
TIBCO Spotfire S+®
 8.1

Guide to Packages

November 2008

TIBCO Software Inc.

IMPORTANT INFORMATION

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER
TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON
FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT
LICENSED TO BE USED OR ACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS
SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE
AGREEMENT FOUND IN EITHER A SEPARATELY
EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF
THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS
DISPLAYED DURING DOWNLOAD OR INSTALLATION OF
THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO SPOTFIRE S+® INSTALLATION AND ADMINISTRATION
GUIDE). USE OF THIS DOCUMENT IS SUBJECT TO THOSE
TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to
U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO Software Inc., TIBCO, Spotfire, TIBCO Spotfire S+,
Insightful, the Insightful logo, the tagline "the Knowledge to Act,"
Insightful Miner, S+, S-PLUS, TIBCO Spotfire Axum,
S+ArrayAnalyzer, S+EnvironmentalStats, S+FinMetrics, S+NuOpt,
S+SeqTrial, S+SpatialStats, S+Wavelets, S-PLUS Graphlets,
Graphlet, Spotfire S+ FlexBayes, Spotfire S+ Resample, TIBCO
Spotfire Miner, TIBCO Spotfire S+ Server, and TIBCO Spotfire
Clinical Graphics are either registered trademarks or trademarks of
TIBCO Software Inc. and/or subsidiaries of TIBCO Software Inc. in
the United States and/or other countries. All other product and
company names and marks mentioned in this document are the
property of their respective owners and are mentioned for
ii

identification purposes only. This software may be available on
multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time.
Please see the readme.txt file for the availability of this software
version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
DOCUMENT COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION
HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE
INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

Copyright © 1996-2008 TIBCO Software Inc. ALL RIGHTS
RESERVED. THE CONTENTS OF THIS DOCUMENT MAY BE
MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH
ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT
LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

TIBCO Software Inc. Confidential Information

Reference The correct bibliographic reference for this document is as follows:

TIBCO Spotfire S+® 8.1 Guide to Packages TIBCO Software Inc.

Technical
Support

For technical support, please visit http://spotfire.tibco.com/support
and register for a support account.
iii

ACKNOWLEDGMENTS

TIBCO Spotfire S+ would not exist without the pioneering research
of the Bell Labs S team at AT&T (now Lucent Technologies): John
Chambers, Richard A. Becker (now at AT&T Laboratories), Allan R.
Wilks (now at AT&T Laboratories), Duncan Temple Lang, and their
colleagues in the statistics research departments at Lucent: William S.
Cleveland, Trevor Hastie (now at Stanford University), Linda Clark,
Anne Freeny, Eric Grosse, David James, José Pinheiro, Daryl
Pregibon, and Ming Shyu.

TIBCO Software Inc. thanks the following individuals for their
contributions to this and earlier releases of TIBCO Spotfire S+:
Douglas M. Bates, Leo Breiman, Dan Carr, Steve Dubnoff, Don
Edwards, Jerome Friedman, Kevin Goodman, Perry Haaland, David
Hardesty, Frank Harrell, Richard Heiberger, Mia Hubert, Richard
Jones, Jennifer Lasecki, W.Q. Meeker, Adrian Raftery, Brian Ripley,
Peter Rousseeuw, J.D. Spurrier, Anja Struyf, Terry Therneau, Rob
Tibshirani, Katrien Van Driessen, William Venables, and Judy Zeh.
iv

TIBCO SPOTFIRE S+ BOOKS

The TIBCO Spotfire S+® documentation includes books to address
your focus and knowledge level. Review the following table to help
you choose the Spotfire S+ book that meets your needs. These books
are available in PDF format in the following locations:

• In your Spotfire S+ installation directory (SHOME\help on
Windows, SHOME/doc on UNIX/Linux).

• In the Spotfire S+ Workbench, from the Help � Spotfire S+
Manuals menu item.

• In Microsoft® Windows®, in the Spotfire S+ GUI, from the
Help � Online Manuals menu item.

Spotfire S+ documentation.

Information you need if you... See the...

Are new to the S language and the Spotfire S+
GUI, and you want an introduction to importing
data, producing simple graphs, applying statistical

models, and viewing data in Microsoft Excel
®

.

Getting Started
 Guide

Are a new Spotfire S+ user and need how to use
Spotfire S+, primarily through the GUI.

User’s Guide

Are familiar with the S language and Spotfire S+,
and you want to use the Spotfire S+ plug-in, or
customization, of the Eclipse Integrated
Development Environment (IDE).

Spotfire S+ Workbench
User’s Guide

Have used the S language and Spotfire S+, and
you want to know how to write, debug, and
program functions from the Commands window.

Programmer’s Guide

Are familiar with the S language and Spotfire S+,
and you want to extend its functionality in your
own application or within Spotfire S+.

Application
Developer’s Guide
v

Are familiar with the S language and Spotfire S+,
and you are looking for information about creating
or editing graphics, either from a Commands
window or the Windows GUI, or using Spotfire
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+,
and you want to use the Big Data library to import
and manipulate very large data sets.

Big Data
User’s Guide

Want to download or create Spotfire S+ packages
for submission to the Comprehensive S-PLUS
Archive Network (CSAN) site, and need to know
the steps.

Guide to Packages

Are looking for categorized information about
individual Spotfire S+ functions.

Function Guide

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 1 includes
information on specifying models in Spotfire S+,
on probability, on estimation and inference, on
regression and smoothing, and on analysis of
variance.

Guide to Statistics,
Vol. 1

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 2 includes
information on multivariate techniques, time series
analysis, survival analysis, resampling techniques,
and mathematical computing in Spotfire S+.

Guide to Statistics,
Vol. 2

Spotfire S+ documentation. (Continued)

Information you need if you... See the...
vi

Chapter 1 Spotfire S+ Guide to Packages 1

Overview of Spotfire S+® Packages 3

"Quick Start" to Packages 8

Required Tools for Creating Packages 13

Package Details 19

Example: Creating a Spotfire S+® Package 22

How to Submit a Package to CSAN 29

Components of a Source Spotfire S+ Package 30

Converting a Package from R to Spotfire S+ 38

Differences between R and Spotfire S+ 47

Chapter 2 Adding A GUI To a Windows® Package 49

Overview 50

Components of A Spotfire S+ GUI 51

GUI Example 55

Extending The Example 67

Building The GUI During Installation 72

Index 75

CONTENTS
vii

Contents
viii

Overview of Spotfire S+® Packages 3
Package Types 4
Spotfire S+ Package Structure 4
Location of User-Installed Spotfire S+ Packages 5
Location of Packages on the Spotfire S+ Server 6

"Quick Start" to Packages 8
Installing the pkgutils Library Section 8
Finding Packages on CSAN 9
Downloading Packages from CSAN 10
Installing and Loading a Package 11
Creating a Package 12
Submitting a Package 12

Required Tools for Creating Packages 13
Windows 13
UNIX/Linux 17

Package Details 19
Installing the pkgutils Library Section 19
Browsing Packages 19
Example: Downloading and Installing the rpart Package 20

Example: Creating a Spotfire S+® Package 22
Soundex Example 22
Building, Checking, and Installing the Package 25

How to Submit a Package to CSAN 29

Components of a Source Spotfire S+ Package 30
DESCRIPTION File 30
data Directory 31
R Directory 32
man Directory 32

SPOTFIRE S+ GUIDE TO
PACKAGES 1
1

Chapter 1 Spotfire S+ Guide to Packages
src Directory 35
java Directory 35

Converting a Package from R to Spotfire S+ 38
Getting An R Source Package 38
Creating a Spotfire S+ Package from an R Package 39
Build Scripts 40
Differences Between Spotfire S+ and R Packages 41
Porting Tools 43
Trouble-Shooting Porting R Packages 45
Missing C/FORTRAN Functions 46

Differences between R and Spotfire S+ 47
2

Overview of Spotfire S+® Packages
OVERVIEW OF SPOTFIRE S+® PACKAGES

A TIBCO Spotfire S+® package is a collection of S functions, data,
help files, and other associated files (C, C++, or FORTRAN code)
that have been combined into a single entity you can distribute to
other Spotfire S+ users. These packages offer you and other Spotfire
S+ users a mechanism to distribute user-generated functions quickly.
You can download and install Spotfire S+ packages from an TIBCO-
maintained Web site, or you can create Spotfire S+ packages that you
can submit for potential distribution.

The Spotfire S+ package system is modeled after the package system
in R. The R system has package repositories available via the
Internet, and has seen huge success in distributing new statistics and
data analysis functionality to R users.

This document contains guidance in the following areas:

• Browsing, downloading, and installing packages from a
centralized repository.

• Downloading the tools necessary to create packages.

• Building your own packages to distribute and submit to the
repository.

This overview contains introductory information on the following:

• Accessing the TIBCO package archive repository.

• Finding and downloading packages.

• Discussing package types.

• Listing package components.

• Creating a package.

• Submitting a package for posting on the Comprehensive
S-PLUS Archive Network (CSAN).

TIBCO hosts the CSAN site at http://spotfire.tibco.com/csan to
facilitate Spotfire S+ package distribution. This Web site serves as a
centralized repository for Spotfire S+ packages, and for information
about creating, installing, and using packages.
3

Chapter 1 Spotfire S+ Guide to Packages
To maintain as much compatibility with R packages as possible, we
adapted and used many of the functions and scripts from R for the
Spotfire S+ package system. The code is distributed separately from
Spotfire S+ under the GPL license.

Package Types Packages on CSAN are available as either Windows® binary or source.
By default, the functions for downloading and installing packages
from CSAN use binary packages, while UNIX/Linux uses source
packages. You can also add Java code to a package, following the
steps outlined on section java Directory on page 33.

Installing a package from source requires additional software tools,
such as compilers and Perl, which are not available on a typical
Windows installation (see the section Windows on page 12).
However, with the proper tools installed, Windows users can build
and install packages from source, or create binary packages that can
be distributed to other Windows users.

Spotfire S+
Package
Structure

A package is a collection of S functions, help files, and possibly C or
FORTRAN source code combined in a single archive (.zip in
Windows or .tar.gz in UNIX/Linux). The archive can be either a
source archive or a platform-specific binary archive.

When unpacked, a source package contains a directory (with the
same name as the package) and the following subdirectories:

• data: Contains data files, in dump format, or as a
delimited (space or semi-colon) text file. (Optional.)

• man: Contains help files which use the .Rd help file
format that R uses.

• R: Contains any S language functions as ASCII files.

• src: Contains C, C++, or FORTRAN source code as
ASCII files (this directory is optional).

• java: Contains two subdirectories:

src: Directory for Java source code.
prebuiltjars: Precompiled .jar files.

(This directory is optional). See the section java Directory
on page 35 for details.
4

Overview of Spotfire S+® Packages
• inst: Contains files and directories to be copied,
recursively, into the main package directory when the
package is compiled. Any informational files that the end
user should see should be included in the inst directory.
For example, if you have a PDF containing a vignette,
include it in the inst/doc directory.

The package also contains, at the top level, the DESCRIPTION,
which is text file containing information about the package (see the
section DESCRIPTION File on page 30). This is the only file
required in a package.

Note that a data-only package contains only the data and man
directories, whereas an S-code-only package contains only the R and
man directories. Similarly, a package can contain an inst directory
containing a CITATION file (which you can create by calling
citation()) and a doc subdirectory for any document files, such as
vignettes.

A package can also have a tests directory to contain package-specific
tests. This directory can contain test code (that is, .S, .ssc, .q, .R).
When you run the tests in this file, the results are written to a .Sout
file. For more information about running tests using a tests directory
in your package, see the section Checking the Package on page 26.

When a binary package archive is unpacked, the S functions are
already in binary form in a .Data directory, the help files are already
in a form accessible from within Spotfire S+, and the source code has
already been compiled into a shared library object (S.dll on Windows
or S.so on UNIX/Linux). The unpacked binary package also includes
the DESCRIPTION text file.

Location of
User-Installed
Spotfire S+
Packages

Starting with Spotfire S+ 8, user-installed packages (referred to as
"library sections" in older manuals) have a platform-dependent
default location :

Windows XP:

C:\Documents and Settings\username\
Application Data\TIBCO\splus81_WIN386\library

Windows Vista:

C:\Users\username\AppData\Local\TIBCO\
splus81_WIN386\library
5

Chapter 1 Spotfire S+ Guide to Packages
UNIX®/Linux®: The following is an example on Linux:

$HOME/MySwork/splus81_LINUX/library

Note the Spotfire S+ version and platform designation are included in
these default package locations for all platforms. This allows packages
for multiple platforms andSpotfire S+ versions to be installed; e.g.,
both Linux 32-bit and Linux 64-bit packages could be used on the
same Linux-64 bit machine. Note the Spotfire S+ version in the
directory name (e.g., splus81_WIN386) will be updated to match the
Spotfire S+ version.

The library function searches this location before it searches
SHOME/library when it looks for a library section to load. The
package manipulation functions use the new location as the default
for installing packages.

One advantage of this new default is that packages the user installs are
separate from those installed with Spotfire S+. This simplifies creating
the same Spotfire S+ environment on another computer: after you
install Spotfire S+ on the new computer, simply copy over the local
directory.

Location of
Packages on
the Spotfire S+
Server

It is recommended that only system administrators install packages
on the Spotfire S+ Server when you want to deploy packages on an
system-wide basis. The following steps explain how to specify
directory locations and install packages on a server:

1. Specify a directory to be used for package installation on the
server by setting the S_USER_APPDATA_DIR environment
variable to the directory.

2. Run Spotfire S+ to install the package.

3. Set the splus.appdata.dir property in

TOMCAT_HOME/conf/Catalina/localhost/SplusServer.xml

(where TOMCAT_HOME is your Tomcat installation) to this
same directory, so the server engines can access this directory
as well:

<Environment name="splus.appdata.dir"

 value=""

 type="java.lang.String"

 override="false"/>
6

Overview of Spotfire S+® Packages
If the splus.appdata.dir property is not given or is an empty string,
the <splus.webdav.root>/appdata (i.e., the "appdata" directory in
the directory specified by splus.webdav.root) is used.

Note that setting the splus.appdata.dir property only affects the
operation of the Spotfire S+ Server and not a normal desktop Spotfire
S+ installation.

If a system administrator creates their own S_USER_APPDATA_DIR
directory, it is recommended the directory name include the Spotfire
S+ version number and platform (e.g., splus81_WIN386) to keep
track of the packages being installed, which are specific to a given
Spotfire S+ version and platform.

See the Spotfire S+ Server Administration Guide for more details.

Caution: Be Careful When Using Client Code to Install Packages on a Server

All packages should be installed by a system administrator to control what packages are available
system wide. There is nothing to prevent client code from trying to installing a package into the
S_USER_APPDATA_DIR directory, allowing users to run Spotfire S+ code that could potentially
compromise your system.
7

Chapter 1 Spotfire S+ Guide to Packages
"QUICK START" TO PACKAGES

Installing the
pkgutils
Library Section

Before you can do any work with packages in Spotfire S+, you must
download and install the pkgutils library section. This contains
functions and scripts for downloading, installing, building and
checking packages. The pkgutils library section contains code
distributed under the GPL license, and thus is not included as part of
the Spotfire S+ distribution.

On UNIX/Linux, the pkgutils library section should be installed
when Spotfire S+ is installed and configured. Run the script

./INSTALL.PKGUTILS

in the top level directory of Spotfire S+ to download and install
pkgutils in library/pkgutils under the top level directory of Spotfire
S+. The same individual should install Spotfire S+ and the pkgutils
library section, because you need to have the appropriate permissions
to install in the Spotfire S+ directory.

On Windows, anyone can install the pkgutils library section, because
it gets installed in the individual user's Application Data directory:

Windows XP

C:\Documents and Settings\username\
Application Data\TIBCO\splus81_WIN386\library

Windows Vista:

C:\Users\username\AppData\Local\TIBCO\
splus81_WIN386\library

To install pkgutils in Windows, in the Spotfire S+ Commands
window type

install.pkgutils(update=T)

The update=T argument updates the pkgutils library in case you have
already installed it and want to make sure you have the latest version
of all the functions.

From this point forward, the steps are the same for both platforms to
attach the library and install and run library functions. Typing

library(pkgutils)
8

"Quick Start" to Packages
loads the pkgutils library so all functions in the library are available
for your current Spotfire S+ session. Typing

available.packages()

displays the packages currently available from CSAN. If we want to
install (for example) the rpart package, enter the name in quotation
marks:

install.packages("rpart")

This installs the rpart package in your package library directory by
default, which is a platform-dependent location (see the next section
for details). You can now load the rpart library to access its functions:

library(rpart)

Details on creating packages can be found in the section Creating a
Package on page 11.

Finding
Packages on
CSAN

Use the following functions in Spotfire S+ to help you discover
available packages on the CSAN site
(http://spotfire.tibco.com/csan).
Table 1.1: Package browsing functions.

Spotfire S+ function Description

available.packages Use available.packages to
determine which Spotfire S+
packages are available for
download from the CSAN site.

new.packages Use new.packages to discover any
Spotfire S+ packages on CSAN
that you have not yet installed.
9

Chapter 1 Spotfire S+ Guide to Packages
Downloading
Packages from
CSAN

Use the following functions in Spotfire S+ to help you download and
install packages from the CSAN site (for more detailed information
about downloading packages, see the section Package Details on page
18).

Do not use SHOME/library when you use download.packages,
because that path is reserved for base packages. See page 5 for the
default locations by platform.

Table 1.2: Package downloading functions.

Spotfire S+ function Description

install.packages Use install.packages to download
and install packages from CSAN in
a single step.

download.packages Use download.packages to
download a package from CSAN,
for later installation. You must
provide a destination directory (the
destdir argument) or an error
results.
10

"Quick Start" to Packages
Note that download.packages is useful if you want to work on the
source code or if you want to host a CSAN mirror; in most cases,
install.packages is more appropriate, since you can download and
install a package from CSAN in one step.

Installing and
Loading a
Package

You can install a package under a library location on your system.

• Installing a binary package consists of unpacking the binary
archive in the appropriate location.

• Installing from a source archive involves sourcing the S
functions, converting the help files into a format that can be
displayed within Spotfire S+, and compiling any source code
into shared library object. The resulting pieces are then
copied to the specified location.

After you have installed a package, load the package in a running
Spotfire S+ session with the library() command. If package xyzzy
was installed under the standard package location of your Spotfire S+
installation, then you need only to enter

library(xyzzy)

to load the package into your current Spotfire S+ session. If you
installed the library in another location, you must specify that location
in the lib.loc argument to library. For example, if you install all your
packages under D:\swork\lib, then to load package xyzzy, you must
type

Note

Alternatively, you can use the Spotfire S+Spotfire S+ GUI menu to find and download
packages.

• On the menu, click File � Find Packages, and then select a repository and a package
to download.

Also, you can update new versions of packages you have previously downloaded.

• On the menu, click File � Update Packages, and then select a repository and the
package to update.

If you are using the Spotfire S+Spotfire S+ Workbench on either Windows or UNIX®/Linux®,
you can find the Find Packages and Update Packages dialogs on the Spotfire S+ menu. See
the Spotfire S+ Workbench Guide for more information.
11

Chapter 1 Spotfire S+ Guide to Packages
library(xyzzy, lib.loc="D:/swork/lib")

or

.libPaths("D:/swork/lib")
library(xyzzy)

Creating a
Package

Use the package.skeleton function to specify the name of the
package you want to create and which functions to include in the
package. By default, this function creates an empty package in your
current working directory. You can control which objects you want to
include in your package using the list argument.

The package.skeleton function also generates template help files in
.Rd format, which you can edit to document your functions. After
you have edited or added any associated files, you can run a Spotfire
S+ check against the package to verify completeness, and then build

the package in a compressed format (.zip for Windows® or .tar.gz for
UNIX/Linux) for distribution. \

Note that you can also create a Java package by following the steps
outline in the section java Directory on page 33.

Submitting a
Package

To share your Spotfire S+ package with the Spotfire S+ user
community, send it to TIBCO for posting on the CSAN site. TIBCO
checks the package and if it is accepted, it is posted to the CSAN site

in both source and Windows® binary form. Note that you only need
to submit a source package archive, and TIBCO creates and posts the
Windows binary. These Spotfire S+ packages are then posted to
CSAN by TIBCO and become available for download.
12

Required Tools for Creating Packages
REQUIRED TOOLS FOR CREATING PACKAGES

Downloading or installing Spotfire S+® packages requires the
pkgutils library (described in the previous section). Editing and
compiling a package requires the pkgutils library and a tool set
appropriate for your platform. This section discusses these required
tools and where to find them. You must be connected to the Internet
to download the tools you need to edit and compile packages.

All tools discussed in this section are available for free download and
installation.

Windows Spotfire S+ for Windows® users must install additional software
components to build and install packages from source code. These
components are available for free download, and you can get detailed
information on all required components by navigating to CSAN at

http://spotfire.tibco.com/csan

and clicking the Windows Tools link (under Resources, on the lower
left side of the page).

Note

The following tools are required if you are creating or installing source packages. You do not need
additional software if you are only installing binary packages for Windows from CSAN using
Spotfire S+ functions (e.g. install.packages() and update.packages(). However, you do need
Perl (and possibly other tools) if you use the scripts (invoked using Splus CMD) on Windows.
13

Chapter 1 Spotfire S+ Guide to Packages
Table 1.3 describes the tools the package system expects to find in
your PATH. For more information about these tools and others that
you might need for package creation, see the sections following the
table.

Perl The scripts for creating, building, and installing packages from source
are written in the Perl scripting language. We require (and have tested
with) the Perl 5.8 for Windows implementation from ActiveState, a
freely-available download.

Note that versions after ActiveState Perl 5.8 were not tested with this
release of Spotfire S+, so the compatibility is not known.

Table 1.3: Tools the package system expects to find in Windows path.

Tool Comment

perl Version 5.8 or later. (On Windows®, you must
have Active State perl.)

hhc.exe From Microsoft Help Workshop. Not included or
supported on Vista.

nmake Required if the package contains C or C++ code.

Included in Visual C++®

cl Required if the package contains C or C++ code.
Included in Visual C++.

link Required if the package contains C or C++ code.
Included in Visual C++.

javac Required if the package contains java code.
Included in the Java Development Kit (JDK).

jar Required if the package contains java code.
Included the JDK.

df.exe Required if the package contains fortran code.
14

Required Tools for Creating Packages
Microsoft HTML
Help Workshop

To create compiled help (CHM) files for your package, you need
HTML Help Workshop. Compiled Help created with HTML Help
Workshop is the only help format supported in Spotfire S+ packages.

tar and gzip If you are starting with a package source archive that has a tar.gz or
gzip extension, you need tar and/or gzip utilities to unpack the
archive. These utilities are freely available from many locations (for
example, www.cygwin.org).

Compilers You must have a C/C++ compiler if your package includes C or C++
code. The Spotfire S+ package system currently supports the

Microsoft Visual C++® compiler. You might already have the
Microsoft Visual C++ compiler installed. If not, you can install Visual
C++ 2005 Express Edition (which is free).

Spotfire S+ supports FORTRAN code compiled with Visual

Fortran®. At this time, there is no free version of Visual Fortran
available.

If you have any Java source code that is not pre-compiled and you
want to include in a package, you must have the Java Development
Kit to perform the compilation. The version of the Java Development
Kit you install should be the same as the version of JRE that Spotfire
S+ uses.

Access to
Windows Tools

For the Spotfire S+ package build and install scripts to function
properly, you must put the tools listed above in your path after you
have installed them. The installation system for the particular tool
may have updated your path for you. To check and update your path:

1. Right-click My Computer and click Properties.

2. In the System Properties window, click the Advanced tab.

3. In the Advanced section, click the Environment Variables
button.

Note about Perl and Visual Studio Compiler Installations

The installer typically asks if you want the global PATH updated; it is generally easiest if you let
the installer update the PATH. For Visual Studio, it is convenient to also copy LIB and INCLUDE into
the global environment, taking values set in vcvar32.bat.
15

Chapter 1 Spotfire S+ Guide to Packages
4. In the Environment Variables window, highlight the path
variable in the System variables (or User variables) section
and click Edit.

5. Check to confirm the path to the Windows tools are present
and correct. You can modify the path lines as desired,
separating with semicolons, e.g.

d:\Perl\bin;d:\htmlhelp;d:\VC\bin;d:\jdk1.6.0\bin

for Perl, HTML Help Workshop, the Visual Studio compiler,
and the Java compiler, respectively (note the Java compiler is
optional if you do not have any Java code to include in a
package). If you installed a Windows compiler, confirm that it
is present. Click OK.

To confirm the path has been set correctly:

1. From the Start menu, click Run.

2. In the text box, type cmd, and then click OK.

3. From the cmd shell window, check to make sure the tools are
working by trying the following commands:

perl --version
tar --help
gzip --help
hhc /help
javac -version

4. If you are using the Visual C++ compiler, type the following:

cl /help

5. If you are using Java, check that you have javac, as described
above.

6. Make sure the following environment variables include the
appropriate directories from your Visual C++ installation:

Note

If you do not want to change your environment variables permanently, you can run a script in
the command window that sets these variables just for the current session.
16

Required Tools for Creating Packages
• LIB

• INCLUDE

The file vcvars32.bat, created when the Visual C++
compiler is installed, should set the necessary compiler
variables. You can find this file in the bin subdirectory in your
Visual C++ installation. Run vcvars32.bat from the cmd
shell window every time before you run any package creation
script.

UNIX/Linux Creating packages on the UNIX®/Linux® platforms requires these
additional software tools, in addition to Spotfire S+.
Table 1.4: Tools the package system expects to find in PATH.

Tool Comment

cc On Solaris, Required if package contains C code.

gcc On Linux, required if the package contains C
code.

CC On Solaris, Required if package contains C++
code.

g++ On Linux, required if the package contains C++
code.

f77 On Solaris, required if the package contains
fortran code

gfortran On Linux, required if the package contains fortran
code

jar Required if the package contains java code.

javac Required if the package contains java code.
17

Chapter 1 Spotfire S+ Guide to Packages
perl Version 5.8 or later.

grep, sh, other
standard UNIX
tools

make A standard tool, like grep, but it might be in
another directory.

Table 1.4: Tools the package system expects to find in PATH. (Continued)

Tool Comment
18

Package Details
PACKAGE DETAILS

Installing the
pkgutils
Library Section

Before you download or install Spotfire S+ packages, you must
download and install the Spotfire S+ pkgutils library section. See the
section Installing the pkgutils Library Section on page 8 for more
details.

Browsing
Packages

Using your Web browser, you can browse for available packages on
the CSAN site at http://spotfire.tibco.com/csan. From your
browser, you can download a Spotfire S+ package and save the
package archive on your local machine. You can use scripts from a
shell, or functions within Spotfire S+ to install the package archive.

Alternatively, you can get a listing of the packages on CSAN using
the function available.packages within Spotfire S+. You can then
download and install the packages from within Spotfire S+. For
example:

attach the pkgutils library
library(pkgutils)
get a list of available packages
ap <- available.packages()

This function call returns only packages from CSAN that match the
options("pkgType") value. The default value is set to "win.binary"
for Windows and "source" for UNIX/Linux. See the section Package
Types on page 4 for more information on package types.

The return value is a character matrix, one row for each package
returned, with the columns as values from the package’s
DESCRIPTION file. The first column is the names of all the
packages.
19

Chapter 1 Spotfire S+ Guide to Packages
Example:
Downloading
and Installing
the rpart
Package

When you find a Spotfire S+ package you want to try, you can
download and install the package on your local machine.
Alternatively, you can download and install a package in two separate
steps, if needed.

The following is an example of downloading and installing rpart
from CSAN as either a binary package on Windows or a source
package on UNIX/Linux:

1. After you have loaded the pkgutils library and determined
which package to install, run install.packages. In the
following example, download and install the rpart package
from CSAN in your default package directory:

install.packages("rpart")

Note that if you are an administrator, you can use the lib
argument to install packages in a location where all users of a
computer can access it:

install.packages("rpart",
 lib=file.path(Sys.getenv("SHOME"),"local",
 "library"))

2. Attach the library and check the objects:

library(rpart)
objects("rpart")

3. With the library attached, you can get help on the rpart
library or any functions within the rpart library:

help(rpart)

4. Now you can access any of the rpart functions. Here, we fit a
classification tree to the kyphosis data set:

fit1 <- rpart(kyphosis ~ Age + Number + Start,
data=kyphosis)

If you just want to download the package without installing it, run

dp <- download.packages("rpart", destdir=".")

Note that you must supply the path for the destdir argument. The
download.packages function returns a two-column matrix:

• The number of rows in the matrix is the number of packages
downloaded. (In this example, only one package.)
20

Package Details
• The first column of the matrix is the name of the package.
("rpart" in this example.)

• The second column of the matrix is the destination file name
for the download archive. (In this example, ".\\rpart_3.0.zip"
on Windows and "./rpart_3.0.tar.gz" on UNIX/Linux. The
version number you see may be different if updated). To
install from an archive that has been downloaded, call
install.packages with the name of the archive file and set
the repos argument to NULL, so the function does not attempt
to get the file from the CSAN repository. To install the rpart
archive, call:

 install.packages(dp[1,2], repos=NULL)
21

Chapter 1 Spotfire S+ Guide to Packages
EXAMPLE: CREATING A SPOTFIRE S+® PACKAGE

A package is a collection of S functions, C/C++/FORTRAN code,
data sets, and documentation that you can share. The package has a
specific organization of the files into subdirectories.

Before you start creating a package, make sure you have the tools
required for your platform. For more information, see the section
Required Tools for Creating Packages on page 12.

The easiest way to create a package is to use the package.skeleton
function in Spotfire S+. The package.skeleton function, which is in
the pkgutils library, creates an appropriate package directory with the
same name as the package. Within that package directory,
package.skeleton creates files and subdirectories; this directory
structure is discussed in the section Components of a Source Spotfire
S+ Package on page 30.

Soundex
Example

The following example creates a Soundex example package using
package.skeleton.

1. In Spotfire S+, load the pkgutils library:

library(pkgutils)

2. In Spotfire S+, define a soundex function:

"soundex"<-
function(x) {

Note on Soundex

Soundex is a phonetic algorithm for indexing names by their sound when pronounced in
English. Each name is converted to a string consisting of an initial letter followed by three
numbers. Details of the algorithm are available at

 http://en.wikipedia.org/wiki/Soundex

or at

 http://www.genealogyandhow.com/lib/soundex/codes.htm

As noted in the references, the Soundex algorithm has several definitions. We show one
implementation in the following example.
22

Example: Creating a Spotfire S+® Package
1. extract the last word of surnames and translate
to all upper case
base <- gsub("[^A-Z]", "", toupper(gsub("^.*[\t]",

 "", gsub("[\t]*$", "", x))))
2. encode the surnames (last word) using the
soundex algorithm

basecode <- gsub("[AEIOUY]", "", gsub("[R]+", "6",
gsub("[MN]+", "5", gsub("[L]+", "4",
gsub("[DT]+", "3", gsub("[CGJKQSXZ]+", "2",
gsub("[BFPV]+", "1", gsub("[HW]", "", base))))))))

3. deal with the 1st letter and generate the
final coding padded with 0
sprintf("%4.4s", paste(substring(base, 1, 1),

ifelse(regexpr("^[HWAEIOUY]", base) == 1,
basecode, substring(basecode, 2)),
"000", sep = ""))

 }

The above function is the shortest and fastest implementation
of a soundex function resulting from a contest held at
Insightful. The code uses several functions that were new in
S-PLUS 8.0.

Some data to test the function:

sample.surnames <- c("Ashcroft", "Asicroft",
"de la Rosa", "Del Mar", "Eberhard",
"Engebrethson", "O’Brien", "Opnian", "van Lind",
"Zita", "Zitzmeinn")

Try out the function:

soundex(sample.surnames)

3. Call the package.skeleton function in Spotfire S+ to create
an initial package:

package.skeleton("soundex", list=c("soundex",
"sample.surnames"))

This function call creates a directory called soundex under
the current directory containing the initial package files. See
the section Spotfire S+ Package Structure on page 4 for more
information about the package files and subdirectories.
23

Chapter 1 Spotfire S+ Guide to Packages
4. From the command shell (or from your favorite text editor),
edit the help file templates in soundex/man, providing the
details for the function and data set.

5. If your package includes any C/C++/FORTRAN code, you
would put the source files in soundex/src. (This example
contains no source code.)

6. Again, using your favorite text editor, edit the
DESCRIPTION file, soundex/DESCRIPTION, adding
values for the appropriate keywords. Be sure to complete the
Author, Maintainer, Title, Version and License values.
Note that any line starting with <letters><colon> starts a new
section, and the colon should come immediately after the
letters, with no space between them.

At this point you have a basic package directory called soundex.

If you want to add S functions to this package, you can add them to
the R subdirectory with the dump function. To add help files for any
added S functions, call prompt.Rd. This function creates .Rd help file
templates in the man directory.

For example, if you have another soundex function called soundex2,
you would add it to the package:

library(pkgutils)
dump("soundex2", "soundex/R/soundex2.q")
prompt.Rd("soundex2", "soundex/man/soundex2.Rd")

(The above example assumes you are running Spotfire S+ from the
same location where you initially called the package.skeleton
function.)

You can call the package.skeleton function without specifying any S
objects in the list argument. Doing so creates the package directory
structure with no files in the man or R subdirectory. This strategy can
be useful if you already have functions and help files stored in ASCII
files elsewhere, and you want to add them to your package. You
would copy the S object files (in dump format) to the R or data
subdirectory of the package and the .Rd files into the man
subdirectory.
24

Example: Creating a Spotfire S+® Package
Building,
Checking, and
Installing the
Package

Spotfire S+ includes utilities that you can run on the package (listed in
Table 1.5), and you can run them from a command shell on Windows
and UNIX/Linux. As noted in the section Windows on page 12,
using these scripts requires additional software components. The
scripts also require that the pkgutils library be installed.

Invoke the scripts in the command shell with a command of the form:

Splus CMD utility.name options ...

You can get help on these scripts by entering this in a command shell:

Splus CMD utility.name --help

Table 1.5: Package utilities.

Utility Description

build Creates an archive of the package source. By default, the
archive is a source archive; however, there is an option to
create a binary archive. A binary archive is platform-specific
(that is, Windows or UNIX/Linux).

A user installing a binary package archive does not need
additional tools to install and use the package.

check Checks the package source to ensure that all necessary files
are included, that it can be built, and so on.

INSTALL Installs the package on the system such that users can load
the package with a call to the library function. You can also
use install.packages() from a Commands window.

REMOVE Removes the package from the system. You can also use
remove.packages() from a Commands window.

Note

These scripts are named build, check, INSTALL, and REMOVE for compatibility with R, located in
your SHOME/cmd directory. On UNIX/Linux, there is a separate INSTALL utility (at the top
level of your Spotfire S+ installation directory.
25

Chapter 1 Spotfire S+ Guide to Packages
Building the
Package Archive

To build a source archive from a package directory, run the build
script from the directory containing the package (not from within the
package directory). If you have the soundex package directory from
the above example, run:

Splus CMD build soundex

This creates a source package archive file called soundex_1.0.zip on
Windows or soundex_1.0.tar.gz on UNIX/Linux.

If you include the -binary flag in the call to build, you create a
binary package archive file. The name of this archive file includes the
platform in the name (for example, soundex_1.0_WIN386.zip). That
package archive can be installed only on the same platform (that is,
Windows or Linux) that it was created on.

Checking the
Package

Before distributing a package archive to others, run the Splus CMD
check utility on the package. This utility performs the following
checks:

• Verifies the package structure (that is, checks that all required
files and directories exist and are in the appropriate formats).

• Installs all S code to check for syntax errors.

• Compiles any C, Fortran, and Java code.

• Builds all help files in the man directory and (for Windows®

binary packages) compiles the package.chm.

• Extracts and runs the Examples section of all help files and
ensures that the code runs.

• Runs package tests to ensure that the package can be built and
installed.

If you have code that you want to test iteratively, create a
package tests directory and include the test files in it.

To create a package test

1. Create a tests directory in your package source. (See section
Spotfire S+ Package Structure on page 4 for more information
about this directory.)
26

Example: Creating a Spotfire S+® Package
2. In the tests directory, place any package-specific test files.
These files can have any extension that Spotfire S+ recognizes
(that is, .S, .ssc, .q, and .R).

3. Run Splus CMD check to run a check on the packages. As part
of the check, all files in tests are run and the corresponding
results files (.Sout) are created in your package.Scheck/tests
directory.

4. Review the .Sout files and if you are satisfied with the results,
rename the files to Sout.save and place them in your
package’s tests directory.

5. Run Splus CMD check again. This utility compares .Sout and
.Sout.save. It should result in no differences between the
resulting .Sout and the .Sout.save you just created.

6. If you change your code in the tests directory, run the Splus
CMD check utility again to to create another updated .Sout file.
The utility reports any differences to the results. (It does not
report errors.)

If the package includes a tests directory containing files with the
extension .t, they are run using the do.test() function. Any tests that
do not result in TRUE are reported as errors during a check. See the
do.test help file for details.

To check the soundex package, run the check script from the
directory containing the package (not from within the package
directory).

Splus CMD check soundex

You can also check a source package archive directly. For example:

Splus CMD check soundex_1.0.tar.gz

Installing the
Package

Use the INSTALL script to install a package. For the soundex package
example, from the directory containing soundex (not from within
soundex), run the following:

Splus CMD INSTALL soundex

By default, this command installs the package in your package
directory.
27

Chapter 1 Spotfire S+ Guide to Packages
Next, from within Spotfire S+, you can load the package with the
following command:

library(soundex)

The library function searches the package library location by
default. You can install the package in another location by providing
that location with the -l flag:

mkdir mylib
Splus CMD INSTALL -l mylib soundex

In Spotfire S+, assuming the working directory is the directory
containing the mylib directory you just created, you can load the
soundex package with the following command:

library(soundex, lib.loc="mylib")

You can install from a source or binary package archive. Instead of
specifying the package directory in the call to the INSTALL script, pass
it the package archive name. For example:

Splus CMD INSTALL soundex_1.0.tar.gz

or

Splus CMD INSTALL soundex_1.0.zip

As an alternative to using the install.packages() function in
Spotfire S+, you can use the INSTALL script to install packages
obtained from CSAN.

On Windows, you must use the INSTALL script to install a source
package. You cannot install a source package on Windows with the
install.packages() function.
28

How to Submit a Package to CSAN
HOW TO SUBMIT A PACKAGE TO CSAN

You can share your Spotfire S+ package with other users within your
department, company, or university by sending them the package
archive. Others can install them using the INSTALL script or the
install.packages function (setting repos=NULL).

To share your package with the entire Spotfire S+ community, you
can submit your package for inclusion in the Comprehensive S-PLUS
Archive Network (CSAN). To submit a package, upload the source
package archive (the result of running Splus CMD build) to:

ftp://ftp.insightful.com/public/incoming/packages

After you have uploaded your file, send a message to

packages@tibco.com

stating the name of the package archive you submitted.

Before you submit a package for inclusion in CSAN, be sure it passes
the check utility. Also, make sure these key fields in the
DESCRIPTION file have appropriate values: Package, Title,
Version, Author, Maintainer, and License. If any of these are
missing, your package cannot be posted to CSAN.

TIBCO Spotfire engineers review your submitted package, run the
check utility, and create a Windows binary archive and then post the
to the CSAN site (http://spotfire.tibco.com/csan). If the engineers
find problems with the package, they alert the package submitter.
29

Chapter 1 Spotfire S+ Guide to Packages
COMPONENTS OF A SOURCE SPOTFIRE S+ PACKAGE

The package.skeleton function automates some of the setup for a
new source Spotfire S+ package. It creates directories, saves the
specified functions and data to appropriate places, and creates
skeleton help files, as well as README files describing further steps
in packaging. The six main subdirectories and files generated in the
working directory under the package name are as follows:

1. DESCRIPTION file: Lists package title, author, version,
contact information, and other details specific to the package.

2. man subdirectory: Contains help file templates in .Rd format
for Spotfire S+ functions, datasets, classes, etc. For example,
fun1.Rd and fun2.Rd get generated if functions fun1 and
fun2 are in your working directory when you run
package.skeleton.

3. README: Provides details for each directory/file generated
by package.skeleton. These files contain information for the
package creator. They should be removed before the package
is built or installed.

4. R: Directory containing text dumps of the package functions.

5. src: Directory holding C/C++/FORTRAN code. (Optional).

6. java: Directory to hold Java source code (located in java/src)
and prebuilt .jar files (java/prebuiltjars). See the section java
Directory on page 33 for details.

7. data - directory containing data files in dump or CSV format.

When you run Splus CMD build packagename to build a package, you
concatenate all these parts into one compressed file for ease of
distribution.

The following example uses the rpart package from CSAN to discuss
the contents of each of these files/directories.

DESCRIPTION
File

The DESCRIPTION file contains key information about the
package including the package name, title, version, author, license,
package date, and build date. If you find a bug or error in the
package, contact information for the package’s author should be
included. It is in the Debian Control File format, where each line
30

Components of a Source Spotfire S+ Package
consists of a keyword, colon, and description of the keyword.
Description fields can continue on the next line if that next line starts
with a space. The DESCRIPTION files are a key part of the package
system: They are checked for available and installed packages, and
which packages to update. See the help files for the functions
read.dcf and packageDescription for more information about the
DESCRIPTION files.

The DESCRIPTION file is an ASCII text file. Each line starts with a
KEYWORD: <space> followed by the description for that keyword. The
keyword list for rpart has this content:

Package: rpart
Type: Package
Title: Recursive Partitioning Tree Models
Version: 3.0
Date: Thu Mar 2 22:30:36 PST 2006
Author: Terry M. Therneau and Beth Atkinson
<atkinson@mayo.edu>
Description: Recursive partitioning and regression trees
License: GPL2, see Readme
Dialect: S-PLUS
Packaged: Sun Jul 30 10:10:10 2006; spk

The Package entry is written by the package build procedure, while
the Version information is read when specific functions are run,
including available.packages().

A new function, packageDescription, reads an installed package's
DESCRIPTION file and returns a named list, with keywords as names,
and each component the value associated with that keyword:

packageDescription("rpart", lib=libhome)

data Directory The data directory is a subdirectory containing dumps of the data
objects specified in the package.skeleton list argument.

This directory can also contain ASCII data files with particular file
extensions (currently, .csv, .CSV, .tab, .TAB, .txt and .TXT). The
installFromDataFiles function is used to process all of the files, and
the name of the resulting data frame is the name of the file without the
extension (e.g., the file xyzzy.txt results in creation of a data frame
called xyzzy in the package. See the installFromDataFiles help files
for more information.
31

Chapter 1 Spotfire S+ Guide to Packages
For example, in the section Soundex Example on page 21, when you
created the soundex package by calling

package.skeleton("soundex", list=c("soundex",
"sample.surnames"))

a data directory containing the dump file sample.surnames.S was
created. The contents of this file looks like the following:

"sample.surnames" <- c("Ashcroft", "Asicroft", "De La Rosa",
"Del Mar", "Eberhard", "Engebrethson", "O'Brien",
"Opnian", "van Lind", "Zita", "Zitzmeinn")

R Directory The R subdirectory contains ASCII dumps of all the functions
included in your Spotfire S+ package. For example, if you define fun1
as follows:

fun1 <- function(x) x^2

and you specify this function in your list argument in
package.skeleton, then a file called R/fun1.S is generated in the
package subdirectory. This file contains an ASCII version of the
function. This design allows you to access and edit your package
functions easily.

You can add functions to your package by copying the ASCII source
to the R directory. The files should have an .S or .ssc (for S code), a
.q, or an .R file extension; if not, they are ignored in the package
build. From within Spotfire S+, you can add to the R directory with a
call like the following:

dump("funabc",
 "<path_to_packagedir>/<packagename>/R/funabc.s")

man Directory The man subdirectory contains .Rd format documentation files for
the objects in the package. That is, if you use the package.skeleton
function to create your package tree, the man directory contains a
template .Rd file for each object specified in the list argument.
These are created by calling the prompt.Rd function on each object.
The documentation files to be installed with the package must also
start with a (lower or upper case) letter, and have the extension .Rd.
Note that all user-level objects in a Spotfire S+ package should be
documented; if a package pkg contains user-level objects which are
32

Components of a Source Spotfire S+ Package
for internal use only, it should provide a file pkg-internal.Rd which
documents all such objects, and clearly states that these are not meant
to be called by the user.

You can create help files for functions or data sets (if you have any to
include). We discuss each in the following sections.

Creating Help
Files for
Functions

After you generate the help files, you can edit them in your favorite
text editor. The fun1.Rd help file looks like the following, with a
description following the tag.

\name{fun1}

the basename of the .Rd file.

\alias{fun1}

the topics (or functions) the file documents. Note there must
be an \alias entry for each topic.

\title{title information for fun1}

the title information for the help file.

\description{description of what fun1 does}

a concise (1-5 lines) description of the function.

\usage{fun1(x)}

a synopsis of the function(s) and variables documented in the
file. You can include usage for other objects documented here.

\arguments{\item{arg_i}{Description of arg_i}}

a description of each of the function's arguments, using an
entry of this form.

\details{more details than the description above}

include more details, if relevant.

\value{value returned}

short description of the value returned. If it is a list, use

 \item{comp1 }{Description of 'comp1'}
 \item{comp2 }{Description of 'comp2'}

 \references{put references to the literature/web site here}

include any URLs or other relevant information.

\author{who you are}
33

Chapter 1 Spotfire S+ Guide to Packages
While not required, we encourage you to use this tag to
correctly attribute your work to yourself (and co-authors).

\note{further notes}

make other sections like "Warning" with
\section{Warning}{....}

\seealso{objects to See Also}

pointers to related Spotfire S+ objects, using
\code{\link{...}}

\examples{example code}

this should be directly executable. This includes a definition
of the function as currently defined

\keyword{kwd}

at least one, from doc/KEYWORDS. This kwd string maps to
the Table of Contents for Windows files.

When you install a package (or build a binary package), the .Rd files
are converted to the appropriate format for the particular platform.
On Windows, a compiled help object (.CHM) file is created in the
top level directory of the package. On UNIX/Linux, the .Rd files are
converted to HTML, and they appear under .Data/__Hhelp in the
top level directory of the package.

Creating Help
Files for Data
Sets

An .Rd help file is created for data sets listed in the package.skelton
list argument.

If dataset is a data frame, you get a different skeletal help file
generated. For example, look at the help file for rivers:

\name{rivers}

\docType{data}

\alias{rivers}

\title{Lengths of Major North American Rivers}

\description{
This data set gives the lengths (in miles) of 141
\dQuote{major} rivers in North America, as compiled by the
US GeologicalSurvey
}

\usage{data(rivers)}

\format{A vector containing 141 observations.}

\source{World Almanac and Book of Facts, 1975, page 406.}
34

Components of a Source Spotfire S+ Package
\references{

 McNeil, D. R. (1977) \emph{Interactive Data Analysis}.
 New York: Wiley.
}

\keyword{datasets}

src Directory C, C++, or FORTRAN code is stored in the src directory. The
recognized file extensions are:

• .c - C code.

• .cxx - C++ code.

• .f - FORTRAN code.

When you install the package (or build a binary archive using the --
binary option to the build utility), the code in src is compiled and
linked into a shared library called s.dll on Windows or S.so on
UNIX/Linux. The shared library is moved to the top level directory
of the package, and note that it is automatically loaded into Spotfire
S+ when the package is attached with the library command.

java Directory The following details how to include Java code in a package, and how
.jar files are put into <pkg>/jar. When this .jar file is created, it is
loaded when library(pkg) is invoked:

1. Put your .java files in a directory <pkg>/java/src.

Add your .properties files, .gif files, or any other types of
files you want to include in the same directory. Note that you
likely will have to make subdirectories to conform to Java
conventions.

2. If you have pre-built .jar files that your code depends upon,
put these .jar files in <pkg>/java/prebuiltjars.

3. Splus CMD build --binary

Note

Package authors also should consider creating vignettes for their packages. CSAN provides a
package for SWeave, an application for integrating Latex and Spotfire S+ documentation,
reports, and analyses for packages. For more information, and to download the SWeave package,
see the CSAN Web site (http://spotfire.tibco.com/csan).
35

Chapter 1 Spotfire S+ Guide to Packages
or

Splus CMD INSTALL

compiles the .java files under src (putting the .jar files in
prebuiltjars in the classpath of the compiler). It then puts all
the .class files and any non-.java files under src into a new
.jar file called <pkg>.jar. It then copies <pkg>.jar and all
the .jar files in prebuiltjars to a newly made directory,
<pkg>/jars.

When library(pkg) loads a package containing a jars subdirectory,
it puts each .jar file into the Spotfire S+ classpath (starting Java if
needed), so that calls to .JavaMethod() finds the methods.

The package system expects that your Java compiler is called javac,
and the .jar file creator is called jar (same as Sun's JDK). It expects
that the JDK bin directory containing these commands is in your
path so that javac --help and jar --help function correctly.

If you want to add extra arguments to the Java compiler, include a
makefile called <pkg>/java/Makevars (and not <pkg>/src/
Makevars).

The build system uses the following two variables (if defined):

PKG_JAVACFLAGS

Can contain extra compiler flags (e.g.,-verbose and -g), so the syntax
looks like this:

PKG_JAVACFLAGS=-verbose -g.

Note these flags tend to be compiler-specific, so using them in a
distributed package makes it less portable but more useful during
development.

PKG_JAVAC_CLASSPATH

Lists .jar files not in prebuiltjars that are needed during the
build. The variable SHOME is predefined so
PKG_JAVAC_CLASSPATH can be used to refer to .jar files
distributed with Spotfire S+. For example:

PKG_JAVAC_CLASSPATH=$(SHOME)/java/jre/libext/jaxp.jar;
$(SHOME)/java/jre/libext/batik.jar

You can define other variables to use in PKG_JAVAC_CLASSPATH:
36

Components of a Source Spotfire S+ Package
MY_JAR_DIR=C:/My jars;
PKG_JAVAC_CLASSPATH=$(MY_JAR_DIR)/myFirstClass.jar;
$(MY_JAR_DIR)/mySecondClass.jar

The build system splits PKG_JAVAC_CLASSPATH by semicolons (;),
colons (:), or commas (,) before expanding the variables so the above
works on Windows.

You can edit SHOME/cmd/Makevars_unix or SHOME/cmd/
Makevars_windows_MS to redefine the values of JAVAC (the compiler),
JAVAC_CLASSPATH_FLAG (the name of compiler flag used to introduce
list of .jar files in the classpath), and JAVAC_CLASSPATH_SEP (the
symbol used to separate entries in the classpath list, generally colon
(:) on Unix and semicolon (;) on Windows).

As of this release, TIBCO has limited support for using another
compiler.
37

Chapter 1 Spotfire S+ Guide to Packages
CONVERTING A PACKAGE FROM R TO SPOTFIRE S+

R packages from the Comprehensive R Archive Network (CRAN)
can be Spotfire S+converted to Spotfire S+ packages.

In some cases, the source package from CRAN installs and runs
under Spotfire S+ without any changes; in general, some changes are
required. However, a Windows binary zip archive of an R package
will not run under Spotfire S+.

Getting An R
Source
Package

R packages can be found at the CRAN site:

http://cran.r-project.org

The left sidebar has a Packages link, and you can download the
.tar.gz source file for the package.

The contents of CRAN are mirrored at many sites around the world.
You are encouraged to download files from one of the mirror sites,
and the location of these sites is available at

http://cran.r-project.org/mirrors.html

You can get a listing of all the packages in CRAN and download the
source archive from within Spotfire S+:

1. Load the pkgutils library:

library(pkgutils)

2. List the available packages, using the repos argument to
specify CRAN as the URL and type as source:

ap <- available.packages
(repos="http://cran.r-project.org", type="source")

The type argument is set by default in UNIX®/Linux® to
source.

3. Look at package names:

ap[, 1]

4. Download a package source archive and save it to the current
directory. Set type to source which is the default on UNIX/
Linux (win.binary for Windows):
38

Converting a Package from R to Spotfire S+
download.packages(repos="http://cran.r-project.org",
"fBasics",destdir='.',type="source")

where fBasics is the name of the package to download.

In this example, this downloads fBasics_221.10065.tar.gz (the
version available as of this writing) to the current directory.

Creating a
Spotfire S+
Package from
an R Package

1. After downloading an R source package from CRAN, unpack
the package with the tar command. Example:

tar -xzf fBasics_221.10065.tar.gz

This creates a directory called fBasics that contains
subdirectories man, R, and possibly other subdirectories.

As noted in the section Windows on page 12, you will likely
need to install the tar utility.

2. Modify the files under fBasics to run under Spotfire S+.
Modifications depend on what the package contains. The
construct

if(is.R())

can be used to specify code for conditional execution in R or
Spotfire S+.

3. The section Differences Between S-PLUS and R Packages on
page 39 and section Trouble-Shooting Porting R Packages to
S-PLUS Packages on page 43 indicate some areas to look out
for.

4. Update the DESCRIPTION file to indicate changes made,
porting to Spotfire S+, and so on. Add the Dialect flag if it
does not exist, setting S-PLUS as the value. (If you modified
the code so it still runs under R, then also add R as a value for
the tag.)

5. After making any changes you can then run the check utility
on the package directory (while in the directory that contains
fBasics). This check utility also runs *.t files in the
[packagename]/tests directory, and reports if do.test()
makes any comments on them:

Splus CMD check fBasics
39

Chapter 1 Spotfire S+ Guide to Packages
If everything is OK, you can build a source package archive:

Splus CMD build fBasics

This creates a compressed archive called fBasics_version.zip (if
running Windows) or fBasics_version.tar.gz (UNIX/Linux), where
version is the version number from the Version line in the package's
DESCRIPTION file.

You can install from this compressed tar archive with this:

Splus CMD INSTALL
 -l mylib fBasics_version.zip

on Windows or

Splus CMD INSTALL
 -l mylib fBasics_version.tar.gz

on UNIX/Linux, where mylib is an existing directory in which you
can install the package. You must have permission to write in that
directory.

If you are satisfied with the conversion of the package to Spotfire S+,
you may want to submit the package to the Spotfire S+ CSAN site.
See section Submitting a Package on page 11 for information on how
to do this.

Build Scripts The following scripts are used to build pieces of a package. The
INSTALL script (and build script with the -binary flag) calls these
scripts. When porting a package from R to Spotfire S+, you might
find these scripts useful to do the porting work incrementally. They
are all called from a command shell with the syntax:

Splus CMD (scriptname> <scriptargs>
40

Converting a Package from R to Spotfire S+
Most of these scripts work by default within the package directory,
not in the directory containing the package directory. See their
individual help topics for more information.

Differences
Between
Spotfire S+
and R
Packages

There are specific differences between R and Spotfire S+ packages
that do not make them completely interchangeable. The key
differences:

• To do almost any work with Spotfire S+ packages, you need
to load the pkgutils library section.

• At this time, there is only one repository for Spotfire S+
packages, CSAN (http://spotfire.tibco.com/csan). There is
no system in place to select a mirror as there is in R.

• Spotfire S+ package system does not support bundles,
translations, or front ends.

Table 1.6: Package compilation scripts.

Script name Description

src2bin Creates the binary version of a package from source
files. This utility installs S code and data, compiles C,
C++ and FORTRAN code to create a shared/dynamic
library, and formats and installs help files.

HELPINSTALL Installs Spotfire S+ help files from .Rd source files into
the .Data directory of a specified destination directory.

SINSTALL Installs Spotfire S+ code or data objects from source
files into the .Data directory of a specified destination
directory.

DATAINSTALL Install Spotfire S+ code or data objects from source
files into the .Data directory of a specified destination
directory.

SHLIB Creates a shared library from C, C++, or FORTRAN
source files. The source files are compiled and resulting
object files are linked to make a shared library. A
shared library is also known as a shared object,
dynamic library, or dynamic shared object.
41

Chapter 1 Spotfire S+ Guide to Packages
• C and FORTRAN code is automatically loaded in Spotfire
S+ packages when the package is attached with the library
function. This is done through the Spotfire S+ feature that
automatically loads the file named S.so or S.dll in the
directory being attached. This means there is no need to
explicitly write a .First.lib function that loads the packages
shared library.

• Spotfire S+ package system uses only the current Spotfire S+
help system.

The .Rd files are converted to HTML on UNIX/Linux, and
to a .chm file on Windows. LaTeX help files are not
supported at this time.

• The Sweave system is not supported.

• The data directory in a Spotfire S+ source package can only
contain ASCII data objects created with dump(), space-
delimited data files (.txt), or comma-delimited files (.CSV). R
binary objects (.rda files) are ignored by Spotfire S+.

• Spotfire S+ does not have NAMESPACES so any references to
them in a package needs to be modified to work in Spotfire
S+.

• The first argument to .Call must be a a string in Spotfire S+.
R allows the first argument to .Call to be a variable.

• The default storage mode for a numeric value with no
decimal place in Spotfire S+ is an integer, while in R it is a
double. For example, in Spotfire S+:

x <- 3
storage.mode(x)
[1] "integer"

While in R:

x <- 3
storage.mode(x)
[1] "double"

If you parse the R functions with set.parse.mode("R"), the
numeric values without decimal points in the R functions are
parsed as doubles, for example, in Spotfire S+:
42

Converting a Package from R to Spotfire S+
set.parse.mode("R")
x <- 3
storage.mode(x)
[1] "double"
x

If you have a *.R file that can only be read correctly when
parsed in R mode (because it uses underscores in the name or
it relies on "1", a double precision number), you can parse it
and deparse it (with dump or deparse) to make a new file that
can be read identically in either R or Spotfire S+ mode.

• The first component in the return list from the integrate
function is named "integral" in Spotfire S+ and "value" in
R. Portable code that uses integrate should access the first
value in the list by position (z[[1]]) instead of by name
(z$integral or z$value).

Porting Tools A useful tool for porting R packages to Spotfire S+ is the
unresolvedGlobalReferences function introduced in Spotfire S+ 8.0.
This function looks for undefined functions and data in Spotfire S+ or
R source files. It returns the names of all undefined items and the
names of the files and functions where they are referenced.

The unresolvedGlobalReferences function can look at list of source
files, or you can point the function to a directory containing the
source files. The function analyzes all files in the directory that end
with .q, .ssc, .S, or .R.

When you port a package from R to Spotfire S+, you can call
unresolvedGlobalReferences with the dir argument set to the R
subdirectory in the package source tree.

The following example shows a partial listing of calling the function
unresolvedGlobalReferences(dir="R") in the randomForest
package directory that was just downloaded from CRAN:

 unresolvedGlobalReferences("R")
.
.

$"R/classCenter.R#classCenter":
[1] "max.col" "mapply"

.

.

43

Chapter 1 Spotfire S+ Guide to Packages
$"R/classCenter.R#classCenter#<anonymous-1>":
[1] "cls"

$"R/classCenter.R#classCenter#<anonymous-2>":
[1] "idx" "label"

$"R/classCenter.R#classCenter#<anonymous-3>":
[1] "x"

.

.

This shows the classCenter function defined in the file
classCenter.R referencing the functions max.col and mapply. These
functions are not defined within the package files, nor do they appear
in the current Spotfire S+ search path. The mapply function is
contained in the pkgutils library; If you attached the library before
running unresolvedGlobalReferences, mapply would not be flagged.

The max.col function is defined in the MASS library that ships with
Spotfire S+. To make a portable classCenter function that would run
in both Spotfire S+ and R, one would add the following lines before
the two functions were called in the classCenter function:

if(!is.R() {
if(!existsFunction("max.col")) library(MASS)
if(!is.R() && !existsFunction("mapply")) library(pkgutils)

}

The <anonymous-1>, <anonymous-2> and <anonymous-3> references in
classCenter typically indicate use of R scoping rules in calls to a
function in the apply family (lapply, sapply, apply, and so on).

Typically, you can fix these by passing the function arguments
explicitly to the function being called by the apply function.

To make a portable fix for the unresolved cls object, use the
following code:

if(is.R()) {
 ncls <- sapply(clsLabel, function(x)
 rowSums(cls == x))
} else {
 ncls <- sapply(clsLabel, function(x, cls = cls)
 rowSums(cls == x), cls = cls)
}

44

Converting a Package from R to Spotfire S+
See the help file for unresolvedGlobalReferences for more
information and examples.

Trouble-
Shooting
Porting R
Packages

R and Spotfire S+ are different dialects of the S language; each dialect
has capabilities that are not implemented in the other dialect. The "R
and S" section of the R FAQ, available at

http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html#R-and-S

has a long section on the differences. Some of the key differences that
you might encounter when trying to get an R package to work in
Spotfire S+ are listed here.

Scoping Rules Spotfire S+ functions search for objects in the current frame, frame 1,
frame 0, and then the attached databases. R searches for objects in the
following order:

1. Current frame ("environment")

2. The environment of the function in which the current
function is defined, not called.

3. The environment in which the definer of the current function
was defined, etc., until it gets to the global environment.

This difference often causes problems with calls to the lapply family
of functions. In Spotfire S+, you need to pass all objects included in
the FUN function as arguments to FUN, and include those arguments by
name in the lapply call. For example:

nsamp <- 10
lapply(z, function(x, nsamp) {
 mean(sample(x, size=nsamp, replace=T))
 }, nsamp=nsamp)

The scoping rule difference also shows up in calls to optimization
functions, e.g., optim() inside of functions. You need to pass all
objects referenced inside the function being optimized as arguments
to that function.

For more information about dealing with scoping problems, see the
section Porting Tools on page 41.
45

Chapter 1 Spotfire S+ Guide to Packages
Missing C/
FORTRAN
Functions

Spotfire S+ and R contain different internal C functions and
FORTRAN subroutines.

Sometimes the underlying code is the same but the function or
subroutine name differs between the two systems. Any calls to C or
FORTRAN code not included as source in the package should be
checked.

Some known missing C code:

• R has a collection of bessel functions from netlib that are not
yet in Spotfire S+.

• R has its exponential random number generator available for
calling from C, but Spotfire S+ does not. The uniform and
gaussian random number generators are available in Spotfire
S+.
46

Differences between R and Spotfire S+
DIFFERENCES BETWEEN R AND SPOTFIRE S+

R and Spotfire S+ have certain differences that you should be aware
of if you are working in both, or if you are translating packages from
one to another.

You can find information about the differences on the Spotfire S+
Support Web site:

 http://support.tibco.com

Also, you can use your Internet search engine to find other resources
that list differences.
47

Chapter 1 Spotfire S+ Guide to Packages
48

Overview 50

Components of A Spotfire S+ GUI 51
Menus and Menu Items 52
Control Properties 53
FunctionInfo Object 53
The menu Function 53
The callback Function 53

GUI Example 55
Creating the Menu 55
Creating the Calling Function 57
Creating the Dialog 58
Creating the FunctionInfo Object 61
Creating the Callback Function 62
Loading the GUI at Startup 64
Removing the Menu at Shutdown 65
The Resulting Dialog 66

Extending The Example 67
Additional Properties 67
Dialog Pages 68
Updating the Menu Funcion 68
Updating the FunctionInfo Object 69
The Resulting Dialog 71

Building The GUI During Installation 72
Basic Code Structure 72

ADDING A GUI TO A

WINDOWS® PACKAGE 2
49

Chapter 2 Adding A GUI To a Windows® Package
OVERVIEW

You can program the Spotfire S+ for Windows Graphical User
Interface (GUI) using the Spotfire S+ language; therefore, you can
add a GUI to a package to give users access to the functions you have
created via a GUI as well as via the command line interface. Using
the functions that control GUI customization, you can create menus,
menu items, and control properties (such as drop-down lists for
selecting options, check boxes, input fields, and grouping structures
for grouping properties on the pages of a dialog).

• The special structure, the FunctionInfo object, aligns the
control properties in the dialog. These controls accept input
from the user, with the arguments of a function that is called
when the user clicks OK or Apply.

• The special function, callback, is associated with the dialog
that manages information in the control properties. For
example, if you select a data frame as the object to apply your
function to, you might want to display the column names in a
drop-down list for selection. In this case, the callback
function is used to change the content of a drop-down list
dynamically, depending on the content of another property.

This section is designed to:

• Give you an introduction to building Spotfire S+ GUIs.

• Describe the required directory structure where your GUI
creation code goes to ensure it is loaded during package build
and installation.

If you have created a custom GUI for your package already, there is a
simple directory and file structure that you must follow in order for it
to be included in the installed package.To understand that structure
see section Building The GUI During Installation on page 72. If you
haven’t created a GUI but would like to, the following sections
provide some guidance for doing that.
50

Components of A Spotfire S+ GUI
COMPONENTS OF A SPOTFIRE S+ GUI

The components of a Spotfire S+ GUI are listed in Table 2.1.
Typically all the components listed in Table 2.1 are included in a GUI
implementation for a package. Usually a drop-down menu is added to
the Spotfire S+ menu bar containing menu items for selecting various
operations. One operation may be to open a custom dialog with
control properties for specifying data and setting options prior to
running the menu function associated with the dialog. While interacting
with the dialog, the callback function manages the information in the
control properties and can control which properties are enabled or
disabled.
Table 2.1: Components of a Spotfire S+ GUI

Component Description

Menu A drop-down menu for containing
menu items.

Menu Item A selectable item in a menu which
initiates an action such as opening a
dialog or displaying a document.

Control Property A GUI control contained on a dialog
for user input. This information is
passed to the calling function when OK
or Apply is selected.

FunctionInfo Object An object that aligns the control
properties in a dialog with the
arguments of the function call when
OK or Apply is selected.

Menu function The function called when OK or
Apply is selected on the associated
dialog.

Callback function The function controlling dynamic
information in the dialog control
properties.
51

Chapter 2 Adding A GUI To a Windows® Package
Menus and
Menu Items

Menus are containers containing menu items, which are designed to
execute actions, such as opening a dialog or displaying a document
when they are selected. Typically, a package with a GUI adds a menu
to the Spotfire S+ menu bar containing an assortment of menu items
that initiate actions when they selected. Typical actions are:

• Open a dialog for running a function.

• Open a demo script window.

• Open the package help files.

• Open the user documentation.

• Open an HTML page.

You can view a list of all the MenuItem objects in a Spotfire S+ session
with the following simple command:

> guiGetObjectNames("MenuItem")
...
[83] "SPlusMenuBar$File" "SPlusMenuBar$File$New"
[85] "SPlusMenuBar$File$Open" "SPlusMenuBar$File$Close"
[87] "SPlusMenuBar$File$Close_All" "SPlusMenuBar$File$Separator1"

...

There are many MenuItem objects: over 600 in a standard Spotfire S+
8.x session. Of particular interest are the ones that begin with
SPlusMenuBar. These are the MenuItem properties responsible for
defining the menu bar in Spotfire S+. You can use them to locate your
custom menu at a logical location in the Spotfire S+ menu bar.

The following example specifies an index number for placing a menu
on the menu bar. The function guiGetPropertyValue returns the
index in the menubar for a given MenuItem.

> guiGetPropertyValue("MenuItem",
 Name = "SPlusMenuBar$File",
 PropName = "Index")
[1] "1"

> guiGetPropertyValue("MenuItem",
 Name = "SPlusMenuBar$Statistics",
 PropName = "Index")
[1] "12"

Note the use of $ in the property name for designating different
components of the menu bar.
52

Components of A Spotfire S+ GUI
Control
Properties

Control properties contained in a dialog mostly are designed to take
input from the user and pass it to a function for execution. However, a
few properties (for example Group or Page) are for organizing other
control properties. Allowable control properties include text fields,
drop-down lists, check boxes, sliders, radio button groups, and pages.
To see a complete list of properties, type

> sort(guiGetPropertyOptions("Property", "DialogControl"))
[1] "Button" "Check Box" "Color List" "Combo Box"
[5] "Float" "Float Auto" "Float Range" "Float Slider"
...

Creating a custom dialog amounts to assembling a set of calls to
guiCreate with appropriate arguments to define each control and set
defaults which are shown when the dialog is displayed. Use the
documented examples and some experimentation to get started.

FunctionInfo
Object

The FunctionInfo object aligns the control properties on a dialog
with the arguments of the function to be called when the user clicks
OK or Apply. Also, this object determines the arrangement of the
properties on the dialog, the function called when the user clicks OK
or Apply, and the callback function controlling dynamic information
in the properties of the dialog.

The menu
Function

When the user clicks OK or Apply, the menu function is called on the
associated dialog. When it is created, the FunctionInfo object
requires the menu function name.

The callback
Function

The callback function allows dynamic control of the information in
the properties of the dialog associated with the menu function. For
example, with the callback function you can:

• Define content for properties when the dialog is first opened
and initialized.

• Enable and disable properties, depending on options selected.

• Fill a drop-down list with values based on another selection
(for example, column names of a selected data frame).
53

Chapter 2 Adding A GUI To a Windows® Package
Some of the useful functions for managing property content are listed
in Table 2.2.
Table 2.2: Useful functions for managing property content in a dialog.

Function Name Description

cbIsInitDialogMessage Returns TRUE if the user opens the dialog.

cbIsOkMessage Returns TRUE if the user clicks OK in the
dialog.

cbGetActiveProp Returns a character string containing the
name of the active property (that is, the
property taking input).

cbGetCurrValue Returns the value of a given property.

cbSetCurrValue Sets the value of a given property.

cbSetEnableFlag Enables (TRUE) or disables (FALSE) a
property specified by name.

cbSetOptionList Sets the values of a drop-down or scrollable
option list.
54

GUI Example
GUI EXAMPLE

The best way to learn GUI programming in Spotfire S+ is to use it in
an example. The following example demonstrates a simple but
practical dialog to fit a linear model. The steps include:

1. Creating a menu item to the main Spotfire S+ menu bar.

2. Creating the function that the dialog calld when the user
clicks OK or Apply.

3. Creating a dialog to take user input for selecting data and
setting options.

4. Creating the FunctionInfo object aligning the dialog with the
function to be called and the callback function.

5. Creating a callback function for managing control property
content dynamically.

6. Loading the GUI at startup by creating the .First.lib
function (which adds the menu to the menu bar and loads the
properties at the time the library is attached to the session).

7. Removing the menu at shutdown by creating the .Last.lib
function (which removes the menu structure when the library
is detached from the session).

Creating the
Menu

Create a menu structure by creating a Menu property, a container for
menu items, and a MenuItem property, which specifies the function to
be called. In the example, the menu is created in an argumentless
function that is called from the .First.lib function when the library
section is attached to a Spotfire S+ session.

In the function below, locate the Statistics menu and add the new
menu just after it. (If you do not provide a location for the menu, it is
placed at the end of the menu bar.)

loadLmFitMenu <- function(){
 statMenuLoc <-
 guiGetPropertyValue("MenuItem",
 Name = paste(guiGetMenuBar(),
 "Statistics", sep="$"),
 PropName = "Index")
55

Chapter 2 Adding A GUI To a Windows® Package
 guiCreate("MenuItem",
 Name = "SPlusMenuBar$MyGUI",
 Type = "Menu",
 Action = "None",
 MenuItemText = "My GUI",
 StatusBarText = "My menu",
 Index = as.numeric(statMenuLoc) + 1,
 OverWrite = F,
 EnableMenuItem = T)

 guiCreate("MenuItem",
 Name="SPlusMenuBar$MyGUI$lmFitExample",
 Type="MenuItem",
 Action="Function",
 Command="menuLmFit",
 MenuItemText="Linear Model")
 invisible()
}

Comments:

• In the function above, the statMenuLoc is the index location
of the Statistics menu on the Spotfire S+ menu bar. That is
computed, so you can place the custom menu immediately
following it.

• The first menu property is of Type = Menu located at
Index=as.numeric(statMenuLoc) + 1 (that is, just following
the Statistics menu.)

• The name of the Menu property is SPlusMenuBar$MyGUI,
which embeds it in the Spotfire S+ menu bar.

• Action = "None" implies that SPlusMenuBar$MyGUI is a
container only and initiates no action.

• The second menu property of Type=”MenuItem” with
Action=”Function” opens the dialog associated with the
function specified by Command=”menuLmFit” when it is selected
from the menu bar.

• The MenuItemText for both menu properties corresponds to
the string displayed in the menu bar. The StatusBarText is
displayed in the Spotfire S+ status bar when mouse focus is on
the menu item.
56

GUI Example
Creating the
Calling
Function

Creating the calling function goes hand-in-hand with creating the
dialog. The arguments passed to the function being called must
correspond one-to-one with control properties on the dialog taking
input. The one-to-one correspondence is specified by the
FuntionInfo object discussed below.

The calling function name begins with “menu” to indicate it is called
from a menu.

menuLmFit<-function(x,
 y,
 data,
 method = "qr",
 removeNA = T,
 saveAs = "last.lmFit"){

Make x and y a formula
x <- unlist(unpaste(x, sep = ","))
form <- formula(parse(text = paste(y, paste(x,
 collapse = " + "),
 sep = " ~ ")))
Fit model conditional on removal of NAs
if(removeNA)
 fit <- lm(form, data = get(data), method = method,
 na.action = na.exclude)
else fit <- lm(form, data = get(data), method = method)
Save the result
assign(saveAs, fit, where = 1)
Return the result invisibly
invisible(fit)
}

Comments:

• The function is relatively simple, with only six arguments.

• x represents independent variables and y represents the
dependent variable. The call to unlist(unpaste(...
converts a single string with comma delimiter separating
values into a vector of strings, one for each x variable.

• method is an optional fitting method defaulting to “qr” the
same as for the lm function.
57

Chapter 2 Adding A GUI To a Windows® Package
• removeNA is a logical indicating whether NAs should be
removed before attempting to execute the function.

• saveAs specifies the name of a Spotfire S+ object for saving
the result.

Creating the
Dialog

Creating a dialog is a matter of creating the properties contained in
the dialog. After the FunctionInfo object is created specifying the
properties its associated dialog contains and the calling and callback
functions, the dialog is constructed from its component properties.

Data Selection ### Data Selection ###
guiCreate("Property",
 Name="lmFitExampleDataSet",
 DialogPrompt="Data Set:",
 Type = "Normal",
 DialogControl="Combo Box",
 DefaultValue = "",
 UseQuotes = T)

guiCreate("Property",
 Name="lmFitExampleY",
 DialogPrompt="Dependent:",
 Type = "Normal",
 DialogControl="List Box",
 DefaultValue = "",
 UseQuotes=T)

guiCreate("Property",
 Name="lmFitExampleX",
 DialogPrompt="Independent:",
 Type = "Normal",
 DialogControl="Multi-select List Box",
 DefaultValue="",
 UseQuotes = T)

guiCreate("Property",
 Name="lmFitExampleDataGroup",
 Type = "Group",
 DialogPrompt = "Data Selection",
 PropertyList = paste(c("lmFitExampleDataSet",
58

GUI Example
 "lmFitExampleY",
 "lmFitExampleX"),
 collapse = ", "))

Comments:

• The first four properties provide controls for data selection:
the data set, the dependent variable, the independent
variable, and a group structure to contain them.

• The Data Set property uses a Combo Box control, which
allows the user either to select from a list or type the name of
the data set into combo text box if the data set does not
appear in the drop-down list. The callback function fills the
Combo Box with all data frames in position 1 of the search list
of the working data directory. If a data frame is in one of the
other search positions, it does not show up in the list. In that
case, its value is a quoted string.

• The Dependent (variable) property uses a List Box control,
which displays only the variables in the data frame. The text
box containing the List Box is not editable, so the user can
select only variables in the data frame. Its value is a quoted
string.

• The Independent (variables) property uses a Multi-select
List Box control, which displays only the variables in the
data frame; the user can select multiple variables by pressing
the CTRL key while selecting variables from the list. The
Multi-select List Box text box is not editable, so the user
can select only variables in the data frame. Its value is a
quoted string.

• The Group property contains the other three properties in a
visible frame to separate them from the rest of the properties
on the dialog.

Options ### Options ###
guiCreate("Property",
 Name="lmFitExampleMethod",
 DialogPrompt="Method:",
 Type = "Normal",
 DialogControl="List Box",
 DefaultValue = "qr",
59

Chapter 2 Adding A GUI To a Windows® Package
 OptionList = "qr, svd, chol",
 UseQuotes=T)

guiCreate("Property",
 Name="lmFitExampleRemoveNAs",
 DialogPrompt="Remove NAs",
 Type = "Normal",
 DialogControl="Check Box",
 DefaultValue = T,
 UseQuotes=F)

guiCreate("Property",
 Name="lmFitExampleOptionsGroup",
 Type = "Group",
 DialogPrompt = "Options",
 PropertyList = paste(c("lmFitExampleMethod",
 "lmFitExampleRemoveNAs"),
 collapse = ", "))

Comments:

• The next three properties specify the fitting options: the fitting
method, the handling of NAs, and a group structure to contain
them.

• The Method property uses a List Box to restrict the choices to
one of three: “qr”, “svd” or “chol”. The default value is “qr”.
Its value is returned as a quoted string. Note that the
OptionsList (the values displayed in the drop-down list) is a
single string of comma-separated values. This is the required
format for specifying options contained in a List Box.

• The RemoveNAs property is a Check Box indicating whether to
remove NAs before fitting the model. Its value is an unquoted T
if the box is checked; otherwise it is F.

• The Group property contains the other two properties in a
visible frame to separate them from the rest of the properties
on the dialog.

Saving the Fit ### SaveAs ###
guiCreate("Property",

Name="lmFitExampleSaveAs",
DialogPrompt="Save As",
60

GUI Example
DialogControl="String",
DefaultValue="last.lmFit",
UseQuotes = T)

guiCreate("Property",
Name="lmFitExampleSaveFitGroup",
Type = "Group",
DialogPrompt = "Save Fit",
PropertyList = paste("lmFitExampleSaveAs"))

Comments:

• The last two properties specify the saved object, including the
actual name and a group structure to contain it.

• The SaveAs property uses a String text box where the user
can type the name of the object for saving the result. It
defaults to “last.lmFit” and returns a quoted string.

• The Group property contains the SaveAs property in a visible
frame to separate it from the rest of the properties on the
dialog.

Creating the
FunctionInfo
Object

The FunctionInfo object contains four critical pieces of information:

• The name of the calling function (Function), or the menu
function.

• The name of the callback function (CallBackFunction).

• The list of properties (PropertyList) in the order to be
displayed in the dialog.

• The list of properties arranged in the exact order of the
arguments in the calling function (ArgumentList).

FunctionInfo Object
guiCreate("FunctionInfo",
 Name = "menuLmFit",
 Function = "menuLmFit",
 CallBackFunction = "backLmFit",
 DialogHeader = "Fit Linear Model",
 StatusString = "Fits multi-variable linear model",
 PropertyList =
 paste(c("SPropInvisibleReturnObject",
61

Chapter 2 Adding A GUI To a Windows® Package
 "lmFitExampleDataGroup",
 "lmFitExampleOptionsGroup",
 "lmFitExampleSaveFitGroup"),
 collapse = ", "),
 ArgumentList <-
 paste(c("#0=SPropInvisibleReturnObject",
 "#1=lmFitExampleX",
 "#2=lmFitExampleY",
 "#3=lmFitExampleDataSet",
 "#4=lmFitExampleMethod",
 "#5=lmFitExampleRemoveNAs",
 "#6=lmFitExampleSaveAs"),
 collapse = ", "),
 WriteArgNames = T)

Comments:

• The FunctionInfo object Name must match the name of the
function.

• The DialogHeader string specifies the title of the dialog.

• The WriteArgNames = T argument indicates that the argument
names are written into the function call, which makes
deciphering the call resulting from OK or Apply much
easier.

• The SPropInvisibleReturnObject property is in an internal
property that preserves space for a return object.

Creating the
Callback
Function

The callback function dynamically controls property content. It is
used for filling drop-down lists with dynamic content (for example,
variable names), for enabling or disabling controls, and for changing
defaults depending on user selection. Also, it can be used to pop up
message boxes based on user selections.

With every user interaction with a dialog, some information changes.
That information, and all of the information contained in the dialog,
is available in the form of a data frame that is passed to the callback
function associated with the dialog. The callback function is designed
to take the property data frame as its only argument and return the
property data frame when it completes. Any changed values are
reflected in the dialog. The callback function is called with every
interaction with the dialog.
62

GUI Example
 The property data frame contains a row for each control property
and the following columns:

• message - Message codes indicating, for example, dialog
initialization, clicking of OK or Apply, dialog rollback.

• value - The value contained in the property.

• enable - T or F depending on whether the property is enabled.

• optionList - the values in a List Box or Combo Box.

• prompt - The controls label.

The callback function for our lmFitExample dialog is listed below.
(Comments are displayed below the code listing.)

backLmFit <- function(data){
 initialmsg <- cbIsInitDialogMessage(data)
 activeprop <- cbGetActiveProp(data)
actions based on initializing the dialog
 if(initialmsg){
 data <- cbSetOptionList(data, "lmFitExampleDataSet",
 paste(objects(class = "data.frame"),
 collapse = ", "))
 }
actions based on selecting the data set
 if(activeprop == "lmFitExampleDataSet"){
 if(exists(cbGetCurrValue(data,
 "lmFitExampleDataSet"))){
 data <- cbSetOptionList(data, "lmFitExampleY",
 paste(colIds(get(cbGetCurrValue(data,
 "lmFitExampleDataSet"))),
 collapse = ","))
 data <- cbSetOptionList(data, "lmFitExampleX",
 paste(colIds(get(cbGetCurrValue(data,
 "lmFitExampleDataSet"))),
 collapse = ","))
 } else {
 guiDisplayMessageBox(paste(cbGetCurrValue(data,
 "lmFitExampleDataSet"),
 "does not exist. Please enter another data set."),
 button = c("Ok"),
 icon = c("error"))
 }
63

Chapter 2 Adding A GUI To a Windows® Package
 }
 data
}

Comments:

• The function starts by saving two objects: initialmsg and
activeprop. The initialmsg value is T if the dialog is being
initialized (that is, just opening). activeprop contains the
property name of the property being modified. You use both
initialmsg and activeprop to create conditional expressions.

• The first conditional expression depends on whether the
dialog is being initialized. If it is, then the
lmFitExampleDataSet property is filled with the names of all
data frames in search list position one. Note that those names
must be in a single string with values separated by commas.

• The second conditional expression checks to see if the active
property is lmFitExampleDataSet. If it is, and if the data frame
exists, both lmFitExampleY and lmFitExampleX are filled with
the column IDs of the data frame, so the user can select the
dependent and independent variables for the regression. If a
data frame does not exist with the provided name, a message
box is displayed indicating that the user must provide another
data set name.

• The property data frame is returned and the dialog is
updated, depending on changes made. All of this happens
with each interaction with the dialog, so it is important to
write the callback function efficiently so responsiveness is not
compromised.

Loading the
GUI at Startup

When the library section is attached, typically you can load the
custom GUI with a .First.lib function. Assuming the menu and
callback functions are saved in the library, the menu is loaded first,
and the properties are loaded second. The order is important:
functions, then menu, and then properties. The functions must exist
so the properties (the menu items and FunctionInfo objects) that
refer to them can find them when they are loaded into the Spotfire S+
GUI.
64

GUI Example
If the GUI is built as part of a package, the .First.lib function must
have a particular form. The package build process looks for a certain
directory structure, pulls the GUI property file from that structure,
and installs the properties in the .Prefs directory for the installed
package. The functions defined in swingui/R are installed in the
package .Data directory.

.First.lib <- function(library, section){
 loadLmFitMenu()
 package.path <- file.path(library, section)
 prop.path <- file.path(package.path,
 ".Prefs", "package.prp")
 info.path <- file.path(package.path,
 ".Prefs", "package.fni")
 guiLoadDefaultObjects("Property",
 FileName = prop.path)
 guiLoadDefaultObjects("FunctionInfo",
 FileName = info.path)
}

Comments:

• The menu loads first, followed by the controls properties, and
then the FunctionInfo object.

• The paths to the properties and FunctionInfo objects are
fixed, relative to the package name. The properties are always
saved in a file named package.prp and stored in the .Prefs
directory for the package. The FunctionInfo objects are
always saved in a file named package.fni and stored in the
.Prefs directory.

Removing the
Menu at
Shutdown

To finish the GUI specification, you need a .Last.lib function,
which removes the new menu structure when the library is detached.
(It does not make sense to leave the menu in place if the functions in
the package are not available to the session.)

.Last.lib = function(library, section, .data, where){
 if (is.sgui.app() && interactive() &&
 is.element("SPlusMenuBar$MyGUI",
 guiGetObjectNames("MenuItem"))){
 guiRemove("MenuItem",
 Name="SPlusMenuBar$MyGUI") }
65

Chapter 2 Adding A GUI To a Windows® Package
}

Comment:

• The function is written to test whether the MyGUI menu is
loaded. If so, the function removes the menu.

The Resulting
Dialog

Figure 2.1 displays the resulting dialog after the menu and all the
properties are loaded into Spotfire S+.

Figure 2.1: The resulting dialog created in the previous sections.
66

Extending The Example
EXTENDING THE EXAMPLE

At this point, the implementation of lmFitExample is minimal,
because it prints and plots nothing. Also, the call component of the
resulting fit shows the model formula incorrectly. The example can
be improved with a little more work: adding a second page to the
dialog specifying output options, and fixing the saved call by
constructing the formula. To accomplish these steps:

• Modify the menu function, menuLmFit (and therefore the
FunctionInfo object) to take additional arguments.

• Add sufficient properties to specify the output via simple
check boxes on a new page.

Additional
Properties

Create two checkboxes: one for printing the summary of the fit, and
one for plotting the diagnostics for the fit. (Group them for style.)

guiCreate("Property",
 Name="lmFitExamplePrintSummary",
 DialogPrompt="Print Summary",
 Type = "Normal",
 DialogControl="Check Box",
 DefaultValue = T,
 UseQuotes=F)

guiCreate("Property",
 Name="lmFitExamplePlotDiagnostics",
 DialogPrompt="Plot Diagnostics",
 Type = "Normal",
 DialogControl="Check Box",
 DefaultValue = T,
 UseQuotes=F)

guiCreate("Property",
 Name="lmFitExampleOutputGroup",
 Type = "Group",
 DialogPrompt = "Display Options",
 PropertyList = paste("lmFitExamplePrintSummary",
 "lmFitExamplePlotDiagnostics",
 collapse = ","))
67

Chapter 2 Adding A GUI To a Windows® Package
The additonal properties do not need to be grouped, but grouping
makes the second page more orderly.

Dialog Pages Create the pages by creating new Page properties for each page of the
dialog. The groups have been created already, so the pages are just
containers for the groups.

guiCreate("Property",
 Name="lmFitExampleMainPage",
 Type = "Page",
 DialogPrompt = "Data/Methods",
 PropertyList = paste(c("lmFitExampleDataGroup",
 "lmFitExampleOptionsGroup",
 "lmFitExampleSaveFitGroup"),
 collapse = ","))

guiCreate("Property",
 Name="lmFitExampleOutputPage",
 Type = "Page",
 DialogPrompt = "Output",
 PropertyList = "lmFitExampleOutputGroup")

Updating the
Menu Funcion

The menu function has two additonal arguments: printSummary and
plotDiagnostics, which support the two new features and handle
the formula more carefully so it appears properly in the saved call.

menuLmFit<-function(x,
 y,
 data,
 method = "qr",
 removeNA = T,
 printSummary = T,
 plotDiagnostics = T,
 saveAs = "last.lmFit")
{
Make x and y a formula
x <- unlist(unpaste(x, sep = ","))
Args <- list(formula =
 formula(parse(text =
 paste(y,
 paste(x, collapse = " + "),
68

Extending The Example
 sep = " ~ ")))@.Data,
 data = as.name(substitute(data)),
 method = method)

fit model conditional on removal of NAs
 if(removeNA)
 Args$na.action = as.name("na.exclude")
 fit <- do.call("lm", Args)

save result
assign(saveAs, fit, where = 1)

print results
if(printSummary)
 print(summary(fit))

plot diagnostics
if(plotDiagnostics)
 plot(fit)
return result invisibly
invisible(fit)
}

Comments:

• The two additional arguments, printSummary and
plotDiagnostics, are straightforward. They take logical
values, and the code at the bottom of the function prints a
summary of the fit or plots the fit if they are T.

• The greatest complication lies in handling the formula
correctly. To do so requires constructing the arguments to lm
as a named list, and then calling lm using the do.call
function. The do.call function takes the name of the function
as a character string and a list with the evaluated arguments.

Updating the
FunctionInfo
Object

Finally, update the FunctionInfo object to implement the Page
grouping and the new function arguments.

guiCreate("FunctionInfo",
 Name = "menuLmFit",
 Function = "menuLmFit",
69

Chapter 2 Adding A GUI To a Windows® Package
 CallBackFunction = "backLmFit",
 DialogHeader = "Fit Linear Model",
 StatusString = "Fits multi-variable linear model",
 PropertyList =
 paste(c("SPropInvisibleReturnObject",
 "lmFitExampleMainPage",
 "lmFitExampleOutputPage"),
 collapse = ", "),
 ArgumentList =
 paste(c("#0=SPropInvisibleReturnObject",
 "#1=lmFitExampleX",
 "#2=lmFitExampleY",
 "#3=lmFitExampleDataSet",
 "#4=lmFitExampleMethod",
 "#5=lmFitExampleRemoveNAs",
 "#6=lmFitExamplePrintSummary",
 "#7=lmFitExamplePlotDiagnostics",
 "#8=lmFitExampleSaveAs"),
 collapse = ", "),
 WriteArgNames = T
)

Comments:

• The PropertyList now contains only the Page grouping
properties, because all the groups are contained in the pages.

• The two additional arguments are added to the ArgumentList
just ahead of SaveAs.
70

Extending The Example
The Resulting
Dialog

The new dialog now has two pages: one labeled Data/Methods and
the other Output.

Figure 2.2: Page 1 of the extended dialog.

Figure 2.3: Page 2 of the extended dialog.
71

Chapter 2 Adding A GUI To a Windows® Package
BUILDING THE GUI DURING INSTALLATION

To create the GUI properties automatically, along with the associated
functions and objects for your package during build time, requires a
particular code structure. It is not complicated, but it requires
following some rules.

Basic Code
Structure

The basic structure is depicted in the schematic displayed in Figure
2.4. A more detailed discussion appears below.

The steps for building a GUI for your package are as follows:

1. In the package directory, create the directory swingui, along
with the other directories: data, man, and R.

2. Under swingui, create two subdirectories: guicreate and R.

3. In the guicreate directory, save a script file (not a function
definition) defining all the dialog properties and
FunctionInfo objects.

4. In the R subdirectory of swingui, save all function definition
files associated with the GUI. These function definitions
include the menu functions called by the dialogs and any
callback functions that manage dialog content during user
actions.

Figure 2.4: Directory for building a package with Spotfire S+ GUI included.

Note

Menu and MenuItem creation do not go in this directory. See step 4 for more detail.
72

Building The GUI During Installation
5. In the package .First.lib function (in myPackage/R), load
the properties and FunctionInfo objects with calls like the
following:

 package.path <- file.path(library, section)
 prop.path <- file.path(package.path,
 ".Prefs", "package.prp")
 info.path <- file.path(package.path,
 ".Prefs", "package.fni")
 guiLoadDefaultObjects("Property",
 FileName = prop.path)
 guiLoadDefaultObjects("FunctionInfo",
 FileName = info.path)

where "packageName" is a quoted string containing the
package name. Alternatively, place the above calls in an
argumentless function (for example, loadProps) saved in a file
in swingui/R, and call it from .First.lib. In the example
above, packageName is lmFitExample.

6. If any files must be installed with the package accessed during
run time, place them in the inst subdirectory, contained in the
package directory. Examples of these kinds of files include
bitmaps needed by a Picture List Box or similar property
that loads bitmaps when the dialog is opened.

7. In the .Last.lib function, add a conditional expression to
remove the package menu from the Spotfire S+ menu bar
when the package is detached. The code should look
something like the following:

 if (is.sgui.app() && interactive() &&
 is.element("SPlusMenuBar$packageMenuName",
 guiGetObjectNames("MenuItem"))){
 guiRemove("MenuItem",
 Name="SPlusMenuBar$packageMenuName") }

where "packageMenuName" is the name used for saving the
menu properties. In the example above, packageMenuName is
MyGUI.
73

Chapter 2 Adding A GUI To a Windows® Package
74

Symbols
.Call 42
.gz 12
.zip 12

A
ASCII 42
available.packages 9, 19, 31, 38

B
binary 4, 11
build 25, 26, 30, 40

C
Callback function component

Spotfire S+ GUI 51
cbGetActiveProp 54
cbGetCurrValue 54
cbIsInitDialogMessage 54
cbIsOkMessage 54
cbSetCurrValue 54
cbSetEnableFlag 54
cbSetOptionList 54
check 25, 27, 29, 39
classCenter 44
Combo Box control 59
compiling code

scripts 40
Control Property component

Spotfire S+ GUI 51

CRAN 38
CSAN 3, 9, 12, 13, 20, 29, 35, 41

D
data 4, 30
DATAINSTALL 41
DESCRIPTION 5, 19, 29, 30, 39

example 30
Dialect 39
do.call 69
download.packages 10, 20, 39
downloading packages

using the GUI 11
dump 24, 42

E
example

Soundex 22

F
FunctionInfo Object component

Spotfire S+ GUI 51
FuntionInfo 57

G
Group 59
guiCreate 56
guiGetObjectNames 52
guiGetPropertyValue 52

INDEX
75

Index
H
help files

creating 33
HELPINSTALL 41
HTML Help Workshop

required software 15
http

//spotfire.tibco.com/csan 29, 41

I
inst 5
INSTALL 25, 28, 40
install.packages 10, 20, 21, 28
integrate 43

J
Java code 35

L
lapply 45
Latex 35
library 11, 25
List Box control 59
location

installing to another 11

M
man 4, 24, 30, 32, 39
mapply 44
Menu component

Spotfire S+ GUI 51
Menu function component

Spotfire S+ GUI 51
Menu Item component

Spotfire S+ GUI 51
MenuItem object 52
method 57
Multi-select List Box text box 59

N
new.packages 9

O
optim 45
options 19

P
package.skeleton 12, 22, 23, 30
package.skelton 34
packageDescription 31
Page properties 68
Perl 4
plotDiagnostics 69
printSummary 69

R
R 4, 30, 32, 39
README 30
removeNA 58

S
S.dll 5, 42
s.dll 35
S.so 5, 35, 42
saveAs 58
scripts

compiling code 40
share

packages 12, 29
SHLIB 41
SINSTALL 41
Soundex example 22
source 11, 19, 38
SPlusMenuBar 56
SPropInvisibleReturnObject 62
src 4, 30, 35
src2bin 41
statMenuLoc 56
SWeave 35
76

Index
T
tar 39
tar.gz 15

U
unresolvedGlobalReferences 43

V
vcvars32.bat 17
vignettes 35
Visual C++ compiler 16

W
win.binary 19, 38
Windows

required software 13
77

Index
78

	Important Information
	TIBCO Spotfire S+ Books
	Spotfire S+ Guide to Packages
	Overview of Spotfire S+® Packages
	Package Types
	Spotfire S+ Package Structure
	Location of User-Installed Spotfire S+ Packages
	Location of Packages on the Spotfire S+ Server

	"Quick Start" to Packages
	Installing the pkgutils Library Section
	Finding Packages on CSAN
	Downloading Packages from CSAN
	Installing and Loading a Package
	Creating a Package
	Submitting a Package

	Required Tools for Creating Packages
	Windows
	UNIX/Linux

	Package Details
	Installing the pkgutils Library Section
	Browsing Packages
	Example: Downloading and Installing the rpart Package

	Example: Creating a Spotfire S+® Package
	Soundex Example
	Building, Checking, and Installing the Package

	How to Submit a Package to CSAN
	Components of a Source Spotfire S+ Package
	DESCRIPTION File
	data Directory
	R Directory
	man Directory
	src Directory
	java Directory

	Converting a Package from R to Spotfire S+
	Getting An R Source Package
	Creating a Spotfire S+ Package from an R Package
	Build Scripts
	Differences Between Spotfire S+ and R Packages
	Porting Tools
	Trouble- Shooting Porting R Packages
	Missing C/ FORTRAN Functions

	Differences between R and Spotfire S+

	Adding A GUI To a Windows® Package
	Overview
	Components of A Spotfire S+ GUI
	Menus and Menu Items
	Control Properties
	FunctionInfo Object
	The menu Function
	The callback Function

	GUI Example
	Creating the Menu
	Creating the Calling Function
	Creating the Dialog
	Creating the FunctionInfo Object
	Creating the Callback Function
	Loading the GUI at Startup
	Removing the Menu at Shutdown
	The Resulting Dialog

	Extending The Example
	Additional Properties
	Dialog Pages
	Updating the Menu Funcion
	Updating the FunctionInfo Object
	The Resulting Dialog

	Building The GUI During Installation
	Basic Code Structure

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

