possible and can be efficiently accessed.

Table 1.3: New data types and data names for Spotfire S+.

Big Data class Data type

bdFrame Data frame

bdVector, bdCharacter, bdFactor, 
bdLogical, bdNumeric, bdTimeDate, 
bdTimeSpan

Vector

bdLM, bdGLM, bdPrincomp, bdCluster Models

bdSeries, bdTimeSeries, bdSignalSeries  Series
11



Chapter 1  Introduction to the Big Data Library
• The print function works differently on a bdFrame object than 
it does for a data frame. It displays only the first few rows and 
columns of data instead of the entire data set. This design 
prevents accidentally generating thousands of pages of output 
when you display a bdFrame object at the command line. 

• The summary function works differently on a bdFrame object 
than it does for a data frame. It calculates an abbreviated set 
of summary statistics for numeric columns. This design is for 
efficiency reasons: summary displays only statistics that are 
precalculated for each column in the big data object, making 
summary an extremely fast function, even when called on a 
very large data set.

Vectors The Spotfire S+ Big Data library also introduces bdVector and six 
subclasses, which represent new vector types to support very long 
vectors. Like a bdFrame object, the big vector object stores data out-of-
memory as a cache file on disk, so you can create very long big vector 
objects without needing a lot of RAM.

You can extract an individual column from a bdFrame object (using 
the $ operator) to create a large vector object. Alternatively, you can 
generate a large vector using the functions listed in Table A.3 in the 
Appendix. Like bdFrame objects, the actual data is stored out of 
memory as a cache file on disk, so you can create very long big vector 
objects without worrying about fitting them into RAM. You can use 
standard vector operations, such as selections and mathematical 
operations, on these data types. For example, you can create new 
columns in your data set, as follows:

census$adjusted.income <- log(census$income -
  census$tax)

Models Spotfire S+ Big Data library provides scalable modeling algorithms to 
process big data objects using out-of-memory techniques. With these 
modeling algorithms, you can create and evaluate statistical models 
on very large data sets.

Note

You can specify the numbers of rows and columns to print using the bd.options function. See 
bd.options in the Spotfire S+ Language Reference for more information.
12



The Big Data Library Architecture
A model object is available for each of the following statistical 
analysis model types.

When you perform statistical analysis on a large data set with the Big 
Data library, you can use familiar Spotfire S+ modeling functions and 
syntax, but you supply a bdFrame object as the data argument, instead 
of a data frame. This forces out-of-memory algorithms to be used, 
rather than the traditional in-memory algorithms. 

When you apply the modeling function lm to a bdFrame object, it 
produces a model object of class bdLm. You can apply the standard 
predict, summary, plot, residuals, coef, formula, anova, and fitted 
methods to these new model objects.

For more information on statistical modeling, see Chapter 2, Census 
Data Example.

Series Objects The standard Spotfire S+ library contains a series object, with two 
subclasses: timeSeries and signalSeries. The series object contain:

• A data component that is typically a data frame.

• A positions component that is a timeDate or timeSequence 
object (timeSeries), or a bdNumeric or numericSeries object 
(signalSeries).

• A units component that is a character vector with 
information on the units used in the data columns.

Table 1.4: Big Data library model objects.

Model Type Model Object

Linear regression bdLm

Generalized linear models bdGlm

Clustering bdCluster

Principal Components Analysis bdPrincomp
13



Chapter 1  Introduction to the Big Data Library
The Big Data library equivalent is a bdSeries object with two 
subclasses: bdTimeSeries and bdSignalSeries. They contain:

• A data component that is a bdFrame.

• A positions component that is a bdTimeDate object 
(bdTimeSeries), or bdNumeric object (bdSignalSeries).

• A units component that is a character vector.

For more information about using large time series objects and their 
classes, see the section Time Classes on page 17.

Classes The Big Data library follows the same object-oriented design as the 
standard Spotfire S+ Sv4 design. For a review of object-oriented 
programming concepts, see Chapter 8, Object-Oriented 
Programming in Spotfire S+ in the Programmer’s Guide.

Each object has a class that defines methods that act on the object. 
The library is extensible; you can add your own objects and classes, 
and you can write your own methods. 

The following classes are defined in the Big Data library. For more 
information about each of these classes, see their individual help 
topics. 
Table 1.5: Big Data classes.

Class(es) Description

bdFrame Big data frame

bdLm, bdGlm, bdCluster, bdPrincomp Rich model objects

bdVector Big data vector

bdCharacter, bdFactor, bdLogical, 
bdNumeric, bdTimeDate, 
bdTimeSpan

Vector type subclasses

bdTimeSeries, bdSignalSeries Series objects
14



The Big Data Library Architecture
Functions In addition to the standard Spotfire S+ functions that are available to 
call on large data sets, the Big Data library includes functions specific 
to big data objects. These functions include the following.

• Big vector generating functions

• Data exploration and manipulation functions.

• Traditional and Trellis graphics functions.

• Modeling functions.

The functions for these general tasks are listed in the Appendix.

Data Import and 
Export

Two of the most frequent tasks using Spotfire S+ are importing and 
exporting data. The functions are described in Table A.1 in 
Appendix. You can perform these tasks from the Commands 
window, from the Console view in the Spotfire S+ Workbench, or 
from the Spotfire S+ import and export dialog boxes in the Spotfire 
S+ GUI. For more information about importing large data sets, see 
the section Data Import on page 25 in Chapter 2, Census Data 
Example.

Big Vector 
Generation

To generate a vector for a large data set, call one of the Spotfire S+ 
functions described in Table A.3 in the Appendix. When you set the 
bigdata flag to TRUE, the standard Spotfire S+ functions generate a 
bdVector object of the specified type. For example:

# sample of size 2000000 with mean 10*0.5 = 5 
 rbinom(2000000, 10, 0.5, bigdata = T)

Data Exploration 
Functions

After you import your data into Spotfire S+ and create the 
appropriate objects, you can use the functions described in Table A.4 
in the Appendix. to compare, correlate, crosstabulate, and examine 
univariate computations. 

Data 
Manipulation 
Functions

After you import and examine your data in Spotfire S+, you can use 
the data manipulation functions to append, filter, and clean the data. 
For an overview of these functions, see Table A.5 in the Appendix. 
For a more in-depth discussion of these functions, see the section 
Data Manipulation on page 37 in Chapter 2, Census Data Example.

Graph Functions The Big Data library supports graphing large data sets intelligently, 
using the following techniques to manage many thousands or millions 
of data points:
15



Chapter 1  Introduction to the Big Data Library
• Hexagonal binning. (That is, functions that create one point 
per observation in standard Spotfire S+ create a hexagonal 
binning plot when applied to a big data object.)

• Plot-specific summarizing. (That is, functions that are based 
on data summaries in standard Spotfire S+ compute the 
required summaries from a big data object.)

• Preprocessing data, using table, tapply, loess, or aggregate.

• Preprocessing using interp or hist2d.

For a more detailed discussion of graph functions available in the Big 
Data library, see Chapter 4, Creating Graphical Displays of Large 
Data Sets.

Modeling 
Functions

Algorithms for large data sets are available for the following statistical 
modeling types:

• Linear regression.

• Generalized linear regression.

• Clustering.

• Principal components.

See the section Models on page 12 for more information about the 
modeling objects. 

If the data argument for a modeling function is a big data object, then 
Spotfire S+ calls the corresponding big data modeling function. The 
modeling function returns an object with the appropriate class, such 
as bdLm. 

See Table A.12 in the Appendix for a list of the modeling functions 
that return a model object. 

See Tables A.10 through A.13 in the Appendix for lists of the 
functions available for large data set modeling. See the Spotfire S+ 
Language Reference for more information about these functions.

Note

The Windows GUI editable graphics do not support big data objects. To use these graphics, 
create a data frame containing either all of the data or a sample of the data.
16
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Formula operators

The Big Data library supports using the formula operators+, -, *, :, 
%in%, and /.

Time Classes The following classes support time operations in the Big Data library. 
See the Appendix for more information.

Time Series 
Operations

Time series operations are available through the bdTimeSeries class 
and its related functions. The bdTimeSeries class supports the same 
methods as the standard Spotfire S+ library’s timeSeries class. See 
the Spotfire S+ Language Reference for more information about 
these classes.

Time and Date 
Operations

• When you create a time object using timeSeq, and you set the 
bigdata argument to TRUE, then a bdTimeDate object is 
created. 

• When you create a time object using timeDate or 
timeCalendar, and any of the arguments are big data objects, 
then a bdTimeDate object is created. 

Table 1.6: Time classes.

Class name Comment

bdSignalSeries A bdSignalSeries object from 
positions and data

bdTimeDate A bdVector class

bdTimeSeries See the section Time Series 
Operations for more information.

bdTimeSpan A bdVector class
17
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See Table A.14 in the Appendix.

Time Conversion 
Operations

To convert time and date values, apply the standard Spotfire S+ time 
conversion operations to the bdTimeDate object, as listed in Table 
A.14 in the Appendix.

Matrix 
Operations

The Big Data library does not contain separate equivalents to matrix 
and data.frame. 

Spotfire S+ matrix operations are available for bdFrame objects: 

• matrix algebra (  +, -, /, *, !, &, |, >, <, ==, !=, <=, =>, %%, %/%)

• matrix multiplication (%*%)

• Crossproduct (crossprod)

In algebraic operations, the operators require the big data objects to 
have appropriately-corresponding dimensions. Rows or columns are 
not automatically replicated.

Basic algebra

You can perform addition, subtraction, multiplication, division, 
logical (!, &, and |), and comparison (>, <, =, !=, <=, >=) operations 
between:

• A scalar and a bdFrame.

• Two bdFrames of the same dimension.

• A bdFrame and a single-row bdFrame with the same number of 
columns.

• A bdFrame and a single-column bdFrame with the same 
number of rows. 

The library also offers support for element-wise +, -, *, /, and matrix 
multiplication (%*%).

Note

bdTimeDate always assumes the time as Greenwich Mean Time (GMT); however, Spotfire S+ 
stores no time zone with an object. You can convert to a time zone with timeZoneConvert, or 
specify the zone in the bdTimeDate constructor.
18



The Big Data Library Architecture
Matrix multiplication is available for two bdFrames with the 
appropriate dimensions.

Cross Product Function

When applied against two bdFrames, the cross product function, 
crossprod, returns a bdFrame that is the cross product of the given 
bdFrames. That is, it returns the matrix product of the transpose of the 
first bdFrame with the second.

Summary In this section, we’ve provided an overview to the Big Data library 
architecture, including the new data types, classes, and functions that 
support managing large data sets. For more detailed information and 
lists of functions that are included in the Big Data library, see the 
Appendix: Big Data Library Functions.

In the next chapter, we provide examples for working with data sets 
using the types, classes, and functions described in this chapter. 
19
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Chapter 2  Census Data Example
INTRODUCTION

Census data provides a rich context for exploratory data analysis and 
the application of both unsupervised (e.g., clustering) and supervised 
(e.g., regression) statistical learning models. Furthermore the data sets 
(in their unaggragated state) are quite large. The US Census 2000 
estimates the total US population at over 281 million people. In its 
raw form, the data set (which includes demographic variables such as 
age, gender, location, income and education) is huge. For this 
example, we focus on a subset of the US Census data that allows us to 
demonstrate principles of working with large data on a data set that 
we have included in the product. 

Problem 
Description

Census data has many uses. One of interest to the US government 
and many commercial enterprises is geographical distribution of sub 
populations and their characteristics. In this initial example, we look 
for distinct geographical groups based on age, gender and housing 
information (data that is easy to obtain in a survey), and then 
characterize them by modeling the group structure as a function of 
much harder-to-obtain demographics such as income, education, 
race, and family structure.

Data 
Description

The data for this example is included with Spotfire S+ and is part of 
the US Census 2000 Summary File 3 (SF3). SF3 consists of 813 
detailed tables of Census 2000 social, economic, and housing 
characteristics compiled from a sample of approximately 19 million 
housing units (about 1 in 6 households) that received the Census 2000 
long-form questionnaire. The levels of aggregation for SF3 data is 
depicted in Figure 2.1.

The data for this example is the summary table aggregated by Zip 
Code Tabulation Areas (ZCTA5) depicted as the left-most branch of the 
schematic in Figure 2.1.

The following site provides download access to many additional SF3 
summary tables:

http://www.census.gov/Press-Release/www/2002/sumfile3.html
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The variables included in the census data set are listed in Table 2.1. 
They include the zip code, latitude and longitude for each zip code 
region, and population counts. Population counts include the total 
population for the region and a breakdown of the population by 
gender and age group: Counts of males and females for ages 0 - 5, 5 - 
10, ..., 80 - 85, and 85 or older. 

Figure 2.1: US Census 2000 data grouping hierarchy schematic with implied 
aggregation levels. The data used in this example comes from the Zip Code Tabulation 
Area (ZCTA) depicted at the far left side of the schematic.
23



Chapter 2  Census Data Example
 

A script file can be downloaded from TIBCO’s Support site that 
contains all the commands used in this chapter:

www./support.tibco.com

If you want to build the cluster model starting on page 57, you also 
need to download the censusDemogr.sdd object.

Then run data.restore("C:/test/censusDemogr.sdd") to restore it 
for use in Spotfire S+, where C:/test is an example download folder.

Table 2.1: Variable descriptions for the census data example.

Variable(s)
New Variable 
Name(s) Description

ZCAT5 zipcode five-number zip code

INTPT.LAT lat Interpolated latitude

INTPT.LON long Interpolated longitude

P008001 popTotal Total population

M.00 - M.85 male.00 - 
male.85

Male population by age group: 
0 - 4 years, 5 - 9 years, and so 
on. 

F.00 - F.85 female.00 - 
female.85

Female population by age 
group: 0 - 4 years, 5 - 9 years, 
and so on.

H007001 housingTotal Total housing units

H007002 own Owner occupied

H007003 rent Renter occupied
24



Exploratory Analysis
EXPLORATORY ANALYSIS

Data Import The data is provided as a comma-separated text file ( .csv format). 
The file is located in the SHOME location (by default your 
installation directory) in /samples/bigdata/census/census.csv. 

As mentioned on the previous page, you can also download an 
analysis script named new.census.demo.ssc to execute the 
commands referenced in this chapter.

Reading big data is identical to what you are familiar with in previous 
versions of Spotfire S+ with one exception: an additional argument to 
specify that the data object created is stored as a big data (bd) object.

> census <- importData(paste(getenv("SHOME"),
        "/samples/bigdata/census/census.csv", sep=""),
        stringsAsFactors=F, bigdata=T)

View the data with the Data Viewer as follows: 

> bd.data.viewer(census)

The Data Viewer is an efficient interface to the data. It works on big 
out-of-memory data frames (such as census) and on in-memory data 
frames.
25



Chapter 2  Census Data Example
The Data View page (Figure 2.2) of the Data Viewer lists all rows 
and all variables in a scrollable window plus summary information at 
the bottom, including the number of rows, the number of columns, 
and a count of the number of different types of variables (for 
example, a numeric, factor). From the summary information, we see 
that census has 33,178 rows. 

In addition to the Data View page, the Data Viewer contains tabs 
with summary information for numeric, factor, character, and date 
variables. These summary tabs provide quick access to minimums, 
maximums, means, standard deviations, and missing value counts for 
numeric variables and levels, level counts, and missing value counts 
for factor variables.

Figure 2.2: Viewing big data objects is done with the Data Viewer.
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Data 
Preparation

Before beginning any data preparation, start by making the names 
more intuitive using the names assignment expression:

> names(census) <- c("zipcode", "lat", "long", "popTotal",
         paste("male", seq(0, 85, by = 5), sep = "."), 
         paste("female", seq(0, 85, by = 5), sep = "."),
         "housingTotal", "own", "rent")

Figure 2.3: The Numeric summary page of the Data Viewer provides quick access 
to minimum, maximum, mean, standard deviation, and missing value count for 
numeric data. 
27



Chapter 2  Census Data Example
The row names are shown in Table 2.1, along with the original 
names.

A summary of the data now is: 

> summary(census)
    zipcode            lat             long          
 Length:    33178   Min.:17962234   Min.:-176636755 
  Class:            Mean:38830389   Mean: -91084343 
   Mode:character   Max.:71299525   Max.: -65292575 

  popTotal           male.0           male.5       
 Min.:     0.000   Min.:   0.0000   Min.:   0.000 
 Mean:  8596.977   Mean: 298.5727   Mean: 322.822 
 Max.:144024.000   Max.:6247.0000   Max.:6115.000 
  .
  .
  .

From summary of the census data, you might notice a couple of 
problems:

1. The population total (popTotal) has some zero values, 
implying that some zip codes regions contain no population.

2. The zip codes are stored as character strings which is odd 
because they are defined as five-digit numbers.

To remove the zero-population zip codes you can do it the you 
typically would when working with data frames: 

> census <- census[census[, "popTotal"] > 0, ]

However, there is a more efficient way. Notice that the example 
above (finding rows with non-zero population counts) implies two 
passes through the data. The first pass extracts the popTotal column 
and compares it (row by row) with the value of zero. The second pass 

Note

The Spotfire S+ expression paste("male", seq(0, 85, by = 5), sep = ".") creates a sequence 
of 18 variable names starting with male.0 and ending with male.85. The call to seq generates a 
sequence of integers from 0 to 85 incremented by 5, and the call to paste pastes together the 
string “male” with the sequence of integers separated with a period (.).
28



Exploratory Analysis
removes the bad popTotal rows. If your data is very large, using 
subscripting and nested function calls can result in a prohibitively 
lengthy execution time.

A more efficient “big data” way to remove rows with no population is 
to use the bd.filter.rows function available in the Big Data library 
in Spotfire S+. bd.filter.rows has two required arguments: 

1. data: the big data object to be filtered.

2. expr: an expression to evaluate. By default, the expression 
must be valid, based on the rules of the row-oriented 
Expression Language. For more details on the expression 
language, see the help file for ExpressionLanguage.

For our example, the expression is simply popTotal > 0, which you 
pass as a character string to bd.filter.rows. The more efficient way 
to filter the rows is: 

> census <- bd.filter.rows(census, expr= "popTotal >  0")

Note

If you are familiar with the Spotfire S+ language, the Excel formula language, or another 
programming language, you will find the row-oriented Expression Language natural and easy to 
use. An expression is a combination of constants, operators, function calls, and references to 
columns that returns a single value when evaluated
29



Chapter 2  Census Data Example
Using the row-oriented Expression Language with bd.filter.rows 
results in only one pass through the data, so the computation time will 
usually be reduced to about half the execution time of the previously-
described Spotfire S+ expression. Table 2.2 displays additional 
examples of row-oriented expressions. 

Now, remove the cases with bad zip codes by using the regular 
expression function, regexpr, to find the row indices of zip codes that 
have only numeric characters: 

> census <- bd.filter.rows(census, 
                 "regexpr('^[0-9]+$', zipcode)>0",
                  row.language=F)

Table 2.2: Some examples of the row-oriented Expression Language.

Expression Description

age > 40 & gender == “F” All rows with females greater than 
40 years of age.

Test != “Failed” All rows where Test is not equal to 
“Failed”.

Date > 6/30/04 All rows with Date later than
6/30/04.

voter == “Dem” | voter == “Ind” All rows where voter is either 
democrat or independent.

Notes

• The call to the regexpr function finds all zip codes that have only integer characters in 
them. The regular expression “^[0-9]+$” produces a search for strings that contain only 
the characters 0, 1, 2, ..., 9. The ^ character indicates starting at the beginning of 
the string, the $ character indicates continuing to the end of the string and the + symbol 
implies any number of characters from the set {0, 1, 2,..., 9}.

• The call to bd.filter.rows specified the optional argument, row.language=F. This 
argument produces the effect of using the standard Spotfire S+ expression language, 
rather than the row-oriented Expression Language designed for row operations on big 
data.
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Tabular 
Summaries

Generate the basic tabular summary of variables in the census data 
set with a call to the summary function, the same as for in-memory data 
frames. The call to summary is quite fast, even for very large data sets, 
because the summary information is computed and stored internally 
at the time the object is created.

> summary(census)
    zipcode            lat             long           
 Length:    32165   Min.:17964529   Min.:-176636755 
  Class:            Mean:38847016   Mean: -91103295 
   Mode:character   Max.:71299525   Max.: -65292575 

  popTotal           male.0           male.5         
 Min.:     1.000   Min.:   0.0000   Min.:   0.0000 
 Mean:  8867.729   Mean: 307.9759   Mean: 332.9889 
 Max.:144024.000   Max.:6247.0000   Max.:6115.0000 
  .
  .
  .
 female.85         housingTotal         own           
 Min.:   0.00000   Min.:    0.000    Min.:    0.000 
 Mean:  92.77398   Mean: 3318.558    Mean: 2199.168 
 Max.:2906.00000   Max.:61541.000    Max.:35446.000 

    rent          
 Min.:    0.000 
 Mean: 1119.391 
 Max.:40424.000 

To check the class of objects contained in a big data data frame (class 
bdFrame), call sapply, which applies a specified function to all the 
columns of the bdFrame.

> sapply(census, class)
       zipcode         lat        long    popTotal 
 "bdCharacter" "bdNumeric" "bdNumeric" "bdNumeric"

      male.0      male.5     male.10     male.15 
 "bdNumeric" "bdNumeric" "bdNumeric" "bdNumeric"
  .
  .
  .
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Generate age distribution tables with the same operations you use for 
in-memory data. Multiply column means by 100 to convert to a 
percentage scale and round the output to one significant digit:

> ageDist <- 
     colMeans(census[, 5:40] / census[, "popTotal"]) * 100
> round(matrix(ageDist, 
               nrow = 2, 
               byrow = T, 
               dimnames = list(c("Male", "Female"), 
                               seq(0, 85, by=5))), 1)
numeric matrix: 2 rows, 18 columns. 
         0   5  10  15  20  25  30  35  40  45  50  55 
  Male 3.2 3.6 3.8 3.8 2.9 2.9 3.2 3.9 4.1 3.8 3.3 2.7
Female 3.0 3.4 3.6 3.4 2.7 2.8 3.2 3.9 4.0 3.7 3.3 2.7

        60  65  70  75  80  85 
  Male 2.3 2.0 1.7 1.3 0.8 0.5
Female 2.3 2.1 2.0 1.7 1.2 1.1

Graphics You can plot the columns of a bdFrame in the same manner as you do 
for regular (in-memory) data frames: 

> hist(census$popTotal)

will produce a histogram of total population counts for all zip codes. 
Figure 2.4 displays the result.
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Exploratory Analysis
You can get fancier. In fact, in general, the Trellis graphics in Spotfire 
S+ work on big data. For example, the median number of rental units 
over all zip codes is 193:

> median(census$rent)
[1] 193

You would expect that, if the number of rental units is high (typical of 
cities), the population would likewise be high. We can check this 
expectation with a simple Trellis boxplot: 

> bwplot(rent > 193 ~ log(popTotal), data = census)

Figure 2.5 displays the resulting graph.

Figure 2.4: Histogram of total population counts for all zip codes.
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Chapter 2  Census Data Example
You can address the question of population size relative to the 
number of rental units in a more general way by examining a 
scatterplot of popTotal vs. rent. Call the Trellis function xyplot for 
this. Take logs (after adding 0.5 to eliminate zeros) of each of the 
variables to rescale the data so the relationship is more exposed:

> xyplot(log(popTotal) ~ log(rent + 0.5), data = census)

The resulting plot is displayed in Figure 2.6. 

Figure 2.5: Boxplots of the log of popTotal for the number of rental units above and 
below the median, showing higher populations in areas with more rental units.
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Note

The default scatterplot for big data is a hexbin scatterplot. The color shading of the hexagonal 
“points” indicate the number of observations in that region of the graph. For the darkest shaded 
hexagon in the center of the graph, over 800 zip codes are represented, as indicated by the 
legend on the right side of the graph.
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The result displayed in Figure 2.6 is not surprising; however, it 
demonstrates the straightforward use of known functions on big data 
objects. This example continues with Trellis graphics with 
conditioning in the following sections. 

The age distribution table created in the section Tabular Summaries 
on page 31 produces the plot shown in Figure 2.7:

> bars <- barplot(rbind(ageDist[1:18], -ageDist [19:36]),
                  horiz=T)
> mtext(c("Female", "Male"), side = 1, line = 3, cex = 1.5,
        at = c(-2, 2)) 
> axis(2, at = bars, labels = seq(0, 85, by = 5), 
       ticks =F)

Figure 2.6: This hexbin scatterplot of log(popTotal) vs. log(rent+0.5) 
shows population sizes increasing with the increasing number of rental units.
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Note

In creating this plot, the example starts with big out-of-memory data (census) and ends 
with small in-memory summary data (ageDist) without having to do anything special to 
transition between the two. Spotfire S+ takes care of the data management.

Figure 2.7: Age distribution by gender estimated by US Census 2000. 
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DATA MANIPULATION

The census data contains raw population counts by gender and age; 
however, the counts for different genders and ages are in different 
columns. To compare them more easily, stack the columns end to 
end and create factors for gender and age. Start with the stacking 
operation. 

Stacking The bd.stack function provides the needed stacking operation. Stack 
all the population counts for males and females for all ages with one 
call to bd.stack:

> censusStack <- bd.stack(census, 
                          columns = 5:40,
                          replicate = c(1:4, 41:43),
                          stack.column.name = "pop", 
                          group.column.name = "sexAge")

Table 2.3 lists the arguments to bd.stack. 

The first few rows of the resulting data are listed below. Notice the 
values for the sexAge variable are the names of the columns that were 
stacked. 

Table 2.3: Arguments to bd.stack.

Argument Name Description

data Input data set, a bdFrame or data.frame.

columns Names or numbers of columns to be stacked.

replicate Names or numbers of columns to be replicated.

stack.column.name Name of new stacked column.

group.column.name Name of an additional group column to be 
created in the output data set. In each output 
row, the group column contains the name of the 
original column that contained the data value in 
the new stacked column.
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> censusStack
** bdFrame: 1150236 rows, 9 columns **
  zipcode      lat      long popTotal housingTotal   own rent
1     601 18180103 -66749472    19143         5895  4232 1663
2     602 18363285 -67180247    42042        13520 10903 2617
3     603 18448619 -67134224    55592        19182 12631 6551
4     604 18498987 -67136995     3844         1089   719  370
5     606 18182151 -66958807     6449         2013  1463  550

   pop sexAge 
1  712 male.0
2 1648 male.0
3 2049 male.0
4  129 male.0
5  259 male.0
   ... 1150231 more rows ...

Notice that the census data started with a little over 33,000 rows. 
Now, after stacking, there are over 1.15 million rows. 

Variable 
Creation

Now create the sex and age factors. There are several ways to do this, 
but the most computationally efficient way for large data is to use the 
bd.create.columns function, along with the row-oriented expression 
language. Before starting, notice that the column names for the 
stacked columns (male.0, male.5, ..., female.80, female.85) can be 
separated into male and female groups simply by the number of 
characters in their names. All male names have seven or fewer 
characters and all female names have eight or more characters. 
Therefore, by checking the number of characters in the string, you 
can determine whether the value should be “male” or “female”. Here 
is an example of the row-oriented Expression Language: 

" ifelse(nchar(sexAge) > 7, 'female', 'male' "

Notice the use of a single quote, ‘, to embed a quote within a quote.

To create the age variable is a little harder. You must subset the string 
differently, depending on whether the value of sexAge corresponds to 
a male or female. 

1. For males, extract from the sixth character to the end, and for 
females, extract from the eighth character to the end. The 
row-oriented expression language follows:
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" ifelse(nchar(sexAge) > 7, 
substring(sexAge, 8, nchar(sexAge)),
substring(sexAge, 6, nchar(sexAge))) "

2. Create an additional variable that is a measure of the 
population size for each age and gender group relative to the 
population size for the entire zip code area. Because each row 
contains gender and age specific population estimates and the 
total population estimate for that zip code area, the relative 
population size for each gender and age group is simply

"pop/popTotal"

3. Create all three new variables in a single call to 
bd.create.columns (which requires only a single pass 
through the data) by including all three of the above 
expressions in the call. 

> censusStack <- bd.create.columns(censusStack,
    exprs = c("ifelse(nchar(sexAge) > 7, 'female', 'male')",
             "ifelse(nchar(sexAge) > 7, 
                   substring(sexAge, 8, nchar(sexAge)), 
                   substring(sexAge, 6, nchar(sexAge)))" ,
             "pop/popTotal"),
    names. = c("sex", "age", "popProp"), 
    types = c("factor", "character", "numeric"))

In this example, bd.create.columns arguments include the 
following:

• exprs takes a character vector of strings; each string is the 
expression that creates a different column.

• names supplies the names for the newly-created columns.

• types specifies the type of data in the resulting column. 

For more information on bd.create.columns, see its help file 
by typing help(bd.create.columns), or by typing 
?bd.create.columns in Spotfire S+. 

Note

The age column in the call to bd.create.columns is stored as a character column so we have 
more control when creating an age factor. A discussion of this is included in the next section 
Factors.
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Factors In the previous section, we created age as a character vector, because 
when bd.create.columns creates factors, it establishes levels as the 
set of alphabetically sorted unique values in the column. The levels are 
not arranged numerically. In the example output below, notice the 
placement of the “5” between “45” and “50”. 

> levels(factor(censusStack[, “age”]))
 [1] "0"  "10" "15" "20" "25" "30" "35" "40" "45" "5"  "50"
[12] "55" "60" "65" "70" "75" "80" "85"

When Spotfire S+ creates tables or graphics that use the levels as 
labels, the order is as the levels are listed, rather than in numerical 
order. 

To control the order of the levels of a factor, call the bdFactor 
function directly and state explicitly the order for the levels. For 
example, using the census data: 

> censusStack[, "age"] <- bdFactor(censusStack[, "age"], 
            levels = c("0", "5", "10", "15", "20", "25",
                       "30", "35", "40", "45", "50", "55",
                        "60", "65", "70", "75", "80", "85"))
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More Graphics
MORE GRAPHICS

The data is now prepared to allow more interesting graphics. For 
example, create an age distribution plot conditional on gender (Figure 
2.8) with the following call to bwplot, a Trellis graphic function: 

> bwplot(age ~ log(popProp + 0.00001) | sex, 
         data = censusStack)

The following call to bwplot creates a plot (Figure 2.9) of logged 
relative population numbers by age and whether the zip code area 
contains more than the median number of rental units:

> bwplot(age ~ log(popProp + 0.00001) | rent > 193, 
         data = censusStack)

Note

0.00001 is added to the population proportions to avoid taking the log of zero.

Figure 2.8: Boxplots of logged relative population numbers by age and sex.
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Chapter 2  Census Data Example
Note the span of the boxes for 80 and older when there are fewer 
than the median number of rental units, implying that the population 
numbers for this group drops dramatically in some areas where there 
few rental units.

Another interesting plot is of the zip code area centers in units of 
latitude and longitude. Highly populated areas show a higher density 
of zip code numbers; therefore, they show greater density in the 
hexbin scatterplot. First, however, notice that the scale of lat and 
long is off by a factor of 1,000,000. The lat variable should be in the 
range of 20 to 70 and long should be in the range of -60 to -180. So 
first rescale these variables by a call to bd.create.columns. 

> summary(census[, c("lat", "long")])
    lat             long           
 Min.:17964529   Min.:-176636755  
 Mean:38851462   Mean: -91044543  
 Max.:71299525   Max.: -65292575  

Even more efficient, requiring no passes through the data:

Figure 2.9: Boxplots of logged relative population numbers by age and rent>193.
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More Graphics
> summary(census)[, c("lat", "long")]

Because the summary is stored in metadata, it does not have to be 
computed. The first form creates a two-column big data object, and 
then gets the summary from that object.

To rescale lat and long simultaneously, use the following 
expressions:

"lat/1e6", "long/1e6"

Use the original data set census, rather than censusStack, because 
census has just one row per zip code. 

> census <- bd.create.columns(census,
        exprs=c("lat/1.e6", "long/1.e6"),
        names=c("lat","long"))

The values of lat and long are now scaled appropriately:

> summary(census[, c("lat", "long")])
    lat             long           
 Min.:17.96453   Min.:-176.63675  
 Mean:38.85146   Mean: -91.04454  
 Max.:71.29953   Max.: -65.29257  

Or, more efficiently:

> summary(census)[, c("lat", "long")]

Now produce the plot with a simple call to xyplot.
43



Chapter 2  Census Data Example
> xyplot(lat ~ long, data = census)

Figure 2.10: Hexbin scatterplot of latitudes and longitudes. Zip codes are denser 
where populations are denser, so this plot displays relative population densities.
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Clustering
CLUSTERING

This section applies clustering techniques to the census data to find 
sub populations (collections of zip code areas) with similar age 
distributions. The section Modeling Group Membership develops 
models that characterize the subgroups we find by clustering. 

Data 
Preparation

The section Tabular Summaries computed the average age distribution 
across all zip code areas by age and gender, depicted in Figure 2.7. 
Next, group zip-code areas by age distribution characteristics, paying 
close attention to those that deviate from the national average. For 
example, age distributions in areas with military bases, typically 
dominated by young adult single males without children, should 
stand out from the national average. 

Unusual populations are most noticeable if the population 
proportions (previously computed as pop/popTotal by age and 
gender) are normalized by the national average. One way to 
normalize is to divide population proportions in each age and gender 
group by the national average for each age and gender group. The 
(odds) ratio represents how similar (or dissimilar) a zip-code 
population is from the national average. For example, a ratio of 2 for 
females 85 years or older indicates that the proportion of women 85 
and older is twice that of the national average. 

To prepare the population proportions, recall that the national 
averages are produced with the colMeans function:

> ageDist <- 

  colMeans(census[, 5:40] / census[, "popTotal"])

Also recall that, in Spotfire S+, if you multiply (or divide) a matrix by 
a vector, the elements of each column are multiplied by the 
corresponding element of the vector (assuming the length of the 
vector is equivalent to the number of rows of the matrix). We want to 
divide each element of a column by the mean of that column. In-
memory computation might proceed as follows: 

> popPropN <- t(t(census[, 5:40]) / ageDist)

That is, transpose the data matrix, divide by a vector as long as each 
column of the transposed matrix, and then transpose the matrix back. 
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The above operation is inefficient for large data. It requires multiple 
passes through the data. A more efficient way to compute the 
normalized population proportions is to create a series of row-
oriented expressions: 

 "male.0/ageDist[1]"

and process them with bd.create.columns. 

Here is how to do this: 

1. Create the proportions matrix: 

      > popProp <- census[, 5:40] / census[, "popTotal"]

2. Create the expression vector:

      > norm.exprs <- paste(names(popProp), 
            paste("/ageDist[", 1:36, "]",sep=""), sep="")

3. Normalize the population proportions: 

      > popPropN <- bd.create.columns(popProp,
                              exprs = norm.exprs,
                              names. = names(popProp),
                              row.language = F)

4. Join the normalized population proportions with the rest of 
the census data: 

     censusN <- bd.join(list(census[, c(1:4, 41:43)],
                             popPropN))

K-Means 
Clustering

You are now ready to do the clustering. The big data version of k-
means clustering is bdCluster. The important arguments are: 

• The data (a bdFrame in this example).

• The columns to cluster (if all columns of the bdFrame are not 
included in the clustering operation).

Notes

• In step 3, row.language = F is specified because the expressions use Spotfire S+ syntax 
to do subscripting.

• In step 4, there are no key variables specified in the join operation, which results in a 
join by row number.
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• The number of clusters, k. 

Typically, determining a reasonable value for k requires some effort. 
Usually, this involves clustering repeatedly for a sequence of k values 
and choosing the k that greatly reduces the residual variance without 
adding an excessive number of clusters. For this example, after a little 
experimentation, we set k = 40.

> clusterCensusN <- bdCluster(censusN,
          columns=names(popPropN),k=40)   

The bdCluster function has a predict method, so you can extract 
group membership identifiers for each observation and append them 
onto the normalized data, as follows:

> censusNPred <- cbind(censusN, predict(clusterCensusN))

Analyzing the 
Results

In this section, examine the results of applying k-means clustering to 
the census data. To get a sense of how big the clusters are and what 
they look like, start by combining cluster means and counts. 

1. To compute cluster means, call bd.aggregate as follows:

> clusterMeans <- bd.aggregate(censusNPred,
                     columns = names(popProp), 
                     by.columns="PREDICT.membership",
                     methods="mean")

2. To compute cluster group sizes, call bd.aggregate again with 
“count” as the method:

> clusterCounts <- bd.aggregate(censusNPred, 
                      columns=1,
                      by.columns="PREDICT.membership", 
                      methods="count")

3. Merge the two aggregates: 

Notes

To match the results presented here, set the random seed to 22 before calling bdCluster. To set 
the seed, at the prompt, type set.seed(22).

This example focuses on only the age x gender distributions, so columns is set to just those 
columns with population counts.
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> clusterMeansCounts <- merge(clusterCounts, clusterMeans)

The call to merge without a key.variables argument matches 
on the common columns names, by default. 

The clusterMeansCounts object contains mean population estimates 
for each zip code area, age and gender. The first 24 groups (ordered 
by the number of zip code regions that comprise them) are plotted in 
Figure 2.11. The upper left panel corresponds to the group with the 
most zip codes and the lower right panel has the fewest. The graphs 
that appear top-heavy reflect more older people. Notice the panel in 
the third row down, first position on the left. It is very heavily 
weighted on the top. These are retirement communities. Also, notice 
the second panel from the left in the bottom row. The population is 
dominated by young adult males. These are primarily military bases.

To produce Figure 2.11, run the following: 

Figure 2.11: Age distribution barplots for the first 24 groups resulting from k-means 
clustering with 40 groups specified. The horizontal lines in each panel correspond to 
20 (the lower one) and 70 years of age. Females are to the left of the vertical and 
males are to the right.
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> source(paste(getenv("SHOME"), 
       "/samples/bigdata/census/my.vbar.q", sep=""))  
> index16 <- rep(1:16, length = 24)
> par(mfrow=c(4,6))
> for(k in 1:24) {
   my.vbar(bd.coerce(clusterMeansCounts), k=k, 
              plotcols=3:38, 
              Nreport.col=2,
              col=1+index16[k]) 

              }

An interesting graphic that dramatizes group membership displays 
each zip code as a single black point for the center of the zip code 
region, and then overlays points for any given cluster group in 
another color. Technically, this plot is more interesting, because it 
uses a new function, bd.block.apply, to process the data a block at a 
time.

The bd.block.apply function takes two primary arguments:

• The data, usually a bdFrame, census in this case.

• a function for processing the data a block at a time. 

Define the block processing function as follows: 

f <- function(SP){
        par(plt = c(.1, 1, .1, 1))
        if(SP$in1.pos == 1){
            plot(SP$in1[,"long"], SP$in1[, "lat"], 
                 pch = 1, cex = 0.15, 
                 xlim=c(-125,-70), ylim=c(25, 50), 
                 xlab="", ylab="", axes = F)
            axis(1, cex = 0.5)
            axis(2, cex = 0.5)

  title(xlab = "Longitude", ylab = "Latitude")
        } else {

Note

The bd.block.apply argument FUN is a Spotfire S+ function called to process a data frame. This 
function itself cannot perform big data operations, or an error is generated. (This is true for 
bd.by.group and bd.by.window, as well.)
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         points(SP$in1[, "long"], SP$in1[, "lat"], cex = 
0.2)
    }
}

This function processes a list object, which contains one block of the 
census bdFrame. SP$in1 corresponds to the data, and SP$in1.pos 
corresponds to the starting row position of each block of the bdFrame 
that is passed to the function. The test if(SP$in1.pos == 1) checks if 
the first block is being processed. If the first block is processed, a call 
to plot is made; if the first block is not processed, a call to points is 
made. The call to bd.block.apply is:

> bd.block.apply(census, FUN = f)

This call makes this new graph select only those rows that belong to 
the cluster group of interest, and then coerce it to a data frame to 
demonstrate the simplicity of using both bdFrame and a data.frame 
objects in the same function. Start by keeping only those variables 
that are useful for displaying the cluster group locations. 

> censusNPsub <- bd.filter.columns(censusNPred, 
              keep = c("lat","long","PREDICT.membership"))
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To generate graphs for the first 22 cluster groups, it is slightly more 
work: 

> pred <- clusterMeansCounts[, "PREDICT.membership"]
> for(k in 1:22) {
> setk <- bd.coerce(bd.filter.rows(censusNPsub, 
                expr = "PREDICT.membership == pred[k]", 
                columns = c("lat", "long"), 
                row.language = F))
        par(plt=c(.1, 1, .1, 1))
        bd.block.apply(census, FUN = f)
        points(setk[, "long"], setk[, "lat"],
               col=1+index16[k],
                cex=0.6, pch=16)
        par(new=T)

Figure 2.12: Plot of all zip code region centers with cluster group 20 overlaid in 
another color. The double histogram in the bottom left corner displays the age 
distributions for females to the left and males to the right for cluster group 20. The 
horizontal lines in the histogram are at 20 and 70 years of age.
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        par(plt=c(.1, .3, .1, .3))
        my.vbar(clusterMeansCounts, k=k, plotcols=3:38,
              Nreport.col=2, col=1+index16[k])
        box()
}

Notes

1. setk is created as a regular data frame using bd.coerce, assuming that once a 
given cluster group is selected the data is small enough to process it entirely in 
memory.

2. bd.block.apply is used to plot all the zip code region centers, which requires 
processing the entire bdFrame.

3. setk contains the latitude and longitude locations for zip code centers for the 
selected group, pred[k]

4. setk was created to demonstrate the use of both bdFrame objects and data.frame 
objects in a single function. Placing the cluster group points on the graph could 
also be accomplished in the function passed to bd.block.apply. 
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MODELING GROUP MEMBERSHIP

The age distributions in Figure 2.11 are intriguing, but we know little 
about why the ages are distributed the way they are. Except for 
obvious deductions like retirement communities and military bases, 
we do not have much more information in the current data set. 
Another data set, censusDemogr, provides additional demographics 
variables such as household income, education and marital status. 

By modeling group membership as a function of an assortment of 
explanatory variables, we can characterize the groups relative to 
those variables. The data in censusDemogr contains the variables 
listed in Table 2.4. Note that all the variables except housingTotal 
and the cluster group variables at the end contain the proportion of 
households (hh) with the characteristic stated in the description 
column. 
Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables, 
except housingTotal, contain the proportion of households (hh) in the zip code area 
with the stated characteristic.

Variable Description

housingTotal Total number of housing units.

own Own residence.

onePlusPersonHouse Two or more family members in hh.

nonFamily Two or more non-family members in hh.

Plus65InHouse 65 or older in family hh.

Plus65InNonFamily 65 or older in non-family hh.

Plus65InGroup 65 or older in group quarters.

marriedChildren Married-couple families with children.

marriedNoChildren Married-couple families without children.
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maleChildren Male householder with children.

maleNoChildren Male householder without children.

femaleChildren Female householder with children.

femaleNoChildren Female householder without children.

maleSingle Single male.

femaleSingle Single female.

maleMarried Married male.

femaleMarried Married female.

maleWidow Male widower.

femaleWidow Female widow.

maleDiv Male divorced.

femaleDiv Female divorced.

english5to17 5 - 17 year olds speak only English.

english18to65 18 - 65 year olds speak only English.

englishOver65 Over 65 year olds speak only English.

native Born in US.

entryToUS95to00 Entry to US from 1995 to 2000.

Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables, 
except housingTotal, contain the proportion of households (hh) in the zip code area 
with the stated characteristic.

Variable Description
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entryToUS90to94 Entry to US from 1990 to 1994.

entryToUS85to89 Entry to US from 1985 to 1989.

entryToUS80to84 Entry to US from 1980 to 1984.

entryToUS75to79 Entry to US from 1975 to 1979.

entryToUS70to74 Entry to US from 1970 to 1974.

entryToUS65to69 Entry to US from 1965 to 1969.

entryToUSBefore65 Entry to US before 1965.

changedHouseSince95 Changed residence since 1995.

maleLoEd Male head of household with low education.

femaleLoEd Female head of hh with low education.

maleHS Male head of hh with HS education.

femaleHS Female head of hh with HS education.

maleCollege Male head of hh with college education. 

femaleCollege Female head of hh with college education.

maleBA Male head of hh with bachelor’s degree.

femaleBA Female head of hh with bachelor’s degree.

maleAdvDeg Male head of hh with advanced degree.

Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables, 
except housingTotal, contain the proportion of households (hh) in the zip code area 
with the stated characteristic.

Variable Description
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femaleAdvDeg Female head of hh with advanced degree.

maleWorked99 Male head of hh worked in 1999.

femaleWorked99 Female head of hh worked in 1999.

maleBlueCollar Male head of hh blue-collar worker.

femaleBlueCollar Female head of hh blue-collar worker.

maleWhiteCollar Male head of hh white-collar worker.

femaleWhiteCollar Female head of hh white-collar worker.

houseUnder30K hh income under $30K.

house30to60K hh income $30K - $60K.

house60to200K hh income $60K - $200K.

houseOver200K hh income over $200K.

houseWithSalary hh with salary income.

houseSelfEmpl hh with self-employment income.

houseInterestEtc hh with interest and other investment income.

houseSS hh with social security income.

housePubAssist hh with public assistance income.

houseRetired Head of hh retired.

Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables, 
except housingTotal, contain the proportion of households (hh) in the zip code area 
with the stated characteristic.

Variable Description
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Building a 
Model

The cluster group membership variables are binary with “yes” or 
“no”, indicating group membership for each zip code area. To get a 
sense of group membership characteristics, you can create a logistic 
model for each group of interest using glm, which has been extended 
to handle bdFrame objects. The syntax is identical to that of glm with 
regular data frames.The model specification is as follows: 

> group18Fit <- glm(group18 ~ ., data = censusDemogr,
                    family = binomial)

And the output is similar:

> group18Fit
Call:
bdGlm(formula = group18 ~ ., family = binomial, data

 = censusDemogr)

Coefficients:
 (Intercept) housingTotal           own 
   -51.49204 0.0002713171 -0.0005471851

 onePlusPersonHouse nonFamily Plus65InHouse 
           3.560468  10.21905      18.44271
.
.
.
Degrees of freedom: 31951 total; 31888 residual

houseNotVacant House not vacant.

houseOwnerOccupied House owner occupied.

group18 Cluster group18.

Table 2.4: Variables contained in censusDemogr, a bdFrame object. All variables, 
except housingTotal, contain the proportion of households (hh) in the zip code area 
with the stated characteristic.

Variable Description
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Residual Deviance: 5445.941 

Summarizing 
the Fit

You can apply the usual operations (for example, summary, coef, 
plot) to the resulting fit object. The plots are displayed as hexbin 
scatterplots because of the volume of data. 

> plot(group18Fit)

Characterizing 
the Group

To characterize the group, examine the significant coefficients as 
follows: 

> group18Coeff <- summary(group18Fit)[["coef"]]

Note

The glm function call is the same as for regular in-memory data frames; however, the extended 
version of glm in the bigdata library applies appropriate methods to bdFrame data by initiating a 
call to bdGlm. The call expression shows the actual call went to bdGlm. 

Figure 2.13: Residuals vs. fitted values resulting from modeling cluster group 18 
membership as a function of census demographics.
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> group18Coeff[abs(group18Coeff[,"t value"])
 >  qnorm(0.975),]
                         Value Std. Error   t value 
        (Intercept) -51.492043  13.866083 -3.713525
          nonFamily  10.219051   4.079199  2.505161
      Plus65InHouse  18.442709   6.172655  2.987808
  Plus65InNonFamily  19.186751   5.953835  3.222587
         maleSingle  39.541568   9.123876  4.333857
        femaleWidow  23.710092  10.332282  2.294759
            maleDiv  23.374178   8.807237  2.653974
changedHouseSince95   6.253725   2.492780  2.508735
         femaleLoEd -12.132175   2.986016 -4.062997
        maleCollege   5.820187   2.897105  2.008966
           femaleBA  -9.518559   3.518594 -2.705217
         maleAdvDeg  10.536835   3.553861  2.964898
       femaleAdvDeg  -7.932499   3.568260 -2.223072
       maleWorked99   6.598822   2.787717  2.367107
     femaleWorked99   7.200051   3.244321  2.219278

To interpret the above table, note that positive coefficients predict 
group 18 membership and negative coefficients predict non-group 
membership. With that understanding, group 18 members are more 
likely: 

• In non-family households that have changed location in the 
last 5 years.

• Single or divorced males or widowed females.

• Males with some college education and frequently with 
advanced degrees who worked the previous year.

Cluster group 18 corresponds to zip code regions dominated by 
young adult males, typical of military bases and penal institutions. 
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Chapter 3  Analyzing Large Datasets for Association Rules
INTRODUCTION

Association rules specify how likely certain items occur together with 
other items in a set of transactions. The classic example used to 
describe association rules is the "market basket" analogy, where each 
transaction contains the set of items brought on one shopping trip. 
The store manager might want to ask questions, such as “if a shopper 
buys chips, does the shopper usually also buy dip?” Using a market 
basket analysis, the store manager can discover association rules for 
these items, so he knows whether he should plan on stocking chips 
and dip amounts accordingly and place the items near each other in 
the store.

When you encounter an association rule, you might see it notated as 
X <- Y, where item X is the consequent and item Y is the antecedent. For 
example, examine the following rule:

chips <- dip

Your analysis would show the relationship between chips (the 
consequent) and dip (the antecedent).

For the Big Data library’s implementation of association rules, only 
one consequent is allowed; however the rule can have multiple 
antecedents. To the above example, you might also add beer:

chips <- dip beer

A collection of items is sometimes referred to as an itemset. You are 
interested in the significance of items in an itemset and the likelihood 
of them occurring with other items (that is, chips and dip, in the 
example above). In association rule algorithms, these two measures 
(the significance and the occurrence) are referred to as support and 
confidence, respectively. A third measure, lift, is the ratio of the 
confidence to that expected by chance. These three measures 
determine if a rule is interesting. They are discussed more thoroughly 
later. 

The Apriori 
Algorithm

You can use the Big Data library function bd.assoc.rules to 
generate association rules from a set of transactions that have a 
specified minimum support and confidence. This function uses the 
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Apriori algorithm, which is the best-known algorithm to mine 
association rules. It uses a breadth-first search strategy to counting the 
support of itemsets and rules. 

Downward closure property

The apriori characteristic support, described in the section Support on 
page 66, possesses the downward closure property, indicating that all 
subsets of a frequent set also are frequent. This property, which 
specifies that no superset of an infrequent set can be frequent, is used 
in the apriori algorithm to prune the search space. Usually, the search 
space is represented as a lattice or tree of itemsets with increasing size.

Note

Using the apriori algorithm with support introduces the disadvantage of the rare item problem. 
Items that occur infrequently in the data set are pruned; although they could produce interesting 
and potentially valuable rules. The rare item problem is important for transaction data that 
usually have a very uneven distribution of support for the individual items (few items are used all 
the time and most items are used rarely).

A solution to the rare item problem is to pre-filter your dataset. For example, if you were 
interested in the occurrence of certain furniture items in transactions in a department store, you 
might filter out sales of women's clothing, where sales might far outpace furniture sales.
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BIG DATA ASSOCIATION RULES IMPLEMENTATION 

The Big Data library defines three association rules functions:

• bd.assoc.rules

• bd.assoc.rules.get.item.counts

• bd.assoc.rules.graph

bd.assoc.rules The Big Data library defines the function bd.assoc.rules, which 
reads input transactions from a bdFrame or data.frame, and then 
generates association rules using the apriori algorithm. The input data 
can be very large, with millions of transactions. The input transactions 
can be expressed in several different input formats, which are 
described in Table 3.1. bd.assoc.rules provides control over the 
output format of the generated rules and associated measures..

bd.assoc.rules arguments

The Help files for  bd.assoc.rules provide detailed information 
about each of its arguments. This section provides a high-level 
discussion of some of the options.

The argument input.format, along with several others, specify how 
the transaction items are read from the input data. For more detailed 
information about the recognized input formats, see Table 3.1.

Other arguments specify which elelents (rule strings, measures, and so 
on) are output by the function.

Other arguments, such as min.support, min.confidence, 
min.rule.items, and max.rule.items,  control how the algorithm is 
applied to give meaningful results. min.rule.items and 
max.rule.items determine how many antecedents your rule can 
have. (Remember: you can have one and only one consequent.) For 

Note

The apriori algorithm was originally developed by Argawal (1994). The Big Data library uses a 
version of the apriori algorithm implemented by Christian Borgelt (2002). The original source 
code and the modified source code provided by the Big Data functions are included in the 
SHOME/library/bigdata/apriori directory (where SHOME is your Spotfire S+ installation 
directory).
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example, if you set min.rule.items to 1, then your results can return 
rules with just the consequent and no antecedents. (The default is 2, 
which allows for one consequent and at least one antecedent.) The 
default of max.rule.items is 5, which allows for 1 consequent and up 
to 4 antecedents.

The argument rule.support.both indicates whether to include both 
the consequent and the antecedent when calculating the support. For 
more information on this argument, see the section Support on page 
66.

Definitions This section contains definitions of some of the key terms for using 
the Spotfire S+ function bd.assoc.rules. To help describe these 
terms, we use a small dataset called marketdata2. In this dataset, each 
row represents a transaction. The TransID column contains a unique 
identifier for each transaction. The other columns (Milk, Bread, 
Cheese, Apple) represent products of interest. The presence or 
absence of each item in a particular transaction is represented by a 1 
or a 0, respectively, in the appropriate column. (You can find this 
sample in the file SHOME/samples/bigdata/assocrules/
marketdata2.txt.) While this dataset is too small to provide any real 
meaningful output, it helps to demonstrate the terms and their 
formulas.) 

TransId   Milk   Bread  Cheese  Apple
 1         1      1      1       1
 2         1      0      0       1
 3         0      1      0       1
 4         0      1      1       1
 5         0      1      0       1
 6         1      1      0       0
 7         1      0      1       1

We can pass this dataset to the bd.assoc.rules functions, as follows:

bd.assoc.rules(marketdata2,
   item.columns=c(2:5),
   input.format="column.flag")

This function returns the following data:

       rule                   support  confidence      lift 
1 Cheese <- Apple Bread Milk 0.1428571  1.0      2.3333333
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2 Apple <- Bread Cheese      0.2857143  1.0      1.1666667
3 Apple <- Bread Cheese Milk 0.1428571  1.0      1.1666667
4 Apple <- Cheese            0.4285714  1.0      1.1666667
5 Apple <- Cheese Milk       0.2857143  1.0      1.1666667
6 Apple <- Bread             0.5714286  0.8      0.9333333

Support, confidence, and lift are the measures that determine whether 
a rule is interesting. The following sections describe the results 
displayed in the columns support, confidence, and lift.. 

Support

The input of an itemset is defined as the proportion of transactions 
containing all of the items in the itemset. The support of a rule can be 
defined in different ways

By default, in bd.assoc.rules, support is measured as follows:

ruleCount / transCount

or < the # of transactions containing the rule consequent and
       antecedent> / 
       <the total number of transactions>

Support measures significance (that is, the importance) of a rule. The 
user determines the minimum support threshold; that is, the 
minimum rule support for generated rules. The default value for the 
minimum rule support is 0.1. Any rule with a support below the 
minimum is disregarded.

Note

The following formula explanations use the raw count column names, which are output by 
bd.assoc.rules when output.counts=TRUE:

• antCount: Number of input transactions containing the rule antecedents.

• conCount: Number of input transactions containing the rule consequent.

• ruleCount: Number of input transactions containing both the rule consequent and 
antecedents.

• itemCount: Number of items used for creating rules.

• transCount: Total number of transactions in the input set.

The transCount and itemCount values are the same for every rule
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Using our marketdata2 data, above, we see the following rule:

       rule            support  confidence      lift 
6 Apple <- Bread      0.5714286    0.8       0.9333333

Support for this rule (consequent Apple, the antecedent Bread) is 
0.5714286

support = ruleCount / transCount
             = <# transactions with Apple and Bread> / 
                 <total # of transactions>
             = 4 / 7
              = 0.5714286

Next, try these calculations for a rule that contains multiple 
antecedents:

        rule                   support  confidence      lift 
1 Cheese <- Apple Bread Milk 0.1428571  1.0      2.3333333

The standard rule support for Cheese <- Apple Bread Milk is as 
follows:

  support = ruleCount / transCount
               = <# transactions w rule consequent and antecedents> / 
                    <total # transactions>
               = <# transactions w Cheese Apple Bread Milk > /
                    <total # transactions>
               = 1 / 7
                = 0.1428571

Note

bd.assoc.rules also provides the argument rule.support.both, which is set to T by default. If 
you set this flag to F, then only the antecedent is included in the support calculation. That is, for 
the rule Apple and Bread:

    support = antCount / transCount
                 = <# transactions w Bread> / <total # transactions>
                 = 5 / 7
                 = 0.7142857 

As you can see, calculating support using this argument provides very different results.
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 The alternative rule support (setting rule.support.both to F) for 
Cheese <- Apple Bread Milk is the same for this rule:

  support = antCount / transCount
               = <# transactions w rule antecedents> 
                       / <total # transactions>
               = <# transactions w Apple Bread Milk> 
                        / <total # transactions>
               = 1 / 7
                = 0.1428571

 Confidence

Also called strength.  Confidence can be interpreted as an estimate of 
the probability of finding the antecedent of the rule under the 
condition that a transaction also contains the consequent. In our 
marketdata2 example, we see that the confidence for the rule Apple 
<- Bread is 0.8:

            rule     support  confidence        lift 
6 Apple <- Bread   0.5714286         0.8    0.9333333

      confidence = ruleCount / antCount
                          = <# transactions w rule consequent and antecedents> 
                                / <# transactions w rule antecedents>
                         = <# transactions w Apple and Bread> 
                                / <# transactions w Bread>
                         = 4 / 5
                           = 0.8

bd.assoc.rules sets the minimum confidence as 0.8 by default. Any 
rule with a confidence below the minimum is disregarded. 

Next, try these calculations for a rule that contains multiple 
antecedents:

        rule                   support  confidence      lift 
1 Cheese <- Apple Bread Milk 0.1428571  1.0      2.3333333

confidence  = ruleCount / antCount
                   = <# transactions w rule consequent and antecedents> 
                          / <# transactions w rule antecedents>
                   = <# transactions w Cheese Apple Bread Milk > 
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                         / <# transactions w Apple Bread Milk >
                  = 1 / 1
                   = 1.0

 Lift

Often, bd.assoc.rules returns too many rules, given the 
min.support and min.confidence constraints. If this is the case, you 
might want to apply another measure to rank your results. Lift is such 
a measure. Greater lift values indicate stronger associations. (Hahsler 
et al, 2008).

In our marketdata2 example, we see the following:

       rule            support  confidence      lift 
6 Apple <- Bread      0.5714286    0.8       0.9333333

Lift is defined as the ratio of the observed confidence to that expected 
by chance. That is, lift for Apple <- Bread is 0.9333333:

      lift   = (ruleCount / antCount) / (conCount / transCount)
             = ( <# transactions w rule consequent and antecedents> / 
                     <# transactions w rule antecedents> ) /
                   ( <# transactions w rule consequent> / 
                       <total # transactions> )
             = ( <# transactions w Apple and Bread> 
                         / <# transactions w Bread> ) /
                    ( <# transactions w Apple> / <total # transactions> )

              = ( 4 / 5 ) / ( 6 / 7 )
               = 0.9333333

The lift looks to be lower than what we might find interesting. 
Examining the data, we see that an Apple purchase appears in six of 
our seven transactions, suggesting that nearly everyone buys Apple. 
Knowing that everyone buys Apple might be interesting on its own, 
but it is not that interesting for our association rules. To get 
meaningful lift results, you might consider filtering lower results (less 
than 1). Note that in small databases, lift can be subject to a lot of 
noise; it is most useful for analyzing larger databases.

Try these calculations for a rule that contains multiple antecedents:

        rule                   support  confidence      lift 
1 Cheese <- Apple Bread Milk 0.1428571  1.0      2.3333333
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lift = (ruleCount / antCount) / (conCount / transCount)
     = ( <# transactions w rule consequent and antecedents> 
           / <# transactions w rule antecedents> ) /
         ( <# transactions w rule consequent> / <total # transactions> )
     = ( <# transactions w Cheese Apple Bread Milk > 
           / <# transactions w Apple Bread Milk > ) /
         ( <# transactions w Cheese> / <total # transactions> )
     = ( 1 / 1 ) / ( 3 / 7 )
     = 2.333333

bd.assoc.rules.
get.item.
counts

Market analysis databases can be very large, so you need tools to 
manage memory use for your analysis. The Big Data library function 
bd.assoc.rules.get.item.counts is a function used along with, and 
sometimes by, bd.assoc.rules to count the occurance of items within 
a set of transactions without storing all of the different items in 
memory. That is, you can use this function to avoid memory 
problems generating association rules when you have a large number 
of different possible items. 

This function is used in two ways:

• It is called by bd.assoc.rules if the argument 
prescan.items=T so all of the unique items are not stored in 
memory.

• It is called by the user to generate the list of items and filter 
the resulting list to produce a vector of interesting items. The 
user then can pass this vector of items as the bd.assoc.rules 
argument init.items. 

The arguments for bd.assoc.rules.get.item.counts are a subset of 
those for bd.assoc.rules. 

The following shows a call to bd.assoc.rules.get.item.counts on 
our marketdata2 data:

bd.assoc.rules.get.item.counts(marketdata2, 
item.columns=2:5, input.format="column.flag")

        item count totalTransactions 
1   Apple     6                 7
2   Bread     5                 7
3  Cheese     3                 7
4    Milk     4                 7
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bd.assoc.rules.
graph

Plotting your association rules can give you a rough sense of which 
consequent and antecedent items appear most often in the rules with 
high column values. The function bd.assoc.rules.graph creates a 
plot of a set of association rules. It takes one required argument, 
rules, which is the rules produced by your call to bd.assoc.rules.  
Optionally, you can limit the number of rules displayed to those 
columns within a specified range using the arguments column.min 
and column.max.  

To create an association rules graph

1. Create a data.frame or bdFrame using bd.assoc.rules:

x<-bd.assoc.rules(marketdata2, item.columns=2:5, 
input.format=”column.flag”)

2. Graph the results:

bd.assoc.rules.graph(x)

This plot processes the association rules, collecting a list of all items 
that appear as consequents in any rules, and a list of all items that 
appear as antecedents in any rules. Each of these lists is sorted 
alphabetically and displayed in the graph, with consequent items 
displayed in a vertical list along the left side, and the antecedent items 

Figure 3.1: Plot of marketdata2.
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displayed in a list along the bottom side. For each rule, a symbol is 
displayed at the intersection of the rule's consequent item and each of 
its antecedent items. The symbol is an unfilled diamond, whose size is 
proportional to the column value for the rule. Because the diamond is 
not filled, multiple diamonds can be plotted in the same location and 
still be visible, if they represent rules with different column values. 

You can use this plot to get a rough idea of which consequent and 
antecedent items appear most often in the rules with high column 
values. Because information from multiple rules can be plotted over 
each other, it is not possible to read individual rules from this graph. 
(To view individual rules, examine the rules data directly.)

Data Input 
Types

The AssocRules functions bd.assoc.rules and 
bd.assoc.rules.get.item.counts handle input data formatted in the 
four ways described below. In each input format, the input data 
contains a series of transactions, where each transaction contains a set 
of items.

Table 3.1:  Association Rules Data Input Types

Input Format Description

item.list Each input row contains one transaction. The transaction items are all non-
NA, non-empty strings in the item columns. There must be enough columns 
to handle the maximum number of items in a single transaction.

For example, the file SHOME/samples/bigdata/assocrules/
groceries.il.txt starts with the following column names and first two rows:

"i1",   "i2",     "i3",     "i4",    "i5",    "i6"

"milk", "cheese", "bread"   ,        ,        ,

"meat", "bread"   ,         ,        ,        ,

The first transaction contains items "milk", "cheese", and "bread", and the 
second transaction contains items "meat" and "bread".
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column.flag Each input row contains one transaction. The column names are the item 
names, and each column's item is included in the transaction if the column's 
value is "flagged." More specifically, if an item column is numeric, it is 
flagged if its value is anything other than 0.0 or NA. If the column is a string or 
factor, the item is flagged if the value is anything other than "0", NA, or an 
empty string.

For example, the file SHOME/samples/bigdata/assocrules/
groceries.cf.txt starts with the following two transactions, encoding the same 
transactions as the example above:

"bread","meat","cheese","milk","cereal","chips","dip"

      1,     0,       1,     1,       0,      0,    0

      1,     1,       0,     0,       0,      0,    0

This format is not suitable for data where there are a large number of possible 
items, such as a retail market basket analysis with thousands of SKUs, 
because it requires so many columns.

transaction.id One or more rows specify each transaction. Each row has a transaction.id 
column, specifying which transaction contains the items. This is a very 
efficient format when individual transactions can have a large number of 
items, and when there are many possible distinct items.

For example, the file SHOME/samples/bigdata/assocrules/
groceries.ti.txt starts with the following two transactions, encoding the same 
transactions as the example above:

"id","item"

10001,"bread"

10001,"cheese"

10001,"milk"

10002,"meat"

10002,"bread"

Table 3.1:  Association Rules Data Input Types (Continued)

Input Format Description
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column.value Each input row contains one transaction. Items are created by combining 
column names and column values to produce strings of the form 
"<col>=<val>". This is useful for applying association rules to surveys where 
the results are encoded into a set of factor values.

This format is not suitable for the groceries example described for the three 
other input types. The file SHOME/samples/bigdata/assocrules/
fuel.cv.txt starts with the following four transactions:

"Weight",  "Mileage",  "Fuel"

"medium",  "high",     "low"

"medium",  "high",     "low"

"low",     "high",     "low"

"medium",  "high",     "low"

The first, second, and third transactions contain the items "Weight=medium", 
"Mileage=high", and "Fuel=low". The third transaction contains the items 
"Weight=low", "Mileage=high", and "Fuel=low".

Table 3.1:  Association Rules Data Input Types (Continued)

Input Format Description
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ASSOCIATION RULE SAMPLE

The directory SHOME/samples/bigdata/assocrules/ (where 
SHOME is your Spotfire S+ installation) contains the following 
example datasets in different input formats. 

• groceries.il.txt

• groceries.cf.txt

• groceries.ti.txt

• fuel.cv.txt

The first three datasets encode the same set of transactions. The data 
was generated randomly, and then modified to produce some 
interesting associations. fuel.cv.txt was derived from the standard 
fuel.frame dataset.

These datasets are small enough that they can be read as data.frame 
objects; however, bd.assoc.rules can handle very large input datasets 
represented as bdFrame objects with millions of rows. 

To load the library and import association rules examples

1. Load the bigdata library, which contains the Spotfire S+ 
association rules functions.

     library(bigdata)

2. Read in the data files, as follows:

     groceries.il <-
         importData(file.path(getenv("SHOME"),
         "samples/bigdata/assocrules/groceries.il.txt",
            sep=""),
         colNameRow=1,stringsAsFactors=F)

     groceries.cf <-
         importData(file.path(getenv("SHOME"),
         "samples/bigdata/assocrules/groceries.cf.txt", 
            sep=""),
         colNameRow=1,stringsAsFactors=F)

     groceries.ti <-
         importData(file.path(getenv("SHOME"),
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          "samples/bigdata/assocrules/groceries.ti.txt",
             sep=""),
          colNameRow=1,stringsAsFactors=F)

     fuel.cv <-
         importData(file.path(getenv("SHOME"),
          "samples/bigdata/assocrules/fuel.cv.txt", sep=""),
         colNameRow=1,stringsAsFactors=F)

The following example demonstrates processing the dataset 
groceries.cf with bd.assoc.rules. 

To work through association rules examples

1. By default, the output is sorted so the rules with the highest lift 
are listed first.

     bd.assoc.rules(groceries.cf,
        input.format="column.flag")   

                       rule      support confidence     lift 
 1                dip <- chips   0.180  0.9183673 3.6156195
 2           dip <- chips milk   0.162  0.9101124 3.5831195
 3        bread <- cheese meat   0.120  0.8955224 1.5821950
 4   bread <- cheese meat milk   0.110  0.8870968 1.5673088
 5         milk <- bread chips   0.100  0.9433962 1.0165908
 6           milk <- bread dip   0.126  0.9264706 0.9983519
 7         milk <- cheese meat   0.124  0.9253731 0.9971693
 8          milk <- bread meat   0.196  0.9245283 0.9962589
 9               milk <- bread   0.522  0.9222615 0.9938163
10        milk <- bread cereal   0.250  0.9191176 0.9904285
11   milk <- bread cheese meat   0.110  0.9166667 0.9877874
12                milk <- meat   0.276  0.9139073 0.9848139
13                 milk <- dip   0.232  0.9133858 0.9842520
14              milk <- cheese   0.372  0.9117647 0.9825051
15              milk <- cereal   0.454  0.9116466 0.9823778
16               milk <- chips   0.178  0.9081633 0.9786242
17        milk <- bread cheese   0.240  0.9022556 0.9722582
18           milk <- chips dip   0.162  0.9000000 0.9698276
19          milk <- cereal dip   0.118  0.8939394 0.9632968
20       milk <- cereal cheese   0.168  0.8936170 0.9629494
21         milk <- cereal meat   0.134  0.8933333 0.9626437
22 milk <- bread cereal cheese   0.100  0.8928571 0.9621305
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The first observation from the results is that many of the rules contain 
milk because almost all of the original transactions contain milk, as 
shown in the item counts:

     bd.coerce(bd.assoc.rules.get.item.counts(groceries.cf,
      input.format="column.flag"))

    item count totalTransactions
1  bread   283               500
2 cereal   249               500
3 cheese   204               500
4  chips    98               500
5    dip   127               500
6   meat   151               500
7   milk   464               500

You can see the same item counts by using colSums on groceries.cf:

colSums(groceries.cf)

bread meat cheese milk cereal chips dip
  283  151    204  464    249    98 127

In this case, we probably are not interested in associations involving 
milk, because it is so frequent. We can ignore the item milk by listing 
the other items as follows:

bd.assoc.rules(groceries.cf,
    input.format="column.flag",
    init.items=c("bread", "meat", "cheese",
                 "cereal", "chips", "dip"))

                  rule support confidence     lift
1         dip <- chips    0.18  0.9183673 3.615619
2 bread <- cheese meat    0.12  0.8955224 1.582195

Without the milk item, we have only a few rules. These rules also 
appeared in the larger list, above. 

We created the grocery data by selecting random items (with differing 
probabilities), and then we changed the data by:

• Increasing the probability of including dip for transactions 
containing chips. 
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• Increasing the probability of including bread for transactions 
containing both cheese and meat. 

The second and fourth rules detect both of these changes.

We could produce the same sets of rules with the other grocery 
datasets, because they encode the same sets of transactions:

bd.assoc.rules(groceries.il,
   input.format="item.list")

bd.assoc.rules(groceries.ti,
   input.format="transaction.id",
   item.columns="item",
   id.columns="id")

Also, we could derive rules from the fuel.cv dataset:

bd.assoc.rules(fuel.cv,
    input.format="column.value",
    min.support=0.3)

  rule                     support    confidence     lift
1 Fuel=high <- Weight=high 0.3833333  0.8260870 2.155009
2 Weight=high <- Fuel=high 0.3833333  0.8260870 2.155009
3 Weight=medium <- Fuel=medium 0.4333333  0.8461538 
                                                 1.450549
4 Weight=medium <- Fuel=medium Mileage=medium 0.4333333 
                                       0.8461538 1.450549
5 Mileage=medium <- Fuel=medium 0.4333333  1.0000000
                                                 1.363636
6 Mileage=medium <- Fuel=medium Weight=medium 0.3666667 
                                       1.0000000 1.363636
7 Mileage=medium <- Weight=medium 0.5833333  0.8000000
                                                 1.090909

In this case, we specify min.support=0.3 to reduce the number of 
rules generated to those with the given minimum support. The most 
interesting rules are those indicating that Fuel=high is associated with 
Weight=high, which is what one would expect from this data.
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MORE INFORMATION

Many valuable sources of information on Association Rules and the 
Apriori algorithm exist. Additionally, the Spotfire S+ Big Data library 
functions for association rules is similar to the arules package 
available on the CRAN Web site.

For more information on Association Rules, we suggest the following 
sources:

http://cran.org/ (Package arules)

http://www.borgelt.net/doc/apriori/apriori.html

http://michael.hahsler.net/research/association_rules/
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INTRODUCTION

This chapter includes information on the following:

• An overview of the graph functions available in the Big Data 
Library, listed according to whether they take a big data 
object directly, or require a preprocessing function to produce 
a chart.

• Procedures for creating plots, traditional graphs, and Trellis 
graphs.

Note

In Microsoft Windows, editable graphs in the graphical user interface (GUI) do not support big 
data objects. To use these graphs, create a Spotfire S+ data.frame containing either all of the 
data or a sample of the data.
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OVERVIEW OF GRAPH FUNCTIONS

The Big Data Library supports most (but not all) of the traditional and 
Trellis graph functions available in the Spotfire S+ library. The design 
of graph support for big data can be attributed to practical 
application. For example, if you had a data set of a million rows or 
tens of thousands of columns, a cloud chart would produce an 
illegible plot.

Functions 
Supporting 
Graphs

This section lists the functions that produce graphs for big data 
objects. If you are unfamiliar with plotting and graph functions in 
Spotfire S+, review the Guide to Graphics.

Implementing plotting and graph functions to support large data sets 
requires an intelligent way to handle thousands of data points. To 
address this need, the graph functions to support big data are 
designed in the following categories:

• Functions to plot big data objects without preprocessing, 
including:

• Functions to plot big data objects by hexagonal binning.

• Functions to plot big data objects by summarizing data in 
a plot-specific manner.

• Functions providing the preprocessing support for plotting big 
data objects.

• Functions requiring preprocessing support to plot big data 
objects.

The following sections list the functions, organized into these 
categories. For an alphabetical list of graph functions supporting big 
data objects, see the Appendix.

Using cloud or parallel results in an error message. Instead, sample 
or aggregate the data to create a data.frame that can be plotted using 
these functions.
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Graph Functions 
using Hexagonal 
Binning

The following functions can plot a large data set (that is, can accept a 
big data object without preprocessing) by plotting large amounts of 
data using hexagonal binning.

Functions Adding Reference Lines to Plots

The following functions add reference lines to hexbin plots.

Table 4.1: Functions for plotting big data using hexagonal binning.

Function Comment

pairs Can accept a bdFrame object.

plot Can accept a hexbin, a single bdVector, two bdVectors, 
or a bdFrame object.

splom Creates a Trellis graphic object of a scatterplot matrix.

xyplot Creates a Trellis graphic object, which graphs one set 
of numerical values on a vertical scale against another 
set of numerical values on a horizontal scale.

Table 4.2: Functions that add reference lines to hexbin plots. 

Function Type of line

abline(lsfit()) Regression line.

lines(loess.smooth()) Loess smoother.

lines(smooth.spline()) Smoothing spline.

panel.lmline Adds a least squares line to an 
xyplot in a Trellis graph.
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Graph Functions 
Summarizing 
Data

The following functions summarize data in a plot-specific manner to 
plot big data objects.

panel.loess Adds a loess smoother to an xyplot 
in a Trellis graph.

qqline() QQ-plot reference line.

xyplot(lmline=T) Adds a least squares line to an 
xyplot in a Trellis graph.

Table 4.2: Functions that add reference lines to hexbin plots.  (Continued)

Function Type of line

Table 4.3: Functions that summarize in plot-specific manner.

Function Description

boxplot Produces side by side boxplots from a number of 
vectors. The boxplots can be made to display the 
variability of the median, and can have variable widths 
to represent differences in sample size.

bwplot Produces a box and whisker Trellis graph, which you 
can use to compare the distributions of several data 
sets. 

plot(density) density returns x and y coordinates of a non-
parametric estimate of the probability density of the 
data.

densityplot Produces a Trellis graph demonstrating the 
distribution of a single set of data.

hist Creates a histogram.

histogram Creates a histogram in a Trellis graph.

qq Creates a Trellis graphic object comparing the 
distributions of two sets of data
85



Chapter 4  Creating Graphical Displays of Large Data Sets
Functions 
Providing 
Support to 
Preprocess Data 
for Graphing

The following functions are used to preprocess large data sets for 
graphing:

qqmath Creates normal probability plot for only one data 
object in a Trellis graph. qqmath can also make 
probability plots for other distributions. It has an 
argument distribution whose input is any function that 
computes quantiles. 

qqnorm Creates normal probability plot in a Trellis graph. 
qqnorm can accept a single bdVector object.

qqplot Creates normal probability plot in a Trellis graph. Can 
accept two bdVector objects. In qqplot, each vector or 
bdVector is taken as a sample, for the x- and y-axis 
values of an empirical probability plot.

stripplot Creates a Trellis graphic object similar to a box plot in 
layout; however, it displays the density of the 
datapoints as shaded boxes.

Table 4.3: Functions that summarize in plot-specific manner. (Continued)

Function Description

Table 4.4: Functions used for preprocessing large data sets. 

Function Description

aggregate Splits up data by time period or other factors 
and computes summary for each subset.

hexbin Creates an object of class hexbin. Its basic 
components are a cell identifier and a count of 
the points falling into each occupied cell. 

hist2d Returns a structure for a 2-dimensional 
histogram which can be given to a graphics 
function such as image or persp.

interp Interpolates the value of the third variable onto 
an evenly spaced grid of the first two variables.
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Functions 
Requiring 
Preprocessing 
Support for 
Graphing

The following functions do not accept a big data object directly to 
create a graph; rather, they require one of the specified preprocessing 
functions.

loess Fits a local regression model.

loess.smooth Returns a list of values at which the loess curve 
is evaluated.

lsfit Fits a (weighted) least squares multivariate 
regression.

smooth.spline Fits a cubic B-spline smooth to the input data.

table Returns a contingency table (array) with the 
same number of dimensions as arguments 
given.

tapply Partitions a vector according to one or more 
categorical indices. 

Table 4.4: Functions used for preprocessing large data sets.  (Continued)

Function Description

Table 4.5: Functions requiring preprocessors for graphing 
large data sets.

Function Preprocessors Description

barchart table, tapply, 
aggregate

Creates a bar chart in a Trellis 
graph. 

barplot table, tapply, 
aggregate

Creates a bar graph. 

contour interp, hist2d Make a contour plot and possibly 
return coordinates of contour lines.

contourplot loess Displays contour plots and level 
plots in a Trellis graph.
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dotchart table, tapply, 
aggregate

Plots a dot chart from a vector. 

dotplot table, tapply, 
aggregate

Creates a Trellis graph, displaying 
dots and labels. 

image interp, hist2d Creates an image, under some 
graphics devices, of shades of gray 
or colors that represent a third 
dimension.

levelplot loess Displays a level plot in a Trellis 
graph.

persp interp, hist2d Creates a perspective plot, given a 
matrix that represents heights on an 
evenly spaced grid. 

pie table, tapply, 
aggregate

Creates a pie chart from a vector of 
data.

piechart table, tapply, 
aggregate

Creates a pie chart in a Trellis graph

wireframe loess Displays a three-dimensional 
wireframe plot in a Trellis graph.

Table 4.5: Functions requiring preprocessors for graphing 
large data sets. (Continued)

Function Preprocessors Description
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EXAMPLE GRAPHS

The examples in this chapter require that you have the Big Data 
Library loaded. The examples are not large data sets; rather, they are 
small data objects that you convert to big data objects to demonstrate 
using the Big Data Library graphing functions.

Plotting Using 
Hexagonal 
Binning

Hexagonal binning plots are available for:

• Single plot (plot)

• Matrix of plots (pairs)

• Conditioned single or matrix plots (xyplot)

Functions that evaluate data over a grid in standard Spotfire S+ 
aggregate the data over the grid (such as binning the data and taking 
the mean in each grid cell, and then plot the aggregated values) when 
applied to a big data object.

Hexagonal binning is a data grouping or reduction method typically 
used on large data sets to clarify a spatial display structure in two 
dimensions. Think of it as partitioning a scatter plot into larger units 
to reduce dimensionality, while maintaining a measure of data clarity. 
Each unit of data is displayed with a hexagon and represents a bin of 
points in the plot. Hexagons are used instead of squares or rectangles 
to avoid misleading structure that occurs when edges of the rectangles 
line up exactly.

Plotting using hexagonal binning is the standard technique used when 
a plotting function that currently plots one point per row is applied to 
a big data object.

Plotting using hexagonal bins is available for a single plot, a matrix of 
plots, and conditioned single or matrix plots.
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The Census example introduced in Chapter 2 demonstrates plotting 
using hexagonal binning (see Figure 2.6). When you create a plot 
showing a distribution of zip codes by latitude and longitude, the 
following simple plot is displayed:

The functions listed in Table 4.1 support big data objects by using 
hexagonal binning. This section shows examples of how to call these 
functions for a big data object. 

Create a Pair-
wise Scatter Plot

The pairs function creates a figure that contains a scatter plot for 
each pair of variables in a bdFrame object. 

To create a sample pair-wise scatter plot for the fuel.frame bdFrame 
object, in the Commands window, type the following:

pairs(as.bdFrame(fuel.frame))

Figure 4.1: Example of graph showing hexagonal binning.
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The pair-wise scatter plot appears as follows:

This scatter plot looks similar to the one created by calling 
pairs(fuel.frame); however, close examination shows that the plot 
is composed of hexagons.

Create a Single 
Plot

The plot function can accept a hexbin object, a single bdVector, two 
bdVectors, or a bdFrame object. The following example plots a simple 
hexbin plot using the weight and mileage vectors of the fuel.bd 
object. 

To create a sample single plot, in the Commands window, type the 
following:

fuel.bd <- as.bdFrame(fuel.frame)
plot(hexbin(fuel.bd$Weight, fuel.bd$Mileage))

fif

Figure 4.2: Graph using pairs for a bdFrame.
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The hexbin plot is displayed as follows:

Create a Multi-
Panel Scatterplot 
Matrix

The function splom creates a Trellis graph of a scatterplot matrix. The 
scatterplot matrix is a good tool for displaying measurements of three 
or more variables. 

To create a sample multi-panel scatterplot matrix, where you create a 
hexbin plot of the columns in fuel.bd against each other, in the 
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)

splom(~., data=fuel.bd)

Notice that the ‘.’ is interpreted as all columns in the data set 
specified by data.

Figure 4.3: Graph using single hexbin plot for fuel.bd.

Note

Trellis functions in the Big Data Library require the data argument. You cannot use formulas 
that refer to bdVectors that are not in a specified bdFrame.
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The splom plot is displayed as follows:

To remove a column, use -term. To add a column, use +term. For 
example, the following code replaces the column Disp. with its log.

fuel.bd <- as.bdFrame(fuel.frame)
splom(~.-Disp.+log(Disp.), data=fuel.bd)

For more information about splom, see its help topic.

Figure 4.4: Graph using splom for fuel.bd.

Figure 4.5: Graph using splom to designate a formula for fuel.bd
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Create a 
Conditioning Plot 
or Scatter Plot

The function xyplot creates a Trellis graph, which graphs one set of 
numerical values on a vertical scale against another set of numerical 
values on a horizontal scale.

To create a sample conditioning plot, in the Commands window, 
type the following:

xyplot(data=as.bdFrame(air), 
ozone~radiation|temperature, 
shingle.args=list(n=4), lmline=T)

The variable on the left of the ~ goes on the vertical (or y) axis, and 
the variable on the right goes on the horizontal (or x) axis.

The function xyplot contains the default argument lmline=T to add 
the approximate least squares line to a panel quickly. This argument 
performs the same action as panel.lmline in standard Spotfire S+.

The xyplot plot is displayed as follows:

Trellis functions in the Big Data Library handle continuous “given” 
variables differently than standard data Trellis functions: they are sent 
through equal.count, rather than factor.

Adding 
Reference 
Lines

You can add a regression line or scatterplot smoother to hexbin plots. 
The regression line or smoother is a weighted fit, based on the binned 
values.

Figure 4.6: Graph using xyplot with lmline=T.
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The following functions add the following types of reference lines to 
hexbin plots:

• A regression line with abline

• A Loess smoother with loess.smooth

• A smooth spline with smooth.spline

• A line to a qqplot with qqline

• A least squares line to an xyplot in a Trellis graph.

For smooth.spline and loess.smooth, when the data consists of 
bdVectors, the data is aggregated before smoothing. The range of the 
x variable is divided into 1000 bins, and then the mean for x and y is 
computed in each bin. A weighted smooth is then computed on the 
bin means, weighted based on the bin counts. This computation 
results in values that differ somewhat from those where the smoother 
is applied to the unaggregated data. The values are usually close 
enough to be indistinguishable when used in a plot, but the difference 
could be important when the smoother is used for prediction or 
optimization.

Add a Regression 
Line

When you create a scatterplot from your large data set, and you 
notice a linear association between the y-axis variable and the x-axis 
variable, you might want to display a straight line that has been fit to 
the data. Call lsfit to perform a least squares regression, and then 
use that regression to plot a regression line.

The following example draws an abline on the chart that plots 
fuel.bd weight and mileage data. First, create a hexbin object and 
plot it, and then add the abline to the plot.

To add a regression line to a sample plot, in the Commands window, 
type the following:

fuel.bd <- as.bdFrame(fuel.frame)
hexbin.out <- plot(fuel.bd$Weight, fuel.bd$Mileage)

# displays a hexbin plot
# use add.to.hexbin to keep the abline within the
# hexbin area. If you just call abline, then the 
# line might draw outside of the hexbin and interfere
# with the label.
add.to.hexbin(hexbin.out, abline(lsfit(fuel.bd$Weight,

fuel.bd$Mileage)))
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The resulting chart is displayed as follows:

Add a Loess 
Smoother

Use lines(loess.smooth) to add a smooth curved line to a scatter 
plot. 

To add a loess smoother to a sample plot, in the Commands 
window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
hexbin.out <- plot(fuel.bd$Weight, fuel.bd$Mileage)

# displays a hexbin plot
add.to.hexbin(hexbin.out, 

lines(loess.smooth(fuel.bd$Weight, 
fuel.bd$Mileage), lty=2))

Figure 4.7: Graph drawing an abline in a hexbin plot.
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The resulting chart is displayed as follows:

Add a Smoothing 
Spline

Use lines(smooth.spline) to add a smoothing spline to a scatter 
plot.

To add a smoothing spline to a sample plot, in the Commands 
window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
hexbin.out <- plot(fuel.bd$Weight, fuel.bd$Mileage)

# displays a hexbin plot
add.to.hexbin(hexbin.out,

lines(smooth.spline(fuel.bd$Weight,
fuel.bd$Mileage),lty=3))

Figure 4.8: Graph using loess.smooth in a hexbin plot.
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The resulting chart is displayed as follows:

Add a Least 
Squares Line to 
an xyplot

To add a reference line to an xyplot, set lmline=T. Alternatively, you 
can call panel.lmline or panel.loess. See the section Create a 
Conditioning Plot or Scatter Plot on page 94 for an example.

Add a qqplot 
Reference Line

The function qqline fits and plots a line through a normal qqplot.

To add a qqline reference line to a sample qqplot, in the 
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
qqnorm(fuel.bd$Mileage)
qqline(fuel.bd$Mileage)

Figure 4.9: Graph using smooth.spline in a hexbin plot.
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The qqline chart is displayed as follows:

Plotting by 
Summarizing 
Data

The following examples demonstrate functions that summarize data 
in a plot-specific manner to plot big data objects. These functions do 
not use hexagonal binning. Because the plots for these functions are 
always monotonically increasing, hexagonal binning would obscure 
the results. Rather, summarizing provides the appropriate 
information.

Create a Box Plot The following example creates a simple box plot from fuel.bd. To 
create a Trellis box and whisker plot, see the following section.

To create a sample box plot, in the Commands window, type the 
following:

fuel.bd <- as.bdFrame(fuel.frame)
boxplot(split(fuel.bd$Fuel, fuel.bd$Type), style.bxp="att")

Figure 4.10: Graph using qqline in a qqplot chart.
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The box plot is displayed as follows:

Create a Trellis 
Box and Whisker 
Plot

The box and whisker plot provides graphical representation showing 
the center and spread of a distribution. 

To create a sample box and whisker plot in a Trellis graph, in the 
Commands window, type the following:

bwplot(Type~Fuel, data=(as.bdFrame(fuel.frame)))

The box and whisker plot is displayed as follows:

Figure 4.11: Graph using boxplot.

Figure 4.12: Graph using bwplot. 
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For more information about bwplot, see Chapter 3, Traditional 
Trellis Graphics, in the Guide to Graphics. 

Create a Density 
Plot

The density function returns x and y coordinates of a non-parametric 
estimate of the probability density of the data. Options include the 
choice of the window to use and the number of points at which to 
estimate the density. Weights may also be supplied.

Density estimation is essentially a smoothing operation. Inevitably 
there is a trade-off between bias in the estimate and the estimate's 
variability: wide windows produce smooth estimates that may hide 
local features of the density.

Density summarizes data. That is, when the data is a bdVector, the 
data is aggregated before smoothing. The range of the x variable is 
divided into 1000 bins, and the mean for x is computed in each bin. A 
weighted density estimate is then computed on the bin means, 
weighted based on the bin counts. This calculation gives values that 
differ somewhat from those when density is applied to the 
unaggregated data. The values are usually close enough to be 
indistinguishable when used in a plot, but the difference could be 
important when density is used for prediction or optimization.

To plot density, use the plot function.

To create a sample density plot from fuel.bd, in the Commands 
window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
plot(density(fuel.bd$Weight), type="l")
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The density plot is displayed as follows:

Create a Trellis 
Density Plot 

The following example creates a Trellis graph of a density plot, which 
displays the shape of a distribution. You can use the Trellis density 
plot for analyzing a one-dimensional data distribution. A density plot 
displays an estimate of the underlying probability density function for 
a data set, allowing you to approximate the probability that your data 
fall in any interval.

To create a sample Trellis density plot, in the Commands window, 
type the following: 

singer.bd <- as.bdFrame(singer)
densityplot( ~ height | voice.part, data = singer.bd,

layout = c(2, 4), aspect= 1, xlab = "Height (inches)",
width = 5)

Figure 4.13: Graph using density
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The Trellis density plot is displayed as follows:

For more information about Trellis density plots, see Chapter 3, 
Traditional Trellis Graphics, in the Guide to Graphics. 

Create a Simple 
Histogram

A histogram displays the number of data points that fall in each of a 
specified number of intervals. A histogram gives an indication of the 
relative density of the data points along the horizontal axis. For this 
reason, density plots are often superposed with (scaled) histograms.

To create a sample hist chart of a full dataset for a numeric vector, in 
the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
hist(fuel.bd$Weight)

Figure 4.14: Graph using densityplot.
103



Chapter 4  Creating Graphical Displays of Large Data Sets
The numeric hist chart is displayed as follows:

To create a sample hist chart of a full dataset for a factor column, in 
the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
hist(fuel.bd$Type)

The factor hist chart is displayed as follows:

Figure 4.15: Graph using hist for numeric data.

Figure 4.16: Graph using hist for factor data.
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Create a Trellis 
Histogram

The histogram function for a Trellis graph is histogram. 

To create a sample Trellis histogram, in the Commands window, 
type the following:

singer.bd <- as.bdFrame(singer)
histogram( ~ height | voice.part, data = singer.bd,

nint = 17, endpoints = c(59.5, 76.5), layout = c(2,4), 
aspect = 1, xlab = "Height (inches)")

The Trellis histogram chart is displayed as follows:

For more information about Trellis histograms, see Chapter 3, 
Traditional Trellis Graphics, in the Guide to Graphics. 

Create a 
Quantile-Quantile 
(QQ) Plot for 
Comparing 
Multiple 
Distributions

The functions qq, qqmath, qqnorm, and qqplot create an ordinary x-y 
plot of 500 evenly-spaced quantiles of data.

The function qq creates a Trellis graph comparing the distributions of 
two sets of data. Quantiles of one dataset are graphed against 
corresponding quantiles of the other data set. 

To create a sample qq plot, in the Commands window, type the 
following:

fuel.bd <- as.bdFrame(fuel.frame)
qq((Type=="Compact")~Mileage, data = fuel.bd)

Figure 4.17: Graph using histogram.
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The factor on the left side of the ~ must have exactly two levels 
(fuel.bd$Compact has five levels). 

The qq plot is displayed as follows:

(Note that in this example, by setting Type to the logical Compact, the 
labels are set to FALSE and TRUE on the x and y axis, respectively.)

Create a QQ Plot 
Using a 
Theoretical or 
Empirical 
Distribution

The function qqmath creates normal probability plot in a Trellis 
graph. that is, the ordered data are graphed against quantiles of the 
standard normal distribution. 

qqmath can also make probability plots for other distributions. It has 
an argument distribution, whose input is any function that 
computes quantiles. The default for distribution is qnorm. If you set 
distribution = qexp, the result is an exponential probability plot. 

To create a sample qqmath plot, in the Commands window, type the 
following:

singer.bd <- as.bdFrame(singer)
qqmath( ~ height | voice.part, data = singer.bd,

layout = c(2, 4), aspect = 1,
xlab = "Unit Normal Quantile", 
ylab = "Height (inches)")

f

Figure 4.18: Graph using qq.
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The qqmath plot is displayed as follows:

Create a Single 
Vector QQ Plot

The function qqnorm creates a plot using a single bdVector object. The 
following example creates a plot from the mileage vector of the 
fuel.bd object.

To create a sample qqnorm plot, in the Commands window, type the 
following:

fuel.bd <- as.bdFrame(fuel.frame)
qqnorm(fuel.bd$Mileage)

Figure 4.19: Graph using qqmath.
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The qqnorm plot is displayed as follows:

Create a Two 
Vector QQ Plot

The function qqplot creates a hexbin plot using two bdVectors. The 
quantile-quantile plot is a good tool for determining a good 
approximation to a data set’s distribution. In a qqplot, the ordered 
data are graphed against quantiles of a known theoretical distribution. 

To create a sample two-vector qqplot, In the Commands window, 
type the following:

fuel.bd <- as.bdFrame(fuel.frame)
qqplot(fuel.bd$Mileage, runif(length(fuel.bd$Mileage),

bigdata=T))

Note that in this example, the required y argument for qqplot is 
runif(length(fuel.bd$Mileage): the random generation for the 
uniform distribution for the vector fuel.bd$Mileage. Also note that 
using runif with a big data object requires that you set the runif 
argument bigdata=T.

The qqplot plot is displayed as follows:

Figure 4.20: Graph using qqnorm.
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Create a One-
Dimensional 
Scatter Plot

The function stripplot creates a Trellis graph similar to a box plot in 
layout; however, the individual data points are shown instead of the 
box plot summary. 

To create sample one-dimensional scatter plot, in the Commands 
window, type the following:

singer.bd <- as.bdFrame(singer)
stripplot(voice.part ~ jitter(height),

 data = singer.bd, aspect = 1,
 xlab = "Height (inches)")

Figure 4.21: Graph using qqplot.
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The stripplot plot is displayed as follows:

Creating 
Graphs with 
Preprocessing 
Functions

The functions discussed in this section do not accept a big data object 
directly to create a graph; rather, they require a preprocessing 
function such as those listed in the section Functions Providing 
Support to Preprocess Data for Graphing on page 86. 

Create a Bar 
Chart

Calling barchart directly on a large data set produces a large number 
of bars, which results in an illegible plot. 

• If your data contains a small number of cases, convert the 
data to a standard data.frame before calling barchart. 

• If your data contains a large number of cases, first use 
aggregate, and then use bd.coerce to create the appropriate 
small data set.

In the following example, sum the yields over sites to get the total 
yearly yield for each variety.

Figure 4.22: Graph using stripplot for singer.bd.
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To create a sample bar chart, in the Commands window, type the 
following:

barley.bd <- as.bdFrame(barley)
temp.df <- bd.coerce(aggregate(barley.bd$yield,

list(year=barley.bd$year, 
variety=barley.bd$variety), sum))

barchart(variety ~ x | year, data = temp.df, 
aspect = 0.4,xlab = "Barley Yield (bushels/acre)")

The resulting bar chart appears as follows:

Create a Bar Plot The following example creates a simple bar plot from fuel.bd, using 
table to preprocess data. 

To create a sample bar plot using table to preprocess the data, in the 
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
barplot(table(fuel.bd$Type), names=levels(fuel.bd$Type),

 ylab="Count")

Figure 4.23: Graph using barchart.
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The bar plot is displayed as follows:

To create a sample bar plot using tapply to preprocess the data, in 
the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
barplot(tapply(fuel.bd$Mileage, fuel.bd$Type, mean),

names=levels(fuel.bd$Type), ylab="Average Mileage")

The bar plot is displayed as follows:

Figure 4.24: Graph using barplot.

Figure 4.25: Graph using tapply to create a bar plot.
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Create a Contour 
Plot

A contour plot is a representation of three-dimensional data in a flat, 
two-dimensional plane. Each contour line represents a height in the z 
direction from the corresponding three-dimensional surface. A level 
plot is essentially identical to a contour plot, but it has default options 
that allow you to view a particular surface differently. 

The following example creates a contour plot from fuel.bd, using 
interp to preprocess data. For more information about interp, see 
the section Visualizing Three-Dimensional Data in the Application 
Developer’s Guide.

Like density, interp and loess summarize the data. That is, when 
the data is a bdVector, the data is aggregated before smoothing. The 
range of the x variable is divided into 1000 bins, and the mean for x 
computed in each bin. See the section Create a Density Plot on page 
101 for more information.

To create a sample contour plot using interp to preprocess the data, 
in the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
contour(interp(fuel.bd$Weight, fuel.bd$Disp.,

fuel.bd$Mileage))

The contour plot is displayed as follows:

Create a Trellis 
Contour Plot

The function contourplot creates a Trellis contour plot. The 
contourplot function creates a Trellis graph of a contour plot. For big 
data sets, contourplot requires a preprocessing function such as 
loess.

Figure 4.26: Graph using interp to create a contour plot.
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The following example creates a contour plot of predictions from 
loess.

To create a sample Trellis contour plot using loess to preprocess 
data, in the Commands window, type the following:

environ.bd <- as.bdFrame(environmental)
{

ozo.m <- loess((ozone^(1/3)) ~ 
wind * temperature * radiation,data = environ.bd,
parametric = c("radiation", "wind"),
span = 1, degree = 2)

w.marginal <- seq(min(environ.bd$wind),
max(environ.bd$wind), length = 50)

t.marginal <- seq(min(environ.bd$temperature),
max(environ.bd$temperature), length = 50)

r.marginal <- seq(min(environ.bd$radiation),
max(environ.bd$radiation), length = 4)

wtr.marginal <- list(wind = w.marginal, 
temperature = t.marginal, radiation = r.marginal)

grid <- expand.grid(wtr.marginal)
grid[, "fit"] <- c(predict(ozo.m, grid))
print(contourplot(fit ~ wind * temperature | radiation,

data = grid, xlab = "Wind Speed (mph)", 
ylab = "Temperature (F)", 
main = "Cube Root Ozone (cube root ppb)"))

}
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The Trellis contour plot is displayed as follows:

Create a Dot 
Chart

When you create a dot chart, you can use a grouping variable and 
group summary, along with other options. The function dotchart can 
be preprocessed using either table or tapply.

To create a sample dot chart using table to preprocess data, in the 
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
dotchart(table(fuel.bd$Type), labels=levels(fuel.bd$Type),

xlab="Count")

Figure 4.27: Graph using loess to create a Trellis contour plot.
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The dot chart is displayed as follows:

To create a sample dot chart using tapply to preprocess data, in the 
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
dotchart(tapply(fuel.bd$Mileage, fuel.bd$Type, median),

labels=levels(fuel.bd$Type), xlab="Median Mileage")

The dot chart is displayed as follows:

Figure 4.28: Graph using table to create a dot chart.

Figure 4.29: Graph using tapply to create a dot chart.
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Create a Dot Plot The function dotplot creates a Trellis graph that displays that 
displays dots and gridlines to mark the data values in dot plots. The 
dot plot reduces most data comparisons to straightforward length 
comparisons on a common scale.

When using dotplot on a big data object, call dotplot after using 
aggregate to reduce size of data.

In the following example, sum the barley yields over sites to get the 
total yearly yield for each variety.

To create a sample dot plot, in the Commands window, type the 
following:

barley.bd <- as.bdFrame(barley)
temp.df <- bd.coerce(aggregate(barley.bd$yield,

list(year=barley.bd$year, variety=barley.bd$variety),
sum))

(dotplot(variety ~ x | year, data = temp.df,
aspect = 0.4, xlab = "Barley Yield (bushels/acre)"))

The resulting Trellis dot plot appears as follows:

Create an Image 
Graph Using 
hist2d

The following example creates an image graph using hist2d to 
preprocess data. The function image creates an image, under some 
graphics devices, of shades of gray or colors that represent a third 
dimension.

Figure 4.30: Graph using aggregate to create a dot chart.
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To create a sample image plot using hist2d preprocess the data, in 
the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
image(hist2d(fuel.bd$Weight, fuel.bd$Mileage, nx=9, ny=9))

The image plot is displayed as follows:

Create a Trellis 
Level Plot

The levelplot function creates a Trellis graph of a level plot. For big 
data sets, levelplot requires a preprocessing function such as loess.

A level plot is essentially identical to a contour plot, but it has default 
options so you can view a particular surface differently. Like contour 
plots, level plots are representations of three-dimensional data in flat, 
two-dimensional planes. Instead of using contour lines to indicate 
heights in the z direction, level plots use colors. The following 
example produces a level plot of predictions from loess.

To create a sample Trellis level plot using loess to preprocess the 
data, in the Commands window, type the following:

environ.bd <- as.bdFrame(environmental)
{

ozo.m <- loess((ozone^(1/3)) ~ 
wind * temperature * radiation, data = environ.bd,
parametric = c("radiation", "wind"),
span = 1, degree = 2)

Figure 4.31: Graph using hist2d to create an image plot.
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w.marginal <- seq(min(environ.bd$wind),
max(environ.bd$wind), length = 50)

t.marginal <- seq(min(environ.bd$temperature),
 max(environ.bd$temperature), length = 50)

r.marginal <- seq(min(environ.bd$radiation),
 max(environ.bd$radiation), length = 4)

wtr.marginal <- list(wind = w.marginal, 
temperature = t.marginal, radiation = r.marginal)

grid <- expand.grid(wtr.marginal)
grid[, "fit"] <- c(predict(ozo.m, grid))
print(levelplot(fit ~ wind * temperature | radiation,

 data = grid, xlab = "Wind Speed (mph)", 
ylab = "Temperature (F)", 
main = "Cube Root Ozone (cube root ppb)"))

}

The level plot is displayed as follows:

Create a persp 
Graph Using 
hist2d

The persp function creates a perspective plot given a matrix that 
represents heights on an evenly spaced grid. For more information 
about persp, see the section Perspective Plots in the Application 
Developer’s Guide.

To create a sample persp graph using hist2d to preprocess the data, 
in the Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
persp(hist2d(fuel.bd$Weight, fuel.bd$Mileage))

Figure 4.32: Graph using loess to create a level plot.
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The persp graph is displayed as follows:

Create a Pie 
Chart

A pie chart shows the share of individual values in a variable, relative 
to the sum total of all the values. Pie charts display the same 
information as bar charts and dot plots, but can be more difficult to 
interpret. This is because the size of a pie wedge is relative to a sum, 
and does not directly reflect the magnitude of the data value. Because 
of this, pie charts are most useful when the emphasis is on an 
individual item’s relation to the whole; in these cases, the sizes of the 
pie wedges are naturally interpreted as percentages.

Calling pie directly on a big data object can result in a pie with 
thousands of wedges; therefore, preprocess the data using table to 
reduce the number of wedges.

To create a sample pie chart using table to preprocess the data, in the 
Commands window, type the following:

fuel.bd <- as.bdFrame(fuel.frame)
pie(table(fuel.bd$Type), names=levels(fuel.bd$Type),

sub="Count")

Figure 4.33: Graph using hist2d to create a perspective plot

Hint

Using persp of interp might produce a more attractive graph.
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The pie chart appears as follows:

Create a Trellis 
Pie Chart

The function piechart creates a pie chart in a Trellis graph.

• If your data contains a small number of cases, convert the 
data to a standard data.frame before calling piechart. 

• If your data contains a large number of cases, first use 
aggregate, and then use bd.coerce to create the appropriate 
small data set.

To create a sample Trellis pie chart using aggregate to preprocess the 
data, in the Commands window, type the following:

barley.bd <- as.bdFrame(barley)
temp.df <- bd.coerce(aggregate(barley.bd$yield,

list(year=barley.bd$year, variety=barley.bd$variety),
sum))

piechart(variety ~ x | year, data = temp.df, 
xlab = "Barley Yield (bushels/acre)")

fif

Figure 4.34: Graph using table to create a pie chart.
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The Trellis pie chart appears as follows:

Create a Trellis 
Wireframe Plot

A surface plot is an approximation to the shape of a three-
dimensional data set. Surface plots are used to display data collected 
on a regularly-spaced grid; if gridded data is not available, 
interpolation is used to fit and plot the surface. The Trellis function 
that displays surface plots is wireframe.

For big data sets, wireframe requires a preprocessing function such as 
loess.

To create a sample Trellis surface plot using loess to preprocess the 
data, in the Commands window, type the following:

environ.bd <- as.bdFrame(environmental)
{

ozo.m <- loess((ozone^(1/3)) ~ 
wind * temperature * radiation, data = environ.bd,
parametric = c("radiation", "wind"),
span = 1, degree = 2)

w.marginal <- seq(min(environ.bd$wind),
max(environ.bd$wind), length = 50)

t.marginal <- seq(min(environ.bd$temperature),
max(environ.bd$temperature), length = 50)

r.marginal <- seq(min(environ.bd$radiation),
max(environ.bd$radiation), length = 4)

wtr.marginal <- list(wind = w.marginal, 
temperature = t.marginal, radiation = r.marginal)

grid <- expand.grid(wtr.marginal)
grid[, "fit"] <- c(predict(ozo.m, grid))

Figure 4.35: Graph using aggregate to create a Trellis pie chart.
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print(wireframe(fit ~ wind * temperature | radiation,
data = grid, xlab = "Wind Speed (mph)", 
ylab = "Temperature (F)", 
main = "Cube Root Ozone (cube root ppb)"))

}

The surface plot is displayed as follows:

Unsupported 
Functions

Using the functions that add to a plot, such as points and lines, 
results in an error message.

Figure 4.36: Graph using loess to create a surface plot.
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INTRODUCTION

As a Spotfire S+ Big Data library user, you might encounter 
unexpected or unusual behavior when you manipulate blocks of data 
or work with strings and factors.

This section includes warnings and advice about such behavior, and 
provides examples and further information for handling these 
unusual situations.

Alternatively, you might need to implement your own big-data 
algorithms using out-of-memory techniques.
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BIG DATA BLOCK SIZE ISSUES

Big data objects represent very large amounts of data by storing the 
data in external files. When a big data object is processed, pieces of 
this data are read into memory and processed as data “blocks.” For 
most operations, this happens automatically. This section describes 
situations where you might need to understand the processing of 
individual blocks.

Block Size 
Options

When processing big data, the system must decide how much data to 
read and process in each block. Each block should be as big as 
possible, because it is more efficient to process a few large blocks, 
rather than many small blocks. However, the available memory limits 
the block size. If space is allocated for a block that is larger than the 
physical memory on the computer, either it uses virtual memory to 
store the block (which slows all operations), or the memory allocation 
operation fails.

The size of the blocks used is controlled by two options:

• bd.options("block.size")
The option "block.size" specifies the maximum number of 
rows to be processed at a time, when executing big data 
operations. The default value is 1e9; however, the actual 
number of rows processed is determined by this value, 
adjusted downwards to fit within the value specified by the 
option "max.block.mb". 

• bd.options("max.block.mb")
The option "max.block.mb" places a limit on the maximum 
size of the block in megabytes. The default value is 10.

When Spotfire S+ reads a given bdFrame, it sets the block size initially 
to the value passed in "block.size", and then adjusts downward until 
the block size is no greater than "max.block.mb". Because the default 
for "block.size" is set so high, this effectively ensures that the size of 
the block is around the given number of megabytes.

The resulting number of rows in a block depends on the types and 
numbers of columns in the data. Given the default "max.block.mb" of 
10 megabytes, reading a bdFrame with a single numeric column could 
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be read in blocks of 1,250,000 rows. A bdFrame with 200 numeric 
columns could be read in blocks of 6,250 rows. The column types 
also enter into the determination of the number of rows in a block.

Changing Block 
Size Options

There is rarely a reason to change bd.options("block.size") or 
bd.options("max.block.mb"). The default values work well in almost 
all situations. In this section, we examine possible reasons for 
changing these values.

A bad reason for changing the block size options is to guarantee a 
particular block size. For example, one might set 
bd.options("block.size") to 50 before calling bd.block.apply with 
its FUN argument set to a function that depends on receiving blocks of 
exactly 50 rows. Writing functions that depend on a specific number 
of rows is strongly discouraged, because there are so many situations 
where this function might fail, including:

• If the whole dataset is not a multiple of 50 rows, then the last 
block will have fewer than 50 rows.

• If the dataset being processed has a large number of columns, 
then the actual rows in each block will be less than 50 (if 
bd.options("max.block.mb") is too small), or an out of 
memory error might occur when allocating the block (if 
bd.options("max.block.mb") is too high). If it is necessary to 
guarantee 50-row blocks, it would be better to call 
bd.by.window with window=50, offset=0, and 
drop.incomplete=T.

A good reason for changing bd.options("block.size") is if you are 
developing and debugging new code for processing big data. 

Consider developing code that calls bd.block.apply to processes 
very large data in a series of chunks. To test whether this code works 
when the data is broken into multiple blocks, set "block.size" to a 
very small value, such as bd.options(block.size=10). Test it with 
several small values of bd.options("block.size") to ensure that it 
does not depend on the block size. Using this technique, you can test 
processing multiple blocks quickly with very small data sets.

One situation where it might be necessary to increase 
bd.options("max.block.mb") is when you use bd.by.group or 
bd.by.window. These functions call a Spotfire S+ function on each 
128



Big Data Block Size Issues
data block defined by the group columns or the window size, and it 
will generate an error if a data block is larger than 
bd.options("max.block.mb"). 

You can work around this problem by increasing 
bd.options("max.block.mb"), but you run the risk of an out of 
memory error. If the number of groups is not large, it would be better 
to call bd.split.by.group or bd.split.by.window to divide the 
dataset into separate datasets for each group, and then process them 
individually. The section Group or Window Blocks on page 130 
contains an example.

A common reason for increasing bd.options("block.size") or 
bd.options("max.block.mb") is to attempt to improve performance. 
Most of the time this is not effective. While it is often faster to process 
a few large blocks than many small blocks, this does not mean that 
the best way to improve performance is to set the block size as high as 
possible.

With very small block sizes, a lot of time can go into the overhead of 
reading and writing and managing the individual blocks. As the block 
sizes get larger, this overhead gets lower relative to the other 
processing. Eventually, increasing the block size will not make much 
difference. This is shown in Figure 5.1, where the time for calling 
bd.block.apply on a large data set is measured for different values of 
bd.options("max.block.mb"). 

bd.options("block.size") is set to the default of 1e9 in all cases, so 
the actual block size used is determined by 
bd.options("max.block.mb"). The different symbols show 
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measurements with four different FUN functions. All of the symbols 
show the same trend: Increasing the block size improves the 
performance for a while, but eventually the improvement levels out.

If you suspect that increasing the block size could help the 
performance of a particular computation, the best strategy is to 
measure the performance of the computation with 
bd.options("max.block.mb") set to the default of 10, and then 
measure it again with bd.options("max.block.mb") set to 20. If this 
test shows no significant performance improvement, it probably will 
not help to increase the block size further, but could lead only to out 
of memory problems. Using large block sizes can actually lead to 
worse performance, if it causes virtual memory page swapping.

Group or 
Window Blocks

Note that the “block” size determined by these options and the data is 
distinct from the “blocks” defined in the functions bd.by.group, 
bd.by.window, bd.split.by.group, and bd.split.by.window. These 
functions divide their input data into subsets to process as determined 
by the values in certain columns or a moving window. Spotfire S+ 
imposes a limit on the size of the data that can be processed in each 
block by bd.by.group and bd.by.window: if the number of rows in a 
block is larger than the block size determined by 

Figure 5.1: Efficiency of setting bd.options(“max.block.mb”).
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bd.options("block.size") and bd.options("max.block.mb"), an 
error is displayed. This limitation does not apply to the functions 
bd.split.by.group and bd.split.by.window.

To demonstrate this restriction, consider the code below. The 
variable BIG.GROUPS contains a 1,000-row data.frame with a column 
GENDER with factor values MALE and FEMALE, split evenly between the 
rows. If the block size is large enough, we can use bd.by.group to 
process each of the GENDER groups of 500 rows:

BIG.GROUPS <- 
data.frame(GENDER=rep(c("MALE","FEMALE"),
length=1000), NUM=rnorm(1000))

bd.options(block.size=5000)

bd.by.group(BIG.GROUPS, by.columns="GENDER",
FUN=function(df) 
data.frame(GENDER=df$GENDER[1],
NROW=nrow(df)))

GENDER NROW
1 FEMALE 500
2 MALE 500

If the block size is set below the size of the groups, this same 
operation will generate an error:

bd.options(block.size=10)

bd.by.group(BIG.GROUPS, by.columns="GENDER",
FUN=function(df) 
data.frame(GENDER=df$GENDER[1],
NROW=nrow(df)))

Problem in bd.internal.exec.node(engine.class = :
BDLManager$BDLSplusScriptEngineNode (0): Problem in
bd.internal.by.group.script(IM, function(..: can't process 
block with 500 rows for group [FEMALE]: can only process 10 
rows at a time (check bd.options() values for block.size 
and max.block.mb)
Use traceback() to see the call stack

In this case, bd.split.by.group could be called to divide the data 
into a list of multiple bdFrame objects and process them individually:
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BIG.GROUPS.LIST <- bd.split.by.group(BIG.GROUPS,
by.columns="GENDER")

data.frame(GENDER=names(BIG.GROUPS.LIST),
NROW=sapply(BIG.GROUPS.LIST, nrow, simplify=T),
row.names=NULL)

GENDER NROW
1 FEMALE 500
2 MALE 500
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BIG DATA STRING AND FACTOR ISSUES

Big data columns of types character and factor have limitations that 
are not present for regular data.frame objects. Most of the time, these 
limitations do not cause problems, but in some situations, warning 
messages can appear, indicating that long strings have been 
truncated, or factors with too many levels had some values changed 
to NA. This section explains why these warnings may appear, and how 
to deal with them.

String Column 
Widths

When a bdFrame character column is initially defined, before any data 
is stored in it, the maximum number of characters (or string width) 
that can appear in the column must be specified. This restriction is 
necessary for rapid access to the cache file. Once this is specified, an 
attempt to store a longer string in the column causes the string to be 
truncated and generate a warning. It is important to specify this 
maximum string width correctly. All of the big data operations 
attempt to estimate this width, but there are situations where this 
estimated value is incorrect. In these cases, it is possible to explicitly 
specify the column string width. 

To retrieve the actual column string widths used in a particular 
bdFrame, call the function bd.string.column.width.

Unless the column string width is explicitly specified in other ways, 
the default string width for newly-created columns is set with the 
following option. The default value is 32.

bd.options("string.column.width")

When you convert a data.frame with a character column to a 
bdFrame, the maximum string width in the column data is used to set 
the bdFrame column string width, so there is no possibility of string 
truncation.

String Widths 
and 
importData

When you import a big data object using importData for file types 
other than ASCII text, Spotfire S+ determines the maximum number 
of characters in each string column and uses this value to set the 
bdFrame column string width.
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When you import ASCII text files, Spotfire S+ measures the 
maximum number of characters in each column while scanning the 
file to determine the column types. The number of lines scanned is 
controlled by the argument scanLines. If this is too small, and the 
scan stops before some very long strings, it is possible for the 
estimated column width to be too low. For example, the following 
code generates a file with steadily-longer strings.

f <- tempfile()
cat("strsize,str\n",file=f)
for(x in 1:30) {

str <- paste(rep("abcd:",x),collapse="")
cat(nchar(str), ",", str, "\n", sep="", 
append=T, file=f)

 }

Importing this file with the default scanLines value (256) detects that 
the maximum string has 150 characters, and sets this column string 
length correctly.

dat <- importData(f, type="ASCII", stringsAsFactors=F,
bigdata=T)

dat

**bdFrame: 30 rows, 2 columns**
strsize      str
1  5       abcd:
2  10     abcd:abcd:
3  15    abcd:abcd:abcd:
4  20   abcd:abcd:abcd:abcd:
5  25  abcd:abcd:abcd:abcd:abcd:
   ... 25 more rows ...

bd.string.column.width(dat)

strsize       str
-1 150

(In the above output, the strsize value of  -1 represents the value for 
non-character columns.)

If you import this file with the scanLines argument set to scan only 
the first few lines, the column string width is set too low. In this case, 
the column string width is set to 45 characters, so longer strings are 
truncated, and a warning is generated:
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dat <- importData(f, type="ASCII", stringsAsFactors=F,
bigdata=T, scanLines=10)

Warning messages:
"ReadTextFileEngineNode (0): output column str has 21 
string values truncated because they were longer than the 
column string width of 45 characters -- maximum string size 
before truncation was 150 characters" in: 
bd.internal.exec.node(engine.class = engine.class, ...

You can read this data correctly without scanning the entire file by 
explicitly setting bd.options("default.string.column.width") 
before the call to importData:

bd.options("default.string.column.width"=200)
dat <- importData(f, type="ASCII", stringsAsFactors=F,

bigdata=T, scanLines=10)
bd.string.column.width(dat)

strsize  str
   -1  200

This string truncation does not occur when Spotfire S+ reads long 
strings as factors, because there is no limit on factor-level string 
length.

One more point to remember when you import strings: the low-level 
importData and exportData code truncates any strings (either 
character strings or factor levels) that have more than 254 characters. 
Spotfire S+ generates a warning in importData if bigdata=T if it 
encounters such strings.

String Widths 
and 
bd.create.
columns

You can use one of the following techniques for setting string column 
widths explicitly:

• To set the default width (if it is not determined some other 
way), use bd.options("string.column.width").

• To override the default column string widths, in 
bd.block.apply, specify the out1.column.string.widths list 
element when IM$test==T, or when outputting the first non-
NULL output block.

• To set the width for new output columns, use the 
string.column.width argument to bd.create.columns. 
When you use bd.create.columns to create a new character 
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column, you must set the column string width. You can set 
this width explicitly with the string.column.width argument. 
If you set it smaller than the maximum string generated, then 
this will generate a warning:

bd.create.columns(as.bdFrame(fuel.frame), 
"Type+Type", "t2", "character",
string.column.width=6)

Warning in bd.internal.exec.node(engine.class = engi..:
"CreateColumnsEngineNode (0): output column t2 has 53 
string values truncated because they were longer than the 
column string width of 6 characters -- maximum string size 
before truncation was 14 characters"

**bdFrame: 60 rows, 6 columns**
  Weight Disp. Mileage  Fuel  Type  t2
1  2560   97   33   3.030303 Small SmallS
2  2345  114   33   3.030303 Small SmallS
3  1845   81   37   2.702703 Small SmallS
4  2260   91   32   3.125000 Small SmallS
5  2440  113   32   3.125000 Small SmallS
... 55 more rows ...

If the character column width is not set with the 
string.column.width argument, the value is estimated differently, 
depending on whether the call.splus argument is true or false. If 
row.language=T, the expression is analyzed to determine the 
maximum length string that could possibly be generated. This 
estimate is not perfect, but it works well enough most of the time.

If row.language=F, the first time that the Spotfire S+ expression is 
evaluated, the string widths are measured, and the new column's 
string width is set from this value. If future evaluations produce longer 
strings, they are truncated, and a warning is generated.

Whether row.language=T or F, the estimated string widths will never 
be less than the value of 
bd.options("default.string.column.width").

Factor Column 
Levels

Because of the way that bdFrame factor columns are represented, a 
factor cannot have an unlimited number of levels. The number of 
levels is restricted to the value of the option. (The default is 500.)

bd.options("max.levels")
136



Big Data String and Factor Issues
If you attempt to create a factor with more than this many levels, a 
warning is generated. For example:

dat <- bd.create.columns(data.frame(num=1:2000),
"'x'+num", "f", "factor")

Warning messages:
"CreateColumnsEngineNode (0): output column f has 1500 NA 
values due to categorical level overflow (more than 500 
levels) -- you may want to change this column type from 
categorical to string" in: bd.internal.ex\ 
ec.node(engine.class = engine.class, node.props = 
node.props, ....

summary(dat)

 num          f
 Min.:  1.0     x99: 1
 1st Qu.: 500.8   x98: 1
 Median: 1001.0   x97: 1
 Mean: 1001.0    x96: 1
 3rd Qu.: 1500.0   x95: 1
 Max.: 2000.0 (Other): 495
      NA's:1500

You can increase the "max.levels" option up to 65,534, but factors 
with so many levels should probably be represented as character 
strings instead. 

String 
Truncation and 
Level Overflow 
Errors

Normally, if strings are truncated or factor levels overflow, Spotfire 
S+ displays a warning with detailed information on the number of 
altered values after the operation is completed. You can set the 
following options to make an error occur immediately when a string 
truncation or level overflow occurs. 

bd.options("error.on.string.truncation"=T)
bd.options("error.on.level.overflow"=T)

Note

Strings are used for identifiers (such as street addresses or social security numbers), while factors 
are used when you have a limited number of categories (such as state names or product types) 
that are used to group rows for tables, models, or graphs. 
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The default for both options is F. If one of these is set to T, an error 
occurs, with a short error message. Because all of the data has not 
been processed, it is impossible to determine how many values might 
be effected.

These options are useful in situations where you are performing a 
lengthy operation, such as importing a huge data set, and you want to 
terminate it immediately if there is a possible problem.
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STORING AND RETRIEVING LARGE S OBJECTS

When you work with very large data, you might encounter a situation 
where an object or collection of objects is too large to fit into available 
memory. The Big Data library offers two functions to manage storing 
and retrieving large data objects:

• bd.pack.object

• bd.unpack.object

This topic contains examples of using these functions.

Managing 
Large Amounts 
of Data

Suppose you want to create a list containing thousands of model 
objects, and a single list containing all of the models is too large to fit 
in your available memory. By using the function bd.pack.object, 
you can store each model in an external cache, and create a list of the 
smaller “packed” models. You can then use bd.unpack.object to 
restore the models to manipulate them. 

Creating a 
Packed Object 
with bd.pack.
object

In the following example, use the data object fuel.frame to create 
1000 linear models. The resulting object takes about 6MB.

In the Commands window, type the following:

#Create the linear models:
many.models <- lapply(1:1000, function(x) 

lm(Fuel ~ Weight + Disp., sample(fuel.frame, size=30)))

#Get the size of the object:
object.size(many.models)

[1] 6210981

You can make a smaller object by packing each model. While this 
exercise takes longer, the resulting object is smaller than 2MB.

In the Commands window, type the following:

#Create the packed linear models:
many.models.packed <- lapply(1:1000, 

function(x) bd.pack.object(
lm(Fuel ~ Weight + Disp., sample(fuel.frame, size=30))))
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#Get the size of the packed object:
object.size(many.models.packed)

[1] 1880041

Restoring a 
Packed Object 
with 
bd.unpack.
object

Remember if you use bd.pack.object, you must unpack the object to 
use it again. The following example code unpacks some of the models 
within many.models.packed object and displays them in a plot.

In the Commands window, type the following:

for(x in 1:5)
plot(
bd.unpack.object(many.models.packed[[x]]),
which.plots=3)

Summary The above example shows a space difference of only a few MB, (6MB 
to 2MB), which is probably not a large enough saving to take the time 
to pack the object. However, if each of the model objects were very 
large, and the whole list were too large to represent, the packed 
version would be useful.
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INCREASING EFFICIENCY

The Big Data library offers several alternatives to standard Spotfire 
S+ functions, to provide greater efficiency when you work with a 
large data set. Key efficiency functions include: 

The following section provides comparisons between these Big Data 
library functions and their standard Spotfire S+ function equivalents

bd.select.
rows

Using bd.select.rows to extract a block of rows is much more 
efficient than using standard subscripting. Some standard subscripting 
and bd.select.rows equivalents include the following:.

bd.filter.
rows

Using bd.filter.rows is equivalent to subscripting rows with a 
logical vector. By default, bd.filter.rows uses an “expression 
language” that provides quick evaluation of row-oriented expressions. 
Alternatively, you can use the full range of Spotfire S+ row functions 

Table E.1: Efficient Big Data library functions.

Function name Description

bd.select.rows Use to extract specific columns and a block of 
contiguous rows.

bd.filter.rows Use to keep all rows for which a condition is 
TRUE.

bd.create.columns Use to add columns to a data set. 

Table E.2: bd.select.rows efficiency equivalents.

Standard Spotfire S+ 
subscripting function bd.select.rows equivalent

x[, "Weight"] bd.select.rows(x, 
columns="Weight")

x[1:1000, c(1,3)] bd.select.rows(x, from=1, to=1000, 
columns=c(1,3))
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by setting the bd.filter.rows argument row.language=F, but the 
computation is less efficient. Some standard subscripting and 
bd.filter.rows equivalents include the following:.

bd.create.
columns

Like bd.filter.rows, bd.create.columns offers you a choice of using 
the more efficient expression language or the more flexible general 
Spotfire S+ functions. Some standard subscripting and 
bd.create.columns equivalents include the following: 

Note that in the last function, above, specifying copy=F creates a new 
column without copying the old columns.

Table E.3: bd.filter.rows efficiency equivalents.

Standard Spotfire S+ 
subscripting function bd.filter.rows equivalent

x[x$Weight > 100, ] bd.filter.rows(x, "Weight > 100")

x[pnorm(x$stat) > 0.5 ,] bd.filter.rows(x, "pnorm(stat) > 
0.5", row.language=F)

Table E.4: bd.create.columns efficiency equivalents.

Standard Spotfire S+ 
subscripting function bd.create.columns equivalent

x$d <- (x$a+x$b)/x$c x <- bd.create.columns(x, "(a+b)/
c", "d")

x$pval <- pnorm(x$stat) x <- bd.create.columns(x, 
"pnorm(stat)", "pval", 
row.language=F)

y <- (x$a+x$b)/x$c y <- bd.create.columns(x, "(a+b)/
c", "d", copy=F)
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Appendix:  Big Data Library Functions
INTRODUCTION

The Big Data library is supported by many standard Spotfire S+ 
functions, such as basic statistical and mathematical functions, 
properties functions, densities and quantiles functions, and so on. For 
more information about these functions, see their individual help 
topics. (To display a function’s help topic, in the Commands window, 
type help(functionname).) 

The Big Data library also contains functions specific to big data 
objects. These functions include the following.

• Import and export functions.

• Object creation functions

• Big vector generating functions.

• Data exploration and manipulation functions.

• Traditional and Trellis graphics functions.

• Modeling functions.

These functions are described further in the following section.
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BIG DATA LIBRARY FUNCTIONS

The following tables list the functions that are implemented in the Big 
Data library. 

Data Import 
and Export

For more information and usage examples, see the functions’ 
individual help topics.
Table A.1: Import and export functions.  

Function name Description

data.dump Creates a file containing an ASCII 
representation of the objects that are named. 

data.restore Puts data objects that had previously been put 
into a file with data.dump into the specified 
database.

exportData Exports a bdFrame to the specified file or 
database format. Not all standard Spotfire S+ 
arguments are available when you import a 
large data set. See exportData in the Spotfire 
S+ Language Reference for more information.

importData When you set the bigdata flag to TRUE, imports 
data from a file or database into a bdFrame. Not 
all standard Spotfire S+ arguments are 
available when you import a large data set. 
See importData in the Spotfire S+ Language 
Reference for more information.
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Object 
Creation

The following methods create an object of the specified type. For 
more information and usage examples, see the functions’ individual 
help topics.
Table A.2: Big Data library object creation functions

Function

bdCharacter

bdCluster

bdFactor

bdFrame

bdGlm

bdLm

bdLogical

bdNumeric

bdPrincomp

bdSignalSeries

bdTimeDate

bdTimeSeries

bdTimeSpan
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Big Vector 
Generation

For the following methods, set the bigdata argument to TRUE to 
generate a bdVector. This instruction applies to all functions in this 
table. For more information and usage examples, see the functions’ 
individual help topics.
Table A.3: Vector generation methods for large data sets.

Method name

rbeta

rbinom

rcauchy

rchisq

rep

rexp

rf

rgamma

rgeom

rhyper

rlnorm

rlogis

rmvnorm

rnbinom

rnorm
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Big Data 
Library 
Functions

The Big Data library introduces a new set of "bd" functions designed 
to work efficiently on large data. For best performance, it is important 
that you write code minimizing the number of passes through the 
data. The Big Data library functions minimize the number of passes 
made through the data. Use these functions for the best performance. 
For more information and usage examples, see the functions’ 
individual help topics.

rnrange

rpois

rstab

rt

runif

rweibull

rwilcox

Table A.3: Vector generation methods for large data sets. (Continued)

Method name
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Data Exploration 
Functions Table A.4: Data exploration functions.

Function name Description

bd.cor Computes correlation or covariances for a data 
set. In addition, computes correlations or 
covariances between a single column and all 
other columns, rather than computing the full 
correlation/covariance matrix.

bd.crosstabs Produces a series of tables containing counts for 
all combinations of the levels in categorical 
variables.

bd.data.viewer Displays the data viewer window, which displays 
the input data in a scrollable window, as well as 
information about the data columns (names, 
types, means, and so on). 

bd.univariate Computes a wide variety of univariate statistics. It 
computes most of the statistics returned by PROC 
UNIVARIATE in SAS.
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Data 
Manipulation 
Functions

Table A.5: Data manipulation functions.

Function name Description

bd.aggregate Divides a data object into blocks 
according to the values of one or 
more columns, and then applies 
aggregation functions to columns 
within each block.

bd.append Appends one data set to a second 
data set.

bd.bin Creates new categorical variables 
from continuous variables by 
splitting the numeric values into a 
number of bins. For example, it can 
be used to include a continuous age 
column as ranges (<18, 18-24, 25-
35, and so on).

bd.block.apply Executes a Spotfire S+ script on 
blocks of data, with options for 
reading multiple input datasets and 
generating multiple output data 
sets, and processing blocks in 
different orders.

bd.by.group Apply an arbitrary Spotfire S+ 
function to multiple data blocks 
within the input dataset.

bd.by.window Apply an arbitrary Spotfire S+ 
function to multiple data blocks 
defined by a moving window over 
the input dataset.

bd.coerce Converts an object from a standard 
data frame to a bdFrame, or vice 
versa.
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bd.create.columns Creates columns based on 
expressions.

bd.duplicated Determine which rows in a dataset 
are unique.

bd.filter.columns Removes one or more columns 
from a data set.

bd.filter.rows Filters rows that satisfy the 
specified expression.

bd.join Creates a composite data set from 
two or more data sets. For each 
data set, specify a set of key 
columns that defines the rows to 
combine in the output. Also, for 
each data set, specify whether to 
output unmatched rows.

bd.modify.columns Changes column names or types. 
Can also be used to drop columns.

bd.normalize Centers and scales continuous 
variables. Typically, variables are 
normalized so that they follow a 
standard Gaussian distribution 
(means of 0 and standard 
deviations of 1). 

To do this, bd.normalize subtracts 
the mean or median, and then 
divides by either the range or 
standard deviation.

Table A.5: Data manipulation functions. (Continued)

Function name Description
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bd.partition Randomly samples the rows of 
your data set to partition it into 
three subsets for training, testing, 
and validating your models.

bd.relational.difference Get differing rows from two input 
data sets.

bd.relational.divide Given a Value column and a Group 
column, determine which values 
belong to a given Membership as 
defined by a set of Group values.

bd.relational.intersection Join two input data sets, ignoring all 
unmatched columns, with the 
common columns acting as key 
columns.

bd.relational.join Join two input data sets with the 
common columns acting as key 
columns. 

bd.relational.product Join two input data sets, ignoring all 
matched columns, by performing 
the cross product of each row.

bd.relational.project Remove one or more columns 
from a data set.

bd.relational.restrict Select the rows that satisfy an 
expression. Determines whether 
each row should be selected by 
evaluating the restriction. The 
result should be a logical value.

Table A.5: Data manipulation functions. (Continued)

Function name Description
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bd.relational.union Retrieve the relational union of two 
data sets. Takes two inputs (bdFrame 
or data.frame). The output 
contains the common columns and 
includes the rows from both inputs, 
with duplicate rows eliminated.

bd.remove.missing Drops rows with missing values, or 
replaces missing values with the 
column mean, a constant, or values 
generated from an empirical 
distribution, based on the observed 
values.

bd.reorder.columns Changes the order of the columns 
in the data set.

bd.sample Samples rows from a dataset, using 
one of several methods.

bd.select.rows Extracts a block of data, as 
specified by a set of columns, start 
row, and end row.

bd.shuffle Randomly shuffles the rows of your 
data set, reordering the values in 
each of the columns as a result

bd.sort Sorts the data set rows, according 
to the values of one or more 
columns.

bd.split Splits a data set into two data sets 
according to whether each row 
satisfies an expression.

Table A.5: Data manipulation functions. (Continued)

Function name Description
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bd.sql Specifies data manipulation 
operations using SQL syntax. 

• The Select, Insert, 
Delete, and Update 
statements are supported. 

• The column identifiers are 
case sensitive.

• SQL interprets periods in 
names as indicating fields 
within tables; therefore, 
column names should not 
contain periods if you plan 
to use bd.sql.

• Mathematical functions 
are allowed for 
aggregation (avg, min, 
max, sum, count, stdev, 
var).

The following functionality is not 
implemented:

• distinct

• mathematical functions in 
set or select, such as abs, 
round, floor, and so on.

• natural join

• union

• merge

• between 

• subqueries

You can use the WHERE clause  only 
on the first referenced data table in 
a SQL statement.

Table A.5: Data manipulation functions. (Continued)

Function name Description
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bd.stack Combines or stacks separate 
columns of a data set into a single 
column, replicating values in other 
columns as necessary.

bd.string.column.width Returns the maximum number of 
characters that can be stored in a 
big data string column.

bd.transpose Turns a set of columns into a set of 
rows.

bd.unique Remove all duplicated rows from 
the dataset so that each row is 
guaranteed to be unique.

bd.unstack Separates one column into a 
number of columns based on a 
grouping column.

Table A.5: Data manipulation functions. (Continued)

Function name Description
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Programming

Data Frame 
and Vector 
Functions

The following table lists the functions for both data frames (bdFrame) 
and vectors (bdVector). The the cross-hatch (#) indicates that the 
function is implemented for the corresponding object type. The 
Comment column provides information about the function, or 

Table A.6: Programming functions.

Function name Description

bd.cache.cleanup Cleans up cache files that have not 
been deleted by the garbage 
collection system. (This is most 
likely to occur if the entire system 
crashes.)

bd.cache.info Analyzes a directory containing big 
data cache files and returns 
information about cache files, 
references counts, and unknown 
files.

bd.options Controls Spotfire S+ options used 
when processing big data objects.

bd.pack.object Packs any object into an external 
cache.

bd.split.by.group Divide a dataset into multiple data 
blocks, and return a list of these 
data blocks. 

bd.split.by.window Divide a dataset into multiple data 
blocks, defined by a moving 
window over the dataset, and 
return a list of these data blocks.

bd.unpack.object Unpacks a bdPackedObject object 
that was previously stored in the 
cache using bd.pack.object.
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indicates which bdVector-derived class(es) the function applies to. For 
more information and usage examples, see the functions’ individual 
help topics.
Table A.7: Functions implemented for bdVector and bdFrame.

Function Name bdVector bdFrame Optional Comment

- # #

!= # #

$ #

$<- #

[ # #

[[ # #

[[<- # #

[<- # #

abs #

aggregate # #

all # #

all.equal # #

any # #

anyMissing # #

append #

apply #
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Arith # #

as.bdCharacter #

as.bdFactor #

as.bdFrame # #

as.bdLogical # Handles all bdVector-
derived object types.

as.bdVector # #

attr # #

attr<- # #

attributes # #

attributes<- # #

bdFrame # # Constructor. Inputs 
can be bdVectors, 
bdFrames, or ordinary 
objects.

boxplot # # Handles bdNumeric.

by #

casefold #

ceiling #

coerce # #

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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colIds #

colIds<- #

colMaxs # #

colMeans # #

colMins # #

colRanges # #

colSums # #

colVars # #

concat.two # #

cor # #

cut #

dbeta # Density, cumulative 
distribution (CDF), 
and quantile function.

dbinom # Density, CDF, and 
quantile function.

dcauchy # Density, CDF, and 
quantile function.

dchisq # Density, CDF, and 
quantile function.

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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density #

densityplot #

dexp # Density, CDF, and 
quantile function.

df # Density, CDF, and 
quantile function.

dgamma # Density, CDF, and 
quantile function.

dgeom # Density, CDF, and 
quantile function.

dhyper # Density, CDF, and 
quantile function.

diff # #

digamma #

dim #

dimnames # a bdFrame has no row 
names.

dimnames<- # a bdFrame has no row 
names.

dlnorm # Density, CDF, and 
quantile function.

dlogis # Density, CDF, and 
quantile function.

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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dmvnorm # Density and CDF 
function.

dnbinom # Density, CDF, and 
quantile function.

dnorm # Density, CDF, and 
quantile function.

dnrange # Density, CDF, and 
quantile function.

dpois # Density, CDF, and 
quantile function.

dt # Density, CDF, and 
quantile function.

dunif # Density, CDF, and 
quantile function.

duplicated # # Density, CDF, and 
quantile function.

durbinWatson # Density, CDF, and 
quantile function.

dweibull # Density, CDF, and 
quantile function.

dwilcox # Density, CDF, and 
quantile function.

floor # #

format # #

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
161



Appendix:  Big Data Library Functions
formula #

grep #

hist #

hist2d #

histogram #

html.table # #

intersect #

is.all.white #

is.element #

is.finite # #

is.infinite # #

is.na # #

is.nan # #

is.number # #

is.rectangular # #

kurtosis # Handles bdNumeric.

length # #

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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levels # Handles bdFactor.

levels<- # Handles bdFactor.

mad #

match # #

Math # # Operand function.

Math2 # # Operand function.

matrix # #

mean # #

median #

merge # #

na.exclude # #

na.omit # #

names # # bdVector cannot have 
names.

names<- # # bdVector cannot have 
names.

nchar # Handles bdCharacter, 
not bdFactor.

ncol #

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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notSorted #

nrow #

numberMissing # #

Ops # #

pairs #

pbeta # Density, CDF, and 
quantile function.

pbinom # Density, CDF, and 
quantile function.

pcauchy # Density, CDF, and 
quantile function.

pchisq # Density, CDF, and 
quantile function.

pexp # Density, CDF, and 
quantile function.

pf # Density, CDF, and 
quantile function.

pgamma # Density, CDF, and 
quantile function.

pgeom # Density, CDF, and 
quantile function.

phyper # Density, CDF, and 
quantile function.

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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plnorm # Density, CDF, and 
quantile function.

plogis # Density, CDF, and 
quantile function.

plot # #

pmatch #

pmvnorm # Density and CDF 
function.

pnbinom # Density, CDF, and 
quantile function.

pnorm # Density, CDF, and 
quantile function.

pnrange # Density, CDF, and 
quantile function.

ppois # Density, CDF, and 
quantile function.

print # #

pt # Density, CDF, and 
quantile function.

punif # Density, CDF, and 
quantile function.

pweibull # Density, CDF, and 
quantile function.

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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pwilcox # Density, CDF, and 
quantile function.

qbeta # Density, CDF, and 
quantile function.

qbinom # Density, CDF, and 
quantile function.

qcauchy # Density, CDF, and 
quantile function.

qchisq # Density, CDF, and 
quantile function.

qexp # Density, CDF, and 
quantile function.

qf # Density, CDF, and 
quantile function.

qgamma # Density, CDF, and 
quantile function.

qgeom # Density, CDF, and 
quantile function.

qhyper # Density, CDF, and 
quantile function.

qlnorm # Density, CDF, and 
quantile function.

qlogis # Density, CDF, and 
quantile function.

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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qnbinom # Density, CDF, and 
quantile function.

qnorm # Density, CDF, and 
quantile function.

qnrange # Density, CDF, and 
quantile function.

qpois # Density, CDF, and 
quantile function.

qq #

qqmath #

qqnorm #

qqplot #

qt # Density, CDF, and 
quantile function.

quantile #

qunif # Density, CDF, and 
quantile function.

qweibull # Density, CDF, and 
quantile function.

qwilcox # Density, CDF, and 
quantile function.

range #

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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rank #

replace #

rev # #

rle #

row.names # Always NULL.

row.names<- # Does nothing.

rowIds # Always NULL.

rowIds<- # Does nothing.

rowMaxs #

rowMeans #

rowMins #

rowRanges #

rowSums #

rowVars #

runif #

sample # #

scale #

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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setdiff #

shiftPositions #

show # #

skewness # Handles bdNumeric.

sort #

split #

stdev # Handles 
bdCharacter.

sub # #

sub<- #

substring #

substring<- #

Summary # # Operand function.

summary # #

sweep #

t #

tabulate # Handles bdNumeric.

tapply # #

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment
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Graph 
Functions

For more information and examples for using the traditional graph 
functions, see their individual help topics, or see the section Functions 
Supporting Graphs on page 83.

trigamma #

union #

unique # #

var # #

which.infinite # #

which.na # #

which.nan # #

xy2cell #

xyCall #

xyplot #

Table A.7: Functions implemented for bdVector and bdFrame. (Continued)

Function Name bdVector bdFrame Optional Comment

Table A.8: Traditional graph functions.

Function name

barplot

boxplot

contour

dotchart
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For more information about using the Trellis graph functions, see their 
individual help topics, or see the section Functions Supporting 
Graphs on page 83.

hexbin

hist

hist2d

image

interp

pairs

persp

pie

plot

qqnorm

qqplot

Table A.9: Trellis graph functions.

Function name

barchart

contourplot

densityplot

dotplot

Table A.8: Traditional graph functions. (Continued)

Function name
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Data Modeling For more information and usage examples, see the functions’ individual 
help topics.

histogram

levelplot

piechart

qq

Table A.9: Trellis graph functions. (Continued)

Function name

Note

The cloud and parallel graphics functions are not implemented for bdFrames.

Table A.10: Fitting functions 

Function name

bdCluster

bdGlm

bdLm

bdPrincomp
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Model Methods The following table identifies functions implemented for generalized 
linear modeling, linear regression, principal components modeling, 
and clustering. The cross-hatch (#) indicates the function is 
implemented for the corresponding modeling type. 

Table A.11: Other modeling utilities.

Function name

bd.model.frame.and.matrix

bs

ns

spline.des

C

contrasts

contrasts<-

Table A.12: Modeling and Clustering Functions.

Function name
Generalized linear 
modeling (bdGlm)

Linear 
Regression (bdLm)

principal 
components 
(bdPrincomp) bdCluster

AIC #

all.equal #

anova # #

BIC #

coef # #

deviance # #
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durbinWatson #

effects #

family # #

fitted # # # #

formula # #

kappa #

labels #

loadings #

logLik #

model.frame #

model.matrix #

plot # #

predict # # # #

print # # # #

print.summary # # #

qqnorm # #

residuals # #

Table A.12: Modeling and Clustering Functions. (Continued)

Function name
Generalized linear 
modeling (bdGlm)

Linear 
Regression (bdLm)

principal 
components 
(bdPrincomp) bdCluster
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Predict from 
Small Data 
Models

This table lists the small data models that support the predict 
function. For more information and usage examples, see the functions’ 
individual help topics.

screeplot #

step # #

summary # # #

Table A.12: Modeling and Clustering Functions. (Continued)

Function name
Generalized linear 
modeling (bdGlm)

Linear 
Regression (bdLm)

principal 
components 
(bdPrincomp) bdCluster

Table A.13: Predicting from small data models.

Small data model using predict 
function

arima.mle

bs

censorReg

coxph

coxph.penal

discrim

factanal

gam

glm
175



Appendix:  Big Data Library Functions
gls

gnls

lm

lme

lmList

lmRobMM

loess

loess.smooth

mlm

nlme

nls

ns

princomp

safe.predict.gam

smooth.spline

smooth.spline.fit

survreg

Table A.13: Predicting from small data models. (Continued)

Small data model using predict 
function
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Time Date and 
Series 
Functions

The following tables include time date creation functions and 
functions for manipulating time and date, time span, time series, and 
signal series objects.

Time Date 
Creation

survReg

survReg.penal

tree

Table A.13: Predicting from small data models. (Continued)

Small data model using predict 
function

Table A.14: Time date creation functions.

Function name Description

bdTimeDate The object constructor.

Note that when you call the 
timeDate function with any big 
data arguments, then a bdTimeDate 
object is created.

timeCalendar Standard Spotfire S+ function. 
When you call the timeCalendar 
function with any big data 
arguments, then a bdTimeDate 
object is created

timeSeq Standard Spotfire S+ function; to 
use with a large data set, set the 
bigdata argument to TRUE.
177



Appendix:  Big Data Library Functions
In the following table, the cross-hatch (#) indicates that the function is 
implemented for the corresponding class. If the table cell is blank, the 
function is not implemented for the class. This list includes bdVector 
objects (bdTimeDate and bdTimeSpan) and bdSeries classes 
(bdSignalSeries, bdTimeSeries).

Table A.15: Time Date and Series Functions. 

Function bdTimeDate bdTimeSpan bdSignalSeries bdTimeSeries

- # #

[ # # #

[<- #

+ # #

align # #

all.equal # #

Arith # #

as.bdFrame # # #

as.bdLogical # #

bd.coerce # # # #

ceiling # #

coerce/as # # # #

cor # # # #

cumsum #

cut # #
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data.frameAux # # #

days #

deltat # #

diff # #

end # #

floor # #

hms #

hours #

match # #

Math # # # #

Math2 # # # #

max # #

mdy #

mean # # # #

median # # # #

min # #

minutes #

Table A.15: Time Date and Series Functions.  (Continued)

Function bdTimeDate bdTimeSpan bdSignalSeries bdTimeSeries
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months #

plot # # # #

quantile # # # #

quarters #

range # #

seconds #

seriesLag # #

shiftPositions # #

show # # # #

sort # # # #

sort.list # # # #

split # #

start # #

substring<- # # # #

sum #

Summary # # # #

summary # # # #

Table A.15: Time Date and Series Functions.  (Continued)

Function bdTimeDate bdTimeSpan bdSignalSeries bdTimeSeries
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timeConvert #

trunc # #

var # # # #

wdydy #

weekdays #

yeardays #

years #

Table A.15: Time Date and Series Functions.  (Continued)

Function bdTimeDate bdTimeSpan bdSignalSeries bdTimeSeries
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Symbols
 157, 178
!= function 157
$ 157
$ function 157
+ function 178
 157

Numerics
64-bit 5

A
abline 84, 95
abs 59, 157
aggregate 16, 86, 157
aggregation 150
AIC 173
algebra 18
align 178
all 157
all.equal 157, 173, 178
anova 13, 173
antCount 66
antecedent 62
any 157
anyMissing 157
append 157
appending data sets 150
apply 157
Apriori 63, 79
arima.mle 175

Arith 158, 178
arules 79
as.bdCharacter 158
as.bdFactor 158
as.bdFrame 158, 178
as.bdLogical 158, 178
as.bdVector 158
attr 158, 158
attributes 158, 158

B
barchart 87, 110, 171
barplot 87, 170
basic algebra 18
bd.aggregate 9, 47, 150
bd.append 150
bd.assoc.rules 62
bd.assoc.rules.get.item.counts 70
bd.assoc.rules.graph 71
bd.bin 150
bd.block.apply 9, 49, 50, 52, 128, 

150
bd.by.group 9, 128, 130, 150
bd.by.window 10, 130, 150
bd.by.window. 128
bd.cache.cleanup 156
bd.cache.info 156
bd.coerce 52, 150, 178
bd.cor 149
bd.create.columns 38, 39, 135, 141, 

142, 151
bd.crosstabs 149

INDEX
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bd.data.viewer 25, 149
bd.duplicated 151
bd.filter.columns 151
bd.filter.rows 29, 30, 141, 142, 151
bd.join 46, 151
bd.model.frame.and.matrix 173
bd.modify.columns 151
bd.normalize 151
bd.options 8, 12, 127, 156
bd.pack.object 139, 140, 156
bd.partition 152
bd.relational.difference 152
bd.relational.intersection 152
bd.relational.join 152
bd.relational.product 152
bd.relational.project 152
bd.relational.restrict 152
bd.relational.union 153
bd.remove.missing 153
bd.reorder.columns 153
bd.sample 153
bd.select 141
bd.select.rows 141, 153
bd.shuffle 153
bd.sort 153
bd.split 153
bd.split.by.group 10, 130, 156
bd.split.by.window 10, 130, 156
bd.sql 154
bd.stack 37, 155
bd.string.column.width 155
bd.transpose 155
bd.unique 155
bd.univariate 149
bd.unpack.object 139, 156
bd.unstack 155
bdCharacter 11, 146
bdCluster 11, 13, 46, 146, 172
bdFactor 11, 40, 146
bdFrame 11, 14, 31, 146, 156, 158

introducing the new data type 4
bdGLM 11
bdGlm 13, 57, 146, 172
bdLM 11
bdLm 13, 16, 146, 172

bdLogical 11, 146
bdNumeric 11, 146
bdPrincomp 11, 13, 146, 172
bdSeries 4, 11, 14

data 14
positions 14
units 14

bdSignalSeries 4, 11, 14, 17, 146
bdTimeDate 4, 11, 17, 146, 177
bdTimeSeries 4, 11, 14, 17, 146
bdTimeSpan 4, 11, 17, 146
bdVector 11, 12, 15, 156
BIC 173
bigdata flag 15
binning 150
block.size 8
block processing 150
block size 127
Borgelt 79
box plot 99
boxplot 85, 158, 170
bs 173, 175
bwplot 33, 41, 85, 100
by 158

C
C 173
cache files

cleaning 156
creating external 156
information 156
unpacking 156

call 58
casefold 158
ceiling 158, 178
censorReg 175
census data 22
census data description 22
censusDemogr 53
census demographics, household 

variables 53
changing order of columns 153
character 133
classes
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Index
bdCharacter 14
bdCluster 14
bdFactor 14
bdGlm 14
bdLm 14
bdLogical 14
bdNumeric 14
bdPrincomp 14
bdSignalSeries 14
bdTimeDate 14
bdTimeSeries 14
bdTimeSpan 14
bdVector 14

cleaning
cache files 156

cloud 83, 172
clustering 13, 45, 173
coef 13, 58, 173
coerce 158
coerce/as 178
colIds 159, 159
colMaxs 159
colMeans 32, 45, 159
colMins 159
colRanges 159
colSums 159
column

creating 151
column.flag 73
column.max 71
column.min 71
column.value 74
columns

modifying 151
colVars 159
concat.two 159
conCount 66
confidence 62, 68
consequent 62
contour 87, 170
contourplot 87, 113, 171
contrasts 173, 173
converting an object 150
cor 159, 178
correlation computation 149

covariances computation 149
coxph 175
coxph.penal 175
crossprod 19
cumsum 178
cut 159, 178

D
data

import and export 15
data.dump 145
data.frameAux 179
data.restore 24, 145
data exploration functions 149
data frame 11
data frames 11
data manipulation functions. 150
data preparation

example 27
data streaming 4
data types 11
data viewer window 149
Data View page 26
days 179
dbeta 159
dbinom 159
dcauchy 159
dchisq 159
deltat 179
density 101, 160
densityplot 85, 160, 171
deviance 173
dexp 160
df 160
dgamma 160
dgeom 160
dhyper 160
diff 160, 179
digamma 160
dim 160
dimnames 160, 160
discrim 175
dividing

multiple data blocks 156
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Index
dlnorm 160
dlogis 160
dmvnorm 161
dnbinom 161
dnorm 161
dnrange 161
dotchart 88, 115, 170
dotplot 88, 117, 171
downward closure property 63
dpois 161
dt 161
dunif 161
duplicated 161
durbinWatson 161, 174
dweibull 161
dwilcox 161

E
effects 174
efficiency

bd.filter.rows 29
end 179
exportData 145
exporting data 15
Expression Language 38
ExpressionLanguage 29
exprs 39

F
factanal 175
factor 133
factor column levels 136
family 174
filtering

columns 151
rows 151

filtering columns 151
fitted 13, 174
Fitting functions 172
floor 161, 179
format 161
formula 13, 162, 174
formula operators 17

 157, 178
- function 157, 178

G
gam 175
generalized linear models 13
get

cache file information 156
getting

maximum number of characters 
155

glm 57, 175
gls 176
gnls 176
graph functions 83, 170

Trellis 171
graphics functions 15
grep 162

H
Hahsler 79
help 39
hexagonal binning 16, 84, 89
hexbin 34, 84, 86, 95, 171
hist 32, 85, 103, 162, 171
hist2d 16, 86, 117, 162, 171
histogram 85, 105, 162, 172
hms 179
hours 179
html.table 162

I
image 86, 88, 117, 171
importData 25, 133, 145
importing data 15
interp 16, 86, 113, 171
intersect 162
is.all.white 162
is.element 162
is.finite 162
is.infinite 162
is.na 162
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is.nan 162
is.number 162
is.rectangular 162
item.list 72
itemCount 66

J
joining

data sets 152
datasets 151

joining data sets 151

K
kappa 174
kurtosis 162

L
labels 174
least squares line 95, 98
length 162
levelplot 88, 118, 172
levels 40, 163, 163
lift 62, 69
linear modeling 173
linear regression 13, 173
lines 84, 96, 123
lm 13, 176
lme 176
lmList 176
lmRobMM 176
loadings 174
loess 16, 87, 176
loess.smooth 87, 176
Loess smoother 95, 96
log 12, 35
logLik 174
lsfit 87, 95

M
mad 163
market basket analysis 62
match 163, 179

Math 163, 179
Math2 163, 179
matrix 18, 163
matrix operations 18
max 179
max.block.mb 8, 127
max.convert.bytes 8
max.rule.items 64, 65
mdy 179
mean 5, 163, 179
median 33, 163, 179
merge 48, 163
metadata 5
min 179
min.confidence 64
min.rule.items 64, 65
min.support 64, 78
minutes 179
missing value

example 26
missing values

filtering for 153
mlm 176
model 12

training, testing, and validating 
152

model.frame 174
model.matrix 174
modeling functions 16
modeling utilities 173
models 11
months 180

N
na.exclude 163
na.omit 163
names 27, 39, 163, 163
nchar 163
ncol 163
nlme 176
nls 176
notSorted 164
nrow 164
ns 173, 176
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Index
numberMissing 164

O
object creation functions 146
Ops 164
out-of-memory

processing 3
overflow errors 137

P
pairs 84, 89, 90, 164, 171
pair-wise scatter plot 91
panel 84, 85
panel.lmline 94
parallel 83, 172
paste 28
pbeta 164
pbinom 164
pcauchy 164
pchisq 164
persp 86, 88, 119, 171
pexp 164
pf 164
pgamma 164
pgeom 164
phyper 164
pie 88, 171
pie chart 120
piechart 88, 121, 172
plnorm 165
plogis 165
plot 13, 58, 84, 85, 89, 91, 165, 171, 

174, 180
plotting big data 85
pmatch 165
pmvnorm 165
pnbinom 165
pnorm 165
pnrange 165
points 51, 123
ppois 165
predict 13, 174

small data models 175
predict, bdCluster 47
prescan.items 70
principal components analysis 13
principal components modeling 173
princomp 176
print 12, 165, 174
print.summary 174
PROC UNIVARIATE 149
programming functions 156
pt 165
punif 165
pweibull 165
pwilcox 166

Q
qbeta 166
qbinom 166
qcauchy 166
qchisq 166
qexp 166
qf 166
qgamma 166
qgeom 166
qhyper 166
qlnorm 166
qlogis 166
qnbinom 167
qnorm 167
qnrange 167
qpois 167
qq 85, 105, 167, 172
qqline 85, 98
qqmath 86, 105, 106, 167
qqnorm 86, 105, 107, 167, 171, 174
qqplot 86, 95, 105, 108, 167, 171
qt 167
quantile 167, 180
quarters 180
qunif 167
qweibull 167
qwilcox 167
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R
range 5, 167, 180
rank 168
rare item problem 63
rbeta 147
rbinom 147
rcauchy 147
rchisq 147
regexpr 30
regression line 95
removing

duplicated rows 155
removing columns 152
rep 49, 147
replace 168
residuals 13, 174
retrieving relational union 153
rev 168
rexp 147
rf 147
rgamma 147
rgeom 147
rhyper 147
rle 168
rlnorm 147
rlogis 147
rmvnorm 147
rnbinom 147
rnorm 147
rnrange 148
row.language 30
row.names 168, 168
rowIds 168, 168
rowMaxs 168
rowMeans 168
rowMins 168
rowRanges 168
rowSums 168
rowVars 168
rpois 148
rstab 148
rt 148
rule.support.both 65, 67
ruleCount 66

runif 148, 168
rweibull 148
rwilcox 148

S
safe.predict.gam 176
sample 168
sampling rows 153
sapply 31
scalable algorithms 4, 5
scale 168
scaling continuous variables 151
scanLines 134
scatter plot 90
scatterplot 44
scatterplot matrix 92
screeplot 175
seconds 180
selecting

rows 152, 153
seq 28
series 11
seriesLag 180
set.seed 47
setdiff 169
shiftPositions 169, 180
show 169, 180
shuffling

rows 153
signalSeries 13
skewness 169
smooth 87
smooth.spline 176
smooth.spline.fit 176
smoothing spline 97
smooth spline 95
sort 169, 180
sort.list 180
sorting

rows 153
spline.des 173
split 169, 180
splitting

data sets 153
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splom 84, 92, 93
SQL syntax

using with Spotfire S+ 154
stacking

columns 155
start 180
stdev 169
step 175
string.column.width 135
string column widths 133
stripplot 86, 109
sub 169, 169
substring 169, 169, 180
sum 180
Summary 169, 180
summary 12, 13, 28, 31, 169, 175, 

180
support 62, 63, 66
survReg 177
survreg 176
survReg.penal 177
sweep 169

T
t 45, 169
table 16, 87, 111
tabulate 169
tapply 16, 87, 112, 169
timeCalendar 17, 177
timeConvert 181
timeDate 17

positions 13
time date functions 177
time operations 17
timeSeq 177
timeSeries 13
timeZoneConvert 18
transaction.id 73
transCount 66
transposing

columns to rows 155
tree 177
Trellis 34
Trellis graph

creating 85
Trellis graphic object

creating 84
Trellis graphics 33
trigamma 170
trunc 181
types 39

U
union 170
unique 170
unique columns

determining 151
units 13
univariate statistics 149
unpacking

cache files 156

V
var 170, 181
vector 11
vector generation 147
vectors 12
virtual memory limitations 3

W
wdydy 181
weekdays 181
which.infinite 170
which.na 170
which.nan 170
whisker plot 100
wireframe 88, 122

X
xy2cell 170
xyCall 170
xyplot 34, 44, 84, 85, 89, 94, 170

Y
yeardays 181
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years 181
191



Index
192


	Important Information
	TIBCO Spotfire S+ Books
	Introduction to the Big Data Library
	Introduction
	Working with a Large Data Set
	Finding a Solution
	No 64-Bit Solution

	Size Considerations
	Summary

	The Big Data Library Architecture
	Block-based Computations
	Data Types
	Classes
	Functions
	Summary


	Census Data Example
	Introduction
	Problem Description
	Data Description

	Exploratory Analysis
	Data Import
	Data Preparation
	Tabular Summaries
	Graphics

	Data Manipulation
	Stacking
	Variable Creation
	Factors

	More Graphics
	Clustering
	Data Preparation
	K-Means Clustering
	Analyzing the Results

	Modeling Group Membership
	Building a Model
	Summarizing the Fit
	Characterizing the Group


	Analyzing Large Datasets for Association Rules
	Introduction
	The Apriori Algorithm

	Big Data Association Rules Implementation
	bd.assoc.rules
	bd.assoc.rules. get.item. counts
	bd.assoc.rules. graph
	Data Input Types

	Association Rule Sample
	More information

	Creating Graphical Displays of Large Data Sets
	Introduction
	Overview of Graph Functions
	Functions Supporting Graphs

	Example Graphs
	Plotting Using Hexagonal Binning
	Adding Reference Lines
	Plotting by Summarizing Data
	Creating Graphs with Preprocessing Functions
	Unsupported Functions


	Advanced Programming Information
	Introduction
	Big Data Block Size Issues
	Block Size Options
	Group or Window Blocks

	Big Data String and Factor Issues
	String Column Widths
	String Widths and importData
	String Widths and bd.create. columns
	Factor Column Levels
	String Truncation and Level Overflow Errors

	Storing and Retrieving Large S Objects
	Managing Large Amounts of Data

	Increasing Efficiency
	bd.select. rows
	bd.filter. rows
	bd.create. columns


	Appendix: Big Data Library Functions
	Introduction
	Big Data Library Functions
	Data Import and Export
	Object Creation
	Big Vector Generation
	Big Data Library Functions
	Data Frame and Vector Functions
	Graph Functions
	Data Modeling
	Time Date and Series Functions


	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y


